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Abstract

In modern CPUs, understanding program behavior is essential for effective code de-
bugging and performance analysis. However, commonly used techniques are often
invasive and may alter program execution by introducing stalls and exceptions. To
address this, CPU vendors have developed less intrusive methods for code monitor-
ing, known as tracing.

Tracing encompasses a set of techniques for capturing various types of runtime
information from the system. Among these, Branch Tracing specifically analyzes
the individual instructions executed by the CPU, focusing only on reporting code
discontinuities. Each branch tracing standard is tailored to its target Instruction
Set Architecture (ISA).

Within the open-source RISC-V standard, a non-ISA-specific branch tracing specifi-
cation has been developed and ratified, called the Efficient Trace Specification. This
specification outlines the design rules and packet formats required for implementing
Branch Tracing on a RISC-V core.

The contributions of this thesis are i) The design and testing of a Trace Encoder
compliant with the Efficient Trace Specification. ii) The integration of this Trace En-
coder into a state-of-the-art RISC-V System-on-Chip emulated on FPGA featuring
a dual-core host domain. iii) An evaluation of the area overhead and performance
introduced by the Trace Encoder.

The implemented Trace Encoder introduces an area overhead of 4.15% relative to
the Ariane core and achieves an average compression rate of 95.07% on relevant
platform benchmarks.
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Chapter 1

Introduction

In modern CPUs, comprehending program behavior presents significant challenges.
It is not surprising that software in such environments may occasionally deviate from
expected performance and behavior. This unpredictability may depend on various
factors, including interactions with other cores, software components, peripherals,
real-time events, suboptimal implementations, or a combination of these factors.
Performing code analysis knowing the program’s flow makes the job easier and this
is the reason why code profiling techniques are used.

One of the most common techniques used to monitor the behavior of a live system is
using a debugger, but this approach is not always feasible due to its intrusive nature,
and common debug methods - such as breakpoints and code instrumentation - often
disrupt the program’s natural execution flow. When a breakpoint is reached, the
core halts and initiates the execution of debug instructions. However, such schemes
can introduce significant execution overheads, and if an immediate crash occurs,
communication between the core and the debug module may become inoperable.

Moreover, the timing of interrupts and exceptions is inherently asynchronous, mak-
ing it challenging to predict an exact code location to insert a breakpoint. As a result,
less invasive methods are required and one is called Tracing. The trace method pro-
vides a continuous, non-intrusive observation of program flow without extra code or
performance overhead, enabling a finer granularity of instruction-level code analysis
and profiling compared to function-level profiling in typical code instrumentation.
Processor tracing shortens hardware and software development cycles, reduces bugs,
and promotes more reliable processor designs.

Tracing is a general word and refers to a family of techniques and the one analyzed
is called Processor Branch Trace. This technique involves tracking execution from a
predetermined starting address and capturing address changes made by the program.
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These address changes, or deltas, are generated by jump, call, return, and branch
instructions, with interrupts and exceptions also contributing to the deltas.

The system generally comprises the following components:

� A core equipped with an instruction trace interface that outputs essential data
for generating a branch trace, operating at high bandwidth and providing de-
tailed data (e.g., instruction address, instruction type, context) per execution
clock cycle;

� A hardware encoder that compresses this data into lower bandwidth trace
packets;

� A transmission channel or memory unit for sending or storing trace packets;

� A decoder, typically a software module on an external PC, that receives the
trace packets and reconstructs the program flow by referencing the binary of
the running program. This decoding can occur offline or in real-time.

[PR] p. 5

Figure 1.1: Complete system architecture

The RISC-V consortium developed the open-source RISC-V ISA and also connected
non-ISA specification, among these is present the RISC-V Efficient Trace (E-Trace).
This specification is a standardized processor trace method that defines an effi-
cient compressed branch trace algorithm, input port specifications, and trace output
packet formats.

Within RISC-V architecture, instructions execute unconditionally or can be inferred
from the program binary, allowing assumptions about the instructions situated be-
tween deltas.
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1.1 Branch Tracing

The branch trace technique fundamentally monitors the deltas in Program Counter
(PC) value throughout the program execution. The deltas are generated by jumps
and they are classified in the following categories:

� inferable discontinuity, it is possible to determine the address to which the PC
jumps to by only knowing the opcode and the PC value. An example is the
JAL instruction;

� uninferable discontinuity, it is not possible to determine the address to which
the PC jumps to by only knowing the opcode and the PC value. An example
is the JALR instruction;

� branch, this category of instructions is regarded as distinct from other types of
discontinuities, as they are conditional in nature, allowing for the possibility
that a discontinuity may or may not occur.

[PR] pp. 11–16

Branch tracing is done by splitting the code in blocks depending on the discontinu-
ities and branches that happens during execution and than they are processed by
the hardware encoder.

1.1.1 What is a block

A block is a sequence of instruction in which:

� The first instruction is a normal instruction (i.e. not a jump) following a
special instruction.

� The last instruction is a special instruction (i.e. a jump).

An ideal blocks is composed by a sequence of normal instructions followed by a
special instruction, but a common corner case occurs when a special instruction
follows another special instruction: in this case the block is composed by a single
instruction, in which the last instruction overlaps the first one.

Each block is associated with the following mandatory data:

� itype, the termination type, so what the last instruction is;

� cause, the exception or interrupt cause, considered only in case of an interrupt
or exception;

� tval, the trap value associated with exception;
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� priv, privilege level for all instructions retired in the block;

� iaddr, the address of the first instruction in the block;

� iretire, the length of the instructions retired in the block expressed in half-
words;

� ilastsize, the size of the last retired instruction expressed in 2ilastsize halfwords

The iaddr, iretire and ilastsize are used to compute the PC value in which the
discontinuity happens. [PR] pp. 17–24

Figure 1.2: Example block and info associated

1.1.2 Software Decoder

The hardware encoder processes the blocks and produces packets accordingly to the
specification. These packets are then sent via transmission channel to a host/de-
bugger (depending if an FPGA or a silicon chip is used) and through decoding it is
possible to reconstruct the core execution.

1.2 Tracing techniques

The tracing technique explained in the E-Trace specification is the Branch Trace, the
only one ufficialy supported by the RISC-V architecture so far. Other architecture
- like x86 or ARM - may supported other tracing techniques, each one designed for
the specific ISA.

To give a greater view on the tracing world, in the following lines are reported some
other tracing techniques specific for the ARM ISA.
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1.2.1 Instruction Tracing

Instruction tracing offers valuable insights into how a core or processor executes
instructions. For example, if a core executes a loop ten times with instruction
tracing enabled, the resulting decoded trace data will indicate that the loop code
was executed on ten separate occasions.

The tracing capabilities of your target may allow for the gathering of additional
information, such as cycle counter values or timestamps, in conjunction with the
trace data. You can choose the supplementary data that best meets your tracing
requirements.

1.2.2 Data Tracing

Data trace provides insights into the data access activities of a core or processor.
For instance, when a memory load instruction is executed with data trace activated,
it records the load instruction along with the corresponding load address and value.

1.2.3 Instrumentation Tracing

Instrumentation trace provides outputs related to Operating System (OS) and ap-
plication events, as well as system information. For instance, when an event takes
place during the execution of an application with instrumentation trace activated,
the environment transmits valuable runtime data to the instrumentation trace source
for subsequent analysis.

The versatility of instrumentation trace is notable; however, its effectiveness is con-
tingent upon the manner in which it is integrated into the intended design.

1.2.4 System Tracing

System trace provides information regarding various components within the system.
For instance, the system trace facilitates the generation of events for both target
hardware and software. The functionality of system trace components encompasses a
broader range than that of instrumentation trace components, indicating that there
are numerous commonalities between the two. While system trace is adaptable, its
effectiveness is contingent upon its implementation within the specific design. [ARM24]

subsectionContributions This thesis introduces the following contributions:

� The development of a RISC-V compliant Efficient Trace Encoder (TE).

� The development of the hardware module required to extract the signals for
CPU-TE communication. The open-source CVA6 core has been adopted as
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the CPU target for tracing.

� The integration of the tracing solution on a state-of-the-art RISC-V SoC based
on a dual-core CVA6 host domain.

� The performance evaluation of the hardware designed on several platform-
relevant tests. The whole trace encoder system has an area overhead of 4.15%
relative to the core itself and the resulting compression rate achieves an average
of 95.07% w.r.t. tracing all the single instructions committed by the core.
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Chapter 2

Trace Encoder

Like the RISC-V ISA, the E-Trace specification does not provide any guidelines
regarding its architecture. The specification contains only the formal procedures.
The few things that are defined are:

� Inputs

� Packet payload structure

� Which packet to output based on inputs

� Outputs

The rest is up to the designer to choose.

2.1 Inputs

The mandatory inputs the Trace Encoder takes in are the following:

� itype

� cause

� tval

� priv

� iaddr

� iretire

� ilastsize
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In addition to these inputs, other optional ones are described for various operational
modes or to provide information.

2.2 Packets

To convey information to the decoder and reduce the bandwidth used, the specifi-
cation defines different type of packets, each one to use in different situations.

2.2.1 Format 3 packets

This family of packets is mainly used to convey supporting information for the
decoder, such as synchronisation, traps, reporting context and other supporting
information.

Subformat 0 - Synchronisation

This subformat is used to communicate the decoder two things:

� The first instruction has been traced;

� The resynchronisation timer has expired.

The payload is organized as follows:

Field name Bits Description
format 2 11 (sync): synchronisation.

subformat 2 00 (start): start of tracing or resync.
branch 1 Set to 0 if the address points to a branch instruction, and

the branch was taken. Set to 1 if the instruction is not a
branch or if the branch is not taken.

privilege 2 The privilege level of the reported instruction.
time XLEN The time value.

context TBD The instruction context.
address XLEN Full instruction address.

Table 2.1: Format 3 subformat 0 payload

Subformat 1 - Trap

This subformat is used to communicate to the decoder the cause and trap value
associated to an interrupt or exception and it is sent following them.

The payload is organized as follows:
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Field name Bits Description
format 2 11 (sync): synchronisation.

subformat 2 01 (trap): Exception or interrupt cause and trap handler
address.

branch 1 Set to 0 if the address points to a branch instruction, and
the branch was taken. Set to 1 if the instruction is not a

branch or if the branch is not taken.
privilege 2 The privilege level of the reported instruction.
time XLEN The time value.

context TBD The instruction context.
ecause XLEN Exception or interrupt cause.

interrupt 1 Interrupt.
thaddr 1 When set to 1, address points to the trap handler address.

When set to 0, address points to the EPC for an
exception at the target of an updiscon, and is undefined

for other exceptions and interrupts.
address XLEN Full instruction address.
tval XLEN Value from appropriate utval/stval/vstval/mtval CSR.

Field omitted for interrupts

Table 2.2: Format 3 subformat 1 payload

Subformat 2 - Context

This subformat is used to communicate the context and/or the timestamp, it is
output when the context value changes.

Since both context and time are optional inputs, this packet is not emitted if context
is not implemented.

The payload is organized as follows:

Field name Bits Description
format 2 11 (sync): synchronisation.

subformat 2 10 (context): Context change.
privilege 2 The privilege level of the new context.
time XLEN The time value.

context TBD The instruction context.

Table 2.3: Format 3 subformat 2 payload
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Subformat 3 - Support

This subformat is used to give supporting information to the decoder and it is sent
when:

� Trace is enabled or disabled;

� The operating mode changes;

� One or more packets cannot be sent due to back-pressure from the communi-
cation channel infrastructure.

The payload is organized as follows:

Field name Bits Description
format 2 11 (sync): synchronisation.

subformat 2 11 (support): Supporting information for the decoder.
ienable 1 Indicates if the instruction trace encoder is enabled.

encoder mode 1 Identifies trace algorithm Details and number of bits
implementation dependent. Currently Branch trace is

the only mode defined, indicated by the value 0.
qual status 2 Indicates qualification status (no change): No change to

filter qualification (ended rep): Qualification ended,
preceding te inst sent explicitly to indicate last

qualification instruction (trace lost): One or more
instruction trace packets lost. (ended ntr): Qualification
ended, preceding te inst would have been sent anyway
due to an updiscon, even if it wasn’t the last qualified

instruction
ioptions 3 Values of all instruction trace run-time configuration

bits.
denable 1 Indicates if the data trace is enabled (if supported).
dloss 1 One of more data trace packets lost (if supported).

doptions TBD Values of all data trace run-time configuration bits
Number of bits and definitions implementation

dependent. Examples might be - ’no data’ Exclude data
(just report addresses) - ’no addr’ Exclude address (just

report data)

Table 2.4: Format 3 subformat 3 payload
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2.2.2 Format 2 packet

This packet contains only an instruction and is output when the address of an
instruction must be reported and there is no unreported branch information. By
default it is used the differential address, that is computed as the difference between
the address to send and last address sent in a packet. To send full address the full
address mode must be enabled.

The payload is organized as follows:

Field name Bits Description
format 2 10 (addr-only): differential address and no branch

information.
notify 1 Differential instruction address.

updiscon 1 If the value of this bit is different from the MSB of address,
it indicates that this packet is reporting an instruction that
is not the target of an uninferable discontinuity because a

notification was requested via trigger unit.
irreport 1 If the value of this bit is different from updiscon, it

indicates that this packet is reporting an instruction that is
either: following a return because its address differs from

the predicted return address at the top of the
implicit return return address stack, or the last retired

before an exception, interrupt, privilege change or resync
because it is necessary to report the current address stack

depth or nested call count.
irdepth TBD If the value of irreport is different from updiscon, this field

indicates the number of entries on the return address stack
(i.e. the entry number of the return that failed) or nested
call count. If irreport is the same value as updiscon, all bits

in this field will also be the same value as updiscon.

Table 2.5: Format 2 payload

2.2.3 Format 1 packet

This format is used to communicate to the encoder the branch information, and
it is output if the branch information must be reported or when the address of
an instruction must be reported and there has been at least one branch since the
previous packet.

The payload for this specific format can be different and it depends on which there

11



is unreported branch or not.

The payload with branch map and address is organized as follows:
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Field name Bits Description
format 2 01 (diff-delta): includes branch information and may

include differential address.
branches 5 Number of valid bits branch map. The number of bits of

branch map is determined as follows: (cannot occur for
this format) : 1 bit -3: 3 bits -7: 7 bits -15: 15 bits -31:
31 bits For example if branches = 12, branch map is 15

bits long, and the 12 LSBs are valid.
branch map 31 An array of bits indicating whether branches are taken or

not. Bit 0 represents the oldest branch instruction
executed. For each bit: : branch taken : branch not

taken.
address XLEN Differential instruction address.
notify 1 If the value of this bit is different from the MSB of

address, it indicates that this packet is reporting an
instruction that is not the target of an uninferable

discontinuity because a notification was requested via
trigger unit.

updiscon 1 If the value of this bit is different from the MSB of
notify, it indicates that this packet is reporting the

instruction following an uninferable discontinuity and is
also the instruction before an exception, privilege change

or resync.
irreport 1 If the value of this bit is different from updiscon, it

indicates that this packet is reporting an instruction that
is either: following a return because its address differs
from the predicted return address at the top of the

implicit return return address stack, or the last retired
before an exception, interrupt, privilege change or resync

because it is necessary to report the current address
stack depth or nested call count.

irdepth TBD If the value of irreport is different from updiscon, this
field indicates the number of entries on the return

address stack (i.e. the entry number of the return that
failed) or nested call count. If irreport is the same value
as updiscon, all bits in this field will also be the same

value as updiscon.

Table 2.6: Format 1 payload - address, branch map
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The payload without branch map and address is organized as follows:

Field name Bits Description
format 2 01 (diff-delta): includes branch information and may

include differential address
branches 5 Number of valid bits in branch map. The length of

branch map is determined as follows: : 31 bits, no address
in packet -31: (cannot occur for this format)

branch map 31 An array of bits indicating whether branches are taken or
not. Bit 0 represents the oldest branch instruction

executed. For each bit: : branch taken : branch not taken

Table 2.7: Format 1 payload - no address, branch map

2.2.4 Format 0 packet

This format is used to communicate information in case of optional efficiency exten-
sions. In version 2.0.3 only two extensions are defined:

� Reporting count of correctly predicted branches;

� Reporting jump target cache index.

None of the previous extensions is supported in this implementation, but for the
sake of completeness the payload associated are reported.

Subformat 0

If branch prediction mode is supported and enabled, then there is a choice of whether
to output a full branch map (via format 1), or a count of correctly predicted branches.
The count format is used if the number of correctly predicted branches is at least
31. If there are 31 unreported branches (i.e. the branch map is full), but not all of
them were predicted correctly, then the branch map will be output.
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Field name Bits Description
format 2 00 (opt-ext): formats for optional efficiency extensions.

subformat 1 0 (correctly predicted branches).
branch count 32 Count of the number of correctly predicted branches,

minus 31.
branch fmt 2 00 (no-addr): Packet does not contain an address, and the

branch following the last correct prediction failed. -11:
(cannot occur for this format)

Table 2.8: Format 0 subformat 0 payload - no address, branch count
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Field name Bits Description
format 2 00 (opt-ext): formats for optional efficiency extensions.

subformat 1 0 (correctly predicted branches).
branch count 32 Count of the number of correctly predicted branches,

minus 31.
branch fmt 2 10 (addr): Packet contains an address. If this points to

a branch instruction, then the branch was predicted
correctly. (addr-fail): Packet contains an address that
points to a branch which failed the prediction. ,01:

(cannot occur for this format)
address XLEN Differential instruction address.
notify 1 If the value of this bit is different from the MSB of

address, it indicates that this packet is reporting an
instruction that is not the target of an uninferable

discontinuity because a notification was requested via
trigger unit.

updiscon 1 If the value of this bit is different from notify, it
indicates that this packet is reporting the instruction
following an uninferable discontinuity and is also the
instruction before an exception, privilege change or

resync.
irreport 1 If the value of this bit is different from updiscon, it

indicates that this packet is reporting an instruction
that is either: following a return because its address
differs from the predicted return address at the top of
the implicit return return address stack, or the last

retired before an exception, interrupt, privilege change
or resync because it is necessary to report the current

address stack depth or nested call count.
irdepth TBD If the value of irreport is different from updiscon, this

field indicates the number of entries on the return
address stack (i.e. the entry number of the return that
failed) or nested call count. If irreport is the same value
as updiscon, all bits in this field will also be the same

value as updiscon.

Table 2.9: Format 0 subformat 0 payload - address, branch count
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Subformat 1

If a jump target cache mode is supported and enabled, and the address to report
following an updiscon is in the cache then the encoder can output the cache index
using format 0, subformat 1. However, the encoder may still choose to output the
differential address using format 1 or 2 if the resulting packet is shorter. This may
occur if the differential address is zero, or very small.

Field name Bits Description
format 2 00 (opt-ext): formats for optional efficiency extensions.

subformat 1 1 (jump target cache).
index TBD Jump target cache index of entry containing target

address.
branches 5 Number of valid bits in branch map. The length of

branch map is determined as follows: : (cannot occur for
this format) : 1 bit -3: 3 bits -7: 7 bits -15: 15 bits -31: 31
bits. For example if branches = 12, branch map is 15 bits

long, and the 12 LSBs are valid.
branch map 31 An array of bits indicating whether branches are taken or

not. Bit 0 represents the oldest branch instruction
executed. For each bit: : branch taken : branch not taken

irreport 1 If the value of this bit is different from branch map[MSB],
it indicates that this packet is reporting an instruction

that is either: following a return because its address differs
from the predicted return address at the top of the

implicit return return address stack, or the last retired
before an exception, interrupt, privilege change or resync
because it is necessary to report the current address stack

depth or nested call count.
irdepth TBD If the value of irreport is different from branch map[MSB],

this field indicates the number of entries on the return
address stack (i.e. the entry number of the return that

failed) or nested call count. If irreport is the same value as
branch map[MSB], all bits in this field will also be the

same value as branch map[MSB].

Table 2.10: Format 0 subformat 1 payload - jump target index, branch map
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Field name Bits Description
format 2 00 (opt-ext): formats for optional efficiency extensions.

subformat 1 1 (jump target cache).
index TBD Jump target cache index of entry containing target address.

branches 5 Number of valid bits in branch map. The length of
branch map is determined as follows: : (cannot occur for
this format) : 1 bit -3: 3 bits -7: 7 bits -15: 15 bits -31: 31
bits. For example if branches = 12, branch map is 15 bits

long, and the 12 LSBs are valid.
irreport 1 If the value of this bit is different from branch map[MSB],

it indicates that this packet is reporting an instruction that
is either: following a return because its address differs from

the predicted return address at the top of the
implicit return return address stack, or the last retired

before an exception, interrupt, privilege change or resync
because it is necessary to report the current address stack

depth or nested call count.
irdepth TBD If the value of irreport is different from branch map[MSB],

this field indicates the number of entries on the return
address stack (i.e. the entry number of the return that

failed) or nested call count. If irreport is the same value as
branch map[MSB], all bits in this field will also be the

same value as branch map[MSB].

Table 2.11: Format 0 subformat 1 payload - jump target index, no branch map

[PR] p. 33-43

2.3 Design

The modules defined are the following:

� te reg, stores configuration data, produces clock signal for the other modules;

� te resync counter, counts packets emitted or clock cycles and asks for a resyn-
chronisation packet;

� te branch map, counts the branches and keeps track if they were taken or not;

� te filter, declares input blocks as ”qualified” - they can processed by the next
modules - based on user defined values read from te reg;

� te priority, determines which packet needs to be emitted and performs a simple
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compression on the address that is put inside the payload;

� te packet emitter, populates the payload and can reset both the te resync -
counter and te branch map.

Figure 2.1: High level trace encoder architecture

2.3.1 te reg

This module stores the user and non-user definable parameters.

The user definable parameters are the following:

� trace activated, determines if the encoder is waiting for a first block to start
tracing;

� nocontext, determines if the optional context input is used or not;

� notime, determines if the optional time input is used or not;

� encoder mode, determines if the encoder is doing branch tracing or another
type of tracing technique (right now only supported branch trace mode);

� configuration, determines in which of the 7 modes available in the E-Trace
specification v2.0.3 the encoder is operating. Right now only delta address -
the address in payload is expressed as difference between the current address
and the last one put in a payload - and full address - the address in payload
is the current one - modes are implemented;

� lossless trace, determines if the TE stalls the hart if there is back-pressure
from the transport interface;
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� shallow trace, determines if the branch map content has to be flushed after
each packet emitted or only after a packet containing the branch map;

� All the parameters necessary to the te filter module to perform filtering.

The clock gated signal depends on the trace activated signal, it is connected to all
the other modules in order to have a different clock domain and to switch off the
parts of the encoder when they are not necessary.

Figure 2.2: te reg internal architecture

2.3.2 te branch map

The te branch map module serves the purpose of keeping track of branches. It
does that by using a counter and an array called branch map. The counter counts
the received branches and the branch map saves if the branches are taken or not.
According to the E-Trace specification, the counter counts up to 31 branches (5 bits
long) and the branch map itself is a 31 bits long array that saves a 1 when the
branch is not taken and a 0 when it is.

Whenever the counter reaches the value of 31 - branch map is full - the module
asserts the is full o signal to request the generation of the associated packet (format
1) and it remains asserted until it receives the flush i signal from the te packet -
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emitter module that communicates the associated packet has been generated. This
is done to keep the request for a packet active until it is satisfied.

The E-Trace specification does not say anything about how and when to handle the
branches. In case of a multiple retirement CPU, the solution that makes more sense
is to handle all of them in one cycle, this way in just one cycle the counter and
branch map are updated.

The update of both branch counter and branch map is done in a combinatorial
network. The first step is to load the number of branches and if they were taken or
not left from the previous cycle, then the branches received in this cycle are counted
and summed to the ones to serve. After that it is served what is possible and if the
branch map is full - branch counter reached value 31 - all the remaining branches are
stored to be served the next cycle. The info to keep track if a branch was taken or
not are right shifted into an array, this way they will be served first in the following
clock cycle.

Figure 2.3: te branch map internal architecture

2.3.3 te filter

The te filter has the duty to filter input blocks such that it is possible to trace a
specific portion of code, or specific discontinuities.

The E-Trace specification suggest an implementation that uses a pair of comparators
and they can be arranged to select specific ranges for different parameters to be

21



traced. Furthermore, up to 3 run time selectable comparators can be used at a
time. [PR] p. 29

This implementation is different from the one proposed by the E-Trace specification:
it uses a comparator for each input and can be used as many comparators as they
are available. This way it is possible to check if the value is in a range or matches
with a specific one. This solution allows a better flexibity in terms of filtering.

Figure 2.4: Comparator internal architecture

In order to perform filtering it is necessary to enable the filter signal associated to
the input port we want to filter and set the operative mode for each filter: range or
match.

With the range mode is possible to set as qualified the inputs that are in a certain
range. In match mode is possible to check if the inputs coincide with the value set.
In case no filter is activated, all inputs are set as qualified.

The values used to filter are taken from the te reg module.
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Figure 2.5: te filter internal architecture

2.3.4 te priority

This module implements the flow chart shown in the E-Trace specification as a
combinatorial network, this way the packet type to issue is determined in - ideally
- one clock cycle.
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Figure 2.6: Flow chart that determines packet type
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As the flow chart shows, packets are determined based on the three different states:

� Previous instruction

� Current instruction

� Next instruction

To obtain this three different periods is used a series of flip flop that store information
read from inputs and delays it up to 2 cycles.

Figure 2.7: Logic to delay inputs

The E-Trace specification does not show the totality of the flow chart, since the
determination of format 3 subformat 3 packets is just described in a paragraph
before the flow chart and without giving any hints on where this part should be
inside the flow chart. So, in this implementation it was chosen to put the network
that determines if a format 3 subformat 3 packet needs to be issued before all the
rest of the network.

This choice was made because the format 3 subformat 3 packets need to be output
in the following scenarios: the TE is enabled or disabled, after the final qualified
instruction has been traced, packets are lost. To prevent the request for packets
that should not be issued, the if clause needs to be checked before the checks for all
the other packets.

Another operation performed by the te priority module is address compression. The
E-Trace specification mentions the compression but never gives clear guidelines on
how and when to do it. In this implementation was decided to compresse only
the address - full or differential - contained in packet payloads. It was decided to
compress only the address because it is easier and can reduce packet size.
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Figure 2.8: Address compression logic internal architecture

The idea to compress the address is trivial and consists in removing the most signifi-
cant bits that are all 0s or 1s except for the last one. This last one bit is necessary to
have a lossless compression because the address can be sign extended on the decoder
side and the original address can be retrieved without losing any information.

For example, if the address to compress is 0000001100010 the 5 most significant
bits can be removed and the address obtained is: 01100010. From this address is
possible to retrieve the original one by sign extending the most significant bit - in
this case 0 - to the original length.

The intention is to count the most significant 0s and 1s, this operation is performed
by two leading zero counters modules: one that counts on the original address and
one on the bitwise negated one (1s become 0s and the module can count them).

Than, it is chosen the most effective way to compress - removing 1s or 0s - and
this value increased by one - this way last most significant 1 or 0 is kept for sign
extension - is sent to the te packet emitter module that takes care of putting the
right amount of bits of the address in the payload.

26



Figure 2.9: te priority internal architecture

2.3.5 te packet emitter

The te packet emitter module takes care of populating the payload accordingly to
the inputs received from te priority - packet format and subformat - and sending
them as outputs of the TE itself.

In order to place a compressed address inside the payload, the te packet emitter
module sets as output the address to compress based on the payload to emit. In the
same cycle it receives the number of bits to keep from the te priority module. But
System Verilog doesn’t allow a dynamic array population, so a chunking operation
is performed and the number of bits to keep is rounded up to the closest multiple
of 8. This way is possible to insert the address but using less bits.

Another operation of compression is performed on the branch map. In this case
is far simpler, because we already know the number of bits to keep thanks to the
branch counter. Once again it is necessary to perform chunking to set the branch
map inside the payload.

When the payload is composed, it is output along with its length in bytes and the
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packet type. At this point is up to the encapsulator to make this data compliant
with the communication protocol chosen.

Figure 2.10: te packet emitter internal architecture

2.3.6 te resync counter

This module has the purpose to count the packets emitted or the clock cycles elapsed
and communicates to the te priority to request a resynchronisation packet.

The configurable parameters at instantiation are the following:

� N, the max number of packets emitted in one cycle;

� MODE, determines if the module counts packets emitted or clock cycles;

� MAX VALUE, determines the value at which it assers the resync max o val-
ues.

As required by the te priority flow chart, this module produces two different signals:

� et resync max o when the counter has reached the defined max value;

� gt resync max o when the counter has exceeded the defined max value, it
remains asserted until the module receives a synchronous reset signal.
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The te resync counter is designed to have a parametrizable number of valid ports,
this way it can be adapted to scenarios in which are present N te packet emitter
modules that may output up to N packets per cycle. The update is performed in
a combinational network and so in one clock cycle the module status is up to date.
To prevent counter overflow, the module is designed such that when it receives a
number that would overflow the counter, it stops the count at MAX VALUE+1
asserting the gt resync max o signal.

The E-Trace specification leave to the designer the choice of what to do in case
of a resynchronisation packet request pending and packets/cycles to count in that
period. In this implementation when the counter has gt resync max o asserted,
all the packets/cycles to count are ignored since they belong to the time period
preceding the resynchronisation.

Figure 2.11: te resync counter internal architecture

2.4 Multiple retirement support

Nowadays, most of the RISC-V cores - excluding the embedded and IoT oriented
ones - can retire up to N instructions per cycle. This means that the commit stage
of the CPU might create up to N blocks to process for the TE per cycle.

To perform a complete and correct tracing it is necessary to keep track of all the
commit ports of a CPU and to achieve that the E-Trace specification mentions in
the trace interface chapter which inputs need to be replicated.

Since a block is associated to a special instruction, in some CPU where multiple
special instructions are retired in a cycle, there’s the need to process more blocks
in the same cycle. In order to do that, the following inputs are replicated for the
number of blocks that can be processed in the same cycle:

� itype

� iaddr

� iretire
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� ilastsize

[PR] p. 20

To cope with this two different scenarios, it was decided to define two slightly dif-
ferent architectures for the TE.

2.4.1 Multiple retirement branches only

This architecture is designed to cope with the case of a multiple retirement CPU
that can output only one uninferable discontinuity or up to N branches. This means
the TE can only output up to one packet per clock cycle because branches do not
directly require the output of a packet, unlike other discontinuities such as JALR
that is considered an uninferable discontinuity.

In this first case the modification consists in the replication of the filter module.
This is necessary to perform filtering on all the input ports. The branch map is also
adapted to update its status in one cycle and be ready to process other branches in
the following cycle.

Figure 2.12: Trace encoder internal architecture for up to N branches

Other modifications are not necessary because the number of packets to emit is the
same as the single retirement case.

30



2.4.2 Multiple retirement not only branches

This architecture is designed to cope with the scenario of a CPU that can output up
to N uninferable discontinuities. This means the TE can output up to N packets,
since uninferable discontinuities directly require a packet.

The second scenario requires the replication of the modules that determine and
assemble the packet itself: te filter, te priority, te packet emitter. This is necessary
because up to N packets can be emitted and so for each packet are necessary the
modules that generates the packet.

Figure 2.13: Trace encoder internal architecture for up to N discontinuities

Since up to N packets can be emitted, the te resync counter module needs to be
adapted similarly to the te branch map in order to update its status in just one
cycle.

In this scenario, the te resync counter outputs and the branch map full o signal
from te branch map module are connected to only the first te priority module. This
is necessary to avoid the generation of N identical - resync or format 1 - packets in
the same cycle, but just one.
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Chapter 3

CVA6 Trace Encoder Connector

According to the E-Trace specification, the mandatory inputs the Trace Encoder
takes in are the following:

� itype

� cause

� tval

� priv

� iaddr

� iretire

� ilastsize

No RISC-V CPU generates the aforementioned signals, necessitating an interface
module that converts these CPU signals into a format comprehensible by the TE.

The E-Trace specification does not address this module, leaving its design to the
discretion of the designer.

The module that has been implemented is studied specifically for the CVA6 CPU;
however, it can be easily adapted for use with the Snitch core. Given it is designed
to work as interface for CVA6, the cva6 te connector can manage N commit ports
and process up to N instructions committed per cycle.

This module captures the instructions executed by the core, along with exceptions
and interrupts, and generates the necessary inputs for the TE.
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Figure 3.1: Whole system architecture including cva6 te connector

The main idea is to process one instruction at a time and generate the blocks along
with their information. This processing is done by instruction and not by cycle,
because the blocks can be split along multiple cycle and so an FSM is the best
solution to tackle this problem.

Since a CPU can retire up to N instructions, this module is structured to be easily
parametrizable and adaptable to different CPU configurations.

In order to determine the info for the blocks to output, the following data are
required for each commit port:

� If an instruction is committed;

� If the instruction is compressed;

� The PC value of the instruction;

� The operation type of the instruction;

� If the instruction is a branch;

� If the branch is taken or not.

Then, the following common information is required:

� If an exception or interrupt occurs;

� The cause and tval associated with interrupt and exception.
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3.1 CVA6 core

CVA6 is a 6-stage, single-issue, in-order CPU which implements the 64-bit RISC-V
instruction set. It fully implements I, M, A and C extensions as specified in Volume
I: User-Level ISA V 2.3 as well as the draft privilege extension 1.10. It implements
three privilege levels M, S, U to fully support a Unix-like operating system.

The architecture is the following:

Figure 3.2: CVA6 internal architecture

[Gro24]

The commit stage is to most interesting to us, because it is the final stage of the
pipeline in which the instructions are completed and results are committed. The
commit stage of CVA6 can output up to N instructions per cycle and N is set as 2
as default and the tracer must be able to track all the commit ports of the CPU to
obtain a correct trace.

By using the output of the commit stage it is possible to extrapolate all the necessary
information to do a proper branch trace.

As we’ll see in the next portion of the document, these signals are necessary to
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determine the blocks and their fields.

3.2 Design

On a high level, this module takes the instructions committed by the CPU and stores
them inside FIFOs; then these instructions are fed into an FSM that computes the
parameters for each block and then outputs them.

Figure 3.3: cva6 te connector internal architecture

3.2.1 itype detector

A fundamental part of the design is the itype detector, whose objective is to deter-
mine the itype of the instruction. This is done by checking the operation associated
with a committed instruction and checking if an exception or interrupt occurs in
the same cycle. The branch-associated inputs are stored in a register because in
CVA6 simulated waveforms these signals were asserted N cycles before the instruc-
tion commitment.
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Figure 3.4: itype detector associated logic

The itype determination is done by a combinational network, so the result is ideally
available in one cycle.

After the itype of the input instructions is detected, another combinational network
counts the number of blocks that will be output in one cycle by counting the number
of itypes different from 0. This value is stored in a FIFO to save the result until the
previous N blocks are output.

3.2.2 Serialization

Since more instructions can be committed than are processed, a FIFO is used for
each commit port to work as an elastic buffer and store information without stalling
the rest of the pipeline.

Then, instructions need to be fed inside the FSM that determines the block fields,
using a counter that operates a multiplexer, which each cycle sends to the FSM
values stored in a different FIFO.

If an exception or interrupt is encountered, the counter outputs only the first FIFO
to prevent sending multiple exception or interrupt itypes to the FSM. This behavior
is caused by exception and interrupt signals being connected to all itype detectors.
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Figure 3.5: Serialization logic

3.2.3 Finite State Machine

The FSM is the core of this module, processing one instruction at a time, and when
a block is ready, it outputs the fields, which are stored in a register if necessary.

The FSM has two states:

� idle, where the starting values are set;

� count, where the final parameters are set.
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Figure 3.6: FSM states chart

More precisely, in the idle state:

� iaddr is set as the address of the itype == 0 instruction;

� iretire is incremented by 1 or 2, depending on the compressed input;

� ilastsize is set in case the first instruction is a special instruction; in the sce-
nario in which in the clock cycle of the special instruction no instruction is
committed, the ilastsize value is read from register.

The FSM transitions to count state if the instruction is a standard one. Otherwise,
it populates the block fields and remains in this state, waiting for the next block to
begin.

In count state:

� iretire is incremented;

� ilastsize is set in case of an exception or interrupt without a committed in-
struction;

� privilege level is set.

The FSM stays in this state while committed standard instructions are read.

In both states, the cause and tval fields are populated only if there’s an interrupt or
exception; otherwise, they remain 0.

3.2.4 Deserialization

Since up to N blocks can be output per cycle, the cva6 te connector module par-
allelizes the blocks produced by the FSM. A demultiplexer operated by a counter
stores each block emitted by the FSM inside a register.
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Figure 3.7: Deserialization logic

When all the blocks are ready - checked by comparing the value in the block number
FIFO to the counter value - the valid signal associated with the module output is
asserted, and data can be read by the TE.
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Chapter 4

Evaluation

Once the design is complete it makes sense to try and synthesize it on an FPGA
and see what is the impact of the two previous modules on the SoC area usage.

The parameters to consider are the following:

� timings, the change in these values shows how much the TE and cva6 te -
connector influence the working frequency of the SoC;

� area utilization, it is fundamental to compute how much silicon is necessary
to perform tracing.

4.1 Testing platform

The platform chosen for the integration testing is the Alsaqr SoC. This platform was
chosen due to the presence of two CVA6 cores and its ease of use in case of adding
new modules to the design.

A System-on-Chip (SoC) is an integrated circuit that consolidates the core compo-
nents of a computing system onto a single chip. This typically includes a processor,
input/output interfaces, and other specialized hardware modules used to acceler-
ate specific workloads. The design of an SoC aims to optimize performance, power
efficiency, and size. By combining multiple functionalities into a single chip, SoCs
reduce cost, increase reliability, and improve system integration compared to tradi-
tional multi-chip designs.

The Alsaqr SoC is divided in three main parts:

� Host Domain, it contains the two CVA6 cores, the AXI interconnect and the
I/0 ports; it mainly works as the orchestrator of the whole SoC;
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� Secure Subsystem Domain, it conatains all the modules designed for encryption
and decryption, it is used for the security part of the SoC;

� Cluster Domain, it contains cores designed for acceleration like RI5CY and
RedMule.

Figure 4.1: Alsaqr SoC architecture

Since the cva6 te connector is designed to be connected to a CVA6 core, the only
part of the Alsaqr SoC necessary to perform the testing is the Host Domain, that
contains the two CVA6 cores. The Secure System Domain and the Cluster Domain
are both excluded from the synthesis.

The target platform for the synthesis is the Xilinx VCU118, this board features
the Virtex UltraScale+ XCVU9P-L2FLGA2104E FPGA. From now on, the term
”FPGA” is referred to this specific FPGA model. The results are strictly related to
the technlogy used in the FPGA and the synthesis for another target might lead to
different area occupations and timings.

4.2 Timing

An important parameter to consider in order to determine the critical path is the
negative slack. The negative slack is the difference between the time available for a
signal to travel through a circuit path and the time necessary for the signal to reach
its destination.

If this value is negative, it means the FPGA can not operate at the specified clock
frequency. To make the negative slack positive and therefore having the FPGA
working at the specified clock frequency the circuit can be modified by the developer
- reducing the combinatorial logic between registers - or the synthesizer can arrange
the logic on different positions inside the FPGA with a trade-off in terms of area
usage.
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The Worst Negative Slack is the lower value of the negative slack, this value is related
to a specific path between registers: the critical path. The length of this path and
its associated travel time determines the maximum clock frequency at which the
FPGA can operate. [Har24]

The modules of the trace encoder are not inside the critical path and so the addition
of both the te cva6 connector and the trace encoder does not influence the operative
frequency of Alsaqr Host Domain.

4.3 Area utilization

The area utilization is compared is compared with respect to two other hardware
components:

� The Ariane core;

� The Host Domain block of the SoC.

4.3.1 Ariane core

Compare the area utilization to the one used by the Ariane core makes sense, because
a TE is necessary for each core and in case of synthesis it is a necessary parameter
to consider.
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Figure 4.2: Area utilization with respect to an Ariane core

The TE and the cva6 te connector combined occupy 0.21% of the total FPGA area;
an Ariane core occupies 5.06% of the total FPGA area. This means the whole TE
system occupies around 4.15% of the area occupied by the core to trace.

4.3.2 Alsaqr Host Domain

If the Host Domain of the Alsaqr SoC is considered, the area occupied by the TE
and cva6 te connector is even more negligible with respect to the area occupied by
the whole SoC.
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Figure 4.3: Area utilization with respect to the Alsaqr Host Domain

The small orange and green segments are the cva6 te connector and the TE respec-
tively. The Host Domain of Alsaqr SoC occupies the 24.33% of the available FPGA
area, meanwhile the cva6 te connector and TE occupies the 0.21% of it. This means
the two modules necessary to trace a CVA6 core require 0.86% of the whole Alsaqr
Host Domain area suggesting a very negligible area impact with respect to the SoC.

4.4 Benchmarking

As the specification name suggests, the objective of this tracing is being efficient and
a good metric to evaluate efficiency is the compression rate. The compression rate
considers the ratio between the raw data - in this case the instructions committed
- and the compressed data - the packets emitted by the TE - and determines how
much info can be saved.

The formula of the compression rate in percentage is the following:

Compression rate (%) = (1− Uncompressed data size

Compressed data size
) ∗ 100
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The tests used to determine this metric are some of the already available inside the
Alsaqr repository.

The compression rate is computed considering the two parameters in bits, so the
number of committed instructions is multiplied by 32 - the length of a RISCV
instruction - and the total length is multiplied by 8 to convert it from bytes to bits.

The formula for the compression rate becomes:

Compression rate = (1− Committed instructions * 32

Total packets bytes * 8
) ∗ 100

Here the results for each test:

Test name Committed
instructions

Packets
emitted

Total
packet
bytes

Compression
rate %

axi hyper fibonacci 17576 56 176 99.75
backend test 331 50 162 87.76

bypass cva6 dco 16500 89 305 99.54
can 351 58 179 87.25

dhrystone 2370 46 149 98.43
fp16 matmul 22894 90 273 99.70

fp16-vec matmul 23331 94 287 99.69
gpios 4962 125 479 97.59

gpios all 6126 285 1231 94.98
hello 654 72 250 90.44

hello culsans 772 73 360 88.34
hyperbus 14585 75 253 99.57
kmeans 936 57 186 95.03
l1 test 16784 62 197 99.71

llc spm test 323 49 160 87.62
mbox test 1388 131 463 91.66

mm 16784 62 197 99.71
sb macl 444 23221 83 244 99.74
sb macl 844 20273 82 242 99.70

timer 956 216 565 85.22

Table 4.1: Info for each test

From the previous results it is possible to compute the average compression rate:

Compression rateAVG = 95.07%
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This means the packets emitted reduced the data usage - with the respect to the
raw code - an average of 95.07%. For example if the instructions committed has a
size of 100kB, the resulting packets required to cover that portion of code have a
size of around 5kB.
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