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Abstract

This thesis proposes a novel pipeline incorporating segmentation masking and depth val-

ues to enhance the performance of Gaussian Splatting techniques. By leveraging 3D

Gaussian Splatting’s ability to achieve high-accuracy photorealistic reconstructions, the

pipeline focuses on singular object reconstruction through segmentation masking, which

removes unwanted backgrounds and accelerates the optimization process. Integrating re-

cent advances in fast semantic segmentation using neural networks, the pipeline produces

nearly ready-to-use models. Additionally, using a depth-sensing camera during acquisi-

tion allows for more accurate point cloud initialization with minimal overhead, leading

to a significant boost in visual accuracy during the early optimization steps. The pipeline

achieves a significant speedup, making it particularly advantageous for devices with lim-

ited computational capacity, though with a slight trade-off in the accuracy of the final

results. The depth-enhanced initialization is carried out by sampling and projecting mean-

ingful point information into the reconstructed space, offering a better approximation of

under-sampled regions. This step also ensures the reconstruction is to scale, enabling

precise measurements and further analysis.
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Chapter 1

Introduction

In this work, it is presented a small but significant contribution to the 3D reconstruction

research area. The demand for accurate 3D representation of real existing objects and

scenes is increasing year by year, for all kinds of applications. Artificial intelligence (AI)

breakthroughs in recent years revealed a digital world hungry of data. Democratizing au-

tomatic 3D reconstruction of real-life scenes will create a base for new techniques to build

upon it. Nowadays reality is divided into two distinct layers that can interact with each

other: a physical layer ruled by physical and mathematical laws and composed by matter

in opposition with the artificial digital layer simulated in computers and represented with

mathematical theory. Accessing the 3D representation of real-world objects allows anal-

ysis, synthesis and manipulation of their physical counterparts with high accuracy and

efficiency. Sectors that benefit from it are the robotics industry for automatic manipula-

tion and navigation, the entertainment industry for immersive and engaging content, the

medical fields for learning and personalized health treatments.

In robotics arms manipulation tasks, developing a robust and adaptive sequence of

movements for multiple objects requires the 3D reconstruction of the target object as well

as the robot arm. Key information are the rotation and pose of the object in space with its

geometric properties and shapes, to correctly simulate contact points and grasping con-

ditions. With the advent of AI applications, a dataset of 3D objects to be manipulated is

used for training and simulating the manipulation process [5]. In robotic navigation, the

ability to dynamically reconstruct the space navigated and to detect the position of obsta-

cles enable the robot to move across the environment with great accuracy and efficiency.

In environments where space is shared with human operators, it also ensures a safer opera-
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tion of the robots [37]. Scanning and digitalizing objects of relevant cultural values enable

a better preservation of the real artworks. Additionally, the new representations led to ad-

vancements in the analysis techniques where sections or inside view visualization were

impossible without damaging the exhibits [11]. Museums are facing a new challenging

shift, integrating new technologies and 3D representation of objects in their exhibitions.

XR applications, which often require accurate and immersive 3D models of the displayed

objects, are integrated with the classical museum experience to increase engagement and

innovate the storytelling of cultural heritage [14]. In the entertainment industry, 3D rep-

resentation of objects is at the core of computer graphics history. Modern movies’ special

effects are indistinguishable from reality and handcrafted virtual 3D models are used side

by side with real actors. Modern games aim for better and more realistic 3D representation

pushing the research for more efficient and dynamic 3D displaying techniques. In medi-

cal fields, general 3D reconstruction of organs is widely used in training and for research

purposes. Patient-specific reconstructions, such as x-ray reconstruction, are an important

aid for accurate pathology identification, medical treatments and surgery planning [30]

Nowadays, obtaining a representation of real or imaginary objects is expensive and

time-consuming. Manual 3D modeling and designing is still the best choice for a lot of

applications, with the use of Computer-Aided Design (CAD) softwares or Digital Content

Creation (DCC) softwares, but automatic reconstruction is rapidly gaining importance.

New technologies and hardware innovation permit a faster and more accurate reconstruc-

tion of 3D objects starting from simple sensory information such as images, point clouds

and laser reflection signals. Based on how the 3D object is represented, reconstructions

can be divided into explicit or implicit representations:

• The main methods for displaying data include point clouds, voxels, and meshes,

which are explicit representations. Explicit refers to a representation method that

clearly defines geometric shapes and structures to directly describe the external or

internal geometry of an object. Point clouds are an unordered collection of points in

3D space. Voxels are an unordered collection of unit cubes, called voxel, each stor-

ing spatial information such as position, color and density. Meshes are a structured

representation with connected points, edges and faces that can be used to represent

most topological characteristics. Explicit representation allows simple and intu-

itive manipulation, editing and extension to the different applications, but they are

12 Chapter 1 Jacopo Meglioraldi
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discrete approximations of the object characteristics, not suitable for complex and

accurate simulations.

• Common implicit representations include implicit surfaces, Signed Distance Func-

tion (SDF), Occupancy Field and Radiance Field. Opposite to explicit methods,

implicit expression of scenes does not rely on explicit storage of geometric data,

but instead on functions and other mathematical primitives to store information.

Implicit surfaces represent geometry by union of a set of equations describing sur-

faces such as Bézier curves. Simple but exact surfaces can be reconstructed in this

way, suitable for accuracy-dependent applications. The Signed Distance Function

is a continuous function assigning at each input 3D point in space the corresponding

distance to the nearest surface, with negative values for points inside the object vol-

ume and positive otherwise. In Occupancy Field, points in space are mapped with

probability value expressing their probability to be representing part of the object

volume, usually accumulated in a 3D grid subdivision of space. Finally, Radiance

Fields are representations that map points along a set of rays into a hyperspace de-

scribing light rays by intensity, wavelength and direction. The functions compute

the color and visibility of all the points from the desired view. The major advan-

tages of implicit representations are the lower requirement of storage space and

the higher geometric expression capacity. In contrast, they require time-consuming

computations and challenging manipulation operations.

Automatic reconstruction methods rely on simple sensory information to reconstruct

an accurate 3D representation of the object. Opposite to hand-crafted 3D representation,

sensory data are often noisy and a substantial pre-processing of input data is needed to

extract clean and useful information. Smoothing filters over sensory signals can help im-

prove the robustness of the reconstruction methods as well as missing values filling tech-

niques. Segmentation and region of interest selection help remove unwanted background

and avoid useless computation during reconstruction. The 2D to 3D reconstruction prob-

lem addressed in this thesis aims to use planar images to infer a 3D representation of a

scene.

In 2D to 3D reconstruction task, one common problem with most acquisition tech-

niques is the registration of the 2D images in a shared 3D space. Optimization algorithms

like Global Bundle Adjustment and Pose Graph are used to globally optimize image pairs

Chapter 1 Jacopo Meglioraldi 13
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registration poses which are easier to compute but suffer a lot of limitations in the multi-

way registration, such as drifts.

The presented work explores new cutting-edge techniques to reconstruct 3D infor-

mation of a single object from an unordered set of 2D views. It expands the Gaussian

splatting techniques [15], an implicit representation, by integrating its pipeline with ad-

ditional depth information in order to reconstruct a better initial candidate. This work

proposes a complete pipeline from unprocessed RGBD camera images of an object in the

wild to the final mesh reconstruction. Objects and relative depth information are extracted

from the images with segmentation. Images and point clouds registration algorithms are

applied to sort in space the unstructured input images and extract a candidate point cloud.

The 3D Gaussian splatting technique is used to reconstruct an accurate 3D representation

of the object. An optional mesh extraction step is used for aligning the 3D object recon-

structed with most used software solutions for 3D object applications. Results show that

by leveraging depth information of the image acquired, the initial set of Gaussians can be

refined to better approximate the final geometrical information in the initial representation

with low computational overhead. A better initialization speed up the Gaussian splatting

optimization technique while retaining the same quality in the early hundreds steps recon-

struction, reducing the request for parallelized computations and hardware requirements.

By pre-processing the data with segmentation masking extracted by fast neural networks,

the foreground is separated in the initial stages, reducing the computational cost. It addi-

tionally avoids the manual or automatic step to extract the region by outputting an almost

ready-to-use 3D model.

The work done is reported as follows: in Chapter 2 the main relevant techniques

addressed in this work are presented with their characteristics and limitations. In Chapter

3 the proposed method pipeline and the preliminary studies supporting design choices are

reported. In Chapter 4 experimental setups and parameters are reported with a discussion

of the obtained Results.

14 Chapter 1 Jacopo Meglioraldi



Chapter 2

3D Reconstruction Methods Overview

The 2D to 3D reconstruction is a well-known problem in literature for its importance

and its intrinsic complexity. The objective of the task is to reconstruct a 3D representation

from a set of 2D input information, usually RGB images. Acquiring images is the physical

process of recording a discretized snapshot of a real scene. Images can be recorded from

different sensors, the most common one is the three-channel visible light sensor cameras

to record RGB pictures. Other cameras can record infrared, x-ray or electromagnetic

signals. Acquiring images can be described as the mathematical process of projecting a

space into a lower-dimensional one. The loss of information, in particular volumetric and

spatial information, in this process is not negligible and defines the inverse problem of

reconstructing the initial scene to be ill-posed. Research explored different solutions to

this problem that can be grouped into 3 main categories.

• Traditional Methods try to reconstruct the geometric information of the scene by

capturing multiple 2D representations of the scene and projecting pixel points from

different views into the same space. Position of the 2D images in the shared space

is fundamental to correctly match the projections and reconstruct the volumetric

information thus camera position and parameters are required. In some methods

known fixed camera poses are used in acquisition, while in others the camera posi-

tions are derived indirectly from the set of images. Usually, an optimization cycle to

reduce the reprojection error is performed over the candidate points and camera po-

sitions are adjusted with respect the initial estimations. The main representatives of

this group are classical Photogrammetry, Structure From Motion (SfM), Structured

light and Light Detection And Ranging (LiDAR) . This methods will be described

15
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in detail in Section 2.1

• Neural optimization methods are newly introduced methods thanks to the ad-

vances in neural network computing and hardware parallelization. Neural net-

works are a computational model suitable for optimizing challenging functions that

present high-order non-linear components with high dimensionality. These new

methods show great accuracy and photorealism in the reconstruction of objects,

gaining increasing attention by the research community. They are currently one of

the hot topics of the computer vision research. In particular, NeRF methods are

the main contributor in this family, followed by the more recent Gaussian Splatting

methods. The full capabilities of these new models are yet to be discovered and

in this work, we add a small but significant analysis of the method. They are be

described in detail in Section 2.2

• Prior knowledge Neural Networks methods rely on the development of NN mod-

els trained on datasets containing 3D representations of objects and their images.

These methods show great capabilities in the inference of shapes and information

of the scene from few images, similarly to humans, based on previously seen data

and prior knowledge. Although they can generate a 3D representation of the desired

target even with a single image, the quality has yet to be challenging with respect

to previous methods. Reconstructions are suitable for gaming industry applications

where details of object in fictional worlds can be overlooked in favor of the overall

gameplay experience. It is infeasible, though, for applications with high-quality

reconstruction such as art and mechanical engineering. The two main limitations of

these methods are the availability of good 3D representation of real-world objects

leading to work mainly with synthetic data, and the amount of resources necessary

to train such models. Nonetheless previous advancements in similar fields, in par-

ticular from the 2D image generation problem, showed the great potential of the

architectures and pose a great interest for the research in this area. Example of

models are DreamFusion, DreamGaussian, Magic3D and SDFusion [25, 36, 17, 6]

Reconstruction techniques could be further divided into static or dynamic reconstruction

based on the type of scene inspected, creating a huge difference in the requested speed and

accuracy of the method. In robotic navigation, we need constant updates of the geometry

16 Chapter 2 Jacopo Meglioraldi
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reconstructed in a continuous optimization cycle while the robot navigates new areas. The

focus is on the spatial positioning of obstacles and targets while fine details and visual

accuracy are of secondary importance. Usually, the representation has to be reconstructed

in an online fashion thus requiring techniques that can reconstruct the scene with great

speed. Simultaneous localization and mapping (SLAM) is the problem of reconstructing

a space while keeping track of the position of the agent inside it. Usually, agents use

multiple sensors such as camera, structured light, laser sensor or acoustic sensors and

rely on variants of traditional reconstruction techniques. Static reconstruction aims to

represent fixed scenes, like objects or places, and is divided into the acquisition phase and

the subsequent offline computation phase to extract the reconstruction.

Starting from raw data, the reconstruction method from 2D images needs to solve

sub-problems which can be grouped in the following three steps:

• Pre-processing. In this step raw data are processed to extract useful and meaning-

ful information, removing noise and superfluous data. Segmentation removes un-

wanted additional data by selecting regions of interest from the raw image. Smooth-

ing and filtering techniques remove unwanted noise coming from the acquisition

process.

• Extraction of 3D information. Depending on the technique and sensor used, 3D

information, usually point clouds, is extracted from single images or pairs. Multiple

3D representations are extracted from the data in an unstructured or semi-structured

format. In other words, each image or pair of images contributes to the 3D recon-

struction by spatial information extracted from the view. Different techniques have

pros that make them suitable for specific applications. In general, the objective is

to estimate the depth values of each point in the picture from the sensing camera.

Naive aggregation of this information, such as subsequently linked chain of trans-

formations, often incorrectly reconstructs the 3D scene, thus the third subproblem

exists.

• Global registration. To accurately intersect the different spatial information from

different views, an optimization step is often performed to coherently adjust the

representation and reduce the error from the multiple views.

In this chapter all the theoretical foundations and literature works necessary to an or-

Chapter 2 Jacopo Meglioraldi 17
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ganic understanding of the proposed work are reported. First, the different techniques

and sensory acquisition methods to extract spatial information from 2D data are analyzed

according to the above-mentioned division in traditional, neural optimization and learned

prior methods. Then, the undistortion and segmentation pre-processing steps are ana-

lyzed. Finally, the widespread global registration methods of Global Bundle Adjustment

and Pose graph algorithm are analyzed.

2.1 Traditional reconstruction methods

In this section, traditional 3D reconstruction techniques used to derive spatial information

from images and sensor data are described. Starting with classical Photogrammetry, the

section focuses on other approaches like Structure from Motion, structured light recon-

struction, and LiDAR, highlighting their principles, advantages, and limitations across

various applications.

2.1.1 Classical Photogrammetry

Photogrammetry is a technique that uses the relative position of known calibrated cameras

to compute the positions of the points of the scene by multi-image triangulation. The

most common model is the stereo camera model in which two close cameras capture

simultaneous pictures of the scene from two different viewpoints. An extension of this

technique is used for multiple views of the same object by multiple cameras [38]. This

technique heavily relies on the good estimation of camera positions and intrinsic camera

parameters during calibration. A colored image is a 2D projection of color points from

the 3D space. The simplest mathematical model of a camera is the well-known pinhole

camera where any point X = (x,y,z) in 3D space coordinates is transformed into the pixel

space point U = (u,v) according to Equation 2.1 and represented in Figure 2.1. The model

takes into account the focal length f of the camera and the discretization parameters due

to real pixel dimensions ρu and ρv.

18 Chapter 2 Jacopo Meglioraldi
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Figure 2.1: Simple Pinhole camera model with intrinsics and extrinsics parameters. From

simple geometry construction the relation between points in Camera Refernce Frame

(CRF) and pixel space is derived. The transform between World Reference Frame (WRF)

and CRF is derived using standard algebra transformation

More refined models which take into account camera lens distortion and manufactur-

ing structure, have been developed to better approximate real cameras. In order to obtain

the source of the projection recorded from cameras, for each image a bundle of projection

lines is cast in the shared 3D space starting from the principal point of each camera and

passing through the pixels. By intersecting the different projection lines, real 3D positions

of points are found.

The stereo camera pair case is depicted in Figure 2.2. In real applications, projection

rays do not intersect perfectly due to irreducible noise in the estimated camera parame-

ters and manufacturing imperfections. To reduce the error and estimate good intersection

points, the photogrammetry scanning procedure takes place in a controlled environment

with well-calibrated cameras in fixed positions around the object. Additionally, numeri-

cal values and intersection points are refined with optimization steps. The whole process

is expensive due to the hardware setup which usually includes multiple high-resolution

cameras, structural supports and controlled light conditions as well as high standard cali-

bration and manufacturing precision. A cheaper solution is often used through a rotating

support and a single fixed camera.

A lot of applications are satisfied with the simple stereo pair setup and extracting only

Chapter 2 Jacopo Meglioraldi 19
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Figure 2.2: Scheme of a Stereo camera setup. The known distance b and the position of

point Pc1 and Pc2 define univocally the triangulation of point P in world space, given the

two reference frames aligned on the x-axis

the depth information. For example, in map reconstruction from aerial or satellite im-

ages [33], high-resolution cameras are used from the distance and altitude of the ground-

level landscapes are recorder, as well as building positioning. Classical photogrammetry

multi-view setup generates a high accuracy reconstruction which is well suited for various

industrial applications where controlled setups can be integrated into production lines [2].

2.1.2 Structure from Motion

Structure from Motion [35] is a reconstruction techniques that compute the 3D structure

of an object from an unstructured set of images taken from several unknown cameras. To

achieve these results, a series of offline computational steps are required over the set of

images to estimate the camera pose intrinsic and extrinsic parameters and to triangulate

image points into the 3D space. The steps are summarized in the Figure 2.3

First, a set of keypoints are extracted from each image. They are pixel points selected

for their great information and easiness of being recognized in different images. Usu-

ally, keypoints are extended with additional information about their neighboring pixels’

structure, called descriptors. SIFT features [18] are commonly used to detect keypoints

and extract meaningful descriptors which are scale, rotation and light condition invari-

ant. Using feature matching, all possible keypoints between two images are detected by

computing distances in the feature space. Key-points are often called feature points for

20 Chapter 2 Jacopo Meglioraldi
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Figure 2.3: Structure from Motion algorithm scheme

simplicity. Pairs of images sharing enough keypoints are detected and organized into a

new data structure. The pairs are then used to reconstruct the camera intrinsics and relative

camera extrinsic parameters using RANSAC-based algorithms [23]. After the last step,

the problem can be solved as a classical triangulation points problem as in photogramme-

try, reconstructing the 3D position only of keypoints for computational efficiency. Points

are triangulated and a consecutive bundle adjustment optimization step is performed to

reduce the error of reconstruction.

This method shows great capabilities in reconstructing large areas, such as city mon-

uments [1], even from unstructured collections of images captured at different times by

multiple agents. Industrial applications use SfM technique with the additions of known

calibrated cameras for better precision of the reconstructed surfaces. This method is one

of the best in terms of cost, relying on simple RGB pictures, without the need for cali-

brated expensive cameras and with ideally no acquisition time based on the availability

of different pictures of the scene in previous times. Although the theoretical basis of this

method was presented at the end of the last century, only recent breakthroughs in hard-

Chapter 2 Jacopo Meglioraldi 21
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ware optimization and parallel computing made the time-cost of the offline computing

steps competitive with other techniques. Another important limitation of this method is

the low precision of reconstruction since it relies on sparse feature points triangulation,

opposite to denser points techniques. Additional steps are necessary to reconstruct a dense

representation.

2.1.3 Structured light reconstruction

Structured light reconstruction is a technique that uses active light projection of known

patterns (usually a grid, parallel stripes or a dot matrix) over the object to reconstruct its

surface based on the deformation of the light spots. Knowing the position of the light

source and the position of the sensing camera, a point can be triangulated in the 3D space

with standard camera analytical computation. The setup is visually reported in Figure

2.4. Structured light scanners are a standard in 3D reconstruction for industrial settings:

surface reconstruction scanners are integrated with production lines to inspect manufac-

turing errors [41], hand-held portable scanners are used for custom scans of objects with

different sizes [7], multi-camera setups enhance the classical photogrammetry with the

additional accuracy of structured light triangulation [40].

This technique is a fast and accurate method thanks to point triangulation within single

images, but it presents some limitations inherent to the material properties of the object

scanned. Reflective surfaces, semi-transparent surfaces and bad light conditions distort

the projected light introducing not negligible error in the reconstruction. The acquisition

phase in a controlled environment as well as applying opaque coatings to the material

before the scan [19] drastically reduce the limitations of this technique, making it flexible

and reliable. Structured light cameras are still expensive requiring a calibrated camera

and a projector with high manufacturing accuracy, not affordable for mass users. The

procedure of scanning large objects is time-consuming for a single hand-held camera

sensor which can take hours to correctly scan all the parts of the object while maintaining

good overlap between frames for correct positional tracking of the camera.

2.1.4 Light Detection and Ranging

LiDAR is a laser-based sensing technology that is able to reconstruct distances of object

points from the emitting station. It is composed of an active sensor that emits laser waves

22 Chapter 2 Jacopo Meglioraldi



3D Gaussian Splatting reconstruction with depth enhanced initialization

Figure 2.4: Scheme of the structured light reconstruction method. The setup is composed

by a light projector and a sensing camera.

and a passive sensor that reconstructs distances based on laser beam travel time. Since

mechanical laser scanners, introduced in the 1990s, LiDAR technology has been widely

studied to increment accuracy, reliability and portability of the technique. Depending on

the application, LiDAR technology differs greatly in complexity, cost and capabilities [3].

Compact time-of-flight (ToF) cameras are used in robot navigation due to their capabil-

ity of measuring simultaneously and multiple times each second the whole scene [26].

Aerial LiDAR is used for mapping large areas with high distance laser accuracy, allowing

the creation of digital elevation models for geographical information systems[39]. Nowa-

days, low energy and fast LiDAR sensors using Single Photon Avalanche Diode (SPAD)

can be found in consumers’ smartphones, for common user applications such as spatial

measurements and improved media recording features.

To measure distance, the sensor records the energy of the returning signal from the re-

flected laser by specialized electric components. Most techniques use the Time of Flight

(ToF) to retrieve the distance of surfaces from the emitter. Multiple data are then com-

bined to obtain depth maps and point clouds. Depending on the LiDAR technology used,

different properties of the material scanned can be extracted. In particular, lasers are

highly susceptible to reflectiveness properties of the material. Opposite to structured light

technology, High reflective surfaces mean a clearer reflected signal allowing for precise

measuring even from long distances. Depth information of a scene is usually paired with

standard RGB images by mapping the two sensory information in a unified RGBD im-

age. The cost of acquisition can vary depending on desired accuracy and application,

from high-precision high-distance LiDAR sensors mounted on satellites, to cheap low-
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resolution setups mounted in pairs with high-resolution cameras on smartphones. Li-

DAR sensors are widely spread in dynamic scene reconstruction applications where a

high sampling rate is required for fast-moving objects and with a wide variety of objects

with complex material properties appearing in the scene. LiDAR sensors are also used

to augment standard photogrammetry setup providing additional depth information and

easier triangulation with minimal cost.

2.2 Neural Networks optimization methods

This section focuses on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS).

Different from traditional 3D reconstruction techniques, these methods leverage neural

networks and optimized geometric primitives to achieve photorealistic novel view syn-

thesis and detailed scene reconstruction. In the following, their principles, advantages,

and recent advancements are discussed, highlighting their role in modern computer vi-

sion and 3D modeling applications.

2.2.1 Neural Radiance Fields

Neural Radiance Field (NeRF) models are an implicit 3D reconstruction technique, first

proposed in 2020 for novel view synthesis [20]. They leveraged the computational capa-

bility of neural networks to approximate complex functions in order to predict the radi-

ance field of a scene: a 5D function that for each position in space (x,y,z) and for each

view orientation in polar coordinated (θ ,φ) returns a color c and a density value σ . The

model is trained in a self-supervised manner over a set of pictures to estimate the implicit

representation in a two-stage prediction model. In the baseline NeRF model, the first

stage predicts density σ and a feature vector of size 256, starting from the input position

and view orientation. The second stage takes as input the feature vector and the viewing

orientation to estimate the color information c.

Given the radiance field, reconstructed views are computed with volume rendering of

camera rays for each pixel in the target image. For any camera ray r(t) = o+ td, with

camera position o and viewing direction d, the resulting color C(r) is

C(r) =
∫ t2

t1
T (t) ·σ(r(t)) · c(r(t),d) ·dt, (2.2)
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where c(r(t),d) and σ(r(t)) are the color and density at specific ray point r(t). The

integration is computed along the ray direction of movement dt. T (t) is the accumulated

transmittance from t1 to t which represents the probability of the ray traveling to the point

t without being intercepted and is computed as

T (t) = exp(−
∫ t

t1
σ(r(u)) ·du) (2.3)

A loss is used to guide the training and is computed as the square error loss between

predicted pixel colors of the reconstructed views and the ground truth ones. For a single

image, the loss is

L = ∑
r∈R

∥Ĉ(r)−Cgt(r)∥2
2 (2.4)

where R is the batch of rays associated with the synthesized image and Cgt(r) is the ground

truth color associated with the single ray r. The whole technique is summarized in Figure

2.5.

NeRF implicit representation achieves state-of-the-art reconstruction of 3D scenes,

with photorealistic novel view synthesis. Color variation due to illumination and material

properties are implicitly reconstructed in the representation by taking into account cam-

era view orientation during training, even though they are not separable from the rest of

the representation. Dynamic relighting techniques have been proposed with good results

[29]. NeRF reconstruction baseline pipeline is slow both in rendering new views and

training, which takes hours or days to achieve state-of-the-art results on the scene. In its

first step, registration of camera positions and an initial candidate of the point cloud is

extracted using SfM technique, followed by the actual training of the radiance field. This

method maintains the advantages and disadvantages of the SfM techniques requiring a

large set of images with high overlap (advised to be > 70%) but with no camera param-

eter needed. A subsequent work tries to speed up this technique by a faster rendering

process through optimization of the ray sampling [9] achieving real-time rendering and

faster training. Another limitation of implicit representation is the difficulty of integrat-

ing them in industrial 3D model pipelines, for example in applications like animation or

editing. Subsequent works proposed different solutions, one of which is realistic animat-

able avatar reconstruction using NeRF [42] achieving good results in deformation and

mathematical expressions to handle radiance fields manipulation. Still, converting the re-

construction in explicit representation is the most common approach for real application
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with an irreducible loss of accuracy in the process coming from insertion of artifact and

discretization.

Figure 2.5: NeRF’s pipeline scheme from original paper [20]. (a) Images are rendered by

projecting rays in the 5D space, (b) color and volume density are estimated with an MLP

for points along the rays, and (c) volume rendering allow to reconstruct the final image

for each pixel, all of which is end-to-end differentiable (d).

2.2.2 Gaussian Splatting

3D Gaussian Splatting (3DGS) is a new implicit representation that achieved state-of-

the-art results proposed in 2023 by Kerbl, et al. [15]. It optimizes a set of 3D Gaussian

positioned in the 3D space to achieve photorealistic reconstruction and fast rendering of

new views. Gaussian primitives are chosen for their fast α-blending rendering without

need of computing normal: given a Gaussian G(x) it can be fully expressed with a covari-

ance matrix Σ and centered at point µ

G(x) = e−
1
2 (x)

T Σ−1(x) (2.5)

For each primitive, projections in camera space can be found with

Σ
′ = JWΣW T JT (2.6)

where Σ′ is the covariance matrix in camera coordinates, W is the viewing transformation

and J is the Jacobian of the affine approximation of the projective transformation. To

correctly optimize the covariance matrix Σ which has physical meaning only when it is

positive definite during training, a new decomposition of the matrix is used to enforce the

constraint

Σ = RSST RT (2.7)

26 Chapter 2 Jacopo Meglioraldi



3D Gaussian Splatting reconstruction with depth enhanced initialization

where S and R are respectively a scaling and rotating matrix. These two values are op-

timized independently. Color is parametrized using SH coefficients to correctly capture

the different viewing point color functions and an α parameter controls the Gaussian

transparency in a multiplicative fashion. Additionally, during the training process, a step

called Adaptive Control of Gaussians is performed to densify areas in the learned repre-

sentation. They found that areas missing geometric features and areas represented only

by a few large Gaussians both have large view-space positional gradients and they are the

focus of the Adaptive control. This step adds new primitives by splitting large ones or by

populating the region of interest randomly. Elements with α value lower than a threshold

ατ are also removed during this step to maintain only useful Gaussian contributions.

Optimization is performed by iteratively projecting Gaussians to desired views, com-

pute loss and backpropagate the gradient to correctly estimate position, rotation, color,

transparency and number of Gaussians in the representation. The whole process is summed

up in the Figure 2.6.

Figure 2.6: Gaussian pipeline scheme [15]. Starting from the point cloud extracted with

structure from Motion, the Gaussian splatting model is initialized. The optimization is

performed by iteratively computing the projection of Gaussians according to camera poses

and compared with ground truth views for backpropagation of gradient.

As for NeRF models, the initial candidate of the Gaussian Splatting technique is de-

rived from an SfM stage over the input set of images. The camera parameters for each

view are unknown and will be estimated during this step. The points in the extracted point

cloud are used as centers µ of initial candidate Guassians with randomly assigned covari-

ance matrices Σ. This initial step still requires a large number of overlapping images to

correctly extract camera parameters and correctly register input images. Instead of NeRF

models, the Gaussian Splatting baseline already achieves fast rendering of novel views
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thanks to the simple computation of the projection matrix of each Gaussian. Visualiza-

tion at each stage can be run in real-time. From the results reported in the original paper,

the optimization of the Gaussians is reported to be faster than the one required for train-

ing NeRF model and it reconstructs the model with higher accuracy, scoring 0.815 SSIM,

27.21 PSNR and 0.214 LPIPS on the Mip-NeRF360 Dataset, with a training time of 41

minutes. The best performing M-NeRF360 technique scores instead 0.792 SSIM, 27.69

PSNR and 0.237 LPIPS on the same dataset with a training time of 48 hours. More-

over, from visual inspection, the reconstruction of Gaussian Splatting better represents

thin structures with high occlusion of the scene, like foliage and wheel’s ray of bicycles.

Commonly to other implicit representation methods, it is tricky to perform editing

of the representation for standard applications, such as animation. Opposite to NeRF

representation, Gaussian still uses a set of geometric primitives that can be more easily

understood since they have clear spatial positioning, rotation and scale similar to other

common explicit representations. Some work have tried to animate Gaussian Splatting

representations using video data and learning the movement of the Gaussians over time

as well as relighting the representation [16]. Some other works have tried to extract

explicit representation from the Gaussian one for easy reconstruction and integration in

standard industrial applications. SuGaR [12] proposed additional loss and a refinement

step to better align the Gaussians to the ground truth surface, followed by sampling of the

points for Poisson surface reconstruction. 2D Gaussian Splatting (2DGS) [13] proposed

to use two-dimensional Gaussians instead of 3D ones and align them with the surface of

the object to better approximate the geometric properties. They then used a marching

cube approach to extract a mesh representation of the scene.

In my work, we analyzed the problem of reconstructing close-range objects using

3DGS starting from depth stereo camera input for ready-to-use representation. This is

achieved by leveraging the depth information from the sensing camera to estimate bet-

ter point cloud initialization of the Gaussian Splatting pipeline. It also adds segmen-

tation masking preprocessing removing the background and correlated unwanted com-

putations. Results showed high accuracy reconstructed 3D representation of the object

robust to noisy input images and complete isolation of the target from the scene. It ad-

ditionally showed a boost in performance of the early hundreds iterations thanks to the

depth-enhanced initialization, useful for low computational capacity machines.
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2.3 Neural Networks prior models

Presented methods so far can achieve reconstruction of objects only partially if a small

number of images is taken into consideration. Human beings, otherwise, can infer and

guess the whole 3D structure of an object from one or few images by using experience and

stored knowledge of real objects. Since the explosion of research on 2D generative models

and thanks to recent breakthroughs in neural network architectures such as transformers,

3D generative models become the next step in generative AI research. Single-image-to-

3D or text-to-3D generative models have been proposed in the past years [25, 21, 27].

The key idea is to train a neural network in a supervised manner having as input an

image, few images or only a text prompt and infer the explicit surface representation of the

ground truth 3D model. This is possible due to the proposed mathematical computation

of the gradient flowing back from the image comparison to the actual representation. One

example is Score Distillation Sampling (SDS) proposed as part of Dreamfusion [25] to

use the Gradient Descent algorithm to steer a NeRF model and an Image Diffusion model

to generate a 3D representation from a text prompt.

Although promising results, the quality of the extracted reconstruction is still not com-

parable with the photorealistic performance of other proposed methods. It is difficult for

the learned model to exactly reconstruct the real scene or object, especially in the details

where no 2D image information is given. Their application is then limited to the design-

ing process instead of the actual reconstruction of real objects. No methods of this type

will be analyzed in this work, although they are important to mention as one of the main

areas of research for 3D reconstruction in the next years.

2.4 Image pre-processing

Image pre-processing is a fundamental step in working with 2D image data. Pixels are

a discrete representation of the real scene information, discretized both in the spatial and

intensity values by the capturing sensors. Some pre-processing is performed at the hard-

ware level of the cameras while some is performed at the software level over the captured

image. We will focus on the second part. In particular, we will focus on the Undistortion

and Segmentation processing step used for close-range object reconstruction as the scope

of this project.
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2.4.1 Image Undistortion

As seen in Section 2.1, RGB camera pixel positions are used to triangulate the 3D spa-

tial position of pixel points, according to Pinhole Camera. Real cameras use lenses to

define the field of view and the focal length with which the sensors capture the scene.

This increased flexibility comes at the cost of a distortion of the standard projections into

the camera space, introducing errors in the subsequent inverse problem. The problem has

been extensively studied and distortion models have been proposed to correct the posi-

tional shift of pixel positions in the captured images. Undistortion is the process of recon-

structing the real scene image removing the lens effect by applying the inverse distortion

transformation. When calibrating a camera, the distortion parameter could be estimated.

During SfM, distortion parameters are automatically computed based on multiple image

correspondences. Brown’s distortion model [4] is one of the most used ones for classical

RGB cameras, taking into account both radial and tangential non-linear distortions.

2.4.2 Segmentation

In some 2D to 3D reconstructions, such as aerial photogrammetry, all the pixels of the

image are used for reconstruction. In close-range object reconstruction, instead, the task

focuses on the main subject, usually appearing in the foreground. Segmentation is useful

in this process to mask some part of the image, usually the background, and use only

useful information about the target without additional computation cost. Automatic seg-

mentation algorithms are commonly used instead of hand-made ones, reducing the time

and cost of this step. Neural Network approaches have conquered the semantic segmenta-

tion task consisting of masking part of the image depending on the semantics of the object

captured. Fast and accurate models can be used to segment images based on text prompts,

foreground and background distinction or with simple manual annotations. Moving from

RGB images to other sensory information, segmentation can be processed using depth

value associated with captured pixels. A simple or complex threshold filter can be im-

plemented to separate pixels from the foreground to the background, usually enough for

close-range reconstruction applications.
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2.5 Global Optimization Methods

This section explores optimization techniques for refining camera poses and 3D points

in reconstruction tasks. Global Bundle Adjustment (BA) and Pose Graph Optimization

(PGO) are highlighted as critical methods for ensuring accuracy and global consistency.

2.5.1 Global Bundle Adjustment

Global Bundle Adjustment is an optimization method that uses the reprojection error to

optimize a set of points and camera positions at the same time. Given the error from

the points reprojected in the camera space, according to classical camera equations, and

the actual points in camera space, the Jacobians of the error are computed. Then us-

ing the Levenberg-Marquardt method for non-linear least squares to solve the Normal

equation, the correction of camera poses and point positions is computed. Finally, the

adjustment is applied and actual positions are outputted. This process is repeated until

convergence is reached. Global bundle adjustment needs a good initial pose estimation to

ensure convergence and can be computationally costly for a large collection of poses to

be optimized. This method computes accurate pose reconstruction and ensures coherence

across the whole scene. It is often used as the final step of the Structure from Motion

(SfM) algorithm.

2.5.2 Pose Graph Optimization

Pose graph is an optimization technique to improve the estimated poses of cameras. It

is often used in SLAM robot navigation applications and it can efficiently run even on

thousands of poses. Each estimated pose is represented as a node in the graph and edges

represent constraints between poses. The relative position of estimated poses, gyroscope

information or other constraint can be used to define edges. One important constraint is

the loop closure, where two estimated poses are considered to be very close at the begin-

ning and at the end of a loop around the scene. The optimization is performed by itera-

tively computing the error of each estimated pose according to the selected cost function,

using the Levenberg-Marquardt method for non-linear least squares to solve the Normal

equation. Required Jacobians are computed on the edges around the node. Solving the

equations, correction adjustment of the poses are derived and new poses are computed.
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When the correction values are below a certain threshold, the optimization is considered

to have reached convergence. Pose graph optimization can correctly reconstruct camera

positions and ensure global consistency across the scene.
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RGBD Initialized Gaussian Splatting

Gaussian Splatting stands out as one of the most effective techniques for balancing photo-

realistic 3D reconstruction with efficient rendering performance. As a recently introduced

method, its full potential and capabilities are still being explored. In this chapter, a novel

pipeline is presented. The developed method leverages Gaussian Splatting to achieve

highly accurate and photorealistic reconstructions of small to medium-sized objects. The

approach integrates advanced mask filtering for precise segmentation and depth-enhanced

initialization to improve geometric accuracy and optimization efficiency for accessible

and high-quality 3D modeling.

3.1 Experimental Pipeline

The pipeline to obtain a full photorealistic reconstruction of an object is composed of two

distinct sections: the acquisition part and the offline processing. From acquisition which

can be performed with different strategies, a video of the desired object with RGB and

depth channels is retrieved. This first step has been designed to be as simple as possible

using a standard recording device easily available in the market and it will be described

in detail in Section 4.1. The video will record the desired object from a wide number of

positions ensuring that all parts of the object are seen at least once. After the acquisition,

the data are processed in an offline pipeline composed of 4 stages:

• Frame extraction and segmentation. A fixed set of frames with RGBD channels

is extracted and processed for the next steps, discarding the leftover information.

During these steps, the segmentation mask for extracted frames is computed.
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• Structure from Motion (SfM). Using only the RGB channels of the image set,

the different camera intrinsic and extrinsic parameters are estimated in pairs with a

point cloud based on projected keypoints in the 3D space.

• Depth based point cloud. The initial estimated point cloud is replaced with a more

accurate and dense point cloud based on depth information from single images,

projecting points according to their distance value into the 3D space. An estimation

step to correctly scale the SfM space into real measurement is also performed in

this stage.

• Gaussian Splatting optimization. Gaussians are initialized based on the extracted

point cloud and optimized according to the original paper technique, resulting in an

accurate reconstruction of the object already separated from the background scene.

The pipeline is visually reported in Figure 3.1. The presented pipeline offers great flex-

ibility in each step allowing for the replacement of single stages in a modular fashion

without compromising the whole process. This is particularly useful depending on the

application: offloading some stages of the computation to external machines can help to

implement the pipeline even on low computing power devices. Each stage is reported in

detail in the next sections.

3.1.1 Frame extraction and segmentation

The input video is composed of N∗ image frames each with dimensions H ×W × 4. A

fixed set of frames N is extracted from the video by sampling the signal with a fixed

step ∆ts = N∗

N , starting from the k− th frame with k = ∆ts
2 . Since Structure from Motion

techniques rely on feature matching for correctly registering the different camera poses, a

good overlap between extracted frames is needed for the next stage. As a rule of thumb,

N should be ≥ 100 for medium-sized objects recorded with a looping movement around

them. The design choice to sample with fixed distance comes from the acquisition pol-

icy used in experiments, where the camera position follows multiple loops around the

object. Moving around the target takes more or less the same time for each loop, so the

fixed timestep sampling ensures a well-distributed collection of images across the pos-

sible views. The initial frames which often contain noisy frames due to initial camera

grabbing and setup are skipped by starting at the k-th frames.
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Figure 3.1: The proposed pipeline for full reconstruction of 3D object with Gaussian

splatting representation.

After extracting the frames, the background and pixels not belonging to the object

should be segmented out, in order to let the Gaussian Splatting optimization focus only

on the desired reconstruction. To do so, a state-of-the-art pre-trained neural network

for semantic segmentation is used. Given an image frame I, the networks compute a

segmentation mask M with a pixel value mi j ∈ [0,1] indicating if the pixel in position

(i, j) belongs to the foreground object or not. During Gaussian optimization, only the

pixel belonging to the object will contribute to the gradient during the propagation of

error. No temporal coherence is used while evaluating the masks to increase the flexibility

of the pipeline to work with images acquired from different cameras at different times,

even though it could reduce noise in the mask estimation. Examples of segmentation

masks are depicted in Figure 4.5. In the experiments, it has been used the python library
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named rembg [10] where different pre-trained network models are collected in a unified

and ready-to-use environment.

3.1.2 Structure from Motion

The standard Structure from Motion algorithm is described in detail in Section 2.1. In the

proposed pipeline, according to the original 3D Gaussian splatting technique, COLMAP

[31, 32] library has been used to implement the registration algorithm with some modi-

fications. Equal to the standard pipeline, only RGB channels of image frames are used

in the algorithm to extract features for matching. In COLMAP implementation, SIFT

features [18] and keypoints are extracted for each image, being them invariant to scale,

orientation and color. With the addition of segmentation masks, only keypoints belonging

to the region of interest are used in the matching step, while others are not considered.

Depending on the object scanned, it could be necessary to avoid using the segmentation

mask in this step. In fact, objects with a low number of keypoints due to uniform flat

areas, as well as the opposite case with a high number of misleading ones from reflective

surfaces, can make the matching problem hard. In these cases it has been found that it is

better to impose the segmentation mask only at the end of this stage, allowing keypoints

and features to be extracted from the background too, with a higher chance of correct

registration.

The global optimization step for adjusting the different camera poses is the Global

Bundle Adjustment (see Section 2.5), performed over the set of matches to minimize

reprojection error. Computations are handled using blocks of 50 images and then aggre-

gated together, according to standard COLMAP practice.

As an output from this stage, each image Ii is associated with its corresponding cam-

era pose in the form of a rotational quaternion vector Qi and a translation vector Ti which

univocally describes the pose according to the global reference frame. Camera intrinsics

parameters are also computed and associated with each image. As a complementary out-

put, the point cloud PCOLMAP used for reprojection error computation is delivered. Color

information and links to the images in which they appear are associated with each point,

allowing direct relation with input images.

36 Chapter 3 Jacopo Meglioraldi



3D Gaussian Splatting reconstruction with depth enhanced initialization

3.1.3 Depth point cloud projection and scale estimation

Structure from Motion output is accurate and robust against noise in input images, but

the reconstruction is not in scale with the real object. The point cloud generated for

the reprojection error is also sparse, including only correctly matched keypoints that are

usually present only on the edges of objects and in high-contrast textured areas. As one

of the main contributions of this work, in this stage the depth information retrieved from

the sensing camera during acquisition is used to correctly scale the reconstruction and

to populate the point cloud with additional projection points, allowing for a full surface

reconstruction.

Given an RGBD image Ii and its associated intrinsic matrix A and extrinsic matrix

E, any pixel in the camera space can be projected to the 3D global reference frame by

inverting Eq. 2.1. First 3D coordinates X̃ = (x̃, ỹ, z̃) in the camera reference frame are

computed with z̃ being known from the depth camera and the other coordinates computed

as: 
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From each image Ii, any pixel with a depth value can be projected in the 3D space creating

a point cloud PIi . To solve the problem of scale alignment, the depth information of points

appearing in both representations (COLMAP and depth derived) is used. Given a point

XCOLMAP of the COLMAP point cloud, the corresponding pixel point Ui appearing in

image Ii is also given. The depth value of that point from the camera view i can be

derived by computing z̃ in the camera reference frame. The scale value sU,i for the point

Ui is computed as the ratio between the reconstructed and real depth values. Each point

can appear in multiple images leading to a set of different scale estimations for each point

in the point cloud and for each image in which it appears. To solve this problem and

retrieve the actual scale s∗ a probability density function (pdf) is computed using Kernel
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Density Estimation (KDE) with a Gaussian kernel. Camera pose and COLMAP point

cloud are scaled according to the scale s∗ matching the maxima value of the estimated

pdf.

The final point cloud used in the initialization is the union of all the point clouds

projected from each RGBD image, creating a dense point cloud distribution over all the

surfaces of the object. Depth maps from easily affordable cameras usually rely on stereo

vision to compute depth values and present a lot of holes in the output depth map. Even

ignoring pixels with no associated depth values from the camera sensor, the point cloud

generated from a single high-resolution image is in the range of thousands of elements,

generating a heavy global point cloud in the order of hundreds of thousands of elements

when merged with other images. Since the input set is composed of images with high

overlap, there is a high redundancy of points over the surface. To reduce the number of

elements in the final point cloud, a voxel downsampling step is used before the union

of point clouds from the different images. Segmentation mask is also applied during

projection of point clouds effectively reducing the points belonging to the background.

A comparison between the point cloud reconstructed with COLMAP techniques only

against the proposed method is portrayed in Figure 4.6.

3.1.4 3D Gaussian Splatting optimization

The Gaussian splatting optimization method is described in detail in Section 2.2. The

proposed pipeline uses the original 3DGS paper to optimize the implicit representation

but it is affected by the previous steps of estimating the new initial point cloud and seg-

menting the images. Initialization of the scene is performed by instantiating a Gaussian

primitive in each point described in the point clouds using the positions as centers. The

optimization steps try to move and deform Gaussians to approximate target geometry.

Starting from a point cloud that better approximates the shape of the object, a boost in

the first steps in the accuracy of reconstruction is recorded. Moreover, the images that are

used to guide the optimization process are segmented, considering only the foreground

object, and removing background-related computation in the optimization cycle. As out-

put from the pipeline, depending on the quality of the segmentation mask, the 3D re-

construction is completely separated from the background with minimal need for manual

post-processing. Still, some artifacts represented by outlier Gaussians are present in the
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final reconstruction due to irreducible noise. Gaussian Splatting is an implicit representa-

tion and could be difficult to use in standard workflows for animation and editing. Some

methods, like SuGaR and 2DGS, can be used to extract a mesh from the optimized rep-

resentation. Thanks to the flexibility of the pipeline, the mesh can be extracted just by

replacing this stage with the desired Gaussian optimization method and the mesh can be

obtained.

3.2 Preliminary Studies

The proposed pipeline and the design choice to use Gaussian Splatting representation for

3D reconstruction against other methods come from a set of preliminary studies executed

over an object with cultural importance. To define a baseline and a comparison between

reconstruction methods, an elaborate theatrical outfit of the famous singer Pavarotti was

used as a test subject in 4 different systems all different in economic cost and acquisition

time cost. The outfit is part of a collection held by the Luciano Pavarotti Foundation [8].

The evaluated methods are:

• Structured light hand-held scanner Artec Eva. This device is state-of-the-art for

industrial reconstruction, capturing 16 frames per second with up to 18 million data

points with high precision (up to 1.0mm) and 1.3MP textures. It uses a pulsed

light approach with a known pattern to triangulate geometry features (as described

in Section 2.1) and it uses an online registration method to directly align frames

while recording. The reconstruction is handled by the Artec Studio software with

functions for merging different scans and editing the mesh. The output has been

used as the geometrical ground truth for the comparison due to its high accuracy in

reconstruction. The high cost of the technology and the tedious acquisition strategy

may be prohibitive for some users and applications. Also, poor lighting conditions

and highly reflective surfaces can impact negatively the quality of the scan.

• Iphone’s LiDAR camera with Scaniverse app [22]. The iPhone 12 PRO is equipped

with a LiDAR sensing camera which emits laser pulses measuring distances from

the object (see Section 2.1). The Scaniverse app leverages the RGBD data collected

by the smartphone during the acquisition to create a dense point cloud and enhance

it by applying the high-resolution texture from 12MP cameras. Scaniverse scan is
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quick and easy to use, visualizing the model created in real-time and allowing for

editing or exporting of the 3D reconstruction to the most known formats. During

the scan, the app also leverages other smartphone sensors such as accelerometer and

gyroscope data to obtain a better online registration. This method has some limita-

tions, mostly due to the poor resolution of the 24x24 LiDAR scanning grid which

cannot capture small geometrical details. Moreover, only the iPhone 12 Pro series

and newer models are equipped with the LiDAR sensor, while most smartphones

are not, making it unaffordable for some users.

• Structure from Motion photogrammetry with Android smartphone. Using a simple

Android smartphone, with the help of the Polycam app [24] an accurate reconstruc-

tion from high-resolution RGB images can be computed using the Structure from

Motion algorithm. The acquisition consists of capturing multiple images of the

objects from different views, with a minimum of 20-30 images per object. In the

reported analysis it has been used a Fairphone 4 android smartphone with 48MP.

Polycam’s software analyzes the images, registering them by features point match-

ing and creating an initial point cloud. Then it performs additional optimization

steps and computes a mesh representation of the object with high-resolution tex-

ture from the captured images. The surface smoothing step is a critical step where

any rough or uneven surface is smoothed out, as well as the hole filling step where

the mesh is corrected to be watertight. For complex reconstruction with intricate

details, a lot of images are needed during the offline reconstruction. Any Android

device with a camera can be used for reconstruction, resulting in an affordable tech-

nique for a wide variety of users. The Polycam app offers a free trial version for

reconstructions (as used in this analysis) and a paid subscription version with addi-

tional features such as exporting, editing and cloud storing.

• SuGaR with Android smartphone recording. This pipeline is the implementation

of the original paper Surface Aligned Gaussian Splatting [12] using frames ex-

tracted from a video recorded by a standard Android smartphone as input images.

For the acquisition, a video of the object while moving in loops around it with

different altitudes and inclinations has been recorded. Around 180 frames were ex-

tracted from the video and used as input of the Gaussian Splatting technique which

starts by registering the images using Structure from Motion and then optimizing
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an implicit representation of the object by 3D Gaussian primitives. The input video

was recorded using a Fairphone 4 android device with 48MP as in the previous

scenario, while offline computations were performed on a 24GB GPU machine.

SuGaR technique additionally to the standard 3DGS technique (Section 2.2) op-

timizes the Gaussians to be aligned with the reconstructed surface, allowing for

a better geometry approximation of the target and subsequently a better mesh re-

construction. The technique uses Poisson surface reconstruction from datapoints

sampled from surface probability estimation of the Gaussians themselves to recon-

struct the mesh geometry. This technique requires a high-capacity GPU machine in

addition to the acquisition device, but the computations can be offloaded to servers

similar to Polycam app, making it easily affordable for users. Also, the acquisition

technique starting from a video is faster than taking a large number of pictures with

a high overlap of the same object.

As a design choice, the study didn’t use any NeRF technique for comparison for the fol-

lowing reasons. First, Gaussian Splatting is an implicit representation technique as well

as NeRF and in extensive analysis done by the authors of the original papers emerges that

3DGS can achieve higher quality reconstruction than state-of-the-art NeRF models. In

particular, it can reconstruct accurately the geometric structure of thin occluded objects

such as foliage as well as intricate details, a desired quality in high-quality reconstruc-

tion. Additionally, the Gaussian Splatting technique shows high performance in render-

ing new views, allowing for real-time visualization of the representation. Aiming to use

the implicit representation to its full extent without necessarily exporting to other explicit

representations, Gaussian Splatting was a better candidate. Finally, Gaussian Splatting

representations are easier to edit than NeRF’s ones for easier integration in industrial ap-

plications.

3.2.1 Comparison Results

The presented techniques were compared by approximate costs, both in terms of spent

time for the reconstruction and in economic terms and reported in Table 3.2. The quality

of the reconstruction has been assessed quantitatively by confronting the rendered views

of the reconstructed mesh objects with images manually selected from the pool of acqui-

sitions. Examples of the view are reported in Figure 3.2. PSNR and SSIM scores were
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Figure 3.2: Reconstructed model from two different views: front (top row) and side (bot-

tom row). The images are rendered from the resulting mesh reconstruction of a Pavarotti

theatrical outfit depicted in (e). The different techniques reported for visual comparison

are: (a) Artec Eva (b) Scaniverse (c) Polycam (d) Gaussian Splatting.

used to quantify the error between the two views and collected in Table 3.1. An align-

ment step between images was used to ensure that the small mismatch in object position

between the real image and the rendered ones had no impact on the numerical computa-

tion. Additionally, only the foreground pixels were used in the evaluation by segmentation

masking.

Geometric reconstruction performance was assessed qualitatively and reported in Fig-

ure 3.3. In techniques that reconstructed the background in combination with the desired

object, a simple 3D box Region of Interest selection around the object was used to sep-

arate the background. From the quantitative results, reported in the Table, we can see

that Gaussian Splatting techniques perform better than other techniques in terms of both

PSNR and SSIM. The colors of the reconstruction and the high resolution of details match

the input images more accurately than the other techniques. The Artec reconstruction per-

forms the worst in terms of new view comparison, especially due to the low-resolution

camera used in the handheld device and in the use of pulsed light resulting in a more ac-
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Figure 3.3: Visual inspection of geometrical reconstruction from the four analyzed meth-

ods. The Artec reconstruction (a) is considered as ground truth for its high geometrical

resolution. Following in sequence Scaniverse (b) misses the small geometrical features,

Polycam (c) and SuGaR (d) presents an attempt to reconstruct the fine details.

Method PSNR SSIM

Artec Eva 20.80 0.8118

Scaniverse 22.06 0.8372

Polycam 21.64 0.8305

SuGaR 24.42 0.8738

Table 3.1: PSNR and SSIM comparisons among the analyzed 3D reconstruction methods.

curate but less natural coloration of the object. Still from qualitative analysis of the mesh,

the Artec technique shows great details and accuracy compared to the other ones, accu-

rately reconstructing small details and intricate patterns of the theatrical outfit. LiDAR

iPhone’s scan presents a high-quality visual reconstruction of the object, mainly due to

the texturing and high resolution of the camera, while the geometry of the object is of

low resolution, missing important details. Structure from Motion only from the Polycam

app presents an acceptable reconstruction in terms of geometry but scores lower than Li-

DAR’s technique in terms of visual reconstruction. Gaussian Splatting emerges as the best

trade-off between the quality of the geometric reconstruction and visual reconstruction.

Considering also the costs of the techniques, Gaussian Splatting is an easy and affordable

technique for 3D reconstruction of objects, democratizing the production of accurate 3D

representation of everyday objects. The full extent of the technique has yet to be studied,
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Method Acquisition time Processing Time Estimated cost

Artec Eva 1h 40min 14000C

Scaniverse 5−10min 40min 500C

Polycam 5−10min 20min 500C

SuGaR 5−10min 1h 20m 500C

Table 3.2: Approximative temporal and economical costs of the analyzed methods.

given it only recent proposal, hoping for an increase in performance and accuracy of the

reconstruction in future studies.

3.3 Expectations

The proposed pipeline aims to achieve photorealistic accurate 3D automatic reconstruc-

tion from a simple acquisition strategy generating an almost ready-to-use representation

of the desired object. Segmentation masking is a key factor in the process allowing for

computational cost reduction by focusing on the foreground target. As an additional con-

tribution, segmentation masking almost completely removes the need for an additional

manual polishing step of the representation, usually needed to extract the foreground ob-

ject from the surrounding scene. The integration of the depth information from input

acquisition should bring two main advantages. First, the 3D reconstruction will be on

scale, allowing measures and analysis of the geometry of the object to be meaningful as

they were executed on the real scene. Second, by adding points that accurately approxi-

mate the geometry surface it should help the optimization steps to converge faster to an

accurate reconstruction. In the long run, using 30000 steps the accuracy of reconstruction

using the depth enhanced initialization compared to the normal one should not produce

any noticeable difference in the reconstruction error since the method has plenty enough

time to correct the underrepresented regions. It may certainly arrange Gaussians in a more

uniform way across flat surfaces thanks to initial positioning instead of interactions from

gradients only. In fact, although the COLMAP starting point cloud presents holes in these

regions, the adaptive control steps effectively populate them with a sufficient number of

Gaussians to ensure a good reconstruction with negligible computational cost. In the short

run, however, from 100 to 3000, the better point cloud initialization should definitely im-
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prove the reconstruction accuracy. This is useful in applications with low GPU capacity

devices, where the optimization steps of the Gaussian Splatting technique are significantly

slower and performing a high number of steps is not feasible. The higher performance

in the early steps of reconstruction is paid with a fixed time cost for integrating the depth

information in the pipeline. The overhead cost should not be burdening as it does not

require GPU capability, making it very suitable for this kind of application. It is also use-

ful for online applications where the computational time for each partial representation is

limited and the increased accuracy of the reconstruction in the first steps plays a major

role in the overall performance.
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Chapter 4

Evaluation and Experimental Results

The proposed method is evaluated through both quantitative and qualitative analyses un-

der various experimental parameters. To demonstrate its effectiveness, experiments were

conducted on two representative objects, achieving detailed 3D reconstructions that are

nearly ready for practical use. This chapter starts with a description of the experimental

setup and parameters to ensure reproducibility, followed by an analysis of performance

metrics and their implications.

4.1 Acquisition strategy and Experimental setup

The experiments were done over two common objects, chosen for their geometric prop-

erties. The first object is a chair showing flat lowly textured surfaces plus complex thin

structures and holes. The second item reconstructed is a large gym ball with a foam

pedestal that shows textured round surfaces with little details. Both acquisitions were

done under outside natural lighting conditions. The videos were captured with ZED 2

device [34], a mid-tier cost RGBD camera, and a custom script using the ZED API. Al-

though the ZED 2 camera has multiple sensors for registering the position and movement

of the camera during acquisition, only the left camera RGB images and the depth values

from the stereo setup were used, increasing the flexibility of the technique. The RGBD

information was then transferred to an AMD Ryzen 9 5900X 12-core processor machine

with 64GB of RAM and 24GB of GPU for offline processing. The acquisition is per-

formed by moving the viewpoint around the object while trying to keep the center of the

camera cone over the target. No visual feedback of the recording was given during the
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acquisition and noise is inevitably introduced in the forms of motion blur distortion or

partial crop. These frames, if extracted, were kept nevertheless and results show the ro-

bustness of the approach to noisy input images, suitable for application in-the-wild. For

the first object, two circular loops were performed around the object, one at a central

height compared to the target center and the second one from a higher perspective view

angle. For the gym ball, three loops were used thanks to the pedestal that allowed an extra

loop from a lower perspective angle. The loops can be visualized from the registration re-

construction of the camera poses depicted in Figure 4.6. The recordings were respectively

of 31s and 72s duration, both with 15 fps frame-rate and resolution of 1280×720.

Pre-processing was performed by extracting 100 frames from the captured videos and

computing the masks using the open-source isnet-general-use [28] pretrained model from

the publicly available rembg library [10]. For both of the experiments, segmentation

masks were used during the Structure from Motion (SfM) algorithm implemented in the

open COLMAP software, considering only keypoints inside the segmentation masking.

The masking and registration process combined took respectively 235.43s and 209.72s

for the chair and the gym ball experiments. The next stage of the pipeline projected the

point cloud from depth images to the global reference frame. For both experiments the

voxel downsample step to reduce the number of elements is performed with a 0.05 voxel

radius. For the chair experiments, this stage took 30.19s and increased the number of

points from 9670 to 56479. For the gym ball experiments, it took 28.78s and increased

the point cloud from 7807 to 32764 points.

In the last step, the 3D Gaussian Splatting original implementation is used by execut-

ing the open source code and all the parameters were kept the same except for the white

background option. The option uses the white color to represent the background segmen-

tation mask, avoiding computation over that region. To study the effect of the different

stages of the pipeline, for each experiment, three different reconstructions are compared.

First, as a baseline, Gaussian Splatting with unmasked input image and original point

cloud reconstruction is computed. Then the segmentation masking of input data is intro-

duced both in the COLMAP estimation and in the optimization stages. Last, the depth

information is integrated in addition to the segmentation masking for the final pipeline.

The training behaviors are compared for the two pipelines using masked input images,

while the original baseline is compared only with visual inspection and for time baseline.
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The quantitative comparison is not possible for the baseline as it requires manual extrac-

tion of the target from the scene introducing unmeasurable effects. The Gaussian Splatting

optimization was performed for 30000 steps, with Gaussian adaptive control each 3000

steps till the 15000 steps mark as standard Gaussian Splatting practice. No manual pol-

ishing or post-processing of the representation has been used before qualitative analysis.

If an explicit 3D reconstruction is needed for the desired application, the last stage of opti-

mization can be replaced with SuGaR or 2DGS variants of Gaussian Splatting, extracting

the desired mesh representation at the end of the optimization process.

4.2 Results

The proposed pipeline produces a high-accuracy photorealistic reconstruction of the ex-

perimental objects. The metrics used to assess the quality of the reconstruction are L1

error and PSNR between the image frames used in the generation and the actual render-

ing of the representation with the same camera parameters. All the results are schematized

in the Table 4.1. Both experiments score higher than 27 in the PSNR measure and lower

than 0.007 in the L1 error measure after the 30000-th optimization step, achieving results

in pair with the 3DGS technique. In particular the chair experiments score 29.065 in the

PSNR score and 6.014 · 10−3 of L1 error, while the gym ball respectively scores 27.058

and 6.660 · 10−3. Is important to notice that the results presented in this report are for

masked objects, granting the metrics to be accurate over the region of interest instead of a

mean measure of the whole scene, in opposition to the 3DGS original paper. Both train-

ings reached the last steps under the 8 minutes mark, with a total pipeline time cost below

12 minutes. Because it has been used a machine with the same GPU capacity as the one

used in the paper, the time cost of optimization is comparable. The proposed pipeline

computes the reconstructed representation with a speed up in the order of 2× with respect

to the baseline as it is also highlighted in Table 4.2 . Background regions are a big portion

of the information present in the input image frames and preventing computation for these

pixels grants the speedup.

The reconstruction under visual inspection presents some white artifacts around the

borders of the object. There are two kinds of artifacts, one appears as a white color in

Gaussian that belongs to the object but is visible only under some view angles, and the
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other is composed of completely separate white outlier Gaussians. The presence of these

artifacts is due to the segmentation masking data. Both experiments with segmentation

applied show the artifacts while the whole scene reconstruction does not. The explana-

tion is that, during the pipeline, images are segmented by applying a flat white background

around the object according to the extracted mask. Segmentation masks usually are not

100% accurate, especially around the border of the object. Even humans sometimes can-

not agree if some pixels at the edge belong to the foreground or the background, so it is

common practice to add a third special label in the ground truth of segmentation datasets

representing unknown pixels. Neural Networks trained over these datasets inherently can

misclassify some border pixels where ground truth is not accurate. Additionally, no tem-

poral coherent masking algorithm is used, introducing noise in the segmentation mask of

the object from different view angles. During Gaussian Splatting optimization some 3D

points will be reprojected back to images and will be compared to areas presenting the

white background. These points are correctly represented in some views while in others

are excluded. The optimization pushes the reconstruction to address these special pixels

to appear white (as the masked background) even though they are outside of the mask. In

not-reported experiments where segmentation backgrounds were represented as black, the

artifacts showed a black coloration instead of a white one. A controlled environment that

achieves a clear distinction between the foreground and the background region in terms of

color can help the segmentation step to reduce the noise introduced in the representation.

If a full depth map without holes can be extracted from the sensing device, using the depth

information could create a better segmentation mask by imposing thresholds in the depth

space. An example of a noisy mask is depicted in Figure 4.5.

By visual inspection of the 30k step representation between the baseline and the pro-

posed method, the accuracy of reconstruction in the latter case is sensibly better. The

baseline chair object shows bad reconstruction in the thin structures with blurred edges.

The gym ball does not present horizontal texture lines and the pedestal details are not

accurate. The baseline visual results are reported in Figure 4.4.

The addition of a dense point cloud in the initialization step does increase the rep-

resentation quality performances in the early stages of the optimization. From visual

inspection, the point cloud generated with the addition of depth information describes

better the object and it is denser over the surface of interest. Additionally, it reduces the
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number of outlier points that the COLMAP initial point cloud produces. In fact, even if

segmentation masking is applied during the keypoints extraction step, the matching and

reprojection of the points during global optimization lead to a large number of points

identified in the background. The proposed depth enhanced point cloud is not free from

outlier points but they are bounded by a depth threshold filter which filters out all the

points further from the camera according to a threshold value. They also are derived only

from noisy segmentation masks point clouds, being a small portion of the union of point

clouds. A visual comparison of the point cloud generated is depicted in Figures 4.6. From

visual inspection, it also emerges that PSNR is probably not the best metric for comparing

the whole reconstruction but an additional metric should be used. In fact, by looking at

the PSNR scores for gym ball experiments at 500 steps, the two values are almost similar,

scoring 24.8933 for the proposed pipeline and 24.8926 for the one only with segmentation

input. Looking at the same iteration in Figure 4.2 the difference is clearly visible instead.

About quantitative evaluation, the proposed method achieves fast and accurate re-

construction of the object. From the results reported in Table 4.1 and the relative plots

depicted in Figure 4.3, it is appreciable the difference in the PSNR and L1 scores in con-

trast to the original initialization point cloud, scoring a 2 point increase in the PSNR at

the 100th optimization step. In the subsequent steps, the discrepancy in the quality of

the results thins out and the experiments converge to similar quality scores with some

small negligible fluctuations. From visual inspection, the difference in the quality of the

early results brought by the proposed technique is very evident and depicted in Figure

4.1 and Figure 4.2. The 30k step representation scores above 27 of PSNR score for both

experiments quantitative demonstrating the accuracy of the reconstruction. In only 300

steps it reaches at least 23 of PSNR score with the proposed method. Although the scores

are very similar at the 500 step reconstruction between the depth initialized method and

the masked only one, visual inspection of the results shows a noticeable difference in the

quality of reconstruction. This is probably because a metric more related to the geometric

features of the reconstruction and less about the visual rendering should be used for better

evaluation. No such metric has been used in this report in alignment with the original

Gaussian Splatting paper.

By visual inspection, the distribution of the center point µ of the Gaussians is analyzed

at the 12000-th steps and reported in Figure 4.7. There is a small but noticeable difference
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in the presence of Gaussians inside regions corresponding to large flat surfaces. The pro-

posed method shows a more dense and better-distributed presence of Gaussians in these

regions. A higher density of elements over surfaces can increase the ability of the model

to behave correctly under distortions, for example during animation. In the context of a

fast and more affordable reconstruction, the good performances of our model with only

a few optimization steps can be useful in application scenarios where the computational

power of the machine is low. In particular, the Gaussian Splatting technique heavily relies

on the GPU parallelization capability during training for fast computation of the Jacobians

and Neural Network gradients. In the case of a low GPU capacity, the 30k optimization

steps can take hours to complete. Computing only 500 steps and still achieving a PSNR

score of 24 can democratize the technique for such devices. The additional point cloud es-

timation using the depth map does not significantly slow down computation since it does

not use GPU or parallel optimization techniques, adding an overhead time cost below 30s

from reported results. Additionally, it provides further control over the resolution of the

point cloud and the subsequent number of Gaussians of the representation with the voxel

downsampling radius parameter.

The whole reconstruction time is reported in Table 4.2 showing the acquisition, pre-

processing and Gaussian optimization times. A full 3D photorealistic reconstruction of a

medium-sized object with the proposed pipeline takes less than 10min from start to end,

creating a new setup for fast 3D reconstruction.

An explicit reconstruction mesh, if needed, can be extracted by using 2DGS tech-

nique. The chair object for example has been processed to extract its mesh with a 7k steps

optimization and the visual result is reported in Figure 4.8. The reconstruction accurately

represents the object even in hard regions such as thin holes and thin structures.
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Figure 4.1: Visual comparison of Gaussian splatting with or without depth enhanced

initialization, at different time steps for the chair experiment. At 100 and 500 steps the

effect of the different initialization is visible with a higher accuracy in the reconstruction.

Manual removing of some outlier Gaussians has been applied to better visualize the results

in the first steps
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Figure 4.2: Visual comparison of Gaussian splatting with or without depth enhanced

initialization, at different time steps for the gym ball experiment. At 100 and 500 steps the

effect of the different initialization is visible with a higher accuracy in the reconstruction.

Manual removing of some outlier Gaussians has been applied to better visualize the results

in the first steps
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Experiment Iterations PSNR L1 Elasped time

Chair depth enhanced

100 17.6237 0.08943 2s
300 23.3934 0.01679 5s
500 23.9571 0.01187 8s
1k 24.7086 0.00987 14s
3k 25.1355 0.00850 37s
7k 26.5785 0.00705 1m30s
12k 27.6660 0.00601 2m45s
30k 29.0652 0.00522 7m06s

Chair mask only

100 15.3352 0.09109 2s
300 21.7330 0.02719 6s
500 22.9820 0.01727 10s
1k 24.6081 0.01057 16s
3k 25.2012 0.00848 39s
7k 26.7603 0.00690 1m31s
12k 28.3657 0.00521 2m49s
30k 29.9596 0.00417 7m24s

Gym ball depth enhanced

100 20.7613 0.05435 1s
300 24.2537 0.01555 4s
500 24.8933 0.0112 7s
1k 25.2035 0.00863 14s
3k 25.7515 0.00789 44s
7k 26.0844 0.00759 1m34s
12k 26.3997 0.00731 2m30s
30k 27.0577 0.00666 5m26s

Gym ball mask only

100 18.9597 0.08921 2s
300 24.7588 0.01534 5s
500 24.8926 0.01116 7s
1k 24.9556 0.00911 12s
3k 25.6631 0.00798 32s
7k 26.0918 0.00761 1m19s
12k 26.3948 0.00729 2m23s
30k 27.0730 0.00663 5m18s

Table 4.1: PSNR and L1 metrics during training of the experiments. The proposed

pipeline presents increased metrics in the early steps, while it converges to similar re-

sults in the long run with respect to the pipeline using only segmentation masking
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Figure 4.3: Plots of the reconstruction metrics reported for chair (top plot) and gym ball

(bottom plot) experiments. In each plot, the measures are paired for a direct comparison.

The boost in accuracy in the early steps is apprectiable, while they present similar scores

in the latest iterations.
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Figure 4.4: Visual results of baseline method over the two experiments at 30k iteration

step. The whole scene is reconstructed with high accuracy (1a and 2a) at the cost of some

accuracy of the target object (1b and 2b).
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Experiment
Acquisition

time

Pre-processing

and SfM

time

Depth projection

time

3DGS

time

Total

time

Chair depth enhanced 35s 3min 30s 29s 7min 6s 11min 40s

Chair masked only 35s 3min 30s − 7min 24s 11min 29s

Chair baseline 35s 1min 26s − 14min 14s 16min 15s

Gym ball depth enhanced 1min 12s 3min 55s 20s 5min 26s 11min 3s

Gym ball masked only 1min 12s 3min 55s − 5min 18s 10min 25s

Gym ball baseline 1min 19s 1min 19s − 12min 6s 14min 36s

Table 4.2: Recorder time cost of the different pipelines. The segmentation pipeline has a

great effect in increasing the performances with respect to the original Gaussian splatting

baseline, with a speedup of 2×. No appreciable time difference is introduced in the

optimization step as effect of the depth projection step. The 3DGS time costs reported

refer to the 30k step reconstruction for all presented pipelines
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Figure 4.5: Example input views and masks of the chair experiments. The RGB images

(1.a and 2.a) are recorded under natural outside light conditions. The depth values (1.b

and 2.b) are recorded from a stereo camera setup and show holes and noise. Segmentation

masks are predicted using NN models. In 1.c a noisy mask is reported showing additional

background regions considered, while in 2.c a more accurate mask is reported
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Figure 4.6: Visual comparison of point clouds with or without the depth enhancing step.

From visual comparison, in the chair example (2a and 2b) the point cloud extracted from

COLMAP shows holes in the structure of the chair in the center. The same happens with

the ball reconstruction (1a and 1b), where only the top part of the point cloud is present

in the COLMAP reconstruction. For both examples, the depth enhanced version better

approximates the target object.
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Figure 4.7: Visual comparison across the distribution of centers of Gaussian in the 30k

steps reconstruction. In the top image, the chair experiment is reported, while in the

bottom image the gym ball one. The left side (a) for both experiments reports the masked

only pipeline results showing sparser Gaussians in flat uniform regions with respect to the

depth enhanced initialization ones (b)
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Figure 4.8: Reconstructed mesh using 2DGS technique applying segmentation masking

and depth enhanced optimization. The mesh is extracted from the 7000 step snapshot

without any further manual processing. The geometry of the object is reconstructed with

accuracy even in holes and thin structures. The texture of the surface still presents some

artifacts and imperfections.
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Chapter 5

Conclusion

The presented work represents a significant study of the capabilities of Gaussian Splatting

techniques. Thanks to the proposed pipeline one can achieve photorealistic and ready-to-

use models from a simple acquisition pipeline with a depth and color-sensing camera.

The proposed pipeline grants flexibility and modularity, allowing future improvement to

single stages of the reconstruction. The technique and the proposed methods are not yet

affordable for all users, still requiring a depth camera and and high computational power

machine for post-processing, but it makes a step toward democratizing the technology.

Acceptable reconstructions are derived with only a few hundred steps of optimization,

reducing the GPU capacity needed while maintaining acceptable times. The segmenta-

tion masking of the object increases the final polish-ness of the reconstruction removing

unwanted background and creating a representation almost ready to use. Some small ar-

tifacts appear in the final representation due to noisy inputs, but they can be manually

removed. Expanding Gaussian Splatting usage and applications is key in the probable

transition from explicit mesh representation to implicit ones in some areas of industry.

With respect NeRF technique Gaussian Splatting emerges as a more friendly represen-

tation, working with more easily understandable Gaussian primitives and scoring high

accuracy in the reconstruction even in hard regions such as thin structures.

5.1 Future Works

During the work, some areas of improvement have been individuated, as well as alterna-

tive approaches to some of the stages. First, the depth values acquired from the sensing
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camera are used only in the initialization of the Gaussian Splatting optimization. An ad-

ditional step could be the integration of the depth information inside the loss and gradient

computation during actual optimization steps, allowing in theory for a faster and more

accurate convergence of the representation. To achieve a more polished reconstruction

and remove the artifacts, a final post-processing stage could be added at the end of the

pipeline. Techniques such as outliers removal or good parametrized thresholds could be

implemented, although no post-processing directly over Gaussians splatting has yet been

implemented in literature. As an alternative to reduce the artifact appearance, better masks

with less noise could be extracted from the frames removing the regions during optimiza-

tion where gradients conflict across different frames. To make the reconstruction process

more affordable, simple RGB cameras from smartphones could be used and the depth

map could be generated in the post-processing computation. A key requirement would be

the temporal coherence of the depth values generated and the retaining of the real mea-

sures of the scene for a correct reconstruction. Generated depth maps do not present holes

or noisy areas from real sensors making it suitable for better processing of the depth in-

formation. Still, the realism and coherence of values across frames are required. Since

the method proposed achieves good reconstruction within a few hundred steps, it could

be implemented in low computational capacity devices. The actual implementation will

bring challenges about the segmentation mask extraction or the increase in time costs of

the actual optimization steps but in theory, the full reconstruction could be carried out

in an acceptable time, thanks to the depth-enhanced initialization which does not require

parallelization and gives a boost in the reconstruction in the early steps.
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