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Abstract

In this thesis I produce models based on N -body simulations of the dwarf
spheroidal galaxy Sexants, which exhibits a peculiar ring-like feature in its
line-of-sight (l.o.s.) velocity and pseudo-equivalent widths of the Mg-triplet
absorption feature distributions, as identified by Cicuéndez and Battaglia
(2018) using spectroscopic data. Cicuéndez and Battaglia (2018) suggested
that these anomalies may be attributed to the accretion of a smaller satellite
system, prompting us to conduct N -body simulations to test this hypothesis.
The project comprises three main components: the development of a Python
software to generate initial conditions (ICs) for the simulations, the execu-
tion of simulations under two scenarios (one with a satellite composed only of
stars and another satellite composed also of dark matter (DM) halo), and the
creation of mock datasets for comparison with observational data.

Sextans is modelled with two components—stars and a DM halo—based on
literature values. When the satellite is only composed of stars, it is intended
to represent a sort of disrupted nuclear star cluster, when it is composed also
of DM it is intended to mirror a dwarf satellite galaxy. The simulations are
run using the state-of-the-art hydrodynamical N -body code Arepo, exploring
different sets of orbital ICs.

The results show that, for a satellite initially set in the outskirts of the
galaxy, only the simulations involving a satellite with a DM halo successfully
replicate, at the same time, the observed ring-like structure and peculiar kine-
matics in the velocity map. In contrast, simulations without DM failed to
reproduce the observed structures. These findings support the hierarchical
merging theory at the scale of dwarf galaxies, suggesting that the peculiar fea-
tures of Sextans can indeed be attributed to an accretion of a smaller system.
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Introduction

The current cosmological framework suggests that galaxies form in part through the
accretion and merging of smaller systems. This mechanism is believed to operate at all
scales, including those of dwarf galaxies (DGs), which are typically satellites of larger
galaxies such as the Milky Way and M31. For this reason, DGs play a crucial role to our
understanding of both galaxy formation and small-scale cosmology.

In this thesis, I study the case of Sextans, a local dwarf spheroidal galaxy (dSph), where
Cicuéndez and Battaglia (2018) uncovered a peculiar ring-like feature in both spatial
distributions of line-of-sight (l.o.s.) heliocentric velocities and pseudo-equivalent widths of
the Mg-triplet absorption feature (ΣMg), primarily using spectroscopic data from Walker
et al. (2009b). By means of N -body simulations, the aim of this thesis is to investigate
whether the observed peculiar ring-like velocity feature can be a signature of a merger
between Sextans and a much smaller satellite.

The thesis is organised as follows.
In chapter §§ 1, I will present an introduction to DGs, discussing their importance in

the context of galaxy formation and evolution. After illustrating the various types of DGs,
the chapter will primarily focus on dSphs, including Sextans. I will discuss their defining
properties, such as low luminosity, stellar populations, dark matter (DM) content and lack
of gas. I will conclude by illustrating how the current cosmological model is encountering
problems at the scales of DGs.

Chapter §§ 2 will focus specifically on the Sextans dwarf spheroidal galaxy. I will
present a detailed analysis of its morphological and kinematic properties, including its
stellar distribution, chemical composition, and dynamics. This chapter will explore the
observational evidence supporting the presence of disturbances and possible traces of
minor merger events. Special attention will be given to the peculiar ring-like feature
identified by Cicuéndez and Battaglia (2018), and the presence of a possible relic star
cluster by Kim et al. (2019). These observations motivate the simulation work presented
in the subsequent chapters.

In chapter §§ 3, I will introduce the theoretical framework of collisionless systems,
which is used to model the dynamical interactions within galaxies. This chapter will delve
into the fundamental concept of the distribution function (DF), highlighting its role in
relation to observables and its connection to key equations like the collisionless Boltzmann
and Jeans equations. A particular focus will be placed on deriving the functional form
of the DF under conditions of spherical symmetry, isotropy and steady-state, resulting in
the Eddington formula. This formula will play a crucial role in constructing physically
motivated N -body models, which are central to the presented simulations in this thesis.

All the simulations are conducted using the N -body code Arepo (Springel, 2010; Wein-
berger et al., 2020), a state-of-the-art code widely applied across various astrophysical
problems. Therefore, in chapter §§ 4, I will detail the characteristics of Arepo, its core
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4 Introduction

algorithms, features, and the significant advantages it offers for simulating complex sys-
tems. Additionally, I will outline the methodologies I used to develop a custom Python
software for generating N -body realisations for the simulations, i.e. samples of particles
with known positions, velocities, and masses, of equilibrium stellar systems to model Sex-
tans and its satellite. In all the simulations presented, Sextans is represented by two
components: stars that follow a Plummer (1911) profile and the DM halo that follows a
truncated (Navarro et al., 1996, NFW) profile. The structural parameters, masses and
scale radii are chosen according to the literature (Cicuéndez et al., 2018; Battaglia et al.,
2011).

In the following chapters, I will analyse the outcomes of the various simulations ex-
ploring two distinct families of scenarios, depending of whether the satellite possessed or
not a DM halo.

In chapter §§ 5 I will analyse the simulations in which the satellite is only made of stars,
but no DM, which is intended to reproduce a globular cluster or a nuclear star cluster
originally belonging to a now disrupted galaxy. In this case, the satellite is modelled
following a Plummer profile. In chapter §§ 6, I will analyse the simulations in which the
satellite is embedded in a dominant DM halo, which is intended to resemble an interacting
dwarf satellite galaxy. In this case, the satellite is a scaled-down version of Sextans, a
stellar Plummer population embedded in a dominant NFW DM halo. In both cases,
I will explore different sets of initial conditions (ICs) for the satellite system, mainly
aiming to replicate the observed l.o.s. velocity map. The latter is, indeed, the most
critical feature to reproduce, because it depends on both the orientation of the galaxy
and particle velocities. I will then create several mock datasets of positions on the plane
of the sky and l.o.s. velocities from the simulations to be compared with the observed
data of Cicuéndez and Battaglia (2018), in order to find the best configuration.

In summary, this thesis investigates the possibility that Sextans’ peculiar l.o.s. velocity
structure could result from an accretion event involving a smaller satellite.



I

Dwarf Spheroidal Galaxies

Dwarf spheroidal galaxies are known to be satellites of both the Milky
Way and M31, the nearest major galaxy in the Local Group.
In this chapter, it will be introduced the concept of dwarf galaxies and
how they have been categorised in the Local Group based on their lumi-
nosity and gas content. The chapter will then focus on the main prop-
erties of the gas-poor ones, the so-called dwarf spheroidals, describing
their morphology (§ 1.2), kinematics (§ 1.3), mass content (§ 1.4) and
possible evolution scenarios (§ 1.5). In the last section (§ 1.6) dwarf
galaxies will be discussed in a cosmological context, focusing on the
current issues with the standard model at such small scales.
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6 Chapter 1. Dwarf Spheroidal Galaxies

1.1 General properties of dwarf galaxies

Studies of the galaxy luminosity function (Binggeli et al., 1988) agree that the majority
of the galaxies in the Universe are dwarfs, i.e. systems at least one order of magnitude
fainter than the Milky Way (MW). This is also true in the Local Group (LG) where all
galaxies, aside from the MW, M31, M32 and M33, are indeed dwarf galaxies (DGs), with
the majority of them being satellites of the MW and M31.

Currently, DGs are one of the best probes for studying DM halos as they exhibit the
largest dynamical mass-to-light ratio M/L, reaching even values of 1000 for some of the
faintest systems. Also, DGs are still crucial to test the standard cosmological framework.
The dark energy plus cold dark matter (ΛCDM) cosmological model has successfully
predicted the large-scale structure formation, but on scales smaller than ≈1 Mpc and
masses lower than ≈ 1011 M⊙ the theory is in tension with some observations. Some of the
most discussed problems are the core-cusp, missing satellite and too-big-to-fail problems
(Bullock and Boylan-Kolchin, 2017, see § 1.6 for a more detailed discussion). Moreover, in
the ΛCDM paradigm, MW-like and massive galaxies are formed in a hierarchical process
through mergers and accretion of smaller systems, but this process is thought to occur at
all scales (Fakhouri et al., 2010), including those of DGs. Thus, any evidence of accretion
in DGs is an important probe for galaxy formation theories.

DGs cover a wide range of different types of galaxies. Among them, the dwarf ellipti-
cals (dEs) have properties closest to those of early-type galaxies (ETGs), while the other
ones can be distinguished on the basis of their gas content. The gas-rich ones are called
dwarf irregulars (dIrrs), while the gas-poor ones, adopting the nomenclature of Simon
(2019), are called either dwarf spheroidals (dSphs) or ultra-faint dwarfs (UFDs), depend-
ing on whether they are brighter or fainter than absolute V -band magnitude MV = −7.7,
respectively. (Putman et al., 2021, and reference there in) showed that these two types
of dwarfs are not randomly distributed with respect to the main galaxies. In particular,
the gas-rich satellites are mostly segregated outside the virial radius of the main galaxy.
This strongly suggests that the LG medium is responsible for stripping gas in DGs and
quenching their star formation (Fillingham et al., 2015, 2016, 2018)

For historical reasons, all DGs discovered before the Sloan Digital Sky Survey (SDSS)
are called classical DGs. In particular, in the case of dSphs the ones referred to classical
are Sculptor, Fornax, Leo I, Leo II, Carina, Ursa Minor, Sextans and Draco. As the most
luminous of these fainter and closer objects, these classical dwarfs have been extensively
studied over the years. Some of their most significant parameters are reported in Tab. 1.1.

1.2 Morphological properties

Since the first studies by Hodge in the 1960s (Hodge, 1961, 1964, and references therein),
two structural features have been found to be common to all classical dSphs.

First, they all appear to have a flattened morphology on the plane of the sky. This
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Name Distance Re log L log Mdyn(Re) ϵ σlos

[kpc] [pc] [L⊙] M⊙ [km s−1]

Carina 105+6
−6 313+3

−3 5.70+0.02
−0.02 7.01+0.14

−0.17 0.4 6.6+1.2
−1.2

Draco 76+6
−6 225+2

−2 5.42+0.02
−0.02 7.15+0.03

−0.03 0.3 9.0+0.3
−0.3

Fornax 147+12
−12 749+4

−4 7.32+0.06
−0.06 7.88+0.03

−0.03 0.3 11.4+0.4
−0.4

Leo I 254+15
−15 276+2

−2 6.64+0.11
−0.11 7.26+0.04

−0.04 0.3 9.2+0.4
−0.4

Leo II 233+14
−14 155+1

−1 5.83+0.02
−0.02 6.88+0.04

−0.05 0.1 7.4+0.4
−0.4

Sculptor 86+6
−6 303+4

−4 6.26+0.06
−0.06 7.36+0.03

−0.03 0.4 10.1+0.3
−0.3

Sextans 86+4
−4 527+17

−14 5.51+0.04
−0.04 7.47+0.04

−0.04 0.3 8.4+0.4
−0.4

Ursa Minor 76+3
−3 403+2

−2 5.54+0.02
−0.02 7.21+0.03

−0.03 0.6 8.0+0.3
−0.3

Tab. 1.1 – Heliocentric distance; projected half-light radius Re; total V-band lu-
minosity L; dynamical mass Mdyn(Re); ellipticity ϵ; mean l.o.s. velocity dispersion
σlos. For each of the 8 classical dSphs. Data from Battaglia and Nipoti (2022)
and McConnachie (2012).

can be quantified by the ellipticity parameter ϵ, defined as

ϵ ≡ 1 − b

a
, (1.1)

where a and b are the projected semi-major and semi-minor axis, respectively. The
isophotes of all dSphs show 0.1 ≤ ϵ ≤ 0.7.

Second, the dSphs projected stellar density profile declines more steeply at large radii
than the typical ETGs. As resolved systems, the projected stellar density profiles in dSphs
are produced by creating circular or elliptical bins on the plane of the sky and counting the
stars that fall into each bin. Thus, under the assumption that the stars number density
distribution traces linearly the luminosity distribution, for dSphs one can unambiguously
refer to stellar number density profiles or projected luminosity profiles. The luminosity
profile of ETGs is typically well fitted by the de Vaucouleurs (1948) model, or the more
general Sérsic (1963) profile:

I(R) = Ie exp
{

−b(n)
[(

R

Re

)1/n

− 1
]}

, (1.2)

where R is the distance on the plane of the sky from the centre of the system, Re is
the projected half-light radius, Ie is the surface brightness at Re, n is the Sérsic index
and b(n) is a dimensionless parameter. Ciotti and Bertin (1999) showed that it can be
approximated to:

b(n) = 2n − 1
3 + 4

405n
+ 46

25515n2 + 131
1148175n3 − 2194697

30690717750n4 + O(n−5). (1.3)
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Fig. 1.1 – Several surface brightness profiles as a function of the distance from
the centre rescaled to the half-light radius Re. The profiles are scaled to the
surface brightness at the half-light radius Ie. In different colours are the different
models mentioned in § 1.2, parameters values have been taken from Cicuéndez
et al. (2018).

Notably, for n = 1 the Sérsic profile reduces to the exponential one, which is most com-
monly used in terms of the central surface brightness I0:

I(R) = I0 exp
(

− R

Rexp

)
, (1.4)

where Rexp ≈ Re/1.68.
For ETGs the Sérsic index is typically 2 < n < 10, but dSphs require models with a

cored central profile and a steeper outer profile. Therefore, the models better suited to
fit the profile of dSphs are Sérsic profiles with n < 2 or the King (1962) analytic profile:

I(R) = I0

 1√
1 + (R/Rc)2

− 1√
1 + (Rt/Rc)2

2

, (1.5)

where I0 is a characteristic surface brightness, R is the projected radius, Rc the core radius
and Rt the truncation radius. The latter is the limiting radius of the system that one
might expect from tidal truncation, i.e. where the density formally drops to zero. Another
commonly used cored profile for dSphs is the Plummer (1911) profile,

I(R) = I0[
1 +

(
R
Rs

)2
]2 , (1.6)
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widely adopted in the literature to model the distribution of stars in these galaxies due
to its simplicity and analytical tractability.

Figure 1.1 presents the luminosity profiles, rescaled by Ie, for the different models
mentioned in this section. The plot highlights the different shapes of the two classes of
models: King, Plummer, Exponential and Sérsic n = 1.03 (so n < 2) profiles are cored in
the inner region and steeper at the outer radii, Sérsic n = 7 and de Vaucouleurs (n > 2),
instead are cuspier in the inner regions and shallower at greater radii.

1.3 Kinematic properties
Due to the paucity of gas, stars are the only tracers of the gravitational potential in dSphs
and UFDs, and a comprehensive understanding of the dynamical properties of the galaxy
would require the 6D phase space data for a large number of stars. In practice, even
for the most precise distance indicators, as in Muraveva et al. (2020), the relative preci-
sion in the depth for individual stars is still of the order of the size of the galaxy itself.
Consequently, the only quantities available are the two components of the position vector
on the plane of the sky, and the three components of the velocity vector, i.e. one l.o.s.
velocity and two proper motions. The advent of Gaia DR1 (Gaia Collaboration et al.,
2016, Gaia collaboration,) and DR2 (Gaia collaboration, Brown et al., 2018) increased
sensibly the amount of stars with measured proper motions. Moreover, by combining
Gaia DR1 and DR1 with Hubble Space telescope measurements, it was possible to ob-
tain the first three-dimensional internal motions for individual stars in Sculptor (Massari
et al., 2018) and Draco (Massari et al., 2020). However, in most of the cases, transverse
velocities uncertainties are still at least one order of magnitude larger than those of the
l.o.s. component (Battaglia and Nipoti, 2022). Consequently, the dynamical modelling
still mostly relies on the latter.

The search for velocity gradients has a long-standing history, as they can arise from a
variety of reasons such as intrinsic rotation, streaming motions and tidal disruption, each
providing information on the formation and evolution of the system. From observations
(for example Battaglia et al., 2008; Fraternali et al., 2009; Wheeler et al., 2017; Kirby
et al., 2014; Walker et al., 2008), it can be seen that the majority of DGs do not display
evidence of ordered motion. Even when statistically significant velocity gradients can be
identified, these appear to be sub-dominant in comparison to the influence of random
motions (Wheeler et al., 2017), which are quantified by the l.o.s. velocity dispersion σlos.
As I will discuss in § 3.3, dSphs are pressure-supported systems, meaning that, for these
systems, the quantity ρσ2 can be interpreted as a pressure acting against the gravitational
forces, where ρ is the local three-dimensional density and σ the velocity dispersion.

For most of the dwarfs in the LG, only the central value of the l.o.s. velocity dispersion,
σ0, is available, while for classical dwarf σlos can be studied as a function of projected
radius R, allowing the derivation of the l.o.s. velocity dispersion profile. As illustrated in
Figure 1.2, the l.o.s. velocity dispersion profiles for the classical dSphs exhibit a relatively
flat or slightly increasing trend, with typical values ranging between 5 and 15 km s−1, as
it can be seen in the last column of Tab. 1.1.
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Fig. 1.2 – Projected l.o.s. velocity dispersion profiles for eight of the classical
MW dSphs (circles with errorbars). The lines are the fitted profiles calculated for
different models. Picture taken from Walker et al. (2009a)

.

Measurements of the l.o.s. velocity dispersion are extremely important, as they provide
an indication of the dynamical mass. Indeed, under the assumption of equilibrium and
using the virial theorem, σ2 ∝ GM/R for relaxed systems with a characteristic size R.
As a consequence, the flat profiles visible in Figure 1.2 fit quite well with those of an
almost isothermal distribution (dotted line, M ∝ r). However, the luminous mass is
not sufficient to justify the flatness of these curves, indicating that dSphs are necessarily
heavily DM-dominated. I will discuss the DM content of dSphs in more detail in the next
section.

Being satellites of the MW, the equilibrium assumption is actually non-trivial. Indeed,
all classical dSphs orbit within the MW gravitational potential, hence they are susceptible
to several phenomena due to tidal forces. Some studies, such as Read et al. (2006),
have investigated whether the effects of such external forces can substantially alter the
velocity dispersion. Their results showed that tidal forces can indeed alter the velocity
dispersion of stars, but this effect is only significant in the outer regions of the DG or
if the galaxy is on a particularly disruptive orbit, e.g. passing close to the MW during
pericentric passages. For dSphs that are on relatively mild orbits, tidal forces are unlikely
to significantly alter the central velocity dispersion, which is more robust and less sensitive
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to tidal effects. Moreover, works like Battaglia et al. (2015) showed that the observable
properties of Fornax are not significantly influenced by tidal effects, confirming that tidal
forces become relevant primarily for dSphs with orbits with small pericentric distances
and high orbital eccentricities. In addition to this, Iorio et al. (2019) brought evidence
that, for the Sculptor dSph, even in case of non-negligible tidal effects on its DM halo,
the stellar kinematics still represents a robust tracer of the internal dynamics.

1.4 Mass content
One of the main goals of studying the stellar dynamics of DGs is to determine the mass
density profile ρ of their DM halos. This, in principle, requires an estimate of the galaxy
gravitational potential Φ, which can be inferred from the kinematics of the stars via
dynamical models. In fact, by assuming that the galaxy is isolated and stationary, the
gravitational potential is directly related to the matter density via the Poisson equation
∇2Φtot = 4πGρtot.

Apart from being assumed to be stationary, dSphs are modelled as collisionless stellar
systems, in which two-body interactions between individual components are negligible
with respect to the mean gravitational field. The hypothesis of non-collisionality is justi-
fied by the high relaxation time, which measures the average time for a star’s velocity to
be significantly altered by interactions with other stars. In dSphs, this time is extremely
long due to their low stellar density, meaning that stars rarely interact directly, making
them effectively collisionless systems. For stationary collisionless systems, the structural
and kinematic properties of the galaxy can be calculated from its distribution function
f(x, v, t), which quantifies the probability of finding a star within a given volume of the
phase space centred at (x, v) at time t, (Binney and Tremaine, 2008). A more detailed
analysis of this topic will be provided in §§ 3.

Nevertheless, it is practically impossible to directly infer f(x, v, t) from data, as it is
necessary to have knowledge of the 6D phase-space coordinates of all the constituents of
the system, which at present, as explained in § 1.3, is still not accessible. Consequently,
the objective of diverse dynamical modelling techniques (Battaglia and Nipoti, 2022) is
to find methodologies to infer the intrinsic properties of the galaxy, i.e. ρ and Φ, from
observation of their stellar components. It is of crucial importance for this modelling
to provide accurate mass estimators which do not rely on strong assumptions about
quantities inaccessible from observation. Given that these systems are pressure-supported
and their kinematic data are often limited to the l.o.s. velocity dispersion measurement,
it follows that dSphs and UFDs mass estimators will depend on this data. Among the
most well-known mass estimators, there is the one presented in Wolf et al. (2010), which
provides the dynamical mass within the 3D half-light radius rhalf:

Mdyn(rhalf) = 3rhalf⟨σ2
los⟩

G
= 4Re⟨σ2

los⟩
G

, (1.7)

where Re is the half-light radius, ⟨σ2
los⟩ is the luminosity-weighted square of the l.o.s.

velocity dispersion, and it is assumed Re ≈ (3/4)rhalf. While the more recent Errani et al.
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(2018) allows to estimate the mass within 1.8Re

Mdyn(< 1.8Re) = 3.51.8Re⟨σ2
los⟩

G
. (1.8)

By employing the mass estimator Eq. 1.7, Battaglia and Nipoti (2022) obtained the
dynamical masses shown in Figure 1.3 as a function of the corresponding V-band luminos-
ity for a selection of DGs in the LG. Simon (2019) and Woo et al. (2008) have shown that
for stellar populations typical of LG DGs, the stellar mass-to-light ratio is M⋆/L ≲ 2.
Therefore, a dynamical mass-to-light ratio, M/L ≡ Mdyn(rhalf)/(L/2), much higher that
the stellar one must necessarily be ascribed to DM. All classical dwarfs have been found
with Mdyn(rhalf) ∼ 107M⊙ and M/L ≳ 10, which implies that the majority of the mass
is in the form of DM, even within rhalf. Furthermore, when all dSphs and UFDs in the
LG are considered as in Figure 1.3, the dynamical mass-to-light ratios appear to increase
with decreasing luminosity, with values ranging from 10 to even 1000 (diagonal lines in
the picture). This is evidence that DGs are among the most DM-dominated systems.

Springer Nature 2021 LATEX template
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Fig. 2 Dynamical mass Mdyn within the 3D half-light radius r1/2 as a function of total V -
band luminosity L for the LG DGs listed in Table 1. The dynamical masses are estimated
using equation (3). The diagonal lines indicate loci of constant mass-to-light ratio M/L ≡
Mdyn(r1/2)/(L/2). The values of M/L are in units of M�/L� in the V band. The symbols
represent the estimated median values of L and Mdyn and the error bars correspond to the
16-th and 84-th percentiles of the distributions of these quantities. The distribution of Mdyn

is obtained from 10000 Monte Carlo realizations in which the values of σlos and R1/2 are
extracted from symmetrized Gaussian distributions centred on the median observed σlos
and R1/2, and with standard deviation given by the average of the lower (16%) and upper
(84%) uncertainties in these quantities (all listed in Table 1). We neglected the uncertainties
in the distance and ellipticity measurements when transforming the semi-major axis a1/2 of
the half-light ellipse in angular units into the circularized half-light radius R1/2 in physical
units.

For the sample of LG DGs listed in Table 1 and considered in Fig. 1, we
computed the dynamical mass Mdyn(r1/2) within the 3D half-light radius r1/2
using the mass estimator

Mdyn(r1/2) = 4
σ2
losR1/2

G
(3)

[208], where σlos is the global stellar l.o.s. velocity dispersion and R1/2 is the 2D
half-light (or effective) radius. When applying the mass estimator (3), which
is based on spherical models, to galaxies that appear flattened in the plane of
the sky, the definition of R1/2 is not univocal: here, following [168], we define

R1/2 as the circularized half-light radius R1/2 ≡ a1/2
√

1− ε. Fig. 2 plots, for
this sample, Mdyn(r1/2) as a function of L and, for reference, loci of constant

Fig. 1.3 – Dynamical mass Mdyn within the 3D half-light radius r1/2 (rhalf in
Eq. 1.7) as a function of total V-band luminosity L for a selection of DGs in
the LG. The diagonal lines indicate loci of constant mass-to-light ratio M/L ≡
Mdyn(rhalf)/(L/2). Figure taken from Battaglia and Nipoti (2022).

1.5 Possible origin and evolution scenario
As explained in § 1.1, the great majority of dSph and UFDs are satellite galaxies of either
the MW or M31 and they are located at distances smaller than the virial radius of the
host galaxy. As a consequence, tidal interactions with the host galaxies may have severely
truncated their DM halos. It is believed that dIrrs, dSphs, and UFDs share a significant
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portion of their formation history. The main difference lies in their current state: dIrrs
are still undergoing star formation, while in dSphs and UFDs, this process ceased at some
point in the past.

The presence of ultra-violet radiation is expected for inhibiting star formation in dwarf-
size halos from reionisation down to redshift z ≈ 2 (Efstathiou, 1992; Bullock et al.,
2000; Brown et al., 2014). Therefore, the passive galaxies observed in the present-day
Universe may be fossil galaxies, i.e. systems observed in the present-day Universe but
that completely formed in the early Universe. This is likely to be the case for UFDs,
which exclusively possess very old stellar populations. However, this hypothesis seems to
be not true for dSphs, in which the star formation histories (SFHs) are more extended
and do not show clear signatures of signature of quenching due to reionisation.

In contrast, for dSphs, the mechanism responsible for inhibiting star formation and
depleting these galaxies of their gas is believed to be a form of environmental quenching,
resulting from a combination of both tidal and ram-pressure stripping, which, effectively,
removes all the gas from the galaxy (Wetzel et al., 2015; Fillingham et al., 2016). The
most popular interpretation for this scenario is that dSphs originated as dIrrs and later
transformed due to interactions with the host galaxy, consistently with the fact that
gas-rich DGs in the LG are segregated outside the virial radius of the host galaxy. In
particular, the case of Leo I, presented by Ruiz-Lara et al. (2021), supports this scenario.
The last peak of star formation in Leo I happened 1 Gyr ago together with its most recent
perigalactic passage, and subsequently it was substantially quenched. Most probably
during this passage at the pericentre, the ram pressure by the MW gas halo stripped the
galaxy from its gas thus transitioning Leo I from dIrr to dSph.

However, nowadays a plethora of observations (Tolstoy et al., 2004; Battaglia et al.,
2006, 2011; Amorisco and Evans, 2012; Fabrizio et al., 2016; Breddels and Helmi, 2014;
Kordopatis et al., 2016; Pace et al., 2020; Spencer et al., 2017) have shown evidence that
almost all stellar populations of classical dwarfs are composed of multiple chemo-kinematic
components (CKCs), i.e. the stellar populations are described by the super-position of
components with different mean metallicity, spatial distribution and kinematics. Since
these different populations within the same galaxy must have different origins, it suggests
that the history of dSphs may be far more complex, with the possibility that accretion of
gas or other stellar systems was more common than expected.

1.6 Cosmological context

According to the Cold Dark Matter (CDM) cosmology, DM consists of weakly interacting
particles that became non-relativistic before decoupling. CDM, thus, has negligible ther-
mal velocity and does not suppress structure formation on any scale relevant for galaxy
formation (Peebles, 1980). The formation of the known structures in this scenario occurs
bottom-up: smaller systems were the first to virialise, while larger systems formed later
through mergers and accretion of smaller ones and diffused matter. Usually referred to as
hierarchical merging, this is the mechanism supposed to drive the growth of DM halos.

DM-only N -body simulations in this cosmological context predict that the mass den-
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sity distribution ρ(r) of DM structures is well described by cusped profiles, such as the
Navarro et al. (1996) profile

ρ(r) = ρ0(
r
rs

) (
1 + r

rs

)2 , (1.9)

where ρ0 and rs are some characteristic density and radius, respectively. Moreover, with
high-resolution simulations, it is also possible to constrain the halo mass function of LG-
like groups of galaxies to be dN(M)/dM ∼ M−α with α ≈ 1.9. Being a decreasing
function of the mass, this profile suggests that a large amount of the halos is in the range
of low masses.

However, on smaller scales, as the one of DGs, these predictions show discrepancies
with observations. There are three classic problems associated with the small-scale pre-
dictions for DM in the ΛCDM framework.

Core-cusp problem DM only ΛCDM simulations predict that halo density profiles
should rise steeply at a small radius (Navarro et al., 2010). The first evidence against
this prediction came from the Hα rotational curves of Low Surface Brightness (LSB)
galaxies and dIrrs (McGaugh et al., 2001; Marchesini et al., 2002), which rather suggest
cores of constant densities. Whether dSphs have cored or cusped profiles is still a matter
of debate, as shown by Hayashi et al. (2020). Draco, for example, is believed to have a
cuspy DM halo, while the DM halo of Fornax is likely cored (Pascale et al., 2018; Battaglia
and Nipoti, 2022). However, even in dSphs that are seemingly compatible with a cusped
profile, the best observations suggest a preference against the steep central slope predicted
by ΛCDM model (Battaglia et al., 2008; Walker and Peñarrubia, 2011). Even though for
dSphs there is no clear tension between the cosmological simulations and the inferred DM
halos, this incompatibility is still evident in the case of dIrrs (Bullock and Boylan-Kolchin,
2017).

The mechanism responsible for such cored profiles is still unclear. One of the most
accredited hypotheses suggests that interactions between DM particles and baryons would
eventually redistribute the energy and momentum of DM particles, thus diluting the inner
density and leading to a cored profile (e.g. Pontzen and Governato, 2014; Nipoti and
Binney, 2015).

Missing satellite problem From the highest-resolution cosmological simulations of
LG or even MW scales halos, the number of subhalos with masses large enough to have
supported molecular cooling (Mpeak ≳ 107M⊙) are expected to be of the order of 103

(Springel et al., 2008; Stadel et al., 2009; Griffen et al., 2016). However, at present, only
∼ 40 satellites have been observed to orbit within the virial radius of the MW (Drlica-
Wagner et al., 2015).

Even though future observation may bring the number of UFDs to the order of the
hundreds, it is extremely unlikely to reach the predicted thousands. Alternatively, the
existence of dark satellites (Helmi et al., 2012), i.e. halos failed to accrete gas and form
stars due to environmental quenching mechanisms, is one of the theories proposed to solve
this problem.
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Too-big-to-fail problem This problem is strictly related to the core/cusp one and
concerns the density of larger (Mvir ∼ 1010M⊙) halos in the local Universe. As for the
missing satellites problem, too few galaxies with such inferred halos have been detected.
However, halos of this mass are generally believed to be too massive to have failed star
formation, thus the fact that they are missing cannot be addressed to halos that remained
dark, which would inhibit their observations. In addition, the absence of these halos is
in contrast with all the observed DM-dominated UFDs, because it is not clear why more
massive halos should fail to form stars, while less massive halos do not.

An alternative solution may be to abandon the CDM paradigm in favour of a Warm
Dark Matter (WDM) cosmology. The introduction of a warmer component would inhibit
structure formation at smaller scales, thereby reducing the number of expected satellites,
and would also reproduce cored profiles (Bullock and Boylan-Kolchin, 2017).

It is currently evident that our understanding of structure formation at the scale of
DGs is incomplete. Consequently, a comprehensive investigation of the potential events
that these galaxies may have undergone is essential for placing meaningful constraints on
cosmological models.



II

The Sextans Dwarf Spheroidal

The Sextans dwarf spheroidal galaxy was the last classical dwarf to be
discovered, mostly due to its low luminosity and location on the plane
of the sky, which suffers from a considerable amount of contamination
from Milky Way stars.
In § 2.1 the global properties of Sextans will be presented, focusing on
its stellar population in § 2.1.1, its structural properties in § 2.1.2 and
its dark matter content in § 2.1.3.
§ 2.2 will review the main evidence that Sextans may have been sub-
ject to accretion events in the past, which is the primary motivation of
this thesis. § 2.2.2 will illustrate the work by Cicuéndez and Battaglia
(2018), who found a peculiar ring-like structure in the kinematics and
metallicity distribution of the galaxy, using spectroscopic data. § 2.2.1
will focus on the work by Kim et al. (2019), who found a roundish over-
density in a metal-poor selection of the galaxy stellar population, using
photometric data.

16
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2.1 Sextans Dwarf Spheroidal overview
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Fig. 2.1 – The Sextans dSph from a IIIaJ plate (J10658c) taken on the UK
1.2-m Schmidt Telescope. Overlaid is an isodensity contour map of the stellar
distribution covering 1° × 1° of the region. Picture taken from Irwin et al. (1990).

The last of the classical dSphs to be discovered was found at a heliocentric distance of
86 kpc in the Sextans constellation by Irwin et al. (1990) and presented with the image in
Figure 2.1. The Sextans dSph was discovered relatively late with respect to the other clas-
sical dwarfs primarily because it is one of the most diffuse and faint dSphs, with a central
brightness Σ0 = 18.2 ± 0.5 mag arcmin−2 and luminosity L = 4.1 ± 1.9 × 105L⊙ (Irwin
and Hatzidimitriou, 1995). In addition to this, its location in celestial coordinates (R.A.
10h13 m03s, Dec. -01◦ 36′ 54′′, Norris et al., 2014) results in a considerable amount of con-
tamination from Milky Way stars, making the exploration of its 2D structure particularly
challenging.

The observational properties of Sextans, as collected by Battaglia et al. (2011), are
summarised in Tab. 2.1.
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Parameter value
[R.A.(J2000), Dec.(J2000)] [10h13m03s, −01◦ 36′ 54′′]
ϵ 0.35
Rcore 16.6 arcmin
Rtidal 160 arcmin
Re 15.5 arcmin
vsys 226.0±0.6 km s−1

σ 8.4±0.4 km s−1

(m-M)0 19.67
Distance 86 kpc
LV 4.37 ± 1.69 × 105 L⊙
VHB 20.35
E(B-V) 0.0477

Tab. 2.1 – Main parameters of Sextans. From top to bottom:: coordinates of
the optical centre (R.A.,Dec.); ellipticity ε, King core and tidal radii Rcore ad
Rtidal; exponential radius Re; heliocentric l.o.s. systemic velocity vsys; global l.o.s.
velocity dispersion in the heliocentric system σ; distance modulus (m-M)0 and
heliocentric distance; luminosity in V-band LV (based on the apparent magnitude
measured by Irwin and Hatzidimitriou 1995 adjusted for the distance of 86 kpc
by Łokas 2009); V magnitude of the horizontal branch VHB; reddening E(B-V).
Adapted from Battaglia et al. (2006)

2.1.1 Stellar population
According to McConnachie (2012), the total mass of Sextans stellar population is

M⋆ = 4.4 × 105M⊙, (2.1)

obtained by assuming a constant, unitary, mass-to-light ratio.
It is currently well established that the majority of stars in Sextans are old, with

typical ages exceeding 10 Gyr. This conclusion is supported by a substantial body of
evidence, such as Mateo et al. (1991, 1995), Bellazzini et al. (2001) or Goon Lee et al.
(2003). However, a significant population of stars have also been identified on the main
sequence (MS), above the oldest turn-off. The age of these stars has been debated for
many years after Mateo et al. (1991) suggested that these could be MS stars as young
as 2 Gyr. After deep Suprime-Cam V and I photometry at Subaru Telescope, Okamoto
et al. (2017) demonstrated that their spatial distribution is highly analogous to that of
the old (>10 Gyr) MS stars, while Cicuéndez et al. (2018) indicated that it is more
probable that they are blue stragglers (BS) stars with ages consistent with the dominant
Sextans stellar population. Furthermore, Bettinelli et al. (2018) and Revaz and Jablonka
(2018) have brought evidence that Sextans ceased forming stars ≈12.9 Gyr ago before the
end of the reionisation epoch. Consequently, Sextans can be classified as a fossil of the
pre-reionisation era.

As in the case of other dSphs, Sextans displays evidence of metallicity and age gradi-
ents. Red Horizontal Branch (RHB) stars are observed to be more centrally concentrated
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Parameter Exponential Sérsic Plummer King

Sérsic index n - 1.03+0.07
−0.07 - -

Sérsic Rs [arcmin] - 20+8
−8 - -

Exponential Rexp [arcmin] 12.7+0.4
−0.4 - - -

Plummer Rs [arcmin] - - 22.8+0.7
−0.7 -

King Rc [arcmin] - - - 13.8+0.9
−0.9

King Rt [arcmin] - - - 120+20
−20

2D Half-light Re [arcmin] 21.4+0.7
−0.6 20+8

−8 22.8+0.7
−0.7 22+2

−2

Tab. 2.2 – Sextans structural parameters from best-fits. The Sérsic index n and
projected half-light radius Re appear in Eq. 1.2. The exponential Re, in Eq. 1.4.
The Plummer Rs, in Eq. 1.6. The King Rc and Rt, in Eq. 1.5. Adapted from
Cicuéndez et al. (2018).

than the Blue Horizontal Branch (BHB) stars (Bellazzini et al., 2001; Harbeck et al.,
2001; Goon Lee et al., 2003). Moreover, the analysis presented by Okamoto et al. (2017)
suggests a minimum age difference of 3 Gyr between the outer parts (∼13 Gyr) and
the central parts (∼10 Gyr). This implies that the younger stellar population is more
centrally concentrated than the older one, which is consistent with the observed distri-
bution of RHB and BHB stars. The spectroscopic follow-ups at medium–low resolution
in the region of the calcium (CaII) triplet (8498Å, 8542Å and 8662 Å) revealed that the
radial gradient of the metallicity is very small in Sextans, but the mean metallicity was ob-
served to decrease with increasing distance from the centre. By employing VLT/FLAMES
intermediate-resolution spectra of individual red giant branch (RGB) stars in the Ca II
triplet region, Battaglia et al. (2011) showed that within the inner region (R < 0.8 deg)
the metallicity [Fe/H] ranges from -3.2 to -1.4 dex, with an average [Fe/H]avg = -1.9 dex
and a scatter of 0.6 dex. In contrast, at larger radii, the available stars in the sample
exhibited metallicities that were all lower than [Fe/H] ∼-2.2 dex. These metallicities were
found to be consistent with recent high-resolution measurements by Theler et al. (2020)
of 81 member stars in Sextans, which found that [Fe/H] spanned a range from -3.2 to -1.5
dex. It is therefore clear that Sextans is an overall metal-poor system.

2.1.2 Structural properties
In order to derive the most accurate and quantitative structural properties of the stellar
component of Sextans, recent works, such as Cicuéndez et al. (2018) and Tokiwa et al.
(2023), have adopted a Bayesian analysis to fit the surface number density profile with
the four cored profile models mentioned in § 1.2, i.e. the King, Sérsic, exponential and
Plummer profiles. The results of Cicuéndez et al. (2018), perfectly compatible with those
from Tokiwa et al. (2023), are presented in Tab. 2.2. As it can be seen in Figure 2.2,
all cored profiles provide an adequate fit to the number density profile of Sextans stellar
population, with the Plummer and King one being the most accurate, according to the
authors.
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Fig. 2.2 – Surface number density profile of Sextans (grey points) as a function
of the semi-major axis Cicuéndez et al. 2018. The colored lines correspond to
the King (Eq. 1.5), Plummer (Eq. 1.6), exponential (Eq. 1.4) and Sérsic (Eq. 1.2)
models. The models best-fit parameters are reported in Tab. 2.2

2.1.3 Mass content
The dynamical mass of Sextans was determined by Battaglia et al. (2011) using a Jeans
modelling of the observed l.o.s. velocity dispersion profile. The method involves compar-
ing the observed line-of-sight velocity dispersion σlos in each radial bin with the values
predicted by Jeans modelling, see § 3.3 for details. This comparison is done across a range
of DM profile models and velocity anisotropy assumptions. In the case of a spherical, sta-
tionary, and non-rotating system, as assumed by Battaglia et al. (2011), the predicted σlos

depends on the choice of a mass density profile ρ and the anisotropy parameter β, which
is indicative of the degree of radial anisotropy of the system, and the spatial distribution
of the kinematic tracer, which is inferred from the surface density profile, see § 3.3.

As previously discussed in § 1.4, Sextans exhibits a remarkably high Mdyn/L, which
renders the stellar contribution to the total potential effectively negligible. Hence, DM
can be considered the sole contributor to the dynamical mass of Sextans. Battaglia et al.
(2011) considered two different models for a spherically symmetric DM halo potential:

• Pseudo-Isothermal sphere (cored model),

ρiso
DM(r) = ρ0

1 +
(

r
rc

)2 , (2.2)

where rc is the core radius and ρ0 the central density
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• NFW model (cuspy model),

ρNFW
DM (r) = δcρc(

r
rs

) (
1 + r

rs

)2 , (2.3)

where rs is a scale radius, ρc the present critical density and δc a characteristic
over-density, defined as δc = 100c3g(c)/3, where c = rvir/rs is the concentration
parameter, rvir the virial radius and g(c) = (ln(1 + c) − c/(1 + c))−1.

Once a suitable ρ well reproduces the observed σlos, the dynamical mass is simply given
by integrating over the spherical volume up to a limit radius.

The results of the fitting procedure are presented in Tab. 2.3. The l.o.s. velocity
dispersion profile of Sextans was found consistent with both a cored DM halo with a large
core radius and a cuspy halo with low concentration. Furthermore, the dynamical mass
within the last measured point of the profile (R = 2.3 kpc) is in the range (2−4)×108M⊙,
indicating a dynamical mass to stellar mass ratio of at least 103.

χ2
red pβ M(< Rlast) Mvir

Cored rc = 3.0 kpc β = const 0.2 0.06 < β < 0.6 4.0 ± 0.7 × 108 M⊙

Cored rc = 1.5 kpc β = βOM
† 0.6 ra > 1.5 kpc 3.2 ± 0.7 × 108 M⊙

Cuspy c = 10 β = const 0.7 −1.4 < β < 0 1.9 ± 0.6 × 108 M⊙ 2.6 ± 0.8 × 109 M⊙

Tab. 2.3 – Parameters of the best-fitting DM models from the mass modelling
of Sextans Battaglia et al. (2011). The columns show, from left to right: the
reduced χ2, the anisotropy parameter (i.e., the value of β when it is constant, or
the anisotropy radius ra [kpc] for the β = βOM case), the mass contained within
the last measured point M(< Rlast) (at Rlast = 2.3 kpc), and the virial mass Mvir
for the cuspy profile.

2.2 Signs of accretion in Sextans

As mentioned in § 1.6, mergers are also expected between low mass halos of DGs (Fakhouri
et al., 2010). This assertion is supported by dissipationless cosmological zoom-in simula-
tions of Deason et al. (2014), which showed that very few isolated DG in the LG could
have escaped from a major merger from their formation until now. The search for any
evidence of these events in DGs is of particular importance for demonstrating hierarchical
mergers at the smallest scales.

The kinematics and density distribution of the stellar component of several LG DGs
have revealed the existence of different substructures, which are likely the result of the dis-
ruption of smaller accreted systems. In the case of the dSphs, some well-known examples
are Fornax and Carina. Various pieces of evidence suggest that Fornax may have experi-
enced merger events. For instance, Coleman et al. (2004) observed a shell-like structure,

† Osipkov-Merritt parametrisation βOM = r2/(r2+r2
a), where ra is the anisotropy radius, Osipkov (1979);

Merritt (1985)
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while a double-peaked l.o.s. velocity distribution was found for its metal-poor stars. Ad-
ditionally, both Battaglia et al. (2006) and del Pino et al. (2015) noted an asymmetry in
the spatial distribution of Fornax’s younger stars, which are more centrally concentrated.
Another example is Carina, which presents evidence of two different episodes of star for-
mation formed from gas with different metallicities, a feature that is inconsistent with
simple evolution in an isolated system (de Boer, T. J. L. et al., 2014). Before Sextans, the
smallest galaxy exhibiting unequivocal signs of accretion was And II (M⋆ ∼ 7.6×106M⊙),
where Amorisco et al. (2014) detected the presence of a stellar stream. The works of Ci-
cuéndez and Battaglia (2018) and Kim et al. (2019), place Sextans, with a stellar mass
∼ 105M⊙, as the smallest galaxy currently showing clear observational signs of accretion
at present.

In the following sections, I will present the studies that inspired the idea of this thesis,
which aims to reproduce the peculiar observational features of Sextans using N -body
simulations. Specifically, this work models the interaction between the Sextans and a
smaller satellite, with the goal of explaining the observed ring-like substructures as the
result of a recent encounter. These studies have shaped the simulation setup and analysis,
guiding efforts to replicate the distinctive spatial and kinematic signatures observed in
Sextans.

2.2.1 A possible relic star cluster
Kim et al. (2019) observed Sextans with Suprime-Cam on Subaru 8.2 m telescope through
Ca-, b-, and y-band filters. b and y are two Strömgren filters, b is centred at 4670 Å and
has full width at half maximum (FWHM) of 180 Å, while y is centred at 5470 Å and
FWHM=230 (Strömgren, 1966). The Ca filter is a narrow (FWHM = 90 Å) filter centred
on the ionised calcium H and K lines, originally developed by Anthony-Twarog et al.
(1991) for metal-poor dwarfs and red giants stars or, more generally, for regions where
the uvby metallicity index m1 = (v − b)− (b−y) loses sensitivity. In order to discriminate
the metal-poor and metal-rich stars, the authors used a photometric metallicity indicator,
i.e. the index developed by Anthony-Twarog et al. (1991) hk ≡ (Ca − b) − (b − y).

The results are shown in Figure 2.3. The panels in the upper row present the spatial
distributions of all member stars (left), metal-poor stars (centre), and metal-rich stars
(right), superimposed with isodensity curves. The central panel clearly shows a number
density excess of metal-poor stars located at 7.7 arcmin from the centre (∼190 pc) exhibit-
ing a roundish shape with a radius of ∼80 pc. The panels in the bottom row displays the
statistical significance contours of the number excess for each group of stars. To quantify
the significance of the off-centre peak of metal-poor stars, a smoothed surface density map
was constructed using a Kernel Density Estimation (KDE) with a bandwidth five times
larger than the original. This smoothed map was subtracted from the original to create
a residual map. The off-centre peak of metal-poor stars was found to be significant at
over 5σ, making it the most distinct feature in the contour map. Furthermore, the strong
concentration of this overdensity, coupled with its exclusive occurrence in the metal-poor
selection, suggests that it may be a gravitationally bound object, with the authors sug-
gesting that it may be a relic star cluster recently dissolved. The size of this overdensity
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Fig. 2.3 – Upper row: spatial distributions of all member stars (left), metal-poor
stars (centre), and metal-rich stars (right) along with the surface number density
contours. The images are rotated so that the major axis of Sextans is along the
x-axis. The white cross represents the centre of the galaxy (Irwin et al., 1990),
and the grey ellipse denotes the core radius and ellipticity. In the central panel, a
number excess of metal-poor stars is visible at about 7.7 arcmin above the centre.
The thick red locus is the isodensity contour of 7.5 arcmin−2 and the selection
area for stars associated with a possible relic star cluster. Lower row: statistical
significance contours from 3σ in steps of 0.5σ.

will be used as the reference for the stellar component of the object accreted by Sextans
in the N -body simulations explored in this thesis.

2.2.2 A ring-like feature
By re-analysing spectroscopic sample from Walker et al. (2009b), Cicuéndez and Battaglia
(2018) detected a ring-like substructure with a considerably larger systemic l.o.s. velocity
with respect to the systemic velocity of Sextans and lower metallicity than the rest of the
stars in the sample.

The spectroscopic dataset consisted of l.o.s. heliocentric velocities and pseudo-equivalent
widths of the Mg-triplet absorption feature (ΣMg) obtained with the Michigan/MIKE
Fiber System MMFS at the Magellan 6.5m Clay Telescope. From the dataset, the au-
thors included only those RGB and HB stars with a probability greater than 95% of
belonging to Sextans, using the membership probabilities determined in Cicuéndez et al.
(2018). From this preliminary selection, Figure 2.4 was obtained by plotting the positions
of the stars on the plane of the sky and assigning the colours on the basis of different
quantities in the two panels. The left panel shows the l.o.s. velocities with respect to the
Sextans rest frame velocity, while in the right panel, stars are colour-coded for ΣMg. The
values assigned to each star have been estimated as the weighted average of neighbouring
observed data within a median kernel of 5 arcmin. This smoothing is commonly adopted
since helps reduce the noise, making the velocity and metallicity maps easier to interpret,
and revealing larger-scale patterns that in some cases might be obscured.



24 Chapter 2. The Sextans Dwarf Spheroidal

Fig. 2.4 – W09 spectroscopic sample of Sextans most probable members, colour-
coded using smoothed l.o.s. velocities (left) and ΣMg values (right). Upper and
lower black crosses in the left panel mark the centres of the cold kinematic substruc-
tures detected in Walker et al. (2006), and in Battaglia et al. (2011), respectively.

In the left panel, it can be distinguished a ring-like feature that has a systemic l.o.s.
velocity ∼3 km/s larger than than the systemic velocity of Sextans. Notably, the ring-like
structure does not show the one side proceeding one arm receding kinematics typical of a
rotational object, but rather almost homogeneous positive velocities. A ring feature is also
clearly visible at the same location in the right panel, which also indicates that the stars
populating this feature have a lower metallicity with respect to the others. Additionally,
the authors estimated that the fraction of stars associated with the ring-like structure
corresponds to 20% of the total stars in the sample.



III

Equilibrium Theory for
Non-Collisional Systems

The aim of this chapter is to give the theoretical basis necessary to
describe the type of systems that will be involved in the simulations
subject of this thesis. As mentioned in §§ 1, dSph are collisionless sys-
tems and for the majority of them, ongoing interactions with nearby
objects have a negligible effect on their internal kinematics, indicating
that they can be reasonably considered to be in an equilibrium state.
This chapter will thus introduce what collisionless stellar systems are
and the fundamental principles of equilibrium theory, with a particu-
lar focus on the tools that will be employed in the generation of initial
conditions for the N -body simulations explored in §§ 4. In § 3.1, the
concept of the distribution function will be introduced, highlighting its
connection to the collisionless Boltzmann equation. Then, in § 3.2, the
concept of integrals of motion will be explored, along with their use in
deriving the Eddington formula which gives an explicit form to the dis-
tribution function. Moreover, this section will show some examples in
which the distribution function is analytical. Finally, § 3.3 will demon-
strate how the distribution function and the Boltzmann equation relate
to observable quantities in astrophysical systems.
This chapter will follow the treatment of Binney and Tremaine (2008).
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3.1 Introduction to distribution functions
A system is defined as collisionless if the effects of two-body interaction on the motion
of its particles are negligible. In a galaxy, this implies that the net gravitational force
acting on a star is determined by the overall structure of the galaxy, rather than by its
proximity to neighbouring stars. In this hypothesis, a system composed of a large number
N of equal stars moving under the influence of a smooth potential, Φ(x, t), can be fully
described at any time t by its so-called distribution function (DF).

A DF is a function f(x, v, t) defined such that f(x, v, t)d3xd3v represents the prob-
ability that at the specified time t, a star can be found within the phase-space volume
element d3xd3v centred in (x, v). As probability density functions, two fundamental
properties inherent to any DF are:∫

d3xd3vf(x, v, t) = 1 and f(x, v, t) ≥ 0. (3.1)

By definition, any DF can depend on time, either explicitly or through the phase-
space coordinates x(t) and v(t). For the rest of this section, for the sake of simplicity,
the phase-space coordinates will be collected in the six-dimensional vector w:

w ≡ (x, v) = (w1, ..., w6) ẇ = (ẋ, v̇) = (v, −∇Φ), (3.2)

where the equivalence v̇ = −∇Φ is derived from the equations of motion in classical
mechanics. To clarify the behaviour of f(w) for different sets of phase-space coordinates,
let W be some arbitrary set of phase-space coordinates, with DF F (W ). Then the prob-
ability of finding a star in a phase-space volume V must be the same in both coordinates
systems, that is: ∫

V
d6W F (W ) =

∫
V

d6wf(w). (3.3)

If V is small enough, f and F will be approximately constant throughout the volume, and
they can be taken outside the integrals, yielding to

F (W )
∫

V
d6W = f(w)

∫
V

d6w. (3.4)

Therefore, only if the coordinates are canonical, meaning
∫

V d6W =
∫

V d6w, the DFs are
equivalent, i.e. F (W ) = f(w).

3.1.1 Velocity moments of distribution functions
One method to link a DF with the observables is through its velocity moments. The
n-order moment, denoted as T n of a DF f(x, v, t) is a tensor of order n, defined by its
components:

T n
i,j,...,k(x, t) =

∫
d3v

n︷ ︸︸ ︷
vivj . . . vk f(x, v, t) (3.5)
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Considering that the DF can be alternatively normalised so that the integral over the
whole phase space gives the total number of stars N , i.e.∫

d3xd3vf(x, v) = N, (3.6)

then low-order moments have simple physical meanings:∫
d3vf(x, v) = n(x) 0th moment, number density (3.7)

1
n(x)

∫
d3vvif(x, v) = vi(x)

1st moment, mean velocity
of the i-th components

(3.8)

1
n(x)

∫
d3vv2

i f(x, v) = v2
i (x)

1
n(x)

∫
d3vvivjf(x, v) = vivj(x)

 2nd moments (3.9)

The 2-nd order moments are usually grouped together in the velocity dispersion tensor

σ2
ij ≡ (vi − vi)(vj − vj), (3.10)

which is the 2-nd order moment centred on the mean velocity. It can therefore be rewritten
as

σ2
ij = 1

n(x)

∫
d3vf(x, v)(vi − vi)(vj − vj)

= 1
n(x)

[∫
d3vf(x, v)vivj −

∫
d3vf(x, v)vivj −

∫
d3vf(x, v)vivj +

∫
d3vf(x, v)vivj

]
= 1

n(x) [nvivj − nvivj − nvjvi + nvivj]

= vivj − vivj.
(3.11)

The velocity dispersion tensor describes the spread in the velocity of stars in a system
around the mean value v. Since the tensor is symmetric

(
σ2

ij = σ2
ji

)
, it can be diagonalised

in a tensor σ̃, whose elements are σ̃2
ij = σ̃2

iiδij. The ellipsoid that has σ̃11, σ̃22 and σ̃33 for
its semi-axis length is the velocity ellipsoid at x. In particular, if all diagonal elements
have the same value σ, so that

σ̃ij = σ2δij. (3.12)

the system is called isotropic.
Furthermore, as it will be seen in § 3.3, the velocity dispersion can be interpreted as a

form of anisotropic pressure which shapes the galaxy.

3.1.2 Collisionless Boltzmann equation
Any given star moves through phase-space, and so the probability of finding it at any given
phase-space location evolves with time. As f evolves, the probability must be conserved,
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much like how mass is conserved in a fluid flow.
In Eq. 3.2, I introduced ẇ, which a six-dimensional vector that bears the same re-

lationship to the six-dimensional vector w as the three-dimensional fluid flow velocity
v = ẋ. The flow ẇ must then conserve stars in time. This is due to the fact that,
in the absence of encounters, stars are immersed in a smooth gravitational potential.
Consequently, they cannot "jump" from one point in the phase space to another, but in-
stead, they drift smoothly through the phase space. It follows that f(w, t) must satisfy
a continuity equation analogous to that which applies to ordinary fluids. Using Einstein
notation, where repeated indices are summed over, this conservation law can be expressed
as

∂f

∂t
+ ∂ (fẇk)

∂wk

= 0, , (3.13)

where wk is the k-th component of w = (w1, . . . , w6). This equation can be simplified by
considering the definition of ẇ in Eq. 3.2 and noting that

∂ẇk

∂wk

= ∂vk

∂xk

+ ∂v̇k

∂vk

= − ∂

∂vk

(
∂Φ
∂xk

)
= 0, (3.14)

where it was used v̇ = −∇Φ and the fact that ∂vk/∂xk = 0, since xk and vk are inde-
pendent coordinates of the phase space. The last term vanishes as well because Φ is not
an explicit function of velocities, nor of its derivative. As a result of these simplifications,
Eq. 3.13 reduces to the so-called collisionless Boltzmann equation:

∂f

∂t
+ ẇk

∂f

∂wk

= 0. (3.15)

The physical meaning of Eq. 3.15 becomes more evident when the concept of convective
derivative d/dt is extended to six dimensions as follows

d
dt

= ∂

∂t
+ ẇk

∂

∂wk

. (3.16)

The collisionless Boltzmann equation then assumes the simple form

df

dt
= 0. (3.17)

This implies that the flow of the probability fluid through the phase space is incompress-
ible, i.e. the phase-space density f of the fluid surrounding a given star remains constant
with time.

3.2 The Jeans theorem
Finding a solution to the collisionless Boltzmann equation is typically very challenging
due to the fact that it depends on seven variables and that, in the most general case, it
is a partial differential equation for which general solutions are not known. The Jeans
theorem allows for making some steps forward in the quest for solutions to the collisionless
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Boltzmann equation, by establishing a connection between the integrals of motion and
the DF. Given a stationary potential Φ(x), a function of the phase-space coordinates
I(x(t), v(t)) is defined to be an integral of motion if and only if

d
dt

[I(x(t), v(t))] = 0 (3.18)

along all orbits. It is worth noting that integrals of motion satisfy the same conditions of
a steady-state DF, i.e. df/dt = 0. This property leads to the Jeans theorem.

Jeans theorem Any steady-state solution of the collisionless Boltzmann equation de-
pends on the phase-space coordinates only through integrals of motion of the galactic
potential, and any function of the integrals yields a steady-state solution of the collision-
less Boltzmann equation.

If the form or the existence of certain integrals of motion is known, then any function
of these will solve Eq. 3.15 and conversely, the DF must be a function of these integrals
of motion. However, no matter how robust a theorem may be, there can still be cases
in which, even if the existence of an integral of motion is proven, it may not have an
analytical expression. In such cases, an analytical form for the DF cannot be obtained
either.

DFs for stationary collisionless stellar systems are usually classified on the basis of
the integrals of motion on which they depend. For spherical systems, the DF can either
depend only on the Hamiltonian H or on the Hamiltonian H and the angular momentum
modulus L. In the axisymmetric cases, instead, the DF is a function of the Hamiltonian
H and the third angular momentum component Lz. For the purposes of this thesis, the
focus will be on the first case.

3.2.1 Distribution functions for ergodic spherical systems
For a spherical steady-state system, the potential Φ and the number density n are such
that

Φ(x, t) ⇒ Φ(r)
n(x, t) ⇒ n(r)

(3.19)

where r =
√

x2 + y2 + z2. Conveniently, for these systems, the Hamiltonian H = 1
2 |v|2 +

Φ(r) is an integral of motion. As a consequence, the Jeans theorem assures that it is
possible to define a DF f = f(H) = f

(
1
2 |v|2 + Φ(r)

)
, which is called ergodic.

Since f = f(1
2 |v|2 + Φ(r)) is an even function of the velocities, it follows that

v(r) = 1
n(r)

∫
d3v vf

(1
2 |v|2 + Φ(r)

)
= 0, (3.20)

i.e. the mean velocity vanishes everywhere. Considering the velocity dispersion tensor

σ2
ij = vivj =

∫
d3v vivjf

(1
2 |v|2 + Φ(r)

)
, (3.21)
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only the diagonal components are non-null. For example, considering the Cartesian coor-
dinates and i = j = x, the diagonal element

σ2
xx = 1

n(r)

∫
dvzdvy

∫
dvx v2

x f
(1

2(v2
x + v2

y + v2
z) + Φ(r)

)
, (3.22)

is not zero because the integrand is an even function of the velocities. Moreover, since f

depends only on the modulus of v the integral would be the the same even in the y- and
z-components, thus

σxx = σyy = σzz = σ. (3.23)

Vice versa, when i ̸= j, the integrand is an odd function of the velocities, thus σij = 0.
Given these considerations, the velocity dispersion tensor is isotropic everywhere:

σ2
ij = σ2δij, (3.24)

meaning that every system with an ergodic DF is isotropic.
For simplicity, it can be considered a spherical stellar system consisting of a single

stellar population of identical stars, with mass m⋆. Under this assumption, the mass
density ρ is simply proportional to n(r) via ρ = m⋆n. If the system is also self-consistent,
i.e. the density generates the potential through the Poisson equation

∇2Φ(x) = 4πρ(x), (3.25)

then the DF is unique.
It is convenient to define the relative potential

Ψ ≡ −Φ + Φ0 (3.26)

and the relative energy
E ≡ −H + Φ0 = Ψ − 1

2v2, (3.27)

where Φ0 is such that Ψ → 0 at infinity. It follows that f > 0 for E > 0 and f = 0 for
E ≤ 0.

Since the DF is a function of H, the Jeans theorem guarantees that the DF is also a
function of E . With these assumptions in place, it is now possible to derive an explicit
expression for f(E). Given that f depends only on the magnitude v of v and not on its
direction, the integration over the angular coordinates in velocity space is reduced to a
factor 4π, i.e.

n(x) =
∫

d3vf
(

Ψ − 1
2v2

)
= 4π

∫
dv v2f

(
Ψ − 1

2v2
)

= n(Ψ). (3.28)

Then, by changing the coordinates according to Eq. 3.27, the density can be written as

n(Ψ) = 4π
∫ Ψ

0
dEf(E)

√
2(Ψ − E) (3.29)
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and, since Ψ is a monotonic function of r in any spherical system, it is possible to treat
n as a function of Ψ rather than r, thus yielding the notation n(Ψ). Differentiating both
sides of Eq. 3.29 with respect to Ψ:

dn

dΨ = 2
√

2π
∫ Ψ

o
dE f(E)√

Ψ − E
. (3.30)

This is an Abel integral equation which has solution

f(E) = 1√
8π2

d
dE

∫ E

0

dΨ√
E − Ψ

dn

dΨ , (3.31)

commonly referred to as Eddington’s formula. This formula can be generalised to systems
with multiple components. Each i-th component will have its own given by

fi(E) = 1√
8π2

d
dE

∫ E

0

dΨTOT√
E − ΨTOT

dni

dΨTOT
, (3.32)

where ni is the density of the i-th component, while ΨTOT is the total potential given by
the sum of the potentials of all the components.

However, only a handful of models have an analytical DF. The next paragraphs present
some spherical models with analytic density and DF.

Plummer model The Plummer (1911) profile has already been introduced in § 1.2 in
terms of the luminosity profile. By assuming a constant stellar mass-to-light ratio, the
Plummer profile can be expressed in terms of the mass density distribution as follows:

ρ(r) = 3MTOT

4πR3
s

(
1 + r2

R2
s

)−5/2

, (3.33)

where MTOT is the total mass of the system, and Rs is the same as in Eq. 1.6. The
corresponding DF is

f(E) = 24
√

2
7π3

R2
s

G5M4
TOT

E7/2 (3.34)

Dehnen models The Dehnen model is a family of models which offer a versatile frame-
work for describing the mass distribution and gravitational potential of spherical galaxies,
capturing a wide range of density profiles from steep cusps to shallow cores. The mass
density profile is defined as

ρ(r) = (3 − γ)MTOT

4π

rs

rγ (r + rs)4−γ , (3.35)

where rs is a scale radius, MTOT the total mass and γ an adimensional parameter. The
DF of these models is analytical only in for some specific values of γ (Dehnen, 1993). By
defining ε = (Ers)/(GMTOT), some examples are
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• γ = 0

f(ε) = 3MTOT

2π3(GMTOTrs)3/2

√
2ε

3 − 4ε

1 − 2ε
− 3asinh

√
2ε

1 − 2ε

 , (3.36)

• γ = 3/2

f(ε) = 3MTOT

2(2π2GMTOTr
3/2
s )

√
ε

(2 − ε)4

− 9
16 − 99

16ε + 405
8 ε2 − 3705

56 ε3

+561
14 ε4 − 181

14 ε5 + 15
7 ε6 − ε7

7 + 3 (3 + 32ε − 8ε2)
8
√

ε(2 − ε)
arcsin

√
ε

2

,

(3.37)

• γ = 1, also known as Hernquist (1990) model

f(ε) = 1√
2(2π)3(GMTOTrs)3/2

√
ε

(1 − ε)2

(1 − 2ε)(8ε2 − 8ε − 3)+

3 arcsin(
√

ε)√
ε(1 − ε)

.

(3.38)

Isochrone model The isochrone potential uniquely allows for all stellar orbits to be
described analytically, making it a rare and valuable model in galactic dynamics. Its
density profile is

ρ(r) = MTOT

[
3r2

s(rs + a) − r2(rs + 3a)
4πa3(rs + a)3

]
, (3.39)

where rs is a scale radius and a ≡
√

r2 + r2
s .

f(ε) = 1√
2(2π)3(GMTOTrs)3/2

√
ε

[2(1 − ε)]4

27 − 66ε + 320ε2 − 240ε3

+64ε4 + 3
(
16ε2 + 28ε − 9

) arcsin(
√

ε)√
ε(1 − ε)

,

(3.40)

where again ε = (Ers)/(GMTOT).

3.3 Jeans equations
An alternative method to gain insights into the solution of the collisionless Boltzmann
equation involves calculating the moments of the equation, leading to the so-called Jeans
equation.

The first Jeans equation is derived by calculating the zero-order moment of Eq. 3.15,
thus by integrating it over all the velocities:

∫
d3v

∂f

∂t
+
∫

d3v vi
∂f

∂xi

− ∂Φ
∂xi

∫
d3v

∂f

∂vi

= 0 (3.41)
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This equation can be simplified by considering that
• in the first term, the integration domain does not depend on time, thus ∂/∂t can

be taken outside the integral;
• in the second term, vi does not depend on xi, so ∂/∂xi can be taken outside the

integral;
• the last term vanishes on application of the divergence theorem, given that f(x, v, t) =

0 for sufficiently large |v|, because there are no stars that move infinitely fast.
Therefore, using the definitions of n and v given in Eq. 3.7 and Eq. 3.8, respectively,
Eq. 3.41 becomes

∂n

∂t
+ ∂ (nv̄k)

∂xk

= 0 (3.42)

which describes the conservation of the number density distribution n(x, t).
For each i-th component of the velocity v, the second Jeans equation can be de-

rived from the first-order moment of the collisionless Boltzmann equation, i.e. multiplying
Eq. 3.15 by vi and integrating it over all velocities,

∂

∂t

∫
d3v vif +

∫
d3v vivj

∂f

∂xj

− ∂Φ
∂xj

∫
d3v vi

∂f

∂vj

= 0. (3.43)

The last term on the left-hand side can be transformed by applying the divergence theo-
rem, and using the fact that f vanishes for large |v|:

∫
d3v vi

∂f

∂vi

= −
∫

d3v
∂vi

∂vj

f = −
∫

d3vδijf = −nδij. (3.44)

This allows us to rewrite Eq. 3.43 as

∂ (nv̄i)
∂t

+ ∂ (nvivj)
∂xi

− n
∂Φ
∂xj

= 0. (3.45)

The last step consists in subtracting vi times the continuity equation (Eq. 3.42) and using
Eq. 3.11 to eliminate vivj. The second Jeans equation is then:

n
∂v̄i

∂t
+ nv̄j

∂v̄i

∂xj

= −n
∂Φ
∂xi

−
∂(nσ2

ij)
∂xi

, (3.46)

which has the same form as the Euler equation of fluid dynamics, with the difference
that the fluid mass is substituted by stellar number density, and the stream velocity by
the mean velocity of stars. A consequence of this analogy is that the last term on the
right-hand side of Eq. 3.46 represents a collisionless analogue to the pressure force −∇p.
Therefore, nσ2

ik is a stress tensor that describes an anisotropic pressure.
However, the Jeans equations are not a closed set of equations, as the number of inde-

pendent functions is greater than the number of available equations. For example, if the
potential Φ and the density DF n(x, t) are known, there are nine other unknown quanti-
ties: six independent elements of the velocity dispersion tensor σ2

ij, three components of
the mean velocity v, but four equations only. In practice, the difficulty can be mitigated
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by making some assumptions about the form of the tensor σ2 or the symmetries of the
system, as illustrated in the following section.

3.3.1 Spherical systems
Assuming spherical symmetry also reduces the degrees of freedom in the problem and
allows us to close the set of Jeans equations. For spherical systems, it can be proved that
the DF depends on the magnitude of angular momentum and total energy only. Thus,
for stationary systems,

n
∂vi

∂t
= 0, (3.47)

Eq. 3.46 takes a simple form in spherical coordinates (r, θ, ϕ):

d
(
nv2

r

)
dr

+ n

dΦ
dr

+
2v2

r − v2
θ − v2

ϕ

r

 = 0 (3.48)

It can then be introduced the anisotropy parameter

β ≡ 1 −
v2

θ + v2
ϕ

2v2
r

, (3.49)

which measures the level of anisotropy of the galaxy, and by definition −∞ < β ≤ 1.
In particular, if β = 0 the system is isotropic, if β > 0 it is said to be radially biased,
otherwise it is tangentially biased. Rearranging for the introduction of β, Eq. 3.48 becomes

d(nv2
r)

dr
+ 2β

r
nv2

r = −n
dΦ
dr

(3.50)

This last equation has an explicit solution:

nσ2
r(r) = 1

h(r)

∫ ∞

r
dr′ h(r′)n(r′)dΦ

dr
(3.51)

where h(r) = exp
∫∞

r dr′ β/r, that gives the radial velocity dispersion. However, the
latter is not directly observable. Instead, what is typically measured is the l.o.s. velocity
dispersion, which can be derived by projecting σ2

r(r) along the l.o.s. The weakness of
this approach is the lack of information on the anisotropy parameter, in addition to the
fact that different combinations of mass and anisotropy profiles give the same solution
to Eq. 3.51. The latter is the so-called mass-anisotropy degeneracy of stellar systems.
In principle, both the mass distribution and the anisotropy of stellar velocities influence
the observable kinematics, and in particular the velocity dispersion profile. However,
these two factors can produce similar effects, making it difficult to uniquely infer either
one from the data alone. For example, a system with a concentrated mass profile may
produce the same velocity dispersion as a system with a more extended mass distribution
but significant radial velocity anisotropy.



IV

Creation of Initial Conditions

This chapter aims to provide a comprehensive understanding of the pro-
cesses involved in preparing for N -body simulations, laying the ground-
work for the subsequent simulation that will involve interactions be-
tween Sextans and a smaller satellite. In particular, I will detail the
procedure for the creation of initial conditions for N -body simulations
tailored for the hydrodynamical N -body code Arepo, a state-of-the-art
code that has been extensively employed to deal with a large number
of astrophysical problems.
In § 4.1 it will be given an introduction to the Arepo code, including its
key algorithms for resolving hydrodynamical and gravitational interac-
tions. This section will briefly discuss also the advantages of Arepo’s
design, such as its scalability and computational efficiency, which enable
it to handle a wide range of astrophysical phenomena.
Then, § 4.2 will describe in detail the scheme adopted to create initial
conditions for the simulations, by outlining the algorithms employed
to sample the distribution functions that define the phase-space distri-
bution of the particles representing the simulated systems. Next, in
§ 4.2.1, it will be shown the consistency checks ensured that the gener-
ated initial conditions aligned with the theoretical models used. This
validation is essential to guarantee that the simulations are based on
realistic parameters and structures. Finally, § 4.2.3 it will be verified
that the created systems are in a steady state, by verifying that their
global properties remain stable over time.
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4.1 Arepo
All the simulations in this thesis have been performed using the N -body, hydrodynamic
code Arepo (Springel, 2010), as implemented in its publicly released version (Weinberger
et al., 2020). Arepo has been widely employed to deal with a large number of astrophys-
ical problems thanks to its efficiency in treating both gravitational and hydrodynami-
cal interactions in a massively parallel framework. At present, a variety of simulations
run on Arepo, such as large volume cosmological simulations of galaxy formation, as
the latest IllustrisTNG simulations (Pillepich et al., 2017; Nelson et al., 2018; Springel
et al., 2018; Naiman et al., 2018; Marinacci et al., 2018), zoom-in cosmological magneto-
hydrodynamical simulation (Grand et al., 2017), high resolution of galaxy mergers (Pas-
cale et al., 2021, 2022, 2024) or even simulations of active galactic nuclei winds and
feedback (Costa et al., 2020).

In these next paragraphs, it will be briefly explained the algorithms implemented in
Arepo to solve gravity interactions and follow gas evolution.

Hydrodynamics Typically, numerical hydrodynamics solvers are either Eulerian or
Lagrangian. Eulerian schemes employ a fixed mesh whose cells exchange conserved fluid
properties. Lagrangian schemes, instead, sample the gas with particles and follow them
in time, adapting to their clustering. Arepo uses a hybrid approach by combining the
mesh of Eulerian scheme with the spatial adaptability of Lagrangian methods. In Arepo,
the mesh is not fixed or structured like in traditional Eulerian methods. Instead, it is
defined dynamically through a Voronoi tessellation, which divides space into cells around
each particle. These cells adjust their shape and size as the gas particles move, allowing
the mesh to naturally adapt to the fluid’s flow. This dynamic adjustment prevents issues
like cell distortion or tangling, which can occur in conventional grid-based methods.

Gravity Solving the gravitational interactions in an N -body problem essentially in-
volves calculating the gravitational potential ϕ at a point x generated by N particles:

Φ(x) = −G
N∑

i=1

mi√
(x − xi)2 + ε2

(4.1)

where xi is the position of the i-th particle, mi its mass and ε is the so-called softening
length. The softening length is a parameter used to dampen Φ at short range in order to
ensure the collisionless behaviour of the N particles and avoid particle pair interactions. In
principle, interactions between N particles can be calculated analytically by individually
summing over each pair of particles. However, for N particles this would require a number
of operations of order N2, which is computationally expensive for large values of N as
usually happens in N -body simulations. Therefore, approximate methods are employed
to speed up gravity-related calculations.

One of these methods is the tree method (Barnes and Hut, 1986), also known as the
hierarchical multipole method. A tree method approximates distant groups of particles
through their multipole expansion, instead of considering individual interactions between
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particles in a group and a particle positioned at x. Such groups can be represented by
nodes of an oct-tree (Barnes and Hut, 1986) allowing to follow the clustering of matter by
creating smaller and smaller nodes. Thanks to this approximation, this method reduces
the number of operations to N log N . On the other hand, the tree method is unable
to efficiently handle almost homogeneous matter distributions, since in this case, the
very small force acting on a particle is the sum of many partial contributions from other
particles and nodes, so obtaining accurate results becomes computationally expensive.

The particle-mesh (PM) method (Klypin and Shandarin, 1983; Frenk et al., 1983),
instead, solves the Poisson equation ∇2Φ = 4πGρ, where ρ is the matter density, via the
Green function of the Laplacian operator ∇2, g(x − y). In this specific case, the Green
function yields the following convolution

Φ(x) = 4πG
∫

d3y ρ(y)g(x − y). (4.2)

Using the convolution theorem in Fourier space, the equation for the Fourier transform
of Φ reduces to a multiplication of the Fourier transform of ρ and g. To build the density
field ρ, the method distributes the mass of the N -particles among cells of fixed mesh,
therefore it lacks the resolution adaptability of the tree method. The main advantage
of the particle-mesh method is that its cost scales almost linearly with the number of
particles, i.e. ∝ N plus the cost of the Fourier transform†.

Given the complementary strengths of these methods, Arepo employs a combination
of the two, splitting the potential into long and short-range components which are then
calculated via tree and PM methods, respectively.

4.2 Set up for the simulations

Running a N -body simulation requires setting the initial conditions (ICs) for samples of N

particles, representing all the systems involved, each with their own mass, initial position
xi and initial velocity vi, with i = 1 . . . N . Specifically, since the aim of the simulations
in this thesis is to reproduce the observed peculiar features in Sextans, as the result of a
merger between Sextans and a smaller companion, it is mandatory that both systems are
represented in the simulations with realistic sets of particles.

By definition of dSph, see § 1.1, Sextans lacks gas, thus its only components are stars
and DM, which are, de facto, non-collisional. Moreover, in § 1.3, it was illustrated that
dSphs are typically pressure-supported systems with little to no velocity gradients or sign
of systemic rotation. Also, tidal interactions with the MW have had negligible effects
on the internal kinematics, thus the galaxy can be assumed stationary and isolated. For
these reasons, Sextans is modelled as a completely non-collisional steady-state ergodic
system, that for simplicity will be assumed spherically symmetric.

† The Fourier transform of field on a discretised grid of N cells through a direct summation scales with
N (Springel, 2016). Nowadays, numerical Fourier transforms are calculated through the fast Fourier
transform (FFT) algorithm (Cooley and Tukey, 1965), which provides both better scaling (∝ N log N )
and higher accuracy with respect to direct summation.
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On this basis, I chose to model Sextans by a stellar population embedded in a dominant
DM halo. The stellar component has been modelled using the Plummer profile in Eq. 3.33,
because among the best-fitting models in Cicuéndez et al. (2018) it is the one that better
represents the observed profile. The DM halo, instead, has been described by an NFW
profile (Eq. 1.9) with an exponential cut-off that ensures that the halo has finite mass:

ρ(r) =
ρ0 exp

(
−
(

r
rt

)γ)
(

r
rs

) (
1 + r

rs

)2 , (4.3)

where rt is the truncation radius, and γ is an adimensional parameter responsible for the
sharpness of the cut-off, typically γ = 2.

As no morphological constraints exist for the satellite, I investigated two cases
• a satellite composed solely of a stellar component with a Plummer profile;
• a satellite with also a DM halo, i.e. a Plummer stellar component embedded in a

dominant DM halo with a truncated NFW profile.
The next section will therefore explain the scheme that I adopted to generate the ICs

of all the systems involved in the two types of simulations.

4.2.1 Creation of initial conditions
Any non-collisional system is described by a DF, which encapsulates the full dynamical
state of the system. Once the DF is specified, it is possible to sample the particle’s phase-
space positions that represent the target system from the DF itself. For each component,
the set of N particles, each one with phase-space coordinates (xi, vi), has been created
following a three-step algorithm.

1. The DF is obtained via the Eddington inversion formula Eq. 3.32. In systems with
only one component, like the satellite in the simulations where it is made only
of stars, ρ and Φ in the Eddington formula are simply the ones from the chosen
model, linked via the Poisson Equation (Eq. 3.25). For a Plummer model, the
Eddington inversion can be solved analytically and the DF is given in equation
Eq. 3.34. In the two-component case, the Eddington formula yields a separate DF
for each component. The density ρi appearing in Eq. 3.32 can be either ρ⋆ or ρDM,
representing the stellar and DM density profiles. Instead, Φ corresponds to the
total potential of the system, which can be assumed to be generated only by the
dominant component, Φ = ΦDM, with ΦDM the DM potential, or both components,
Φ = ΦDM + Φ⋆, with Φ⋆ the stellar potential. In our case, the latter is considered.

2. Positions are assigned by sampling the model mass distribution.
3. Velocities are assigned by using the previously computed DF.

Therefore, to sample each component, it is essential that all their parameters are well-
defined. These include the total mass Mtot, the number of particles N , and a model for
sampling. For example, in the case of the Plummer model, the scale radius rs is required,
while for a truncated NFW model, both rs and the truncation radius rt are necessary.
Since the systems are assumed to consist of equal mass particles, to each particle is
assigned the same mass mp. This mass is calculated by dividing the total mass of the
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component by the number of particles:

mp = MTOT

N
. (4.4)

The procedure adopted to assign positions and velocities is explained in the following
paragraphs.

Position assignment The definition of spherical coordinates is given by
x = r sin θ cos ϕ

y = r sin θ sin ϕ

z = r cos θ,

(4.5)

where (x, y, z) are the Cartesian coordinates, r ∈ [0; ∞[, θ ∈ [0; π[ and ϕ ∈ [0, 2π[. In
spherical coordinates, assigning a position to each point means creating N triplets (r, θ, ϕ).
Since the system is spherically symmetric, ρ depends only on r and therefore∫ x

0
dx
∫ y

0
dy
∫ z

0
dzρ(x, y, z) =

∫ π

0
dθ sin θ

∫ 2π

0
dϕ
∫ r

0
dr r2ρ(r). (4.6)

From Eq. 4.6, it is evident that the sampling of the variables r, θ and ϕ can be performed
independently from one another. For a set of N particles, r must be sampled from the
probability density distribution P (r) = r2ρ(r)dr, θ from the probability P (θ) = sin θdθ

and ϕ from P (ϕ) = dϕ.
To efficiently sample the radial coordinate r, I used the inverse mass function method.

The method requires to compute first the cumulative probability function, which, for r,
is proportional to the total mass M(r), while for ϕ and sin θ is a constant,

The cumulative probability function for r is normalised to unity, obtaining the adimen-
sional mass parameter q(r), which by definition 0 ≤ q ≤ 1. Therefore, being a growing
function of r, q(r) can be inverted in order to obtain r(q), which gives the radius as a
function of q. For a Plummer model, the inversion can be performed analytically, while
in the NFW case, the inversion is carried out numerically. This is achieved through linear
interpolation of r(q), where q is sampled on a grid of points qi that are evenly spaced in
the logarithm of the variable. Then, I sampled N values of q from a uniform distribution.
The radii are then assigned simply by computing the corresponding r(q) for each extracted
q. For ϕ it is sufficient to extract N uniformly distributed values in [0, 2π[, while for θ I
extracted N uniformly distributed values in [-1,1[ and then calculated their arcsin.

Finally, the sets of spherical coordinates (r, θ, ϕ) are converted into sets of Cartesian
coordinates (x, y, z) using Eq. 4.5.

Velocity assignment To assign velocities to each position xi, I employed a rejection
sampling algorithm to extract the velocities from the DF at fixed positions.

In general, for a given DF f(x, v), once the position xi is fixed, the corresponding
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velocity probability function, also referred to as Velocity Distribution (VD), is

VD(xi, v) = f(xi, v)∫
d3vf(xi, v) = f(xi, v)

ρ(x) . (4.7)

To assign the velocity, it is then necessary to sample the corresponding VD for each xi

in the sample. However, unlike the position sampling method, it is not feasible to apply
the same approach to velocity sampling. This is because the cumulative probability
distribution of VD is not necessarily analytical. Thus, to properly compute and invert it,
it would require a separate numerical integration and interpolation for each xi, making the
procedure too computationally expensive. For this reason, I adopted a rejection sampling.

Recall that for a model with finite mass, such as the one considered in this thesis, the
maximum velocity allowed at a fixed position xi is the escape velocity

vesc =
√

−2Φ(xi). (4.8)

Thus, the sampling in the velocity space proceeds as follows. First, for each position xi, I
sample three velocities from a uniform distribution within [0, vesc]. These three numbers
are the components of the test velocity vtemp. Another number k is sampled from a
uniform distribution in the range [0,fmax], with fmax the value that maximises the entire
VD(xi, v). For a steady state, spherical, isotropic system, this value is fmax = VD(xi, 0).
The velocity vtemp is accepted as velocity at xi only if k< VD(xi, vtemp) and |vtemp| ≤ vesc.
If k> VD(xi, vtemp), vtemp is rejected and the procedure is re-iterated.

4.2.2 Check of the initial conditions
For each component, either stars or DM, I tested if the positions and velocities have
been correctly sampled by comparing the morphological and kinematic properties of the
N -body samples with the ones predicted by their corresponding models.

In particular, to check the accuracy of the position generation, I compared the mass
density profile of the generated sample with the theoretical one. The mass density profiles
of the particles depend only on their spatial distribution, since all of them, by hypoth-
esis, have the same mass mp = MTOT/N . Furthermore, since the system is spherically
symmetric, the only relevant coordinate is the radial one. I then calculated the radial
distance for each set of generated Cartesian coordinates and divided these into N radial
bins, representing spherical shells. The total mass in each i-th bin, Mi, is determined by
multiplying the number of particles in that bin, Ncounts,i, by the mass of each particle,
mp. Therefore, the mass density in each bin i is estimated as

ρi = Mi

Vi

= mpNcounts, i
4π
3 (r3

i − r3
i−1)

(4.9)

where the denominator is the volume of the spherical shell as a function of its limiting
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radii ri and ri−1. To each ρi, I assigned a Poissonian error equal to

δρi =
mp

√
Ncounts, i

4π
3 (r3

i − r3
i−1)

(4.10)
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Fig. 4.1 – Upper panel: mass densities of the generated Plummer component
(red tortellini, PASTA Collaboration et al., 2024), the theoretical Plummer model
(red line), the generated truncated-NFW halo (blue ravioli) and the theoreti-
cal truncated-NFW model (blue line). Lower panel: velocity dispersions of the
generated Plummer component (red tortellini), the theoretical Plummer model
(red line), the generated truncated-NFW halo (blue ravioli) and the theoretical
truncated-NFW model (blue line).

To check the accuracy of the velocities generation, I compared the velocity dispersion
profiles of the generated samples with the theoretical ones, calculated using Eq. 3.51, in
the case β = 0 since the system is isotropic. Notice that, in the formula, the density
ρ refers to the target component (stars or DM), while Φ is the total potential (stars
and DM) of the system, analogously to the Eddington formula. Moreover, the isotropy
condition (see Eq. 3.23) ensures that the velocity dispersion is the same along all Cartesian
directions and, therefore, it can be computed along only one direction. Relying again on
the spherical symmetry of the system, I used the same radial binning and calculated the
velocity dispersion of the i-th bin, σi as the standard deviation of the velocities of the
particles m that fell into the bin, i.e.

σi =

√√√√∑m |vm − vi|2
Ncounts, i

, (4.11)

where vi is the average velocity in the bin and Ncounts, i the number of particles in the bin.
The results are displayed in Figure 4.1 for the case of a stellar component described

by a Plummer profile embedded in a truncated NFW DM halo. The upper panel shows
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the mass density distributions of the generated samples (markers) and the theoretical
model (continuous lines). The lower panel shows the velocity dispersion profiles of the
generated samples (markers) and the theoretical model (continuous lines). In both cases,
the profiles derived from the N -body samples closely match the theoretical predictions,
accurately reproducing the expected mass density and velocity dispersion distributions.

4.2.3 Check of the steady-state condition
The final requirement is to verify that the generated systems are in a steady state, meaning
their global properties must remain stable over time. Specifically, the mass density and
velocity profiles of the samples should consistently align with the theoretical ones.

To verify this, I evolved the generated systems in isolation using the Arepo code, where
the only forces involved are the gravitational interactions among the particles themselves.
Additionally, I examined how varying the number of particles impacts the simulation’s
timescales and the system’s stability over time. Given a fixed value of the total DM mass,
increasing the mass of individual DM particles reduces their total number, which in turn
speeds up the simulation by decreasing the number of computations required. However,
if the mass ratio between stellar and DM particles becomes too low, it can cause the
formation of binary systems, leading to artificial heating and compromising the stability
of the system.

Stars DM
Model Plummer Truncated NFW
M [M⊙] 3.6×105 9.7×108

Rs [kpc] 0.4 –
rs [kpc] – 2.9
rt [kpc] – 7

Tab. 4.1 – Summary of the structural parameters for each Sextans component in
the simulations. Stars follow a Plummer profile (Eq. 3.33), while the DM follows
a truncated NFW profile (Eq. 4.3). From the top, the table lists the total mass M
of the component, the Plummer scale radius Rs for the stars, and the scale radius
rs and truncation radius rt for the DM halo.

To resemble Sextans, the structural parameters in Tab. 4.1 have been chosen in accor-
dance to §§ 2. However, in the simulation, Sextans was truncated at 7 kpc. This decision,
discussed further and more quantitatively in § 5.1, is justified by the fact that most of the
observed peculiar features in the galaxy are concentrated in its central regions, making the
outer areas not relevant for the purpose of this study. Additionally, by removing the outer
regions, the resolution in the central regions improves, as the same number of particles
have been used to sample a smaller volume, allowing for a more detailed representation
of the inner dynamics and providing better insight into the phenomena occurring in the
core of Sextans. Moreover, in § 2.2.2 it was shown that the stars belonging to the ring-like
structure were 20% of the total stars in the same. I decided to adopt approximately
the same ratio for the Sextans and the accreted satellite’s stellar mass, resulting in the
Sextans-like system having around 80% of the observationally inferred 4.4 × 105M⊙.
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Stars DM
qp = 3 qp = 10 qp = 20

Npts 74472 6591014 9977305 988652
mp [M⊙] 4.8 14.4 48 96
tCPU [h] 4200 1176 504

Tab. 4.2 – Configurations of different test simulations. Npts is the number of
particles, mp is the particle mass and tCPU are the core hours.

The number of stellar particles was determined based on considerations regarding the
softening length ε, by following the findings of Merritt (1996) who showed that an optimal
choice for its value scales with N1/3. For a bound system of Npart particles, this scaling is
typically estimated as

ε = rhalf

(
8π

3Npart

)1/3

(4.12)

where rhalf is the 3D half-mass radius. Using this approach, I calculated the number of
stellar particles by ensuring that the softening length, ε⋆, for the stellar components of
both Sextans and the satellite is at least one order of magnitude smaller than the size
of the observed substructures. This choice ensures that the accreted satellite system is
sufficiently well sampled by several resolution elements. If the softening is too large with
respect to the clump size, it risks approximating the satellite as a single, smooth entity
rather than resolving its internal features and dynamics, which, instead, is central to the
goals of this thesis. Therefore, ε⋆ was chosen by considering that the observed clump in
§ 2.2.1 had a radius of approximately 80 pc, thus we require ϵ < 80/10. The number of
particles required, as reported in the first column of Tab. 4.2, was calculated from Eq. 4.12.
The numbers of DM particles, instead, were calculated by dividing the DM total mass MDM

by the mass mp,DM of the particles. To balance the need for high-resolution simulations
with computational efficiency, I tested different particle mass ratios, qp = mp,DM/mp,⋆,
the results are reported in the second, third and fourth column of Tab. 4.2. Increasing
the value of mp,DM, while maintaining the same MTOT, DM, results in a reduction in the
number of DM particles. This decrease leads to shorter computational times, but it may
also induce the formation of artificial binary systems, which could alter the characteristics
of the galaxy. The computational time is usually quantified in terms of the core hours,
which are calculated by multiplying the number of CPUs used (#CPU) by the wall-clock
time of the simulation trun:

tCPU = #CPU × trun. (4.13)

This value provides a clear measure of the computational cost associated with evolving
the system. The last row of Tab. 4.2 shows the core hours required to evolve the system
in isolation for 3 Gyr.

The first particle mass ratio I examined was qp = 3, which corresponds to N = 6591014
particles of mass mp = 14.4M⊙. Figure 4.2 shows the ρ and σ profiles of the generated
sample (markers) for both components at different time steps over a 3 Gyr simulation. For
each component, the continuous lines represent the theoretical profiles from the selected
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models and the coloured bands highlight the scales smaller than the softening length. The
image clearly demonstrates that both the mass density and velocity dispersion profiles
remain unchanged over time, confirming that the systems are indeed in a steady state.
However, the qp = 3 is extremely computationally expensive as it required tCPU ≈ 4200 h.

I then examined the case qp = 10, in Figure 4.3, and qp = 20, in Figure 4.4. For
qp = 10, the DM component was composed of N = 9977305 particles of mass mp,DM =
48 M⊙, resulting in tCPU=1176 h to simulate the evolution over 3 Gyr. Conversely, for
qp = 20, instead, the DM component was composed of N = 988652 particles of mass
mp,DM = 96M⊙, leading to an even shorter computational time tCPU=504 h for the same
3 Gyr simulations. In both cases, the generated sample remained consistent with the
theoretical models, even up to 10 Gyr.

Given the reduced computational cost associated with the qp = 20 system, I chose
this configuration to represent the Sextans-like system for the simulations. This decision
allows for a more efficient exploration of the system’s dynamics while maintaining the
necessary resolution and accuracy in the modelling.
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Fig. 4.2 – Characteristic profiles of a system composed of DM and stellar particles
with qp = 3 during the evolution in isolation for 3 Gyr. Upper panel: mass
densities of the generated Plummer component (red tortellini for the IC, grey
tortellini for successive timesteps), the theoretical Plummer model (red line), the
generated truncated-NFW halo (blue ravioli for the IC, grey ravioli for successive
timesteps) and the theoretical truncated-NFW model (blue line). Lower panel:
velocity dispersions of the generated Plummer component (red tortellini for the
IC, grey tortellini for successive timesteps), the theoretical Plummer model (red
line), the generated truncated-NFW halo (blue ravioli for the IC, grey ravioli for
successive timesteps) and the theoretical truncated-NFW model (blue line). In
both panels, the red band marks the scales for the stars particles smaller than the
stars softening length, while the blue band the scales for the DM particles smaller
than the DM softening length.
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Fig. 4.3 – Same as Figure 4.2, but for qp = 10 and evolved in isolation for 10 Gyr.
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Fig. 4.4 – Same as Figure 4.2, but for qp = 20 and evolved in isolation for 10 Gyr.



V

Simulations with a Satellite
Composed only of Stars

In this chapter, I will delve into the results of the simulations and I will
explore whether the observed velocity map in the field of Sextans can be
reproduced through a minor merger event involving a satellite composed
solely of stars, which is intended to represent a disrupted nuclear star
cluster.
In particular, in § 5.1, I will describe the properties of the satellite, in-
cluding its initial conditions, and discuss the typical timescales involved
in the evolution of the system.
Primarily, in § 5.2 I will analyse the extreme scenario of a satellite ini-
tially put in a circular orbit near the centre of Sextans, to test whether
the observed features could be consistent with a rotating object moving
in the very centre. I will also describe the method used to create mock
datasets, allowing for a direct comparison between simulation snapshots
and observations.
In § 5.3 and § 5.4, I will examine physically motivated scenarios where
the satellite system approaches Sextans from its outskirts, considering
both cases of a small and a higher initial velocity. Ultimately, I will
show that both these scenarios fail to replicate the observed features in
Sextans, which suggests that a satellite without a dark matter halo is
not a viable explanation.

47
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5.1 General considerations
In this chapter, the satellite is modelled as a single-component system consisting of a
spherical Plummer stellar population. All parameters are listed in Tab. 5.1. The stellar
mass of the satellite, which in this case represents its total mass MSat, was constrained
by Cicuéndez and Battaglia (2018). As discussed in § 2.2.2, the authors estimated that
around 20% of the stars in their sample were part of the observed ring-like structure.
Based on this consideration, I assigned the satellite approximately 30% of the inferred
Sextans stellar mass, slightly more than the 20% attributed to the ring. This accounts for
the fact that during the interaction, a fraction of the stellar mass of the satellite can be
lost in the outskirts of Sextans due to tidal forces exerted by the host galaxy, meaning that
not all the mass would have ended up in the central region observed by Cicuéndez and
Battaglia (2018). The parameter q is the merger mass ratio, which is the ratio between
the total mass of the satellite and the total mass of Sextans MSext in the simulation:

q = MSat

MSext
. (5.1)

The number of satellite particles Npts was calculated from MSat by ensuring the mass of
each stellar particle of the satellite matched the stellar particle mass in the Sextans-like
system. Finally, the scale radius, rs, was chosen based on the results from Kim et al.
(2019), which showed that the roundish overdensity extends to approximately 80 pc in
radius, thus I fixed Rs = 40 pc.

Stars
Model Plummer
M [M⊙] 1.2 × 105

Rs [kpc] 0.04
Npts 25000
mp [M⊙] 4.8

q 0.0001

Tab. 5.1 – Satellite parameters in the simulations where the satellite is composed
only of stars with a Plummer profile (Eq. 3.33). M is the total stellar mass, Rs

is the Plummer scale radius, Npts is the number of particles that constitute the
satellite, mp is the mass of each particle, and q is the merger mass ratio.

I then investigated how to assign physically motivated orbital ICs to the satellite. In
this context, two characteristic timescales for simulations determine the physical processes
involved:

• the orbital period torbit, which is the time it takes an object to complete one full
orbit around another object. In this case, it is the time taken by the satellite to
orbit around its host galaxy;

• the timescale of dynamical friction tfric, which refers to the loss of momentum and
kinetic energy experienced by a moving body due to gravitational interactions with
surrounding matter in space.
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To estimate these timescales I considered a simplified version of the Sextans+Satellite
system. The satellite is treated as a point mass with Msat as total mass, moving within
the smooth gravitational potential Φ(r) generated by the DM halo of Sextans, modelled
by NFW profile (Eq. 2.3), with the parameters from the last row of Tab. 2.3. Then, to
find the orbital period it is necessary to solve the equation of motion:ẋ = v

v̇ = −∇Φ(x)
. (5.2)

However, this two-body problem cannot be solved analytically because the potential de-
pends on r, making the problem dependent on the satellite’s changing position as it moves
through the halo. Therefore, I used the fourth-order Runge-Kutta method (RK4) to solve
the equations of motion numerically and calculate the orbital time.

The timescale for dynamical friction, tfric can be, instead, estimated using the formula
provided by Binney and Tremaine (2008) for a compact object starting at r0 in an external
potential created by a host galaxy. Let MNFW(r0) be the mass of the host enclosed mass
within r0, the circular velocity of a point like objects at r = r0 is

vcirc(r0) =
√

GMNFW(r0)
r0

. (5.3)

Then, the crossing time is
tcross(r0) ≡ r0

vcirc(r0)
, (5.4)

which measures the characteristic time taken by the satellite to cross Sextans. From
Binney and Tremaine (2008), the tfric can be then estimated as

tfric(r0) = 1.17
ln Λ

MNFW(r0)
Msat

tcross(r0), (5.5)

where ln Λ is the Coulomb logarithm, which depends on the actual geometry of the tra-
jectory. However, as ln Λ typically spans values from 6 to 15, I will consider both cases,
denoting them as tfric,15 and tfric,6, for the lower and upper estimates, respectively.

Consequently, Figure 5.1 shows the comparison between tfric,15, tfric,6, and torb, for a
varying initial position r0. tfric,15 and tfric,6 have been calculated using Eq. 5.5, while torb

was calculated numerically. For the initial position, I spanned a range of distances from
0.2 kpc up to the virial radius of Sextans, i.e. 30 kpc, in steps of 0.06 kpc. The initial
velocity v0 was estimated using the momentum conservation law:

r0v0 = rfvf , (5.6)

where rf is measured from the velocity map in Figure 2.4, and it represents the radius of
the ring-like structure, and vf is the maximum velocity measured in the ring. Additionally,
in Figure 5.1 on the black dashed vertical lines spaced every 5 kpc, I reported the values
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of the Jacobi radius (or truncation radius Binney and Tremaine, 2008) of the satellite:

rJ(r0) = r0

(
Msat

3MNFW(r0)

)1/3

. (5.7)

The Jacobi radius indicates the distance from the centre of the host galaxy where its tidal
forces on the satellite significantly impact the structural properties of the latter, once it
is located at a distance r0 from the host. Finally, the right axis of Figure 5.1 indicates
the percentage of the virial mass of the halo Mvir within the initial position of the mass
particle.

From the image it is evident that for varying r0, torb is much smaller than the timescale
for dynamical friction, suggesting that the effects of the latter are negligible. The satellite
is thus expected to conserve both its initial energy and momentum. In addition, the
values of rJ legitimate the adopted model for the satellite, as its scale radius is ∼ 10−2

kpc (rs in Tab. 5.1), so, much smaller than both r0 and rJ, which are ∼ 100 − 101 kpc.
A key decision in setting up the simulation is to determine the initial position of

the satellite. The goal of this thesis is not to investigate how a satellite is captured by
a galaxy, but rather to assess whether the resulting accretion can explain the peculiar
velocity structure of Sextans. Thus, in all simulations, the satellite is always initially
positioned within the virial radius of Sextans. Given the high values of tfric and the
fact that rJ is smaller than the distance between the outskirts of the satellite and the
centre of the galaxy, the satellite is not expected (at least in these simulations) to lose a
significant amount of mass as it moves closer to Sextans and it will not significantly affect
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its structural parameters up until the closer distances.
As an example, only when the satellite reaches r0 = 5 kpc, its Jacobi radius becomes

comparable to its half-mass radius. This indicates that interactions occurring at distances
greater than 5 kpc allow any gravitational perturbations from the host galaxy to be
gradually incorporated into the simulations. Provided that the initial velocity is chosen
in accordance with equation Eq. 5.6, simulations with r0 > 5 kpc will thus produce similar
outcomes, but on greater timescales. I therefore standardised the satellite’s initial position
at r = 5 kpc.

This also offers an additional advantage: since the Sextans halo is spherically sym-
metric and the initial position of the satellite always represents the apocentre of the orbit,
the satellite’s centre of mass will never explore regions beyond 5 kpc. Thus, although the
Sextans halo has a virial radius of 29 kpc, it can be truncated well before this value with-
out impacting the dynamics of the interactions. I then chose to truncate the halo at ≈ 7
kpc, a value that ensures the entire size of the satellite remains within the Sextans halo.
This choice also provides the significant advantage of reducing the number of particles
needed to sample the Sextans halo, and therefore it drastically reduces the computational
time for the simulations.
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Fig. 5.2 – Case 0. 2D map of the initial set-up of the Sextans+Satellite system,
satellite’s orbital ICs in Eq. 5.8. In the background, in scales of greys, are the
isodensity surfaces of the DM component, overlaid with the surface density dis-
tribution of the combined stellar component of Sextans and the satellite (red to
yellow colour map). The arrow shows the direction and the value of the initial
systemic velocity of the satellite.

5.2 Case 0: A circular orbit at 0.2 kpc
Before investigating the more realistic and physically motivated scenarios, I first tested
whether the kinematics of the disrupted satellite could be consistent with it being on
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a circular orbit at the same distance from the centre as the ring-like feature shown in
Figure 2.4. I placed the satellite at 0.2 kpc on a circular orbit, with the tangential velocity
calculated using Eq. 5.3. The orbital ICs in Cartesian coordinates are:

x0 = (0.2, 0, 0) [kpc] v0 = (0, 10.1, 0) [km/s]. (5.8)

Fig. 5.3 – Case 0. 2D density maps of the Sextans+Satellite system at different
times in the simulation, separated by 0.2 Gyr. Sextans and the satellite have
different colour gradients to distinguish them visually.

The initial setup is shown in the surfaced density map Figure 5.2. Figure 5.3 shows
the evolution up to 1 Gyr. In the figure, it clearly appears that within less than a Gyr,
the satellite settles into a ring structure, which remains relatively unchanged afterwards.

To determine whether this simulated structure is compatible with the observed one
(shown in the left panel of Figure 2.4), I generated mock data from the simulation to
mimic an observation. For some selected snapshots, I aligned the simulated system with
the observed one by matching the centre of mass of the Sextans+Satellite system to the
centre of Sextans, marked by Cicuéndez and Battaglia (2018). Once the systems were
aligned, I selected the simulated star particles closest to the stars observed positions.
I then smoothed the l.o.s. velocities of these stars using the same smoothing method
employed by Cicuéndez and Battaglia (2018), which involved applying a median kernel
over a 5 arcmin (≈ 0.13 kpc) radius. Specifically, for each selected star, the smoothed
l.o.s. velocity was computed as the median of the l.o.s. velocities of all neighbouring
stars within the 5 arcmin radius. Notably, in simulations, the l.o.s. corresponds to the
direction
perpendicular to the plane of the 2D map being analysed, therefore it strictly depends on
the chosen point of view. Consequently, the selection and the smoothing procedure had
to be repeated for different viewing angles, in order to assure a comprehensive comparison
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Fig. 5.4 – Case 0. Upper row: 2D density maps of the Sextans+Satellite system
at 0.4 Gyr. Sextans and the satellite are shown with different colour gradients to
visually distinguish between them. The first image on the left shows the original
l.o.s. from Figure 5.3, while the subsequent columns display the system viewed
at different rotational angles. Lower row: Smoothed l.o.s. velocity maps. The
first image on the left represents the observed dataset, while the remaining images
show the mock datasets corresponding to the panels above them, with each map
using the same rotational angles as the density maps in the upper row.
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Fig. 5.5 – Case 0. Same as Figure 5.4 but for the Sextans+Satellite system at 0.8
Gyr

between simulations and observations. To obtain this, I applied a series of rotations to
the entire system using Euler rotation matrices, defined by three specific angles (α, β, γ),
to reorient the system as needed, as described in §§ A.

Next, I iterated the procedure across various snapshots, exploring a wide range of
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rotation angles, and visually inspected the resulting velocity maps. Some examples of
these maps are shown in Figure 5.4 and Figure 5.5.

Interestingly, in the case shown in the third column of Figure 5.5 a ring-like structure
appears also in the velocity map, though with velocities opposite to those observed. It is
important to note that the snapshot corresponds to the ring as it is still forming, and not
yet in a stable configuration. Therefore, Figure 5.6 shows the same case but with inverted
l.o.s. axis.

This suggests that a satellite, having reached the central regions with the profile de-
termined by the parameters in Tab. 5.1, and subsequently disrupted by tidal interactions,
can indeed produce a ring-like feature similar to observed one by Cicuéndez and Battaglia
(2018). Consequently, in the following cases, I will investigate physically motivated ICs
for a satellite without DM, to assess whether such conditions could plausibly explain the
presence of the satellite in the central regions or, alternatively, reproduce the ring-like
feature through different mechanisms.
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Fig. 5.6 – Case 0. Upper row: 2D density maps of the Sextans+Satellite system
at 0.8 Gyr. Sextans and the satellite are shown with different colour gradients to
visually distinguish between them. The image on the left shows the original l.o.s.
from Figure 5.3, while the one on the right displays the rotated system. Lower
row: Smoothed l.o.s. velocity maps. The image on the left reports the observed
dataset, while the one on the right shows the mock datasets corresponding to the
panel above.
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5.3 Case 1: A nearly radial orbit starting at 5 kpc
In this first attempt, I selected the ICs based on the considerations discussed in § 5.1. In
particular, I set the satellite at a distance r0=5 kpc, which results in v0 ≈ 0.14 km/s, thus
on a nearly radial orbit. The orbital ICs in Cartesian coordinates are:

x0 = (5, 0, 0) [kpc] v0 = (0, 0.1, 0) [km/s]. (5.9)

The ICs are displayed in the surface density map in Figure 5.7. I then let the Sex-
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Fig. 5.7 – Case 1. Same as Figure 5.2 but for the orbital ICs in Eq. 5.9.

tans+Satellite system evolve for 12 Gyr. In Figure 5.8 I only report the 2D density maps
up to 5.5 Gyr, as there were no significant differences in the subsequent timesteps. In
addition to this, Figure 5.9 shows a zoomed-in view of the inner regions from the snapshot
at 5.5 Gyr and for three perpendicular l.o.s. In this case, the only remarkable features
obtained in the simulation are shell-like structures consistent with the ones found by
Hernquist and Quinn (1988) using a similar set up. These shells are typically formed
when a satellite galaxy is disrupted by the gravitational field of a larger host galaxy. As
the satellite is torn apart, its stars or DM particles are stripped and spread out, gradually
organising into concentric, spherical-like shells as they orbit within the host’s potential.
The Case 1 simulations satisfy many of the conditions that Hernquist and Quinn (1988)
identified as promoting the formation of shells, particularly:

• radial or nearly radial orbits: on radial orbits particles stripped from the satellite
experience strong tidal forces, causing them to oscillate back and forth through the
host galaxy’s potential, leading to the formation of distinct, concentric shells at
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Fig. 5.8 – Case 1. 2D density maps of the Sextans+Satellite system in the simu-
lation separated by 0.5 Gyr, up to 5.5 Gyr. Sextans and the satellite have different
colour gradients to distinguish them visually.

different radii;
• low merger mass ratio: a lower-mass satellite is less capable of retaining its structure

due to the strong gravitational forces from the host, which strip its particles and
disperse them into shells;

• spherical or a near-spherical host potential: a relatively smooth, spherical gravita-
tional potential in the host galaxy allows the stripped particles to remain confined
in spherical distributions.
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It is evident from both Figure 5.8 and Figure 5.9, that these ICs do not preserve the
structure of the satellite, and thus do not lead to the scenario in Case 0, nor do they
reproduce any ring-like structure in any snapshot of the simulation. Consequently, I
discarded this set-up as a possible scenario for the accretion event that occurred in the
galaxy.

Fig. 5.9 – Case 1. Zoom-in 2D density maps of the Sextans+Satellite system in
the simulation at 5.5 Gyr. The three panels show the three perpendicular points
of view. Sextans and the satellite have different colour gradients to distinguish
them visually.

5.4 Case 2: An eccentric orbit starting at 5 kpc
After the failure of Case 1, I investigated a similar set-up, but with a larger initial velocity.
The orbital ICs in Cartesian coordinates are:

x0 = (5, 0, 0) [kpc] v0 = (0, 3, 0) [km/s], (5.10)

as shown in Figure 5.10. Figure 5.11 shows how the system evolved up to 8.5 Gyr.
In the later stages, the disrupted satellite appears to form shell-like structures, simi-

larly to the ones observed in Case 1. However, due to its higher initial tangential velocity,
the satellite forms arc-like structures already from the early stages of the simulation and
avoids passing through the galaxy’s centre.

It is therefore plausible that a ring-like structure could emerge when observing these
arcs from a suitable viewpoint. To explore this possibility, I selected the timestep at 8 Gyr
and analysed it from different lines of sight. The results are shown in Figure 5.12, where,
to simplify the interpretation, only the stellar population of the satellite is displayed. In
this case, for varying angles α and β, I explored six different inclinations of the structure.
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Fig. 5.10 – Case 2. Same as Figure 5.2 but for the orbital ICs in Eq. 5.10.

For each set of angles, the upper panel displays the surface density ΣSat map, while the
lower panel shows the l.o.s. velocity vlos map. Although a ring-like structure can be seen
in the surface density map for the case β = 75◦, this feature nearly vanishes in the velocity
map. Instead, the velocity map shows a pattern where one region is moving towards the
observer and another is receding, resembling the behaviour of a system rotating around
the centre of the galaxy. Moreover, the l.o.s. velocities resulting from this projection are
not compatible with the observed values, being at least an order of magnitude higher than
those shown in Figure 2.4.

Although it can reproduce a ring-like structure at the centre, the velocity pattern is
not consistent with observations or expected dynamics.

In conclusion, I have found that it is not possible to reproduce the observed ring-
like structure or the configuration of Case 0 without the satellite having a DM halo. In
particular, the simulations in this chapter have shown that, without DM in the satellite,
it is not possible

1. to bring the satellite intact into the central regions;
2. to maintain sufficiently low velocities compatible with the observed ones.
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Fig. 5.11 – Case 2. 2D density maps of the Sextans+Satellite system at different
times in the simulation, separated by 0.5 Gyr. Sextans and the satellite have
different colour gradients to distinguish them visually.
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Fig. 5.12 – Case 2. Surface density ΣSat maps (upper panels) and l.o.s. velocity
vlos maps (lower pales) for six different inclination angles. The green and black
crosses in the maps mark the centre of Sextans.



VI

Simulations with a Satellite
Embedded in a Dark Matter Halo

In this chapter, I will present the results of the simulations and investi-
gate whether the observed velocity map of Sextans can be reproduced
through a minor merger event involving a satellite composed of both
stars and dark matter. The primary objective is to explore different
configurations of dark matter halos for the satellite using a trial-and-
error approach. By doing so, I aim to assess how various halo properties
influence the stability of Sextans and determine if they can replicate the
distinctive ring-like velocity structure observed in the galaxy.
In § 6.2 and § 6.3, I will discuss two initial attempts in which the satel-
lite’s dark matter halo was found to be too compact and massive, pre-
venting it from being effectively disrupted into the ring-like feature seen
in Sextans. Both configurations failed to reproduce the desired kine-
matic features and, moreover, disrupted the stable equilibrium of the
galaxy.
Finally, in § 6.4 I will present a successful simulation that reproduces
the peculiar velocity pattern observed in the galaxy and demonstrates
a more suitable satellite halo configuration for the accretion event.

61



62 Chapter 6. Simulations with a Satellite Embedded in a Dark Matter Halo

6.1 General considerations
As a consequence of the findings from the previous chapter, which demonstrated that
simulations involving a satellite composed solely of stars fail to recreate the observed ring-
like structure in the inner region of Sextans. In this chapter, I will investigate accretion
events involving a two-component satellite composed of both stars and DM.

For the stellar component, I adopted a Plummer profile with the same structural
parameter as in Tab. 5.1, i.e. a total mass of ≈30% the inferred Sextans stellar mass and
a scale radius of 0.04 kpc. Since the stellar particles of the satellite must be identical to
the stellar ones in the Sextans-like system, also mp remained at 4.8 M⊙, and consequently
neither the number of stellar particles changed. For the DM component, observational
data offers no direct constraints, necessitating an arbitrary construction of the halo. To
ensure a physically motivated choice, I initially consulted McConnachie (2012) to search
for objects in the Local Universe with similar stellar mass and scale radius to the satellite,
hoping to infer the DM halo from known analogues. Unfortunately, no such objects were
found with both compatible structural properties and available dynamical mass estimates.
I then relayed on known scaling relations, as the one reported in Figure 1.3, to roughly
estimate the halo mass. Indeed, assuming a stellar mass-to-light ratio of 1, for an object
with a stellar mass of ∼ 105 M⊙ one could expect the dynamical mass to luminous mass
ratio in the range 102 − 104.

In testing these halo profiles, I aimed to balance two factors: ensuring the galaxy
stability during the evolution, and reproducing the observed stellar structures at the centre
Sextans. This process, while empirical, allowed me to explore a range of plausible halo
characteristics and to identify configurations that best matched the target observational
features.

For these simulations, since the mass varies from case to case, the timescales torb

and tfric, that were introduced in § 5.1, will be determined individually for each specific
scenario and discussed in the subsequent sections.

Stars DM
Model Plummer Truncated NFW
M [M⊙] 1.2×105 2.8×108

Rs [kpc] 0.04 –
rs [kpc] – 0.7
rt [kpc] – 2
Npts 25000 2767404
mp [M⊙] 4.8 96

q 0.28

Tab. 6.1 – Case 3. Structural parameters for each Satellite component. Stars
follow a Plummer profile (Eq. 3.33), while the DM follows a truncated NFW profile
(Eq. 4.3). From the top, the table lists the total mass M of the component, the
Plummer scale radius Rs for the stars, and the scale radius rs and truncation
radius rt for the DM halo, Npts the number of particles, and mp the mass of each
particle.
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6.2 Case 3: A satellite with MSat = 10%Mvir

In this first attempt, I modelled the satellite’s DM halo as a scaled-down version of
Sextans, with the structural parameters of each component of the satellite reported in
Tab. 6.1. It is important to notice that for both the stellar and DM components, the
number of particles, Npts, was determined by ensuring that the mass of each particle
matches the mass of the corresponding particle in the Sextans-like system. Moreover, in
the merger mass ratio q, defined in Eq. 5.1, MSat refers to the total mass of the satellite
in the simulation, formally the sum of both stellar and DM total mass M in Tab. 6.1.

0 5 10 15 20 25 30

r0 [kpc]

10−3

10−2

10−1

100

ti
m

e
[G

yr
]

0

20

40

60

80

100

%
M

v
ir

r J
=

2.
79

kp
c

r J
=

5.
01

kp
c

r J
=

7.
41

kp
c

r J
=

9.
89

kp
c

r J
=

12
.3

5
kp

c

torb

tfric with ln(Λ)= 15

tfric with ln(Λ)= 6

%Mvir within D

Timescales for Msat=10%Mvir

Fig. 6.1 – Case 3. The characteristic timescales for the simulation as a function of
the initial position r0: the orbital period torb (teal solid line), and the dynamical
friction timescales tfric (pink solid and dashed lines), for the two limiting values of
ln Λ. On the right axis is reported the percentage of Sextans halo mass within r0.
The vertical dashed lines show values of the Jacobi radius rJ for varying r0.

Figure 6.1 was obtained analogously to Figure 5.1, but for Msat = 2.8 × 108 M⊙, which
corresponds to approximately the 10% of Sextans virial mass, and q=0.28 in the simula-
tion. At greater initial distances r0, tfric is comparable to torb, but it decreases rapidly for
decreasing distances. This implies that, in this scenario, the effects of dynamical friction
are no longer negligible and will significantly influence the dynamics of the interaction,
especially as the satellite approaches the central regions. However, similar to the case of
a DM-free satellite, the Jacobi radius rJ becomes comparable to the satellite’s half-mass
radius only for r0 < 5 kpc. This suggests that interactions occurring at distances greater
than 5 kpc allow the gravitational perturbations from the host galaxy to be gradually
integrated into the satellite’s evolution. Consequently, for a given initial velocity, simula-
tions with r0 > 5 kpc will yield similar outcomes, although over longer timescales. This
again justifies the decision to place the satellite’s initial position at r = 5 kpc and to
truncate the Sextans halo at 7 kpc.

Due to dynamical friction, the satellite’s energy and angular momentum are not con-
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Fig. 6.2 – Case 3. 2D map of the initial set-up of the Sextans+Satellite system,
satellite’s orbital ICs in Eq. 6.1. In the background, in scales of greys, are the
isodensity surfaces of the DM component, overlaid with the surface density distri-
bution of the combined stellar component of both Sextans and the satellite (red
to yellow colour map). The arrow shows the direction and the value of the initial
systemic velocity of the satellite.

served throughout the simulation. As a result, the initial position r0 and velocity v0 are
not expected to satisfy Eq. 5.6. Therefore, I opted to place the satellite on a circular orbit,
assigning it a tangential velocity calculated using Eq. 5.3. The loss of angular momentum
of the satellite will bring it on a short timescale on a radial orbit and it will eventually
move close to the center of Sextans. The orbital ICs in Cartesian coordinates are:

x0 = (5, 0, 0) [kpc] v0 = (0, 24.1, 0) [km/s], (6.1)

and the initial setup is shown in Figure 6.2. Figure 6.6 shows how the system evolved
up to 2.2 Gyr, as the configuration remained substantially unchanged afterwards. The
outcome of the simulation demonstrates that a satellite of this type severely affects the
structural and dynamical properties of Sextans. Due to its high compactness, once the
satellite reaches the central regions of the galaxy, these regions experience strong tidal
forces. Initially, these forces disrupt the spherical symmetry of the system, which later
reconfigures again into a spherical shape around the satellite. The latter, in the end, effec-
tively acts as a dense, compact core. More importantly, the satellite remains almost intact
throughout the simulation and, thus, does not reproduce any of the ring-like features.

For all these reasons, I concluded that the satellite halo, with the parameters outlined
in Tab. 6.1, proved to be too massive and too compact. Consequently, in the next section,
I will reduce the mass of the satellite while maintaining the same scale and truncation
radius.
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Fig. 6.3 – Case 3. 2D density maps of the Sextans+Satellite system at different
times in the simulation, separated by 0.2 Gyr. Sextans and the satellite have
different colour gradients to distinguish them visually.
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6.3 Case 4: A satellite with MSat = 5%Mvir

Since the halo in Case 3 was found to be too compact and massive to be disrupted while
falling into Sextans’ potential, in this section I will investigate the case of a satellite with
a less dense and less massive halo. To achieve this, I reduced the mass of the halo to half
that of Case 3, while maintaining the same scale and truncation radii. All parameters are
reported in Tab. 6.2.

Stars DM
Model Plummer Truncated NFW
M [M⊙] 1.2×105 1.3×108

Rs [kpc] 0.04 –
rs [kpc] – 0.7
rt [kpc] – 2
Npts 25000 1383702
mp [M⊙] 4.8 96

q 0.13

Tab. 6.2 – Case 4. Structural parameters for each Satellite component. Stars
follow a Plummer profile (Eq. 3.33), while the DM follows a truncated NFW profile
(Eq. 4.3). From the top, the table lists the total mass M of the component, the
Plummer scale radius Rs for the stars, and the scale radius rs and truncation
radius rt for the DM halo, Npts the number of particles, and mp the mass of each
particle.
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Fig. 6.4 – Case 4. Same as Figure 6.1 but for MSat = 5%Mvir

By proceeding analogously to the previous case, I obtained Figure 6.7, which shows
the typical timescales for the simulation in case of Msat = 1.3 × 108 M⊙. For this mass
q=0.13 in the simulation. In this case MSat corresponds to the ∼5% of Sextans virial mass.
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The image shows similar trends to those in Figure 6.4, indicating that all considerations
regarding the ICs for the simulation discussed in the previous case remain applicable.
Specifically, to the satellite I assigned the same orbital ICs from Eq. 6.1 of Case 3, as
illustrated in Figure 6.8. The evolution of the merger is displayed in Figure 6.6 up to
2.2 Gyr. The simulation shows that, despite the reduction of the satellite halo mass, the
outcome is fairly similar to the previous case, with the only difference that the tidal forces
that disrupt the Sextans in the early phases appear less intense.

As a result, this scenario was discarded. In the next section, I will further reduce the
halo mass while maintaining the same scale and truncation radius, to explore whether
an even less dense satellite, exerting minimal or no tidal forces on the host galaxy, could
finally reproduce the target feature in Sextans.
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Fig. 6.5 – Case 4. Same as Figure 6.2, with the satellite in the same orbital ICs
but a different DM halo (Tab. 6.2).
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Fig. 6.6 – Case 4. 2D density maps of the Sextans+Satellite system at different
times in the simulation, separated by 0.2 Gyr. Sextans and the satellite have
different colour gradients to distinguish them visually.
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6.4 Case 5: A satellite with MSat = 2%Mvir

Proceeding with the trial-and-error approach, and given that the previous simulations
suggested the need for an even less dense satellite halo, I further reduced the halo mass
while maintaining the same scale and truncation radius. This adjustment was made to
produce an even less compact object and evaluate whether this configuration could yield
a more realistic interaction with Sextans. All parameters are reported in Tab. 6.3.

Stars DM
Model Plummer Truncated NFW
M [M⊙] 1.2×105 7.4×107

Rs [kpc] 0.04 –
rs [kpc] – 0.7
rt [kpc] – 2
Npts 25000 760246
mp [M⊙] 4.8 96

q 0.08

Tab. 6.3 – Case 5. Structural parameters for each Satellite component. Stars
follow a Plummer profile (Eq. 3.33), while the DM follows a truncated NFW profile
(Eq. 4.3). From the top, the table lists the total mass M of the component, the
Plummer scale radius Rs for the stars, and the scale radius rs and truncation
radius rt for the DM halo, Npts the number of particles, and mp the mass of each
particle.
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Fig. 6.7 – Case 5. Same as Figure 6.1 but for MSat = 2%Mvir

As in the previous cases, I checked the timescales for the simulation, which in this case
are calculated for Msat ≈ 2% of Sextans virial mass. In this case q = 0.08. As indicated
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Fig. 6.8 – Case 5. Same as Figure 6.2, with the satellite in the same orbital ICs
but a different DM halo (Tab. 6.3).

in Figure 6.7, these timescales are again similar to both the ones of Case 3 and Case 4,
meaning that all considerations regarding the ICs for the simulation are still valid.

Therefore, I set the orbital ICs for the satellite in Eq. 6.1, as in the previous cases. As
shown in Figure 6.9, the satellite does not disrupt Sextans’ spherical symmetry. Within
approximately 1.5 Gyr, tidal interactions with the galaxy gradually strip material from
the satellite, leading to the formation of a spiralling structure, that over time, evolves into
a ring.

Next, I compared the results of the simulation with the velocity map of Figure 2.4 by
creating mock observations using the same method described in § 6.2. As in that case, I
visually inspected a variety of points of view for different snapshots to find the one that
best reproduces the observation. Some of these results are shown in Figure 6.10, while the
best one is displayed separately in Figure 6.11. In that case, indeed, the mock velocity
map shows a ring structure with a coherent positive velocity, as found by Cicuéndez and
Battaglia (2018). Interestingly, the snapshot that best matches the observed velocity map
corresponds to a phase where the ring structure is not yet completely formed but is still
evolving, consistently with the results of Case 0.

The results of this simulation provide strong evidence that the ring-like feature ob-
served by Cicuéndez and Battaglia (2018) in the velocity map of Sextans’ inner regions can
be explained by an ongoing accretion event involving a satellite galaxy. The dynamics of
this interaction suggest that the satellite’s infall is responsible for creating the distinctive
structure seen in the velocity field.

Ultimately, I verified that the satellite halo modelled with the parameter in Tab. 6.3
could be compatible with a halo that one would expect from cosmological considerations.
The virial mass Mvir of the halo could be estimated by extrapolating to the lower limit
the stellar-to-halo mass relation found by Read et al. (2017) for DGs. Adopting the



6.4. Case 5: A satellite with MSat = 2%Mvir 71

Fig. 6.9 – Case 5. 2D density maps of the Sextans+Satellite system at different
times in the simulation, separated by 0.2 Gyr. Sextans and the satellite have
different colour gradients to distinguish them visually.
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Fig. 6.10 – Case 5. Upper row: 2D density maps of the Sextans+Satellite system
at 2.2 Gyr. Sextans and the satellite are shown with different colour gradients
to distinguish them visually. The first image on the left shows the original line
of sight from Figure 6.9, while the subsequent columns display the system viewed
at different rotational angles. Lower row: Smoothed l.o.s. velocity maps. The
first image on the left represents the observed dataset, while the remaining images
show the mock datasets corresponding to the panels above them, with each map
using the same rotational angles as the density maps in the upper row.

halo mass–concentration relation from Muñoz-Cuartas et al. (2011), I could then get
an estimate for the concentration of the halo. From this estimate and for a satellite of
M⋆ = 1.2 × 105 M⊙, the expected parameters for the halo are:

Mvir = 3 × 108 M⊙,

c = 20.39.
(6.2)

These parameters are fairly compatible with the one adopted for the simulation. This
appears clearly in Figure 6.12, which shows the density profile for both the cosmological
motivated NFW and for the truncated NFW used in the simulation. The first one was
obtained using Eq. 2.3, with the parameters in Eq. 6.2, while the truncated NFW was
calculated using Eq. 4.3 and the parameters in Tab. 6.3. Indeed, up to the truncation
radius, the two density profiles have very similar values, within less than a factor of two.
Such a factor could be easily accounted for if one would include the typical large scatter
of the stellar-to-halo mass relation.

Therefore, I have proved that a minor merger with the ICs shown in Figure 6.8 not only
is able to reproduce the peculiar ring-like feature observed by Cicuéndez and Battaglia
(2018) in the kinematics of Sextans, but also that such a configuration is allowed by
cosmological considerations.
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Fig. 6.11 – Case 5. Upper row: 2D density maps of the Sextans+Satellite system
at 2.2 Gyr. Sextans and the satellite are shown with different colour gradients to
distinguish them visually. The image on the left shows the original line of sight
from Figure 6.9, while the one on the right display the rotated system. Lower row:
Smoothed l.o.s. velocity maps. The image on the left represents the observed
dataset, while the one on the right show the mock datasets corresponding to the
panel above
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(dark blue line).



Conclusions and future prospects

This thesis explores whether the observed ring-like feature in the l.o.s. velocity map of the
Sextans dSph o Sextans (Cicuéndez and Battaglia, 2018), obtained from state-of-the-art
spectroscopic measurements of Sextans most probable members, could be due to a minor
merger. Through a series of N -body simulations, I test the hypothesis that a satellite,
composed either solely of stars or of both stars and DM, might have been accreted by
Sextans, leading to the formation of such a feature in its inner regions.

A significant part of this project involves the generation of realistic N -body realisations
for Sextans and its satellite. This process requires sample ICs that accurately represent the
dynamical and structural properties of these systems. To this scope, I develop a Python
code to generate spherically symmetric, steady-state samples of N particles using methods
based on the DF of equilibrium models. The method is then validated by checking that
the mass density and velocity dispersion profiles of the generated samples match the
theoretical ones and remain stable over time. In order to do so, the systems are evolved
in isolation using the N -body code Arepo and I demonstrate that the profiles of the
generated samples remain consistent with the theoretical ones over time.

Employing the Arepo code, I explore two types of simulations, one where the satellite
is solely composed of stars, and one where stars are embedded in a dominant DM halo. To
compare the outcomes of the simulations with the observations, I create mock datasets by
selecting stars in the simulations closer to the position of the observed one and smoothing
the l.o.s. velocity with the same technique adopted by Cicuéndez and Battaglia (2018).
Additionally, for each simulation, I inspect different timesteps and a variety of different
orientations of the Sextans+Satellite system.

The satellite in the DM-free case is intended to reproduce a disrupted nuclear star
cluster or a globular cluster. In this scenario, the only simulation that produces a l.o.s.
velocity map comparable to the observed one is the one in which the satellite is placed
on a circular orbit within the inner region of the galaxy. However, this scenario poses
a challenge for the physical interpretation, as all simulations involving a DM-free satel-
lite initially positioned at the outskirts of Sextans fail to reproduce the target ring-like
structure. As a matter of fact, the simulations show that when the satellite is set on an
eccentric orbit, even though the stars of the satellite lost due to tidal interactions produce
a ring-like feature in the surface density map of Sextans, the resulting l.o.s. velocity maps
have amplitudes at least one order of magnitude larger than the observed one. These
outcomes suggest that the satellite must have a DM component to prevent its disruption
during the early phases of infall and maintain relatively low velocities while passing at
the pericentre.

Subsequently, I investigate scenarios where the satellite is embedded in a DM halo, in
which the satellite is intended to resemble a dwarf satellite galaxy. I investigate different
scenarios characterised by varying DM halo mass of the satellite and I demonstrate that a
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satellite with a stellar-to-dynamical mass ratio ∼ 102 can reproduce the ring-like velocity
structure seen in Sextans, once suitable orbital ICs are chosen. The value for the DM
halo allows the satellite to be tidally disrupted only when it reaches the inner regions of
the galaxy, producing a kinematic feature consistent with observations.

The results of this thesis demonstrate that the velocity ring-like structure in Sextans
can indeed be attributed to an accretion event involving a satellite with a DM halo. This
brings evidence to support the hypothesis of hierarchical merging at the scale of DGs.

The work presented in this thesis is expected to be expanded in future research by
exploring three different directions.

Automating the comparison process. The best matching configuration was found
by visually inspecting a wide range of l.o.s., i.e. by rotating the simulated system for many
different combinations of the rotation angles (α, β, γ). However, with this approach, the
procedure results to be extremely time consuming, thus limiting the range of inspected an-
gles. By automating this method, one could achieve a more efficient, less time-consuming,
and objective analysis across multiple simulations. To achieve this, the idea is to employ
the χ2-fit. When comparing the observed velocity map with mock datasets, the χ2 can
be calculated as follows:

χ2 =
k∑

i=1

(vi,sim − vi,obs)2

(∆vi,obs)2 , (6.3)

where k is the total number of stars in the observations, and the index i denotes the
i-th observed star. In this formula, vi,obs is the measured l.o.s. velocity, ∆vi,obs is the
uncertainty on the vi,obs and vi,sim is the l.o.s. velocity of the selected star in the simulation.
Since the χ2 quantifies the difference between the observed and simulated data, minimising
the χ2 value identifies the simulation configuration whose velocity distribution most closely
resembles the observed one.

Varying the stars selection In this thesis, to create the mock dataset from the simu-
lations, I first aligned the centre of mass of the simulated system with the inferred centre
of Sextans. Then, I selected the simulated stars that were closest to the positions of the
observed ones.

A novel approach, based on random selections, could be examined in a future work. In
particular, for each observed star located at a position xi, it can be defined a region around
xi with a size corresponding to the positional uncertainty. Then, within this region, one
could randomly select stars from the simulation and study how the mock l.o.s. velocity
map changes for different random selections of stars within each area.

Reproduce the metallicity structure The observed metallicity distribution in Sex-
tans shows an intriguing pattern that complements the velocity ring (Cicuéndez and
Battaglia, 2018). A future extension of this thesis project aims to jointly replicate the
observed ring-like features in the observed velocity and metallicity spatial distributions.

In practice, this could be achieved by assigning metallicity values to each star in the
simulation a posteriori. These values would be sampled separately for the stars in Sextans
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and those in the satellite, based on the two Gaussian metallicity distributions found by
Cicuéndez and Battaglia (2018). With this approach, mock metallicity maps, to compare
with observations, could be generated without needing to run additional simulations. This
method is justified by the fact that the Sextans stellar population consists entirely of very
old, metal-poor stars, and no detectable gas has been found in the galaxy. Therefore, gas
processes and stellar feedback during the satellite’s accretion are likely negligible, meaning
that the metallicity of each star in the simulation remains constant over time.

These improvements could unveil more intricate details of the system’s dynamical
evolution and provide a more comprehensive understanding of the merger history of the
galaxy.



I

Appendix A

1.1 Eulerian angles
The matrix A describing a rotation by an angle α about the z-axis is given by

A =


cos α − sin α 0
sin α cos α 0

0 0 1

 (A.1)

Similarly, the rotation matrices B and C, for rotations by angle β about the x-axis and
γ about the y-axis, are

B =


1 0 0
0 cos β − sin β

0 sin β cos β

 (A.2)

C =


cos γ 0 sin γ

0 1 0
− sin γ 0 cos γ

 (A.3)

To rotate a vector by the Eulerian angles (α, β, γ), it is necessary to apply the transfor-
mation: 

x′

y′

z′

 = ABC


x

y

z

 , (A.4)

where the product ABC represents the combined rotation by the three Euler angles. Since
matrix multiplication is not commutative, changing the order of the rotations will lead to
a different final orientation.
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