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Abstract

Large Language Models (LLMs) have been proven effective on various tasks

due to their adaptability. Thanks to their reasoning [15] and in-context learn-

ing ability [7] several Natural Language Processing (NLP) tasks could now be

taken into account by these models reaching good results without any training.

One of the most famous and important tasks in NLP is Named Entity Recog-

nition (NER), a subtask of information extraction that seeks to locate and clas-

sify named entities mentioned in unstructured text into pre-defined categories.

LLMs can effectively address this task when provided with a clear description

and relevant examples [21] [24]. However, despite their strong performance,

running these models requires substantial computational resources. In this

case, smaller encoder-only models like GLiNER [27] or fine-tuned BERT-

like [6] can ensure better performance at a lower cost. The main limitation

of these models is that they are usually bound to the data seen in training

while LLMs can easily adapt to different scenarios. In this work, a distillation

pipeline is proposed to leverage the ability of large language models to act

as label generators, creating synthetic data from unsupervised sources. This

synthetic data is then used to distill smaller models capable of effectively re-

placing their teacher. The task addressed is Named Entity Recognition (NER)

on the BUSTER dataset, which contains manually annotated financial trans-

actions.



Introduction

Natural language processing is a wide field that covers different language

tasks, from natural language understanding to question answering and en-

tity recognition. The advent of transformer-based models has represented a

breakthrough. In recent years LLMs like Llama[23], Mistral[11], Falcon[1]

have grown in popularity and nowadays are used to solve several tasks. The

main reason for their success is the ability of this model to successfully solve

novel tasks without, inmany cases, necessitating any fine-tuning. LLMs could

be adapted to different scenarios by carefully engineering their prompt [15].

Specifically, methods like In Context Learning (ICL)[7] where task examples

are shown as part of the prompt to enhance the model’s ability by provid-

ing a limited number of instances of the problem. Thanks to this flexibility

LLMs could be used as generators of noisy labels for unseen tasks and unla-

beled datasets. Human labeling activity is slow and costly and deep learning

models are data-hungry, labeling thousands of data samples requires a huge

investment of time and resources. Here LLMs can provide valuable help since

they are cheaper and faster than a human although the quality of their predic-

tions may not match the same accuracy. To enhance this generation’s ability

it is also possible to limit the manual labeling to a small set and then use it

to guide the model by prompting techniques like the already mentioned ICL.

This labeling activity produces a novel synthetic dataset in which other models

can be trained, at this point, LLMs can be replaced with smaller task-focused

models (like BERT style models) at a fraction of their computational cost.

This type of process can also be seen as a specific case of model distillation
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where the LLM is the teacher and the students are the models trained on its

predictions. This work proposes a distillation pipeline for a specific study

case. Specifically, LLMs would be used to train BERT-like models (<1B)

by generating synthetic training data. The goal is to develop smaller mod-

els with comparable performance while significantly reducing computational

costs. The addressed task is NER on BUSTER [29] a manually annotated

dataset of financial transactions. Part of these annotations would be used to

guide the generation process and to evaluate the quality of the generated labels

and the distilled models.

This thesis aims to address the following research questions:

• Large Language Models as label generators for NER in business

transactions: can large languagemodels effectively produce high-quality

annotations for named entity recognition in the technical domain of

business transactions?

• Optimizing annotation process using passage retrieval: although LLM-

generated annotations are faster and more cost-effective than human an-

notations, they can still require significant time. How can the annotation

process be further accelerated without compromising quality using pas-

sage retrieval?

• Distilling smaller models with noisy synthetic data: how does the

performance of distilled models trained on synthetic, noisy data com-

pare to that of their teachers?

• Impact of data quality on distillation: how does the quality of train-

ing data influence the effectiveness of the distillation process and the

performance of distilled models?

The work is organized into three main chapters:

• Chapter 1: introduces the necessary background, including the meth-

ods, models, and dataset used in the study.
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• Chapter 2: focuses on the generation pipeline for synthetic annotations,

detailing its design and implementation.

• Chapter 3: describes the training process for the student models, eval-

uates their performance, and compares the results with those of the

teacher models, emphasizing the effectiveness of the distillation ap-

proach.



Chapter 1

Background

1.1 Named entity recognition

Named entity recognition is a natural language processing method that aims

to extract and categorize information within a text [2]. This information is

identified as named entities and represents key subjects in texts such as names,

locations, dates, events, and topics. The set of named entities depends on the

contexts and they are usually defined in advance. The main approaches for

addressing these tasks can be categorized into three categories:

• Features-based: uses machine learning and statistical models. Super-

vised machine-learning approaches use algorithms like SVM [14] [17].

• Rule-based: information is extracted by using specific grammatical and

statistical rules [20][19]. This approaches usually guarantee high preci-

sion due to the high human intervention required to tune and create the

rules. This system has usually low recall due to the presence of rules.

• Deep learning approach: the use of neural networks, such as recurrent

neural networks [5] and transformer architectures [22][13], to examine

the syntax and semantics of sentence structures.
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Figure 1.1: An example of NER from BUSTER.

Named Entity Recognition is widely used in many other NLP tasks. En-

tity extractions provide valuable information that can be used for ChatBots,

sentiment analysis, and information retrieval.

While large language models (LLMs) have made impressive strides, they

still lag behind state-of-the-art supervised systems especially when there are

abundant annotated examples [25][16]. However, for the vast majority of en-

tity types, there is little annotated data. New entity types constantly emerge,

and it is expensive and time-consuming to generate annotated examples, espe-

cially in high-value domains such as biomedicine where specialized expertise

is required for annotation. To address these challenges recent methods such as

UniversalNER[28], PromptNER [3], and Gollie [21] seek to leverage the rea-

soning ability of the LLMs to generalize on open-domain data using few-shot

learning and carefully engineering the prompt.
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1.2 Knowledge distillation

Knowledge distillation, introduced byHinton et al. in 2015 [10], is a technique

for transferring knowledge from a large, complexmodel (teacher) to a smaller,

simpler model (student) while maintaining performance. They proposed us-

ing soft targets-probability distributions output by the teacher model over the

class labels as additional supervision for the student model. These soft targets,

generated by applying a temperature scaling factor to the teacher’s logits, cap-

ture richer information about inter-class relationships than hard labels alone.

By training the student to mimic the teacher’s softened output, the student

model can generalize better, even with fewer parameters. Knowledge distilla-

tion has since become a foundational method for reducing computational costs

and deploying efficient models in resource-constrained environments.

In recent years, the rise of generative AI has led to new possibilities, par-

ticularly in generating large quantities of data at a relatively low cost. This

capability has paved the way for a novel approach to knowledge distillation,

where generative models are employed to create synthetic datasets tailored for

specific tasks by leveraging their vast knowledge. These synthetic datasets can

address the challenges of data scarcity, reducing the need for expensive and

time-consuming manual annotation. These data are then used to train smaller,

task-focused models that can effectively substitute their larger counterparts.

Furthermore, the ability to generate task-specific synthetic data allows for the

customization of smaller models to meet the unique requirements of diverse

applications, enhancing their overall utility and efficiency.

Large language models, pre-trained on extensive corpora and comprising

billions of parameters, have demonstrated remarkable flexibility and success

in solving diverse problems. LLMs distillation [26] utilizes these generative

models as teachers to generate annotations from unlabeled data [18][9]. These

synthetic labels are then used to train smaller student models, enabling them
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to replicate the teacher’s predictions. While student models offer a more prac-

tical and resource-efficient alternative, their performance is inherently tied to

that of the teacher model. Consequently, careful engineering of the synthetic

data generation process is crucial to ensure high-quality annotations and max-

imize the benefits of distillation.

1.3 GLiNER

GLiNER is a novel model that addresses the Open NER task by using small

Bidirectional Language Models (BiLM), such as BERT or deBERTa [8]. The

core idea is to address the task as the matching of entity type embeddings to

textual span representations in latent space, rather than as a generation task

like the majority of the models [21] [28]. GLiNER architecture (Figure 1.2)

is composed of three main component:

• Pre-trained textual encoders like BERT and deBERTa.

• Span representation module that computes span embeddings from token

embeddings.

• An entity representation module that computes entity embeddings that

the model seeks to extract.

With this architecture, the span and the entity embeddings are represented

in the same latent space, their compatibility (degree of matching) represents

the probability for a certain span to match a certain entity type. The input

of the model is represented by a single sequence that combines entity types

and input text. The two subsequences are delimited by the [SEP] token while

each entity type is associated with the special token [ENT]. During training,

GLiNER objective is to maximize the scores between the correct span-type

pairs (positive pairs) and reduce for the incorrect pairs (negative pairs). Neg-

ative pairs are created by randomly sampling entity types that are not present
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Figure 1.2: GLiNER employs a BiLM and takes as input the entity types and

the target text. Each entity is separated by a learned token [ENT]. The BiLM

outputs representations for each token that will be used to compute the simi-

larity between spans of text and entities.

in the current sample. This is done for a better alignment between training and

real-world scenarios, where some entity types might be absent.

An essential consideration when training GLiNER is how to handle empty

samples, as these lack any positive pairs. For the entity input sequence, using

the same input (like the full set of entities) for empty samples can lead to a per-

formance drop, especially if many are present in the training set. GLiNER’s

architecture may learn a simple association between a static input sequence

and the absence of entities if empty passages dominate the data. This associa-

tion could become problematic during inferencewhen the same input sequence

is provided. To mitigate this issue, one approach is to sample a random subset

of entity types as the input sequence for empty texts. However, if the variety

of entity subsets is limited or if empty samples make up a large portion of the

data, this approach might not be sufficient. In these cases, balancing the num-

ber of positive and negative samples is effective in addressing the problem.

GLiNER outperforms state-of-the-art large language models like ChatGPT in
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zero-shot scenarios but also offers a more resource-efficient alternative, cru-

cial for environments with limited computing power. GLiNER is versatile,

performing well in multiple languages, including those it wasn’t trained on.

1.4 BUSTER

BUsiness Transaction Entity Recognition [29] is an Entity Recognition (ER)

benchmark that focuses on the main actors involved in a business transaction.

The dataset is composed of about 3779 manually annotated documents from

the Electronic Data Gathering, Analysis, and Retrieval system (EDGAR) re-

porting business transaction documents and acquisition reports. Specifically,

the gathered document belongs to a specific family of the ones present on

EDGAR called Exhibit 99.1. It consists of a disclosure document that sum-

marizes all the details of the operation announced in the form, and it is de-

signed to provide investors with a complete and detailed view of the operation.

BUSTER identifies three families of tags (the full tag-set is reported in table

1.1 ):

• Partieswhich groups tags used to identify the entities directly involved

in the transaction.

• Advisors which groups tags identifying any external facilitator and ad-

visor of the transaction.

• Generic_Infowhich identifies tags reporting any information about the

transaction.

BUSTER annotations were designed with a strong emphasis on contex-

tual clarity. Entities are tagged only when their class is explicitly clear from

the linguistic context, ensuring that their role is unambiguous. Each sentence

is evaluated independently from others in the document, meaning that an en-

tity identified in one sentence is not automatically considered in subsequent

occurrences unless the context supports it.
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Tag Family Tag Name Description

Parties

BUYING_COMPANY The company which is acquiring the target.

SELLING_COMPANY The company which is selling the target.

ACQUIRED_COMPANY The company target of the transaction.

Advisors
LEGAL_CONSULTING_COMPANY A law firm providing advice on the transaction, such as gov-

ernment regulation, litigation, anti-trust, structured finance,

tax, etc.

GENERIC_CONSULTING_COMPANY A general firm providing any other type of advice, such as

financial, accountability, due diligence, etc.

Generic_Info ANNUAL_REVENUES The past or present annual revenues of any company or asset

involved in the transaction.

Table 1.1: Description of the tag-set defined in BUSTER.

The dataset is randomly split into 5 folds, and the experiments conducted

use the following:

• FOLD 1: this fold contains annotated examples and serves as a foun-

dational set. Samples from this fold are used to guide the generation

process, providing the LLMs with valuable examples to support anno-

tation generation.

• FOLD 2: this fold is the target set for the generation process. Docu-

ments in this subset are presented to the LLM which will generate syn-

thetic annotations. This fold will also represent the training dataset for

the student models with two variants of labels: synthetic and gold.

• FOLD 3: this fold functions as the final test set for the distilled model.

To ensure a fair comparison between the student and teacher models,

the LLMs are also evaluated on this set. Annotations generated for this

fold are excluded from the distillation process.
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1.4.1 Statistics

Documents in BUSTER (Figure 1.3) have a length of around 700 words and

most of them fall into the 500-1000 range. Also, documents with more than

2000 words are extremely rare.

Figure 1.3: Document’s length distribution in terms of words.

In Figure 1.4, it is reported the distribution of the three tag families based

on their position in the text. The tags belonging to the Parties family (in or-

ange) are centered in the initial parts of the documents, while the remaining

are distributed more uniformly. No tags occur beyond the 1500th word.

Figure 1.4: Distribution of tags families inside the documents.



Chapter 2

Synthetic data generation

Large language models are powerful tools that require careful handling to per-

form optimally. Simply asking themodel to solve a task often results in incom-

plete or inadequate outcomes. The prompt plays a crucial role, a well-crafted

one is a good starting point but it may not be sufficient on its own. It is also

essential to leverage all available information to guide the model and make

its task easier. To effectively obtain high-quality labels a novel generation

pipeline is proposed (2.1). It comprises different pieces that could be mod-

ified according to the current task. The components of the pipeline are the

following:

• Chunker: divide the document into passages, crucial for having chunks

that contain all the contextual information needed to identify entities.

• Retriever: receives the passages of the document and selects which of

these potentially contains entities, its goal is to filter out empty passages.

• Example generator: generate dynamic demonstration according to the

current chunk. These examples are included in the prompt and serve as

a guide.

• LLM: for each passage received generate a set of annotations.
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• Annotated Examples: set of already annotated documents, used for

retrieval and generating examples.

The different pieces work in cooperationwith each other but are essentially

independent, they can be modified and removed without compromising the

functionality of the others. During the experiments, different combinations

of the pipelines were tried by removing and trying different versions of the

same component. The only essential piece is the language model which must

be always present since it is the one producing the annotations. The novel

dataset is created by the documents and the synthetic annotations.

Figure 2.1: Pipeline for annotation process. Each document is initially divided

into several chunks that will be filtered by the retriever. The unfiltered chunks

are then passed to the LLM alongside the generated demonstration. At the end

of the pipeline, a new set of annotations is created.

2.1 Document chunking

Choosing the correct chunking method is crucial since it is the first step of

the pipeline and will affect all the others. Furthermore, the context provided

to the LLM is decided at this step, the model should have all the information

needed to perform the recognition without being distracted by unnecessary

context. Different chunking strategies have been tried from hard chunking

once reached a specific token number to more refined methods like paragraph
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splitting, which tries to keep all paragraphs (and then sentences, and then

words) together as long as possible. The chunker model chosen is a senten-

cizerwhich divides texts into sentences. Themain advantages of this approach

are the following:

• The entities in BUSTER are local and bounded to their context this

means that an entity is annotated only in the parts of the texts where

it actively holds that role. The same entity a few sentences after is no

longer considered as such.

• Once the entities are recognized it is necessary to find their position

in the text. LLMs often struggle with generating accurate positional

information. For this reason, smaller sentences make the entity search

easier and a simple matching in the text could be sufficient.

On the other hand, this approach tends to generate a significant number of

chunks (about 23 per document) which could represent a sensible slowdown

compared to other methods.

2.2 Prompting

Prompt engineering plays a pivotal role when working with language models.

A well-structured prompt can significantly influence how the model interprets

tasks and the results’ quality.

Initially, a single prompt was employed to handle all entities. However,

the model struggled with this approach due to the prompt’s excessive length

and high information density. Incorporating examples presented another chal-

lenge, as each class required at least one example, further lengthening the

prompt and making it harder to interpret. This added complexity increased

the chances of confusing the model with examples from different classes. For

this reason, three different shorter and specific prompts were created, one for
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each tag family 1.1. The three prompts share a similar structure but are tai-

lored to fit the specific characteristics of each entity family. This approach

allows for more precise descriptions and the inclusion of additional examples

without overloading the prompt with excessive or mixed-class information.

The family-based prompt division proves advantageous by narrowing the

model’s focus to a subset of entities at a time. The entities within each family

often exhibit similarities, and by presenting them together, the model is com-

pelled to differentiate between closely related entities. This strategy helps the

model focus on subtle distinctions, typically where entity confusion arises.

Another important refining to the prompt is the addition of the dummy

class OTHER to all the prompts. This class acts as a backup for the model

when it is not sure about its predictions, it also acts as another way to define

what it is not an entity and it turns out to be beneficial to the performance.

The prompt used during the following experiment is composed of four

different parts:

• Task introduction: the first part of the prompt explains the task and

describes the nature of the text given as input.

• Classes definitions: the second part introduces the classes to be identi-

fied, each class description contains:

– Definition: a brief description of the class describing what is the

characteristic that identifies an entity belonging to that class.

– Guidelines: instruction on how the entity should look to be part

of the class, special cases, and also when an entity should not be

considered.

• Output format: contains the format of the generated labels and which

information should be inserted. The two pieces of information required

are the entity type and the entity name. The chosen format is JSON

string.
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• Examples: in this section, examples are shown to help the model un-

derstand the task and the desired output.

Despite the advantages of this tag-wise approach, there are some draw-

backs that it is important to mention:

• More LLM calls: three different prompts imply as well three calls to

the language for each passage making the process slower by an ×3 fac-

tor.

• Conflicting predictions: another issue arises when the language model

assigns the same entity two different entity types across different prompts.

In a single-prompt scenario, this was unlikely, but withmultiple prompts,

it becomes a problem as correct predictions may be overwritten by in-

correct ones.
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Figure 2.2: Prompt for theGeneric Info tag family, all the entities in the family

are listed along with the additionalOTHER class. Each entity presents its own

definition and guidelines.
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2.3 Passage retrieval

The retrieval component acts as a filter over document chunks, selecting the

most relevant passages and discarding sections where entities are unlikely to

be found. This approach accelerates computation and is expected to improve

overall generation quality. Specifically, it aims to solve and mitigate the fol-

lowing problems:

• Too many chunks: documents in BUSTER are about 700 words long,

and the sentencizer used as chunker produces about 23 chunks per doc-

ument.

• Three prompts for passage: with the current prompting to process an

entire document 69 calls are needed on average per document.

• Most chunks are empty: the entities are densely present in the doc-

uments’ initial and middle parts (Figure 1.4), and 9/10 of the created

passages do not present any entity.

• LLM calls are slow and costly: in an experimental scenario where

several trials and tests are performed the costs and time needed become

unsuitable.

This section presents various retrieval methods along with their corre-

sponding results. All retrieval approaches were evaluated on FOLD_2, with

FOLD_1 as the training set when applicable. The primary focus of the re-

triever is on maximizing recall rather than precision. Since the filtered pas-

sages will not be passed to the languagemodel, achieving high recall is crucial.

Although precision values may be low, this is secondary, as the model is still

able to disregard irrelevant chunks that do not contain entities.

Retriever’s role is to select which passages from a document could contain

an entity going to filter out all the nonpromising chunks. It does not explicitly

perform any type of classification but in a certain way, it guides the classifi-

cation since it decides which passages are suitable for which prompt.
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2.3.1 Tag-wise query

A query-based retriever is a system designed to retrieve relevant information

or documents from a large dataset in response to a specific query. In this

case, the content of the query is to search through the chunks of a document

and identify the most relevant passages by comparing the semantic similarity

between the query and the available information. The goal of a query-based

retriever is to efficiently surface chunks that are most likely to match the cor-

responding query, prioritizing recall to ensure that no potentially relevant in-

formation is overlooked. Three different queries are defined, one for each tag

family:

• Parties: Which are the companies sales and acquisition?

• Advisors: Which consulting firm are advising the transaction?

• Generic Info: Which are the annual revenues?

These queries are then compared with the passages using a cross-encoder

and from each query, the top k passages are selected. A passage could be

chosen by different queries and each query has a different value for k

From table 2.1 it is clear how the query approach is particularly effective

on the revenues while strugglingmore on the parties. Also, the consulting firm

reports a good recall. However, it is clear that to have a high recall value pre-

cision must be sacrificed. The main problems of this retriever are the classic

ones for the query based:

• Query tuning: tuning the query is crucial for achieving the best perfor-

mance.

• K tuning: k values should be tuned to achieve the best performance.

Furthermore, setting also a similarity threshold can be important to avoid

retrieving a fixed number of chunks even though the similarity is low.
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Tag-family Precision Recall F1 k

Parties

39.39 19.66 26.23 1

37.57 37.48 37.52 2

35.56 53.19 42.62 3

31.85 63.45 42.41 4

28.65 71.27 40.87 5

Advisors

14.36 46.19 21.91 1

10.88 69.92 18.82 2

8.44 81.36 15.29 3

6.73 86.44 12.49 4

5.58 89.41 10.50 5

Generic Info

12.65 73.28 21.57 1

7.84 90.84 14.44 2

5.54 96.18 10.47 3

4.22 97.71 8.10 4

3.41 98.47 6.59 5

Table 2.1: Retrieval results for the tag-wise query method varying the top k.
Each query is associated with a tag family and it is used to retrieve from the

document’s chunk the candidates for that tag set.

2.3.2 Similar passage retrieval

Similar Passage Retrieval (SPR) is a novel method that uses the annotated

dataset to filter out unnecessary chunks. The idea is to evaluate a chunk by

comparing it to similar ones. If similar texts contain entities, it’s likely the

evaluated passage will as well; conversely, if none of the similar passages

have entities, the chunk can be filtered out.

This data-driven approach aims to remove some of the drawbacks of tag-

wise query retrieval, starting from the query tuning. Since the passage it-

self is the query, the tuning process is completely absent making this method

more robust and easier to adapt to other contexts or datasets. Additionally,

the search of k becomes less impelling, since the SPR is capable of selecting

fewer chunks than the chosen k without setting any type of threshold.

The retrieval process 2.3 is executed document per document, three candi-

date lists are present, one for each tag family. Each passage of the document is

compared with the most similar examples from the corpus. After, the passage
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is added to a candidate list if there is at least one entity of the corresponding

type in one of the similar examples. A passage could be inserted in different

lists if entities from different tag families are present. To sum up, for each

passage in a document:

• The most similar k passages are retrieved from the annotated examples.

The retrieval is performed using the cosine similarity between the em-

bedded passage and the embedded corpus of the examples

• Check if any retrieved examples present an entity.

• If an entity is found, add the passage to the corresponding list using as

a score the similarity of the passage containing that entity, otherwise

discard the passage.

• From each candidate list return the top k passages.

The list insertion policy could also be different from the one proposed

here. A possible variant could be a voting scheme where each example ex-

presses a positive vote if presents an entity otherwise a negative one, every-

thing weighted by the similarity score.
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Figure 2.3: In this scenario the current passage is added to the candidate’s list

for Parties, due to the presence of an entity of that type in one of the similar

examples. However, at the end of the process, it would not be selected since

there are other chunks in the list with better scores.
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Tag-family Precision Recall F1 k

Parties

86.04 39.32 53.97 1

65.40 54.17 59.26 2

52.61 62.33 57.06 3

44.79 67.32 53.80 4

39.12 70.55 50.33 5

Advisors

72.99 42.37 53.62 1

61.48 66.95 64.10 2

52.03 75.85 61.72 3

46.45 83.05 59.57 4

41.61 85.17 55.91 5

Generic Info

44.44 39.69 41.94 1

38.79 63.36 48.12 2

31.21 70.99 43.36 3

26.72 74.05 39.27 4

23.68 78.63 36.40 5

Table 2.2: SPR results with different values of the top k passages selected for

each list. The number of examples retrieved to evaluate the passages is set to

four.

2.3.3 Similar passage retrieval masked

A potential variation of the SPR is the masked version. While the overall

process remains unchanged, the key distinction lies in the masking of enti-

ties within the corpus. This masking aims to enhance retrieval by making the

process independent of company names. The presence of these names could

skew the similarity retrieval, leading it to favor examples based on matching

company names rather than true semantic relevance.
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Tag-family Precision Recall F1 k

Parties

76.20 36.62 49.47 1

57.36 51.22 54.12 2

46.22 59.57 52.05 3

39.79 65.94 49.63 4

35.24 70.74 47.05 5

Advisors

67.50 34.32 45.51 1

58.05 58.05 58.05 2

46.37 70.34 55.89 3

40.49 76.69 53.00 4

36.12 80.51 49.87 5

Generic Info

42.61 37.40 39.84 1

36.61 62.60 46.20 2

30.60 74.05 43.30 3

26.28 78.63 39.39 4

23.63 82.44 36.73 5

Table 2.3: SPR masked results with different values of the top k passages se-

lected for each list. The number of examples retrieved to evaluate the passages

is set to four.

2.4 Evaluation

2.4.1 Method

From the result shown in 2.5 and 2.4 the SPR in both its variants outperforms

the query method in all the metrics. SPR achieves a better level of precision

with a higher recall and a higher percentage of work saved. Even modifying

the k value for the query method to have an exact match in recall would have

anyway a lower precision making it a less preferable method.

Micro Macro

Method Precision Recall F1 Ws Precision Recall F1 Ws

spr 42.09 70.07 52.59 85.27 38.31 76.33 51.01 94.21

spr masked 37.72 68.43 48.64 84.17 34.64 75.03 47.39 93.69

query 20.66 66.37 31.51 74.73 17.65 72.69 28.40 88.83

Table 2.4: Overall retrieval results for each method presented.
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Parties Advisors Generic info

Method Precision Recall F1 Ws Precision Recall F1 Ws Precision Recall F1 Ws

spr 44.79 67.32 53.80 87.37 46.45 83.05 59.57 97.67 23.68 78.63 36.40 97.60

spr masked 39.79 65.94 49.63 86.07 40.49 76.69 53.00 97.53 23.63 82.44 36.73 97.47

query 31.85 63.45 42.41 83.26 8.44 81.36 15.29 87.43 12.65 73.28 21.57 95.81

Table 2.5: Retrieval results for each tag family.

2.4.2 Masking

The standard SPR performs better for all families except for Generic Info,

which has the same results. Masking the entity removes the influence of the

company names on the similarity score, and that could be the reason for the

performance loss on the Advisors and on Parties. The most significant drop in

performance is observed with the Advisor tags. Companies engaged in advis-

ing activities represent a small subset of the dataset, and whenever they appear

in a document, they are likely to fulfill a consulting role. Masking their names

results in a loss of information that, in most cases, would have been crucial

for retrieving relevant passages. This problem is not present in the Generic

Info family which only contains the class ANNUAL_REVENUES. Since the

numerical value, is unlucky equal between different contexts, masking this

entity does not bring any valuable information loss. Indeed seems that for this

class the masking is beneficial, from table 2.5 it is clear that with the same

precision level, SPR masked achieves a better recall.

2.5 Few-shot generator

Large language models have shown remarkable benefits from learning by

example. Limited but high-quality demonstrations showing how the model

should accomplish the task can dramatically improve the performance of the

model. In the experiments, the examples would be provided in three different

ways:

• Few-shot: traditional few-shot learning using handcrafted examples.
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• Dynamic few-shot learning: select examples from a pool of options

based on the current passage.

• Dynamic few-shot learningmasked: select examples with masked en-

tities from a pool, based on the current passage.

For all these methods the same number of examples has been used for a fair

comparison.

2.5.1 Few-shot

The few-shot method involved crafting specific examples for each tag fam-

ily and its associated entities. These examples were derived from challenging

cases that the model struggles to annotate. While the entity names are fic-

tional, the text and structure closely resemble actual instances. Additionally,

examples using the class OTHER were included to encourage the model to

select it when no relevant entity is found, helping it understand that not all

company names should be treated as entities.

2.5.2 Dynamic few-shot learning

Dynamic Few-Shot Learning (DFSL) is a few-shot technique that dynamically

adapts demonstrations based on the current input [12][4]. This approach uses

a pre-labeled pool of examples, selecting those most similar to the current

passage, and making the prompt more flexible by tailoring specific examples

to specific cases. The DFSL process involves the following steps:

• The chunked documents present in the FOLD_1 are embedded using a

sentence encoder, which, in this case, is the same as the one used by the

SPR.

• The current passage is used to retrieve the most similar passages from

the annotated set.
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• The prompt is enriched with these examples and their corresponding

entities, formatted according to the model’s expected output.

It is important to note that when both SPR and DFSL are applied, the ex-

amples used for retrieval are the same as those inserted as dynamic examples.

2.5.3 Dynamic few-shot learning masked

This variant of DFSLmasks the entity names in the demonstration provided to

the LLM. Similar to the approach used in retrieval, the presence of company

names might lead the model to simply copy the provided examples rather than

using them as guidance. Masking the entity names aims to prevent this by

ensuring the model relies on the context rather than the names themselves.

2.6 Experimental setup

The experiments involved testing various models and configurations of the

pipeline components to determine which combinations performed best and

whether the proposed methods improved the generation process. All experi-

ments used the same tag-specific prompt, with an equal number of examples

across configurations where applicable. Masked configurations use masked

variants for both SPR and DFSL. From the possible combinations, only the

most relevant setups were retained for comparison:

• Model:

– Llama 3.1 8B

– Mixtral 8x7B

– Llama 3.1 70B

• Examples:

– Zero-shot

– Few-shot

– DFSL

• Retriever:

– SPR

– Query based

– None

• Masking:

– Yes

– No
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2.7 Quantitative results

The reported metrics were all calculated on FOLD_2 of the BUSTER dataset.

In addition to the standard micro and macro scores, the total number of calls

to the language model is provided to better assess the retriever’s performance

and the time saved. Detailed single-class metrics are available in the appendix

A.

Micro Macro

Model Examples type Retrieval Masked Llm calls Precision Recall F1 Precision Recall F1

Mixtral 8x7B few-shot spr 3143 51.95 52.64 52.29 58.32 60.93 59.31

Mixtral 8x7B few-shot spr 3425 48.94 49.96 49.45 57.80 57.77 57.54

Mixtral 8x7B dfsl spr 3143 42.01 54.93 47.61 48.97 62.75 54.81

Mixtral 8x7B dfsl spr 3425 39.62 52.40 45.13 48.68 61.07 53.95

Mixtral 8x7B zero-shot 54288 25.20 62.10 35.85 31.48 63.92 41.11

Mixtral 8x7B zero-shot spr 3143 45.85 49.94 47.81 50.82 54.63 52.35

Mixtral 8x7B zero-shot spr 3425 42.98 47.97 45.34 49.78 52.75 50.82

Mixtral 8x7B zero-shot query 6064 37.69 46.12 41.48 42.18 50.72 45.73

Table 2.6: Summary results for Mixtral 8x7B model.

Micro Macro

Model Examples type Retrieval Masked Llm calls Precision Recall F1 Precision Recall F1

Llama3.1 few-shot spr 3143 53.04 50.86 51.93 56.68 59.41 56.66

Llama3.1 few-shot spr 3425 51.04 49.66 50.34 55.76 57.94 55.68

Llama3.1 dfsl spr 3143 41.55 56.39 47.85 47.32 64.51 53.84

Llama3.1 dfsl spr 3425 39.77 52.31 45.19 45.90 60.71 51.28

Llama3.1 zero-shot 54288 33.08 54.30 41.11 29.80 51.24 37.17

Llama3.1 zero-shot spr 3143 47.62 46.66 47.14 45.65 46.55 45.18

Llama3.1 zero-shot spr 3425 45.39 44.69 45.04 45.09 44.20 43.83

Llama3.1 zero-shot query 6064 43.29 42.28 42.78 39.46 46.38 41.76

Llama3.1 70B few-shot spr 3143 55.98 52.73 54.31 62.73 62.03 61.99

Llama3.1 70B dfsl spr 3143 57.22 55.33 56.26 63.56 63.84 63.51

Llama3.1 70B zero-shot spr 3143 54.21 53.29 53.75 60.69 62.88 61.64

Table 2.7: Summary results for Llama 3.1.

2.7.1 Passage retrieval

Models utilizing retrieval show better performancewith fewer languagemodel

calls. Despite the detailed recommendations in the prompt, the models tend to

be more lenient in their predictions, favoring recall but significantly reducing

precision. SPR yields the best results and is extensively used in other experi-

ments.
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2.7.2 Models

Despite having a big difference in the number of parameters (8 vs 45 billion)

Llama and Mixtral show comparable results in all configurations. Notably in

the zero-shot setups without retrieval, Llama seems to have better followed the

prompt because is more conscious in his predictions showing more balanced

values for precision and recall. On the other hand, Mixtral is more balanced

between different classes reporting better macro scores. As expected, Llama

70B shows the best performance and outperforms the other models in all the

configurations.

2.7.3 Examples type

Few-shot and DFSL methods demonstrate better macro performance, as the

inclusion of examples aids the model in handling more challenging classes.

Specifically, ANNUAL_REVENUES and SELLING_COMPANY benefit the

most from this approach. However, this improvement is less evident in the

micro scores due to the limited number of examples for these classes.

Dynamic few-shot learning outperforms traditional few-shot only when

usedwith Llama 70B. Smallermodels seem unable to fully leverage thismethod,

favoring simpler few-shot approaches instead. This may be because similar

examples could confuse smaller models, causing them to mix up the examples

with the actual query, whereas larger models can better distinguish between

the two parts of the prompt.

2.7.4 Masking

The masking had the goal of making the models focus more on the sense of the

passage rather than the companies involved in the action. This approach does

not help either the retrieval as shown in 2.4 or the generation’s results. For

both models and all the different configurations, the masked setups perform

worse compared to the standard one.
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Distillation

In this section, the LLMs used in the last chapter will act as teachers for smaller

student models (<1B). The distillation process aims to obtain a smaller model

that performs similarly to the bigger one with a fraction of the cost. Specif-

ically, the synthetic data generated by the LLM will be used as training data

while the students will try to imitate this prediction. Since the labeled data are

noisy the training process would be crucial for reducing the noise and achiev-

ing at least comparable performance. Training results are strictly related to

the quality of the generated data. From all the possible models presented, two

teachers have been designed:

• Llama 70B DFSL with SPR: the best performing model. The data

generated by this model would be referred to as SILVER labels

• Mixtral 8x7BDFSLwith SPR: a less performingmodel used as a com-

parison to understand how much label quality will impact the distilla-

tion process. This model has about nine points less of micro F1 and its

generated data would be referred to as BRONZE labels

Different student models are used to assess how various architectures adapt to

synthetic data, identifying which models are more sensitive or more robust.
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The two student models tested are:

• BERT: a common baseline for many NLP tasks. A classification head

is added on top to perform token-level classifications.

• GLiNER: a zero-shot entity extractor built on a bidirectional trans-

former encoder.

BERT serves as a standard baseline for NLP tasks, and its pre-trained version

provides a strong foundation for feature extraction, allowing the classification

head to be trained from scratch for token classification. In contrast, GLiNER is

a more recent model designed specifically for entity extraction. Unlike BERT,

it doesn’t require additional components and can be fine-tuned as-is. Its pre-

trained version is already tailored for NER tasks, making it more specialized

than BERT for entity recognition.

Figure 3.1: The student model uses synthetic data generated by the LLM as

the training set.

Figure 3.2: Student at inference time. A retrieval step can be added to filter

out chunks as done in the synthetic generation.
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3.1 Experimental setup

The models were trained for twenty epochs, GLiNER used a focal loss while

BERT aweighted cross-entropy for dealingwith the class unbalance. GLiNER

is fine-tuned using the hyperparameters from the authors’ repository. GLiNER

faced a significant challenge due to the high number of passages without en-

tities. GLiNER’s input consists of two parts: the first contains the possible

entities, and the second includes the input text. Since the entities to be recog-

nized remain the same, the left part of the input stays unchanged. With nine out

of ten passages lacking entities, the model quickly formed a bias, associating

the label set with the absence of entities. To mitigate this problem, a random

subset of the possible labels was sampled for passages without entities. While

this helped, the model still struggled with the overwhelming number of empty

passages. The training set was adjusted to balance the number of positive and

negative passages, forcing themodel to learn proper entity recognition without

relying on shortcuts. Additionally, BERT was also trained with a configura-

tion where the number of positive and negative passages was balanced. This

adjustment was made to evaluate whether BERT could similarly benefit from

this approach and improve its ability to distinguish between passages with and

without entities. Here are the different setups:

• Model:

– BERT

– GLiNER

• Training Data:

– Gold

– Silver

– Bronze

• Negative Ratio:

– Original

– Balanced

• Retrieval:

– Yes

– No
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3.2 Quantitative results

The reported metrics are computed on the FOLD_3 of BUSTER. The overall

micro and macro results for BERT and GLINER are shown in 3.1 and 3.2.

Specific per-class metrics are presented in appendix B.

Micro Macro

Model Training data Retrieval Negative ratio Precision Recall F1 Precision Recall F1

BERT gold balanced 41.60 78.19 54.30 45.95 79.43 57.38

BERT gold original 61.83 71.32 66.24 60.75 73.08 66.16

BERT gold spr balanced 54.44 67.21 60.15 55.46 70.94 61.70

BERT gold spr original 64.67 64.30 64.48 63.40 67.33 65.17

BERT bronze balanced 25.02 75.50 37.59 33.79 77.17 45.70

BERT bronze original 45.93 66.43 54.31 46.52 67.45 54.61

BERT bronze spr balanced 42.12 63.74 50.72 46.95 68.19 55.09

BERT bronze spr original 52.63 61.17 56.58 51.75 62.89 56.34

BERT silver balanced 35.88 77.73 49.09 39.29 79.28 51.93

BERT silver original 57.83 64.50 60.98 59.79 67.58 63.35

BERT silver spr balanced 48.61 66.75 56.25 50.02 70.77 58.22

BERT silver spr original 59.67 60.42 60.04 60.86 64.80 62.68

Table 3.1: BERT summary results on different configurations.

Micro Macro

Model Training data Retrieval Negative ratio Precision Recall F1 Precision Recall F1

GLiNER gold balanced 73.63 68.10 70.76 74.79 68.20 70.59

GLiNER gold original 88.84 23.10 36.66 88.81 15.23 24.24

GLiNER gold spr balanced 75.07 64.20 69.21 75.74 62.69 67.13

GLiNER gold spr original 87.13 29.56 44.14 86.50 17.59 25.85

GLiNER bronze balanced 68.88 44.22 53.86 69.95 51.49 55.77

GLiNER bronze original 77.90 15.90 26.41 82.65 27.92 35.32

GLiNER bronze spr balanced 72.33 42.78 53.76 69.21 47.17 53.24

GLiNER bronze spr original 77.78 15.20 25.42 82.14 28.68 35.81

GLiNER silver balanced 61.09 57.10 59.03 67.81 58.72 60.23

GLiNER silver original 82.35 14.68 24.92 80.52 29.24 35.70

GLiNER silver spr balanced 64.94 54.71 59.39 69.94 61.44 64.99

GLiNER silver spr original 80.03 13.20 22.65 67.00 24.95 31.75

Table 3.2: GLiNER summary results on different configurations.
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3.2.1 Models

GLiNER is the model capable of reaching the best performance on the gold

labels. On the other hand, BERT turns out to be the best model for synthetic

labels showing better performance as the quality of labels decreases. These

results could suggest that even though GLiNER would be the best model for

this dataset, it needs high-quality data to effectively reach the best results while

BERT is less sensible making it preferable as a distilled model. Additionally,

BERT shows a better recall against a better precision of GLiNER

3.2.2 Labels quality

Data quality is crucial for training effective models, low-quality labels lead to

weaker models. As expected, models trained on gold labels perform the best,

followed by those trained on silver, with bronze labels yielding the lowest-

performing models. However, while the differences are noticeable, they are

not as large as one might anticipate based on the label quality.

Between silver and bronze labels, there is about a nine-point difference in

F1 score. Yet, the gap between the distilled models trained on these labels is

only around four points. Similarly, while the difference between silver and

gold labels is around forty-four points, the corresponding model difference is

just six points.

This shows that the quality of distilled models does not scale proportion-

ally with the quality of the labels. A possible explanation for this could be

the models’ ability to achieve decent performance quickly, even with a rela-

tively lo small dataset. After this initial steep learning curve, the performance

plateaus. At this point, further improvements likely focused on rare or com-

plex cases that require increasingly higher-quality data. These difficult exam-

ples demand more refined data to be learned effectively.
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3.2.3 Data balancing

As mentioned earlier, GLiNER’s training benefits from a balanced ratio of

positive and negative passages, experiments using the original ratio led to poor

performance. In contrast, BERT demonstrated the opposite trend, perform-

ing better with the original ratio, highlighting that this issue was specific to

GLiNER.

Interestingly, BERT achieved the best recall across all experimental setups

with the balanced configuration. Fewer negative examples make the model

less strict in identifying entities, resulting in a trade-off, higher recall but lower

precision. This finding is particularly valuable in scenarios where high recall

is prioritized, such as when model predictions are reviewed by humans. In

such cases, having higher recall is often preferable to higher precision.

3.2.4 Passage retrieval

Retrieval is introduced only during the inference step, removing passages with

entities from the training data would negatively impact model performance.

Additionally, this would not introduce anything new, as balancing the number

of negatives already filters out empty passages.

Surprisingly, for BERT, retrieval improves performance when the model

is trained with a balanced number of positive and negative passages. Since this

version of BERT is recall-oriented, retrieval helps by reducing the number of

passages considered, thereby boosting precision.

For all the setups of GLiNER, the results remain nearly the same, with at

most a slight drop in performance around a couple of points for the retrieval

version. In general, unlike the corresponding teacher models, retrieval doesn’t

enhance the overall quality of the studentmodels. However, it allows for faster

inference with limited impact on metrics.
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3.3 Teacher-student comparison

Once the distillation process is complete, a set of student models can be com-

pared to their teacher. Table 3.3 presents the results of the two teacher models

on FOLD_3, which is the same fold used for evaluating the students. Notably,

in several student setups, the performance surpasses the teachers, with the best

configurations achieving a micro F1 score around six points higher. However,

the macro F1 scores remain similar between students and teachers.

This indicates that while both students and teachers maintain the same bal-

ance across classes, the student models produce better annotations for a larger

number of samples. Similar macro F1 scores are expected since the quality

of synthetic predictions in each class influences the training, if a class lacks

strong annotations, the student’s performance is limited accordingly. Notably,

the micro F1 score is better for the students, indicating that they have become

superior annotators compared to their teachers. The distillation process has

preserved the quality ratio across classes while improving the overall number

of accurate predictions.

Micro Macro

Model Examples type Retrieval Masked Llm calls Precision Recall F1 Precision Recall F1

Llama3.1 70B dfsl spr 3113 52.53 55.76 54.09 61.26 64.05 62.51

Mixtral 8x7B dfsl spr 3113 42.49 56.20 48.39 50.94 63.25 56.17

Table 3.3: Teacher results for the test set (FOLD_3).
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Figure 3.3: Comparison between students and teachers for the test set. The

comparison is made by selecting the best configuration for each training data.

For each category, the last column represents the corresponding teacher.

3.4 Conclusion

The presented work shows a successful distillation of larger generic models

into smaller task-specific ones. Large language models have been proven to

be adapted to noisy label generators, that with the correct engineering, can

be refined to produce valuable synthetic annotations. To enhance the perfor-

mance of these models a specific generation pipeline has been built, intro-

ducing two major components the retriever and the few-shot generator. The

retriever not only allows a speed-up to the generation process by providing

only the best candidates’ chunks but also improves precision by filtering out

empty passages that the model could misinterpret. The few-shot generator

provides the model with valuable demonstrations that not only improve gen-

eral performance but also help the model to have a better balance between

different classes. How these examples are created is also important, smaller

models prefer handmade examples engineered to their needs while Llama 70B

benefits from dynamic generations of the examples.

The distillation process involved fine-tuning two differentmodels GLiNER

and BERT, with the last one that works slightly better on the synthetic data.
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Both of them outperformed their teachers in all the setups showing how the

training process effectively obtained valuable knowledge from the noisy la-

bels. Even though the pipeline is constructed on a specific study case it can

be easily adapted by changing the single components to better suit other sce-

narios. Summing up the most important findings:

• Retrieval to reduce inference: initially used to improve the LLM per-

formance, it proved valid for the BERT styles model. It drastically re-

duces the amount of inference needed and improves the LLM perfor-

mance while slightly reducing the ones of the student’s models.

• Retrieval by examples: retrieval by similar examples (SPR) over a

query-based method avoids any type of query tuning leading to a full

data-driven approach, achieving better results.

• Specialized prompts: shorter, entity-focused prompts enable themodel

to concentrate on specific tags. Including a dummy class also provides

an option for the model if it is uncertain about its predictions.

• The distillation reduces noise: even though the distilledmodels are not

at the level of the gold ones, they turn out to be better of their teachers,

showing how the training process has absorbed part of the noise.

Coming back to the research questions that motivated this work, the results

demonstrate that LLMs can be effectively adapted as label generators for spe-

cific technical domains, such as business transactions. Techniques like pas-

sage retrieval and few-shot generation have significantly improved the speed

and quality of the annotation process, enabling more efficient data labeling.

Distilling smaller models using synthetic data has proven both feasible and ef-

fective, with the student models achieving superior performance compared to

their teacher. The findings highlight that data quality remains a critical factor

in building high-performing models. While higher-quality annotations gen-

erally lead to better models, the relationship is not strictly linear; substantial
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improvements in annotation quality do not always translate to proportional

gains in the performance of distilled models. This underscores the complex

interplay between data quality and model efficacy.

3.5 Future works

Here are some possible expansion and further experiments that could be con-

ducted:

• Multi-model distillation: since the retrieval allows a complete sepa-

ration between tag families it could be possible to have three different

students, one for each family. In this way, each model could focus on

just one family of entities. The retrieval would act as a router to the

right model.

• Iterate distillation: the distilled model can be used to generate better

annotations that could be used to repeat the distillation problem aiming

for better performance.

• Task specific chunker: fine-tuning the chunker on the dataset could

improve the performance making it aware of the specific format of the

file.

• Entity matching: currently the entity matching in the text is done by a

simple text search. A better method can involve the generation of the

position in the text by the LLM.

• Mixed gold-silver training set: by integrating a selection of gold (human-

annotated) data with the synthetically generated annotations, particu-

larly for the most challenging cases. This strategy keeps human an-

notation efforts minimal by focusing only on high-impact cases while

benefiting from the scale of synthetic annotations.
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