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Abstract

Since the early 21st century, modern cosmology has been revolutionized by the discovery
of the accelerated expansion of the universe [56, 53]. It is believed that dark energy is
responsible for this acceleration, even though the nature of this mysterious component is
still unknown, posing one of the most pressing open questions in cosmology. Furthermore,
it was discovered that the luminous gravitational component is only a small fraction
of the total one. The majority is dark matter, which also revolves around numerous
unanswered questions [3]. Multiple methods have been developed to analyze the dark
components of the Universe by different observables in the last twenty years [37]. Even
though the cosmological parameters have been estimated with impressive accuracy [3],
the nature of dark energy and dark matter still remains unknown. Despite that, the
improvements over the different observational probes have led to disagreements in the
acquired values, where the most notable is the Hubble tension [2].

Large-scale structures (LSS) have become one of the most important observational
probes in cosmology. Analyzing their evolution and clustering, fundamental accuracy
has been achieved for the determination of cosmological parameters [74]. This has been
reached thanks to spectroscopic Stage III surveys probing the large-scale distribution
of galaxies. Future data analyses for Stage IV surveys, such as Euclid [44] and the
Dark Energy Spectroscopic Instrument (DESI; [1]) will be playing even more relevant
contribution. These new surveys will bring an impressive amount of data, which allows
moving on from the well-established method of constraining cosmological parameters by
the Baryonic Acoustic Oscillations (BAO) with lower order statistics [54] to higher order
methods. One such is the three-point correlation function (3PCF) – or bispectrum, in
Fourier space – which offers multiple improvements over the two-point statistics: breaking
the degeneracies between cosmological parameters, providing a better description of
the non-Gaussian density field, and serving as an additional tool to constrain the
cosmological parameters.

Modeling and measuring the bispectrum is easier than 3PCF from a computational
point of view, and for this reason, there has been more activity in this field up to
now [38]. On the other hand, the 3PCF offers several advantages with respect to the
bispectrum, such as dealing better with the survey footprint, which is relevant for
complicated surveys. Only recently, the gap between the bispectrum and 3PCF is being
bridged from a theoretical point of view [30, 75, 28, 55], however, the computation of
theoretical models remains a serious computational challenge. To extract cosmological
information, different approaches have been explored, such as template fitting [46] or
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full-shape analysis. Moreover, to be viable in cosmological analysis, the latter needs the
development of efficient numerical methods, such as emulators, to significantly speed up
its calculations. For these reasons, so far, few attempts have been made to exploit the
cosmological contents present in the BAO feature in the three-point correlation function
[50, 68], and only one pioneering work has started working in this direction using novel
methods to further improve the characterization of higher-order statistics: developing
an anisotropic description of the 3PCF [71].

The aim of this Thesis is to provide a robust method to explore the importance of
the BAO features in the 3PCF, extensively studying its appearance and significance
in the isotropic and anisotropic components, and use it to provide forecasts on the
accuracy of cosmological parameters that can be derived from such analysis. Moreover,
to fully explore the cosmological information contained in the anisotropic 3PCF, we go
beyond this template-fitting approach by developing, validating, and testing a machine
learning emulator for the matter anisotropic 3PCF.

A thorough analysis is performed to estimate the signal-to-noise ratio (SNR) of
the anisotropic 3PCF, to derive which triangle configurations and multipoles provide
the largest signal. It is found that the cosmological information is mostly contained
in the isosceles and squeezed triangles. In addition, a new metric for the detectability
of the BAO feature in the anisotropic 3PCF is developed, allowing us to assess the
configurations that maximize this information. In this case, we confirm that squeezed
triangle configurations are the best ones, in particular with sides 60, 80, 100, 120, or
140 h−1Mpc, depending on the multipole. The highest detectability was at the 100
h−1Mpc. For the isosceles triangles, the highest signal was around the configuration
r12 = r13 = 100 h−1Mpc.

A step forward is made by developing a machine learning-based emulator for the
matter anisotropic 3PCF, significantly reducing computational costs while maintaining
high accuracy. The emulator is constructed for the redshift space 3PCF in TripoSH
basis [70], where it is decomposed into eight different multipoles - four for the isotropic
and four for the anisotropic multipoles of 3PCF. The emulator is 10 million times faster
than the regular computation while maintaining sub-percent accuracy.

Based on these results, Fisher forecasts were generated for a Stage IV spectroscopic
survey with a volume of 43 h−3Gpc3 - corresponding to the Euclid DR3 full light cone
volume [44] - , using the developed 3PCF emulator for the Ωm, h, and As cosmological
parameters. In addition, the analysis for each multipole was performed. It was discovered
that the multipole ℓ1 = 3, ℓ2 = 3, L = 0 has the highest constraining power, but,
more importantly, the combination of anisotropic and isotropic multipoles gives better
constraints than only the isotropic component. The improvement of constraining power
for the anisotropic and isotropic over only isotropic multipoles is around 40%. Instead,
if we apply the condition of rmin > 40h−1Mpc, then the improvement is only around 8%.
These forecasts were performed with a large volume of 43h−3Gpc3 and a theoretical
covariance, thus the errors are underestimated, but the relative comparison maintains
true.

This thesis is organized as follows:

• In Chapter 1, we introduce the ΛCDM model, the origin of BAO and the cos-



mological parameters, that describe the Universe. Further on, the observational
effects, such as RSD and Alcock-Paczyński effect are analyzed, which is followed
by open scientific questions in cosmology. Then, the aim of the thesis is portrayed.

• In Chapter 2, the clustering of matter and galaxies will be discussed. First, a
brief overview of the 2PCF and the power spectrum will be presented, followed by
an in-depth discussion of the 3PCF and the redshift space 3PCF. Additionally,
various decomposition methods for the 3PCF will be introduced.

• Chapter 3 focuses on emulators and their construction, starting with an emulator
for the power spectrum, including both no-wiggle and only-wiggle versions. The
chapter will then introduce the 3PCF emulator, discussing its accuracy and the
modifications made to the Python library CosmoPower to enhance its functionality.

• In Chapter 4, we delve deeper into the analysis of the 3PCF, examining the signal-
to-noise ratio (SNR) of the 3PCF and the detectability of BAO. This analysis will
provide insights into the utility of the 3PCF for cosmological studies.

• Chapter 5 presents Fisher matrix forecasts using the newly developed 3PCF
emulator. This section includes a detailed analysis of each 3PCF multipole,
evaluating their constraining power and identifying potential limitations.

• Finally, in Chapter 6, we draw conclusions based on the results obtained throughout
the thesis and propose directions for future research.
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1
Introduction

1.1 The ΛCDM Universe

There have been many ideas and descriptions of our universe throughout time. In the
20th century, we developed the ΛCDM model to describe our universe, which has been
very successful and is considered to be the best description of the Universe we currently
have. The name itself contains the cornerstones of this model:

• Cosmological constant Λ: this is the parameter in the model that describes the
dominant component of today’s universe: dark energy. It is also responsible for
the accelerated expansion that we are experiencing in the world that we are living
in.

• Cold dark matter: this is the second-largest component of the universe, which is
dark matter. It has many probes to prove its existence, but it has never been
directly observed due to its non-interactive nature. Nevertheless, from today’s
structure of the Universe and its evolution being bottom-up it must be “cold”,
therefore massive.

• Baryonic matter: The last component is baryonic matter itself, which is understood
the most out of the previously mentioned components, as it is visible and can be
directly measured.

All these components, together also with the radiation component, contribute to the
evolution of the Universe in one way or another. To describe the overall evolution of
the universe, we can use Friedmann’s equations. They are derived from Einstein’s field
equations of General Relativity under the assumption of a homogeneous and isotropic
universe, described by the Friedmann-Lemaître-Robertson-Walker (FLRW) metric.

Assuming the FLRW metric and a perfect fluid energy-momentum tensor, Einstein’s
field equations simplify the Friedmann equations, which govern the expansion dynamics
of the universe. The first Friedmann equation relates the expansion of the universe or
the Hubble parameter with the energy content of the universe:

H2 ≡ ȧ

a
= 8πG

3 ρ − kc2

a2 + Λc2

3 , (1.1)
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1.1. THE ΛCDM UNIVERSE

where H is the Hubble parameter, ȧ is the scale factor of the universe and ȧ is the time
derivative of it, ρ is the total energy density of the universe, k is the curvature constant,
where the value −1 is for a hyperbolic, 0 is for flat and +1 is for closed universe, and
finally Λ is the cosmological constant.

The energy density refers to the amount of energy contained in a given volume of
space, which contributes to the dynamics of the universe’s expansion. The total energy
density consists of all the previously mentioned components of the universe, thus it
would be defined as ρ = ρr + ρm + ρΛ. It is the sum of the radiation, matter, and dark
energy components accordingly. Each of the component evolves differently with the
expansion of the universe. For example, ρr ∝ a−4, ρm ∝ a−3 and ρΛ ∝ const.

Not only the energy density is a significant component for the expansion of the
universe, but it also dictates the geometry of our Universe. We can define the critical
density as:

ρcrit = 3H2
0

8πG
. (1.2)

If our Universe’s energy density value is exactly as the critical energy density, then the
geometry of the universe will be Euclidean. Any deviation from it changes the geometry

— a higher energy density would be attributed to a spherical or closed universe, but a
smaller one would be for a hyperbolic universe.

With ρcrit in hand, we can also define the density parameter as:

Ωs = ρs

ρcrit
, (1.3)

where the subscript s is for any species or component of the universe. This is useful,
as it allows depicting all the energy densities with the same units. Thus, if we would
sum all the density parameter components together, according to the ΛCDM model, we
would get the value of 1, which means that we live in an Euclidean Universe.

By introducing the new definitions of the energy density parameter, equation 1.1
can be reformulated to help analyze the expansion history of the universe based on its
various components:

H(t)2

H2
0

=
∑

s=r,m,ν,DE

Ωsa(t)−3(1+ω), (1.4)

where the parameter ω denotes the equation of state, which is different for each of the
components. For perfect fluids, it ranges from −1/3 to +1, and the value for dark energy
is considered to be outside of this range. This equation is also assuming Euclidean
geometry, as it does not include a parameter for the curvature of the universe.

The second Friedmann’s equation describes the acceleration of the universe, and it
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1.2. EARLY UNIVERSE AND THE BARYONIC ACOUSTIC OSCILLATIONS

is expressed as:
ä

a
= −4πG

3 (ρ + 3p

c2 ) + Λ
3 . (1.5)

It can be seen that the acceleration ä is dependent on the equation of state for the
considered component.

The equations 1.4 and 1.5 are crucial in understanding the evolution of the universe,
as they show the importance of precisely determining the cosmological components.
Only from that, we can understand most of the history of the Universe in terms of its
scale, which in turn is important for the growth of structures.

The ΛCDM is a very successful model, and it has not changed for the last 25 years.
It has many reasons for its success, and one of such is its simplicity. It can be described
by only 6 cosmological parameters - density parameters Ωbh

2 and ΩDM h2, dimensionless
Hubble parameter h, the ratio of the sound horizon to the angular diameter distance to
the last scattering surface θ∗, scalar amplitude of the primordial density perturbations
As and the slope of the initial power spectrum ns [62].

Another key reason for its success is that these parameters have been precisely
measured through multiple independent experiments, with the Planck satellite providing
the most notable data on the CMB [3]. Beyond this, the ΛCDM model has been
remarkably successful in predicting the large-scale structure of the Universe, such as
galaxy clustering, the CMB anisotropies, and the accelerated expansion due to dark
energy, confirmed through supernova observations. Its predictive power spans across
a wide range of probes, including Baryonic acoustic oscillations (BAO) and structure
formation, further solidifying it as the best model we currently have.

1.2 Early Universe and the Baryonic Acoustic Oscillations

If we simply extrapolate the evolution of the Universe back in time from Friedmann’s
equations, we are faced with multiple problems, such as the monopole, horizon, and
flatness problem [14]. In short, it predicts that we should have had as many magnetic
monopoles as baryons, the Universe should not have been homogeneous and isotropic,
and the flatness of our Universe could have only been achieved by extreme fine-tuning
of the initial conditions of the Universe. In order to address and solve these issues, the
inflationary paradigm was introduced [33]. Even though there are many theories of
the possible inflationary descriptions, all of them result in a random density field for
the initial density fluctuations [78]. Many of these theories [49] and observations [5]
[4] predict random Gaussian field, produced by Gaussian quantum fluctuations in the
scalar field. At the same time, there is also the possibility of a non-Gaussian density
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field emerging from the inflationary epoch [81, 9], which has not yet been confirmed or
denied from modern observations [16].

Thus, from inflation, we have radiation and matter that is not perfectly homogeneous,
but with random overdensities and underdensities throughout the volume of the Universe.
At the same time, the baryonic matter was ionized, due to the very hot environment,
therefore the electrons were not bounded by the nuclei. The charged particles interact
with the photons, making radiation and baryonic matter coupled together, called
photon-baryon fluid.

The gravity tries to compress the overdensities, while radiation pressure acts against
it. This interplay between gravity and radiation pressure creates sound waves, that can
propagate through the fluid. It is important to note that dark matter did not behave
in the same manner as the photon-baryon fluid, because it does not interact via the
electromagnetic force, thus it was not affected by the radiation pressure.

As the baryonic density fluctuations are present at all scales, each of them evolves
differently in time. To be exact, the frequency of oscillation is equal to the wavenumber
times the speed of sound [36]. All the scales oscillate until the time of recombination —
the time when baryons become neutral. When baryons and radiation are not bound to
act as a fluid anymore, the photons become free. At this moment all the oscillations
“freeze”, and going further on, the Universe evolves with this imprint on the density
fluctuations.

The dark matter, even though it did not oscillate during this period, due to grav-
itational interaction it followed the imprint of the baryonic oscillations. The same
happened for baryons, which followed the large overdensities of dark matter at smaller
scales [39]. In the late epochs of the universe, both baryons and DM have caught up to
each other, and now exhibit nearly equal profiles of their scale of overdensities.

1.3 Observational probes

1.3.1 Baryonic acoustic oscillations

The previously mentioned imprints from the baryons in the distribution of galaxies are
called the Baryonic Acoustic Oscillations (BAO). They appear at a specific scale - 150
Mpc. This is due to the fact that the initial overdensities propagated as a spherical
sound wave until the time of recombination. The speed of sound was three times smaller
than the speed of light due to the extreme environment, and taking into account the
given time and speed, the BAO were frozen at 150 Mpc and persisted throughout time.
A visualization can be seen in Fig. 1.1, where it is depicted how the BAO features are
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imprinted randomly all through the Universe.

Figure 1.1. Illustration of the Baryonic Acoustic Oscillations in the late universe.
Image credit: Gabriela Secara, Perimeter Institute.

BAO can be directly observed from the distribution of galaxies in the Universe,
where this information is typically compressed in the form of the two-point correlation
function (2PCF) in configuration space, or in its analog in Fourier space, the power
spectrum (both will be described more extensively in Sect. 2.2). Baryonic acoustic
oscillations appear as wiggles in the power spectrum of galaxies, and in a distinctive
peak in the 2PCF, as shown in Fig. 1.2.

Each cosmological parameter has different effects on the initial conditions of the
density perturbations or the evolution of clustering. We will narrow it down only to
the parameters that are used in this work further on - Ωm, Ωb, h, As, ns -, with the
assumption of a flat Universe, therefore Ωtot = 1. One of the most impactful parameters
is the Ωm, which includes the contribution of both dark and baryonic matter. From the
assumption of flatness, it implies a balance between the contribution to the total energy
density of dark matter and dark energy. Hence, the larger the relative amount of Ωm,
the smaller ΩDE is. Dark energy does not play a significant role in the early Universe,
as the dominant energy density is due to radiation or matter. However, its influence
on the geometry and evolution of spacetime grows over time, becoming increasingly
significant as the universe expands.

The early Universe is greatly influenced by the variation of Ωm as well. The fact that
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(a) (b)

Figure 1.2. BAO in N-point statistics: (a) Power spectrum of CMASS DR11 galaxies,
normalized by no BAO power spectrum. The black line represents the best model fit.
Image taken from [7]. (b) Two-point correlation function of the same dataset. Image
taken from [7].

we have larger Ωm, means that the matter domination era will start sooner. In turn, this
means that the recombination and the CMB will have happened earlier, thus also the
BAO peak would be on shorter scales. Furthermore, the larger the Ωm, the bigger the
gravitational wells in the primordial density fluctuations. This would result in a larger
amplitude of these density waves, which would increase the growth of structures. Then,
if the baryonic component is fixed and only the dark matter is increased, it actually
reduces the amplitude of the oscillations, due to the driving effect from the pressure
exerted by photons. This greatly influences the amplitude and position of the BAO.

Moreover, Ωb plays a crucial role in the formation and evolution of cosmic structures.
During the oscillatory behavior of the baryons, the increase of Ωb would result in
larger baryon loading. This means that during the compression of baryons, they would
manage to compress even more due to the additional gravitational effect. Instead, the
rarefaction is not influenced. This can be understood by imagining a spring with a
point-like distribution of baryons attached at the end. If they are released from the
same height, they will also come back to the same height in a perfect world. This is
true even if the mass distribution would be heavier, causing it to extend lower due to
the additional mass. The same behavior is also for the oscillations in the gravitational
wells. Thus, the baryonic loading changes the compressed peaks in the BAO, therefore
only the amplitude is affected. This would result in peaks that have higher contrast
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between each other.
In addition to these, there are the cosmological parameters that directly describe

the primordial fluctuations, namely As and ns. As is the parameter for the amplitude
of the primordial power spectrum, thus, by increasing this amplitude, the clustering is
increased across all scales. Therefore, the BAO would also be more prominent. It is
important to note that the positions of the BAO would be left unaffected.

On the other hand, the scalar spectral index ns affects different scales differently. It
describes how the density fluctuations vary with scale. If its value is unity, then the
variations are the same on all scales. Otherwise, a lower tilt would result in less clustering
for the small scales and more for the large scales. From our current measurements, it
seems not to be exactly scale-invariant, as the value is found to be ns = 0.96 [3].

Lastly, we have the dimensionless Hubble parameter h. As discussed in the equation
1.4, the expansion of the Universe is affected by every component in the Universe.
Logically, the larger h is, the faster the expansion, the bigger the opposing force for
the clustering, thus it would result in less clustering for the galaxies. Furthermore, the
Hubble parameter is a crucial ingredient in the definition of distances in cosmology.
Therefore, each time we will report the distance or scale, it will be inversely proportional
to the Hubble parameter.

As discussed above, the value of every cosmological parameter has a great impact on
the evolution of our Universe. By obtaining the exact values of these parameters, we can
confirm or disregard different theories of our Universe and be closer to understanding the
place we live in. There are many ways to obtain the values of the cosmological parameters
from observations, and among the most prominent ones are the aforementioned N-point
statistics, such as the power spectrum or two-point correlation function. However, these
theories are typically based on matter, but we can only observe luminous objects, such
as galaxies, which are biased tracers of the underlying distribution of matter.

1.3.2 Biased tracers

To obtain any constraints on cosmological parameters from N-point correlation functions
(described at length in section 2.2), either observations or simulations are needed. On
the one hand, simulations have the advantage that the statistical tools can be directly
applied to matter, thus, including dark matter. The disadvantage is the fact that
simulations are never perfect, as they are based on several assumptions about the
universe. On the other hand, it is also possible to analyze real observations, such as the
ones obtained from large spectroscopic surveys: the Sloan Digital Sky Survey (SDSS)
[82], 2dF Galaxy Redshift Survey (2dFGRS) [17], Dark Energy Survey (DES) [15],
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Baryon Oscillation Spectroscopic Survey (BOSS) [21], Euclid [44]. Different surveys
focus on different targets, as well as different redshift bins.

When considering these surveys, the most obvious tracers of matter are galaxies.
At first glance it seems to be a straightforward target - they are luminous objects, and
they can be observed up to 300 million years after the Big Bang, so they cover a large
portion of the timescale of the Universe. Galaxies form in dark matter halos, and they
represent the best tracers to track the distribution of matter. There are several caveats
to this, the first being non-linearity in the evolution of structures. Even if the primordial
density field was Gaussian, galaxies interacted and evolved, and now non-linearity must
be included in the theories, which complicates the analysis.

The most simple relation to link the distribution of galaxies and matter is the
following:

δgx = bδm(x), (1.6)

where b is the linear galaxy bias parameter. Essentially, if b is smaller or larger than
one, it means that galaxies cluster less or more than dark matter.

This is only the linear term for the galaxy bias, but there can also be higher-order
bias parameters, which account for the non-linear relationship between galaxy and
matter overdensities. It can be expressed as:

δgx = bδm(x) + b2
2 δ2

m(x) + b3
6 δ3

m(x) + ..., (1.7)

where the b2 and b3 are the non-linear bias parameters. Additionally, there is the
stochastic bias, which adjusts for the fact that the relationship between the δg and δm

is not perfectly deterministic. It can be expressed as δgx = bδm(x) + ϵ.
If we include primordial non-Gaussianity, then we can have additional bias terms,

that can include scale-dependent bias or non-local bias. These are the biases that are
from the imprint of the initial conditions of the Universe [13]. Non-Gaussianity can also
appear from the non-linear gravitational effects from later evolution, but the biases can
be disentangled from both sources of non-Gaussianity [8]. As it can be seen, there can
be several bias terms for the observed overdensities, that are usually determined from
the data. Hence, for a precise analysis, they must be added as free parameters to the
model.

Last but not least, the surveys do not measure the actual distances of the galaxies,
but rather the redshift. This directly impacts our observations by introducing additional
complexities, such as the Alcock-Paczyński (AP) and Redshift-Space Distortion (RSD)
effects, which must be accounted for in the observational analysis.
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1.3.3 Redshift-space distortion

The RSD is an important effect, that produces additional clustering of the galaxies
and changes the actual shape of the N-correlation functions or their counterpart in the
Fourier space. It can be explained by Fig. 1.3, where the effect has been separated into
two different scales - the large and the small one, therefore representing the linear and
the non-linear effect. The linear effect squeezes the density contours, making them more
elliptical. The non-linear effect is more local, as it is also on smaller scales, and it gives
large displacements along the line of sight, thus giving the name "Finger of God".

Figure 1.3. Visualization of the RSD effects in linear and non-linear scale from [23].
On the left side is the linear scale, where the real, circular contour of constant density,
represented by the dashed line, is deformed into a squished ellipse, represented by the
solid black line. The arrow shows the velocity flow, and the overdensity is shown as
the extended shape on the contours. On the right side is the non-linear scale, therefore
small scale, where the displacement of the overdensity is larger. This effect is also known
as the "Finger of god".

To describe it mathematically, as represented in [23], we have to define how the
observed location differs from the real one. The observed coordinate xobs(z, θ, ϕ) can be
expressed as follows:

xobs(z, θ, ϕ) = χfid(z)n̂(θ, ϕ), (1.8)

where θ and ϕ are the positional angles on the projected celestial sphere defining the
location of the object, n̂ is the unit vector depending on the θ and ϕ and χfid(z) is the
fiducial comoving distance, defined as χfid(z) =

∫ z
0

dz′

Hfid(z′) . This means that it depends
on two variables that we do not know well - redshift, as it also depends on the peculiar
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velocities, and the Hubble parameter, which is also not precisely known and is one of
the parameters that we intend to constrain.

For comoving distance we can quantify the fact that we do not know the real
cosmology as follows:

χfid(z) = χ(z) + δχ(z), (1.9)

where the real cosmology is χ(z) and δχ(z) is the departure from it. Similarly, we can
also quantify the effect of peculiar velocities on the redshift as:

1 + z = 1
aem

[1 + u||], where u|| = ug · n̂, (1.10)

where ug is the galaxy peculiar velocity in the linear order, which quantifies the Doppler
shift. Here we also assume that galaxy and matter peculiar velocities follow the relation
ug ≈ um, which is a valid assumption on large scales. This is a useful approximation, as
now we do not have to use velocity bias.

It is possible to estimate the errors for the observed coordinate in equation 1.8.
Error for peculiar velocity:

∆xRSD = ∂x

∂u||
u||n̂ = 1

aH
u||n̂, (1.11)

where it can be seen that this effect only acts in the line of sight direction. If u|| > 0,
then the distance appears larger due to additional Doppler shift, and the opposite is true
for u|| < 0. The final deviation from the true coordinate can be expressed by combining
the equation 1.11 and 1.9, acquiring:

xobs = x +
(

δχ(z) +
u||(x)
aH

)
n̂. (1.12)

This equation expresses the implications of our lack of knowledge about the peculiar
velocities and cosmology. With the obtained relations and further calculation of the
Jacobian [23], it is now possible to see how RSD affects the observed overdensities.

1 + δg,obs(xobs) = J̄

[
1 + δg(x[xobs]) − 1

aH

∂

∂x∥
u∥(x[xobs])

]
, (1.13)

where J̄ is the Jacobian defined at fixed, mean redshift, as usually surveys are looking
at a narrow slice of redshifts, therefore all the parameters of the Jacobian depended
on the average redshift bin z̄. If the equation 1.13 would be used in the calculation
of the N-point statistics, then it would affect the shape of the two- or three-point
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correlation functions. We can go further, and relate the δg to matter density δm. This
approximation is valid, as usually surveys have small angular scales. If not, then distant
observer approximation cannot be used. Using all this, in the end, we acquire the
following relation:

δg,RSD(k) = δm(k)
[
b1 + µ2

kf ]
]

, (1.14)

where f is the growth rate defined as f = dlnD
dlna and µk is the cosine between the line of

sight and the wavevector k. The equation 1.14 again states that in RSD we observe
larger overdensities, due to the additional factor of fµ2

k. In addition, larger overdensities
are also observed if the wavevector is along the line of sight. Equally, there will be no
RSD effects if the k is perpendicular to LOS.

By measuring either the power spectrum or bispectrum, it is possible to disentangle
the b1 and f values from each other. For power spectrum there is the problem that the
matter power spectrum is not known, therefore we can only get the constraints on b1σ8

and fσ8, where σ8 is the amplitude of density fluctuations in the universe on scales of 8
Mpc. If the bispectrum is used, then also the σ8 can be disentangled.

1.3.4 Alcock-Paczyński effect

Alcock-Paczyński (AP) effect is due to the assumption of an incorrect cosmology in
our measurements, which is inevitable as our current knowledge of the universe is not
perfect. For this reason, an uncertainty is introduced in the derivation of the comoving
distance. This effect is visualized in Fig. 1.4.

To quantify the AP effect, we will separate the transverse coordinates x1, x2 and
longitudinal x3. We will again use the distant observer approximation, and choose the
reference point of our coordinate system as xobs = 0 and z = z̄, which is the mean value
of the observed redshift slice. First, the real and observed transverse coordinates can be
expressed as:

(x1, x2) = χ(z)(θ1, θ2), (x1
obs, x2

obs) = χfid(z)(θ1, θ2), (1.15)

where (θ1, θ2) are the observed galaxy position in the celestial sphere. Inserting the
equation 1.9 in the real coordinate equation 1.15, we obtain:

(x1, x2) =
[
1 − δχ(z)

χfid(z)

]
(x1

obs, x2
obs). (1.16)

This gives us the relation between the real and observed transverse coordinates due to
the AP effect. The line of sight coordinate x3 is different, as it only depends on the
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Figure 1.4. Visualization of the AP effect from [23]. The true constant density
contour, represented by the dashed line, is displaced by the factor χ(z) to the solid line
density contour, which is the observed one. This produces an elliptic shape because the
displacement is dependent on redshift, thus galaxies closer would be affected more by
the assumption of the wrong cosmology.

redshift, and we have assumed that x3 = 0. Therefore:

x3
obs = χfid(z) − χfid(z̄) ⋍ 1

Hfid(z̄)(z − z̄) , (1.17)

where the expression on the left was obtained from the linear order Taylor expansion.
Now expressing the real coordinate x3 with similar manipulation as in for the transverse
coordinates, we obtain:

x3(z) =
(

1 − δH(z̄)
Hfid(z̄)

)
x3

obs. (1.18)

Comparing the equation 1.18 and 1.16, it is clear that they are different from each other,
which explains why we obtain elliptical distortion from the AP effect.

To summarize, the coordinates can be expressed as follows:

x(xobs) =
(
(1 − α⊥)x1

obs, (1 − α⊥)x2
obs, (1 − α∥)x3

obs

)
(1.19)

, where α⊥ and α∥ is defined as:

α⊥ = δχ

χfid

∣∣∣∣
z̄

, α∥ = δH

Hfid

∣∣∣∣
z̄

. (1.20)
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Similarly to RSD, also AP’s influence on the overdensities can be included. They
can be implemented as a redefinition of the real and observed wavevector, which in the
end yields the combined observed overdensities:

δg,obs(kobs) =
[
b1 + fµ2

k

]
δm(k)

∣∣∣∣
k=([1+α⊥]k1

obs, [1+α⊥]k2
obs, [1+α∥]k3

obs)
. (1.21)

The equation 1.21 states that even if there would be no RSD, which we can induce
by saying that f = 0, we would still observe the AP effect in our power spectrum or
bispectrum. It causes anisotropies in the observed spectrum, and both of these effects -
AP and RSD - can be disentangled from the observations.

Furthermore, α⊥ and α∥ can be determined from BAO observations. The peak of
BAO is well known, as it lies around 150Mpc. Not only does it give information about
the cosmological parameters on its own, but also through AP effects. In particular, as
the true position of the peak is known, it is possible to calibrate the observed peak,
thus giving the values of χ(z̄) and H(z̄).

To condense, RSD and AP effects are not a liability, but they give additional
constraints on cosmological parameters. They change the shape and amplitude of the
measured correlation function, such that it is more difficult to appropriately model
them. Nevertheless, from RSD there is the possibility to obtain estimates of f and b1,
but from AP - χ(z̄) and H(z̄).

1.4 Open scientific questions

While significant progress has been made in understanding the early universe, many
aspects remain unknown. Observational effects such as RSD and the AP portray the
limitations of our current knowledge and show the complexities present in cosmological
studies. These effects are not the only ones affected by our lack of knowledge and
are only a fraction of the gap in our understanding of various domains of cosmology.
Among the most notable open questions is the nature of the initial quantum fluctuations
following cosmic inflation - specifically, whether these primordial fluctuations were
Gaussian or exhibited non-Gaussian characteristics.

The characteristics of primordial fluctuations are not only crucial to understand the
evolution of structure in the universe, but also to understand better the inflation. As
of now, there are many models of inflation [47], and none have yet been confirmed or
denied, as it is impossible to have direct observations of it. Therefore, we are left to
work with the aftermath of the inflation, measuring different cosmological parameters,
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that are indicating of one model or another. For example, the primordial amplitude
As and the spectral index ns give direct information about the inflation, as well as the
curvature, growth factor, and other parameters. These can give valuable information,
that enables us to understand better the physical properties of inflation.

Another crucial open question in cosmology concerns the nature of dark energy. It
is still uncertain even if it exists, as its effects might be just the modifications of the
general relativity in largest scales [63]. This is due to the fact that there are multiple
unsolved problems regarding dark energy. One is denoted as the biggest problem in
physics - the cosmological constant problem - as it has the largest difference between the
theory and observations, having the difference up to the order of 120. From observations,
we have found that the energy density of the cosmological constant must be 10−47 GeV
[19], but the quantum field theory predicts 1074 GeV, if we assume that it originated
from the vacuum energy density. This results in extreme fine-tuning problem.

There is also the coincidence problem because in today’s epoch, the dark energy and
dark matter energy density parameters have values with a similar order of magnitude:
0.7 and 0.3 respectively. This would again require considerable fine-tuning in the early
days of the universe, as then the ratio of both density parameters was very different.

Apart from the dark energy, there is also dark matter, and here we do not know what
exactly it consists of. It has been widely accepted as the largest component of matter,
which is responsible for the galaxy rotation curves, where the velocity stays constant
over larger radii, as well the large masses of the galaxies and also the observations of
CMB and theory of structure formation, which requires the presence of dark matter [11].
Nevertheless, we still do not know the mass of the DM particle, its physical properties,
or even the absolute certainty of its existence.

This brings us to the Hubble tension, which also exhibits the discrepancies between
the early and late universe observations. From the CMB observations [3], therefore the
early universe, the value of the Hubble constant is 67.7 km/s Mpc−1. On the other
hand, from the Cepheids, Supernovae Type Ia, and other late-time observations it is 73.2
km/sMpc−1 [61]. This discrepancy is with 4σ to 6σ certainty [22]. The late observations
directly measured the Hubble constant, but the early measurements had to base it on
the ΛCDM model. This brings another issue with the overall accepted model.

Modern theories and observations of cosmology have found the best model - ΛCMD
-, which can explain most of our universe. However, there are still many problems with
it, which mostly revolve around inflation, dark matter, and dark energy. It is evident
that we have still not found the correct model to describe our universe, and we must
seek the answers to the previously laid out questions, to be closer to truth.
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1.5 Aim of the thesis

There are many questions to answer about our Universe - what is the nature of dark
energy and dark matter, why do we get different values for the Hubble parameter,
what was the evolutionary path of large-scale structures, and many more. One of the
best ways to seek answers to these questions is by analyzing Large-Scale Structures
through the clustering of galaxies and matter. If we can understand how structures
form throughout the evolution of the Universe, we can unveil more about inflation, dark
energy, dark matter, and also other domains of cosmology. Understanding the physics of
structure clustering allows us to understand the totality of the physical laws governing
the whole universe, as well as its evolution.

So far, one of the most widely used methods to extract cosmological information
from the galaxy clustering of the LSS is the N-point statistics. In particular, the
two-point correlation function (2PCF), or its counterpart in Fourier space, the power
spectrum, describes how matter or galaxy pairs are distributed relative to each other
in the Universe. This has been extensively studied and applied, but the next order -
three-point correlation function (3PCF) or bispectrum -, which describes the distribution
of triplets, has yet to realize its potential.

3PCF has several advantages over the 2PCF. Firstly, the statistical properties of
a Gaussian field are fully described by the two-point statistics. Thus, if there is a
non-Gaussianity in the galaxy distribution, which can arise from the primordial initial
conditions, the non-linear evolution of matter in the late Universe, or the biased relation
between matter perturbations and luminous tracers, we need higher-order statistics.
Hence, it can be used to model galaxy bias parameters beyond the linear order, as
well as break degeneracies between cosmological parameters (in comparison with the
2PCF), for example, the linear bias b1, the growth factor f and σ8 [32, 76]. Lastly,
it can be used as an additional tool to analyze the structure clustering and constrain
cosmological parameters, therefore increasing the accuracy of these analyses. Despite
offering the same information content, the 3PCF also has a crucial advantage over its
Fourier counterpart - bispectrum -, as the 3PCF does not suffer from mode coupling
and better deals with the survey footprint.

Despite its advantages, the computation of the 3PCF is significantly more complex
and computationally demanding than the 2PCF or even the bispectrum. The com-
putational cost becomes a large barrier, as one model can take up to 48 CPU hours,
therefore it can take years to use it for the constraints of cosmological parameters.
Moreover, the anisotropic component of the 3PCF has not been analyzed thoroughly,
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thus the SNR and BAO feature appearance within it is still poorly explored, as well as
the anisotropic contribution for accuracy in the cosmological parameter constraining is
yet to be understood.

To analyze these fundamental questions, we use the modeling of the anisotropic
3PCF as proposed in [70]. It enables us to analyze separately both the multipoles of
the isotropic and the anisotropic components of the 3PCF, efficiently unraveling the
information content within them. Nevertheless, the computational time of this model
remains significant.

This is where the development of a 3PCF emulator becomes crucial. Emulators
are machine learning-based models designed to predict the results of computationally
expensive simulations or models with high accuracy and in a short amount of time. By
training an emulator on pre-computed model data, it becomes possible to predict the
3PCF efficiently for a wide range of cosmological parameters, dramatically reducing the
computational cost.

The usage of an emulator allows to perform different kinds of analysis. It can serve
as a tool to analyze the impact of cosmology on the shape of the 3PCF, or to forecast
the accuracy of cosmological parameter constraints.

To summarize these critical issues, which must be addressed, the aim of this Thesis
is:

• Developing an emulator for the redshift space 3PCF;

• Using the developed models for the anisotropic 3PCF, assess and analyze the SNR
of 3PCF and investigate the BAO signal and detectability;

• Using the emulator, produce forecasts for the cosmological parameters from
the 3PCF and evaluate the impact of different triangle configurations on the
constraining power.
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2
Matter and galaxy clustering in

the Universe

Understanding the clustering of large-scale structures of the Universe is one of the key
tasks in modern cosmology. To depict its complexity, many aspects need to be taken
into consideration: the governing physical laws and physical processes involved, the
shape of the Universe, the components in the Universe and their nature, as well as the
initial conditions of the hot Big Bang.

To understand the framework of clustering, perturbation theory (PT) [10, 23, 14]
must be applied. The foundation of it lies within the gravitational instability and the
gravitational amplification of the primordial density fluctuations. Then these theories
can be verified or refuted by observations of the large-scale structures, which are best
described by different statistical tools.

2.1 Different approaches to clustering analysis

To compare our observations of the LSS with the Standard perturbation theory or
Lagrangian perturbation theory [10], it is necessary to develop the appropriate statistical
tools. Statistics is needed for several reasons [10]: firstly, as discussed before, the large-
scale structures have evolved from primordial density perturbations. Nowadays it is
impossible to observe them, therefore we do not have a direct probe of the initial
conditions. Secondly, the timescales over which the overdensities evolve are orders of
magnitude larger than our possibility to observe them individually, therefore we cannot
follow the evolution path of a single object.

We model the observable Universe as a stochastic realization of a probabilistic
ensemble, meaning it is just one of many possible outcomes that could have emerged.
Any predictions about this realization must therefore rely on the statistical properties
of the primordial perturbations. By applying statistical tools, we can better map
the evolution of large-scale structures and compare these maps to our theoretical
expectations, ultimately refining our understanding of the Universe’s formation and
evolution.

There are various statistical tools available in the market of cosmological analysis.
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2.2. N-POINT CORRELATION FUNCTIONS

For example, Minkowski functionals [41] quantify the shape and structure of spatial
patterns through geometric and topological measures, such as volume, surface area,
curvature, and are particularly useful for capturing non-Gaussian features.

The J function [41] provides a scale-dependent measure of clustering by comparing
the probability of finding a neighboring point within a given distance to that expected
under complete spatial randomness, revealing clustering patterns and voids.

Wavelet phase harmonics (WPH) [6] is a newer method that captures phase corre-
lations from wavelet transforms across multiple scales, offering a way to characterize
non-Gaussian features in primordial density fluctuations.

With many other available methods, the most popular and widely used are the
N-point correlation functions.

2.2 N-point correlation functions

Correlation functions are the standard method to describe the clustering of matter and
galaxies. They quantify the clustering properties for a set of points that are spatially
distributed in space. They can be distributed in a three-dimensional space, but also
projected in two-dimensional space, for example, on the surface of a celestial sphere,
which can still give valuable information. Correlation functions can be calculated either
between galaxies, dark matter halos, or matter distribution. Even though galaxies
are the easiest to observe due to their luminous nature, it is harder to develop the
appropriate theories for it. However, matter cannot be probed directly, as a large
portion of it is dark matter, which cannot be directly observed. Therefore, galaxies are
used as tracers for matter evolution, but that comes with a cost, as it requires including
more parameters, such as galaxy bias parameter, as well as other assumptions and
uncertainties.

For now, we will explore a general overview of how to construct correlation functions
[14]. Let us assume an average density of galaxies ngal. The probability δ2P2 to find a
galaxy in a volume δV1 and another galaxy in δV2 at a distance r12 is represented by
the equation:

δ2P2 = n2
gal[1 + ξ(r12)]δV1δV2 (2.1)

where the correlation function ξ(r12) represents the excess probability, over a uniform
random distribution, of finding another galaxy at distance r12, considering that the
volumes δV were taken randomly within a representative volume. This means that if
ξ(r12) = 0, the galaxies in the representative volume are scattered randomly. If it is
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positive, then they tend to cluster at that distance, but if it is negative — galaxies avoid
each other.

Following the equation 2.1, we can construct the mean number of galaxies in distance
r such as:

⟨N⟩r = 4
3πngalr

3 + 4πnv

∫ r

0
ξ(r′

12)r′
12dr′

12 (2.2)

where the second term shows the excess over a uniform random distribution.

In the case of a two-dimension catalog, we have to opt for the angular correlation
function, which can be defined as the following equation:

δ2P2 = n2
Ω[1 + w(θ12)]δΩ1δΩ2 (2.3)

Where w(θ12) is the angular two-point correlation function, nΩ is the average number of
galaxies per unit solid angle and δΩ1 and δΩ2 is the solid angle separated by an angle
θ12.

Similarly, we can extract correlation functions for N > 2. The difference now is that
they will depend on the lower-order correlation functions. For example, the three-point
correlation function is defined in the equation:

δ3P3 = n3
gal[1 + ξ(r12) + ξ(r13) + ξ(r23) + ζ(r12, r13, r23)]δV1δV2δV3, (2.4)

where ζ(r12, r13, r23) is the connected three-point correlation function, as it does not
depend on the two-point correlation functions. The angular three-point correlation
function can be defined in the same way as before, shown in the equation:

δ3P3 = n3
gal [1 + w(θ12) + w(θ23) + w(θ31) + z(θ12, θ13, θ23)] δΩ1δΩ2δΩ3, (2.5)

where z(θ12, θ23, θ31) is the connected three-point angular correlation function, which
represents the excess probability of finding the galaxies in the solid angle elements
δΩ1δΩ2δΩ3 separated by angles θ12, θ13, θ23. Similarly, this analysis can be expanded
to any order correlation function.

2.3 Two-point correlation function and power spectrum

Previously, we defined the two-point correlation function (2PCF) from the physical
standpoint of probabilities. It can also be defined as the joint average of the average
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density at two locations, as seen in equation 2.6:

ξ(r) = ⟨δ(x)δ(x + r)⟩. (2.6)

Due to the statistical homogeneity and isotropy, the 2PCF depends only on the r = |r|.
It can be seen that the 2PCF measures the correlation of density contrast δ at different
positions in the universe. Writing the density contrast δ(x) in configuration space, we
get the following:

δ(x) =
∫

d3k δ(k)eik·x, (2.7)

where we can define δ(k), the density contrast in Fourier space, in the same manner,
but with an additional prefactor:

δ(k) = 1
(2π)3

∫
d3x δ(x)e−ik·x. (2.8)

Now we can see the correlator in the Fourier space, using the equation 2.8:

⟨δ(k)δ(k′)⟩ = 1
(2π)6

∫
d3xd3r⟨δ(x)δ(x + r)⟩e−i·((k+k′)·x+(k′·r)), (2.9)

where the three-dimensional Dirac delta is defined as the following:

δ
(3)
D (k + k′) = 1

(2π)3

∫
d3xe−i(k+k′)·x (2.10)

In the equation 2.9, we have the 2PCF definition in the integral, as well as the
three-dimensional Dirac delta. By inserting these equations, we get:

⟨δ(k)δ(k′)⟩ = 1
(2π)3 δ3

D(k + k′)
∫

d3rξ(r)eik·r (2.11)

From equation 2.11 emerges the definition of power spectrum:

P (k) = 1
(2π)3

∫
d3rξ(r)e−ik·r (2.12)

and similarly also the relation of 2PCF and power spectrum:

ξ(r) =
∫

d3kP (k)eik·r (2.13)

This shows that the power spectrum and 2PCF are two sides of the same coin —
the former is represented in the Fourier space, while the latter is in configuration or
real space.
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2.4 Three-point correlation function and bispectrum

The 2PCF or power spectrum is completely sufficient to capture the statistical properties
of a Gaussian density field. Therefore, if we assume that our initial density perturbations
are Gaussian, we do not need any higher-order statistics.

Wick’s theorem explains just that, indicating that any higher-order correlation
function can be decomposed into a sum of products of the two-point correlation functions.
The fact that we have a Gaussian field, means that all the odd correlation functions
will be zero, therefore:

⟨δ(k1) · · · δ(k2p+1)⟩ = 0, (2.14)

But if it is even, then it can be decomposed in the sum of 2PCF as the following:

⟨δ(k1) · · · δ(k2p)⟩ =
∑

all pair associations p pairs (i,j)

∏
⟨δ(ki)δ(kj)⟩, (2.15)

As good as it sounds, we are still in need of higher-order correlation functions. The
main reason is that even if the primordial field would be Gaussian, the evolution of these
perturbations would turn it into non-Gaussian from the non-linear effects and biasing.
Furthermore, different inflationary models predict a non-Gaussian primordial field. For
this reason, we shall develop the basis for the lowest-order correlation function, which
can describe the non-Gaussianity — three-point correlation function (3PCF).

The definition of 3PCF is the following:

ζ(r1, r2) = ⟨δ(x1)δ(x2)δ(x3)⟩, (2.16)

where r1 = x1 − x2 and r2 = x2 − x3, which are the relative coordinates of the chosen
points. By using the equation 2.8 again, we obtain the definition of bispectrum:

⟨δ(k1)δ(k2)δ(k3)⟩ = δD(k1 + k2 + k3)(2π)3B(k1, k2), (2.17)

where the statistical homogeneity is represented by the triangle condition k1 +k2 +k3 =
0.

2.5 Estimators

If we want to obtain the N-point correlation functions from observations or simulations,
we must use estimators. One of the first estimators has been brought forward by Peebles
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[52], where, for example, for 2PCF the estimator is of the form:

ξ̂ = DD

RR
− 1, (2.18)

where D is a point from the dataset, but R is randomly generated in the same volume
as the observations. The “hat”ˆfor ξ indicates an estimator. A similar form can also be
used for the three-point statistics: ξ̂ = DDD−RRR

RRR + 2.

There are several aspects to consider for estimators - the observations are made
in a finite volume with a finite number of sampling cells, as well as with a certain
geometry of the survey. Furthermore, edge corrections and shot noise or discreteness
effect, which is due to the finite number of points used to describe a smooth random
field, must be dealt with. There is also the instrumentation and observational biases,
which include the limits of the telescope itself, as well as star contamination and dust
extinction. Additionally, dynamical bias affects the quantities of interest, for example,
for 3D surveys it is the peculiar velocity. Also, we usually conduct surveys on visible
matter, which does not necessarily follow the same properties as matter [10]. It is also
important what kind of objects are observed, because some of them can vary with
redshift.

It is useful to find an estimator with minimal variance [10]. For the 2PCF, an
improved estimator was proposed by Landy and Szalay [43] of the form:

ξ = DD − 2DR + RR

RR
, (2.19)

which will be further denoted as LS estimator. LS estimator has the variance proportional
to 1

N2 , where N is the number of points in the survey, thus reaching the second-order,
while other estimators have the proportionality of 1

N .

The equation 2.18 can be expressed in terms of overdensities as ξ̂ = ⟨(1 + δ1)(1 +
δ2)⟩s = ⟨δ1 + δ2 + δ1δ2⟩. The linear terms here indicate additional terms for the variance.
On the other hand, the LS estimator can be written as:

ξ̂ = (D1 − R1)(D2 − R2)
R1R2

= ⟨δ1δ2⟩, (2.20)

which indicates the lowest possible variance, assuming the previously mentioned addi-
tional terms are positive. The 3PCF with minimal variance is expressed as:

ζ̂ = (D1 − R1)(D2 − R2)(D3 − R3)
R1R2R3

= ⟨δ1δ2δ3⟩, (2.21)
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The generalization of the equation 2.20 to higher order statistics has been proposed by
[73] with the following equation:

f̂N = (D1 − R1)(D2 − R2)...(Di − Ri)
R1R2...Ri

, (2.22)

where i is the order and f̂N is the N-point correlation function. This ensures variance as
⟨δ1δ2...δi⟩, which ensures no extra terms. It can be further expressed as the generalized
LS:

f̂N = 1
S

∑
i

(
N

i

)
(−1)N−i

(
D

n̄g

)i (
R

n̄r

)N−i

, (2.23)

where normalization number S ≡
∫

Θ(x1, . . . , xN ) dDx1 . . . dD.

2.6 Multipole expansion

The three-point correlation function or bispectrum are complicated objects to analyze.
Due to the difficulties in developing theories for them, the consensus in the last decade
has been to pick specific triangle configurations to investigate. They do not represent
the whole picture, therefore new methods must be developed.

In general, the 3PCF has 9 parameters that define it — three coordinates in the
three-dimensional space. For the modeling, as discussed before, it can be reduced
to 3 parameters, using the transverse invariance due to the homogenous property of
the Universe and rotational invariance due to the isotropy. But in redshift space it is
different, as the isotropy is no longer valid, therefore we have 6 parameters. It can be
reduced to 5 by having rotational invariance around the line of sight. Nevertheless, the
increase in the parameter space makes the modeling and computations more difficult.

The natural direction of investigation is the decomposition into multipoles. It gives
several benefits over the analysis of separate triangle configurations. Firstly, it has
physical reasoning, as it describes better the rotational symmetries, and at the same
time the anisotropies induced by the RSD. Expanding allows one to separate different
3PCF components and analyze them separately, as well as summing them up to get the
full 3PCF. Here a logical pushback would be — to get the full 3PCF, an infinite amount
of multipoles would have to be re-summed. It turns out that, even though there are
different formalisms with different decompositions, in all of them a finite number of
multipoles contain the significant information of the 3PCF, usually no more than 10, as
3PCF does not have a complex angular structure. This means that by decomposing in
the first few multipoles, it is possible to capture nearly the full scope of 3PCF.
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In terms of observations, the greatest benefit over the usage of the regular estimators
is the reduction of computational costs. By decomposing the 3PCF, it is possible to
reform the counting of the triplets, where one of the examples is further explored in
section 2.7, exploiting radial binning. There it reduces the computation costs from
O(N3) to O(N2). All in all, decomposition has even more benefits, which will explored
in the further sections.

Nonetheless, one of the first efforts was by [60, 72], who, with the parametrization
of the triangle side lengths k1, k2 and angle between them θ, thus the model in real
space, performed multipole expansion for the bispectrum as:

B(k1, k2, θ) =
∑

l

Bl(k1, k2)Pl(cosθ)2l + 1
4π

, (2.24)

where Pl(cosθ) is the Legendre polynomial of lth order and Bl can be obtained through
integration as Bl = 2π

∫
BPld(cosθ). This is a useful expression, as it gives an inherent

representation of rotational symmetry and the possibility to represent all triangle
configurations. It also gives room to build an estimator that can constrain the bias
parameter by exploiting ratios of multipoles.

Further work has been done with this decomposition to include the modeling of the
RSD, as well as to model the 3PCF [66, 65]. The following is the first model for the
configuration space from the perturbation model. The formalism will depend on the
already established model of the monopole of bispectrum in RSD [60]:

Bs(k1, k2, x) = b3
1P (k1)P (k2)

[
F̃2(k1, k2; x)DSQ1(β, x)

+ G̃2(k1, k2; x)DSQ2(β, k1, k2; x)

+ DNLB(β, γ; x) + DFOG(β, k1, k2; x)

+cyc.] ,

(2.25)

where k1, k2, x are the wavevectors of two triangle sides and x = k̂1 · k̂2, b1 is the linear
bias and P (k) is the linear power spectrum, F̃2 and G̃ is the second order density field
and velocity field kernels, D is the growth rate, β = f

b1
and γ = 2b2

b1
, where f is the

growth rate and b2 is non-linear bias. The subscripts: SQ1 and SQ2 are linear and
non-linear squashing, while NLB and FOG are the non-linear bias and fingers of God
terms.

We can now exploit the equation 2.24, but before that, we must separate the
bispectrum in terms that involve 1

k2
3

where k3 = |k1 + k2| and the terms absent from it.
Then, from the equation 2.25, which is the fully averaged bispectrum, we can separately
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estimate the expansion for each of the terms in the square brackets, which are expressed
in detail in [66]. After summing all the separate terms, the bispectrum needs to be
transformed to configuration space. It can be done with the inverse Fourier transform
as:

ζℓ(r1, r2) = (−1)ℓ
∫

k2
1k2

2dk1dk2
(2π2)2 Bs,ℓ(k1, k2)jℓ(k1r1)jℓ(k2r2), (2.26)

where the subscript “s” denotes redshift space and jℓ are Bessel functions.

2.7 Spherical Harmonics Decomposition

It is not an easy task to tackle the full 5D redshift space anisotropic 3PCF. To capture the
anisotropies, a new method was developed, which now uses bipolar spherical harmonics
[67]. To start with, it was chosen to expand in both triangle sides as:

ζ̂(r1, r2; x) = 4π√
(2l + 1)(2l′ + 1)

×
∑
lm

∑
l′m′

ζ̂mm′
ll′ (r1, r2; x)Ylm(r̂1)Y ∗

l′m′(r̂2). (2.27)

where x is the vertex of the triangle where the opening angle is defined. It can also be
defined as the line of sight and z axis: x̂ = n̂ = z. Here it is clear, that we are dealing
with an anisotropic case, as l ̸= l′ as in [66]. Due to the properties of the RSD, it is
rotationally symmetric around the line of sight, therefore the 3PCF can be azimuthally
averaged:

ζ̂azi(r1, r2; x) =
∫ 2π

0
dϕ ζ̂(r1, r2; x), (2.28)

where the subscript “azi” denotes the azimuthal averaging and ϕ is the azimuthal angle.
With further manipulation, as shown in [67], we acquire that the average 3PCF scales
with the Kronecker delta δK

mm′ . This shows that only the condition for the spin as
m = m′ is viable in equation 2.27 for the averaged 3PCF.

This is a powerful tool that allows us to already analyze the anisotropic 3PCF. To
use it on real data, a faster algorithm has been developed than O(N3), which scales as
N(nVRmax) instead [65]. Here N is the number of objects, n is their number density,
and VRmax is the volume of a chosen Rmax that the statistics are calculated at for each
object.

The algorithm is described in Fig. 2.1. Firstly, the points are gathered around the
primary point and radially binned. The radial binning for the density field is defined as:

δ̄(ri; r̂i; x) =
∫

r2 dr Φ(r; ri)δ(x + r), (2.29)
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Figure 2.1. Algorithmic visualization, taken from [67], for the estimator of expanded
3PCF. In the first part “Gather & bin” an object is selected, galaxies are gathered in
the VRmax range, and then they are radially binned. Then in the “rotate” part, the
coordinate system is rotated, in order for the primary object (the one in the center) to
have an aligned line of sight and z. In the last step “expand”, in each of the radial bins
the angular dependence of the density field is expanded. The color denotes the different
values of alm.

where Φ(r; ri) is the binning function. Here the primary galaxy is at point x, but the
secondary galaxies are denoted as r are inside the bins ri. Incorporating the equation
2.29 in the multipole expansion of the 3PCF, we get:

ζ̂m
ll′ (r1, r2; x) = δ(x)

∫
dΩ1dΩ2 δ̄(r1; r̂1; x)δ̄(r2; r̂2; x)Ylm(r̂1)Y ∗

l′m(r̂2). (2.30)

From the definition of the spherical harmonic coefficients alm, it is possible to obtain:

ζ̂m
ll′ (r1, r2; x) = δ(x) [alm(r1; x)a∗

l′m(r2; x) + a∗
lm(r1; x)al′m(r2; x)] , (2.31)

To calculate the alm coefficient for a primary galaxy at each radial bin, it scales as
nVRmax . And as it must be done for each galaxy, the final scaling of the algorithm is as
stated before: N(nVRmax).

2.8 Tripolar spherical decomposition

The problem with the previously mentioned methods is that all of them are spherically
averaging over the line of sight. This means that all the methods are only measuring the
monopole. Furthermore, as seen in equation 2.31, the spin parameter m ̸= 0, therefore
they can always vary under rotation. To deal with this, we will describe a new method,
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which is also the basis of this thesis, based on the work of Sugiyama et al. [70, 71].

These issues can be resolved by a new method called TripoSH, where the bispectrum
is decomposed into three spherical harmonics. It is defined as follows:

B(k1, k2, n̂) =
∑
JMJ

∑
ℓ1ℓ2Lℓ12

BJMJ
ℓ1ℓ2Lℓ12

(k1, k2)SJMJ
ℓ1ℓ2L(k̂1, k̂2, n̂), (2.32)

where the TripoSH basis SJMJ
ℓ1ℓ2L(k̂1, k̂2, n̂) is defined as:

SJMJ
ℓ1ℓ2L(k̂1, k̂2, n̂) =

∑
m1m2m12M

Cℓ12m12
ℓ1m1;ℓ2m2

CJMJ
ℓ12m12;LM × ym1

ℓ1
(k̂1)ym2

ℓ2
(k̂2)yM

L (n̂), (2.33)

and the TripoSH coefficients are defined as:

BJMJ
ℓ1ℓ2L(k1, k2) =

∑
m1m2m12M

Cℓ12m12
ℓ1m1;ℓ2m2

CJMJ
ℓ12m12;LM × Bm1m2M

ℓ1ℓ2L (k1, k2), (2.34)

and the Clebsch–Gordan coefficients are formulated as:

Cℓ3m3
ℓ1m1;ℓ2m2

= (−1)ℓ1−ℓ2+m3
√

2ℓ3 + 1
(

ℓ1 ℓ2 ℓ3

m1 m2 −m3

)
. (2.35)

From the isotropic property of the Universe, we can make further simplifications,
that allow us to constrain the total angular momentum to zero, thus J = 0 and MJ = 0.
Including the parity symmetry of the Universe, we have the final expression for the
multipoles of the bispectrum:

Bℓ1ℓ2L(k1, k2) = Hℓ1,ℓ2,L

∑
m1,m2,M

(
ℓ1 ℓ2 L

m1 m2 M

)
Bm1m2M

ℓ1ℓ2L (k1, k2), (2.36)

where Hℓ1,ℓ2,L =
(

ℓ1 ℓ2 L

0 0 0

)
selects components for which ℓ1 + ℓ2 + L is even. This

simplifies equation 2.32 by substituting it with equation 2.36. The same can be done for
the 3PCF — if the isotropy and parity symmetry is assumed, the multipoles of 3PCF
are defined as:

ζℓ1ℓ2L(r1, r2) = Hℓ1,ℓ2,L

∑
m1,m2,M

(
ℓ1 ℓ2 L

m1 m2 M

)
ζm1m2M

ℓ1ℓ2L (r1, r2). (2.37)

The bispectrum and 3PCF can be related to each other by Hankel transformation.
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From 3PCF to bispectrum it is expressed as:

Bℓ1ℓ2L(k1, k2) = (−i)ℓ1+ℓ2(4π)2
∫

dr1 r2
1

∫
dr2 r2

2 × jℓ1(k1r1)jℓ2(k2r2)ζℓ1ℓ2L(r1, r2),
(2.38)

and from bispectrum to 3PCF as:

ζℓ1ℓ2L(r1, r2) = iℓ1+ℓ2

∫ dk1k2
1

2π2

∫ dk2k2
2

2π2 × jℓ1(r1k1)jℓ2(r2k2)Bℓ1ℓ2L(k1, k2), (2.39)

where the jℓ are the Bessel functions.
It is not necessary to calculate every possible combination of multipoles, as there

are four rules that constrain this choice [70]. Firstly, the property of the bispectrum
Bℓ1,ℓ2,L(k1, k2) = Bℓ2,ℓ1,L(k1, k2) allows us to choose ℓ1 > ℓ2. Secondly, the axial
symmetry around the LOS allows us only to pick L = even. This can be done because of
the assumed plane-parallel approximation, which gives axially symmetric anisotropies in
RSD. Thirdly, because rotationally symmetric assumption, we get |ℓ1−ℓ2| ⩽ L ⩽ |ℓ1+ℓ2|.
Lastly, due to the parity symmetry mentioned before, we get that ℓ1 + ℓ2 = even.

These four constraints give the important property of the bispectrum multipoles:
Bℓ1ℓ2L = B∗

ℓ1ℓ2L. They also inform us what choices of multipoles we have. In this
paper we will look at 8 multipoles, the first four being the isotropic case, where L = 0,
and the other four being the anisotropic case L = 2, which are purely induced by
the RSD and AP effects. This is due to the fact that we have assumed an isotropic
and homogeneous universe. As a reminder, the expansions depicted by ℓ1 and ℓ2 are
for r1 and r2 accordingly. Here the interesting multipoles are L = 2, ℓ1 = 2, ℓ2 = 0
and L = 2, ℓ1 = 3, ℓ2 = 1, as they are asymmetric in their nature, as ℓ1 ̸= ℓ2. The
combinations have been summarized in Table 2.1:

L (ℓ1, ℓ2)
L = 0 (0, 0) (1, 1) (2, 2) (3, 3)
L = 2 (2, 0) (1, 1) (3, 1) (2, 2)

Table 2.1. From the physical constraints of the Universe and the choice from the work
authors to expand up to L = 2 the first 4 combinations, these are the possible multipole
configurations.

2.8.1 The choice of coordinate system

It is also important what kind of coordinate system is chosen, as seen already in
the previous section 2.6. The physical properties are unchanged from the change of
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coordinate system, but, nevertheless, it does change the equations. It is also useful
to carefully pick the coordinate system, in order to relate the results of previously
developed theories with certain coordinate choices. We have the choice to adopt the
same formalism as [60], where k̂1 = z or the recent one of [67], where n̂ = z. These
systems are visualized in Fig. 2.2.

Figure 2.2. Choice of coordinate system visualization by [70]. The left part stands on
the choice of k̂1 = ẑ. The right coordinate system is based on n̂ = ẑ.

In this work, the coordinate system choice k̂1 = ẑ is adopted. The following
coordinate system transformation must be done:

k1 = {0, 0, k1},

k2 = {k2 sin θ12, 0, k2 cos θ12},

n̂ = {sin ω cos ϕ, sin ω sin ϕ, cos ω}.

(2.40)

This means that also the bispectrum has changed the parameters that it depends
on, which is expressed in the equation 2.40. Not only that, also the spherical harmonics
are different, therefore the equation 2.36 changes to:

Bℓ1ℓ2L(k1, k2) = Nℓ1ℓ2LHℓ1ℓ2L

∫ d cos ω dϕ

4π

∫ d cos θ12
2

×
[∑

M

(
ℓ1 ℓ2 L

0 −M M

)
y−M∗

ℓ2
(θ12, 0)yM∗

L (ω, ϕ)
]

× B(k1, k2, θ12, ω, ϕ),

(2.41)

where Nℓ1ℓ2L is the normalization factor.
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2.8.2 Template model

Having covered the decomposition formalism, it is now possible to construct the template
model of the bispectrum, from which we can obtain the template 3PCF. This allows us to
construct a theoretical prediction for the galaxy or matter 3PCF in redshift space, given
a certain cosmology. Furthermore, there has always been the problem of using 3PCF
models in Markov-Chain Monte Carlo (MCMC) algorithms to constrain cosmological
parameters, as the computational costs are too expensive. The computational costs
of the following model and its decomposition are still significant, but they do allow
computing a large data set of different cosmological models to build an accurate emulator,
which will be further discussed in chapter 3.

This model is based on the Lagrangian theory [10, 71]. Based on that, we will now
include the effects of RSD for the displacement vector [71] as:

Ψ(q) = Ψreal(q) + Ψ̇real(q) · n̂
H

n̂, (2.42)

where the subscript “real” indicates real space and Ψ̇ is the derivative in time of the
displacement vector. Regarding the galaxy density fluctuations in Lagrangian formalism,
they can be expressed as:

δ(x) =
∫

d3q(1 + δbias(q))δD(q − x − Ψ) − 1, (2.43)

where δbias(q) represents the density fluctuations of the biased objects at their initial
positions, or more simply, the initial distribution of these objects, which in our case are
the galaxies. Here the RSD effects come through the Ψ parameter. And the parameter
δbias can be expanded to second order as:

δbias(q) = bL
1 δlin(q) + 1

2bL
2 [δlin(q)]2 + bL

K

(
δqiδqj

δq
− 1

3δij

)2

δ2
lin(q), (2.44)

where i and j represent the spatial coordinates, and δij is the Kronecker delta. They
are also analytically related to the Euler bias parameters. These bias parameters will
be regarded as free parameters in the following template model.

First, we need to see if the infra-red (IR) flows affect the N-point statistics. These
corrections are due to the large-scale initial density perturbations, that can affect the
further evolution of the overall structures. We can define the IR flow by separating it
into two components — the ones that are defined at the origin and the ones that are
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not:
Ψ(q) = Ψ(q ̸= 0) + Ψ̄, (2.45)

where Ψ̄ = Ψ(q = 0) is the IR flow.

Now we can apply the Γ-expansion, which allows extracting information from the
N-point statistics, using BAO. It is a method based on the statistical properties of the
observables, therefore in the scope of standard perturbation theory (SPT) — density
and velocity field. The first-order term of expansion of the density field is the Gaussian
distribution, but the higher order can explain non-Gaussianity. The most important
property of this expansion is that it allows us to separate the integrals that involve
mode coupling from those that do not. This distinction provides valuable insights into
the distribution of BAO information; specifically, modes that are not coupled tend to
carry more information than those that are coupled.

In the SPT formalism, we can expand the density field as:

δ̃(k) =
∞∑

n=1

n∏
i=1

∫
d3pi

(2π)3 δ̃lin(pi)(2π)3δD(k − p1n)Z [n](p1, . . . , pn), (2.46)

where p1n = p1 + .. + pn, Z [1](k) is the Kaiser factor, but Z [n⩾2](k) are the non-linear
kernel functions, including the RSD term.

We can use the same Γ-expansion for the bispectrum. It can be split into coupled
and non-coupled terms:

B(k1, k2, k3) = (BGG(k1, k2)Plin(k1)Plin(k2) + 2 cyc.)

+ (BGM (k1, k2)Plin(k1) + 2 cyc.)

+ (BMG(k1, k2)Plin(k2) + 2 cyc.)

+ (BMM (k1, k2) + 2 cyc.)

+ (BMMM (k1, k2) + 2 cyc.),

(2.47)

where each bispectrum term has been visualized and explained by Fig. 2.3. The
components of each bispectrum term are further shown in [71].

As mentioned before, with infra-red (IR) flows, large wavelength perturbations can
have effects on the overall structure of the universe. But it can be shown that the IR
effect can be canceled out of the final expression of the bispectrum, if all the components
of the equation 2.47 are summed together, when treated appropriately.

If we include the IR flow in the density fluctuations and proceed with calculations
as in the 3.4 section of [71], we will eventually come across the damping factor D(k),
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Figure 2.3. Visualization of the bispectrum Γ-expansion terms by [71]. The straight
lines represent integrals with the linear power spectrum, which does not have mode
coupling. The curved lines, on the other hand, show the coupled terms, which have
integrals with an infinite number of integration dimensions.

which is due to IR flows. It is expressed as follows:

D(k) = exp

(
−k2(1 + 2fµ2 + f2µ2)

2 σ2
dd

)
, (2.48)

where the σ2
dd = 1

3
∫ dp

2π2 Plin(p) is the dispersion of the linear displacement vector. Each
term in the equation 2.47 can be expressed as the product of damping factors and
the tree-level solution of the bispectrum. For example, the non-coupled term can be
expressed as:

BGG(k1, k2)Plin(k1)Plin(k2) = D(k1)D(k2)D(k12)Btree(k1, k2), (2.49)

where Btree(k1, k2) = 2Z [1](k1)Z [1](k2)Z [2](k1, k2)Plin(k1)Plin(k2) is the leading order
solution for the bispectrum. When each of these newly expressed terms is summed up
together, the IR flow contribution cancels out, and only the tree-level solution is left.
Therefore, the non-linear contributions have been dealt with.

Based on the IR cancellation formalism, we can now expand these results to build a
template model for the power spectrum, which then can be applied to the bispectrum.
As discussed before, the mode-coupled terms have negligible information on BAO. We
can use this together with the empirical results of [25], denoting the mode-coupled
power spectrum PMC as a power spectrum with no BAO features, which is defined as
Pnw, where “nw” means no wiggle (as BAO features in the power spectrum looks like
wiggles). Therefore, the template power spectrum is the following:

P (temp)(k) = G2(k)Plin(k) + PMC(k) →
[
Z [1](k)

]2 [
D2(k)Pw(k) + Pnw(k)

]
, (2.50)

where the Pw is the only wiggle power spectrum, which can be simply obtained as the
subtraction from the full and no wiggle power spectrum.
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Similarly, it can be done for the bispectrum. In this case, whenever we have the
mode-coupled term, we exchange it with Plin(k) → Pnw(k), but for the non-coupled, we
opt for Plin(k) → Pw(k). Therefore, the final galaxy bispectrum template in RSD looks
like this:

B(temp)(k1, k2) = 2 Z [1](k1)Z [1](k2)Z [2](k1, k2)
{

D(k1)D(k2)D(k12)Pw(k1)Pw(k2)

+ D2(k1)Pw(k1)Pnw(k2) + D2(k2)Pnw(k1)Pw(k2)

+ Pnw(k1)Pnw(k2)
}

+ 2 cyc.

(2.51)
This is the model that goes into the equation 2.32, and it is also implemented in the
Python package called Mod3l [28]. From the equation 2.51 we can also obtain the 3PCF,
by leveraging the 2D Hankel transform, using the 2D FFT.

2.8.3 Calculation of the three-point correlation function multipoles

To calculate the multipoles of the 3PCF, which is described by equation 2.39, we must
calculate two complicated integrals. They include Bessel functions, which are highly
oscillating and are complicating the calculation further. Therefore, the calculations
require a very well-sampled grid. The standard quadrature method scales as O(N2

k N2
r ),

where Nk are the number of sampling points in the Fourier space, which is Nk ≫ N ,
while Nr are the desired sampling in the real space [27]. The alternative method is to
use a two-dimensional method called Fast Fourier transform for logarithmically spaced
points (2D FFT-Log), which is considerably faster. It does suffer from ringing and
aliasing problems, which are the reactions to steep changes in the function and periodic
folding of frequencies [34]. This can be dealt with by carefully choosing the appropriate
kmin and kmax, and by applying padding.

To disentangle this method, we first describe the Fast Fourier transform. The Fourier
Transform is a mathematical technique that transforms a function or dataset from its
original domain, usually configuration space, into the frequency domain or the Fourier
space or vice versa. In our case, it will be done from the Fourier space to the configuration
space. It can reduce the computation costs from O(N2

particle) to O(N2
gridlogNgrid), where

N2
grid is the total sampling for the grid for the bispectrum multipoles [28]. It does so

by using the Cooley-Tukey FFT Algorithm [18], which exploits the symmetries of the
discrete Fourier transform (the direct way of computation). In a nutshell, if we have a
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1D integral like
∫ b

a f(k)j(kr), then using FFT we can express f(k) = ∑
m cmezm as a

sum, where cm are the Fourier coefficients and zm is generally a complex number. This
allows to have faster computation, while still maintaining good accuracy.

As in the equation 2.39 we have two Bessel functions, the 1D FFT approach will
not suffice, and a 2D FFT must be used. To simply the further calculations, we will
express the dimensionless bispectrum multipole as follows [31]:

∆ℓ1ℓ2L(k1, k2) = k3
1k3

2
(2π2)2 Bℓ1ℓ2L(k1, k2). (2.52)

This can now be decomposed as the following expression:

∆ℓ1ℓ2L(kp, kq) = 1
N2

N
2∑

m=− N
2

N
2∑

n=− N
2

c̃ℓ1ℓ2L,mnk−in
0 k−im

0 kν1+iηm
p kν2+iηn

q , (2.53)

where N is the number of elements in the k array, c̃ is the Fourier coefficient, ν are the
bias parameters, but ηi = 2πi

N∆lnk
, where ∆lnk is the logarithmic spacing for the k array.

Using the equation 2.53 and inserting it into equation, 2.39, and also including that
real data is bin averaged, we obtain:

ζℓ1,ℓ2,L(r̄i, r̄j) =
πr̄2−ν1

i,minr̄2−ν2
j,min

16AN2

N/2∑
m,n=−N/2

cℓ1ℓ2L,mnk
−i(ηm+ηn)
0 r−iηm

12 r−iηm
13

× gℓ(ν1 + iηm)gℓ(ν2 + iηn)s(D − ν1 − iηm, n)s(D − ν2 − iηm, n),
(2.54)

where s(D, n) = n−1
D and A = r̄2

i,minr̄2
j,min[s(2, n)]2.This is the averaged expression for

the 2D FFT-Log, which allows going from bispectrum multipoles to 3PCF multipoles.
As seen, one of the parameters is the grid spacing, which is a very important parameter
for an accurate estimate.

To use the 2D FFT-Log algorithm, we needed to define the grid over which the
computations will be conducted. This will dictate the accuracy of our computation. The
grid is separated into the configuration variables (k1, k2, cos θ) and orientation variables
(µ, ϕ). The orientation variables are dealt by the algorithm itself, but k1 and k2 are
logarithmically in the interval [kmin, kmax] ∈ R+, while cos θ is defined in the interval
[−1, 1], which will be used as nodes for the Gauss-Legendre formula, which in turn is
necessary for the calculation in the equation 2.41.

The k1, k2 must be logarithmically spaced, because we have to cover a wide range of
values, going from 10−4 to 101. This means that linearly it would be 105 points, which
would lead to expensive computational cost. Therefore, logarithmic spacing greatly
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reduces these costs. Finally, the grid is defined as the Cartesian product between k1,
k2, and cos θ. Instead, the spherical surface, defined by the orientation variables, is
partitioned into curvilinear quadrilaterals.

To decompose the bispectrum into its harmonic components, the calculation is
performed at each grid point across every partition of the spherical surface. The
algorithm requires selecting specific multipole configurations, which ultimately enables
the extraction of the individual multipole contributions to the bispectrum.

2.8.4 Decomposition of the model

Even though the FFT algorithm is significantly faster than the alternative methods,
such as DFT, but applying it to the equation 2.51 is still a lot of computational cost.
For example, to calculate a single multipole for the 3PCF, we have to go through
various steps. First, we have to compute Nx integrals for a single triangle configuration
bispectrum multipole Bℓ1ℓ2L due to the angular part between the triangle sides. Then
we have to use the 2D-FFT algorithm, to obtain the multipole for 3PCF, scaling as
O(N2

gridlogNgrid). Furthermore, we need to repeat it for every triangle configuration,
scaling as N2

r . Finally, all of this has to be repeated for every multipole. In the end,
depending on the chosen grid, it could be attributed to more than a trillion integrals.

To isolate the fitting parameters, that the 3PCF depends on, and speed up the
calculations for the model, the fitting parameters are linearized. To do so, the following
steps have been implemented:

• Fixing the shape of the linear power spectrum Plin and no-wiggle Pnw.

• Expressing the damping factor as D(k) = exp
(

−
k2(1−µ2)Σ2

⊥+k2µ2Σ2
∥

4

)
, where the

Σ∥ and Σ⊥ are the smoothing parameters, that can be also fixed.

These two steps allow the template redshift space 3PCF to depend only on 5 parameters
if the AP effect is excluded:

(b1σ8, fσ8, σ8, b2σ2
8, bK2σ2

8). (2.55)

This enables us to express the template bispectrum model as a linear combination
of the mentioned parameters as coefficients:

Z1(k1)Z1(k2)Z2(k1, k2)σ4
8 =

14∑
p=1

X(p)B(p)(k1, k2), (2.56)
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where the B(p) can be pre-calculated, but X(p) not. The detailed derivations of each
component can be seen in [71]. Further on, we can replace Plin → σ2

8Plin,fid

σ2
8,fid

and

Pnw → σ2
8Plin,fid

σ2
8,fid

, where the fiducial values can be also pre-computed. Now by putting

the equation 2.56 in the 2.51, the only thing that cannot be pre-computed is the X(p),
if AP effects are not taken into account.

To introduce the AP effects, the previous decomposition of pre-calculated parameters
would not work anymore, as there is an additional angular component to the LOS due
to the anisotropic nature of the AP effect. This means that the triple integral for the
3PCF must be recalculated every time to see the AP effect.

To deal with this, a new parametrization is introduced, differentiating from the
subsection 1.3.4: α3 = α2

⊥α∥ called isotropic dilation and (1+ε)3 = α∥
α⊥

called anisotropic
warping. Then, by applying those to define the true wavenumbers and then expressing
the bispectrum multipoles, we get:

B
(AP)
ℓ1ℓ2ℓ(k1, k2) =

4πh2
ℓ1ℓ2ℓ

α6

∫
d2k̂1
4π

∫
d2k̂2
4π

∫
d2n̂

4π
S∗

ℓ1ℓ2ℓ(k̂1, k̂2, n̂)B(ktrue,1, ktrue,2),
(2.57)

where ktrue is the true wavevector. Then, by expanding the true wavevector as:

ktrue = k′(1 + ∆k), (2.58)

where k′ and ∆k is:

k′ = k

(1 + ε

α

)[
1 + 1

3
(
(1 + ε)−6 − 1

)] 1
2

,

∆k =

1 +
2
3L2(k̂ · n̂)

(
(1 + ε)−6 − 1

)
[
1 + 1

3

(
(1 + ε)−6 − 1

)]


1
2

− 1.

(2.59)

2.9 Relation with lower order expansions

Even though decomposing the 3PCF in triple spherical harmonics represents a powerful
tool on its own, it is useful to relate it with previously developed approaches for
consistency. For example, the first idea was to expand in only one spherical harmonics
[60, 72], which is expressed by equation 2.24. In more general form, including also ω and
ϕ due to RSD, which describe the orientation of the triangle, bispectrum decomposition
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can be written as:

B(k1, k2, n̂, ω, ϕ) =
∑
LM

BML(k1, k2, n̂)Y M
L (ω, ϕ), (2.60)

.
This equation can be related to TripoSH decomposition by:

Bℓ1ℓ2L(k1, k2) = Nℓ1ℓ2LHℓ1ℓ2L√
(4π)(2L + 1)

∫
d cos θ12

2

[∑
M

(
ℓ1 ℓ2 L

0 −M M

)
y−M∗

ℓ2
(cos θ12, 0)

]
×BLM (k1, k2, θ12).

(2.61)
Then we can also look at the latest development of decomposing in two spherical

harmonics [67], which also has a different coordinate system. As mentioned before, the
TripoSH does not depend on the coordinate system, so we are free to change it. In this
case, we will choose the LOS to the z axis as n̂ = z, which is represented on the right
side of Fig. 2.2. The new coordinate system looks like this:

k1 = {k1 sin θ1, 0, k1 cos θ1},

k2 = {k2 sin θ2 cos φ12, k2 sin θ2 sin φ12, k2 cos θ2},

n̂ = {0, 0, 1}.

(2.62)

The double spherical decomposition has been already described by the equation 2.31.
They both can be related through this equation:

Bℓ1ℓ2L(k1, k2) = (2L + 1)Hℓ1ℓ2L

∑
m

(
ℓ1 ℓ2 L

m −m 0

)
(−1)mBm

ℓ1ℓ2(k1, k2). (2.63)

This equation can also be transformed to configuration space, therefore obtaining the
3PCF, which has an identical form:

ζℓ1ℓ2L(r1, r2) = (2L + 1)Hℓ1ℓ2L

∑
m

(
ℓ1 ℓ2 L

m −m 0

)
(−1)mζm

ℓ1ℓ2(r1, r2). (2.64)

2.9.1 Interpretation of 3PCF

Before emulating the 3PCF, it is important to fully understand TripoSH decomposition.
There are different ways to approach it, but firstly it is important to understand what
is the 3PCF in essence, and how the BAO appear in it. To begin with, we can compare
different triangle configurations separately, by fixing two sides of the triangle r12 and
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r13, and varying the angle between the sides θ. In this way we can try to find separately,
what kind of triangle configurations give the highest BAO signal. For now, it is a good
assumption that they must appear if one or more sides cross the BAO peak. This type
of analysis has been done before [29], and even BAO detection have been made [50],
which can be seen in the Fig. 2.4.

Figure 2.4. BAO detection in the connected 3PCF ζ (taken from [50]). The different
colors represent the variability in the cosmological parameter Ωm, but each column is
for a different triangle configuration.

From this figure it can be noticed, that both of the 3PCF take a U-shape formed,
thus giving higher 3PCF values for the elongated triangles. This is because cosmic
structures tend to move along density field gradients under the influence of non-linear
gravitational instabilities [29]. But the BAO signal wouldn’t be present in all the
configurations, but only in those, that cross the BAO scale of around 100 Mpc/h. For
example, in the case of the (r12, r13) = (20, 105) Mpc/h we have one side that is directly
BAO scale, and then the other one is considerably smaller. Thus, the third side will
range from 85 Mpc/h to 125 Mpc/h, thus it will have an impact from BAO through
almost all values of θ.

Taking the other case in the Fig. 2.4, which is r12, r13 = (40, 100) Mpc/h, it can be
seen that the peak is sharper. This is because now the third side ranges from 60 to 140,
thus BAO is concentrated in the range 0.3 ≤ θ ≥ 0.5. This is important, as it shows
how the squeezed triangles have a higher signal, as it is more concentrated.

The next step would be to decompose the 3PCF. Also, that can be done in a multitude
of ways, but the first and foremost is to perform spherical harmonic decomposition. We
have an option to perform the decomposition on any of the three parameters that the
3PCF depends on. If we only decompose with respect to one of the parameters, the
most sensible would be the angular one, θ. This has been done in the section 2.6.
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With this in mind, on the left side of Fig. 2.5 we can see how this decomposition
looks. In this particular case, the elements on the diagonal were excluded due to the fact
that perturbation theory is not accurate for the squeezed triangles. Then, on the right
side is the main idea of the decomposition. In general, in order to reconstruct the full
3PCF, we would need to re-sum an infinite number of terms in the expansion. However,
due to the weak angular dependence of the 3PCF, we only need a finite number of terms.
On top of that, we can reach convergence even when the expansion includes fewer than
ten terms. This is very powerful, as it not only allows us to analyze separately the
angular dependence of the 3PCF, but also greatly speeds up the calculations.

(a) (b)

Figure 2.5. Spherical decomposition of the angular dependence for the 3PCF, taken
from [65]: (a) Applied to the LasDamas real space mock catalogs, where the diagonal
is excluded due to the dominant nature of the squeezed triangles, which are not well
described in the perturbation theory. (b) The re-summed 3PCF for different order of
expansion ℓ for the LasDamas real space mock catalogues.
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The next option is to decompose in both the triangle sides r1 and r2 [67], which also
allows probing the anisotropic behavior of 3PCF due to RSD. The visualization of it can
be seen in Fig. 2.6. This is even more powerful than the method by equation 2.24, as

Figure 2.6. Illustration for 3PCF spherically decomposed in r1 and r2, taken from
[67]. The left drawing depicts the parameters in the equation, as well as the assumed
symmetry along the line of sight. The equation and the red box show the basis of the
spherical decomposition. The plot on the right is a suggestive figure to show how the
3PCF multipoles might look.

now we can probe the RSD effects. Nevertheless, BipoSH has its own shortcomings, such
as all the expansion factors include m ̸= 0, therefore they are variable under rotation
[70]. Also, it only probes the monopole term of the 3PCF.

The final option, and the one that is used in this work, is the combination of the
equation 2.24 and Fig. 2.6, thus the decomposition in all three parameters of the 3PCF.
It can be calculated by exploiting the TripoSH decomposition shown in equation 2.32,
where the template bispectrum is used, expressed in equation 2.51. Then it can be
transformed to configuration space by 2D-FFT with equation 2.54, where to speed up
the calculation even more, the decomposition of the model is used, described in equation
2.56 and AP effects included by equation 2.59.

The matter redshift space 3PCF in TripoSH basis expanded into 8 multipoles, is
seen in Fig. 2.7. To summarize, the 3PCF depends on the length of triangle sides
r̂12 and r̂13, as well as the line of sight n̂. In TripoSH each of these dependencies are
decomposed, which can be seen by the ℓ1, ℓ2, and L above each of the plots accordingly.

For example, L = 0 is the first expansion for the line of sight. Therefore, it represents
the isotropic signal from clustering, and they can be seen in the first row of Fig. 2.7. If
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Figure 2.7. 3PCF in TripoSH basis with 8 expanded multipoles, where only the
triangles that comply with the condition r13 = r12 are displayed. The cosmological
parameters were chosen according to Planck18 results [3].

we expand beyond, we will then have the anisotropic signal coming from the RSD and
AP effects, which can be seen in the second row.

Then we also have the expansion for r12 and r13, which are four in each row. If
we summed the whole first row, therefore all the expansion for the triangle sides, we
would acquire the isotropic or the monopole term, which has been studied extensively
in previous studies [66]. The quadrupole or the anisotropic term is on the second row,
denoted with L = 2. It is important to stress that in the case of non-Gaussianity, there
would be no signal. However, due to the RSD and AP effects, we observe a signal there,
although the amplitude is much lower.

The Fig. 2.7 shows the 3PCF specifically for isosceles triangles, satisfying the
condition r12 = r13. If we wanted to display all the triangles, then it should have been
displayed as a grid, which is harder to comprehend, but will be nevertheless analyzed
further on in the section 4.2. Going back to our example, at first glance, it might
seem that some of the multipoles are almost identical, like 220 and 330, as well as 112
and 312. It is important to notice that there are clear amplitude differences. Other
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than that, there are slight differences in the peak location, shape, and even influence
from different cosmologies. This is to stress that each of the multipoles does contain
independent information, and it is one of the goals of the thesis to understand which of
these multipoles is the most informative.

2.10 Covariance matrix

Up until this point, we have covered how to deal with 3PCF from observations with the
framework of estimators in the section 2.5, but also laid down the theoretical framework
for the models themselves in the equation 2.51. To have a complete analysis, we also
need to develop a way to estimate the errors for the 3PCF, which will allow us to
perform SNR and Fisher analysis further on.

Errors can be estimated with the covariance matrix. The errors for each of the
element in the matrix, which in our case are different triangle configurations, are on the
diagonal. It is due to the fact that it represents how the parameter varies by itself. The
elements outside the diagonal show how different triangles in 3PCF vary with respect
to each other.

Thus, if we want to attribute errors for our 3PCF function, we can suffice only with
the diagonal elements. But if we want to go further and constrain the cosmological
parameters, optimally, we require the full covariance matrix.

Before delving into the theoretical aspects of how to compute the covariance matrix,
there are a few key properties worth mentioning. It is always symmetric, as the variance
between two elements does not change by changing the order of elements. Furthermore,
the diagonal is always non-negative, as it represents the variance around the mean value,
which by definition is non-negative. This is not true for the off-diagonal elements, as
the negative values just represent anti-covariance between the two elements.

From the covariance matrix, we can also compute the correlation matrix, which is a
normalized covariance matrix:

Cor(Xi, Xj) = Cov(Xi, Xj)
σiσj

, (2.65)

where the Xi and Xj in this work are the different triangle configurations, and the σi

and σj are the corresponding variances of these elements. This gives us a dimensionless
matrix, which is not scale-dependent anymore. Therefore, it ranges from 1 to −1.
This allows visualizing the correlations between different triangle configurations better,
giving a new perspective of the containing information. By definition all the values on
the diagonal will be 1, therefore it is useful only for the analysis of the off-diagonal
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correlation.

We will work in the Fourier space for simplicity reasons, and only at the end we will
transform our calculations to the configuration space. We will also assume a Gaussian
random field, which induces the constraint ⟨ζ̂⟩ = 0. The definition of the covariance
matrix is as follows:

Cov ≡ ⟨ζ̂(r1, r2)ζ̂(r′
1, r′

2)⟩. (2.66)

To compute it, we will use again the discrete Fourier transform, as explained in the
subsection 2.8.3. Thus, in the redshift space we again define the 3PCF for clarity:

ζ̂(r1, r2) =
∫

d3s

V
δRSD(s)δRSD(s + r1)δRSD(s + r2), (2.67)

where δRSD is the density field in redshift space, where further on the subscript RSD will
be discarded for simplicity. Based on the previous literature computations [65, 75, 71],
we can obtain the final form of the Covariance, represented as:

Covℓ1ℓ2mℓ′
1ℓ′

2m′(r1, r2; r′
1, r′

2) =(4π)3/2

V
(−1)m+m′(−1)ℓ1+ℓ2+ℓ′

1+ℓ′
2

×
∫

r2 dr
∑

ℓqℓpℓk

1√
(2ℓq + 1)(2ℓp + 1)(2ℓk + 1)

×
∑

J1J2J3

Dℓ1ℓ2J1Cℓ1ℓ2J2J3

(
J1 J2 J3

0 0 0

)

×
{

ξℓk
(r)
[
w1f

ℓq

J1ℓ1ℓ′
1
(r; r1, r′

1)f ℓp

J2ℓ2ℓ′
2
(r; r2, r′

2)

+ w2f
ℓq

J1ℓ1ℓ′
2
(r; r1, r′

1)f ℓp

J2ℓ2ℓ′
1
(r; r2, r′

2)
]

+
(

J1 J2 J3

S1 S2 S3

)

×
[
f

ℓq

J1ℓ1
(r; r1)

(
w3f

ℓp

J2ℓ2ℓ′
2
(r; r2, r′

2)f ℓk

J3ℓ′
1
(r; r′

1)δK
S1−m,S3−m′

+ w4f
ℓp

J2ℓ2ℓ′
1
(r; r2, r′

1)f ℓk

J3ℓ′
2
(r; r′

2)δK
S1−m,S3m′

)
+ f

ℓp

J2ℓ2
(r; r2)

(
w5f

ℓq

J1ℓ1ℓ′
2
(r; r1, r′

2)f ℓk

J3ℓ′
1
(r; r′

1)δK
S2m,S3−m′

+ w6f
ℓq

J1ℓ1ℓ′
1
(r; r1, r′

1)f ℓk

J3ℓ′
2
(r; r′

2)δK
S2m,S3m′

)]}
.

(2.68)
Here the wi are the weights that depend on the total angular momentum and the spin
m and m′. Then the f ℓ

Hℓ are the f-tensors from the 1D or 2D integral transforms,
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that represent the wavevector magnitude from the projected covariance. Here we
have obtained the important equation, where the covariance is used for the BipoSH
decomposition, which includes the spin moments m and m′. To apply it to the TripoSH
basis, we need to transform this covariance.

This can be done by a 2D linear change of coordinates between the two covariances,
shown in:

Covℓ′
1ℓ′

2L′

ℓ1ℓ2L = (2L + 1)(2L′ + 1)Hℓ1ℓ2LHℓ′
1ℓ′

2L′
∑

m,m′

(−1)m+m′
(

ℓ1 ℓ2 L

m −m 0

)

×
(

ℓ′
1 ℓ′

2 L′

m′ −m′ 0

)
Covℓ′

1ℓ′
2m′

ℓ1ℓ2m .

(2.69)

It is important to stress that we have assumed a Gaussian random field, which
yields several simplifications in our calculations. Although very useful, it does provide
a biased covariance matrix, as we discard the non-Gaussianity, which will be present
in low-redshift observations and theories. This has non-negligible effects, particularly
for the small scales. These effects can be estimated from the comparison between the
numerical covariance calculations, which have the base of non-Gaussianty included in
the simulations, and the theoretical. It has been shown in literature [75] that the most
affected are the small scales, where the Gaussian covariance gives underestimates of the
errors, as the theoretical ones are smaller than the ones obtained from the numerical
covariance matrix. As the diagonal of the covariance is used for the estimation of the
errors, it will both affect the analysis further in Chapter 4 and 5, where the SNR analysis
and forecasts of the parameters will be performed.
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3
Development of emulators for

clustering statistics

In the previous chapter, we have discovered the complexity of the underlying model of
the 3PCF. We also estimated the massive computational costs required to compute a
single model, described in depth in the subsection 2.8.3. If the 3PCF model is needed
only for one cosmology, it is not a big issue to compute it. The problems arise when
thousands of these models are needed for cosmological parameter constraining or any
other analysis.

Therefore, emulators are the most popular choice to speed up these calculations. In
this chapter I will describe what is an emulator, how it works and why is it needed in
the case of 3PCF models, which will be explained in the sections 3.1 and 3.2.

After that I will walk through the steps of building three emulators for matter power
spectrum, no wiggle power spectrum, and only wiggle power spectrum in the section
3.3. This is important for several reasons. Firstly, no wiggle and only wiggle power
spectra are needed for the calculation of the 3PCF, as seen in the equation 2.51. Thus,
it represents one approach to accelerate the 3PCF calculation, which will further come
true as a negligible speed-up. The main reason is to understand the possible ranges of
the cosmological parameters, develop strategies for building an emulator, explore the
hyperparameter space, and find the most suitable neural network architecture. It is
useful to start with the power spectrum, as several emulators have already been built for
it [69, 42, 12]. This enables us to compare the existing models and their accuracy, as well
as their hyperparameters, dataset length, and the choice for number of wavenumbers.

After that, I will present the results from the emulation of the 3PCF in the section
3.4. It will include the analysis of the neural network architecture on the basis of the
power spectrum strategies. It also includes a section 3.4.3, where we have made a useful
modification for the used Python library in the construction of the emulator. There
we explain the reasoning behind it and also show the improvements from the modified
version of this library.
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3.1 Machine learning tools and applications in cosmology

Machine learning (ML) has become a crucial tool in modern research. Especially in
astrophysics and cosmology, where we have more and more data, as well as increasingly
more complex theories. ML can find patterns that otherwise can be missed. By doing
so, it can also fasten the computation of complex theoretical models without losing
significant information. There are many ways to apply machine learning in science and
beyond, which will be briefly explored in the next section.

Machine learning — a subset of artificial intelligence (AI) that focuses on developing
algorithms and statistical models that enable computers to perform specific tasks without
explicit instructions. ML systems learn from data, identifying patterns and making
predictions or decisions based on new input data.

There are different kinds of algorithms. They are divided into two large categories:
supervised and unsupervised learning. Supervised learning is for labeled data. For
example, if I want to make an ML model to recognize asteroids in observations, I would
have to label the asteroids in my dataset. On the contrary, unsupervised learning is
without any labeling of the data. Therefore, the algorithm would be free to find any
patterns without any instructions.

In each case, there are various available algorithms that must be chosen according to
the needs. For example, classification algorithms range from simple models like logistic
regression, which provides binary predictions from a set of input variables, to more
sophisticated algorithms, such as decision trees or even convolution neural networks,
that can classify objects in an image.

In the case of this thesis, there is a need for a faster calculation of a difficult function,
given cosmological parameters. This is a complex task, therefore it reduces the possible
algorithms available. One of the options is Gaussian Process Regression (GPR). It is
a non-parametric, probabilistic model used for regression tasks. It can also give an
estimate of the uncertainty of those predictions. It is a powerful tool, but has high
computational costs for large datasets and complex problems. The other option is neural
networks, which can be used to build an emulator.

3.2 Neural networks and emulators

Neural networks represent a powerful class of models in the arsenal of statistical learning
tools, particularly suited for the emulation of complex cosmological functions like the
matter power spectrum or 3PCF. Unlike Gaussian processes, which inherently provide
a measure of uncertainty but can struggle with very large datasets or highly nonlinear
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relationships, neural networks excel in handling large volumes of data and capturing
difficult patterns through their deep learning architecture. These networks are structured
similarly to our brain — as a cluster of neurons connected to each other.

In the case of neural networks, they have two inherent structural properties — the
number of layers and the number of neurons in each layer. The basic structure can be
seen in Fig. 3.1.

Figure 3.1. Visualization of the principles of the neural network structure. ai are the
input parameters, in this case, they are three. Hidden layers in this case are only one
and consist of six neurons, denoted by their activation value Zi. The output layer is the
wanted function - either power spectrum or 3PCF. In the case of the power spectrum,
the number of neurons corresponds to the number of wavenumbers for which we want
the neural network to predict the power spectrum.

The input layer in our case is cosmological parameters. They can be any amount of
parameters, but in this example, they are three. Each of them has a value ai. The next
part is the “dark forest” of neural networks — hidden layers. These are the neurons
that find patterns and correlations in order to connect the input layers to the output
ones. In this example, there is one hidden layer, which consists of six neurons. Each
neuron is connected to all of the input parameters. Each connection or synapse has
weights, for example, the connection from a1 to Z1 has weight w11.

Z1 is obtained by a weighted sum of the input layers, so Z1 = a1w11 + a2w12 + a3w13.
That is not all, as then this weighted sum is passed to the activation function. It can
come in different forms, which depend on the use case, but the idea is to introduce non-
linearity in the algorithm and allow it to describe more complex functions. For example,
one of the activation functions can be a sigmoid. It is great for binary classification
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problems, as it gives the layer value of 0 or 1.

The last thing is the bias of the neuron. This allows us to have more control over
the activation of the neuron. For example, in the case of a sigmoid, the neuron would
be activated, if the weighted sum is bigger than zero. The addition of bias allows us to
tweak this threshold, which can activate the neuron. The final form for the activation
value Z1 for the neuron is:

Z1 = f(a1w11 + a2w12 + a3w13 + b1), (3.1)

where f is the activation function and b1 is the bias. The general expression for all of
the neurons can be written as a product of matrices:

σ
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a1

a3
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b0
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 = Z (3.2)

The equation 3.1 shows how the layer’s activation number can be calculated from
the input layer. Therefore, if there are multiple hidden layers, the needed calculations
for each neuron get exponentially more. In our example alone, there are 3 × 6 × 4 = 84
weights, if we assume that we have only 4 wavenumbers at which to predict power
spectrum.

These weights and biases need to be adjusted from their initial guesses to have solid
predictions. From the initial guess, we apply the cost function to our results, where it is
possible to see how the prediction of the function deviates from the dataset function. It
averages the cost over the dataset, and then we get a singular value, which indicates
how well our model performs.

To minimize this cost, we use the method of gradient descent. We can apply a
gradient to our cost function ∇C(wi). In our simple example, it is already a function
of 84 parameters. From this calculation the weights of our algorithm are iteratively
adjusted, in order to find the minimum of our cost function.

This is done by using backpropagation. This is a method in which we start from
the end of the algorithm, therefore the output layer. If we take one of the neurons from
Fig. 3.1, for example, the k1, from the cost function we know that the power spectrum
value should be either higher or lower there, given a certain cosmology. Thus, we look
at all the synapses connected to it, as well as the previous layer activations. There we
can adjust the weights and biases to ensure that the value is getting closer to the true
value. In the same manner, it keeps going layer by layer backward and repeats it for
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every output neuron. Then it is repeated for every power spectra in the data. There is
a combination of “tweaks and nudges” for each weight and bias, and all of them are
averaged over, to obtain the overall best-performing network. The data is separated
into smaller batches for the computation of gradient descent, which is called stochastic
gradient descent. This will be further explained later.

To summarize, training a neural network emulator involves backpropagation and
gradient descent algorithms to minimize the error between the predicted and actual
outputs from training datasets derived from simulations. The flexibility of neural
networks allows them to adapt their internal parameters to fit complex, multidimensional
data, making them exceptionally useful when the parameter space is vast and the
relationships are nonlinear.

3.2.1 Designing the neural network

Even though the main idea of the neural network seems to be relatively simple, building
a successful one involves multiple considerations that must be carefully addressed. To
begin with, it is crucial to choose an appropriate task for it. It depends on the available
resources and the complexity of the problem. For example, if we wanted to build a
neural network for twenty cosmological parameters, it would require a very large dataset,
in order to have a good sampling of it. So one problem is generating a sufficiently large
dataset, but the other is training a model with a very large dataset, which can also
take a considerable amount of time. Also, the parameters are important, because, if
we have limited choice of them, we must pick the ones containing the largest amount
of information. Therefore, it is important to understand the capabilities of our own
resources, regarding the problem at hand.

Training Techniques

This brings us to the choice and generation of our data. Training an emulator involves
careful Data Preparation: Generating a training set from a theoretical framework, which
systematically explores the parameter space. It is crucial to have enough training data
for the neural network to capture all the complexities and behavior of the function. For
different training datasets a different model design is needed, but, if training data is not
sufficient, even the most accurately chosen model design will not be accurate.

To ensure a well-spread parameter space, Latin Hypercube sampling (LHS) is used
in this work. In LHS, the range of each input variable is divided into equally probable
intervals. Then, for each variable, a value is randomly selected from each interval. The
sampling is structured in such a way that all intervals are equally sampled, but each
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value is only used once. This process ensures that the sample is spread across the entire
input space, making it the most representative of the possible combinations of input
variables.

After that, some data might need some processing. It can be either normalizing or
standardizing the input parameters to ensure they are on a similar scale, which helps in
speeding up the convergence during training. In the case of the power spectrum, it is
better to convert the power spectrum in logarithmic units, as then it has more evenly
spread data, which is easier to process for the neural network.

Data Splitting: The dataset should be divided into training, validation, and test
sets. The training set is used to fit the model, the validation set is used to tune the
model’s hyperparameters and prevent overfitting, and the test set is used to evaluate
the model’s performance after the training phase. A common split ratio is 70% training,
15% validation, and 15% test. In the case of the power spectrum, it was chosen to have
10% test and validation datasets, as the amount of data is large enough. In the case of
3PCF, this choice was analyzed separately. The test data is generated separately from
the training set, to emphasize that the testing set was not taken as a fraction of the
training set.

Hyperparameters in neural network

The architecture of a neural network must balance its complexity and performance
to effectively model the function across the desired parameter space. This involves
deciding all the hyperparameters of the neural network: the number of layers and nodes
in a neural network, as well as batch size, learning rates, gradient accumulation steps,
patience values, and the maximum epoch. Let us see how to choose each one of them:

• Number of layers: The number of layers in a neural network defines its depth,
which influences its capacity to learn complex patterns. For functions such as the
power spectrum and 3PCF, a deeper network might be necessary to capture the
intricate relationships within the data. On the other hand, too many layers can
induce longer computations and can lead to overfitting. A good start is 3 layers,
and depending on the results it can be increased or decreased.

• Number of neurons in each layer: The number of neurons in each layer
determines the network’s width, affecting its ability to process information. A
larger number of neurons can provide more computational power, as discussed
about the number of operations needed to estimate the weights of each synapse,
but also risks overfitting, especially with smaller datasets. A common practice
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is to pick the number of neurons as a power of two. Usually, a good start is a
number between the number of input and output nodes, but it depends on each
case individually, as it depends on the complexity of the functions and even on
the available dataset.

• Batch size: Batch size refers to the number of training samples used to update
the network’s weights once, which goes back to the previously mentioned stochastic
gradient descent method. A smaller batch size often leads to a noisier gradient,
which is computationally faster and can help escape local minima, but may also
cause the training process to be unstable. Larger batches provide a more accurate
estimate of the gradient but consume more memory and computational resources.

• Learning rates: The learning rate governs the size of the steps the model takes in
the direction of minimizing the loss function. It determines how quickly or slowly a
model updates its weights in response to the estimated error during each iteration
of training. A learning rate that is too high can cause the model to converge
too quickly to a suboptimal solution or even diverge, skipping over the optimal
solution entirely. Conversely, a learning rate that is too low can lead to a very
slow convergence process, where the model might get stuck in a local minimum or
require excessive training time to reach an acceptable level of accuracy.

• Gradient Accumulation Steps: Gradient accumulation is a technique used
to effectively increase the batch size when limited memory is a constraint. In
standard training, the model updates its weights after every batch of data is
processed. However, when using gradient accumulation, instead of updating the
model’s weights after each batch, the gradients are accumulated over several
batches before performing an update. This parameter is particularly useful when
dealing with very large datasets or when using particularly memory-intensive
models. The number of steps depends on the specific computational limitations.

• Patience Values: Patience values are used as an early stopping parameter, that
allows to save computational resources, as well as prevent overfitting. It determines
how many epochs should the algorithm keep training without any improvement
in the cost function. Setting this parameter requires balancing between allowing
adequate training time and preventing excessive training.

• Maximum Epochs: The maximum epochs parameter sets a hard limit on the
number of times the learning algorithm will work through the entire training
dataset. This prevents the model from training indefinitely and is often set based
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on previous tries. If the model converges reliably within a certain number of
epochs, it is a good idea to set it slightly higher to ensure convergence.

• Activation function: The activation function is the one that determines the
activation value of the neuron, taking as the input the weighted sum of all the
previous layer activation values, weights, and its own bias. It gives the non-linear
nature of the network, allowing to compute more complex problems with higher
accuracy. There are numerous types, among the most popular being — sigmoid
function, hyperbolic tangent (tanh), or Rectified Linear Unit (ReLU). Sometimes
custom functions are made, in order to fit the needs of the user.

• Optimizers: Before, we only mentioned the gradient descent method as a possible
optimizer. It turns out that there are many other options, and even better ones,
to perform this task. But in general, optimizers are responsible for adjusting
the model’s weights to minimize the loss function during learning. They play
a crucial role in determining how the model learns from data and how quickly
it converges to a solution. Optimizers work by calculating the gradients of the
loss function with respect to the model’s parameters and then updating those
parameters to reduce the loss. There are various types of optimizers, each with
its own advantages and trade-offs.

The most basic optimizer is Gradient Descent, which updates all weights in the
network simultaneously after calculating the gradient of the cost function. A
more practical option is Stochastic Gradient Descent (SGD), a variant of the
basic gradient descent, which updates the model parameters more frequently,
one mini-batch at a time. While this introduces more noise into the updates, it
can also help the model escape local minima, making it a more robust choice in
practice.

RMSprop (Root Mean Square Propagation) is another powerful optimizer that
divides the learning rate by a running average of recent gradient magnitudes. This
approach helps stabilize the learning process, especially in situations with noisy
or highly dynamic data. Adam (Adaptive Moment Estimation), one of the most
widely used optimizers today, combines the strengths of AdaGrad and RMSprop.
It adaptively adjusts the learning rate for each parameter based on estimates of
the first and second moments of the gradients, making it particularly effective for
handling sparse gradients and noisy data.

Given its robustness and efficiency across a wide range of problems, Adam is the
optimizer of choice for many modern neural networks, including the models used
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in this work. Each optimizer has its unique strengths and weaknesses, making it
essential to select one that aligns with the specific characteristics of the data and
the training objectives of the neural network.

• Loss: It is critical to evaluate how well the model is performing during training.
The loss function quantifies the difference between the predicted outputs of the
neural network and the actual target values from the training data. One of the
most common loss functions is the Mean Squared Error (MSE), which is defined
as:

MSE = 1
n

n∑
i=1

(yi − ŷi)2, (3.3)

where n is the number of data points, yi is the true value, while the ŷi is the
predicted value. This function penalizes large deviations more heavily, which
makes it sensitive to outliers in the data.

The choice of the loss function has a direct impact on the model’s learning process,
as it conducts how the weights are adjusted. There are also different loss functions,
such as Mean absolute error, and some more complicated ones, for example, Log
loss, Huber loss or Hinge loss. In this work, MSE is used, which is also the most
widely used in neural networks.

3.2.2 Emulators and Cosmopower

The goal of this work is to build an emulator for the 3PCF. But what is an emulator?
An emulator is a machine learning-based model designed to replicate the behavior of a
complex and computationally expensive model. Essentially, it is based on the training
of a neural network, and from a certain input it predicts an accurate output, in our case
power spectrum or 3PCF, with significantly lower computational costs. It is a great
tool for very complex models that can take several minutes or even hours to produce a
result, which can greatly limit its use in science. Emulators allow to acquire an output
in less than a second, which enables more efficient exploration of complex models and
aids in the interpretation of extensive cosmological data.

In this work, we used an existing library for building an emulator — CosmoPower 1

[69]. It uses machine learning to accelerate the Bayesian inference. Although it is made
for the field of cosmology, it can also be generalized to other scientific fields. It works
based on neural networks, and it is used mostly to constrain cosmological parameters. It
already provides a few emulators, which are for CMB and matter power spectra, where

1The CosmoPower package can be found in: https://github.com/alessiospuriomancini/cosmopower
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they cover a wide range of cosmological parameters.
CosmoPower provides two frameworks for the neural networks. One is the standard

one, which was explained at the beginning of the chapter and is represented by Fig.
3.1, but the other option is neural networks with the addition of Principal component
analysis (PCA). PCA transforms the data into a new coordinate system, where the
first axis (principal component) captures the most variance in the data, the second axis
captures the second most variance, and so on. By retaining only the first few principal
components, you can reduce the dimensionality of the data while preserving most of
the variability. It allows for speeding up calculations and sometimes making the models
more effective, but in the scope of this work, it was not used, as there was no need for it.

It is worth noting that Cosmopower implements a custom activation function, in
the form of:

f(x) =
(

γ +
(
1 + e−β⊙x

)−1
⊙ (1 − γ)

)
⊙ x, (3.4)

where γ and β are parameters that are optimized in the same way as the rest of the
neural network parameters. This choice was made, as the authors of the code saw a
slight increase in accuracy over the traditional activation functions, such as ReLU and
tanh.

3.3 Emulating matter power spectrum

Even though the main goal of this Thesis is to produce an emulator for the 3PCF, there
are several reasons to start with the emulation of the power spectrum. Firstly, one of
the inputs for the calculation of the 3PCF is the power spectrum. Thus, building an
emulator for the power spectrum makes the dataset generation for the 3PCF faster. It
will be later seen why this is not a crucial step.

Secondly, there are no emulators for the redshift space 3PCF, but there are already
many for the power spectrum. Hence, it is useful to first understand the intricacies
of CosmoPower, parameter limits, neural network structures, and the structure of the
pipeline, before delving into 3PCF. In this way, it is possible to compare the accuracy
of the model with the literature and evaluate the success of the emulator by doing so.

To build an emulator, the following steps were conducted. Firstly, the choice of
the cosmological parameters and their ranges were chosen for the training, as well
as the number of data to be generated. Secondly, a deep dive into the choice of
hyperparameters and the input data was analyzed to find the best-performing model.
Thirdly, we performed analysis for any other reasons that could have affected the final
accuracy. In this case, we found out that certain cosmological parameter constraints
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Cosmological parameter Minimal value Maximal value
Ωm 0.05 0.5
Ωb 0.02 0.08
h 0.5 0.9
ns 0.6 1.3

Table 3.1. Cosmological parameter ranges, that are used for the power spectrum
emulator

must be implemented. Finally, we can compare our best models with the literature and
the desired accuracy that we are seeking to obtain.

3.3.1 Choosing the parameters and their range

To emulate the matter power spectrum, the first step is to define what parameters will
be emulated and what parameters will be fixed. As a base of parameters, the results
from the mission Planck [3] will be taken. For the emulator, we chose to vary four
parameters, in particular Ωm, Ωb, h, and nspec. This choice was made based on previous
literature on power spectrum emulators [69, 40], as well as choosing parameters, that
affect the shape of the function, not only the amplitude [58]. Their values are depicted
in Table 3.1.

To explore what are the effects on the matter power spectrum by each of these four
parameters, the cosmology is fixed and only one of the parameters is changed within the
previously mentioned ranges. The results can be seen in Fig. 3.2. It can be seen that the
chosen wide range of parameter values has a great effect on the matter power spectrum.
The most notable effect is seen by changing the Ωm parameter. When the ratio of Ωm

Ωb

is close to unity, the BAO oscillations in the power spectrum play a dominant role in its
shape.

3.3.2 Generating the training and testing dataset

When the parameters have been defined, the next step is to generate the training
and testing dataset. To do so, the “CosmoBolognaLib” [48] library is used. The
“CosmoBolognaLib” is a comprehensive software library developed and maintained by
cosmologists at the University of Bologna. It provides a suite of C++ and Python tools
specifically designed to support the statistical analysis and computations of cosmological
data. “CosmoBolognaLib” includes functionalities for calculating matter power spectrum,
two-point and three-point correlation functions, modeling the redshift-space distortions,
and estimating the covariance matrices, among other tasks. This library combines
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Figure 3.2. Cosmology effect on power spectrum; Matter power spectrum with
parameters shown in Table 3.1, where the rest are fixed to the values from Planck results
in 2018 [3]. (Top right) Varying matter density. Here for the lowest Ωm also Ωb was
varied, as otherwise, the function diverges; (Top left) Varying baryon density; (Bottom
right) Varying dimensionless Hubble parameter; (Bottom left) Varying spectral index.

robust, scientifically validated methods with an efficient computing framework, which
can be freely used by the scientific community.

With “CosmoBolognaLib” the matter power spectrum was calculated for the training
and testing dataset. In particular, the “Code for Anisotropies in the Microwave
Background” (CAMB) [45] was used for this purpose. “CAMB” is a well-established
cosmological software package used primarily to calculate cosmic microwave background
(CMB) anisotropies and matter power spectra. It is based on the CMBFAST code and
is used by most cosmologists studying the early Universe. The software computes the
evolution of perturbations in the photon-baryon fluid and provides detailed predictions
of the CMB anisotropies, as well as the matter power spectrum at both linear and
non-linear scales. “CAMB” can be run as a standalone application or integrated with
Python. Its versatility also extends to modifications for alternative cosmologies, making
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it adaptable to various theoretical frameworks. It is the most precise tool to calculate the
matter power spectrum in the field, and, as it is implemented in the “CosmoBolognaLib”,
it is used in this work for calculations.

To understand the amount of spectra needed for the training model, the most robust
method is to see when the model will converge at a particular accuracy. Therefore, it is
best to compute a large amount of data and then choose the appropriate amount for
the training. In this work, 200’000 spectra were calculated at the start. This number
was chosen for several reasons:

• Parameters and their ranges: The size of the training set depends on the
number of parameters and how much they vary. The more the parameters, the
more degrees of freedom the function has. That can lead to degeneracy between
parameters and higher complexity of the function. For these reasons, a larger
dataset is required for the emulator to have the capability to grasp the features of
the function.

• Complexity of the function: dataset is also dependent on the complexity of
the function itself. In the case of matter power spectrum, the shape is relatively
simple, except for the Baryonic Acoustic Oscillations (BAO). They are responsible
for the wiggles in the function, and at k ∼ 0.1 in the Fig. 3.2 it can be seen that in
the case of a low Ωm, the function gets very complex, therefore harder to emulate.

• Literature: Even though the parameters and complexity of the function are
well understood, some reference is needed to estimate the needed amount of data.
There have been many published works about the emulation of the matter power
spectrum. For example, in the [69] they had a training set of 180’000 spectra.

Taking all of this into account, it was chosen to have 200’000 matter power spectra
generated with “CAMB”, which is implemented in “CosmoBolognaLib”. Even though
in the mentioned literature [69] they had more parameters, in this work the range of
parameter values is higher, which gives a higher complexity of the function. Therefore,
an even larger dataset could be considered.

3.3.3 Training

At this point, the training and testing dataset has been generated, and the main
components of the neural network have been covered. Despite the general idea of
choosing all the components being clear, it still requires experimenting with different
configurations to reach a design for the neural network that satisfies the needed accuracy.
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To evaluate the success of the training, one of the most general metrics is the loss.
There are different ways to calculate it, but the most general, and also implemented in
CosmoPower, is the Mean square error, which is the same as in the equation 3.3. This
is a useful tool to compare different models between each other, but it does not provide
information on where the largest errors are.

To have more information on the accuracy of the trained emulator, the percentage
difference is used, as shown in the equation 3.5:

Percentage Difference =
(

|P (true)
k − P

(em)
k |

P
(true)
k

)
× 100% (3.5)

Where P
(true)
k represents the matter power spectrum, either excluding or including

BAO features, computed using CAMB for the full matter P (k), and P
(em)
k is the matter

power spectrum obtained from the emulated model. After using this equation for each
of the spectra in the testing dataset, a median can be taken at each wavenumber k.
This gives the median percentage difference of a particular model. In this case, the
median is used instead of the average for the reason not to give too much weight to the
extreme cases, where the emulated power spectrum can have uncharacteristically low or
high accuracy. This is a great tool to compare different models and to pick the one that
gives the finest results.

3.3.4 Emulating matter P (k) without BAO features

Even though P (k) calculation without BAO features, which will be further denoted also
as no wiggle P (k), includes calculating the matter power spectrum itself, it is better to
start with this function, as it is simpler. Therefore, it should be more straightforward
to emulate and compare different models between each other.

There are multiple ways to obtain the matter power spectrum without BAO features
— using spherical Gaussian filters on 3D power spectra, 1D Gaussian filters on a
logarithmic scale, or basis spline. In this work, 1D Gaussian filters were used [77]. The
method can be summarized in the Equation 3.6:

Pnw(k) = Papprox(k)F [P (k)/Papprox(k)], (3.6)

where P (k) is the initial power spectrum which will be smoothed, Papprox(k) is the
initial broad band approximation curve, which is BAO feature free — it serves the
purpose of reducing the amplitude range and F is the 1D Gaussian filter.

The training set was chosen to be of 200000 spectra, and the number of k was
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hyperparameter Value
Layers 4
Neurons 512
Batch size 512
Learning rate 1e-1 to 1e-7
Patience value 20
Max epochs 2000
Validation split 20%
Optimizer AdamW

Table 3.2. The reference hyperparameters for the matter no wiggle power spectrum.

picked to be 700, in order to accurately remove the BAO features, as well as to improve
the estimate of the slope of the P (k) at the small and large scale. The Ωm range was
reduced from 0.1 to 0.5 from the analysis of the section 3.3.5.

The first thing to do would be to find the best hyperparameters for the model. As a
reference model, the neural structure with the hyperparameters displayed in Table 3.2
was chosen. The reason for these specific hyperparameters is that in the literature [69]
it was found that this model structure is the best for their emulated P (k). The only
change is the batch size, where it was reduced from 1024 to 512 to avoid overfitting.
This model was compared with different models, by changing the number of spectra in
the dataset, neurons in a layer, number of layers, different optimizers, and batch size.
The result of this analysis can be seen in Fig. 3.3 .

There are many interesting features to be seen. To begin with, the dataset size
impacts the accuracy of the model greatly. Thus, it solidifies the choice of picking the
dataset that large.

Further on, also number of neurons shows a predictable decrease in the percentage
difference. This is expected, as the neuron connections that are not important will
simply have less weight given to them. Therefore, even if more neurons are chosen than
optimally would be required, it usually does not have a negative effect.

The choice of layers is more complex. From Fig. 3.3 (c), two models have similar
accuracy — with four and three layers. Even two layers show good accuracy. From this
graph, it can be concluded that an insufficient number of layers can lead to underfitting,
where the network lacks the capacity to capture the underlying patterns in the data.
Conversely, an excessive number of layers can result in overfitting, where the network
becomes overly complex and sensitive to noise in the training data, leading to poor
generalization. It seems that the four layers are not large enough to be put in the
category of overfitting. Even though the three-layer model overall performs better, it
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Figure 3.3. Comparison of hyperparameters; Median percentage difference calculated
for: (a) Changing number of spectra in the dataset, (b) Changing the number of
neurons in the layers, (c) Changing the number of layers, (d) Changing the optimizers,
(e) Changing the batch size, where all of them are fixed, except the "1000 to 6000",
which varies in each epoch. The reference one is shown in Table 3.2.

60



3.3. EMULATING MATTER POWER SPECTRUM

is worth noting that the slope of the percentage difference in the large scales is bigger
than in the four-layer model. This indicates that also the actual slope of the function is
estimated worse.

Optimizers have a very large impact. It can be seen that some optimizers can even
diverge, therefore not producing a valuable model. AdamW is outperforming Adam and
Lion, and it will be chosen as the optimizer also for other models.

Lastly, batch size, similar to the influence of layers, can lead to overfitting or
underfitting, therefore a careful choice must be made. Here it can be seen that a large
batch size is not performing better, as it most probably overfits the data. On the other
hand, even though a batch size of 256 is a good model, it can be seen that at small and
large wavenumber k it performs worse, which could be due to underfitting. This proves
that the batch size of 512 is the most optimal.

hyperparameter Reference
model

batch
size 256

3 layers 256
neurons

log10

Layers 4 4 3 4 4
Neurons 512 512 512 256 512
Batch size 256 256 512 512 512
Learning rate 1e-1 to

1e-7
1e-1 to
1e-7

1e-1 to
1e-7

1e-1 to
1e-7

1e-1 to
1e-7

Patience value 20 20 20 20 20
Max epochs 2000 2000 2000 2000 2000
Validation split 15% 15% 15% 15% 15%
Optimizer AdamW AdamW AdamW AdamW AdamW
Log values no no no no yes
Average percentage difference 5.53e-3 5.52e-3 4.99e-3 7.65e-3 3.00e-2

Table 3.3. The best hyperparameters for the matter power spectrum with no wiggles.

Apart from these, there are also not-so-trivial choices to be made. For example, the
number of points in the spectra, therefore the number of wavenumber k in the given
range. Training the model with the reference parameters in Table 3.2, the results can
be seen in Fig. 3.4. It appears that even by reducing the number of wavenumber k by
half, the effect is minimal. This means that in further analysis it can be reduced.

In Fig. 3.4 the influence of training the neural network when spectra are in logarith-
mic scale is displayed. This is a useful test because the spectra span in several orders of
amplitude. By putting our data on a logarithmic scale, it changes the distribution and
amplitude of our data, possibly allowing for the model to find the relationships between
points more easily. Further on, as the models work on gradient descent, the model can

61



3.3. EMULATING MATTER POWER SPECTRUM

Figure 3.4. Tests for improving the emulator; Median percentage difference calculated
for smaller amount of wavenumbers k. In this case 350 points. A second test was
performed for a model that is trained on logarithmic data. Both of these are compared
with the reference spectra in Table 3.2.

converge in a more stable fashion and more accurately. Nevertheless, an improvement
was not found in this case, as the logarithmically trained model is significantly worse
in this case. Although the slope of the percentage difference is more flat, thus, even
though it starts with a worse accuracy of an order, at higher k the model performs
even better. Hence, this idea can be tried in other models. It will be further seen in
the section 3.4.3, that the different scaling of input data is significant, but to do so,
modifications of the CosmoPower must be made.

To finalize the choice of the most appropriate emulator for the matter power spectrum
of no wiggles, five of the best models were compared between each other in Fig. 3.5 and
summarized in Table 3.3 together with their average percentage difference values. It
can be seen that the three-layer model outperforms the rest, but for now, there is no
information about how widely spread is the accuracy among different combinations of
parameters.

To analyze that, the reference plot and three-layer model were plotted together with
their percentile areas between 14th and 86th percentile in Fig. 3.6. From this, it can
be observed that both models are extremely similar, but the three-layer model area is
narrower, hence it is performing better. Therefore, the conclusion is that the best model
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Figure 3.5. Best models for no wiggle emulator; Median percentage difference calculated
for the best models of the hyperparameter and other value analysis of the neural network,
summarized in 3.2.

to emulate the matter power spectrum with no wiggles is model “3 layers” in Fig. 3.5.

Figure 3.6. Two best model comparisons; Median percentage difference with percentiles
calculated for the reference model and three-layer model for no wiggle P (k).
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3.3.5 Emulating matter P (k)

As with the no wiggle P (k), also here it is important to find the best parameters. But
before that, learning from the previous lessons of the analysis of no wiggle P (k), the
training set can be changed. It was seen that 700 points were not strictly necessary for
high accuracy, therefore for matter P (k) it is reduced to 500. The number of spectra is
generated also of the number 200′000, but it will be tested if convergence is reached for
a smaller dataset. The parameter range for training the models is shown in Table 3.1.
The analysis of the parameter ranges described below has been applied to no wiggle
and only wiggle P (k).

With that being said, now the best hyperparameters for the model must be found.
To save some time, it is useful not to take the full training set, but still a large enough
portion of it to have all the parameter space be adequately represented. In that case,
the model design will be also applicable to the full dataset.

After defining the reference spectra seen in Table 3.4, now it can be explored what
number of power spectra would be enough to reach a convergence of the accuracy of
the model. To do so, percentage difference plots are created for the same model but
with different sizes of training datasets seen in Fig. 3.7. It is clear that it follows the
expected behavior — the bigger the dataset, the better the performance of the model.
At the same time, it can be seen that convergence has been achieved with this particular
model at 150′000 spectra.

The other conclusion is that there is a steep increase in the percentage difference
at the BAO scale, colored by the red region, which reduces the accuracy by an order,
therefore at the largest scales, the difference is already of two orders. Even with that,
the accuracy is still sub-percent, which is the aimed accuracy of the model.

To further analyze the reason for this steep increase in percentage difference, pa-

hyperparameter Value
Layers 4
Neurons 512
Batch size 1024
Learning rate 1e-1 to 1e-7
Patience value 20
Max epochs 2000
Validation split 20%
Optimizer AdamW

Table 3.4. The reference hyperparameters for the matter power spectrum.
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Figure 3.7. Dataset size comparison; Matter power spectrum trained on hyperparame-
ters in Table 3.4 with different sizes of the training set. The red region indicates where
the BAO features appear in the P (k).

rameters were taken separately at different ranges and the percentage difference of the
neural network was estimated, shown in Fig. 3.8.

It can be seen that the largest effect is from the Ωm parameter, when it has a small
value of around 0.1 or less, or from the ratio Ωm

Ωb
, mainly when it is smaller than 1.2.

From closer inspection, it is clear that the ratio is the main source of error, which is
due to the dominant presence of the BAO. Another problem might appear at those
scales, which are nearly nonphysical parameter combinations. That is also confirmed
by separately plotting individual cases of small Ωm

Ωb
, shown in Fig. 3.9. It can be seen

that there are extreme cosmological parameter values that produce a nonphysical power
spectrum in comparison to a well-behaved power spectrum. This means that the model
is trained on nonphysical power spectra, which can greatly affect the final accuracy of
the model. To see the effects of that, in one case all the spectra with Ωm < 0.1 were
removed, and in the other case all spectra with Ωm

Ωb
< 1.2 were removed. These models

were trained and can be seen in Fig. 3.10. This clearly shows an improved model
accuracy at high k and a similar accuracy at lower k. Even though the Ωm

Ωb
< 1.2 model

seems to be the best performing, as the difference is not significant, there is slightly
worse accuracy at lower k and for easier implementation in the following tasks, it was
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Figure 3.8. Identifying cosmological parameters that decrease emulator accuracy;
Median percentage difference of the same model shown in Table 3.4, but slicing specific
parameters in different ranges (a) Hubble constant h (b) Spectral index ns (c) Matter
density Ωm (d) Matter and baryon density ratio Ωm

Ωb
(e) Baryon density Ωb.
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Figure 3.9. Example of bad cosmological parameters for P (k); Matter power spectrum
calculated with CAMB by CBL compared with emulated matter power spectrum.
Top figure: Well-emulated matter power spectrum compared to CAMB calculation;
Bottom figure: Extreme cosmological parameter that breaks the CAMB and emulator
calculation.

chosen to restrict the parameter range as Ωm > 0.1. This would also explain why in the
Fig. 3.7 the dataset of 115′000 points has even slightly higher accuracy at larger k -
because it had fewer spectra with nonphysical parameter ranges, meaning low ratio of
Ωm
Ωb

. The conclusions of this analysis were also applied to the no wiggle P (k) in section
3.3.4 and only wiggle P (k) in section 3.3.6.
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Figure 3.10. Emulator comparison with modified parameter ranges; Median percentage
difference calculated for trained models for a dataset of 147457 spectra, dataset where
spectra with Ωm < 0.1 were removed and dataset where spectra with Ωm

Ωb
< 1.2 were

removed.

Comparing the Fig. 3.10 and Fig. 3.5, it can be clearly seen that there is no steep
increase at the BAO for no wiggle P (k) percentage difference plots. This proves the
hypothesis that it is due to the BAO wiggles. To reduce the effects of it, the number
of points at this scale can be increased. Thus, we trained models where there are 150
points in k from 0.001 to 0.01, 300 points from 0.01 to 0.15 and 150 points from 0.15
to 1. In total, this gives 600 points in the spectra, where half of them are at the BAO
scale. As this gives increased complexity of the non-linearity in the distribution, the
number of spectra was increased to 250′000 for the training of the models.

The best models together with two reference data can be seen in Table 3.5, and their
median percentage difference is visualized in Fig. 3.11. The behavior of the best model
with non-linear k distribution is interesting, as there is a significant increase in the
accuracy at the BAO scale, but a reduction of it at small k. The most plausible reason
is that there was a shift in the accuracy — the better emulated spectra at the BAO
scale led to a worse estimation of the slope of the small scale, therefore significantly
increasing the percentage difference. This could be an implication of overfitting. It is
important to note that a similar analysis was made in section 3.3.4, but a better model
was not found. Nevertheless, the obtained accuracy is good, as overall it is sub-percent.

To fully conclude that the Model nonlin-2 is the best, the percentile analysis was

68



3.3. EMULATING MATTER POWER SPECTRUM

hyperparameter Model lin-1 Model lin-2 Model
nonlin-1

Model
nonlin-2

Training set spectra 147 457 115 000 250 000 250 000
Layers 4 4 4 4
Neurons 512 512 512 1024 to 256
Batch size 1024 1024 1024 1024
Learning rate 1e-1 to 1e-7 1e-1 to 1e-7 1e-1 to 1e-7 1e-1 to 1e-7
Patience value 20 20 20 20
Max epochs 2000 2000 2000 2000
Validation split 15% 15% 15% 15%
Optimizer AdamW AdamW AdamW AdamW
Non-linear k no no yes yes
Average percentage difference 1.27e-1 1.08e-1 8.93e-2 6.28e-2

Table 3.5. The best hyperparameters for the matter power spectrum.

Figure 3.11. Best emulator comparison; Median percentage difference calculated for
the best models emulating the matter power spectrum. Model parameters are shown in
Table 3.5.

conducted in comparison to the reference model, shown in Fig. 3.12. Here it is clear
that the Model nonlin-2 has a lot less scatter overall and is a better choice for the
emulation of the matter power spectrum P (k).
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Figure 3.12. Best matter power spectrum emulator comparison with percentile regions;
Median percentage difference with percentiles between 14th and 86th displayed for
the two best models of the matter power spectrum emulation. Model 2 represents the
"Model nonlin-2" in the Table 3.5.

3.3.6 Emulating matter P (k) with only BAO features

The last step for emulating functions related to the matter power spectrum is the only
BAO feature part. It is simply calculated as the subtraction between the matter P (k)
and no wiggle P (k). Therefore, a rightful question would be — why emulate it?

In the last sections, it was shown that with the emulation of P (k) and no wiggle
P (k) accuracy of 0.01% could be reached, which is very good for the required scientific
case. When subtracting both functions, the amplitude changes by 2 orders or more.
Thus, the percentage difference of the only wiggles would increase by two or more orders,
if it would be calculated from the emulated spectra. With this reasoning, it is beneficial
to emulate it and try to reach a higher accuracy.

A large dataset was created of 250′000 spectra. It was calculated by picking a kernel
size of 0.25 for the no-wiggle spectra. An extensive analysis was made to find the best
hyperparameters of the model. The best five model parameters are displayed in Table
3.6. Here it can be seen that there is a new row “Wavenumber”, that wasn’t present in
the previous tables. This means that “regular” trains the model, where wavenumber k

goes from 0.001 to 1, instead “log” is executing the training, where the wavenumber is
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hyperparameter Model
1

Model
2

Model
3

Model
4

Model
5

Number of layers 5 4 4 4 4
Number of neurons 512 512 512 512 [1024,

512,
512,
256]

Batch size 1024 1024 to
10188

1024 1024 1024

Learning rate 1e-2 to
1e-7

1e-2 to
1e-7

1e-2 to
1e-7

1e-1 to
1e-7

1e-1 to
1e-7

Patience value 20 20 20 20 20
Max epochs 2000 2000 2000 2000 2000
Validation split 15% 15% 15% 15% 15%
Optimizer AdamW AdamW AdamW AdamW AdamW
Wavenumber log regular log regular regular
Average median percentage difference 2.32e-1 2.63e-1 2.88e-1 3.36e-1 3.73e-1

Table 3.6. The five best hyperparameters for the only wiggle matter power spectrum.

in logarithmic units, therefore from −3 to 0. The idea behind this choice is that the
function is distributed more evenly, therefore the gradient calculation for the weights is
more efficient.

The overall performance of all the tested models can be seen in the plot 3.13. Due to
the abundance of models, it is only an indicative plot of the overall behavior of different
models, and the best-performing emulators have been summarized in Table 3.6. Here
the best model in gray color corresponds to Model 1. In this plot, there are also salmon
color regions that specify the regions where the only wiggle P (k) values are nearly zero,
where an example is shown in Fig. 3.14. These regions are of little interest for the
determination of the accuracy of the model, as the percentage difference will be always
high in the case where the denominator in Equation 3.5 will be nearly zero. For this
reason, the estimated accuracy is only determined between the salmon-colored regions.
It is important to note that these regions were hand-picked, as there is no easy way to
pick them — they differentiate from one spectrum to another due to different cosmology,
and the function is only gradually departing from the zero value. A precise estimate is
also not needed, as this is only indicative. From further analysis of the Fig. 3.13, the
two peaks in the middle do not correspond to the highest or lowest amplitudes of the
only wiggle P (k), but they are also due to the zero crossings of the function.

Even though the accuracy of these models is worse by almost an order, it is again
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important to stress out the difference in amplitudes between the previous spectra and
only wiggle P (k). This is one of the reasons for the slightly worse accuracy model. The
other is simply the fact that this function is more complex — that is also the reason
why the best model is with 5 layers instead of 4.

With the best model in hand, it is possible to compare the accuracy between the
emulated only wiggle P (k) and the subtraction between emulated P (k) and no wiggle
P (k). As expected, the emulated only wiggle P (k) is better, as seen in Fig. 3.15.

Figure 3.13. Only wiggle P (k) emulator performances; Median percentage difference
calculated for different models shown in Table 3.6 trained on full dataset of 250000
spectra of matter power spectrum with only BAO wiggle.
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Figure 3.14. Only wiggle emulator example; Only wiggle matter power spectrum with
the blue line indicating the calculation done with python CAMB, but the orange line is
the emulated one. Salmon color regions are the same regions as in 3.6, indicating when
the function is close to zero.

Although it is surprising that the difference is that large — it can reach more than two
orders difference. This proves that even though the accuracy of P (k) and no wiggles
P (k) models is good enough for their planned usage, their accuracy is not good enough
to produce only wiggle P (k) for the later on usage for three-point correlation function
calculation.

The summary of the obtained emulators for the matter power spectrum, no wiggle
power spectrum, and only wiggle power spectrum can be seen in Fig. 3.16. It can be
seen that all of them have the desired accuracy of sub-percent. Only wiggle spectra
have a deviation from this accuracy only due to the close to zero values in the spectra,
which does not reflect the real accuracy well with the percentage difference formula. To
visualize the results, in the top row of Fig. 3.16 can be seen the comparison between
the emulated and calculated spectra. It can be concluded that all the emulators have
been made successfully — they are tens of times faster, and they do not lose significant
accuracy in their predictions.
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Figure 3.15. Comparison between the percentage difference calculated with emulated
model for only wiggles P (k) and subtraction between emulated P (k) and no wiggle
P (k). The shaded regions imply percentile regions between 16% and 84%.

Figure 3.16. Summary of the emulated power spectra; In the top row: Example of
emulated spectra and calculated spectra with CAMB. In the bottom row: comparison
between the median percentage difference and the percentile regions between 16 % and
84%.
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3.4 Emulating matter anisotropic three-point correlation
function

This section will describe the main goal of the thesis — to build an emulator for the
redshift space matter 3PCF. To do so, we must adapt the formalism described in
the chapter 2.8. This has been already implemented in the Python package Mod3l 2

[28]. From the inputs of the function, it performs the spherical decomposition of the
bispectrum and executes the 2D FFT-Log to obtain the multipoles of the 3PCF. It can
calculate both the matter and galaxy 3PCF, with BAO and no BAO, as well as with
template fitting or without it. In this work, the matter 3PCF code is exploited without
the template fitting.

3.4.1 Preparation for the training

As with the power spectrum, the first step is to understand the computational resources,
the possible data set that can be generated, and the cosmological parameters to consider.
To begin with, producing one matter 3PCF model can take up to an hour on 48 CPUs,
depending on the grid size and template fitting. Thus, it is more than 100′000 times
longer than the calculation of the power spectrum, which already speaks volumes for
the complexity of this model. This fact already gives several constraints: it will be
impossible to have as much data as in the power spectrum case, as it would require up
to 9′600′000 CPU hours, if each 3PCF calculation takes one hour. This is not feasible,
therefore we will have a lot less data, which means that it would be also better to reduce
the number of cosmological parameters as input parameters, in order to potentially
increase the accuracy.

Instead of using DIFA OPH cluster, we need more computational resources. There-
fore, we used the supercomputer center Cineca, which is the largest computing center in
Italy and one of the largest in Europe. Cineca’s supercomputers are equipped to handle
tasks that range from large-scale simulations and data analysis to machine learning
and artificial intelligence applications. It provides both CPU and GPU hardware for
academic research. In our case, we acquired 65′000 CPU hours on their supercomputer
Leonardo, which is their latest addition to their complex of supercomputers.

Leonardo is composed of two main partitions: the Booster Module and the Data-
centric Module. The Booster Module is equipped with 3456 computing nodes, each
containing a single Intel Xeon Platinum 8358 CPU with 32 cores and four NVIDIA
custom Ampere A100 GPUs. This configuration provides a total of 110′592 cores and

2The code of Mod3l can be found: https://gitlab.com/antoniofarina/mod3l

75

https://gitlab.com/antoniofarina/mod3l


3.4. EMULATING MATTER ANISOTROPIC THREE-POINT CORRELATION FUNCTION

powerful GPU acceleration for high-performance computing tasks. The Data-centric
Module consists of 1,536 nodes, each powered by two Intel Sapphire Rapids CPUs with
56 cores, offering a total of 172′032 cores.

These resources are valuable, as they allow for efficient use of available computational
power and enable quick results through the ability to parallelize tasks across multiple
nodes. We have 65′000 CPU hours, and if one matter 3PCF calculation with template
fitting requires around 48 CPU hours, then we could produce around 1300 3PCF.
That would not be enough to make an accurate emulator for such a complex function.
Consequently, we must constrain the input parameters of the model.

A major increase in time can be achieved by fixing our template parameters. This
reduces the computational cost two times, hence it takes 24 CPU hours now. At the
same time, these parameters are not perfectly known, therefore by assuming their value,
our results will be biased towards these assumptions.

The other parameters, such as the grid size in the configuration space and Fourier
space, were chosen through experiments on our own, as well as from the literature [28].
On top of that, some are pre-computed before, such as the power spectrum and no wiggle
power spectrum with a given cosmology. These are the most important parameters, as
the cosmology is encoded in them. Then there is also σ2, which is the radial component
of the displacement vector, ∆σ2

8, which is the transverse component of the displacement
vector, and fσ8, which is the growth factor multiplied by the variance at 8Mpc, which
are also pre-computed with the dependence on the power spectrum.

Nk Nx kmax kmin Template parameters α ε Lorder Ls

56 51 10 1e-4 [ f , 1, 0, 0] 1 0 4 [0, 2]

Table 3.7. Input parameters for running the 3PCF model

Then there are the parameters in Table 3.7. Nk is the size of one side of the grid
for the k1 and k2, but Nx are the number of values for the cosine of the angle between
k1 and k2. Then we also set the kmin and kmax, which are the minimal and maximal
values for the wavevector on the grid. The template parameters are, correspondingly,
the growth rate of the fluctuations f , which is also pre-computed, as it depends on the
chosen cosmology. The next one is the linear bias parameter b1 set to one, and quadratic
bias parameter b2 and tidal bias parameter bT , which are set to zero, which is a valid
approximation based on literature [35]. The α and ε are the isotropic dilatation and
anisotropic warping [51]. In the end, we have the Lorder, which depicts in what order
will the r1 and r2 be decomposed, and also Ls, which shows the n̂ decomposition order.
As can be seen, it has been chosen in favor of Ls = [0, 2] to have both the isotropic
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Cosmological parameter Minimal value Maximal value
Ωm 0.2 0.5
h 0.55 0.85
As 1e-9 5e-9

Table 3.8. Cosmological parameters that are varied for the matter 3PCF emulator

and anisotropic case. Each of them will have 4 different multipole expansions, which is
enough to capture the main features of the 3PCF.

The next choice for the user of the code is to select the rmin, rmax, and ∆r. These
are crucial parameters, as ∆r are responsible for the resolution of the output. The
range of r is trickier than for 2PCF because it is quite clear where the BAO should be
located—around 100Mpc. However, in the case of 3PCF, it consists of three pairs, and
each one can hold the BAO scale, even if the other two sides are not 100Mpc. Therefore,
it is not obvious where exactly the influence of BAO becomes negligible for 3PCF,
resulting in insignificant information. This value can be determined by experimenting
with this range and comparing the matter 3PCF with the no-wiggle matter 3PCF. If
at higher r the no-wiggle and full 3PCF converge, it can safely be assumed that the
chosen range is appropriate. In this work, rmax = 200 Mpc h−1 was found to capture
most of the BAO information, but also rmax = 150 Mpc h−1 is sufficient.

Coming back to computational costs, it can be seen that no other parameters can
be changed to speed up the calculations significantly. Therefore, by fixing the template
parameters, we chose to compute 3500 3PCF for the training set and 350 for the testing
set, totaling 61′600 CPU hours. Here the total hours are less than expected, due to the
fast CPU’s in Leonardo supercomputers, which could compute one 3PCF in 16 CPU
hours. This left some computational resources for testing the pipeline before execution,
as well as for running the training for the neural network.

Compared to the power spectrum analysis, we have 50 times less data. Looking
back at Fig. 3.7, it might seem that this amount of data is insufficient for a sub-percent
accuracy goal. For this reason, we reduce the number of cosmological parameters to
three, and here the chosen parameters are Ωm, h, and As, where we fix the cosmology
at redshift z = 0. The cosmological parameter choice was made due to the potential
of comparing the results with ongoing research for a 2PCF+3PCF emulator (Euclid
Collaboration: Guidi et al., in prep). Also, the ranges cannot be as wide in this case,
therefore we opted for values shown in Table 3.8.

To show the impact on the 3PCF itself, in Fig. 3.17 the Ωm parameter is varied.
This is only for the equilateral configuration, and it can be seen that the amplitude of
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3PCF, depending on the multipole, can vary significantly. The same can be observed for
h and As parameters. We can also see the BAO impact, which, unlike 2PCF, appears
as wiggly behavior. A similar trend can also be in non-isosceles configurations, which
will be explored further on.

Figure 3.17. Cosmology influence on 3PCF multipoles; Matter anisotropic 3PCF,
expanded into eight multipoles, restricted to isosceles triangle configurations r12 = r13.
In this case, the cosmological parameters h and As are fixed to Planck18 values [3],
while Om is varied in the range shown in Table 3.8.

3.4.2 Pipeline for the training

As the groundwork for the input parameters, type of 3PCF, and number of cosmologies
has been set, we will present the framework to produce the 3PCF emulator. The pipeline
is visualized in the Fig. 3.18. The first step is to produce a set of 3500 cosmological
parameters for the training set and 350 for the testing set, where the proper distribution
of the parameter space is produced with LHS. The second and third step is to calculate
the full power spectrum and no wiggle power spectrum with the previously produced
cosmological parameters. Here the library CosmoBolognaLib is used, in the same
manner as in the subsection 3.3.5 and 3.3.4. The only difference is also the growth rate
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Figure 3.18. The pipeline for producing 3PCF emulator.

f calculation in the 2nd step, as it also requires the usage of CosmoBolognaLib with
the input parameters.

The fourth step is generating the actual training set of the 3PCF, by leveraging the
previously discussed input parameters and power spectrums. To do this, the package
Mod3l is used. As there was a limitation of 24 hours for each submitted computation on
Leonardo, as well as no more than 64 nodes per computation, a parallelization algorithm
was implemented. The data was split into 100 equal parts for the training set, and
each part was then separately calculated on the Leonardo cluster. After that, the 100
different parts were combined, in order to use them in the training segment. Thanks to
the parallelization method, the data was generated in a single day.

The next steps are the training of models, measuring their performance, and then
trying to tweak the hyperparameters to obtain an emulator with the highest accuracy.
This will be further explored in the next segments.

3.4.3 Training models and a modification to CosmoPower

There are two possible approaches to the training. First, to train one model that will
produce 8 multipoles. Second, training 8 models for each of the multipoles. The second
option was chosen, as performing tests, we noticed higher accuracy for separate modeling.
This is rational, as with a limited amount of training data and very different amplitudes
for each of the multipole, neural networks can better predict them separately.

Further on, when training the models, we did not get a good accuracy for any of
the models. It was discovered later that in the case of 3PCF, the Cosmopower package
is not well suited for the training of the models. This is because the loss function is
calculated with non-normalized data, therefore we obtained the absolute MSE. In the
case of the power spectrum, it was not a big issue, as the amplitudes there were large,
therefore, also the value of loss was larger and a better fit for adjusting. In the case of
3PCF, for most of the scales, the amplitude is nearly zero, thus the absolute MSE is
small, and the loss is small too. This leads to a model that cannot find the absolute
minimum for the loss by tuning the neural network parameters, due to the very small
loss values initially.

79



3.4. EMULATING MATTER ANISOTROPIC THREE-POINT CORRELATION FUNCTION

In order to address this issue, we modified the Cosmopower package, to introduce
the relative MSE, which can be achieved by normalizing the data. The specifics
of the implementation can be found in Appendix A. This modification enables the
normalization only for the loss calculation, while still producing the output of the real
scale for the 3PCF.

Additionally to that, there can be different types of normalization, and we explored
Gaussian and Min-Max differences. The Gaussian normalization has been already
implemented in the CosmoPower, just not used for the loss calculation, which is of the
form:

x′ = x − µ

σ
, (3.7)

where x′ is the normalized data, x is data points, µ is the mean value of the data, but
σ is the standard deviation. On the other hand, Min-Max is described by:

x′ = x − xmin

xmax − xmin
, (3.8)

where xmin and xmax are the minimal and maximal values of the data accordingly. This
normalization had to be implemented additionally. Firstly, the modified CosmoPower
was compared to the original one, which can be seen in Fig. 3.19: here it can be clearly
seen that the internal normalization for the loss significantly improves the accuracy of
the model for all scales. Not only that, but the accuracy stays relatively flat. Instead,
the original version gradually increases.

This correction has not been applied to the power spectrum emulator in the section
3.3, as there the accuracy was already sub-percent. Nevertheless, this might be one of
the reasons why there we saw a steep decrease in accuracy in the small scales.

The other option is the Min-Max normalization, which was implemented in the
CosmoPower code. The comparison with the Gaussian can be seen in Fig. 3.20. It can
be seen that the Gaussian normalization is the better one in this case, providing higher
accuracy over all scales. For all the following models, this will be the implemented
normalization.

With the normalization being dealt with, we can proceed to the training of the model.
Through experimentation, a good reference model was found with a good accuracy.
The hyperparameters of this model are shown in Table 3.9. The key difference for the
matter power spectrum is the reduction in the number of layers and neurons, as well
the optimizer, which in this case isAdam, that proved to be better.

To find the best model, these hyperparameters were tweaked, and the results for
the 000 multipole configuration can be seen in Fig. 3.21. All of these models show
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Figure 3.19. Comparison between modified Cosmopower with Gaussian normalization
and the original CosmoPower. Normalized Gaussian is the modified version, while
Gaussian is the original. The comparison is done with median percentage difference,
and in particular for the 000 multipole, equilateral triangle configuration.

good accuracy, which is well within the sub-percent accuracy. Nonetheless, we can see
a few good candidates that offer better performance. The ones with 128 neurons per
layer and batch size of 128 are mildly better, but the best one is the model where the
percentage for the validation set was reduced to 10%. Naturally, you would think that
combining these would yield better results. Unfortunately, the combination of the best
hyperparameters did not produce better results. Therefore, the best model that will be
used for other multipoles, will be the one in Table 3.9, but with the validation set to
10%.

The reason behind a simpler architecture of the neural network in comparison to
the power spectrum might have different reasons. In essence, the 3PCF is a more
complicated function, as well as it has more triangle configurations than the wavevectors
for P (k). This would indicate that a more complex model is needed. But this is not the
dominant factor — the size of the dataset is. As the dataset is around 50 times smaller,
it is not sufficient to train it with an architecture with a large number of neurons and
layers. It would only lead to overfitting, which would yield worse accuracy for the model.
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Figure 3.20. Comparison between Modified Cosmopower with Gaussian and Min-Max
normalization; Comparison is done with the median percentage difference for the 000
multipole, equilateral triangle configuration.

hyperparameter Value
Number of layers 3
Number of neurons 64
Batch size 256
Learning rate 1e-1 to 1e-7
Patience value 30
Max epochs 2000
Validation split 20%
Optimizer Adam

Table 3.9. The reference hyperparameters for the matter 3PCF
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Figure 3.21. Comparison of different emulators for 3PCF; Exploration of different
hyperparameter space around the reference model, shown in Table 3.9. The median
percentage difference is reported for the 000 multipole.

The acquired architecture for the neural network was applied to all the multipoles,
and the results of that can be seen in the Fig. 3.22. It can be concluded that all the
multipoles have sub-percent accuracy, which is the threshold that we wanted to achieve.
The worst accuracy seems to be for the 011 multipole, which might have required a
better architecture. Having said that, finding the perfect architecture is not the point
of the thesis, but rather achieving a certain accuracy of the models, which in this case
is sub-percent.

To finalize, I present an example for the emulated matter 3PCF in all multipole
configurations in Fig. 3.23. To emphasize, this is the first emulator for matter 3PCF in
redshift space for isotropic and anisotropic multipoles. Here also the no-wiggle 3PCF
is added, which, even though is not yet emulated, can help to distinguish the BAO
influence on the 3PCF. More importantly, this example portrays the obtained results
of the emulator accuracy in Fig. 3.22 — all the multipoles are predicted very well,
indistinguishable from the human eye. With these eight emulators, many doors open
for scientific analysis. Two of them are further analyzed in the next chapters.
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Figure 3.22. Emulator accuracy for each 3PCF multipole; Median percentage difference
for the developed emulators, compared to all the multipoles. Labels are denoted as
integers from 0 to 7, which are corresponded to the 8 possible multipole configurations.

3.4.4 Computational benefits from the emulators

Having built four emulators — three for the power spectrum and one for the 3PCF
— we can now summarize the computational gain from it. In the case of the power
spectrum, we will compare the time needed to compute it with the Python library
CosmoBolognaLib, but for the 3PCF we will compare it with the Python package Mod3l.
The emulator time is reported, by running it on CPU i7-8650U 4 cores, 1.9 GHz (only
two of the cores were used). Instead, P(k) and 3PCF were computed on CPU Intel Xeon
8358 32 cores, 2,6 GHz. The emulator could not be tested on the same CPU due to the
limited availability of the available computational resources attributed to the generation
of training data. Thus, the comparison between these values is only indicative. The
comparison can be seen in Table 3.10.

In the case of the power spectrum emulators, we can see that there is not a large
gain from the emulators, as it is around 10 times faster. The computational time to
compute the power spectrum with CosmoBolognaLib is small for starters, as it takes
only a little longer than a second. Here it can also be seen that the full P (k) takes the
least amount of time, because the other functions have to compute the full P (k) as well.
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Figure 3.23. 3PCF emulator example; The matter 3PCF and no wiggle matter 3PCF
acquired from Mod3l, compared with the emulated matter 3PCF.

Function
Model

CPU time
(sec)

Emulator
CPU time

(sec)

Absolute
difference

(sec)

Relative
difference

Full P (k) 1.6 0.106 1.494 14.09
No wiggle P (k) 1.756 0.166 1.59 9.58
Only wiggle P (k) 1.64 0.14 1.5 10.71
3PCF 86400 0.0048 86399.9976 1.80 × 107

Table 3.10. Comparison of computation times and differences for various functions.

And the no wiggle is longer due to the larger number of wavenumbers k, as there we
used 700 instead of 500. The times for the emulator are different due to the different
neural network structures, and in these examples, the order is more important than
comparing the exact time, as on these time scales it can even differ from the load on
the CPU apart from the computations.

In the case of the 3PCF, the improvement is a lot more impressive. Only for a single
computation with the Mod3l, it takes a full day of computation on a single CPU. Again,
it depends on the type of CPU, so this has to be taken only as indicative time. The
emulator is even faster than for the power spectrum, due to the simpler neural structure.
Combining the long computation time with the short time for the emulator, it is more
than 10 million times faster. This is the reason why an emulator is so beneficial in the
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case of cosmological analysis with 3PCF. Without losing much accuracy, now it does
not require the usage of supercomputers, but a single laptop can easily suffice.
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4
Cosmological information stored

in 3PCF at BAO scales

Baryonic acoustic oscillations have become a standard ruler in the analysis of large-
scale structures. They have been observed both in the power spectrum and two-point
correlation function, and they have been used to better constrain the cosmological
parameters, as the amplitude and the location of BAO hold rich cosmological information.
In the 2PCF the BAO appears as a bump at around 100 Mpch−1, but the shape and
location in the 3PCF is not as straightforward.

One way to observe the BAO in the TripoSH decomposition of 3PCF is shown in
Fig. 3.23, where it has been done by implying a constraint on the triangle sides. It can
be observed that the BAO appears in every multipole, and in each one in a different
shape. Thus, we can grasp the added complexity by going from 2PCF to 3PCF, which
is yet to be understood and described.

For the existing and upcoming space missions analyzing the LSS clustering, it would
be beneficial to understand more about the appearance of BAO and the advantage of
constraining BAO properties from higher-order statistics, such as the 3-point correlation
function. Which multipole holds the most information? Do anisotropic multipoles have
a significant contribution to isotropic components? Which triangle configurations are
the most informative? Do SNR and BAO features differ for different multipoles? There
are various questions, which will be analyzed further in the following sections.

4.1 Methodology to unveil the cosmological information
with BAO

As mentioned before, 3PCF is very rich in information since there are a multitude of
triangle configurations. If in two-point statistics there is only one peak due to BAO
at 100 h−1Mpc, then in 3PCF it can appear in various triangle configurations. It is
important to understand which of these triangle configurations are the most informative.

The simplest way, which is also similar to the 2PCF analysis, is to apply a constraint
to one of the triangle sides, which allows reporting the 3PCF only with respect to one
of the triangle sides. For example, it is interesting to fix one of the triangle sides to
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a certain distance, and then compare the full 3PCF to the no-wiggle one, which has
been done in Fig. 4.1. It can be seen that in all the multipoles the BAO influence

Figure 4.1. BAO appearance in 3PCF multipoles; The full 3PCF and no wiggle 3PCF
are expanded into 8 multipoles, where one of the triangle sides has been fixed to either:
140, 90, 60 or 30 Mpc h−1. The scale is zoomed in around the influence of BAO, which
is from 40 to 140 Mpc h−1.

can be clearly distinguished. Furthermore, different conditions have different effects on
the amplitude and the shape of the 3PCF. A lot of information can be gained by just
investigating this plot. For example, it seems that the most informative is the condition,
where one of the triangle sides is fixed to r12 = 30 Mpc h−1. It already seems that the
amplitude of the function is inversely proportional to the scale. By fixing one of the
sides to a small scale, most of the triangles become squeezed. Therefore, here we have
an indication that squeezed triangles might hold most of the information. This is due to
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the fact, that in the non-linear regime, when the density contrasts exceed the value of 1,
the overdensities do not evolve independently anymore, thus increasing the clustering
[10].

A similar analysis also can be done by implying a condition between the ratio of
the two sides of the triangle, for example, r12 = r13 or r12 = 2r13. However, manually
taking specific conditions, although useful for the interpretation of results, is laborious,
time-consuming, as well as loses part of the analysis by not taking every possible triangle
configuration into account. Therefore, this will be left only for the result interpretation,
but the actual analysis will be done by constructing 2D matrices.

We will start by analyzing the 3PCF itself, by representing it on a 2D grid, where
each point will be a triangle configuration. With the addition of the covariance matrix,
we can construct Signal-to-noise ratio (SNR) figures, which will help us find the highest
signal configurations. Furthermore, we will use a similar method to analyze the BAO.
This can be done by either subtracting the full 3PCF with the no wiggle 3PCF or
by calculating the only wiggle 3PCF. These figures will be addressed as the BAO
detectability figures, as they should depict only the triangles where the BAO signatures
are present. By performing this analysis, we will better understand the intricacies of
3PCF in different multipoles, as well as where to search for the BAO in the 3PCF.

4.2 Signal to noise ratio matrix

The signal-to-noise ratio is an instructive way to analyze the models, as it not only
provides the theoretical predictions of the most informative triangle configurations, but
also connects this knowledge with the observational properties, such as the expected
detectability. In general, it can be expressed as:

SNRi = ζi

σi
, (4.1)

where we denote each triangle configuration with i, σi is the variance or the error for
the triangle, while ζi is the 3PCF value for the specific triangle. To use this formula, we
need the signal, which is the 3PCF, and the “noise”, therefore the errors for each of the
triangles. That can be acquired from the covariance matrix, which is more explained in
the section 2.10.

We have visualized the 3PCF by implying different conditions, but, as discussed
before, the most complete way is to represent all triangle configurations in all multipoles
in sets of 2D matrices, as shown in the Fig. 4.2. This grid is formed in such a manner,
that both triangle sides are on the grid axis, but the 3PCF value is indicated by color.
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Figure 4.2. 3PCF for all triangle configurations in 8 multipoles; The value of the
3PCF is indicated by the color bar, while on the axis are the two lengths for triangle
sides. This is calculated with the cosmological parameters according to Plack18 results
[3].

Here we can see some interesting features, for example, the high signal in the corner
of each multiple. In this region, all the triangle sides are short, even the third one, as, if
we take the example of r12 = r13 = 10 Mpc/h, then the maximal side for the third is
r23 = 20 Mpc/h. It is clear that these structures do not contain the BAO scale, but
they do have an increase in clustering due to the non-linear effects of the perturbation
theory [83]. This is expected, as on small scales structures are interacting with each
other, therefore clustering together.

Furthermore, in most of the multiples, there is also a large amplitude for the squeezed
triangle configurations. These are triangles, where one of the sides is considerably longer
than the other. In the plot, it can be roughly estimated to be the whole row or column
up to r = 50 Mpc/h. It can be also explained by the fact that one of the sides lies in
the non-linear regime, which increases the overall probability of finding matter at these
scales.

The other interesting feature in all the multipoles is the isosceles triangle configuration
r12 = r13. This is the case, because if two sides are equal, and we are rotating them,
then at one point they align and make the third side 0 or close to it. It is a highly
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unlikely configuration, where the third side is nearly zero or zero, which greatly impacts
the whole 3PCF, thus it produces a trough in the 3PCF. The rest of the function
is nearly zero, therefore the absolute amplitude is significantly higher than in other
configurations. The BAO feature on this configuration is hard to spot. Again, as the
3PCF is mostly negative for isosceles triangles, the bump of the BAO just makes it less
negative, thus reducing the absolute amplitude. This, in turn, would result in a dimmer
region around the BAO scales in Fig. 4.2. This effect can be better seen in Fig. 4.4.

Then there are the zero crossings, which can be spotted by the bright blue lines.
The ones around the isosceles are due to the trough discussed before. Around this
trough the 3PCF is slightly elevated above the zero line, thus it produces two zero
crossings around the isosceles line. Then there are other features, that mostly arise
from non-linear effects. But each multipole has its own pattern, and in the asymmetric
case, for example, of multipole ℓ1 = 2, ℓ2 = 0, L = 2 we can see also different patterns
on larger scales, where r12 ≈ 80 Mpc/h. This is due to the nature of expanding each of
the triangle sides in a different order.

It is important to stress that, even though in each multipole we can spot similar
behavior for either squeezed or isosceles triangles, there are many differences. Each of
the multipoles portrays the information from matter clustering differently. The largest
overall differences occur between the isotropic — the first row — and anisotropic — the
second row — multipoles. The anisotropic are smaller in amplitudes, which is expected,
as they are induced only by the RSD and AP effects. That is why they also exhibit
slightly different patterns.

The other thing to interpret is the noise, which can be obtained from the covariance
matrix. In the case of TripoSH basis with 8 multipoles, where L = 0, 2, we visualize
the covariance and correlation matrix in Fig. 4.3. It is important to note that this
covariance matrix has been made with a different grid, where rmin = 10, rmax = 146, and
∆r = 4. It is a lot smaller than the previously used one due to the heavy computational
time required to construct a covariance matrix. Furthermore, this is a Gaussian
covariance matrix, even though the smaller scales do exhibit non-Gaussian behavior.
Thus, the small-scale variance is underestimated [75], which makes it unreliable to use
the covariance on small scales. Thus, a conservative approach will be applied to use
only the scales that are bigger than 20 h−1Mpc, whenever the covariance matrix must
be used.

Back to Fig. 4.3: these figures contain crucial information about the system. Firstly,
it is easier to interpret the correlation matrix, as it shows the correlation between
different triangles between different multipoles. It can be seen on the right side of Fig.
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(a) (b)

Figure 4.3. Covariance and correlation matrix of redshift space 3PCF multipoles;
Each of the multipoles is expressed as: ℓ1 = iℓ2 = jL = ijk (a) Gaussian covariance
matrix for the TripoSH basis with 8 multipole expansions, obtained from theoretical
calculation described in section 2.10. In this example, each symmetric multipole has
630 independent triangles, but the two asymmetric multipoles 202 and 312 have 1225
triangles. (b) The corresponding correlation matrix.

4.3 that the diagonal has the values of unity, but the rest of the matrix spans from −1
to 1, depicting either the strength of anti-correlation or correlation between different
triangles in different multipoles. For example, it is interesting to see that the multipole
000 is positively correlated to the isotropic multipoles, therefore 110, 220 and 330, but
it is anti-correlated to the anisotropic multipoles, hence 112, 202, 312 and 222. Then
there is the 330 multipole that is weakly correlated to any of the other multipoles, or
220, which is mostly positively correlated to other multipoles. This does not explicitly
imply that the strong correlation means the degeneracy of signal between the multipoles.
It is rather indicative of similar patterns in the 3PCF for positive correlation between
triangles, and opposite behavior for anti-correlation.

Secondly, the covariance matrix shown on the left side of Fig. 4.3 allows obtaining
the errors for each of the triangles, which is shown in Fig. 4.4. It also serves as a
visualization of the previous discussion of the appearing trough at r12 = r13. The BAO
features are clearly distinguishable from the no-wiggle 3PCF and the full 3PCF in the
isotropic multipoles. However, in the anisotropic case, the no-wiggle 3PCF remains
within the error margins of the full 3PCF across all scales, making it impossible to
differentiate the BAO signal.

With the help of the covariance matrix, we can extract the errors of each triangle
configuration from its diagonal. With this in hand we can now slightly redefine the
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Figure 4.4. Example for errors in 3PCF; 3PCF is expanded in 8 multipoles, and the
no wiggle 3PCF is included, in order to visualize the effect of the BAO better. Errors
are obtained from the diagonal of the covariance matrix. The cosmology is Planck18.

equation 4.1 and use the general equation:

SNRfull
ij =

√
ζiCov−1

ij ζj . (4.2)

We can now apply it for our 3PCF, but also taking into account that covariance is not
accurate at scales below r = 20 Mpc/h, therefore these scales are excluded from the
SNR. The SNR of 3PCF can be seen in the Fig. 4.5. It can be seen that the overall
structure has not changed much from Fig. 4.2, therefore the physical interpretation of
the multiple regions of isosceles, squeezed and other triangle configurations stay the
same. Nevertheless, the importance lies in the overall SNR of the multipoles. It can be
clearly seen that the multipoles ℓ1 = 2, ℓ2 = 2, L = 0 and ℓ1 = 3, ℓ2 = 3, L = 0 has the
highest SNR, but also the anisotropic multipole ℓ1 = 2, ℓ2 = 2, L = 2 has a good overall
SNR. The summary of the average signal can be seen in Table 4.1.

It must be stressed that the span of the SNR is wide, for example, apart from the
overall averaged values of each multipole, the small scale triangles in the lower left corner
of the Fig. 4.5 have the average SNR of more than 500 for the ℓ1 = 2, ℓ2 = 2, L = 0 and
ℓ1 = 3, ℓ2 = 3, L = 0 multipoles. The isosceles has a smaller average SNR of around
100 for the same multipoles. On the contrary, the signal in the top right corner has the
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Figure 4.5. SNR matrix for 3PCF; The signal is the full 3PCF with the Planck
cosmology, the error is from the diagonal of the covariance matrix.

Full 3PCF Average SNR
ℓ1 = 0, ℓ2 = 0 ℓ1 = 1, ℓ2 = 1 ℓ1 = 2, ℓ2 = 2 ℓ1 = 3, ℓ2 = 3

L = 0 6.16 5.79 58.84 48.90
ℓ1 = 2, ℓ2 = 0 ℓ1 = 1, ℓ2 = 1 ℓ1 = 3, ℓ2 = 1 ℓ1 = 2, ℓ2 = 2

L = 2 9.40 4.10 6.29 14.56

Table 4.1. Summary of the average full SNR over each of the multipoles.

average value of SNR below 10 for the same multipoles. The difference is more than
50 times compared to the small triangle configurations, which is very significant. Even
though the small triangle configurations can still be affected by the Gaussian covariance
matrix, the effect must be minor, due to the exclusion of the very small scales.

As discussed in the introduction and further chapters, BAO holds most of the
information in these N-point correlation functions. In these figures, the BAO plays a
minor role, and even in the SNR plots, it is not clearly distinguishable. Therefore, in
the next section, we switch to a different method to analyze this feature separately.
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4.3 BAO detectability

The BAO signal cannot be accurately distinguished from the SNR of matter 3PCF. To
find the best triangle configurations for the appearance of BAO, we define a new metric:
BAO detectability. It is defined by simply exchanging the 3PCF in the equation 4.2
with the subtraction between the full 3PCF and no wiggle 3PCF:

(BAO detectability)ij =
√(

ζ
full)
i − ζ

(NW )
i

)
Cov−1

ij

(
ζ

(full)
j − ζ

(NW )
j

)
. (4.3)

This requires the calculation of ζ(NW ), which at first glance might seem like a difficult
task.

By observing the equation 2.51, we see that BAO comes into the equation only
from the wiggle power spectrum PW (k). To remind, it is defined as PW (k) = Pfull(k) −
PNW (k). Thus, if in the calculation of the 3PCF, we put as input PNW instead of
Pfull, we get that PW (k) = 0. This leaves us only with terms that include PNW in
equation 2.51. With this trick, we can easily calculate the no-wiggle 3PCF. By doing
so, subtraction allows obtaining only the features due to BAO.

The resulting BAO detectability and the examples of the highest detectability regions
are represented in Fig. 4.6. To better understand where the highest signal is, we have
summarized the average BAO detectability signal for each multiple in Table 4.2.

The Fig. 4.6 and Table 4.2 are highly informative, and we can draw several
conclusions from them. First and foremost, it seems similar to the SNR case: the best
multipoles for BAO detectability are the isotropic ones, and the anisotropic multipoles
have the signal several times smaller. The differences lie in the multipoles themselves,
with the average values being similar across all isotropic multipoles except for the 000,
which has a lower value. Similarly, the anisotropic multipoles also show consistent
values, except for the 202, which stands out with a higher value. The BAO features
appear in different regions for each of the multipole, therefore in those regions, the
values are significantly higher than the overall average.

To expand on this, we see high detectability from the isosceles triangles for the
isotropic and anisotropic multipoles. Also, on the isosceles line, the detectability is not
uniform. It can be noticed that the strongest detectability is around the BAO scale
- 100 h−1Mpc, which is expected, as at least two of the triangle sides lie in the BAO
range. This means that the BAO feature is automatically present in two thirds of the
triangle, which gives significant differences with the no-wiggle 3PCF. From the example
of the isosceles 3PCF in Fig. 4.6, it can be seen why it is not strictly localized around
the BAO scale. It is due to the fact there are at least two crossings of both functions,
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Figure 4.6. BAO detectability with 1D examples; Top: 3PCF with error bars and no
wiggle 3PCF represented with the condition r12 = r13. Middle: BAO detectability for
each of the multipoles. Bottom: 3PCF with error bars and no wiggle 3PCF represented
with the condition r12 = 30 Mpc. 96
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Average BAO detectability
ℓ1 = 0, ℓ2 = 0 ℓ1 = 1, ℓ2 = 1 ℓ1 = 2, ℓ2 = 2 ℓ1 = 3, ℓ2 = 3

L = 0 0.94 2.31 2.04 2.14
ℓ1 = 2, ℓ2 = 0 ℓ1 = 1, ℓ2 = 1 ℓ1 = 3, ℓ2 = 1 ℓ1 = 2, ℓ2 = 2

L = 2 0.56 0.58 0.43 0.36
Isosceles region

ℓ1 = 0, ℓ2 = 0 ℓ1 = 1, ℓ2 = 1 ℓ1 = 2, ℓ2 = 2 ℓ1 = 3, ℓ2 = 3
L = 0 1.15 1.26 4.89 5.92

ℓ1 = 2, ℓ2 = 0 ℓ1 = 1, ℓ2 = 1 ℓ1 = 3, ℓ2 = 1 ℓ1 = 2, ℓ2 = 2
L = 2 0.23 0.31 0.74 0.84

Squeezed region (r13 ≤ 34 h−1Mpc)
ℓ1 = 0, ℓ2 = 0 ℓ1 = 1, ℓ2 = 1 ℓ1 = 2, ℓ2 = 2 ℓ1 = 3, ℓ2 = 3

L = 0 1.51 2.49 4.37 4.20
ℓ1 = 2, ℓ2 = 0 ℓ1 = 1, ℓ2 = 1 ℓ1 = 3, ℓ2 = 1 ℓ1 = 2, ℓ2 = 2

L = 2 1.99 0.73 0.88 0.75

Table 4.2. Summary of the BAO detectability. Top table: Average BAO detectability
over all triangle configurations among each multipole. Middle table: averaged isosceles
region, ranging from r12 = r13 = (90, 102) h−1Mpc. Bottom table: averaged squeezed
triangle region, where r13 ≤ 34 h−1Mpc.

which gives the apparent oscillating behavior. If the analysis was extended to higher
rmax, there would be at least another crossing for the most multipoles. This means that
the BAO features give an excess for the matter 3PCF at around the BAO scale, but
departing from it, there is a reduced probability with respect to the no wiggle 3PCF.
This is reasonable, as matter from higher or lower scales cluster at the BAO scale of
around 100 h−1Mpc.

However, the strongest signal for both isotropic and anisotropic cases is found in
the squeezed triangle configurations, which occur when at least one of the sides has a
small scale, such as 20 or 30 h−1Mpc. The length of the other side, as seen in Fig. 4.6,
varies for each multipole but is mostly around 80, 100, or 120 h−1Mpc.

The physical explanation is that if the longer side is, for example, 100 h−1Mpc, then
the shorter the other side, the more triangle configurations will be approximately 100
h−1Mpc. This is also true for other values of the long triangle side and is also the reason
why the high BAO detectability does not extend far out from the squeezed triangle
configurations, as with longer other triangle sides, fewer combinations yield the BAO
scale. The exception, of course, is when one of the sides is around 100 h−1Mpc. Then the
detectability is extended also to longer scales for the other triangle side. The apparent
gaps among the highest detectability regions in the squeezed triangle configuration
regime are due to the crossing of both functions.
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So far, all BAO detections have been consistent with physical expectations. However,
there is a specific region in the lower left corner, where both triangle sides are small,
that requires further attention. This region should have been absent from the BAO
signal, as the combination of both sides, for example, r12 = 30 h−1Mpc and r13 = 30
h−1Mpc would give a maximum of only r23 = 60 h−1Mpc. This is nowhere near the
BAO scale, therefore there is no clear physical explanation for the high detectability.
From further investigation, the difference between the full 3PCF and no-wiggle 3PCF
is minimal, less than unity. This difference arises from the numerical effects, due to
the finite grid size. But at the same time, at these scales, the error is also very small,
around the same value or even smaller. Thus, the detectability is artificial and exists
only due to numerical errors. Therefore, it is safe to ignore this part of the plot.

To further solidify the reasoning, the BAO detectability plot can also be obtained
differently. It can be obtained from the only wiggle 3PCF, which is further explored in
section 4.4.

To summarize, there are two regions of high BAO detectability — the isosceles and
squeezed triangles. For the isosceles triangles, the peak of detectability is around the
BAO scales, but the detectability is fairly significant for scales down to 60 h−1Mpc and
up to 150 h−1Mpc. On the other hand, there are also multiple regions in the squeezed
triangle configurations, where the strongest detectability is also around 100 h−1Mpc.
But, depending on the multipole, there is also prominent detectability, when one of the
sides is around 60, 80, 120, and 140 h−1Mpc.

4.4 Alternative method for BAO detectability

In the section 4.3, we adopted the most straightforward method to detect the BAO -
subtract from the full 3PCF the no wiggle 3PCF, leaving only features that arise from
BAO. The issue arises at small scales, where the accumulation of numerical errors in
both functions produces a non-zero difference. The low error values make the small
scales as a significant probe of BAO, which is not physical.

To deal with this issue, we can calculate the only wiggle 3PCF directly. This is
useful, because due to the absence of additional operations, we reduce the accumulation
of the numerical error. Furthermore, the amplitude there must be close to zero, thus
the relative errors are a lot smaller than for the full or no wiggle 3PCF.

Firstly, we can examine why the no wiggle 3PCF calculation worked, by inserting
both power spectrums as no wiggle. The template power spectrum can be decomposed
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[71] as:
P (temp)(k) −→ [Z(1)(k)]2[D2(k)PW (k) + PNW (k)], (4.4)

where [Z(1)(k)]2 is the Kaiser factor, but the D(k) is the damping factor from IR flow
and only wiggle power spectrum is defined as PW (k) = Pfull(k) − PNW (k). From this,
we can use the equation 2.51. To remind, the input functions for the Python package
Mod3l are Pfull(k) and PNW (k). Thus, if we put instead of full power spectrum the
PNW (k), we are only left with the last term in the equation 2.51. This allows us to get
the no-wiggle 3PCF by applying the 2D FFT-Log to the bispectrum.

For the only wiggle 3PCF, the situation is more complex. If we apply the same
procedure by using PW (k) as the input for both power spectra, we end up with the last
term in the bispectrum template equation. However, instead of PNW (k), we now have
PW (k), which is not the term we want to obtain. What we need is the first term in the
brackets: D(k1)D(k2)D(k12)PW (k1)PW (k2). As a result, what we obtain is the only
wiggle 3PCF, but without the damping factors from the IR flow.

However, for our purposes, only wiggle 3PCF without the damping factors is sufficient,
as the primary goal is to test small-scale triangle configurations. The example for the
generated only wiggle 3PCF in isosceles triangle configurations can be seen in Fig. 4.7.
It can be seen that both of the functions are very different, and not only the amplitude
differs. The number and position of peaks also differ greatly. This is due to the fact that
in reality the two metrics, which are compared, are not the same, therefore there are
also differences in the position of the peaks. The only wiggle 3PCF allows to isolate the
contribution only by baryons, while the subtracted 3PCF also includes the non-linear
interaction with cold dark matter, which is the major contributor to the differences
between the two metrics.

Nevertheless, the small-scale amplitudes are nearly zero, which is exactly what was
expected. Therefore, even though there are multiple inconsistencies, the purpose of the
test has been achieved. The full BAO detectability can be seen in Fig. 4.8. It can be
seen that, even though the details are quite different, the highest detectability regions
are roughly the same. Furthermore, the bottom left corner is absent of BAO detection,
which solidifies the reasoning that it is simply a numerical effect.
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Figure 4.7. Comparison between only wiggle 3PCF and subtraction between full 3PCF
and NW 3PCF. It is compared for only the isosceles triangle configurations.

Figure 4.8. BAO detectability with only wiggle 3PCF.
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5
Forecasting cosmological

parameters with the anisotropic
3PCF

The final goal of this thesis is to forecast the cosmological parameters based on the
representative volume of Stage IV surveys. Up until now, the constraining power of
the isotropic component has been studied to some extent [66], however, the anisotropic
3PCF has been only developed recently [70]. Therefore, the constraining power of
the anisotropic component has not been explored before, making it one of the main
objectives of this section.

Furthermore, as we have discussed before, modeling the 3PCF is computationally
expensive, thus the previously developed emulator for the anisotropic 3PCF is a crucial
component in this Fisher analysis. Fisher forecasts require modeling the 3PCF with
different cosmological parameters, which can quickly become computationally unfeasible.
Instead, the emulator allows us to perform the forecasts in a matter of seconds.

Motivating from the previous section 4.2 of SNR and BAO detectability analysis,
we will analyze how much the constraining power reduces, if we take only the highest
SNR or BAO detectability triangle configurations for the forecasts.

Lastly, we will analyze separately the constraining power of the small scales. As
discussed before, the squeezed triangles hold the most information in the multipoles.
Furthermore, the errors for these scales are also smaller, due to the larger sampling size.
The combination of that should give great constraining power, therefore it is important
to understand the effect of small scales for the forecasts.

5.1 Fisher matrix formalism

Before analyzing observations or mock catalogs with newly developed theories, it
is valuable to take a step back and understand how well we expect the developed
methodology to constrain the cosmological parameters for a given experiment. This can
be answered by calculating the Fisher matrix for our cosmological parameters, which,
in the end, provides a forecast given a covariance. This is very useful, as it can give
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predictions of the performance of newly developed theories or signals, and indicate if it
is useful to apply them or not.

5.1.1 Likelihood function

The basis for every statistical analysis is the likelihood function L(θ). It represents the
probability of observing data d given some theory, where the parameters for the theory
are θ. Therefore, we can define it as:

L(θ) = P (d|θ). (5.1)

The Likelihood function can take many forms, but the most popular is the Gaussian
form [23], as in many cases in cosmology the data are distributed in Gaussian shape.
This assumption simplifies the likelihood function and is often justified when dealing
with large datasets due to the Central Limit Theorem. Thus, assuming two parameters
— the mean ω and the standard deviation from the mean σω, we can define it as:

L ({di}m
i=1|ω, σω) = 1

(2πσ2
ω)m/2 exp

{
−
∑m

i=1(di − ω)2

2σ2
ω

}
, (5.2)

where m is the number of data points. In reality, we usually want to go from the
opposite side — we want to refine our theory or the cosmological parameters, given
some data. Thus, from the probability theory, we can express:

P (B, A) = P (B|A)P (A) = P (A|B)P (B). (5.3)

Inserting this relation in the equation 5.1, we get the equation:

P (ω, σω|{di}) = P ({di}|ω, σω)P (ω, σω)
P ({di}) . (5.4)

This is the pure form of the Bayes’ theorem. It is important to notice that in the
denominator we have the probability of data, which is independent of the parameters
from the theory. Therefore, it can be regarded as the normalization factor for the
Gaussian Likelihood function, as it does not change either the mean or the standard
deviation of our probability. Secondly, the probability of our theory P (ω, σω) can be
denoted as our prior knowledge of the parameters. Therefore, we can simplify the
equation 5.4 as:

Pposterior(ω, σω|{di}) ∝ L({di}m
i=1|ω, σω)Pprior(ω, σω). (5.5)
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This is one of the most important equations in cosmology, as it allows constraining
the cosmological parameters, based on the information from the previous experiments.
From this formalism, we can also develop a theoretical framework not only to constrain
parameters from observations but also to forecast them from possible experiments.

5.1.2 Fisher matrix

We want to have a quantifiable way to estimate the uncertainties from a given experiment.
For example, if we want to build a new telescope, like the Roman Space Telescope, we
need to see if with the given observations we can achieve the needed precision for the
constraints of cosmological parameters. To do so, the general formula is:

Fαβ =
〈

δ2lnL
δλαδλβ

〉
|λγ=λ̄γ

, (5.6)

where L is the likelihood, but the λα and λβ are the cosmological parameters. This
equation represents how fast would the observational data change by the given cosmo-
logical parameters of a given theory. This is for an arbitrary amount of cosmological
parameters, therefore it is better to take a step back and explore the case of a single
cosmological parameter with a Gaussian Likelihood function. We will start with the
definition of chi-squared [23], which is a measure between the observed and expected
outcomes. The definition is as follows:

χ2({λα}) =
∑

r

[T̂ (r) − T theory(r, {λα})]2

V ar(T̂ (r))
, (5.7)

where r is an arbitrary parameter, which the function T (r) depends on. T̂ (r) is the
observed values of the function, T theory(λα) is the expected values from theory, and
the V ar(T̂ (r)) is the expected uncertainty from the given experiment. The λα are the
cosmological parameters in our experiment, and from now on we assume that it is only
one parameter. The λ̄α is the fiducial value for the universe, and χ2 is expected to be
at the minimum there.

Now, coming back to the definition of the Fisher matrix, we can estimate how fast
does the χ2 value deviates from the fiducial value. If it is a rapid change, then the errors
will be naturally small, whereas the opposite is true if χ2 changes slowly. We can show
it by expanding the χ2 around the fiducial value, acquiring:

χ2(λ) = χ2(λ̄) + F(λ − λ̄)2, (5.8)
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where λ is the single cosmological parameter and F is the Fisher matrix, which is the
expression of:

F = 1
2

δ2χ2

λ2 . (5.9)

By inserting the equation 5.7 in the equation 5.9, we obtain the equation:

F =
∑

r

1
Var

[
T̂ (ℓ)

]
(∂T theory(r, λ)

∂λ

)2

+
(
T theory(r, λ) − T̂ (r)

) ∂2T theory(r, λ)
∂λ2

 .

(5.10)
Due to the fact that we are working with the expected results, we can simplify the

equation 5.10, since T theory should be the same as the observed values T̂ . Thus, we are
left only with the first term in the brackets, yielding:

F = ⟨F⟩ =
∑

r

1
Var

[
T̂ (ℓ)

] (∂T theory(r, λ)
∂λ

)2

, (5.11)

where ⟨F⟩ is an ensemble of averages over multiple iterations of the experiment. Thus,
F is the Fisher information. To use it for multiple cosmological parameters, we can
generalize it to the form:

Fαβ =
∑

r

1
Var

[
T̂ (r)

] ∂T theory(r, {λ̄γ})
∂λ̄α

∂T theory(r, {λ̄γ})
∂λ̄β

. (5.12)

Now it is clear that the equation does not depend on the observational data, but
only on the expected errors and theoretical model. Now, by performing the inverse of
the Fisher matrix, we can obtain the uncertainties of our parameters. For example, the
uncertainty of the parameter λ1 is simply

√
(F −1)11. Thus, we can simply state it as:

Covαβ = F −1
αβ , (5.13)

Where the Covαβ is the covariance of our cosmological parameters.

5.2 Cosmological constraints from the matter 3PCF

To compute the Fisher matrix, we need the appropriate covariance matrix, where its
calculation is explained in the section 2.10. It must be done on a TripoSH basis, which
is appropriate for the considered analysis. In this work, we will consider the expected
full Euclid DR3 covered light-cone volume of 43(h−1Gpc)3. Same as in the section 4.2,
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the grid for the triangle sides is smaller due to the high computational costs. To remind,
it is rmin = 10, rmax = 146 with ∆r = 4. Hence, to use this covariance, we will have to
re-scale also the computed 3PCF.

Now we will walk through the algorithm of obtaining the forecasts.

1. Fiducial cosmology: As explained before, we need to assume a fiducial cosmology,
which is the assumed true value for the chosen cosmological parameters. In this
case, as it was also done for emulators, we will choose the Planck18 results [3].

2. Emulation: After choosing the fiducial values, we also need some offset from
them, in order to compute the numerical derivatives for the equation 5.12. For
that reason, we vary each of the three cosmological parameters Ωm, h, and As by
10% around the fiducial value, obtaining six 3PCF with different cosmologies.

3. Re-scaling: As mentioned before, we have the constructed emulator for a different
grid of triangles, compared to the computed Gaussian covariance. Therefore, we
have to find the values of the 3PCF at the new triangle configurations. In our
case we do not need to interpolate, as we have the same Rmin = 10Mpch−1 and
the ∆r goes from 2 to 4, therefore we can pick every second element. We have
constructed also a general code, where interpolation is included with the Python
library scipy.interpolate.interp2d.

4. Threshold: In the forthcoming analysis, we want to explore how the constraining
power changes due to different types of thresholds. Hence, we implement also the
option to use the threshold based both on conditions by SNR or BAO detectability
or by triangle sides. This allows us to see the importance of certain triangle
configurations for forecasts of the parameters.

5. Computing numerical derivatives of the triangles: To compute the numeri-
cal derivatives, we have various options. To have second-order accuracy, we chose
the central numerical derivative of the form:

δT theory(r, λα)
δλα

= T theory(r, λα + ∆λα) − T theory(r, λα − ∆λα)
2∆λα

, (5.14)

where ∆λα is 10% of the fiducial value. This was chosen, for the deviation to be
small enough to still have an accurate numerical derivative.

6. Fisher matrix: With the covariance and the derivatives in hand, it is possible to
compute the Fisher matrix, using the equation 5.12. Each element is calculated
separately and then combined to create a 3 × 3 matrix.
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7. Covariance matrix: To estimate the uncertainties of the parameters, we have
to get the covariance matrix. That is simply done by inverting the Fisher matrix,
and thus the uncertainties are on the diagonal.

8. Visualize: To visualize, we take two of the parameters and show their joint
constraints. For example, if we constrain λ1, then we integrate over λ2: P (λ1) =∫

dλ2P (λ1, λ2). This gives us elliptical constrains, as we also have assumed
Gaussian Likelihoods, therefore in our case we will have three figures showing the
combination of Ωm, h and As constrains.

With this simplified algorithm, it is possible to get forecasts for the cosmological
parameters, where the input is the computed theoretical Gaussian covariance and the
emulated 3PCF for the calculation of derivatives.

5.2.1 Forecasts for stage IV spectroscopic surveys

Before presenting the results from the described algorithm, I will address an issue
encountered with the theoretical Gaussian covariance matrix. This is the first time it
has been applied to the specific case of anisotropic 3PCF at redshift zero. Through
detailed analysis, we observed discrepancies in the off-diagonal elements of the covariance
matrix.

A comparison with the numerical covariance matrix, particularly from the Pinocchio
simulation [57], revealed that while the diagonal eigenvalues behaved in the same
manner, the full covariance matrix displayed negative eigenvalues, suggesting potential
issues. As a result, the current analysis is based solely on the diagonal elements of
the covariance matrix. Validation of the full covariance matrix is ongoing, and future
work will incorporate it to repeat the analysis with the complete covariance structure.
However, this approach is sufficient for now, as we are primarily focused on comparing
the impact of different multipoles with different conditions, given the same type of
uncertainties.

Once again, these calculations are done for a survey with volume 43(h−1Gpc)3. Simi-
larly, as we did in the previous section 4.2, we are excluding every triangle configuration
with r ≤ 20 h−1Mpc, due to the issues of the Covariance in the small scales. Firstly, we
will analyze the constraining power of each of the isotropic multipoles separately. This
can be seen in the top row of Fig. 5.1. Here the conclusions are similar to ones from
the SNR analysis, as the 220 and 330 multipoles hold the best parameter constraints.
It can be seen that the 330 has the best constraints, and the 000 has the worst. At the
same time, every multipole apart from 000 has similar forecasts, which was also the
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case for the average SNR in Table 4.1.

Similarly as for the isotropic components, also the anisotropic can be analyzed
separately, which is done in the middle row in Fig. 5.1. Here, as already shown before,
the constraints are a lot worse than from the isotropic multipoles. Nevertheless, it
seems that the asymmetric multipoles have the best constraints among the others, even
though the 112 is very similar to 312 multipole. The 202 has the best constraining
power, approximately matching it with the worst isotropic multipole: 000.

The results from the separate multipole forecasts do not perfectly correlate neither
with the SNR Table 4.1 nor the BAO detectability Table 4.2, as one could expect higher
SNR or BAO detectability for the multipoles to match a better constraining power. There
is a considerable correlation between them, for example, the average BAO detectability
values were approximately equal for the 110, 220, and 330 multipoles and similarly
for the anisotropic multipoles. This is to be expected, as BAO is rich in cosmological
information, and it is sensitive to different cosmologies. However, the Tables were
produced for a single cosmology - the Planck cosmology - but the forecasts are estimated
by varying the cosmology. Therefore, it is informative to take into consideration Fig.
3.17, which portrays how cosmology affects the 3PCF. The overall amplitude of the
3PCF multipole variation from changing the Ωm values strongly correlates with the
constraining power. For example, looking at the anisotropic multipoles, 202 has clearly
the largest changes from different cosmologies, while other multipoles have fairly similar
changes, which also reflects the forecasts of the cosmological parameters.

One of the most important forecasts in this work is the comparison between the
multipole 000, isotropic and isotropic with anisotropic multipole forecasts, which can
be seen in the bottom row of the Fig. 5.1. It can be seen that there is a very significant
improvement by not only considering the 000 multipole, but also the rest of the three
isotropic multipoles. The surprising part is also the considerable improvement by
adding the anisotropic components. As seen in section 4.2, the anisotropic multipoles
do not have a large SNR, but nevertheless, they give a significant contribution to the
constraining power. Before drawing conclusions, it must be stressed that this is with a
diagonal covariance, therefore for the full covariance the results might vary. However,
this indicates the significance of including the anisotropic signal in the future analysis
of the LSS clustering.

Another interesting feature in Fig. 5.1 is the rotation of the ellipse seen in all the
forecasts. This effect is also observed in the following figures of this chapter. The tilt of
the ellipses reflects the correlation between the parameters. If the tilt is 0 or 90 degrees,
the two parameters are either degenerate with each other or simply independent. In
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Figure 5.1. Forecasts from different multipoles; Performed for Ωm, h and As cosmo-
logical parameters. Top row: Forecasts considering separately the isotropic multipoles.
Middle row: Forecasts considering separately the anisotropic multipoles. Bottom row:
Forecasts considering either the 000 multipole, all isotropic or isotropic and anisotropic
multipoles.
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the figure, we can see that the better the constraints, the more the parameters become
independent of each other. This is physically reasonable, as different multipoles have
different sensitivity to the cosmological parameters [65]. The most informative ones
can reduce the dependence between the cosmological parameters, thus enabling us to
probe changes in the 3PCF for each parameter separately. This effect can also be seen
in other Fisher analysis works in the literature [80].

Moving on, we can also explore the effects of adding different kinds of constraints to
the considered triangle configurations in the multipoles. For example, from the previous
section 4.2, we can select only the triangles with the highest SNR or BAO detectability.
In this case, we choose to report BAO detectability thresholds, as BAO is more sensitive
to cosmology, thus it should have better constraining power. The effect of that can be
seen in the Fig. 5.2.

Figure 5.2. Forecasts by applying threshold; Comparison of different threshold for
BAO detectability, which is used to select the triangle configurations for the forecasts.
Forecasts are done, using the isotropic & anisotropic multipoles.

Statistically, the more triangles, the better the constraints. The interesting part is
how much worse the constraining power becomes. We chose four different thresholds,
where the threshold is 2.0, as it takes 1500 of the highest signal points, which is attributed
to little more than 15% of the initial number of triangles, which is 9800. The threshold
1.4 is for 2000 points, and then the threshold of 0.4 attributes to half of the points, thus
4900.

It can be seen that by almost reducing the points by half, we do not lose a lot in
terms of constraining power. Furthermore, having only 15% of the initial triangles, we
still have fairly good constraints. Thus, by reducing the number of triangles by more
than 6 times, we only have a reduction of the area of the constraining ellipse by less than
5 times. This means that by selectively choosing the highest BAO detectability triangle
configurations, we can obtain good constraints and greatly reduce the computational
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time.
As we saw in the section 4.2, the highest signal comes from the squeezed triangles.

To see the effect of them, it is valuable to pick a certain rmin, reducing the amount
of squeezed triangles. From that, we will be able to see the importance of them for
cosmological parameter constraints. We will start with the isotropic component, as
seen in the Fig. 5.3. The effect of removing squeezed triangles is great, compared to

Figure 5.3. Isotropic multipole forecasts by applying rmin; The forecasts are done by
inducing different rmin of values: 30 h−1Mpc, 40 h−1Mpc, 50 h−1Mpc and no rmin. No
rmin is the general case applied in the previous forecasts, where we remove triangles
with r ≤ 20 Mpc/h due to underestimated errors of covariance.

the number of triangles removed. In this case, rmin = 30 h−1Mpc attributes to 88%
of total triangles, while the rmin = 40 h−1Mpc has 71% and rmin = 50 h−1Mpc has
61% of the total triangles. This means that even with the majority of triangles, we see
a considerable reduction of the constraining power, more precisely, the area increases
almost 8 times, comparing the no rmin with rmin = 42 h−1Mpc. This is another proof
of the importance of squeezed triangles for the cosmological parameter constraining.

The same can be done also with the combination of isotropic and anisotropic
multipoles, which can be seen in Fig. 5.4. The behavior is exactly the same as for the
isotropic case, solidifying the importance of including squeezed triangle configurations
for the cosmological parameter constraining.

To see how applying an rmin condition affects different combinations of multipoles,
we explore the rmin = 42 h−1Mpc in the Fig. 5.5. It is interesting to compare it with Fig.
5.1, where all triangles, except the ones below the scale of 20 h−1Mpc, are considered
for the multipoles. It can be seen that by applying the rmin condition, the isotropic
and isotropic & anisotropic constraints are nearly indistinguishable. This indicates that
squeezed triangles give a significant contribution to the combination of isotropic and
anisotropic multipoles. If they are not considered, then considering only the isotropic
component is sufficient to obtain the best constraining power. This is an important
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Figure 5.4. Isotropic and anisotropic multipole forecasts by applying rmin; The
forecasts are done by inducing different rmin of values: 18 h−1Mpc, 30 h−1Mpc, 42
h−1Mpc and no rmin.

Figure 5.5. Different multipole comparison with rmin = 42 h−1Mpc; Comparison
between 000 multipole, isotropic and isotropic & anisotropic multipole combination,
when the condition of rmin = 42 h−1Mpc has been applied.

aspect of future surveys and simulations, when choosing the rmin value, as it has a great
impact on the parameter constraints. Furthermore, as of now, the current modeling is
usually performed from 40 h−1Mpc [75], which, as seen in the figure, is not the scale
where the anisotropic component can give a significant improvement. This is crucial,
because excluding smaller scales from the modeling notably reduces the constraining
power of the redshift space 3PCF, especially for the anisotropic multipoles.

Finally, we can also consider a different volume for our survey and see if that changes
the behavior of the constraints. In particular, we chose the 8(Gpc h−1)3 volume, which
corresponds to one redshift bin for the Euclid survey [44]. Generating the same figures
reported above, we will show only one example, which is the comparison between the
isotropic and isotropic & anisotropic forecasts, seen in Fig. 5.6. It can be concluded
that, even though the constraints have significantly increased, as expected with a lower
volume, the behavior is exactly the same - the inclusion of the anisotropic component
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gives the same improvement over only isotropic constraining power. Therefore, the
conclusions drawn for the squeezed triangles and inclusion of the anisotropic multipoles
are independent of the volume of the survey.

Figure 5.6. Forecast with smaller considered volume; Comparison between isotropic
and isotropic & anisotropic forecasts between a possible survey of volume of either
V43 = 43(Gpc h−1)3 or V8 = 8(Gpc h−1)3.

Table 5.1. The predicted 68% confidence Level error for Fisher forecast on cosmological
Parameters with the volume 43(Gpc h−1)3, considering different conditions for the
triangle configurations.

h Ωm As

Planck18 6.74 × 10−1 3.15 × 10−1 2.10 × 10−9

Multipoles All triangles

000 1.75 × 10−3 5.44 × 10−3 1.01 × 10−11

Isotropic 4.11 × 10−4 1.28 × 10−3 2.50 × 10−12

Iso & aniso 2.85 × 10−4 8.87 × 10−4 1.80 × 10−12

Threshold Iso & aniso with thresholds for BAO detectability

0.42 3.48 × 10−4 1.08 × 10−3 2.15 × 10−12

1.43 5.00 × 10−4 1.54 × 10−3 3.07 × 10−12

1.96 5.58 × 10−4 1.71 × 10−3 3.56 × 10−12

rmin Iso & aniso with rmin

30 4.16 × 10−4 1.34 × 10−3 2.81 × 10−12

40 6.01 × 10−4 1.90 × 10−3 3.90 × 10−12

50 6.97 × 10−4 2.14 × 10−3 4.64 × 10−12

The most important constraints have been summarized in the Table 5.1. Both BAO
detectability and rmin portray similar information, as the highest BAO detectability
is mostly for the squeezed triangles. The bottom line is that squeezed triangles are
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the most informative triangle configuration. On top of that, if the squeezed triangles
are included, the inclusion of anisotropic multipoles to the isotropic gives a significant
improvement in the constraining ability. However, the lack of squeezed triangles erases
the benefit of the anisotropic multipoles.

To conclude, the main takeaways from the forecast analysis are the following. The
anisotropic component on its own does not have a significant constraining power, but
combined with the isotropic component it gives a considerable improvement for the
cosmological parameter forecasts over isotropic multipoles. However, this is only true
if the squeezed triangle configurations are included. If all triangles, that have one of
the sides smaller than 42 h−1Mpc, are excluded, then the improvement by adding the
anisotropic multipoles in the forecasts analysis is negligible. To add to this point, BAO
detectability threshold analysis was performed, which proved that less than 20% of
the total number of triangle configurations can still give good results if they have high
BAO detectability. Thus, it is important to stress that not all triangles have the same
sensitivity for cosmological parameters in each of the multipoles, and computing time
can be greatly reduced by only taking the ones with the highest BAO detectability.
Finally, all of this analysis is independent of the chosen volume, and all these conclusions
can also be applied to a smaller volume.
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6
Conclusions and future prospects

In modern cosmology, we have come a long way to find a model, that can accurately
describe our Universe - the ΛCDM model. It is simpler compared to other models [64],
as it can be described only by six cosmological parameters. With the help of ΛCDM
model, we have managed to describe a large portion of the history of our Universe, while
measuring the cosmological parameters with unprecedented accuracy [3]. Despite the
successes of this model, we are still left in the dark about 95% of our Universe, as we do
not know the nature of dark energy - the largest component in the Universe -, as well
as about dark matter - the largest gravitational component of our Universe. Moreover,
we also lack knowledge of the luminous component, as we are still unclear about the
formation of large-scale structures (LSS) - the vast cosmic network of galaxies, clusters,
and voids that span the Universe.

A deep understanding of the LSS of the Universe and its information content involves
studying the evolution of cosmic structures from the initial conditions set during the early
stages of the Universe [4]. This requires knowledge of the role played by cosmological
parameters such as the spectral index, scalar amplitude of matter density fluctuations,
and the density parameters for matter, dark matter, baryons, dark energy, and radiation
in tracing the formation and development of the LSS themselves, and the complex
interactions between the different components of the Universe. The formation of LSS is
influenced by both linear and non-linear mechanisms, and to describe it accurately, we
must understand the interactions between visible and dark matter, as well as the tidal
forces that shape the distribution of galaxies. This process involves parameters such
as the linear, non-linear, and tidal galaxy bias, in addition to standard cosmological
parameters including the Hubble constant and the density fractions of the Universe’s
various components.

A key role in tracing the expansion history is represented by the Baryonic Acoustic
oscillations (BAO). In the early Universe, BAO were frozen at around 100 h−1Mpc near
the epoch of recombination. BAO have a critical role in the evolution of clustering
of galaxies and matter, as well as in the analysis of large-scale structures. Firstly,
it solidifies the theories for the thermal history of the early Universe, as well as the
proposed gravitational instability theories. Secondly, the BAO serve as a standard
ruler in cosmology, enabling precise measurements of cosmic distances and helping to
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constrain cosmological parameters and the expansion history. Beyond improving these
constraints, BAO also help break degeneracies between parameters, particularly at high
redshifts. This makes BAO an especially powerful and reliable tool for cosmological
analysis, as they are largely resistant to astrophysical and observational systematics
[20].

The BAO features have been mostly analyzed from the two-point statistics [26].
However, with the recent missions, such as Euclid and DESI[44, 1], and upcoming
surveys, such as the Roman Space telescope [24], which have subpercent measurement
accuracy of the BAO measurements, higher-order statistics represent a powerful tool to
extract cosmological information from the BAO signal. For example, to fully exploit
the BAO features of the reconstructed power spectrum [26, 79], unreconstructed three-
and four-point statistics are needed [59]. Furthermore, three-point statistics allow
breaking degeneracies between cosmological parameters, include the description of the
non-Gaussian density field, provide valuable insights into the non-linear correlations
between galaxies on larger scales, as well as serve as an independent method to constrain
cosmological parameters.

Comparing bispectrum with 3PCF, it is evident that bispectrum is easier to model,
due to the advantages of the Fourier space, as well as to conduct measurements. This is
the reason why it has had continuous theoretical developments, as well as applications to
the data of galaxy surveys [38]. However, it holds several disadvantages with respect to
its counterpart in configuration space - 3PCF -, for example, mode coupling in Fourier
space. In recent years there have been significant efforts to advance the theoretical side
of 3PCF [70, 75, 28]. It has come to the point, where 3PCF can be modeled in redshift
space, and be separated in its isotropic and anisotropic components [71].

Due to the recency of these developments, there is little knowledge of the BAO
appearance in the multipoles of 3PCF [66], especially in the anisotropic component.
Furthermore, the influence of including the anisotropic component for constraining the
cosmological parameters is also unknown. It is difficult to address these questions, as a
single model calculation can take up to 48 CPU hours. Therefore, methods to speed
up the computation of 3PCF models must be explored to answer the stated questions,
and also enable the usage of Markov-chain Monte Carlo (MCMC) methods to constrain
cosmological parameters with the anisotropic 3PCF. Otherwise, it could take up to
480′000 CPU hours to run an MCMC with 10000 points.

With this Thesis, we aim to address the previously discussed questions by developing
a robust and versatile emulator for the 3PCF. For the first time, we generate an emulator
for the anisotropic 3PCF, only recently presented in the literature [71] and implemented
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in a Python package Mod3l [28], and use it to assess the sensitivity and power of the
anisotropic 3PCF to detect BAO and to derive constraints on cosmological parameters.
Here below we summarize the main results.

Emulating the matter anisotropic 3CPF To handle the issue of large computa-
tional costs, we developed an emulator for the matter anisotropic 3PCF. It significantly
speeds up the calculation of a single model, which allows us to perform further cosmo-
logical analysis of the 3PCF. The following steps were performed:

• Before emulating the 3PCF, three emulators for the power spectrum were developed
of the cosmological parameters Ωm, Ωb, h, and ns. the emulators for the power
spectrum were developed for several reasons. Firstly, the power spectrum is well
analyzed in the literature, as well as there have been multiple emulators developed
for it. Due to its simplicity, the power spectrum proved to be the perfect target
to assess and optimize the parameters of the neural network with the Python
library CosmoPower [69]. Secondly, to calculate the redshift space 3PCF, the
full and no-wiggle power spectrum are needed as an input. Hence, it is useful to
understand these functions with great detail, as well as speed up the calculation
for the input parameters. Lastly, the analysis of the cosmological parameters
allowed us to understand better the influence of them, as well as explore the
available range that can be chosen.

• Many different hyperparameters were tested for the neural network to find the best-
performing emulator. It was understood that each function is unique, therefore
the best hyperparameters for the power spectrum might not be the best for the
no-wiggle power spectrum. Nevertheless, each emulator has an accuracy down to
0.01%, which was tested with the method of percentage difference. This method
proves to be simple yet effective, as it allows for assessing accuracy across different
modes and identifying potential issues. For instance, it was crucial in redefining
the lower limit of Ωm, as the function failed at and beyond the BAO scale when
Ωm was too low.

• Using the CosmoPower package for the 3PCF, the emulator did not reach the
needed accuracy. In CosmoPower, there was no normalization of the data before
the calculation of loss, which did not allow us to reach the global minimum for the
loss function. Thus, we made a modification for it, which is further described in
the Appendix A. With this in hand, the performance of trained emulators greatly
increases, making it possible to create an accurate emulator for the anisotropic
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3PCF.

• The next step was to emulate the matter anisotropic 3PCF. This is the first
emulator for it, which was made on the foundation of the Python package Mod3l.
This emulator allows to vary the cosmological parameters Ωm, h, and As at redshift
zero. The range for the triangle sides is from 10 to 200 with the step of 2 h−1Mpc.
It takes around 0.004 seconds to compute one of these models. It has made the
calculations more than 10 million times faster, while still maintaining sub-percent
accuracy, which can be seen in Table 3.10. Thus, it gives the possibility to execute
cosmological analysis with only a laptop at hand.

Assessing the sensitivity to BAO of the anisotropic 3PCF The SNR for
3PCF was studied to understand the physical meaning of the observed features in the
anisotropic 3PCF, as well as to find the triangle configurations with the highest signal.
For the first time, the anisotropic redshift space 3PCF multipoles were analyzed using a
newly developed BAO detectability method, identifying the best triangle configurations
that maximize the BAO signal. In particular, the following steps have been done:

• A Gaussian covariance matrix was produced for this work, in order to calculate the
SNR and use the BAO detectability metric. It simulates a volume of 43 (h−1Gpc)3,
which corresponds to Stage IV spectroscopic surveys, such as Euclid [44] or DESI
[1]. Due to the large differences between the Gaussian and non-Gaussian covariance
matrix for the small scales, we constrain the triangle configurations, that satisfy
the condition r > 20 h−1Mpc.

• An SNR analysis of the redshift space anisotropic 3PCF was performed. We
were able to distinguish that the highest SNR for the 3PCF is from the squeezed
triangles. This is expected, as one or more sides are in the non-linear regime, where
there is an excess of clustering. On top of that, isosceles triangles show a strong
signal because the 3PCF calculation involves integrating over the angle between
the triangle sides. Consequently, this integral includes a triangle configuration,
where the two sides are parallel and pointing in the same direction. This is a
highly improbable configuration, as the third side’s length approaches zero. This
produces a trough in the 3PCF function, which has a large absolute amplitude,
thus producing a strong signal. Instead, the BAO features in SNR analysis are
hardly noticeable, therefore a different method must be adapted.

• To detect the best triangle configurations for the BAO, we developed a new metric,
defined as BAO detectability. It is built as the SNR, but instead of the 3PCF in

118



the numerator, it is the difference between the full and the no-wiggle 3PCF. This
allows us to visualize which triangle configurations detect BAO features the best.
We found that in the case of 3PCF, the BAO signatures are strongest for the
squeezed triangles. To be more specific, the highest detectability is found when one
of the two sides are 100 and 30 h−1Mpc, respectively. Depending on the multipole,
also other configurations show a noticeable detectability, namely (30,60), (30,80),
(30,120), and (30,140) h−1Mpc. This is because there are multiple crossings of the
BAO scale when the 3PCF is calculated by integrating over the angle between the
sides. Additionally, the strong clustering signal at small scales amplifies the BAO
signal, which is true even when both sides are not on the BAO scale. The second
highest detectability configuration is given by isosceles triangles when both sides
are around 100 h−1Mpc. This is because, at any triangle combination, at least
two of the sides will contain the BAO scale, thus also giving an excess of signal. It
is important to note that each multipole has different SNR and BAO detectability
features, especially when comparing the isotropic with the anisotropic ones. For
example, there are two asymmetric multipoles due to the expansion order of the
triangle side, which have different features compared to the other multipoles.

• An alternative approach to analyzing the BAO detectability was also explored,
by using the only-wiggle 3PCF instead of subtracting the full 3PCF with the
no-wiggle 3PCF. This is a different metric, as the only-wiggle is only due to the
baryonic component. The analysis was performed with this metric, to ascertain,
that the triangles, which sides did not include the BAO scale, did not have BAO
detectability. It also provides an additional tool to analyze BAO appearance in
anisotropic 3PCF, but further work must be done to use it independently.

Forecasts for a Stage IV spectroscopic survey Finally, Fisher forecasts analysis
was performed for the parameters Ωm, h, and As by varying the multipoles and other
conditions. This is a crucial analysis, as it provides insights into the potential constraining
abilities of different multipoles for the next leading Stage IV surveys provided by DESI,
Euclid, or the Roman Space telescope. Furthermore, most analysis in the literature has
been done for only the isotropic multipoles [67, 29], but anisotropic multipoles have
been left less explored. This allows us to find the multipoles with the most constraining
power, as well as portray the improvement by including the anisotropic multipoles to
the isotropic ones. The analysis can broken down into these conclusions:

• We determined that the 330 multipole had the best constraining power among
the isotropic multipoles, although 220 and 110 are very similar. The anisotropic
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multipoles have a significantly worse constraining power in general, but among
them, the best one is the 202 multipole.

• The most important result was obtained from the analysis of the combination
of various multipoles. We discovered that the combination of isotropic and
anisotropic multipoles gives a significant improvement over isotropic multipoles.
The improvement is noteworthy only when small-scale triangle configurations are
considered, specifically satisfying the condition of rmin < 42 h−1Mpc. This is
crucial for the future modeling of the 3PCF, which mostly opt for rmin ≈ 40h−1Mpc
[75], which would not yield considerably better constraints by including the
anisotropic multipoles.

• Regarding the smaller scales, it was discovered that they hold the most constraining
power. The isosceles triangles also have similar properties. This is established
by the analysis of different thresholds of BAO detectability and choosing rmin

to reduce the number of squeezed triangles. Consequentially, excluding 85% of
triangles with low BAO detectability from the analysis only increased the area of
constraining ellipses by less than five times, while removing 29% of triangles, all of
which were squeezed ones, increased the area by almost eight times. This solidifies
the significant constraining power of the small-scale triangle configurations.

• We find that for a stage IV spectroscopic survey, using only the isotropic part
of the 3PCF provides constraints on Ωm = 0.315 ± 0.00138. This is improved
to Ωm = 0.315 ± 0.000887 when adding also the anisotropic component. This is
extremely promising since this analysis is derived from 3PCF constraints only,
paving the way to a significant improvement when also the 2PCF is added to the
analysis.

To summarize, in this work we developed the first-ever emulator for the matter
anisotropic 3PCF. It speeds up the calculation by more than ten million times, while
maintaining subpercent accuracy. Additionally, a pioneering exploration of the BAO fea-
tures for the anisotropic 3PCF was performed, finding high detectability in isosceles and
squeezed triangle configurations. Lastly, forecasts for the cosmological parameters Ωm,
h, and As were done. We found out that the inclusion of anisotropic multipoles makes
a significant contribution to the constraining power of these cosmological parameters.
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6.1 Future prospects

The work in this Thesis revolves around the unexplored territory of the redshift space
anisotropic 3PCF. Even though a lot of novel work has been done, there is even more
to be followed. The next steps will be as follows:

• Full covariance matrix: the Fisher forecasts were performed with only the
diagonal elements of the covariance matrix, due to the issue of the off-diagonal
elements. To confirm and solidify the conclusions from the SNR, BAO detectability,
and Fisher forecast analysis, we must take into account the full correlation matrix.
Then it will be a proper analysis in the configuration space of the mentioned
metrics, which will be done after the Covariance pipeline is validated.

• Only wiggle 3PCF: the BAO detectability had the problem of producing a
signal at the small scale triangle configurations, which cannot cross the BAO
features. In order to solve this numerical issue, we can compute the only wiggle
3CPF, which should be the same as the subtraction between the full and no-wiggle
3PCF. In order to do so, some modifications to the Python package Mod3l must
be made, further explained in Chapter 4.4.

• MCMC: In order to fully test the abilities of the developed emulator, the Markov
chain Monte Carlo (MCMC) method must be used on simulation or even survey
data to constrain the cosmological parameters. This would give more realistic
constraints of the cosmological parameters, which would be more concrete than
the Fisher analysis.

• Galaxy anisotropic 3PCF emulators: As of now, the emulator was built for
matter, therefore the next step is to extend it to the galaxy 3PCF emulators, as
that is the observed luminous tracer in the surveys. It requires a large amount of
computational resources, which were not available to us during this work. However,
we recently acquired more computational resources from Cineca, which are planned
to be utilized for this purpose.

• More emulators: It would be useful to include the dependence on the fiducial
cosmology, by involving the AP parameters. Additionally, emulating with more
cosmological parameters and at different redshifts could prove useful to different
kinds of future surveys.

• 2PCF + 3PCF: The combination of the 2PCF for the Fisher forecasts or MCMC
will significantly increase the constraining power on cosmological parameters and
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break degeneracies between them.

Many of these steps require high computational power to begin with. For that, we
have submitted two class C projects to Cineca, and both of them got accepted, thus
acquiring 200′000 CPU hours in total for the continuation of the work on the redshift
space 3PCF.
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A
Modified CosmoPower

To increase the speed and accuracy of the predictions, we added an internal normalization.
This could not be done just by normalizing the input data, as then there would be a
problem of the rescaling of the output of the data. Therefore, the following change was
done to one of the functions in the CosmoPower code:

Listing A.1. TensorFlow prediction function for the output
def predictions_tf(self,

parameters_tensor
):

r"""
Prediction given tensor of input parameters,
fully implemented in TensorFlow

Parameters:
parameters_tensor (Tensor):

input parameters

Returns:
Tensor:

output predictions
"""
outputs = []
layers = [tf.divide(tf.subtract(parameters_tensor, self.parameters_mean),

self.parameters_std)]
for i in range(self.n_layers - 1):

# linear network operation
outputs.append(tf.add(tf.matmul(layers[-1], self.W[i]), self.b[i]))

# non-linear activation function
layers.append(self.activation(outputs[-1], self.alphas[i],

self.betas[i]))

# linear output layer
layers.append(tf.add(tf.matmul(layers[-1], self.W[-1]), self.b[-1]))
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# rescale -> output predictions
return layers[-1]

The rescaling of the data was done in the training function itself, where the following
code was added after line 606:

Listing A.2. Gaussian normalization
training_features = tf.divide(tf.subtract(training_features,

self.features_mean), self.features_std)

The normalization in this code is the gaussian one, therefore it must be changed if
Min-Max normalization is intended to be used:

Listing A.3. MinMax normalization
training_features = tf.divide(tf.subtract(training_features,

self.features_min), tf.subtract(self.features_max, self.features_min))

Here as the code was intended for the Gaussian normalization, then the mean and
std parameters had to be changed to min and max.
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