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Abstract

In a distributed multi-agent system involving intelligent agents, a typical problem
consists of coordinating agents to perform complex global goals. In this thesis, we
consider a swarm of drones that need to enact certain swarming scenarios using a
Multi-Agent Reinforcement Learning approach.

In general, three different approaches are proposed for designing this kind of
systems: manual design, in which developers design all the necessary algorithms to
achieve the desired behavior; automatic design, which involves employing machine
learning techniques to learn the correct policy to apply; and a hybrid approach
that combines both.

In this work we consider the automatic approach. Specifically, we use a vari-
ation of the Deep Q-Network (DQN) algorithm, which combines Q-learning with
Graph Neural Networks (GNNs) to enable efficient decision-making in complex
environments through Multi-Agent Reinforcement Learning. To analyze the effec-
tiveness of this technique, we replicate some swarming scenarios and examine how
accurately they are reproduced. Another important aspect of this article is testing
the scalability of this technique to clarify how many agents a system can handle
with this design.
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“Now, bring me that horizon.”
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Chapter 1

Introduction

The rapid advancement of technology is paralleled by the increasing complexity

of software systems. In this historical period, there is a pursuit of autonomous

systems, characterized as “intelligent”, capable of making decisions or selecting

actions independently, and learning from their experiences and errors. These types

of systems can be effectively applied across numerous domains, ranging from ev-

eryday tasks to space exploration.

Another aspect that escalates the complexity of a system is the multitude

of devices that can now be integrated, interacting with each other, and either

cooperating or competing to achieve individual or shared objectives. In particular,

Distributed Systems and the Internet of Things (IoT) are currently integrating

Artificial Intelligence (AI) into their inherently complex systems.

Typically, an IoT system comprises numerous cyber-physical devices, and in

the context of a multi-agent system [SV00] each device is controlled by a software

agent. We now consider replacing these software agents, traditionally governed by

manually designed algorithms, with AI models, transforming them from conven-

tional agents to autonomous agents [WJ95].

This thesis addresses the scenario of self-organizing systems, which are complex

cyber-physical systems composed of numerous devices, each controlled by an agent

we aim to render autonomous. Specifically, we intend to model a swarm of devices

capable of autonomously performing complex swarming behaviors, such as reaching

a target position, flocking, or avoiding obstacles.
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The field of AI that perfectly aligns with our requirements is Multi-Agent

Reinforcement Learning (MARL), which involves applying the traditional Rein-

forcement Learning approach to a Multi-Agent system. Using this technique, each

agent operates within an environment, interacts with it, and receives rewards based

on its actions. Each Autonomous Agent must enhance its performance and learn

optimal actions to maximize the obtained rewards. If the reward structure is well-

engineered, the individual policies learned by the agents will collectively result in

a global swarming behavior.

More specifically, we leverage an emerging model well-suited to our problem:

the Graph Neural Network (GNN). GNNs are a powerful technique for applying

machine learning to graph-structured data. In our system, each agent is repre-

sented as a node in a graph, with connections between agents as edges. This

structure enables the swarm of autonomous agents to fully exploit the capabilities

of the GNN model.

This thesis is structured as follows. In chapter 2, we introduce all the nec-

essary concepts for understanding this work, covering Cyber-Physical Systems,

Multi-Agent Reinforcement Learning, and Graph Neural Networks. In chapter 3,

we describe the system design, including the organization of software component

interactions, the design of the GNN, and the learning algorithm. chapter 4 provides

detailed implementation information, offering a low-level description of the soft-

ware system. Finally, in chapter 5, the system is evaluated using various metrics

to assess the effectiveness of this approach.

More details about the software artifact are available in a Github public repos-

itory. 1

1https://github.com/Filippo-Venturini/vmas-workspace
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Chapter 2

Background

2.1 Concepts

This section discusses all the theoretical elements necessary to understand the con-

tribution of this thesis. First, it explores the concept of Cyber-Physical Swarms

(CPS), inspired by natural swarms where agents work together to achieve collec-

tive goals. In CPS, autonomous agents, such as drones, collaborate to perform

tasks through coordinated behavior.

We first formalize the swarming model, which defines agents’ local inter-

actions and introduces the SwarMDP model, a compact framework for decen-

tralized decision-making in swarm systems. This formalization helps establish the

basis for agent cooperation.

Next, we discuss Graph Neural Networks (GNNs), which allow agents to

communicate and learn from local neighbors by propagating information through a

graph structure. GNNs enable decentralized decision-making, essential for swarm

behavior.

Finally, we introduce Multi-Agent Reinforcement Learning (MARL),

where agents learn local policies through trial and error. Using the Centralized

Training Decentralized Execution (CTDE) approach, agents learn globally during

training and act independently in execution.

Together, CPS, swarming models, GNNs, and MARL provide a comprehensive

framework for developing autonomous swarm systems. The following subsections

CHAPTER 2. BACKGROUND 3



2.1. CONCEPTS

detail each concept and their role in achieving coordinated swarm behavior.

2.1.1 Cyber-Physical Swarms

In nature is common to find swarms of animals or insects that perform a certain

coordinated group behaviour to reach an objective.

For example, we often see birds that are flocking, for confusing predators,

sharing information about food sources or also reducing air resistance. Similar to

birds also fish can exhibit coordinated movements for puzzle predators and improve

the swimming efficiency.

Given that, also in the computer science field we can build a swarm of devices

that has to achieve a global objective such as animals or insects, these swarms

are called Cyber-Physical Swarms (CPSs or swarm-like systems)[AS24] [BF16].

Swarm-like systems can model a lot of real-life problems and scenarios such as:

environmental monitoring [MSF16], UAV coordination [SAB+19], social systems

[ZYCK20] or more in general sensors networks [PPCE22]. In the case of this thesis

we consider a swarm of drones in which each drone is equal, and by moving in the

environment has to learn a local behaviour that merged with the others, result in

a collective swarming movement. Some example of typical swarming behaviours

of drones can be: go to a position, flocking, pattern formation, obstacle avoidance

and so on [ACV24].

A crucial aspect of developing swarm-like systems involves devising decentral-

ized controllers for the agents, enabling them to execute sophisticated group tasks.

There are three primary strategies for tackling this issue: manual design, automatic

design and an hybrid approach. In the manual approach, developers directly con-

struct the controllers, leveraging their expertise and utilizing programming lan-

guages or frameworks that facilitate distributed computation and communication,

such as macro-programming methods [Cas23]. Conversely, in the automated ap-

proach, machine learning techniques, like multi-agent reinforcement learning and

evolutionary algorithms, are employed to generate programs or policies for the

agents based on high-level task descriptions or goals. Each method has its pros

and cons. Manual creation allows for the declarative specification of desired system

properties but can be laborious and prone to mistakes. Automated generation can
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2.1. CONCEPTS

mitigate these drawbacks by learning from data and experience, yet it also faces

significant challenges, including the difficulty of learning suitable representations

for agent communication. There is also a third possibility that is called Field-

Informed Reinforcement Learning (FIRL) [AVE23], that mix the manual design

using macro-programming technique such as aggregate computing [BPV15], with

automatic design utilizing a reinforcement learning approach.

Specifically, in this thesis we set the focus on the automatic approach, so our

swarm-like system of drones has one autonomous agent for each drone that has

to learn a local policy via Reinforcement Learning (RL), for lead to a collective

swarm behaviour, more details will be explored in the next sections.

2.1.2 Swarming Model formalization

In this section is formalized the swarming model with the aim of establishing a

more robust foundation for defining a formal concept of swarm.

We define a swarm system as a group of agents characterized by two main

attributes:

• Locality: Agents are limited to observing only portions of the system within

a specified range, as dictated by their observational capabilities. Conse-

quently, their decision-making is based solely on their immediate surround-

ings, rather than the state of the entire swarm.

• Homogeneity: All agents share an identical architecture, meaning they

possess the same dynamics, degrees of freedom, and observational capacities,

making them interchangeable.

Any system exhibiting these features can, in theory, be represented as a de-

centralized partially observable Markov decision process (Dec-POMDP) [BPZ19].

However, the homogeneity aspect, which is crucial for scalable inference, is not

explicitly incorporated in this model. Given that swarms typically consist of a

large number of agents, it is advantageous to adopt a more compact system rep-

resentation that leverages these inherent symmetries.
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2.1. CONCEPTS

So we refer to SwarMDP [SKZK17], that is a subclass of Dec-POMDP. Accord-

ingly, we can define a prototype of our autonomous agent within the framework of

SwarMDP as:

A = (S,O,A,R, π), where:

• S is the set of all local states.

• O is the set of all agent observations.

• A is the set of agent actions.

• R : O → R is the reward function of the agent.

• π is the local policy of the agent, which, when combined with the policies of

other agents, results in the learned swarm behavior.

Once the swarming agent is defined, the concept of a SwarMDP can be de-

scribed as a tuple (N ,A, T , E), where:

• N is the number of swarming agents in the system.

• A is the swarming agent defined above.

• T : SN ×AN × SN → R is the global transition function of the system.

Specifically, T represents the transition from a global state (composed of

all agents’ states) to a new global state as a result of executing all local

actions of the agents.

• E : SN → ON is the observation model of the system.

The observation model ξ indicates which segments of a system state s ∈ SN

are visible to each agent. Specifically, ξ(s) = (ξ(1)(s), . . . , ξ(N)(s)) ∈ ON represents

the ordered set of local observations provided to agents at state s. For instance,

in a fish school, ξ(n) could represent the local alignment of a fish relative to its

nearby neighbors. It’s important to note that agents do not have direct access

to their local states s(n) ∈ S. Instead, they only receive their local observations

θ(n) = ξ(n)(s) ∈ O.

6 CHAPTER 2. BACKGROUND



2.1. CONCEPTS

Figure 2.1: The SwarMDP model formalization

Moreover, is possible to use a global observation model, so we can encode all

properties in a single object, yielding a more compact system description. But

in this work the observation model is defined locally at the agent level, since the

observations are agent-related quantities. However, this would still require a global

notion of connectivity between the agents, which is provided by our Graph Neural

Network Model (GNN) (see Section 2.3).

2.1.3 Graph Neural Networks

Graph Neural Networks (GNNs) represent a transformative class of neural net-

works designed to handle data structured as graphs, which are ubiquitous in var-

ious domains including physical models, chemical compounds, images, and text.

Several works explore and highlight the key areas where GNNs make a significant

impact [GMP21] [ZCH+20].

Unlike traditional neural networks that operate on grid-like structures, GNNs

can effectively capture complex relationships and dependencies inherent in graph

data. At their core, GNNs propagate information across nodes and edges of the

graph to learn representations that encode both node attributes and graph topol-

ogy. The structure of a GNN typically involves several layers where each layer

iteratively aggregates information from neighboring nodes, enabling the network

to refine its understanding of each node’s context within the graph.

One prominent type of GNN is the Graph Convolutional Network (GCN)

CHAPTER 2. BACKGROUND 7
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Figure 2.2: GNN applications

[KW17]. GCNs generalize the concept of convolution from regular grids to irregular

graph structures by applying a linear transformation of node features combined

with neighborhood aggregation. This approach allows GCNs to effectively capture

localized graph structures and has been widely adopted in tasks such as node

classification and link prediction.

Another notable variant is theGraph Attention Network (GAT) [VCC+18],

which enhances GCNs by introducing attention mechanisms. GATs assign dif-

ferent importance weights to neighboring nodes dynamically during each layer’s

aggregation step, allowing the network to focus more on relevant nodes and thus

improving performance in tasks requiring nuanced relationships within the graph.

But, apart from variations, now we will understand how a general GNN works

with a more formal approach, by introducing some notations. [SGT+09]. Let

G = (V,E) be the graph of the GNN, where V is the set of nodes and E is the set

of edges connecting the nodes. Each node v ∈ V has a corresponding feature set

fv, which is a collection of characteristics specific to that node (e.g., if a person is

modeled as a node, the node features might include name, age, height, etc.).
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Figure 2.3: Graph neural network behaviour

Each edge e ∈ E connects two nodes and represents the relationship between

them. The concept of a node’s neighborhood is straightforward and is considered

during the learning phase. The aim of a GNN is to learn an embedding hv for each

v ∈ V , which encodes the node’s features, capturing both its intrinsic properties

and its contextual information within the graph.

Specifically, hv is computed iteratively through various phases of information

aggregation from the neighbors NG(v) and combined with the current embedding

of the node hv. This process can be seen as a communication process between

nodes, referred to as message passing [SZWL23].

A GNN consists of k message passing layers, with each layer responsible for

computing the embedding hk
v for each v ∈ V .

Formally:

m(k)
v = AGGREGATE(k)

({
h(k−1)
u : u ∈ NG(v)

})
(2.1)

h(k)
v = COMBINE(k)

(
h(k−1)
v ,m(k)

v

)
(2.2)

where NG(v) is the set of all direct neighbors of node v, h
k
v is the embedding of

node v at layer k, and h
(k−1)
v is the embedding of the node at the previous layer.

The AGGREGATE(·) function accumulates information from the neighbors and

must be permutation-invariant. The aggregation can be simple, such as sum,

CHAPTER 2. BACKGROUND 9
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Figure 2.4: Multi-Agent Reinforcement Learning

max pooling, or sum of products, but can also be more complex and articulated

[PTF+21].

Through the aggregation process, the message m
(k)
v is obtained, which is then

merged with the individual node information using the COMBINE(·) operator.
In this work, we use a GNN to enable each swarming agent to learn local be-

haviors in a Multi-Agent Reinforcement Learning (MARL) scenario (more details

in the next section).

2.1.4 Multi-Agent Reinforcement Learning

Another important concept to introduce isMulti-Agent Reinforcement Learn-

ing (MARL) which is composed by two distinct parts: Multi-Agent Systems and

Reinforcement Learning.

Multi-agent systems (MAS) represent a paradigm in artificial intelligence

where multiple autonomous agents interact within an environment to achieve in-

dividual or collective goals [SV00]. These agents can be software entities, robots,

or even biological organisms, and they operate based on a set of rules or learning

algorithms. MAS are particularly powerful in solving complex problems that are
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difficult or impossible for a single agent to handle, such as resource allocation,

swarm robotics, and distributed sensor networks. The interactions among agents

in an MAS can be cooperative, competitive, or neutral, and these interactions are

governed by protocols that define communication, coordination, and negotiation

mechanisms.

The second component is Reinforcement Learning (RL) which is a branch

of machine learning where agents learn to make decisions by performing actions

in an environment to maximize cumulative rewards. Unlike supervised learning,

which relies on labeled data, RL involves an agent exploring its environment and

learning from the consequences of its actions through trial and error. Techniques

such as Q-learning [WD92], policy gradients [SMSM99], and deep reinforcement

learning [HR16] have been developed to address various challenges in RL, such

as the balance between exploration and exploitation and the scalability to high-

dimensional state and action spaces. RL has garnered significant interest due to

recent achievements in various domains, from mastering complex games such as

Go, Chess, Starcraft, and Dota2 [SHM+16][SHS+17][VBC+19][BBC+19] to appli-

cations in robotics [ABC+20] [OAA+19].

By combining these two concepts, we arrive at MARL, an approach where all

agents in a MAS are trained to achieve a collective global goal using RL techniques

[BBS08]. In this work, we consider homogeneous MARL, where each agent in the

system is indistinguishable and interchangeable. Thus, all agents are at the same

level and can be viewed as identical computational units.

Additionally, the approach used in this work is known as Centralized Train-

ing Decentralized Execution (CTDE). In this approach, the training phase

considers the global state of the system (including all agents’ observations, actions,

rewards, etc.) to learn a policy. During the execution phase, each agent operates

using only its local perception of the environment [Che20] [ABZ23].

2.2 Technologies

The aim of this section is to provide a brief description of all the main technologies

used in this work, for designing and implementing the contribution described in

the next chapter. Along with the descriptions, examples of usage and known

CHAPTER 2. BACKGROUND 11



2.2. TECHNOLOGIES

applications that leverage these technologies will also be highlighted.

2.2.1 PyTorch

PyTorch [PGM+19] is an open-source deep learning framework developed by Meta’s

AI Research lab. It provides a flexible and efficient platform for developing machine

learning models, offering dynamic computation graphs that facilitate intuitive and

immediate construction and manipulation of neural networks.

This is particularly beneficial for research and prototyping, as it allows for

easy debugging and real-time updates. PyTorch supports automatic differentia-

tion, which is essential for gradient-based learning algorithms. It is built on the

Torch library and integrates seamlessly with Python, making it accessible for both

beginners and experienced practitioners.

The framework includes a rich ecosystem of tools and libraries for reinforce-

ment learning and it has distributed training capabilities for enabling scalable

and efficient training on multiple GPUs and across nodes, making it suitable for

large-scale machine learning projects. For instance, PyTorch has been employed in

various large-scale applications such as Tesla’s Autopilot and Meta’s speech recog-

nition systems. Furthermore, PyTorch is used in Uber’s Pyro for probabilistic

programming, showing its versatility across industries [BCJ+19].

Additionally, PyTorch is compatible with the ONNX (Open Neural Network

Exchange) format, which allows models to be transferred between different frame-

works, enhancing its versatility in various deployment scenarios. The active and

growing community around PyTorch contributes to a wealth of resources, tuto-

rials, and third-party libraries, further supporting its adoption in both academia

and industry. PyTorch is widely used in prominent academic research, including

areas like natural language processing (e.g., BERT)[DCLT19], computer vision

(e.g., ResNet) [HZRS15], and generative models (e.g., GANs) [GPAM+14].

In this project, this framework is essential for handling complex and structured

data such as observations of the agents, rewards, states, policies, and so on. It is

also a key component on which the library for designing Graph Neural Networks,

discussed in the next section, is built.
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2.2.2 PyTorch Geometric

PyTorch Geometric (PyG) [PyG23] is a pivotal Python library in the realm of

geometric deep learning, designed to tackle the complexities of analyzing and pro-

cessing data represented as graphs and meshes.

At its core, PyG empowers researchers and practitioners to extend traditional

deep learning techniques beyond Euclidean domains, effectively bridging the gap

to non-linear, irregular data structures. By leveraging the robust capabilities of

PyTorch, it provides a comprehensive suite of tools and implementations for con-

structing and training graph neural networks (GNNs). These include cutting-edge

models such as Graph Convolutional Networks (GCNs), Graph Attention Net-

works (GATs), and Graph Isomorphism Networks (GINs), each tailored to handle

the intricate relationships and inherent complexities within graph data.

PyG is widely used in both academia and industry for graph-based tasks such

as drug discovery, fraud detection in financial transactions, and recommendation

systems. For example, it has been used in Pinterest’s PinSage for content recom-

mendation by modeling the relationships between users and pins through a graph

[YHC+18]. The versatility of PyG extends to social network analysis, molecular

graph learning, and 3D vision tasks, demonstrating its relevance across numerous

fields where data is naturally represented as graphs.

In this work, PyG is used for designing and training the GNN used as a model

to learn complex collective swarming behaviors in our multi-agent reinforcement

learning (MARL) scenario.

2.2.3 Vectorized Multi-Agent Simulator

A pivoting component of a MARL scenario is the Simulator used to train the

agents. Multiple alternatives were explored, but the one that suits our require-

ments best is the Vectorized Multi-Agent Simulator (VMAS).

VMAS stands as a vectorized differentiable Simulator crafted for efficient

benchmarking in MARL. It comprises a fully-differentiable 2D physics engine im-

plemented in PyTorch, alongside a collection of intricate multi-robot scenarios.

Creating scenarios is designed to be straightforward and modular, encouraging

contributions. VMAS simulates agents and landmarks of varying shapes, support-
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ing rotations, elastic collisions, joints, and customizable gravity settings.

Agents utilize holonomic motion models to streamline simulation, while custom

sensors like LIDARs are available, facilitating inter-agent communication. Lever-

aging PyTorch’s vectorization capability enables VMAS to execute simulations in

batch mode, effortlessly scaling to tens of thousands of parallel environments on ac-

celerated hardware. This makes it particularly efficient for scaling up experiments

in multi-agent systems, where rapid simulation of interactions between agents is

essential for reinforcement learning tasks.

VMAS boasts compatibility with OpenAI Gym [BCP+16], RLlib [LLM+18],

torchrl [BBD+23], and the MARL training library BenchMARL [BPM23], en-

suring seamless integration with a broad spectrum of RL algorithms. Its design

draws inspiration from OpenAI’s Multi-Agent Particle Environment (MPE) frame-

work, complemented by the porting and vectorization of all MPE scenarios within

VMAS.

Another alternative considered for the simulation environment is Magent2

[ZYC+18]. This Simulator is integrated with multiple PettingZoo [TBG+21] sce-

narios, and is also compatible with OpenAI Gymnasium [TTK+23]. However, Ma-

gent2 is more suitable for creating battle games or competitive scenarios, which is

not aligned with our specific case study focusing on cooperative swarming behav-

ior.
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Chapter 3

Contribution

This chapter outlines the design of the primary contribution of this work. First, a

formal analysis of the problem formulation and requirements is conducted. Next,

the overall design of the system architecture is examined in detail, focusing on the

integration of all components, such as the Simulator, the Trainer, and others, at

a high level of abstraction. Following this, the core software artifact is analyzed,

particularly the design of the Graph Neural Network and the algorithm used during

the learning phase. The final section provides a theoretical explanation of the tasks

addressed in this work, including a formal analysis of the reward structure designed

to achieve the goals.

3.1 Analysis

After introducing all the background concepts necessary to understand this thesis,

it is essential to perform an analysis to outline the key aspects of this contribution,

as well as to define the objectives and goals for the software developed.

The overall goal is to create a software artifact that results in a clear and

well-engineered system capable of training Graph Neural Network models in a

Multi-Agent Reinforcement Learning scenario, to simulate an autonomous swarm

of drones performing various tasks.

We aim to design an approach that effectively exploits the potential of GNNs

to enable agents to learn appropriate behaviors in various situations. The goal is
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to develop both the model structure and the learning algorithm to teach agents

individual policies that collectively result in the desired swarming behavior. The

proposed approach should scale efficiently with the number of agents and the

complexity of tasks the swarm can successfully accomplish.

Below there is a structured list of all the objectives of this thesis:

1. Smoothly integrate different technologies to compose the software architec-

ture.

2. Design a Reinforcement Learning model and a learning algorithm suitable

for our problem, utilizing Graph Neural Networks.

3. Engineer various scenarios, including reward structures, observation and ac-

tion spaces, in which the swarm must perform different tasks such as moving

to a position, avoiding obstacles, and flocking.

4. Evaluate the performance and behavior of the chosen techniques and ap-

proaches during the execution of these different tasks.

This section details the overall design of the system, from the software archi-

tecture to the core components, including the design of the Graph Neural Network

and the learning algorithm.

3.2 Architecture

The system architecture integrates various essential components efficiently. Each

component employs distinct technologies, as delineated in Section 2.2, and they

must synergistically collaborate to train the multi-agent system, enabling it to

perform diverse tasks.

3.2.1 Simulator

A fundamental component of the system architecture is the Simulator, which is

crucial for allowing our swarm of agents to conduct experiments to learn optimal

behaviors.

16 CHAPTER 3. CONTRIBUTION



3.2. ARCHITECTURE

Figure 3.1: System Architecture

The Simulator’s objective is to provide an environment in which the agents

are situated, enabling them to perform actions and interact with the environment.

Specifically, this component must incorporate all necessary logic to run simulations

where the system state evolves and changes, potentially incorporating basic physics

concepts such as movement, collisions, and time. Additionally, this component

includes a GUI to render the simulation results, which is essential for both the

training and evaluation phases.

3.2.2 Scenario

A critical component of any Reinforcement Learning system is the environment.

In this architecture, the Scenario component defines the conceptual environment

in which the agents operate. The design of the Scenario component is pivotal to

ensuring that the agents learn effective behaviors that align with our objectives.

Specifically, the Scenario aims to specify the environment’s structure: initial

agent positions, obstacle placements, goal locations, etc. Moreover, the Scenario
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must also define how agents perceive their surroundings (observations) and how

their actions impact the system (rewards). The state of the scenario defined by

this component is subsequently rendered by the Simulator.

3.2.3 Agent

The Agent component represents the individual autonomous agents within our

system. Each agent must interact with the environment by executing actions and

receiving rewards. All agents are contained within the Scenario and can interact

with the environment according to their configuration, which will be detailed in

Chapter 4.

3.2.4 Trainer

The Trainer component is the core of the system. It should encapsulate the GNN

model and provide an implementation of a learning algorithm. This component

represents the primary learning aspect of the system, enabling the construction of

graph data from agent observations, training the agents, and producing a trained

model, which can be used to run simulations via the Simulator component.

3.2.5 Component Integration

When these subsystems are correctly integrated, the system functions as follows.

As depicted in fig. 3.2, the workflow of the designed architecture begins with an

agent computing an action rendered by the Simulator component. After rendering

the action, the Simulator provides the agent with observations of its surroundings,

which are then passed to the Scenario component. In the Scenario component,

all agent observations are aggregated and sent to the Trainer component. Here,

a graph data structure is constructed from the agent observations, and a training

step of the model is performed, resulting in an action for each autonomous agent.

These actions are evaluated in the Scenario, representing the environment in

which the agents operate, and the corresponding rewards are computed and sent

to the agents. Finally, the actions to be rendered are sent to the Simulator, which

updates the environment and agent states graphically.
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Figure 3.2: Architecture Component Integration
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Figure 3.3: Graph Neural Network model

3.3 Model: Graph Neural Network

The designed Graph Neural Network model represented in fig. 3.3 is structured

to process graph-structured data through a series of graph convolutional layers,

followed by fully connected layers to transform and extract meaningful features

from the input data.

At the core of the model are three graph attention convolutional (GAT) layers,

which enhance the representation of each node by aggregating information from

its neighbors. Each of these layers leverages the attention mechanism to weigh the

importance of neighboring nodes, allowing the model to focus on the most relevant

connections within the graph.

After each convolutional layer, a rectified linear unit (ReLU) activation function

is applied, introducing non-linearity into the model and enabling it to capture more

complex patterns. Following the convolutional layers, the model transitions to two

fully connected (linear) layers. The first linear layer further processes the features

extracted by the convolutional layers, with another ReLU activation ensuring the

continuation of non-linear transformations. The final linear layer projects the

processed features into the desired output dimension, producing the final output

of the model.

This design, combining graph attention mechanisms and multi-layer percep-

trons, aims to effectively capture and utilize the intricate relationships and struc-

tures within the graph data.
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3.4 Building Graph Data

Given the model of the GNN described above, we need to engineer a way for

integrate the raw observations of the agents in the environment with the model,

so we need to build a graph data that the model can exploit during the learning

phase.

To build a graph from the observations of multiple agents in the environment,

we follow a structured process. Each agent’s observations are collected and trans-

formed into a feature vector. Let O = {oi | i = 1, . . . , N} represent the set of

observations for N agents, where oi denotes the observation vector for agent i.

First, we construct a node feature matrix X, where each row corresponds to

an agent’s observation vector augmented with the agent’s identifier. Formally, the

node feature matrix is given by:

X =


o1 id1

o2 id2
...

...

oN idN


where idi is the unique identifier for agent i.

Next, we establish the connectivity between nodes by defining the edges of

the graph. To ensure the graph is fully connected, we create bidirectional edges

between every pair of distinct agents. This results in an edge index matrix E that

captures these connections. The edge index matrix can be represented as:

E =


i1 j1

i2 j2
...

...

im jm


where each pair (ik, jk) indicates a directed edge from node ik to node jk. Addi-

tionally, we include self-loops to ensure each node has a direct connection to itself,

represented as (i, i) for each agent i.

The resulting graph G is then composed of the node feature matrix X and
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the edge index matrix E. This graph structure, G = (X,E), provides a rich

representation of the agents’ observations and their interactions, making it suitable

for processing by the GNN. The GNN can exploit this structure to learn and infer

complex relationships between the agents, leveraging both the node features and

the connectivity information encapsulated in the graph.

3.5 Learning Algorithm: DQN

In this section the design of the learning algorithm will be discussed. A custom

implementation of the The Deep Q-Network (DQN) algorithm is performed (see

algorithm 1), with the using of the replay buffer technique for make the agents

capable of exploiting past experiences during the learning phase [HR16].

The DQN algorithm involves training a neural network to approximate the Q-

function, which estimates the value of taking a particular action in a given state,

considering future rewards. The model interacts with an environment to learn an

optimal policy.

The algorithm starts by initializing the environment and two neural networks:

the model Q and the target model Q′, both initialized with the same random

weights. The model Q is used to select actions, while Q′ provides stable target

values. An optimizer is set up to update the model’s weights, and a replay buffer

B with a specified capacity is created to store experiences.

For each episode, the environment is reset to obtain initial observations. Graph

data is created from the current observations with the methodology described in

section section 3.4 and fed into the model Q to get the logits, which represent the

predicted Q-values for each action.

An epsilon-greedy policy is used to balance exploration and exploitation. A

random action is selected with a probability of ϵ; otherwise, the action with the

highest Q-value is chosen. The selected actions are executed in the environment,

resulting in new observations and rewards. The transition (current state, action,

reward, next state) is stored in the replay buffer B.

Then is performed a sample of a batch of transitions from the replay buffer

for executing the training step. After, the Q-values and the target Q-values are

computed for eventually computes the loss (calculated using the target model Q′).
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Algorithm 1 Deep Q-Network (DQN) with Graph Neural Network and Graph
Replay Buffer

1: Initialize environment env;
2: Initialize exploration strategy ϵ;
3: Initialize model Q with random weights;
4: Initialize target model Q′ with weights θ′ ← θ;
5: Initialize replay buffer B with random entries;
6: for episode = 1 to max episodes do
7: Get current observations O from env
8: for step = 1 to max steps do
9: Build graph data G from O
10: logits← Q(G)
11: if random < ϵ then
12: Select random actions A
13: else
14: A← argmax(logits)
15: end if
16: O′, R← env.step(A)
17: Build graph data G′ from O′

18: Store experience (G,A,R,G′) in B
19: Sample a batch of experiences (Gb, Ab, Rb, G

′
b) from B

20: Compute the current Q-values: Q values← Q(Gb)[Ab]
21: Compute the target Q-values: next Q values← maxQ′(G′

b)
22: target Q values← Rb + γ · next Q values
23: Compute loss: loss← SmoothL1Loss(Q values, target Q values)
24: Perform gradient descent step
25: Perform the backpropagation of loss
26: Every C steps, update the target network weights: θ′ ← θ
27: end for
28: end for
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Get observations and buildgraph data
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Figure 3.4: DQN step visualisation

Then is performed a gradient descent step and the model weights are updated

using backpropagation.

After each step, the epsilon value is decayed to reduce the exploration rate over

time, and episode metrics are logged.

Periodically, the weights of the target model Q′ are updated to match the model

Q to stabilize training.

Once all episodes are completed, the trained model’s weights are saved to be

loaded during the simulation phase.

In fig. 3.4 is available a visualization of one step of the DQN algorithm for

better understand how its behaviour.
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Chapter 4

Implementation

In this chapter will be detailed the implementation built upon the design described

in the previous chapters. Starting from the practical definition of all the necessaries

components for a Multi-Agent Reinforcement Learning system such as: Agent,

Observation Space, Action Space, Rewards, Policy etc. Followed by the detailed

description of the implementation of all the components of the architecture such

as the Simulator, the Trainer, the GNN model and so on.

4.1 MARL components

The aim of this section is to analyze with a low level of abstraction, how the

theoretical components of our Multi-Agent Reinforcement Learning system are

implemented.

4.1.1 Agent

As already explained in the previous sections an agent is an entity that can observe

the environment and perform some actions to interact with it. In our case the

practical implementation of it it’s provided by the Agent class of the VMAS library

(see section section 2.2).

In general, our agent have the following important attributes:

• name: the name of the agent, for distinguish it from the others in the multi-

agent system.
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• position: represent the position of the agent in a 2-dimension environment,

with a Tensor of two coordinates (x, y).

• velocity: indicates the velocity vector of the agent in the environment also

with a 2D Tensor (x, y), so it provides the direction in which the agent is

moving.

• goal: represent the goal of the agent, it consist in a simple point in the

environment.

4.1.2 Observation space

As observation space we mean the portion of the environment that the agent

can perceive, and it’s definition is fundamental in every Reinforcement Learning

system.

In our case the agent observations are defined basing on the task that the

swarm has to perform, but in general, we can imagine a single agent observation

as a Tensor with for example its position and its velocity.

Given we are implementing a Multi-Agent System our observation space is

composed by all the single observations of all the agents, structured in a Dict that

match each agent’s name with its observation.�
1 {’agent0 ’: tensor ([[-1., -1., 0., 0.]]),

2 ’agent1 ’: tensor ([[ 0., -1., 0., 0.]]) ,

3 ’agent2 ’: tensor ([[ 0., 1., 0., 0.]]),

4 ’agent3 ’: tensor ([[ 0., 0., 0., 0.]]),

5 ’agent4 ’: tensor ([[ 1., 1., 0., 0.]]),

6 ’agent5 ’: tensor ([[ 1., -1., 0., 0.]]) ,

7 ’agent6 ’: tensor ([[-1., 1., 0., 0.]]) ,

8 ’agent7 ’: tensor ([[ 1., 0., 0., 0.]]),

9 ’agent8 ’: tensor ([[-1., 0., 0., 0.]])}
� �
4.1.3 Action space

Another key space to define in a MARL System is the action space. It’s a similar

concept to the previous one, but in this case it define the space of actions possible

for our agents. In our case the agents are located in a 2D environment and for

simplicity we choose to make the agent execute only discrete actions.
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In this case we refer to the spaces implemented in Openai Gymnasium [TTK+23],

and we can model the action space as a Discrete(9). This happens because our

agent in each iteration can execute just one discrete movement out of nine possible

(up-left, up, up-right, left, idle, right, down-left, down, down-right).

Same as before, the complete action space result in a Dict that match each

agent name with its action space.�
1 {’agent0 ’: Discrete (9),

2 ’agent1 ’: Discrete (9),

3 ’agent2 ’: Discrete (9),

4 ’agent3 ’: Discrete (9),

5 ’agent4 ’: Discrete (9),

6 ’agent5 ’: Discrete (9),

7 ’agent6 ’: Discrete (9),

8 ’agent7 ’: Discrete (9),

9 ’agent8 ’: Discrete (9)}
� �

4.1.4 Reward

Now let’s define how it’s implemented the concept of reward. As defined in the

previous chapters, the reward is essential for the agent to learn if the action that

has performed is good or not in terms of completing a task. In this implementation,

the reward is a float number that is computed basing on different tasks following

the reward structures defined in section section 5.1.

Same as before, given we are in a Multi-Agent system, the rewards are struc-

tured in a Dict that map each agent with the reward obtained in that iteration.�
1 {’agent0 ’: tensor ( -2.5784),

2 ’agent1 ’: tensor ( -1.9861),

3 ’agent2 ’: tensor ( -1.9861),

4 ’agent3 ’: tensor ( -1.1642),

5 ’agent4 ’: tensor ( -2.5784),

6 ’agent5 ’: tensor ( -2.5784),

7 ’agent6 ’: tensor ( -2.5784),

8 ’agent7 ’: tensor ( -1.9861),

9 ’agent8 ’: tensor ( -1.9861)}
� �
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4.1.5 Policy

Given the previous definitions, now the policy that the agent learn during the

training consists in a data structure that for each possible state of the agent return

the best action that the agent has to perform to complete the task.

4.2 System components implementation

Referring to Figure 4.1, the following sections will detail the implementations of

the components of our system.

In general, these sections will provide a lower-level abstraction of all the im-

plementations corresponding to the component designs described in the previous

chapter.

Examining the overall system implementation depicted in Figure 4.1, we can

identify all the previously described components, such as:

• GNN: for represent the model of the Graph Neural Network.

• DQNTrainer: that represent the trainer of the model, with the methods for

build the graph data and implement the DQN algorithm.

• GraphReplayBuffer: for encapsulate the concept of buffer used inside the

DQN algorithm.

• BaseScenario: for represent the environment in which our swarm of agent

is located.

• Simulator: for simulating the agent behaviour during the training and the

evaluation phase.

In the following sections each of these components’ implementation is going to

be described and detailed.
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Figure 4.1: UML class diagram of the system
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4.3 GNN

Following the design of the Graph Neural Network model performed in section

section 3.3, the implementation of the class GNN is straightforward.

In the init method, extending the neural network model of PyTorch, three

graph attention convolutional (GAT) layers are created followed by two linear

layers, all with the correct dimension.

Then, the forward method of the network is implemented just by taking in

input the graph data created and using all the layers created followed by the ReLU

activation function as decided in the model design phase.�
1 class GCN(torch.nn.Module):

2 def __init__(self , input_dim , hidden_dim , output_dim):

3 super(GCN , self).__init__ ()

4 self.conv1 = GATConv(input_dim , hidden_dim , add_self_loops=False , bias=

True)

5 self.conv2 = GATConv(hidden_dim , hidden_dim , add_self_loops=False , bias=

True)

6 self.conv3 = GATConv(hidden_dim , hidden_dim , add_self_loops=False , bias=

True)

7 self.lin1 = torch.nn.Linear(hidden_dim , hidden_dim)

8 self.lin2 = torch.nn.Linear(hidden_dim , output_dim)

9

10 def forward(self , data):

11 x, edge_index = data.x, data.edge_index

12 x = self.conv1(x, edge_index)

13 x = torch.relu(x)

14 x = self.conv2(x, edge_index)

15 x = torch.relu(x)

16 x = self.conv3(x, edge_index)

17 x = torch.relu(x)

18 x = self.lin1(x)

19 x = torch.relu(x)

20 x = self.lin2(x)

21 return x
� �

4.4 DQNTrainer

The implementation of the class DQNTrainer represent the core of the system, it

includes all the feature necessary for train the model, starting from the building

of the graph data to the train step of the DQN algorithm explained in section 3.5.
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4.4.1 create graph from observations�
1 def create_graph_from_observations(self , observations):

2 node_features = [observations[f’agent{i}’] for i in range(len(observations))]

3 node_features = torch.stack(node_features , dim =0).squeeze(dim=1)

4

5 agent_ids = torch.arange(len(observations)).float().unsqueeze (1)

6 node_features = torch.cat([ node_features , agent_ids], dim=1)

7

8 num_agents = self.env.n_agents

9 edge_index = []

10 for i in range(num_agents):

11 for j in range(i + 1, num_agents):

12 edge_index.append ([i, j])

13 edge_index.append ([j, i])

14 edge_index.append ([0 ,0])

15 edge_index = torch.tensor(edge_index , dtype=torch.long).t().contiguous ()

16 graph_data = Data(x=node_features , edge_index=edge_index)

17 return graph_data
� �
This function is the implementation of the idea described in section 3.4, so

it transforms agents’ observations into a graph structure suitable for training the

GNNmodel. It begins by extracting node features from the observations dictionary

for each agent and stacking them into a tensor. It then adds an identifier for each

agent to the node features, for ensure that the GNN differentiate the observations.

The function constructs an undirected graph by defining edges between each pair

of agents, ensuring both directions (i.e., agent ii to agent jj and agent jj to agent ii)

are included, and appends a self-loop for the first agent. These edges are organized

into an edge index tensor. Finally, the node features and edge index are combined

into a Data object, which encapsulates the graph structure for GNN training.

4.4.2 train model

This method of the DQNTrainer class, represent the external shell of the DQN al-

gorithm presented in section 3.5. It contains the iteration all over the episodes and

the steps, and the transformation in graph data (using the function explained in

section 4.4.1) of the raw observations of the agents obtained from the environment.

After the graph data is structured, the step of the DQN algorithm (see sec-

tion 4.4.3) is executed, and also the actions execution and the storing in the replay

buffer are performed.
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�
1 def train_model(self , config):

2 ...

3 for episode in range(episodes):

4 ...

5 for _ in range(self.env.max_steps):

6 ...

7 graph_data = self.create_graph_from_observations(observations)

8 self.model.eval()

9 logits = self.model(graph_data)

10

11 if random.random () < epsilon:

12 actions = torch.tensor ([ random.randint(0, 8) for _ in range(len(

self.env.agents))])

13 else:

14 actions = torch.argmax(logits , dim=1)

15

16 actions_dict = {f’agent{i}’: torch.tensor ([ actions[i].item()]) for i

in range(len(self.env.agents))}

17

18 newObservations , rewards , done , _ = self.env.step(actions_dict)

19

20 rewards_tensor = torch.tensor ([ rewards[f’agent{i}’] for i in range(len

(self.env.agents))], dtype=torch.float)

21

22 self.replay_buffer.push(graph_data , actions , rewards_tensor , self.

create_graph_from_observations(newObservations))

23

24 loss = self.train_step_dqn (128, self.model , self.target_model , ticks ,

update_target_every =10)

25 episode_loss += loss

26 total_episode_reward += rewards_tensor

27 observations = newObservations

28

29 epsilon = max(min_epsilon , epsilon * epsilon_decay)

30

31 average_loss = episode_loss / 100
� �
4.4.3 train step dqn

This method contains the core of the DQN algorithm presented in section 3.5.

It reflect all the steps already presented, from the batching of the past expe-

riences from the GraphReplayBuffer to the calculation of the actual and target

Q-values. Then the loss calculation is performed, terminating with a backpropa-

gation phase.�
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1 def train_step_dqn(self , batch_size , model , target_model , ticks , gamma =0.99 ,

update_target_every =10):

2 ...

3 (obs , actions , rewards , nextObs) = self.replay_buffer.sample(batch_size)

4

5 values = model(obs).gather(1, actions.unsqueeze (1))

6 nextValues = target_model(nextObs).max(dim =1) [0]. detach ()

7 targetValues = rewards + gamma * nextValues

8 loss = nn.SmoothL1Loss ()(values , targetValues.unsqueeze (1))

9 self.optimizer.zero_grad ()

10 loss.backward ()

11 torch.nn.utils.clip_grad_value_(model.parameters (), 1)

12 self.optimizer.step()

13

14 if ticks % update_target_every == 0:

15 target_model.load_state_dict(model.state_dict ())

16 self.writer.add_scalar(’Loss’, loss.item(), ticks)

17 return loss.item()
� �
4.5 GraphReplayBuffer
�

1 class GraphReplayBuffer:

2 ...

3 def push(self , graph_observation , actions , rewards , next_graph_observation):

4 if len(self.buffer) < self.capacity:

5 self.buffer.append(None)

6 self.buffer[self.position] = (graph_observation , actions , rewards ,

next_graph_observation)

7 self.position = (self.position + 1) % self.capacity

8

9 def sample(self , batch_size):

10 sample = random.sample(self.buffer , batch_size)

11 observations = [s[0] for s in sample]

12 actions = [s[1] for s in sample]

13 rewards = [s[2] for s in sample]

14 next_graph_observations = [s[3] for s in sample]

15 return (Batch.from_data_list(observations), torch.cat(actions), torch.cat(

rewards), Batch.from_data_list(next_graph_observations))
� �
The GraphReplayBuffer is a specialized component designed to support the

training process of our DQN algorithm, performed by the already discussed DQNTrainer,

using graph-structured data.

This buffer operates by storing and managing a fixed-size collection of past ex-

periences, which include observations of graph states, corresponding actions taken,
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received rewards, and subsequent graph states. Upon initialization, the buffer is

allocated a specified maximum capacity. When new experiences are pushed into

the buffer via the push method, they are either appended to the buffer if there

is still space available, or they replace the oldest experiences once the buffer has

reached its capacity, ensuring a continuous recycling of memory. This mechanism

is crucial for maintaining a diverse and representative set of experiences that the

DQN can learn from over time.

The buffer also includes the sample method to randomly sample a batch of

experiences, which is essential for breaking the temporal correlations in the train-

ing data and stabilizing the learning process. This sampling returns batches of

observations, actions, rewards, and next observations in a format that is readily

usable by the DQN algorithm.

4.6 Simulator�
1 class Simulator:

2 ...

3 def run_simulation(self):

4 ...

5 for step in range(self.env.max_steps):

6 ...

7 graph_data = self.trainer.create_graph_from_observations(observations)

8

9 with torch.no_grad ():

10 logits = self.model(graph_data)

11 actions = torch.argmax(logits , dim=1)

12

13 actions_dict = {f’agent{i}’: torch.tensor ([ actions[i].item()]) for i

in range(len(self.env.agents))}

14

15 observations , rewards , _ , _ = self.env.step(actions_dict)

16

17 total_reward += sum(rewards.values ())

18

19 ...
� �
The Simulator is the last important component of the implementation. As

mentioned during the description of the overall architecture, the Simulator is

responsible of executing a simulation with an already trained model, in a defined

Scenario and render the result of the simulation.
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As we can see from the code, the Simulator has the references to: the DQNTrainer,

the GNN model already trained and the VMAS scenario.

The method run simulation perform a sequence of instructions similar to the

training phase, it just iterate over the steps, build the graph data from the agents

observations and get the actions from the GNN model, which corresponds to the

optimal policies learned by the agents. Eventually it renders the result of each

step of the simulation.
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Chapter 5

Evaluation

An essential question arises: “Is this approach effective?” To address this, in this

chapter is described our scientific approach to verify and evaluate the effectiveness,

the accuracy and the scalability of the implemented work.

First of all, a batch of tasks is designed and implemented, to verify the accuracy

of the swarm learned behaviours in different situations like: reaching a position,

flocking or avoiding an obstacle. Afterwards, a fine-tuning phase is required to

identify hyperparameter values that lead to improved and stable training. Subse-

quently, for each task outlined in the preceding section, data can be collected and

analyzed during the training phase (e.g., rewards obtained by the agents) to pro-

vide insights into the model’s behavior throughout the learning process. Following

this, the learned policy of the swarm can be evaluated through pseudo-random

simulations. Finally, the scalability of the policies can be assessed by observing

their performance with an increased number of agents.

5.1 Tasks design

In this section is described the design of a set of tasks, engineered for make the

swarm of agents perform different swarming behaviour for address a complex global

goal. Here the main focus is on the objective of the task but most important on

the design of the correspondent reward structure, which is a key element for each

agent, because it defines how it’s action affect the environment in a positive or
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Figure 5.1: Go to position task

negative way, and consequently affect the learning of the correct behaviour.

5.1.1 T1: Go to position

This first task consists in make the swarm reach a position in the environment.

As we can see in fig. 5.1 we have a set of agents (green dots) that for now doesn’t

match any particular formation, that has to learn how to reach a point in the

environment (black dot).

The reward structure is simple and defined as follows.

Let:

di = ∥pi − gi∥ (distance of agent i to the goal)

dprevi = previous distance of the agent i to the goal

α = shaping factor

ri = α(dprevi − di) (positional reward for agent i)

N = number of agents

If the agent i is on the goal, with rgoal as the radius of the target:

on goali =

50 if di < rgoal

0 otherwise
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Figure 5.2: Flocking task

The reward Ri for each agent i is:

Ri =
N∑
i=1

(α(dprevi − di) + on goali)

So, the idea is to give to each agent the same collective reward which is in-

fluenced by the performance of all the agents. In details, each reward takes into

account the actual distance between the agent and the goal positions. If during

the simulation this distance decreases the reward increases and vice versa. In this

way we incentives the agent to go towards the goal, and we penalize it if it goes

away from it. Furthermore, a bonus reward is given to an agent if it’s exactly on

the goal and since the reward is shared, we incentives the collaboration between

agents for make at least one agent to reach the goal.

5.1.2 T2: Flocking

In this second task, we expect the swarm to keep a formation that is already

structured such as a square. The idea is to reach a goal such as in the previous

task, but this time performing a flocking behaviour [Rey87].

Flocking consist in move toward a position but without colliding with other

agents, and at the same time keeping the cohesion for maintain the structure.

Let’s analyze formally the reward structure which is composed by three parts,

let:
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dij = ∥pi − pj∥ (distance between agent i and agent j)

ddesired = desired distance between agents

αdist = distance shaping factor

β = agent collision penalty

Distance to the goal

This part of the reward Rdistance is calculated exactly as in the previous task, see

section 5.1.1. So basically, it consider if the agent is going towards or away from

the goal, and it assign a bonus if the agent reach the exact position of the target.

Cohesion

For the cohesion part that has the aim to make the swarm keeps the formation,

first is calculated for each agent i a mean shaped distance to the other agents:

Di = αdist

 1

N − 1

N∑
j=1
j ̸=i

(dij − ddesired)
2


Then the reward for maintain the formation is:

Rcohesion,i = Dprev
i −Di

So, this part takes into account the desired distance between agents, and with

a similar logic to the previous point, makes the agents keep the correct distance

from each other for maintain the formation.

Collisions between agents

Let:
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collisionij =

1 if dij < dcollision

0 otherwise

Then the reward for collisions is:

Ragents collision,i =
N∑
j=1
j ̸=i

β · collisionij

This last part consider the collisions between agents and assign negative re-

wards β to the agents that collides with others.

So the final reward for each agent i is defined as:

Ri =
N∑
j=1

Rdistance,j +Rcohesion,j +Ragents collision,j

As we can see for the formulas, also in this task the reward is shared. So each

agent receive the same reward that is the result of the sum of the already explained

three different component: distance from the goal, maintenance of the formation

and collision between agents.

5.1.3 T3: Obstacle avoidance

This task is a natural progression of the first two and add more complexity to

the scenario. Here we want the swarm of agents to reach a goal, maintain the

formation without colliding with each others (flocking), and in addition to avoid

an obstacle (red dot) that is placed on the trajectory for reach the target.

Here the reward calculation is straightforward, it exploit the goal reaching, the

agent cohesion and the collision avoidance definitions of the previous task, but

then a new component is added. These new part works as the collision between

agents but this time it consider the collision with the obstacle, giving a negative

reward in case an agent collide with it.

Let:
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Figure 5.3: Obstacle avoidance task

di0 = ∥pi − po∥ (distance between agent i and the obstacle)

γ = obstacle collision penalty

obstacle collisioni =

1 if dio < dcollision

0 otherwise

Then the reward for colliding with the obstacle is:

Robstacle collision,i = γ · obstacle collisioni

Eventually the final shared reward that consider reaching the goal, flocking and

avoiding the obstacle is:

Ri =
N∑
j=1

Rdistance,j +Rcohesion,j +Ragents collision,j +Robstacle collision,j

5.2 Scenarios implementation

The implementation of the environment is provided by the BaseScenario class

of VMAS which is extended by each custom scenario that is responsible of building

the environment for solve a specific task, defining the initial configuration of the
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Figure 5.4: UML class diagram of the scenarios hierarchy
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agents, and the reward structure accordingly to the ones detailed in section 5.1.

5.2.1 GoToPositionScenario

The aim of this scenario is to provide the environment for accomplish the task

described in section 5.1.1, so here is defined the starting configuration of the agents

and the target point to reach. In the following code is implemented the reward

structure as defined in the previous sections.�
1 def distance_to_goal_reward(self , agent: Agent):

2 agent.distance_to_goal = torch.linalg.vector_norm(

3 agent.state.pos - agent.goal.state.pos ,

4 dim=-1,

5 )

6 agent.on_goal = agent.distance_to_goal < agent.goal.shape.radius

7

8 shaped_distance_to_goal = agent.distance_to_goal * self.pos_shaping_factor

9 agent.pos_rew = agent.previous_distance_to_goal - shaped_distance_to_goal

10 agent.previous_distance_to_goal = shaped_distance_to_goal

11

12 reward = agent.pos_rew

13

14 if agent.on_goal:

15 reward = reward + 50

16

17 return reward
� �
5.2.2 FlockingScenario

This scenario is designed for represent the environment correspondent to the second

task presented in section 5.1.2.

As in the previous one, in this scenario is defined a target point that the swarm

has to reach, but also the agents are already configured in the formation that they

have to maintain (a grid in this case) during the flocking.

In the following code there is the implementation of the reward structure of dis-

cussed in section 5.1.2, with all its components: the distance to the goal presented

in the previous section, cohesion and collision between agents.�
1 def distance_to_agents_reward(self , agent: Agent):

2 distance_to_agents = (

3 torch.stack(

4 [
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5 torch.linalg.vector_norm(agent.state.pos - a.state.pos , dim=-1)

6 for a in self.world.agents

7 if a != agent

8 ],

9 dim=1,

10 )

11 - self.desired_distance

12 ).pow (2).mean(-1) * self.dist_shaping_factor

13 agent.dist_rew = agent.previous_distance_to_agents - distance_to_agents

14 agent.previous_distance_to_agents = distance_to_agents

15

16 return agent.dist_rew

17

18 def agent_avoidance_reward(self , agent: Agent):

19 reward = 0

20

21 reward = sum(

22 self.agent_collision_reward for other_agent in self.world.agents

23 if agent.name != other_agent.name and self.world.get_distance(agent ,

other_agent) <= self.min_collision_distance

24 )

25

26 return reward
� �
5.2.3 ObstacleAvoidanceScenario

This scenario is quite similar to the others but it has the addition of the imple-

mentation of the reward structure that makes the agents avoid the obstacle, as

described in section 5.1.3.�
1 def obstacle_avoidance_reward(self , agent: Agent):

2

3 for i in range (1, self.n_obstacles + 1):

4 if self.world.get_distance(agent , self.world.landmarks[i]) <= self.

min_collision_distance :

5 return self.obstacle_collision_reward

6

7 return 0
� �
5.3 Model Tuning

Before evaluating the technique, it is necessary to tune the hyperparameters to

enhance the stability and effectiveness of the model’s training. The training phase
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is structured into 800 episodes, each consisting of 100 steps, resulting in a total of

80,000 experiences per agent. This volume of experiences is crucial for enabling

the swarm to learn complex tasks such as flocking or obstacle avoidance.

In all tasks, the model is trained using a swarm of 5 agents, which are semi-

randomly initialized in a grid-like formation at the start of each episode (as il-

lustrated in Figure 5.2). During training, an epsilon-greedy strategy is employed

with ϵmin = 0.05, ϵmax = 0.99, and ϵdecay = 0.9. This strategy facilitates initial ex-

ploration of the environment through random actions, followed by exploitation of

acquired knowledge. Additionally, γ is set to 0.99 to prioritize future rewards and

mitigate suboptimal behaviors. The replay buffer, which stores past experiences,

is configured with a size of 6000 and a batch size of 256. The model architecture

for the GNN is detailed in Section 3.3, and RMSprop with a learning rate of 0.0001

is utilized as the optimizer for the learning process.

5.4 Training and Simulation Phases

An initial evaluation can be conducted during the swarm system’s training. Semi-

random experiments can be configured by setting seeds to ensure reproducibility

of each simulation. Given that rewards are shared in each task, the reward values

can be aggregated across episodes to assess the model’s performance in various

tasks.

As illustrated in Figure 5.5, the reward trend depicted in the charts represents

the mean of multiple pseudo-random trainings. The results show an expected

pattern: during the training phase, the shared reward increases rapidly in the early

episodes and then stabilizes with minor fluctuations. Notably, the reward growth

is more pronounced in the Flocking and Obstacle Avoidance tasks compared to the

Go To Position task. An additional factor of interest in the Obstacle Avoidance

task is the frequency of obstacle collisions by the agents. As expected, the number

of collisions decreases as training progresses, as shown in Figure 5.5d.

After analyzing the agents’ behavior during training, it is also pertinent to ex-

amine the model’s performance post-training. Following the execution of multiple

pseudo-random simulations using the trained models and a swarm of 5 agents,

the results are presented in Figure 5.6. This figure includes boxplots that depict

46 CHAPTER 5. EVALUATION



5.5. SCALABILITY

(a) Go to position. (b) Flocking.

(c) Obstacle avoidance. (d) Hits of the obstacle.

Figure 5.5: Reward trends during training.

the computed mean reward trends for each task, clearly illustrating the reward

distribution for this case study. It is observed that the mean rewards obtained in

the post-training simulations are slightly higher than those measured during the

training phase.

5.5 Scalability

Given that our approach performs well in both the training and simulation phases

with 5 agents, we proceed with further analysis to evaluate the scalability of this

technique.

To assess the scalability of the proposed approach, it is essential to examine

the system’s adaptability to varying numbers of agents under different tasks. This
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(a) Go to position. (b) Flocking.

Figure 5.6: Reward distribution with 5 agents.

evaluation involves analyzing the model’s performance as the number of agents

increases, which is crucial for understanding the robustness and efficiency of the

approach in practical applications.

First, we increased the swarm size from 5 agents to 9 agents, conducted a new

training phase, and then gathered the reward trends using the same methodology

as before. The results are presented in the distribution charts of Figure 5.7, which

indicate that the agents successfully completed the tasks.

Subsequently, we further increased the swarm size to 12 agents and applied the

same procedure, obtaining the results shown in Figure 5.8. It is evident that as the

swarm size increases, the mean reward also increases. This is due to the reward

structure design described in Section 5.1, where the final reward is proportional

to the number of agents.

Based on the evaluations performed, we can conclude that this approach ef-

fectively scales across scenarios with 5, 9, and 12 agents. Specifically, in tasks

requiring agents to navigate to specific positions and in flocking scenarios, the

GNN-based model maintains its performance metrics, such as task completion

efficiency, as the number of agents increases.

This suggests that the model is capable of handling larger swarms with min-

imal degradation in performance. The importance of this evaluation lies in its

implications for real-world applications, where swarm size significantly impacts

the complexity of coordination and control. A scalable approach ensures that the

model remains practical and efficient, even as operational demands increase.
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(a) Go to position. (b) Flocking.

Figure 5.7: Scalability evaluation with 9 agents.

(a) Go to position. (b) Flocking.

Figure 5.8: Scalability evaluation with 12 agents.
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Chapter 6

Conclusion and Future Work

In this thesis, we explore a novel approach for engineering a MARL scenario using

a fully automated methodology: GNN models coupled with the DQN learning

algorithm. We have developed a system capable of training multi-agent systems

to perform complex swarming behaviors to achieve a global objective. Concepts

related to MARL, GNN, Multi-Agent Systems, and Cyber-Physical Systems are

presented comprehensively. Subsequently, we design a well-engineered system that

considers both the specifics of a pure software system and the features of machine

learning. A set of tasks is modeled alongside reward structures to enable the

swarm to learn to reach a position, flock, and avoid obstacles. In the concluding

part, a structured approach is applied to evaluate various aspects of the proposed

solution, including its effectiveness and scalability.

Future work offers numerous possibilities. We can consider testing different

algorithms with this GNN approach to compare performances or optimizing the

current system to enhance its scalability. Another option could involve engineering

different tasks or behaviors for the swarm to perform.

This thesis establishes a foundation for a promising approach that can be fur-

ther explored and refined to realize self-organizing systems using a comprehensive

machine learning methodology.
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Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sul-

sky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, To-
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