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Abstract

Standard quantum mechanics typically assumes the existence of an external, idealized reference frame to
define states and observables. However, this "absolute" reference frame may be practically inaccessible or
fundamentally unavailable becouse of symmetry principles, for instance general covariance in General Rel-
ativity. In such situations, a consistent quantum mechanical description must rely on relational observables,
where certain subsystems serve as (quantum) reference frames for the others.

Within the framework of quantum reference frames (QRF), this thesis explores the limitations on mea-
surements of spacetime distances, which are necessary to establish a physical reference frame. First, we
investigate how the Heisenberg uncertainty principle imposes a fundamental limitation on Einstein’s syn-
chronization of distant quantum clocks, preventing the attainment of perfect synchronization. Then, we
investigate the interplay between the precision of a quantum clock and its spatial localization, revealing a
fundamental trade-off: improving the precision of time measurements inevitably increases the uncertainty
in the clock’s position, establishing a limitation in how precisely a quantum clock can serve as a reference
for both space and time.
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Chapter 1

Introduction

1.1 Quantum reference frames - overview
The description of any physical system is ultimately tied to a specific reference frame, tipically considered
as an abstract mathematical object that can, in principle, be realized by some concrete physical system.
The prototypical example is an observer in general relativity carrying a clock and three rods along its word-
line, establishing a local coordinate frame. When the absence of an "absolute reference frame" is imposed,
for instance by a symmetry principle, considering their physical realizations - material reference frames
- becomes a necessity. Without an absolute description of the system, we can only rely on a relational
description of its subsystems with respect to one another. When the physical reference frame is a quantum
system, it is referred to as a quantum reference frames. This scenario arises in various areas of physics and
for multiple reasons. Here, we provide some examples.

The most evident examples is General Relativity, where "the absence of an absolute frame" is imposed by
the symmetries of the theory, specfically the invariance under diffeomorphisms. In this context, space-time
coordinates have no intrinsic physical meaning, as they are not directly observable. This idea is captured
in Einstein’s famous "hole argument", which we briefly review in Appendix (5.A). One way to give phys-
ical meaning to space-time events is to define them via "space-time coincidences", which are ultimately
relations between physical systems [1]. Therefore, even in the absence of a fixed background, we can still
formally define physical observables by treating a physical system as a reference frame, which itself is a
dynamical system obeying the equations of the theory [2], [3]. Quantum reference frames thus become
important in any non-perturbative approach to quantum gravity, where background independence is taken
as fundamental principle to start with [4],[5],[1].

A different context where this operational approach to reference frames is relevant is Quantum Informa-
tion [6],[7]. Here the absence of an external reference system is a practical concern: one must be able to
formulate communication tasks between parties that do not share a common reference frames. The pro-
totypical example is a communication of a classical bit between two parties using a spin- 12 system: Alice
prepares the system in the state |z,±⟩ by a projective measurement along the z axis of her local Cartesian
frame and then sends it to Bob. If Bob has no access to the same Cartesian frame, he cannot perform the
same projective measurement, causing the communication task to fail. A way circumvent the lack of an
external, classical frame is to use another quantum system as a reference: in this scenario, one can transmit
the relational information between the two systems, which is frame invariant, meaning it is defined inde-
pendently of any external frame. Within this context, quantum reference frames have been used to address
issues related to superselection rules in quantum mechanics—postulated rules that prohibit the preparation
of quantum states exhibiting coherence between eigenstates of certain observables. For instance, a super-
selection rule (SSR) for electric charge asserts the impossibility of preparing a coherent superposition of
different charge eigenstates. It has been recognized [8], [7] that these rules are mathematically equivalent
to the lack of a reference frame for the group generated by the observables (at least for compact groups, as
U(1) for the charge), indicating that in principle all SSRs may be "lifted", once a proper reference frame
for the degree of freedom in question is accessible. The common feature of all these applications in Quan-
tum Information is that quantum reference frames, or reference frames in general, serve as a resource to
overcome physical restrictions (namely the lack of a frame, or equivalently a SSR), similarly to how entan-
glement is a resource under the restriction of LOCC (Local Operations and Classical Communications).
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Combining these two different approaches, QRF have been used to address foundational issues aimed at
removing the background structure inherent in standard quantum mechanics [9], [10]. On the one hand,
the motivation stems from General Relativity and the principle of covariance. On the other hand, these ex-
ternal structures require the availability of classical reference frames, which imply a significant amount of
resources that, from an operational standpoint, cannot be assumed. Additionally, one might invoke the "uni-
versality of quantum theory": since reference frames are physical systems, they should ultimately be subject
to the laws of quantum theory. The fundamental question then becomes how the description of quantum
systems ¯ and ultimately of spacetime itself − changes when the resources are limited to other quantum
systems. Given that reference frames are such a fundamental concept in General Relativity, closely con-
nected to principles like the equivalence principle and general covariance, quantum reference frames have
been proposed to extend these principles to quantum theory [11], [9],[10],[12],[13]. The aim is not to find a
theory of quantum gravity, but rather to explore the incompatibility between General Relativity and Quan-
tum Mechanics from a fundamental perspective, seeking to understand which principles can theoretically
coexist and which cannot.

More generally, an operational approach to reference frames has always been a tool for addressing problems
in the foundations of physics. The prototypical example is Einstein’s investigation of the concept of time
using physical clocks, particularly "light clocks," which led to the development of Special Relativity. After
the development of General Relativity on one hand, and quantum mechanics on the other, this operational
viewpoint has been adopted to explore the limits of measurability of spacetime intervals and, ultimately,
the definition of a physical reference frame. It is in this context that the concept of a quantum clock first
appeared, in the famous paper by Salecker and Wigner.[14]. The motivation was to study how the classi-
cal notion of reference frames ¯ and ultimately of spacetime ¯ is modified by quantum effects. This work
inspired further investigations on the limitations to the measurability of spacetime distances, particularly in
the quantum gravity community. For instance, when the gravitational interaction is included in the analysis,
the Planck length emerges as a fundamental limitation to spacetime distances [15], which seems to be a
model-independent feature of quantum gravity.

Quantum clocks are fundamental tools for investigating the concept of time in quantum mechanics, which
is non-trivial even in a non-relativistic theory. The primary challenge is finding a theoretical representation
for time measurements, as in general, physical 1 hamiltonians do not admit the existence of a self-adjoint
time operator canonically conjugate to them, as first noted by Pauli. The problem becomes even more
fundamental when attempting to canonically quantize a generally covariant theory, such as relativistic me-
chanics or, more importantly, General Relativity. In fact, the hamiltonian of a generally covariant theory is
constrained to vanish in the absence of boundaries, leading to the famous Wheeler-de-Witt equation [1],[5].
As a consequence, in the quantum theory, it appears as if one obtains a ‘frozen formalism’ where physical
states (of the spatial geometry and matter) do not evolve in time. The reason is that an external background
time is not defined, and time evolution must be extracted relationally, which involves selecting some quan-
tized degrees of freedom −a quantum clock − to serve as an internal (quantum) reference frame for time,
relative to which the remaining quantum degrees of freedom evolve [3], [16]. Even though a self-adjoint
time operator is not physical, time measurements can still be represented as a Positive Operator Valued
Measure (POVM) [17], which generalize the notion of quantum observable.

Quantum clocks and quantum reference frames have also been utilized to study phenomena at the interface
between General Relativity and quantum mechanics in experimentally accessible regimes2. An exam-
ple, is the theoretical study of quantum states of gravitational-source-masses, which are expected to give
some informations about the quantum nature of gravity [11], [18]. The motivation for these studies comes
from numerous proposals for tabletop experiments to probe the phenomenology of such objects[19],[20],
in particular the entanglement induced by the gravitational field. The extension of quantum optomechanics
(quantum optical control of solid-state mechanical devices) to levitated solids has opened up new ways of
coherently controlling the motion of massive quantum objects in engineered potential landscapes[21], [22],
thereby providing opportunities to test these phenomena experimentally. Another example is the study
of quantum clocks within the context of General and Special Relativity, which has led to the prediction
of novel phenomena involving time dilation in quantum systems [23], [24], and subsequent proposals for
tabletop experiments to test these predictions [25].

1physical here means that the spectum should be bounded from below
2in contrast to many predicted phenomena in the high energy regime of QFT in curved ST, such as the Hawking effect, which

seems to be far beyond our current experimental capabilities
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For the sake of completeness, it is worth briefly mentioning the growing importance of quantum reference
frames (QRFs) in algebraic approaches to Quantum Field Theory (AQFT) in curved spacetime (which also
impacts perturbative approaches to quantum gravity) and in the theory of measurements in QFT. Notably,
recent works [26],[27] have demonstrated that properly accounting for the role of a dynamical material
frame (also referred to as an "observer") can promote the von Neumann algebra of observables in a given
spacetime subregion from Type III to Type II. This advancement allows for the mathematically precise def-
inition of entanglement entropy, a fundamental quantity in studying the connections between geometry and
information in quantum gravity. Motivated by these findings, several subsequent studies from different re-
search communities [28],[29] have aimed to further mathematically generalize and operationally/physically
understand this topic. More generally, QRF seems to be a fundamental concept towards the developement
of a theory of measurements in QFT [28], [30],[31], independently to the presence of constraints given by
symmetry principles (such as spacetime symmetries).

1.2 Outline of the thesis
This thesis begins by introducing two fundamental concepts necessary for understanding quantum reference
frames (QRFs) and quantum clocks: decoherence in quantum mechanics and covariant POVMs, which gen-
eralize the notion of quantum observables beyond self-adjoint operators.

In chapter (3) we introduce the formalism of QRFs. Specifically, we adopt the approach first developed in
the context of quantum information theory [7],[32], where a QRF is more naturally understood as a resource
to overcome the lack of an external reference frame, since it allows to describe quantum systems in terms
of relational observables. After that, following [17], we introduce the formalism of quantum clocks, which
are ultimately QRFs for the group of time translations. In particular, we will show how the introduction of a
covariant POVM allows to consistently describe time as an observable also for real quantum system, where
the hamiltonian is bounded from below. Finally, we present different models of quantum clocks that will be
employed thoughout the thesis.

In chapter (4) we introduce the formalism of quantum clocks in general relativity, following [24]. Firstly,
we show how a classical composite particle is a physical realization of an "ideal clock" in GR, meaning
that its internal dynamics evolves with respect to the proper time determined by the background metric,
as the "clock hypothesis" requires. The analysis is then extended to quantum clocks, and we discuss how
this formalism has been used to predict a novel phenomenon at the intersection of quantum mechanics and
general relativity: a universal decoherence mechanism due to time dilation in composite quantum systems.

Chapter (5) contains the original contributions of the thesis. In particular, we apply the theory QRFs and
of quantum clocks in GR developed in the previous chapters in the context of foundations of physics, in
particular to investigate the limitations on ST measurements in quantum mechanics, in the spirit of the early
work by Salecker and Wigner [14].

In section (5.1), we investigate the limitations to the synchronization of distant clocks by means of Ein-
stein’s synchronization protocol, showing that a perfect synchronization of quantum clocks seems to be in
fundamentally unachievable in the quantum regime.

In section (5.2), we investigate how the precision of time measurements in quantum clocks affects their
localization in space and vice versa. We show that, considering the most natural choice of states, increasing
the precision in time of a quantum clock leads to higher uncertainty in its spatial localization. Using the
framework of QRFs developed in chapter (3), we explore the consequencies of this trade-off in defining
both space and time coordinates of another quantum system. In particular, we show that the invariant
position, which is the physical quantity we can use to describe a quantum system in the absence of an
external reference frame, can never be sharply defined. The quantitative results obtained in this work are
based on a specific model of the quantum clock. While this might be viewed as a partial result, it provides
valuable insights into the interplay between time and space measurements in quantum systems and lays the
groundwork for future investigations into more general principles.
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1.3 Notation and conventions
States in a Hilbert space |ψ⟩ ∈ H are represented using ket notation.

Operators O acting on H are denoted by capital letters, while the corresponding lowercase letters represent
their eigenvalues. In Chapter (4), capital letters are also used for the classical hamiltonian (H) and La-
grangian (L). Given an operator O, the calligraphic font O represents the corresponding "superoperator,"
which maps operators to operators, defined as O[·] = O ·O†.

For a group G, any representation acting on a Hilbert space H is denoted by U(g), where g ∈ G. Elements
of a covariant POVM with respect to the group G are denoted by E(g), where g ∈ G. The superscript
"tilde" (̃·) is used to indicate G-invariant quantities, such as operators Õ that satisfy U(g)ÕU(g)† = Õ.

When describing composite systems, particularly in Chapter (5.2), internal degrees of freedom are denoted
by the subscript "c" (standing for "clock"), while kinematical degrees of freedom are denoted by the sub-
script "r" (standing for "rod" or "ruler"). For instance, the corresponding Hilbert spaces are denoted by Hc

and Hr, and the quantum states by ρr and ρc.
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Chapter 2

Preliminary tools from Quantum
Information Theory

In this chapter, we provide a brief introduction to some fundamental concepts from Quantum Information
Theory that will be used throughout the thesis. Specifically, the first section discusses the decoherence
mechanism, which is essential both for the theory of quantum reference frames (Chapter 3) and for under-
standing the time dilation effects in quantum clocks (Chapter 4). The second section offers a short review of
the theory of measurements in quantum mechanics to introduce the concept of covariant POVMs, a critical
tool for the theory of QRFs and the problem of time in quantum theory.

These sections serve as a basic introduction to the topics. For a more detailed and wide treatment of
decoherence in quantum theory we refer to [33], while for POVM and covariant POVMs to [34], [35], [36]
and [37].

2.1 Decoherence
Quantum coherence refers to a system’s ability to maintain its quantum state and produce interference ef-
fects. Decoherence, on the other hand, describes the process by which quantum interference is suppressed
due to entanglement with an environment. Essentially, when a quantum system interacts with its envi-
ronment, its quantum coherence becomes "delocalized" into the entangled system-environment state. This
effectively removes the coherence from our observations unless we can access the entire entangled state.

2.1.1 Interference effects and quantum coherence
Coherence between quantum states in superposition allows them to interfere, and this coherence can be
quantified by visibility in interference experiments. Consider a Mach-Zehnder interferometer composed of
two beam splitters and two mirrors (as shown in Fig. 2.A.1). The first beam splitter puts the incoming beam
in a general superposition of states |γ+⟩ , |γ−⟩, corresponding to the upper and lower paths, respectively.
These can be viewed as forming an orthonormal basis of a two-dimensional Hilbert space:

|ψ⟩ = a |γ+⟩+ beiϕ |γ−⟩ (2.1)

where ϕ ∈ [0, 2π] and a, b ∈ R s.t. a2+ b2 = 1. The second beam splitter divides the incoming beam into a
transmitted and a reflected part that have the same amplitude and a phase difference of π2 . 1 A brief review
of how a generic beam splitter works is presented in appendix 2.A.

1The phase shift depends in general on the material. Here we adopt the conventional choice of a beam splitter with symmetrical
phase shifts of π/2
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Figure 2.1: A Mach-Zender interferometer consists of two beam splitters and two detectors D±. The
incoming wave is split into a superposition of the two paths |γ±⟩ and then recombined. The interference
pattern is then observed performing a measurement with both detectors.

Given this setup, the states right after the second beam splitter {|D+⟩ , |D−⟩}, that correspond to the two
possible detected states, can be expressed in terms of this basis as :

{
|D+⟩ = 1√

2

(
|γ+⟩+ i |γ−⟩

)
|D−⟩ = 1√

2

(
|γ−⟩+ i |γ+⟩

) (2.2)

where i = ei
π
2 is due to the phase shift. The probability of detecting the system in either D+ or D− gives

us the interference pattern:

pD± = | ⟨ψ|D±⟩ |2 =
1

2
|
(
a± ibeiϕ

)
|2 =

1

2
± ab sinϕ (2.3)

The visibility quantifies the coherence between the states |γ±⟩ and is defined as:

V =
max(pD±)−min(pD±)

max(pD±) +min(pD±)
= 2ab (2.4)

We can see that the visibility measures the contrast of the interference pattern (2.3) and is directly related
to the magnitude of the off-diagonal terms of the system’s density matrix in the |γ±⟩ basis:

ρψ =

(
a2 abeiϕ

abe−iϕ b2

)
(2.5)

This holds for a mixed states as well. In fact, considering a potentially mixed state, described by a positive
semi-definite density matrix of the form

ρ =

(
a2 ceiϕ

c∗e−iϕ b2

)
det(ρ) = a2b2 − |c|2 ≥ 0, (2.6)

the probability to observe the system in a superposition D+ or D− is

pD± = tr
[
ρPD±

]
= tr

[(
a2 ceiϕ

c∗e−iϕ b2

)
1

2

(
1 ±i
∓i 1

)]
=

1

2
± |c| sin(ϕ+ α) (2.7)

where PD± are the projectors onto the basis |D±⟩. The visibility, as defined above, reads

V = 2|c| (2.8)

The visibility can also be interpreted as a physical quantity complementary to the predictability of the
path taken by the system. If visibility quantifies the coherence of the system, predictability quantifies the
which-way information (or, more generally, the information about which state the system is in). Consider a
scenario where a measurement is performed on the system before the two amplitudes are recombined. The
probability of observing the system in either of the two paths is given by:
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p+ = tr [ρP+] = a2 p− = tr [ρP−] = b2 (2.9)

where P± is the projector onto the states |γ±⟩. The predictability is defined as the difference between these
two probabilities

P = |p+ − p−| = |a2 − b2| (2.10)

The complementarity between visibility and predictability is captured by the following relation

P2 + V2 =
(
a2 + b2

)2 − 4
(
a2b2 − |c|2

)
= 1− 4 det(ρ) ≤ 1 (2.11)

where the disequality follows from the positivity of the determinant (2.6). In the case of pure states, where
det (ρψ) = 0, it becomes an equality

P2 + V2 = 1 (2.12)

It states that non-zero predictability of the path that has been taken by the system, or "which-way-information",
necessarily results in a non maximal visibility of the interference pattern. Viceversa, non-maximal which-
way-information, guarantees the appearence of an interference pattern.

In simpler terms, when any information about the path is available, the visibility decreases, reflecting a loss
of coherence in the system.

2.1.2 Which-path detectors and decoherence
It’s important to note that the which-way information doesn’t need to be stored directly in the system’s
degrees of freedom. In most cases, the system interacts with its environment, and the information about
the system’s state is shared between the system and the environment. This shared which-way information
becomes potentially accessible via local measurements on the environment, which acts as a "which-way
detector," without necessarily disturbing the system itself. The critical point is that even if this information
is not accessed, the visibility will decrease as if it were.

This outcome can be understood through a simple analogy. Suppose Alice and Bob share a pair of en-
tangled systems. According to the quantum mechanical no-signaling theorem, the probabilities for Bob’s
measurement results are unaffected by whether or not Alice chooses to perform a measurement on her
system. Formally, this follows from the fact that all accessible information about a subsystem is entirely
described by its reduced density matrix, which remains unchanged if local measurements are performed
on other subsystems. In a similar fashion, the pattern of detections on a screen cannot distinguish between
mere entanglement with other systems and actual use of those systems to detect which path was taken at
the slits.

Environment in a pure state

To see this explicitly we consider the symplest case in which in addition to the system of interest |ψ⟩ we
have another system described by the (normalized) state |w⟩, the "which-way-detector" and initially they
are uncorrelated:

|Ψ⟩sw = |ψ0⟩s ⊗ |w0⟩w , |ψ0⟩s = a |γ+⟩s + beiϕ |γ−⟩s (2.13)

Suppose now that the interaction between the two depends on the path γ± that is taken. For instance we
consider a unitary evolution of the whole system under a coupling-hamiltonian of the form:

Hsw = Hs ⊗Hw (2.14)

such that Hs |γ±⟩s = ϵ± |γ±⟩s. The initial separable state evolves into an entangled state
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|Ψ(t)⟩sw = a |γ+⟩s e
−itϵ+Hw |w0⟩w + beiϕ |γ−⟩S e

−itϵ−Hw |w0⟩w (2.15)

:= a |γ+⟩s |w+⟩w + beiϕ |γ−⟩s |w−⟩w (2.16)

Suppose now we are only able to perform local measurements on our system, while we have no access to
the "which-way-detector" |w⟩w. Formally the system is described by the reduced density matrix

ρs = trw [|Ψ⟩⟨Ψ|sw] =
(

a2 abeiϕ ⟨w+|w−⟩w
abe−iϕ ⟨w−|w+⟩w b2

)
(2.17)

The interference pattern (2.7) is given by

pD± =
1

2
± ab| ⟨w+|w−⟩w | sin (ϕ+ α) (2.18)

where α is the contribution to the phase due to the environment

⟨w+|w−⟩w = | ⟨w+|w−⟩w |eiα (2.19)

The visibility (4.56) of the interference pattern is

V = 2ab | ⟨w+|w−⟩w | (2.20)

so, ultimaltely, it depends on the distinguishability between the "path-detector" states

D =
√
1− | ⟨w+|w−⟩w |2 (2.21)

We can consider the two extreme cases:

• if the two states are orthogonal ⟨w+|w−⟩ = 0 , one could in principle extract the full information
about which-path has been taken by performing a local measurement in the {|w+⟩ , |w−⟩} basis.
Correspondingly the state |Ψ⟩ is maximally entangled and the reduced density matrix is maximally
mixed.

• On the contrary, if the two states {|w+⟩ = |w−⟩ = |w0⟩} are indistinguishable, performing a local
measurement cannot give any information about the path. Correspondingly the state is separable and
the reduced density matrix is pure 2.

The visibility of the reduced state of the system and the distinguishability between the entangled path de-
tector’s states resulting from the interaction are complementary quantities. In fact we can write

V2 +D2 = 1− | ⟨w+|w−⟩ |2(1− 4a2b2) = 1− (1−D)2P2 ≤ 1 (2.22)

where P is the predictability (2.10). The above result is the generalization of (2.11), which in fact is
recovered in the case D = 0, i.e. when the system |w⟩ has no information about the path. In the case
P = 0 (for instance when the centre of mass is in a 50:50 superposition of the two paths) (2.22) becomes
an equality

V2 +D2 = 1 (2.23)

which holds only for pure states of the joint system. The conclusion is that quantum mechanics imposes
a complementarity principle between the possibility of observing an interference pattern, quantified by the
visibility, and the "which-way-information" that is potentially available from any other degree of freedom,
regardless if a measurement is actually performed or not.

2the purity of a state is quantified by tr
[
ρ2

]
≤ 1 where the equality holds for pure states.
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Environment in a mixed state

In appendix (2.11) we show that for a which path detector in a general mixed state, even if P = 0, the
following disequality holds:

V2 +D2 ≤ 1 (2.24)

Even if no which-way information is available (i.e., D = 0), the visibility may still be less than 1 due to
the mixed nature of the environment. For instance, consider an environment initially in a maximally mixed
state:

ρsw = ρs ⊗ ρw, ρw =
1

2
(|w1⟩⟨w1|+ |w2⟩⟨w2|) (2.25)

where the sysytem is in the usual coherent superposition of paths ρs = |ψ0⟩⟨ψ0|. Now, consider the inter-
action hamiltonian (2.14) with

Hw |wi⟩ = wi |wi⟩ , i = 1, 2 (2.26)

The initial separable state evolves into

ρsw(t) =
1

2

∑
i,j=±

|γi⟩⟨γj |
1

2

(
e−

i
ℏ t(ϵi−ϵj)w1 |w1⟩⟨w1|+ e−

i
ℏ t(ϵi−ϵj)w2 |w2⟩⟨w2|

)
(2.27)

Thus, the reduced density matrix of the system reads

ρs(t) =
1

2

∑
i,j=±

|γi⟩⟨γj |
1

2

(
e−

i
ℏ t(ϵi−ϵj)w1 + e−

i
ℏ t(ϵi−ϵj)w2

)
(2.28)

This shows that the off-diagonal terms acquire a phase that is the average of the phases corresponding to
the different states in the mixture. In other words, when the environment is in a mixed state, it acts as a
classical source of noise, which can cause a reduction in visibility:

V = 2 |ρ(t)i ̸=j | =
∣∣∣∣12 (e− i

ℏ t(ϵi−ϵj)w1 + e−
i
ℏ t(ϵi−ϵj)w2

)∣∣∣∣ ≤ 1 (2.29)

Large environments and irreversibility

An important observation is that, in most cases, the environment is composed of a large number of mi-
croscopic constituents, which results in the environment having many degrees of freedom. For example, a
quantum particle may interact with air molecules or the photons of thermal radiation.

Firstly, let’s consider a pure state in the form

|ω0⟩ =
⊗
j

|w0,j⟩j , j = 1, ..., N (2.30)

where N is the number of constituents. In this case, the visibility of the system would be proportional to

V ∼ |⟨w+|w−⟩|2 =

N∏
j=1

∣∣∣⟨w+,j |w−,j⟩j
∣∣∣2 (2.31)

Thus, even if the single constituents cannot carry enough which path information to give decoherence , i.e.
their states are almost indistinguishable ⟨w+,j |w−,j⟩j ≃ 1, the presence of a huge number of constituents
N ≫ 1 interacting with the system always leads to decoherence.
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Similarly, we can generalize the result we found for the simplest mixed state with only two degrees of
dreedom (2.28) to a large environment with N degrees of freedom. For simplicity, we consider equally
spaced energies wn = nw, so that

ρs(t) =
1

2

∑
i,j=±

|γi⟩⟨γj |
1

N

N∑
n=1

e−
i
ℏ t(ϵi−ϵj)wn (2.32)

So, in the limit of a very largeN >> 1, the phases sum up to 0, resulting in a full decoherence of the system.

The only way to restore coherence would be to access all the degrees of freedom of the environment, which
is usually impossible. Therefore, in most cases, decoherence is irreversible for all practical purposes.

2.1.3 Environment-induced superselection
From the previous analysis, it is clear that the basis in which the system decoheres is determined by
the interaction (2.14) with the environment, or more generally, by the unitary evolution of the total sys-
tem+environment state. Specifically, given a total hamiltonian:

H = Hs +He +Hse (2.33)

where Hs and He govern the internal dynamics of the system and the environment, respectively, the basis
that undergoes decoherence is given by the eigenstates of the part of the hamiltonian that acts on the system.
These states are called "pointer states".

To understand this in practice, let’s consider two scenarios.

Strong interaction - H ≈ Hse

Consider a case where the energy scales associated with the system-environment interaction hamiltonian
Hse are much larger than those of the self-hamiltonians Hs and He, so that the interaction dominates the
system’s evolution (H ≈ Hse). In this scenario, the pointer states are the eigenstates of the interaction
hamiltonian:

Hse (|si⟩s ⊗ |e⟩) = |si⟩s ⊗ (Hsi
e |e⟩) (2.34)

where Hsi
e ≡ Is ⊗ Hsi

e acts only on the environment. In fact, if the system before the interaction is in a
generic superposition of such states

|ψ(0)⟩se =

(∑
i

ci |si⟩s

)
⊗ |e0⟩e , (2.35)

after the interaction it becomes an entangled state with the environment

|ψ(t)⟩se = e−
i
ℏHset |ψ(0)⟩se =

∑
i

ci |si⟩s ⊗ |ei(t)⟩ , |ei⟩ = e−
i
ℏH

si
e t |e0⟩e (2.36)

Decoherence implies that the interference effects given by the coherent superposition of states of the basis
{|si⟩s} cannot be (fully) observed by only measuring the system.

In general, it is always possible to write an arbitrary interaction hamiltonian Hse in form of a diagonal
decomposition of (unitary but not necessarily Hermitian) system and environment operators Sα and Eα

Hse =
∑
α

Sα ⊗ Eα. (2.37)

It follows that the pointer states are the non-degenerate (simultaneous) eigenstates of all operators Sα acting
on the system, such that:
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Sα |si⟩s = λiα |si⟩s , ∀i ̸= j : λiα ̸= λjα (2.38)

In this case any superposition of these states will get entangled with the environment. In fact, we see that
(2.36) holds, with

|ei(t)⟩ = e−
i
ℏ t

∑
α λ

i
αEα |e0⟩e (2.39)

Conversely, any set of degenerate eigenstates will generate a "decoherence-free subspace". In fact, given
such set {|sk⟩s}

Sα |sk⟩s = λα |sk⟩s , ∀k (2.40)

then the subspace generated by this set is immune to decoherence, since a superpostition of these states
does not get entangled with the environment

(∑
k

ck |sk⟩s

)
⊗ |e0⟩e →

(∑
k

ck |sk⟩s

)
⊗ |e(t)⟩e (2.41)

where

|e(t)⟩e = e−
i
ℏ t

∑
α λαEα |e0⟩e . (2.42)

Usually, the interaction term is just a tensor product of two observables. A particularly important example
is the position operator Xs

Hse = Xs ⊗ Ee, (2.43)

where Ee is some operator actin on the environment’s Hilbert space. In this case, the system undergoes
decoherence in the position basis3. Since the force laws sorrounding tipycally depend on some power of
the distance x−n, this case in particularly important and it explains why we are often not able to observe
spatial superpositions.

In general, the vast space of possible quantum-mechanical superpositions is reduced so much because the
laws governing physical interactions depend on only a few physical quantities (position, momentum, charge,
and the like). The appearance of classicality is therefore grounded in the structure of the physical laws gov-
erning the system–environment interactions. This process is called "environment-induced superselection".

Weak interaction - H ≈ Hs

The opposite scenario arises when the scale of energies of the system’s hamiltonian Hs is much higher
than the scale of energies charachterizing the interaction H ≈ Hs. In this case the pointer states are the
eigenstates of Hs, so the observables that undergo decoherence are the constants of motion.

Notice that, even if the pointer-states are fully determined by the self- hamiltonian, since it completely
dominates the evolution of the system, the environment plays the crucial role of continuously monitoring
those states, which leads to decoherence.

In the case of nondegeneracy4, the "pointer-observable" will be simply the energy of the system, thus
leading to the environment-induced superselection of energy eigenstates for the system (i.e., eigenstates of
the self-hamiltonian of the system).

3Since individual eigenstates of the position operator are not proper quantum states of physical objects, in practice one considers
as pointer states narrow position-space wave packets

4As we highlighted above in eq. (2.41), any set of degenerate eigenstates of the hamiltonian would give rise to decoherence-free
subspaces.
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Intermediary regime

When the evolution of the system is governed by Hse and Hs in roughly equal strengths, the resulting pre-
ferred states will represent a compromise between the first two cases. For instance, in the frequently studied
model of quantum Brownian motion [33] the interaction hamiltonian Hse ∼ Xs describes monitoring of
the position of the system. However, the intrinsic dynamics induced by Hs ∼ P 2

s describes monitoring
of the momentum. This combined influence of Hse and Hs results in the emergence of preferred states
localized in phase space, i.e., in both position and momentum.

In general, the pointer states, which are the states that undergo decoherence, are the states of the system that
are most robust under the evolution generated by the total hamiltonian of the system and the environment.

2.1.4 Summary
In conclusion, decoherence is a process by which quantum superpositions are suppressed due to interactions
with the environment, resulting in the emergence of classical behavior.

A key concept to understand this process is that of entangled states. In quantum theory, while interac-
tions are always local, the states resulting from the interactions can be non-local, meaning that the physical
properties of a subsystem are now at least partially encapsulated in the non-local quantum correlations and
therefore cannot be accessed only by local observations on the subsystem. This is a crucial difference with
respect to classical mechanics, where the actual "nature" of the system is not modified by external interac-
tions (as far as the perturbations on the system are small enough).

The specific states that undergo decoherence, called pointer states, are determined by the structure of the
system-environment interaction and the dynamics of the system itself. This mechanism leads to environment-
induced superselection, where certain observables (e.g., position, energy) become "classical" due to their
robustness under the system’s evolution in the presence of environmental monitoring.

The study of decoherence reveals why, in practice, we observe classical phenomena at macroscopic scales
and how quantum information becomes effectively inaccessible once it is delocalized across the system-
environment entanglement.

2.2 Covariant POVMs
The role of a quantum measurement on a state ρ(α), where α is a parameter of interest, is to provide a
set measurement outcomes (χ1, ..., χN ) from which one can infere α via classical methods of parameter
estimation. Quantum mechanics then imposes fundamental restrictions which involve the parameter α and
the operatorA that generates the displacement of that parameter, which are known as uncertainty principles.

The standard example is the parameter x which labels the elements of the group of 1D translations and the
generator of the group P , which is the self-adjoint momentum operator. In this case, to the parameter x
we can associate a self-adjoint operator X and the fundamental limitation imposed by QM is the standard
uncertainty principle σXr

σPr
≥ ℏ/2, which follows from the commutation relations between the two oper-

ators [X,P ] = iℏ.

However, a self-adjoint operator associated to the parameter of interest does not always exist. An example
is the time t which parametrizes the group of time translations generated by the hamiltonian H . It’s well
known [38] that there cannot exist a self-adjoint operator T which is canonically conjugate to H (meaning
that [T,H] = iℏ), as it happens for position and momentum. In fact, Stone’s theorem would imply the
hamiltonian to be unbounded, and we know that a physical hamiltonians should be at least bounded from
below. Similarly, there exist no self-adjoint operator associated to the phase of a single mode of radiation.

The question becomes then how to represent observables associated to parameters in a more general way
and how to optimize them with respect to the fundamental bounds imposed by quantum mechanics. In the
case there exists no self-adjoint operator associated to the parameter of interest, these fundamental bounds
can be phrased in terms of generalized- or parameter-based uncertainty principles (see, for instance [36]
and [37]). At a qualitative level, they give the limits on the precision to which a parameter - e.g. the elapsed
time - may be determined via arbitrary data analysis of arbitrary measurements on N identically preparred
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quantum systems.

2.2.1 Projective measurements
If a self-adjoint operator X exists, its eigenvectors form an orthonormal basis for the Hilbert space, and
each possible outcome x of that measurement corresponds to one of the vectors |x⟩ comprising the basis.
Formally, a measurement associated to the parameter x can be described by means of a Projective Valued
Measure (PVM), which is defined as follows: let ((X),B(X)) be a measurable space, meaning that X is a
non-empty set, which corresponds to the set of possible results x, and B(X) the Borel σ-algebra of subsets
of X. Further, let B(H) denote the set of bounded operators on H. A PVM is a map from the (measurable)
space of possible results to the space of operators P : B(X) → B(H) is defined through the following three
measure properties :

1. P (X ) is an orthogonal projection for all X ⊂ X

2. P (X) = I and P (∅) = 0

3. σ-additivity: E(∪iXi) =
∑
iE(Xi) for any sequence {Xi} of disjoint sets in B(X)

4. P (X1 ∩ X2) = P (X1)P (X2) for all X1,X2 ∈ X

The second and the fourth properties show that if X1 and X2 are disjoint, the images P (X1)P (X2) =
P (X1 ∩ X1) = P (∅) = 0 are orthogonal to each other.

The self adjoint operator X admits a spectral decomposition in terms of orthogonal projectors P (x)

X =

∫
P (dx) x :=

∫
dx P (x) x (2.44)

where each P (x) projects onto the the eigenspace associated to eigenvector |x⟩ with eigenvalue x. The
measurement postulate of QM for PVM states that

1. Given a state ρ, and a PVM P , the probability to obtain an outcome x ∈ B(X) is given by the Born
rule

p(x|ρ) = tr[P (x)ρ] (2.45)

Notice that the normalization condition (2.) ensures it is a normalized probability distribution, i.e.∫
dxp(x|ρ) = 1.

2. Given the outcome x, the post-measurement state is

ρ′x =
P (x)ρP (x)

p(x|ρ)
(2.46)

An important property of PVM is their repeatability. In fact, if we perform the same measurement on the
post-measurement state (2.46) we get the same outcome with probability 1

p(x|ρ′) = tr[P (x)ρ′] =
tr[P (x)ρ]

p(x|ρ)
= 1 (2.47)

and the state is unchanged

ρ′x → P (x)ρ′P (x)

p(x|ρ′)
= ρ′ (2.48)
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2.2.2 POVMs
As mentioned earlier, self-adjoint operators associated with certain parameters may not exist. Moreover,
many practical measurements are not repeatable, such as measuring the position of a photon using a silvered
screen, which destroys the photon in the process. In such cases, a more general framework for measurement
is needed.

The most general way to describe a measurement is by a Positive Operator Valued Measure (POVM), which
formally is defined as follows: let ((X),B(X)) be a measurable space, meaning that X is a non-empty set,
which corresponds to the set of possible results, and B(X) the Borel σ-algebra of subsets of X. Further,
let B(H) denote the set of bounded operators on H. A POVM E : B(X) → B(H) is defined through the
following three measure properties :

1. Positivity (hence self-adjointness): E(X ) ≥ 0 ∀X ∈ B(X)

2. Normalization: E(X) = Id

3. σ-additivity: E(∪iXi) =
∑
iE(Xi) for any sequence {Xi} of disjoint sets in B(X)

Essentially, the requirement of P (X ) being orthogonal projectors is weakened toE(X ) being mere bounded
positive operators. Thus, for POVM we still have Born’s rule to describe measurement statistics: given a
state ρ ∈ B(H) and a POVM with elements E(x), the probability associated to a given outcome x is

p(x|ρ) = tr[E(x)ρ] (2.49)

Then, the normalization property (2.) still guarantees that p(x|ρ) = tr[E(x)ρ] is a normalized probability
distribution

∫
dgp(x|ρ) = 1.

However, it there’s no rule describing the post-measurement of the system. Hence POVMs can be viewed
as a special case of the projective measurement formalism (PVMs), providing the symplest means by which
one can study general measurement statistics, without the necessity for knowing the post-measurement state.

Example 2.2.1. Unsharp position measurement A generalization of the PVM measurement P (x) =
|x⟩⟨x| associated to the position operator X is an unsharp measurement of position. One can consider a
more general set of POVM elements corresponding to a convolution of the projectors P (x) with some
confidence measure µ

Eµ(x) =

∫
dµ(q)P (x+ q). (2.50)

For instance, one can choose a gaussian measure parametrized by the width δ:

Eδ(x) =

∫
dq

e−q
2/δ2

√
πδ

P (x+ q). (2.51)

Given a gaussian pure state with centre x = 0 and width σ

ρ = |eσ⟩⟨eσ| , |eσ⟩ =
∫
dx

e−x
2/2σ2

π
1
4
√
σ

|x⟩ , (2.52)

the Born probability associated to the measurement x reads

p(x|ρ) = tr[Eδ(x)ρ] =
e−x

2/(σ2+δ2)

√
π
√
σ2 + δ2

. (2.53)
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2.2.3 Generalized measurement
Extending axiom (2.55) about the post-measurement states to POVMs is problematic. It is not possible
to establish, in practice, in which state the system is after a measurement whose reading is x ∈ X if
the observable is represented by a POVM E(x) ∈ B(H), and without further information. The extra
data is assigned by decomposing each POVM element into generally non positive "measuring operators"
M(x) ∈ B(H)

E(X ) =M(X )†M(X ) (2.54)

If so, the post-measurement state, if x is the outcome, is supposed to look like

ρ′x =
M(x)ρM †(x)

p(x|ρ)
(2.55)

The set M(X ), X ⊂ X is called generalized measurement, or weak measurement. The case of PVM
is recovered when E(X ) = M(X ) = P (X ). In the general case, since M(X ) are not required to be
positive, there are an infinite number of solutions to (2.54). In fact, given M(X ) =

√
E(X ), then any

M ′(X ) := VM(X ) with V ∈ B(H) a unitary operator (such that V † = V −1) is also a valid measuring
operator. From the physical viewpoint, this implies that there are an infinite many experimental apparatuses
that give the same probabilities for the outcomes.

One can show that performing a weak measurement on a system Hs is equivalent to a unitary evolution of
a larger system H = Hs ⊗ He and a subsequent projective meauserement on He, that can be thought as
the environment. Thus, weak measurement are the right framework to use when describing an open system
which does not undergo a unitary evolution and a measurement which is not repeatable, hence not projective.

Example 2.2.2. Unsharp position weak-measurement Consider the previous example of an unsharp po-
sition measurement (2.2.1): we can decompose it into measuring operators Mδ(x) ∈ B(H) defined as
M δ(x) =

√
E(x)

Mδ(x) =

∫
dq

e−q
2/2δ2

π
1
4

√
δ
P (x+ q) (2.56)

Now, given the same pure gaussian state ρ (2.2.1), the Born probability associated to the measurement x
reads

p(x|ρ) = tr[M δ†
xM

δx ρ] =
e−x

2/(σ2+δ2)

√
π
√
σ2 + δ2

(2.57)

while the post measurement state reads

ρ′x =
Mδ(x)ρM δ†(x)

p(x|ρ)
:=

|eσ′⟩⟨eσ′ |
p(x|ρ)

(2.58)

where

|eσ′⟩ =

√
1√
πσ′

∫
dq exp

{
−
(q − xσ2

σ2+δ2 )
2

2σ′2

}
|q⟩ (2.59)

and σ′ = σ2δ2/(σ2+δ2). In the limit δ → 0 we have a sharp measurement, in fact σ′ → 0 and |eσ′⟩ → |x⟩.

The name weak measurement reflects the fact that, with respect to PVM, they perturb less the system. The
price to pay is that the information about the parameter x ∈ X that can be extracted is less.
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2.2.4 Covariant POVMs
In physics we are mostly interested in the case in which the space of possible results X is in 1-1 corre-
spondance with the elements of a group G. This happens, for instance, when we look at the transforma-
tions generated by a self adjoint operator: from Stone’s theorem it follows that any self-adjoint operators
J generates a one-dimensional group G whose unitary representation on the Hilbert space we are con-
sidering is U := e−igJ for all g ∈ G 5. Standard examples include the momentum operator P , which
generates the group of spatial translations, and the hamiltonian H , which generates the group of time trans-
lations. Their unitary representations are the translation operator U(x) = e−ixP and the evolution operator
U(t) = e−itH/ℏ, respectively.

More generally, given a group G we consider the space of possible results X to be a transitive G-space,
meaning that the space is endowed with a group action U : G× X → X that satisfies

1. transitivity: all different configurations are connected by a group element, so that X is an orbit under
the action of G − X: ∀x, y ∈ X, ∃g ∈ G : U(g, x) = y

2. identity element e − U(e, x) = x, ∀x ∈ X

3. associativity − ∀x, y ∈ X, g ∈ G, U(h, U(g, x)) = U(gh, x)

This means there exists a one-to-one map g → xg , which assigns to each group element a distinct con-
figuration. Notice that, while the identity element e of the group G is uniquely determined, we are free to
choose any "origin" xe ∈ X to represent it. Once this choice is made (say, e → xe), the one-to-one map is
realized as the orbit of xe under the group G:

xg = U(g, xe) (2.60)

Assuming that H is a unitary representation U(g) of G, then a POVM E : B(X) → B(H) is covariant if

U †(h)E(g)U(h) = E(gh), ∀ g, h ∈ G (2.61)

This property ensures that the probability distribution does not change in shape if the system we measure is
transformed by a group action but is shifted accordingly

p(g|h) = tr [E(g)ρh] = tr
[
E(g)U(h)ρeU

†(h)
]
= tr [E(gh)ρ] = p(gh|e) (2.62)

A practicle example could be g being the set of possible configurations of a Cartesian QRF, which are
rotated by the group G = SO(3). Then E(g) represents a measurement on the QRF whose outcomes give
information about the orientation of the QRF. The covariance property tells us that we can equivalently
rotate actively the system, or rotate passively the measurement apparatus, obtaining the same probability
distribution. Notice that the covariance property is implicit in the case of "sharp observables", i.e. when a
self-adjoint operator is associated to the parameter. For instance, the position operator X =

∫
dx x |x⟩⟨x|

is covariant under translations

eiaPXe−iaP =

∫
dx xeiaP |x⟩⟨x| e−iaP =

∫
dx x |x− a⟩⟨x− a| (2.63)

=

∫
dx(x+ a) |x⟩⟨x| = X + a (2.64)

Given the infinitely many possible covariant observables, the next step is to find the optimal ones in rela-
tion to the fundamental bounds imposed by quantum mechanics, or more generally, with respect to some
"optimality criteria", which usually vary depending on the purpose of the measurement. Further details on
this topic can be found in [36], [37], and related works. Another commonly required property for optimal
POVMs is that their elements be one-dimensional projectors (or rank-1) onto generally unnormalized states:

5More precisely, g ∈ G ⊂ R where G should denote the set of values necessary to parametrize the group. For simplicity, we
directly write G ≡ G.
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E(g) = |ψ(g)⟩⟨ψ(g)| (2.65)

The normalization property of the POVM then implies the states |ψ(g)⟩ to form a complete or an overcom-
plete basis, depending if they are orthogonal or not.

The general way [39],[7] to construct a covariant POVM is to start from some arbitrary "origin" E(e) and
define

E(g) = U †(g)E(e)U(g) (2.66)

Requiring the POVM elements to be rank-1 projectors E(e) = |ψ(e)⟩⟨ψ(e)|, the above equation reads

E(g) = U †(g) |ψ(e)⟩⟨ψ(e)|U(g) (2.67)

The "origin" Ee must be chosen such that the covariance property is satisfied.

Concerning the theory of QRFs, the existance of a covariant POVM allows for a meaningful probabilistic
and operational interpretation of G-invariant observables (3.66) and for the definition of a recovery operation
(3.3).

Example 2.2.3. Galilei-Group. An important symmetry group for the physics at low energies is the Galilei
group of translations and boosts in an Euclidean space. We consider the one dimensional case Gal(1) ≃
R× R, where the group is parametrized by two real numbers (x, v) ∈ R2. The action of the group is

(x, v) · (x′, v′) = (x+ (v + v′)t, v + v′) (2.68)

As a physical system, we consider a single particle with mass m in the Hilbert space H = L2(R). This
system forms a projective unitary representation of the Galilei group. The reason it is a projective represen-
tation, rather than a linear one, is that the generator of boosts, Km = Pt −mX , does not commute with
the generator of translations, P :

[P,Km] = iℏm (2.69)

The group action is realized by

Um(x, v) = e−
i
ℏ (xP+vKm) = e−

i
ℏ (Pxt−mvX) = e

i
ℏ (x+vt)mv

2 e−
i
ℏxtP e+

i
ℏvmX (2.70)

where we use the BHC formula and we define xt = x + vt. Thus, composing two Galilei transformations
results in

Um(x, v)Um(x′, v′) = e−
i
ℏm

v′x−xv′
2 e−

i
ℏ (P (xt+x

′
t)−m(v+v′)X) = e−

i
ℏm

v′x−xv′
2 Um;x+x′,v+v′ (2.71)

while the action on position and momentum eigenstates reads

Um(x, v) |x0⟩ = e
i
ℏmv

(
x0+

x
2+

vt
2

)
|x0 + x+ vt⟩ (2.72)

Um(x, v) |p0⟩ = e
i
ℏ (x+vt)(mv

2 −p0) |p0 +mv⟩ (2.73)

One can construct a covariant POVM starting from a coherent state in phase space, which is a Gaussian
state centered in (x0, p0)

|ψx0,p0⟩ =
∫
dy ψx0,p0(y) |y⟩ , ψx0,p0(y) = N exp

{
− (y − x0)

2

4σ2
+ i

p0 (y − x0)

ℏ

}
(2.74)
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Choosing these states as origin |ψ(e)⟩ ≡ |ψx0,p0⟩, they are transformed into other coherent states with
shifted average position and momentum, namely

Um;x,v |ψx0,p0⟩ = e
i
ℏmv(

x
2+

vt
2 +x0) |ψx0+x+vt,p0+mv⟩ := e

i
ℏmv(

x
2+

vt
2 +x0) |m;x, v⟩ (2.75)

Um;x′,v′ |m;x, v⟩ = eiϕ(v,v
′,x,x′) |m;x+ x′, v + v′⟩ (2.76)

where ϕ(v, v′, x, x′) is the total phase resulting from composing transformations of the form (2.75). Differ-
ent configuration states |m;x, v⟩ correspond to gaussians in phase space with the same spread but different
"centre" (x0 + x+ vt, p0 +mv). It’s then clear they cannot be orthogonal

⟨m; v, x|m; v′x′⟩ ∼
∫
dy ψ̃∗

x0+x+vt,p0+mv(y)ψ̃x0+x′+v′t,p0+mv′(y) ̸= δ(x− x′)δ(v − v′) (2.77)

.
Nevertheless, coherent states are known to form an overcomplete basis. We can check this directly:

∫
dvdx |m; v, x⟩⟨m; v, x| =

∫
dvdx

(∫
dydy′ ψ̃x0+x+vt,p0+mv(y)ψ̃

∗
x0+x+vt,p0+mv(y

′) |y⟩⟨y′|
)

=

∫
d(x0)d(p0)

(∫
dydy′ ψ̃x0,p0(y)ψ̃

∗
x0,p0(y

′) |y⟩⟨y′|
)

=
N2

m

∫
dydy′ |y⟩⟨y′|

∫
d(x0)d(p0) e

− (y−x0)2

4σ2 e+i
p0(y−x0)

ℏ e−
(y′−x0)

2

4σ2 e−i
p0(y

′−x0)
ℏ (2.78)

where from the first to the second line we make a change of variables (x, v) → (x+vt,mv). The integration
over p0 leads to a 2πδ(y − y′), hence:

∫
dvdx |m; v, x⟩⟨m; v, x| = 2π

m

∫
dy |y⟩⟨y| N2

∫
d(x0) e

− (y−x0)2

2σ2 =
2π

m

∫
dy |y⟩⟨y| = 2π

m
I (2.79)
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Appendix

2.A Beam splitters
At a classical level a beam splitter divides an incoming wave of complex amplitude Ei 6 into a reflected
and a transmitted part, with amplitudes rsp. Er = rEi and Et = tEi such that, for a lossless beam splitter,
|r|2+|t|2 = 1. Between the transmitted and the reflected beam there is a relative phase θ, that is constrained
by the conservation of energy. To see why let’s assume t to be a real number and r = ρeiθ.

EI
E Èè

a g
ED

Figure 2.A.1: Synchronization in the c.o.m. frame

A beam splitter with 2 incoming beams E+ and E− (as in fig. 2.A.1) can be described by the following
matrix equation

(
ED+

ED−

)
=

(
t r′eiθ

′

reiθ t′

) (
E+
E−

)
:= M

(
ED+

ED−

)
(2.80)

Considering a lossless beam splitter, the conservation of energy requires |E+|2+ |E−|2 =
∣∣ED+

∣∣2+ ∣∣ED−

∣∣2,
or in matrix form:

M†M =

(
r′2 + t2

(
rteiθ

′
+ r′t′e−iθ

)(
r′t′e−iθ

′
+ rteiθ

)
r2 + t′2

)
= I (2.81)

This gives r′2 + t2 = 1 and r2 + t′2 = 1 that, combined with the condition r2 + t2 = 1, gives r = r′ and
t = t′. Therefore the condition on the phase shift is

0 = rt
(
eiθ

′
+ e−iθ

)
⇐⇒ cos

θ + θ′

2
= 0 ⇐⇒ θ + θ′ = π (2.82)

The specific values of the coefficients and phase shifts depend in general on the material. In the following
we assume a 50:50 splitting with r = t and a symmetric phase shift θ = θ′ = π/2.

A QFT description is obtained by replacing these complex amplitudes with the corresponding creation oper-
ators. The crucial difference is that even the incoming field is in the vacuum, that classically corresponds to
Ei = 0, the corresponding creation operator must be taken into account. In fact, consider a single incoming
beam E+. Naively, since E− = 0, we’d write

6we focus on a single plane wave mode of given polarization
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âD+

† = tâ+
† âD−

† = râ+
† (2.83)

However this gives the wrong commutation relations

[
âD+ , âD+

†] = |t|2
[
â+, â+

†] = |t|2 < 1 (2.84)

The reason is that the vacuum state of the field E− must be taken into account. In fact, the correct description
is

 âD+
† = tâ+

† + r′â−
†

âD−
† = râ+

† + t′â−
†

(2.85)

The commutation rules read


[
âD+ , âD+

†
]
= |t|2 + |r′|2[

âD− , âD+
†
]
= tr∗ + r′t′∗

(2.86)

and they are preserved if |t|2 + |r′|2 = 1 and tr∗ + r′t′∗ = 0 that, toghether with |r|2 + |t|2 = 1 implies
|r| = |r′| and |t| = |t′|. Notice that this is the same condition imposed by the conservation of energy in eq.
(2.81). Considering then a 50:50 beam splitter with symmetric phase shifts we have the following relations


âD+

† = 1√
2

(
â+

† + iâ−
†
)

âD−
† = 1√

2

(
â−

† + iâ+
†
) (2.87)

This permits to compute the probabilities of detecting a given initial quantum state in the detectors. For
instance, considering an initial state

â+
† |0⟩ := |γ+⟩ (2.88)

we obtain

|γ+⟩ =
1√
2

(
âD+

† − iâD−
†) |0⟩ := 1√

2

(
|D+⟩ − i |D−⟩

)
(2.89)

that gives 50:50 probability for the two detectors to click. Considering a Mach-Zender interferometer,
consisting of two beam splitters and two mirrors, one could obtain the state

|Ψ⟩ = 1√
2

(
|γ+⟩+ eiΦ |γ−⟩

)
(2.90)

for instance by letting a single-beam go through the first beam splitter. Here Φ denotes any contribtion to
the phase difference given by the geometrical setup or different dynamics. Thus, one gets

|Ψ⟩ = 1

2

(
|D+⟩ (1− ieiΦ) + |D−⟩ (eiΦ − i)

)
(2.91)

that means pD± = 1
2

(
1 ± sin(Φ)

)
, which coincides with (2.3). In the limit of low-energies, where QFT

effects are negligible, one can see the 1 particle sectors {|γ+⟩ , |γ−⟩} as the orthogonal states of a two-
dimensional Hilbert space.
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2.B Complementarity principle for mixed states of the environment
We consider the system’s degrees of freedom to be in a coherent susperposition of the two paths, while the
environment is a generic mixed state:

ρ(0) = |ψ(0)⟩⟨ψ(0)|s ⊗ ρe (2.92)

where

|ψ(0)⟩s =
1√
2

(
|γ+⟩s + |γ−⟩s

)
(2.93)

We are interested in the case in which the evolution is in the form

ρ(t) =
1

2

∑
i,j=±

|γi(t)⟩⟨γj(t)|s ·
(
Ui(t)ρeUj(t)

†) (2.94)

The visibility (4.56) is (twice) the absolute value of the non diagonal terms of the reduced density matrix,
i.e.

V = |ρ(t)i̸=j | =
∣∣tre [U+(t)ρeU−(t)

†]∣∣ (2.95)

and using the spectral decomposition of ρe gives

V =

∣∣∣∣∣∑
k

Dktre
[
Ui(t) |k⟩⟨k|Uj(t)†]∣∣∣∣∣ =

∣∣∣∣∣∑
k

Dk ⟨k|U+(t)U−(t)
† |k⟩

∣∣∣∣∣ (2.96)

There are different measures of dinstinguishability for mixed states. The most natural choise is the trace-
distance, defined as:

∆(ρ, σ) =
1

2
tre [|ρ− σ|] (2.97)

that in the case of ρ, σ̂ being pure states, it reduces to the usual definition of distinguishability, namely:

D(|ψ⟩ , |ϕ⟩) =
√
1−

(
⟨ψ|ϕ⟩

)
(2.98)

In our case it reads

D = ∆
(
ρ+e (t), ρ

−
e (t)

)
=

1

2
tre
[∣∣U+(t)ρeU + (t)† − U−(t)ρeU−(t)

†
∣∣] (2.99)

Again it’s useful to use the spectral decomposition of ρe:

D =
1

2
tre

[∣∣∣∣∣∑
k

Dk

(
U+(t) |k⟩⟨k|U+(t)

† − U−(t) |k⟩⟨k|U−(t)
†)∣∣∣∣∣
]

(2.100)

In the sum over k we apply the triangular inequality for trace-class norm

tr [|A+B|] ≤ tr [|A|] + tr [|B|] (2.101)

which gives
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D ≤ 1

2

∑
k

Dktre
[∣∣(U+(t) |k⟩⟨k|U+(t)

† − U−(t) |k⟩⟨k|U−(t)
†)∣∣] = (2.102)

=
∑
k

Dk∆(|k−(t)⟩⟨k−(t)| , |k−(t)⟩⟨k−(t)|) (2.103)

Finally, we can use the fact that the trace-norm for pure states reduces to (2.98), so that

D =
∑
k

Dk

√
1− |⟨k|U+(t)†U−(t) |k⟩|2 (2.104)

Now we can look at

V2 +D2 ≤
∑
jk

DjDk

(√
1− |uk|2

√
1− |uj |2 +

1

2

(
uku

∗
j + u∗kuj

))
≤
∑
jk

DjDk = tr [ρe]
2
= 1

(2.105)

where we defined the complex coefficients uk = ⟨k|U+(t)
†U−(t) |k⟩ which always satisfy |uk|2 ≤ 1.
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Chapter 3

Quantum reference frames

In this section we review the theory of quantum reference frames developed firstly in the context of Quantum
Information theory [7], [32] based on the so called "incoherent group average". This framework is different
in many aspects from the so called "perspective-neutral-approach", developed mainly in the context of
quantum gravity [17] and foundations of physics [9], that instead makes use of the "coherent group average"
to represent the lack of an external frame. This is the most natural approach when dealing with (globally)
constrained system obeying a Wheeler-de-Witt-like equation:

J |ψ⟩ = 0 (3.1)

where J can be in general the generator of some symmetry groupG, so that the quantum states are invariant
under the group action. A noticeable example is canonical General Relativity, since the hamiltonian of a
generally covariant theory is constrained to vanish in the absence of boundaries ([1],[5]). In this case, in eq.
(3.1) J ≡ H is the hamiltonian of the system, and this reflects the invariance under time reparametrization.

The space of physical pure states ˜|ψ⟩ can be defined via the so called "coherent group averaging"

˜|ψ⟩ =
∫
G

dg U(g) |ψ⟩ (3.2)

where U(g) = e−igJ is the (unitary) group action on the Hilbert space of the system and dg is the Haar
measure. Conceptually, this approach sums over all possible group transformations, or "orientations" of
the reference frame, without destroying the system’s coherence. This ensures that eq. (3.1) is satisfied, or,
equivalently, that physical pure states are G-invariant

U(g) ˜|ψ⟩ = ˜|ψ⟩ (3.3)

The perspective-neutral approach, or Dirac quantization (see e.g. [5]), is physically relevant when ˜|ψ⟩
describes the entire universe, as in general relativity, or when the system’s total "charge" (such as total mo-
mentum) vanishes with respect to an external observer. For instance, in [40], this formalism is applied to
a system of N particles constrained to have zero total linear and angular momentum, reflecting invariance
under translations and rotations. This scenario is meaningful either when the N-particle system represents
a closed system (the "whole universe") or when the total momentum of the system vanishes with respect to
an external observer.

In contrast, the quantum information (QI) approach provides a more general framework where the systems
under consideration can be part of a larger environment and may exhibit correlations with it. Instead of
focusing on invariant pure states, as in equation (3.1), the QI approach uses invariant density operators ρ̃,
which are defined via the "incoherent group averaging":

ρ̃ =

∫
G

dg U(g)ρU †(g) (3.4)

so that
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U(g)ρ̃U †(g) = ρ̃ (3.5)

where U(g) is the group action on the Hilbert space of the system . The key distinction is that eq. 3.4
describes an incoherent mixture of group actions, which does not preserve the coherence of the state ρ in
general. In group-theoretic terms, the QI approach does not require specifying the value of the total charge
(e.g., total linear or angular momentum). Restricting to the "zero-charge sector", the two approaches are
equivalent (this is highlighted, for instance, in [41]).

In the following, we will adopt the quantum information approach, wherein quantum reference frames are
treated as a resource to address the lack of information regarding the relationship between a quantum system
and the external reference frame used to describe it.

3.1 QRFs as a resource
The concept of reference frame is implicit in the definition of any quantum state. For instance, the wave-
function of a quantum particle in the position representation ψ(x) is defined with respect to some Cartesian
reference frame, or a single-mode coherent state |α⟩ is defined with respect to some reference frame for the
phase arg(α).

We focus the case in which a reference frame can be associated to a group G, meaning that the different
configurations of the reference frames can be associated to a group element g ∈ G. For instance a reference
frame for the orientation in space (x̂, ŷ, ẑ) can be associated to the group SO(3) of rotations. Moreover,
we assume that G can act on the (Hilbert space associated to the) quantum system we are describing via a
unitary representation U .

To understand in which sense a reference frame is a resource it’s useful to consider a practicle example:
a party, say Alice, wants to communicate some information to another party, say Bob, by encoding some
information on a quantum system using her local reference frame A and then sending the system to B. If
Bob has no access to the same reference frame, the communication is compromised.

To see why, let’s consider the case of a spin- 12 system, which is an irreducible representation of the group
SU(2), whose elements we denote by Ω. Alice preprares the system in a pure state ρ = 1

2 (1 + n⃗ · σ⃗) ∈ Hs,
where the vector |n⃗| = 1 is defined with respect to her local Cartesian reference frame A (and σ⃗ =
(σx, σy, σz) are the 2x2 Pauli matrices). For instance, she performs a projective measurement of the spin
along her z-axis, so that ρ will be an eigenstate of the spin-z operator Jz , i.e. n⃗ = ±ẑ. In this way Alice
encodes in the system a classical-bit of information {+ ≡ yes,− ≡ no}. To access this information, one
just has to perform the same projective measurement.

Suppose now that Bob has a differenct local Cartesian frame B to define the state of the same system. If the
relation between the two frames is known, for instance n⃗′ = R(Ω)n⃗, where R(Ω) is some rotation matrix,
then also the relation between the states is known. Namely, in the frame B the state preparred by Alice will
be:

ρ′ = U(Ω)ρU †(Ω) := U(Ω)[ρ] (3.6)

where now U(Ω) is the unitary representation of SU(2). This means that Bob can rotate the state, perform
a measurement of the spin-z in his frame and extract the BIT. 1

However, if the relation between the frame is unknown, the state preparred by Alice will be described by
Bob as an incoherent mixture of such states

ρ̃ =
1

4π

∫
SU(2)

dΩ U(Ω)ρU(Ω)† =
1

4π

∫
SU(2)

dΩ U(Ω)[ρ] (3.7)

1Alternatively, he can perform a "passive" rotation on the measurement apparatus, i.e. on his reference frame, then perform a
measurement along the z-axis. If we call the projective measurement ΠzA,± with respect to Alice’s frame, Bob can perform the
rotated measurement ΠzB ,± = U†(Ω)ΠzA,±U(Ω)

27



where dΩ is the invariant Haar measure which is uniform over the group SU(2), hence represents complete
unknowledge of the relation between the frames. The normalization factor is given by the volume of the
group |G| =

∫
dΩ = 4π. In this scenario, the "physical" states that Alice can prepare in order to commu-

nicate to Bob are only states in the form (3.7), which are invariant under the action of the group SU(2), i.e.
under any reference frame transformation.

The same reasoning applies when one considers the meaningful local operations that Alice can perform on
ρ in order to communicate with Bob. Suppose that Alice applies some operation 2 on her state ρ

V[ρ] = V ρV
†

(3.8)

which is defined with respect to her frame A. In order to describe the same operation in his local frame
B, Bob must know the relation between the two frames. As before, if the frames are related by a rotation
n⃗′ = R(Ω)n⃗, he can describe the process by rotating the state ρ′ in B to ρ in A, performing the same
operation V , and then transform back to his frame B. The resulting state is

U(Ω)† ◦ V ◦ U(Ω) [ρ] = U(Ω)†
[
V

(
U(Ω)ρU(Ω)†

)
V †
]
U(Ω) (3.9)

However, if the relation between the two frames is unknown, Bob would describe it as an incoherent mixture
of operations of this form, i.e.

Ṽ [·] =
∫
SU(2)

dΩ U(Ω)† ◦ V ◦ U(Ω) [·] (3.10)

This means that the only meaningful operations that Alice can perform on ρ in order to communicate with
Bob are in the form (3.10), which is invariant under rotations.

This example makes clear that the lack of a reference frame for a group G imposes physical restrictions on
states and operations. In particular, the only meaningful states and operations are those invariant under the
group action, as it happens in the presence of a symmetry principle. It follows that a reference frame can
serve as a resource to overcome these restrictions.

3.1.1 Lack of a reference frame
Now we generalize the previous example. In general, some restrictions on the group G are required. Firstly,
as in the previous example we deal with integrations on G, for which we use the Haar measure. For a general
group, there exist both a left- and a right- invariant measure, which are unique up to a positive multiplicative
constant . In the following, we restrict ourselves to unimodular groups3, where these two measure coincide
µdg := dg, so that

∫
d(gh) =

∫
d(hg) = dg (3.11)

Then, in order to ensure normalizability of invariant states one should restrict to compact groups, so that
|G| <∞. However, as we will see in the next sections, there’s often no need to directly deal with invariant
states, so this restriction is not strictly necessary. As we will see explicitly, the advantage of compact groups
lies in their complete reducibility, which allows for a very simple physical intepretation of the G-twirl op-
eration.

Finally, we assume that the system H carries a unitary representation U of the group G, defined by:

U(g)U(h) = U(gh) (3.12)

2Formally, quantum operations - or quantum channels - are described by completely-positive-trace-preserving-maps (CPTP). A
detailed treatement of this topics can be found in [34].

3Most of the Lie groups used in physics are unimodular. For instance, any compact, discrete, Abelian locally compact group
is unimodular, as the general- and special- linear group GL(N), SL(N). Thus, unimodularity is not a severe restriction for most
physical purposes.
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In the absence of a reference frame for the group G, the "physical" states are those invariant under the
(unitary) action of the group, i.e. satisfying the following equation:

U(g) [ρ̃] = U(g)ρ̃U
†
(g) = ρ̃, ∀g ∈ G. (3.13)

Mathematically, they are represented by an incoherent group average over all group elements, or "G-twirl",
of any state ρ

ρ̃ =
1

|G|

∫
G

dg U(g)ρU
†
(g) := G[ρ], (3.14)

where |G| is the volume of the group, which ensures tr[ρ̃] = 1. In fact, using the invariance of the group
measure (3.11)

U(g) [ρ̃] = 1

|G|

∫
G

dh U(g)U(h)ρU
†
(h)U

†
(g) =

1

|G|

∫
G

dh U(gh)ρU
†
(gh) =

1

|G|

∫
G

dh U(h)ρU
†
(h) = ρ̃,

(3.15)

hence (3.13) is satisfied. Moreover, it’s clear that the G-twirl operation is a projection, meaning that G◦G =
G 4:

G ◦ G[·] = 1

|G|2

∫
G

dg

∫
G

dg U(g)U(h)[·]U
†
(h)U

†
(g) =

∫
G
dg

|G|
1

|G|

∫
G

dg U(g)[·]U
†
(g) = G. (3.16)

Similarly, physical operations are those commuting with the group operations U

U
†
◦ Ẽ ◦ U [·] = Ẽ [·], ∀g ∈ G. (3.17)

Mathematically, they are represented by the "super −G− twirl":

Ẽ [·] =
∫
G

dg U†(g) ◦ E ◦ U(g)[·] (3.18)

The extension to superoperator allows to reach immediately a similar conclusion about which measurements
can be considered "physical". The most general measurement on a quantum system is represented by a
POVM (see 2.2.2) , which is a set of positive operators {Ek} satisfying

∑
k Ek = I5. The probability that

a measurement on a state ρ has the outcome k is pk = tr[ρEk]. We can always associate the POVM to a set
of operations {Ek} such that Ek = E†

k[I] = Mk
†Mk, where Mk is a generalized measurement associated

to the POVM ( see 2.54). We can now apply the previous result to the superoperators E†
k[I]. In absence of

a reference frame for the group G, it must be represented by

Ẽ†
k[I] =

∫
G

dg U†(g) ◦ E†
k ◦ U(g)[I] =

∫
G

dg U†(g) ◦ E†
k[I] (3.19)

It follows that the physically meaningful measurements are of the form

Ẽk =

∫
G

dg U†(g)[Ek] =

∫
G

dg U(g)†EkU(g), (3.20)

which ensures the POVM to be G-invariant.

To sum up, if the description of a system lacks of a reference frame associated to a group G, the state of
the system, operations and measurements on the system must be represented in the form (3.14), (3.18) and
(3.20) respectively, which are invariant under the group action.

4One can also show that the G-twirl is a CPTP map [7], hence a proper quantum operation.
5Without loss of generality, we consider here measurements defined on discrete values spaces. In (2.2.2) more detailed definitions

are given in the case of continuous values spaces and possibly infinite dimensional input- and output systems.
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3.1.2 Relational degrees of freedom
From the previous section, it is clear that the lack of a reference frame imposes strong restrictions on the
physical degrees of freedom of a system, where "physical" refers to degrees of freedom accessible via local
measurements.

To understand precisely what these physical degrees of freedom are, it’s useful to analyze the G-twirling
operation from a group-theoretical perspective. In the following, we will present the main results for com-
pact groups, where the complete reducibility allows for a straightforward analysis.

In general, since the Hilbert space of the system is a unitary representation of a compact group G, it can be
decomposed as a direct sum of the so called "charge-sectors" Hq , labelled by some index q, each of which
carries an inequivalent irreducible representation of the group

H =
⊕
q

Hq (3.21)

Each charge sector can be further decomposed into a tensor product

Hq = Mq ⊗Nq (3.22)

of a subsystem Mq , called gauge space or color space, on which the group acts irreducibly, and a sub-
system Nq on which the group acts trivially. The subsystem Nq is called multiplicity- or flavour space
and its dimension correspond to the number of times the same irreducible representation q appears in the
decomposition.

Intuitively, the gauge degrees of freedom in Mq are defined with respect to an external reference system,
and they change under reference frame transformations (group actions). In contrast, the multiplicity de-
grees of freedom do not. These degrees of freedom can be thought of as relational, meaning they describe
relationships between subsystems of the physical system, and thus, they are invariant under reference frame
transformations.

This becomes clear with some concrete examples. Let’s consider the group SU(2), whose irreducible
representations, labelled by an half-integer number j, are 2j+1 dimensional spaces spanned by the common
eigenbasis {|j,m⟩}jm=−j of one of the three generators of the group, say Jz , and the Casimir J2.

Example 3.1.1. - Two spin 1/2. A composite system of two spin- 12 particles can be decomposed in the
triplets- and singlet-spaces 1

2 ⊗ 1
2 = 1⊕ 0 which are respectively a three- and one-dimensional irreducible

representation labelled by the total spin of the system, which is an invariant quantity under the action of the
group. The Hilbert-space decomposition reads

H =

(
H 1

2

)⊗2

= M1 ⊕M0 (3.23)

In this case each irreducible representation Mj , labelled by the total spin j = 1, 0, appears in the decom-
position with multiplicity 1, hence the multiplicity spaces Nj = C are 1 dimensional and can be omitted.

Example 3.1.2. - Three spin 1/2. A composite system of 3 three spin- 12 particles can be decomposed as
1
2 ⊗

(
1⊕ 0

)
= 3

2 ⊕ 1
2 ⊕ 1

2 . The corresponding Hilbert-space decomposition reads

H =

(
H 1

2

)⊗3

= H 3
2
⊕H 1

2
= M 3

2
⊕
(
M 1

2
⊗ C2

)
(3.24)

In this case the irreducible representation j = 1
2 appears in the decomposition twice, hence the multiplicity

space is 2-dimensional N 1
2

= C2. A basis for the space H 1
2

is |j,m, λ⟩ =
∣∣ 1
2 ,±

1
2 ,±1

〉
, where λ is

the multiplicity-index. The action of the group SU(2) corresponds to a rotation of the representation with
respect to some reference frame. This means that what is physically transformed are the eigenvalues m of
Jz , which correspond to the projections of the angular momentum along a specific axis of the reference
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frame. Since m depends on the external reference frame, it corresponds to the gauge degree of freedom.
On the contrary, the multiplicity degrees of freedom λ are not modified by a physical rotation. In other
worlds, the group SU(2) acts irreducibly on the space M 1

2
, i.e. mixing the states {

∣∣ 1
2 ,m

〉
}, while it acts

trivially on the space N 1
2

, i.e. leaving the states
∣∣ 1
2 , λ
〉

untouched.

Given this decomposition of a generic Hilbert space, the G-twirl takes a particularly simple form that
clarifies its physical meaning. We state it as a theorem and the proof can be found in [7]:

Theorem 1. The action of the G-twirl G in terms of the decomposition
is given by

G =
∑
q

(
DMq

⊗ INq

)
◦ Pq (3.25)

where Pq is the superoperator associated with projection into the charge sector q, that is, Pq[ρ] = ΠqρΠq
with Πq the projection onto Hq = Mq ⊗Nq , while DM denotes the trace-preserving operation that takes
every operator on the Hilbert space M to a constant times the identity operator on that space - this corre-
sponds to complete decoherence (see 2.1). I denotes the identity map over operators in the space N .

The operation G thus induces complete decoherence on the subspace Mq , while acting as the identity on the
decoherence-free - or multiplicity - subspace Nq . Intuitively, the gauge degrees of freedom are tied to the
external reference frame and are lost when the frame is absent, leading to decoherence, while the relational
degrees of freedom (in Nq) remain accessible.

Consider a state |q;m,λ⟩, where q is the total charge, and m and λ denote the gauge (Mq) and multiplicity
(Nq) degrees of freedom, respectively. If Alice prepares the subsystem Mq in a coherent superposition of
basis states, say

∑
m cm |q;m,λ⟩, which are defined with respect to her local reference frame, Bob will

not be able to access this superposition state unless the reference frame is shared. From Theorem (1), the
absence of a reference frame implies that Bob will represent the subsystem Mq as a maximally mixed state
(i.e. in the form ∼

∑
m |q;m,λ⟩⟨q;m,λ|), corresponding to complete ignorance. However, Alice is free to

prepare the subsystem Nq in any state, as this subspace is insensitive to the frame orientation (group action).

Again, let’s consider the practicle example of the group SU(2) of rotations, whose elements are denoted by
Ω.

Example 3.1.3. - One transmitted QBIT. If the system is a single spin- 12 , H = M 1
2

is already an irre-
ducible representation of the group. The SU(2)-twirl is equivalent to the completely depolarizing opera-
tion

G = D 1
2

(3.26)

This means that whatever state ρ is preparred by Alice with respect to her local reference frame for the
orientation, Bob will receive a completely mixed state

ρ̃ = G[ρ] = 1

2
I (3.27)

which means he cannot infer anything about the state preparred by Alice from the outcome of any measure-
ment. In other words, Alice cannot communicate any information to Bob by using a single QBIT.

Example 3.1.4. - Two transmitted QBITS. If the system is composed by two spin- 12 particles, it’s Hilbert
space can be decomposed as

H =

(
H 1

2

)⊗2

= M1 ⊕M0 (3.28)

where the irreducible representations correspond to the two possible values of the total angular momentum
j = 0, 1, which is a quantity that does not depend on the orientation. Whatever state ρ is preparred by Alice
with respect to her local frame, the state received by Bob will be
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ρ̃ = G[ρ] = pj=1

(1
3
Πj=1

)
+ pj=1

(1
3
Πj=1

)
(3.29)

This means that if Alice prepares the state in some coherent superposition of the triplet states {|J,M⟩ =
|1, {0,±1}⟩}, Bob cannot infer anything about it, since the basis states are only defined with respect to
her frame. The subspace M1 undergoes a complete decoherence. However the value of the total spin J
does not depend on the reference frame. Hence Bob is able to distinguish between the triplet and singlet
subspaces |1, {0,±1}⟩ ∈ M1 and M0 = |0, 0⟩, by performing a projective measurement onto the two
subspaces {Π1,Π0}. Thus, Alice can encode a classical bit of information to Bob by using two QBITS.

Example 3.1.5. - Three transmitted QBITS. If the system is composed by three spin- 12 particles, it’s
Hilbert space can be decomposed as

H =

(
H 1

2

)⊗3

= H 3
2
⊕H 1

2
= M 3

2
⊕
(
M 1

2
⊗ C2

)
(3.30)

Whatever state ρ is preparred by Alice with respect to her local frame, the state received by Bob will be

ρ̃ = G[ρ] = pj= 3
2

(1
4
Πj= 3

2

)
+ pj= 1

2

(1
2
IM 1

2

⊗ ρN 1
2

)
(3.31)

where ρN 1
2

= 1
p
j=1

2

trM 1
2

[
Π 1

2
ρΠ 1

2

]
is the reduced density matrix of the invariant subsystem N 1

2
.

Again, if Alice prepares the system in any superposition within the gauge subsystems M 3
2

and M 1
2

, Bob
will not be able to infer anything about it. However, as before, since the total angular momentum is a
gauge-invariant quantity, Bob can distinguish if Alice prepared the system in a spin j = 3

2 or j = 1
2 state,

which corresponds to a classical bit. The difference here is the presence of the decoherence-free subsystem
N 1

2
. Whatever state ρN 1

2
Alice prepares, it is frame-independent, so Bob can access all the information

Alice stores in it. Since N 1
2 is a 2-dimensional subspace, it can store another classical bit. Thus, Alice can

encode two classical bits of information using three qubits.

To sum up, every quantum state is defined with respect to some reference frame, which in turn is associated
with a group G. However, not all the information about the system depends on the reference frame. Some
quantities, like the total charge q, are invariant under group actions (i.e., gauge-invariant). Additionally,
for each charge q, there is a subspace Nq of the Hilbert space Hq , called the multiplicity space, which is
also invariant under group action. Thus, any state within this subspace is independent of the reference frame.

In conclusion, even if a reference frame for G is not accessible, the system can still contain meaningful in-
formation, i.e., information accessible via local measurements. This meaningful information is independent
of the reference frame and can be seen as the relational information about the constituents or subsystems
of the physical system.

3.2 Perfect and unperfect QRFs
To overcome the lack of a shared frame, Alice can use another quantum system Hr as a reference token,
or quantum reference frame (QRF), which she also sends to Bob. The role of the QRF is to simulate Al-
ice’s classical reference frame. Its states ρg ∈ B(Hr) should represent the different possible configurations
g ∈ G. If this is achieved, the degrees of freedom that were previously considered gauge (defined only
relative to an external, inaccessible frame) become relational, as they can now be defined with respect to
the states of the QRF, which Bob can access.

Before discussing how this procedure works practically, we must first understand how an idealized classical
frame can be represented by a quantum system. The first step is to specify what we mean by an idealized
classical frame.
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3.2.1 Ideal reference frame
Intuitively, what we usually mean by reference frame is an idealized system that maximally breaks the
symmetry of G. Formally, if X ̸= ∅ is the set of possible configurations of the system, one requires that

1. X is endowed with a group action U : G× X → X which is transitive and free

2. X is isomorphic to the group G, so there exists a 1-1 and invertible map g → xg that to each group
element assigns a distinct configuration.

3. these configurations are physically distinguishable

A transitive action implies that every configuration is connected to another by a group element, so X forms
an orbit under the action of G:

transitive : ∀x, y ∈ X, ∃g ∈ G : U(g, x) = y (3.32)

while a free action free means that this group element is unique or, equivalently, that there are no fixed
points

free : ∀g ∈ G, g ̸= e, x ∈ X, U(g, x) ̸= x (3.33)

If these conditions are met, an isomorphism X ≃ G can be defined. Notice that, while the identity element
e of the group G is uniquely determined, we are free to choose any "origin" xe ∈ X to represent it. Once
this choice is made (say, e→ xe), the isomorphism is realized as the orbit of xe under the group G:

xg = U(g, xe) (3.34)

Example 3.2.1. - Cartesian frame. A Cartesian frame provides a practical example. Its configurations
form a homogeneous E+(3)-space for the group E+(3) of rotations and translations. Here, any configura-
tion can be chosen as the identity, xe, and other configurations are related by transformations gxe = xg .

The properties of an ideal reference frame are challenging to reproduce using a physical system, even clas-
sically. Real configurations are often not perfectly distinguishable due to finite experimental resolution or
intrinsic limitations (such as non-orthogonality of quantum states). Additionally, the configuration space X
is often "smaller" than the group G, so that the map X → G may not be invertible. This implies that the
action of G may be transitive but not free.

Example 3.2.2. - Periodic clock. A real clock used as a reference for the group of time translations
provides a relevant example. On the one hand, real clocks always have a finite resolution, hence they
cannot distinguish between all time states t with infinite precision. Additionally, they are usually periodic
(e.g. 12 hours for standard clocks), so that transformations of the form t → t + n(12h) with n ∈ Z act as
the identity. This reflects the presence of a non-trivial isotropy subgroup, meaning that the group action is
not free.

3.2.2 Distinguishability - covariant POVM
Now, we can characterize a quantum reference frame, which is, in essence, a physical quantum system.
The primary differences between a quantum and classical system are that the possible configurations are
elements of the Hilbert space H and that the distinguishability between these configurations is defined by
the distinguishability of quantum states.

Operationally, the distinguishability of quantum states is described by the Born rule. Thus, to define a
quantum reference frame, we require a covariant POVM (details in 2.61), associated with group elements
E(g) ∈ B(Hr), such that the probability of measuring g for a state ρr is given by:

trr [ρrE(g)] = p(g) (3.35)
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In the next section we will see that a covariant POVM allows for a meaningful operational interpretation of
G-invariant observables.

Now, consider a 1-1 map between G-configurations and quantum states g → ρg , which takes the place of
the idealized configuration state xg ∈ X . The distinguishability between different configuration states is
given by the Born probability

trr[E(h)ρg] = p(h, g) (3.36)

Perfect distinguishability corresponds to a probability distribution which is sharply peaked around g, i.e
p(h, g) = δ(gh) 6.

3.2.3 Perfect QRFs
A perfect quantum reference frame for a group G is a quantum system H carrying a unitary representation
U that is able to reproduce all the properties of an idealized classical frame. Specifically, it satisfies the
following criteria:

1. the group G is isomorphic to a set of states7{ρg, g ∈ G} ⊆ H, so there exists a 1-1 and invertible
map G ∈g → ρg ∈ H that to each group element assigns a distinct quantum state

2. the action U on these states is transitive and free: ∀g, g′ ∈ G,∃! h ∈ G : ρg = U(h)ρg′U
†(h)

3. the configuration-states are perfectly distinguishable: one can define a covariant POVM E : G →
B(H) such that tr[E(g)ρh] = δ(gh) ∀g, h ∈ G, g ̸= h

The delta function on G is defined by
∫
dgδ(g)f(g) = f(e), where e is the identity element and f any

continuous function. In this case, the set of configuration-states {ρg , g ∈ G} constitutes a principle homo-
geneous G-space, exactly as the space of configurations X of an idealized frame.

Since in physics we are mostly interested in Lie groups, we usually need an infinite and uncountable set of
orthogonal states. In practice, a perfect QRF is often realized as the space of square-integrable functions
over G, i.e., H = L2(G, dg), where dg is the Haar measure of the group. Any state in this space can be
expanded in the orthonormal basis |g⟩

|χ⟩ =
∫
G

dg χ(g) |g⟩ (3.37)

on which the group acts regularly8

U(h) |g⟩ = |hg⟩ , U(h) |χ⟩ =
∫
G

dg χ(h−1g) |g⟩ (3.38)

Ultimately, the resolution of the identity

∫
G

dg |g⟩⟨g| = I (3.39)

naturally defines a covariant POVM 2.2 whose elements are

E(g) = U †(g) |e⟩⟨e|U(h) =
∣∣g−1

〉〈
g−1

∣∣ , ∫
G

dg E(g) = I (3.40)

In fact, they satisfy the covariance property (2.61)

U †(h)E(g)U(h) = U †(h)
∣∣g−1

〉〈
g−1

∣∣U(h) =
∣∣h−1g−1

〉〈
h−1g−1

∣∣ = E(gh) (3.41)

6or δgh in the case of a discrete group.
7In general, these states could be not proper vectors in the Hilbert space, but distributions in the sense of rigged Hilbert spaces

[35], as in the example below. To keep this exposition as simple as possible, we will omit these technical details.
8Here we conventionally choose the left-regular action, however choosing the right-regular action leads to the same results.
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Example 3.2.3. A practicle example is a single particle H = L2(R) as QRF for the one-dimensional
translation group in space. One can define an isomorphism between configurations and states x→ |x⟩. The
unitary action of the group is generated by the momentum operator P and it corresponds to a (left-)regular
action

Ux = e−
i
ℏxP |x0⟩ = |x0 + x⟩ (3.42)

The configuration states form a complete basis

∫
dx |x⟩⟨x| = I (3.43)

so one can construct a covariant POVM out of E0 = |0⟩⟨0|, whose elements are projectors over the position
eigenbasis E(x) = U †(x)E0U(x) = |−x⟩⟨−x|

3.2.4 Imperfect QRFs
As noted in the definition of an ideal reference frame (3.2.1), a reference frame typically fails to be perfect
in two primary ways: either the action of G on the space of configurations is not free, or the different
configurations are not physically distinguishable. An imperfect QRF is therefore defined as a quantum
system H that carries a unitary representation U of G and satisfies the following properties:

1. there exists a 1-1 map G ∈g → ρg ∈ H between the group G and a set of quantum states;

2. the action U on these states is transitive (but not necessarily free): ∀g, g′ ∈ G,∃ h ∈ G : ρg =
U(h)ρg′U

†(h);

3. the configuration-states are not perfectly distinguishable; nevertheless one can define a covariant
POVM E : G → B(H) such that tr[E(g)ρh] = p(g, h) ∀g, h ∈ G, where p(g, h) is some proba-
bility distribution on G.

The most common example of an imperfect QRF is a quantum system whose configuration states are co-
herent states ρg = |ψ(g)⟩⟨ψ(g)|. The group still acts regularly

Uh[ρg] = U(h) |ψ(g)⟩⟨ψ(g)|U †(h) = |ψ(hg)⟩⟨ψ(hg)| = ρhg (3.44)

however the states are not orthogonal. Nevertheless, they form a overcomplete basis

1

µ

∫
G

dg |ψ(g)⟩⟨ψ(g)| = I (3.45)

where µ is some normalization constant 9. This naturally defines a covariant POVM whose elements are:

E(g) = U †(g) |ψ(e)⟩⟨ψ(e)|U(h) =
∣∣ψ(g−1)

〉〈
ψ(g−1)

∣∣ , 1

µ

∫
G

dg E(g) = Id (3.46)

In fact, they satisfy

U †(h)E(g)U(h) = U †(h)
∣∣ψ(g−1)

〉〈
ψ(g−1)

∣∣U(h) =
∣∣ψ(h−1g−1)

〉〈
ψ(h−1g−1)

∣∣ = E(gh) (3.47)

9If the group is non-compact, the required normalization constant could be infinite. There’s no general way to treat this issue, so
each case must be treated separately. An example can be found in [42].
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Example 3.2.4. A practicle example is a single particle H = L2(R) as QRF for the one dimensional Galilei
group Gal(1) ≃ R × R of translations and boosts, for which we constructed a POVM in (2.2.3). In that
example, we show that a single particle with a fixed massm is a unitary-projective representation ofGal(1)

Um(x, v) = e−
i
ℏ (xP+vKm) = e−

i
ℏ (Pxt−mvX) = e

i
ℏ (x+vt)mv

2 e−
i
ℏxtP e+

i
ℏvmX (3.48)

where xt = x+ vt. It’s action on eigenstates of position and momentum reads

Um(x, v) |x0⟩ = e
i
ℏmv

(
x0+

x
2+

vt
2

)
|x0 + x+ vt⟩

Um(x, v) |p0⟩ = e
i
ℏ (x+vt)(mv

2 −p0) |p0 +mv⟩ (3.49)

To have a perfect QRF for the group we need orthogonal states that transform under the group regularly

Um(x′, v′) |m;x, v⟩ ∼ |m;x+ x′, v + v′⟩ (3.50)

Intuitively, one would need a state which is at the same time eigenstate of position, serving as a perfect QRF
for translations, and eigenstate of momentum, serving as perfect QRF for boosts. Given a single-particle
Hilbert space, the best one can do is to consider coherent/gaussian states in phase space, which saturates
Heisenberg uncertainty principle σXr

σPr
= ℏ/2.

|ψx0,p0⟩ =
∫
dy ψx0,p0(y) |y⟩ , ψx0,p0(y) = N exp

{
−e

−2r (y − x0)
2

4σ2
+ i

p0 (y − x0)

ℏ

}
(3.51)

We show in example (2.2.3) that, choosing a gaussian state as a seed state,

|ψ(0, 0)⟩ := |ψx0,p0⟩ =
∫
dy ψx0,p0(y) |y⟩ (3.52)

one can construct a meaningful covariant POVM

∫
dvdx |m; v, x⟩⟨m; v, x| = 2π

m

∫
dy |y⟩⟨y| N2

∫
d(x0) e

− (y−x0)2

2σ2 =
2π

m

∫
dy |y⟩⟨y| = 2π

m
I (3.53)

where

Um(x, v) |ψx0,p0⟩ = e
i
ℏmv(

x
2+

vt
2 +x0) |ψx0+x+vt,p0+mv⟩ := e

i
ℏmv(

x
2+

vt
2 +x0) |m;x, v⟩ (3.54)

In [41] a perfect QRF for the (centrally extended) Galilei group is constructed explicitly, showing that,
physically, it corresponds to two single-particles, one serving as a QRF for translations and the other serving
as a QRF for boosts.

Another important example is a spin-j sytem used as a QRF for the rotation group SU(2), that can be found
in [32]. As far as the Hilbert space is finite dimensional d = 2j+1, the system cannot provide a full angular
resolution, the reason being that we do not have an infinite number of orthogonal states |Ω⟩, Ω ∈ SU(2). A
perfect QRF is recovered in the limit of j → ∞.

Other examples of non-perfect QRF are given in the section on quantum clocks (3.6).

3.3 Recovery operation
Let’s consider that Alice prepares the quantum system in some state ρs ∈ B(Hs) and the quantum refer-
ence frame in a "fiducial" state ρr ≡ ρr;e ∈ B(Hr) that takes the role of her classical reference frame in the
configuration xe ∈ X. In order to distinguish the two, let’s call U the unitary action of G on Hs and T the
unitary action on Hr.
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If the composite state of the system and the QRF preparred by alice is ρ = ρr ⊗ ρs, Bob will describe it as
a uniform average, or G-twirl, over all g ∈ G that possibly connect his frame with Alice’s:

ρ̃ = G[ρr ⊗ ρs] =
1

|G|

∫
dg T (g)[ρr]⊗ U(g)[ρs] (3.55)

Again, this state is invariant with respect to the action of the group G, reflecting Bob’s complete ignorance
about the reference frame. However, as anticipated above, Bob can now try to access the information
he misses via a measurement on the QRF and eventually recover the state ρs preparred by Alice. This
procedure is called "recovery operation" [32], and consists of a few steps:

• Alice preparres the reference frame in some "fiducial" state ρr;e = |ψ(e)⟩⟨ψ(e)|, representing the
configuration e of her local frame for the group G.

• Bob makes a measurement on the QRF, which was previously preparred by Alice, by means of a
covariant POVM E(g) for the group G.

• Depending on the measurement outcome g, Bob orients the system accordingly via a unitary U(g).
Then he discards both the QRF and the measurement result.

Explicitly, the "recovery" operation has the form

ρ′s = trr

[∫
dg (E(g)⊗ U(g)) [ρ̃]

]
=

1

|G|

∫
dh

∫
dg trr

[
E(g)T (h)[ρr;e]

]
· Ugh[ρs]

=
1

|G|

∫
dh

∫
dg trr

[
T (h)

†
[Eg] ρr;e

]
· Ugh[ρs]

=
1

|G|

∫
dh

∫
dg trr

[
E(gh)ρr;e

]
· Ugh[ρs]

=

∫
dh

|G|

∫
dg trr

[
Egρr;e

]
· Ug[ρs]

=

∫
dg p(g) · U(g)[ρs] (3.56)

where we use the covariance property of the POVM (2.2) and the invariance of the Haar measure. ρ′s repre-
sents the state of the system in the absence of an external frame, after the QRF has been used as a resource
to overcome the restrictions. In Fig. (3.3.1), we provide a simplified pictorial representation of the recovery
operation.

Notice that the success of the procedure is determined by the Born probability

p(g) ≡ p(g, e) = trr

[
E(g)ρr;e

]
(3.57)

so, ultimately, by how good is the QRF as a resource. If the quantum system Hr is a perfect QRF, then
p(g, e) = δ(ge) and

ρ′s =

∫
dg δ(ge) · U(g)[ρs] = ρs (3.58)

This means Bob has access to all the degrees of freedom of the system. Conversely, if Hr is an imperfect
QRF, Bob will recover:

ρ′s =

∫
dµ(g) U(g)[ρs], dµ(g) = dg p(g) (3.59)

37



This corresponds to a weighted-G-twirl, where instead of a uniform average over all possible group elements
(as in the full G-twirl of eq. (3.14), the average is weighted by the Born probability p(g) = trr [E(g)ρr;e].
The closer p(g) is to a uniform distribution, the less perfect the QRF, and the more mixed the system’s state
becomes.

An important point is that the recovery operation results in a normalizable state ρ′s ∈ B(Hr), even when
the group is non-compact. This is prooved in [43], where the G-twirl is first defined on a compact subgroup
of G, and then extended to the full group after the recovery operation. A key assumption for this result is
the existence of a covariant POVM for the group G.

Figure 3.3.1: A pictorial representation of the recovery operation. On the left, a quantum state ρs defined
with respect to a classical, idealized reference frame x⃗ = (x1, x2), for instance two rods to define a Carte-
sian frame in 2D. In the centre, this frame is replaced by a quantum system ρr;e, a QRF, that we depict as a
generic superposition of "configuration" states x⃗i. On the right, the "recovered state" ρ′s, defined through
a POVM measurement on the QRF. The measurement yields a Born probability pi = tr[Ex⃗i ρr;e]. If this
probability distribution pi is not sharply peaked around a specific configuration x⃗, the recovered state ρ′s
will differ from ρs and acquire mixedness due to the quantum uncertainty in the QRF configuration.

3.3.1 Physical meaning
The detailed group-theoretical analysis that we presented in (3.1.2) only holds for compact groups, which
are completely reducible. For instance, in [32], a spin-j system is used as a QRF for the rotation group
SU(2) and the authors work out the explicit form of the effective decoherence after the recovery operation.

In the case of non-compact groups one can do a much simpler analysis, which however leads to a similar
physical result: the system undergoes decoherence in the eigenbasis of the generators of the transformation.

For instance, considering the group of translations in 1D, the decoherence occurs in the eigenbasis of the
momentum operator, meaning that Alice cannot prepare states in a coherent superposition of momentum-
eigenstates, since these are only defined with respect to her local reference frame. If the state preparred by
Alice is a generic coherent superposition:

ρs =

∫
dpdp′ ϕ(p)ϕ∗(p′) |p⟩⟨p′| (3.60)

The recovery operation (3.3) leads to

ρ′s =

∫
dpdp′ ϕ(p)ϕ∗(p′)

∫
dxp(x)e−ix(p−p

′) |p⟩⟨p′| (3.61)

where p(x) = trr[ρr |x⟩⟨x|]. The diagonal elements are unaffected, since
∫
dxp(x) = 1:

ρ′s(p, p) = |ϕp|2 ; (3.62)

however the off-diagonal terms are multiplied by a factor, potentially reducing coherence:

ρ′s(p, p
′) = ϕ(p)ϕ∗(p′)

(∫
dxp(x)e−ix(p−p

′)

)
(3.63)
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In the extreme cases, if p(x) = δ(x − x0), corresponding to a sharp measurement (see (2.2.1)), no deco-
herence occurs, while if p(x) = 1 (a uniform distribution), the off-diagonal elements vanish, resulting in a
loss of information about the system’s position relative to the reference frame.

In [32] the authors also show that, in the case of a compact group G, the recovery operation can be equiv-
alently represented as a measurement on the relational degrees of freedom (what we called multiplicicy- or
flavour-space) of the system and the QRF.

A similar conclusion can be reached for a generic (unimodular) group G by rephrasing the recovery opera-
tion in terms of relational (G-invariant) observables.

3.4 Relational observables
Bob’s operations Os on the recovered state ρ′s can be recast in terms of G-invariant operations Õ on the
G-invariant state ρ̃. Consider an operator Os ∈ L(Hs), where L(H) denotes the set of linear operators
acting on H. Here, the observable Os could be either a self-adjoint operator or a more general POVM. One
has the following correspondance:

trs [Os ρ
′
s] =

∫
dg trr

[
E(g)ρr

]
trs

[
OsUg [ρs]

]
= trrs

[
ρr ⊗ ρs

∫
dg E(g)⊗ U

†
g [Os]

]
= trrs

[
ρ̃

∫
dg E(g)⊗ U

†
g [Os]

]
:= trrs

[
ρ̃ Õ

]
, (3.64)

where in the last line we use the fact that the expectation value of G-invariant POVMs over invariant or
non-invariant states is the same, as it follows from the invariance of the measure dg and the covariance
property of the POVM (2.2)

trrs

[
ρ̃

∫
dg E(g)⊗ U

†
g [Os]

]
= trrs

[
1

|G|

∫
dh T (h)[ρr]⊗ Uh[ρs]

∫
dg T (g)

†
[E(e)]⊗ U(g)

†
[Os]

]
= trrs

[
ρr ⊗ ρs ·

1

|G|

∫
dh

∫
dg T (gh)

†
[E(e)]⊗ U(gh)

†
[Os]

]
= trrs

[
ρr ⊗ ρs ·

∫
dh

|G|

∫
dg T (g)

†
[E(e)]⊗ U

†
g [Os]

]
. (3.65)

The conclusion is that the non-invariant operation Os Bob performs on ρ′s corresponds to a G-invariant
operation Ẽ on the G-invariant composite state ρ̃. The G-invariant operator (or Dirac operator), which
could be either a POVM or an observable, reads:

Õ =

∫
dg E(g)⊗ U

†
g [Os] =

∫
G

dg T †(g)⊗ U†(g)
[
E(e)⊗Os

]
(3.66)

This is a uniform average over all possible group transformations, applied to the operator E(e) ⊗ Os, and
it represents Bob’s ignorance about the group G with respect to which it is defined.

Operators in this form constitute the so-called relational algebra, which is, in turn, part of10 the G-invariant
(or physical) algebra in the absence of an external reference frame for the group G. The existence of a
covariant POVM allows for a meaningful operational interpretation of these invariant observables.

This becomes clear when the POVM elements are one-dimensional projectors E(e) = |ψ(e)⟩⟨ψ(e)|:
10The full invariant/physical algebra is in general richer, since any quantum system could contain degrees of freedom which are

G-invariant di per se, called multiplicity degrees of freedom (see the previous discussion 3.1.2).
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Õ =

∫
G

dg T †(g)⊗ U†(g)
[
|ψ(e)⟩⟨ψ(e)| ⊗Os

]
(3.67)

We can interpret this as the group average of the operator |ψ(e)⟩⟨ψ(e)| ⊗Os, which is the system’s observ-
able Os conditioned on the QRF being in the pure state |ψ(e)⟩⟨ψ(e)|. This is the essence of a relational
observable.

Physically, eq.(3.72) tells us that the observables that Bob can effectively access to are the relational
observables between the system and the QRF, which do not depend on any external frame of reference.

Example 3.4.1. Let’s consider the simplest example of two single particles Hr = Hs = L2(R), where Hr

is used as QRF for the one dimensional group of translations (see the previous example 3.2.3). As system’s
observable we consider the self-adjoint position operator Xs =

∫
dx x |x⟩⟨x|s. The corresponding Dirac

observable is

X̃ =

∫
dx U†(x)

[
|0⟩⟨0|r ⊗Xs

]
(3.68)

where U(x)[·] = U(x)[·]U †(x) and

U(x) = e−ixPr ⊗ e−ixPs (3.69)

is the translation operator acting both on the system and the QRF. We then have:

X̃ =

∫
dx |−x⟩⟨−x|r ⊗ (Xs + x) = Xs ⊗ Idr − Ids ⊗Xr ≡ Xs −Xr (3.70)

This is the relative position between the system and the QRF.

Notice that eq. 3.72 toghether with eq. 3.3 shows how, in general, the relative algebra Õ does not contain
the same information of the system’s algebra Os in the presence of an external frame

trs [Os ρ
′
s] = trrs

[
ρr ⊗ ρs Õ

]
(3.71)

Physically, to access this information now we need to perform a measurement on the QRF as well. This
means that the accessible information with- or without an external frame coincide only if the QRF is perfect,
in which case ρs = ρ′s and therefore

trs [Os ρs] = trrs

[
ρr ⊗ ρs Õ

]
(3.72)

3.5 Summary
To sum up, standard quantum mechanics assumes an external, idealized reference frame to define states
and observables. However, this "absolute" frame may be either practically unavailable, as shown in the
quantum-information-theoretic approach, or in principle unavailable due to the presence of symmetries. In
such cases, a well-defined quantum mechanical description relies on relational observables (3.66), where
some subsystems serve as (quantum) reference frames for the others.

This relational description does not, in general, align with the standard one, as all information must be
extracted relative to the QRF. If the QRF is imperfect, meaning it lacks the degrees of freedom to fully
simulate an absolute reference frame, subsystems experience decoherence, indicating that some information
is lost.
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3.6 Quantum Clocks
The concept of time undergoes significant changes as we move towards more fundamental physical theories.
In non-relativistic mechanics time is considered absolute, flowing at the same rate for all physical system.
Special relativity introduces the first major shift: time flows at the same rate only for inertial observers
moving at the same velocity, rendering the concept of simultaneity no longer absolute. Mathematically the
unique time t is replaced by a three-parameter family of times tv⃗ . This means there exists a different notion
of time for each Lorentz observer. Nevertheless, for each of these observers, the dynamics can be expressed
as evolution in a single time parameter tv⃗ , which is a global observable with measurable metric properties 11.

General Relativity radically changes this view: the only metric and measurable notion of time is the proper
time, which is a local quantity determined by the gravitational field, which is itself a dynamical entity:

dτ =
√
gµν(x)dxµdxν (3.73)

The dynamics can still be expressed as evolution in a single time coordinate x0 which, however, lacks met-
ric properties and it’s not directly observable: expressing time evolution in terms of an external background
time is physically meaningless. Instead, time evolution must be extracted in a relational manner (see also
chapter 5 and the "hole argument" in appendix 5.A).

Einstein’s equations determine how observable quantities evolve relative to one another; therefore one can
always choose one of them, say Tc, and express the dynamics of the other quantities as function of it. This
notion of time is called clock-time. Depending on the physical scenario, one can consider a matter clock in
an operational laboratory situation, as well as the dynamical size of the universe in a cosmological setting,
which can serve as "cosmic time" 12.

This fact gives rise to the so called "problem of time", which originates from early research on quantum
gravity. Mathematically, the hamiltonian of a generally covariant theory is constrained to vanish in the
absence of boundaries, leading to the famous Wheeler-de-Witt equation [1],[5]

H |ψ⟩ = 0 (3.74)

This equation reflects the symmetry under time parametrization: an external parameter x0 is physically
maningless.

Assuming the principle of general covariance, time evolution must be extracted relationally, which involves
selecting some quantized degrees of freedom - a quantum clock - to serve as internal reference frame for
time, relative to which the remaining quantum degrees of freedom evolve [3], [16]. Thus, a meaningful way
to represent time observables in quantum theory is necessary.

An operational approach to time encounters several difficulties in quantum theory. The primary challenge,
as first noted by Pauli [38], is that there cannot exist a self-adjoint operator Tc canonically conjugate
to a bounded, self-adjoint hamiltonian Hc. This observation was refined by Unruh and Wald [44], who
showed that for realistic quantum clock, with a bounded hamiltonian, if a self-adjoint time-operator exists,
Schrödinger equations leads to a non zero probability of running backward, meaning that other observables
would thereby appear to be multivalued at a given reading of the clock.

In this section, we introduce the concept of the quantum time observable, which overcomes the limitations
of Pauli’s theorem by relaxing the assumption that an observable must be represented by a self-adjoint op-
erator, and adopting instead the more general mathematical of POVM (Positive Operator-Valued Measure),
which is standard in quantum information theory (see (2.2.2)). This allows us to define time observables
with a probabilistic interpretation, even when working with bounded hamiltonians. We will introduce this
framework, following [17], then we will analyze different examples of quantum clocks, ranging from sys-
tems with continuous spectra (ideal clocks) to more realistic discrete-spectrum clocks (like spin systems).

11With metric properties we mean that time intervals can be compared to each other.
12However, clock time behaves as a "good" clock only in certain states or for a limited duration, lacking general temporal globality.

For instance the size of the universe ceases to be a good time variable when the universe recollapses, as far as real matter clocks usually
have a periodic nature.
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3.6.1 Quantum time-observable
In principle, any dynamical quantum system H can be considered as a QRF for time, or quantum clock. In
particular, we consider as group of time translations the one dimensional group G generated by its hamil-
tonian Hc

13, whose unitary representation on H is U(t) = exp
{
− i

ℏ tHc

}
. As we will analyze in the

following paragraphs, depending on the hamiltonian’s spectrum, the group G can be either compact or non-
compact.

Instead of looking for a self-adjoint time observable, which in general does not exist, we look for a more
general covariant time-POVM E : B(G) → B(H) 14, which satisfies

µ

∫
G

dt E(t) = I U(t′)†E(t)U(t′) = E(t+ t′) (3.75)

where µ is some normalization constant. Furthermore, searching for an optimal POVM (see (2.2)), we
require its elements to consist of one dimensional projectors over G-states which are in general not normal-
izable nor orthogonal

E(t) = U(t)† |0⟩⟨0|U(t) = |−t⟩⟨−t| (3.76)

where µ is some normalization constant. The "seed state" |0⟩ is arbitrary: the only constraint is the covari-
ance property which, in turns, implies

U(t) |0⟩ = |t⟩ (3.77)

As we show in appendix (3.A) the POVM can be described by a single real number only if the spectrum
of H is non degenerate. We then focus on the simplest cases of a non-degenerate spectrum of H which is
either fully continuous σc or fully discrete σd.

Seed state

Considering a fully continuous spectrum, the most general seed state is

|0⟩ =
∫
σc

dϵ ϕ(ϵ) |ϵ⟩ (3.78)

where |ϕϵ| is an arbitrary complex function. The covariance property (3.75) requires

µ

∫
dt

∫
σc

dϵdϵ′ e−
i
ℏ t(ϵ−ϵ

′)ϕϵϕ
′∗
ϵ |ϵ⟩⟨ϵ′| = 2πµ

∫
σc

dϵ |ϕ(ϵ)|2 |ϵ⟩⟨ϵ| = I (3.79)

To have an identity on the whole Hilbert space H = spanσc
{|ϵ⟩} it is required that |ϕ(ϵ)|2 = 1 or, equiv-

alently ϕϵ = eig(ϵ), where g(ϵ) is an arbitrary real function. 15 In this case the normalization constant is
fixed to µ = 1

2π .

Notice that a similar analysis can be done in the case of a discrete spectrum, where the most general seed
state would be

|0⟩ =
∑
σd

ci |ϵi⟩ (3.80)

and ci in principle an arbitrary complex number.

13any self-adjoint operator J , by Stone’s theorem, generates a one-dimensional group, whose unitary action is U(g) = exp{−igJ}
14Formally, the map has domain on the space of real values G ∈ G that parametrize the group.
15As it is shown in ([17]), this reflects the fact that in a classical theory a canonical time observable is defined up to an arbitrary real

function of the hamiltonian.
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Time operator

One can define a time-operator as the first-moment-operator of the covariant time observable E

Tc = µ

∫
G

dt t |t⟩⟨t| (3.81)

which, in general, is symmetric but not self-adjoint, since the clock’s states are not necessarily orthogonal.
This allows to overcome the main issue with a time-observable in quantum theory: a self-adjoint time
observable is just a special case in which the time-states |t⟩ form a complete basis of H, which occurs only
for unphysical hamiltonians, as we show below.

3.6.2 Continuous spectrum clock
The spectral decomposition of a hamiltonian with a continuous (non deg.) spectrum is

Hc =

∫
σc

dϵ ϵ |ϵ⟩⟨ϵ| (3.82)

Non-compact group

First of all, the one dimensional group G generated by an hamiltonian with continuous spectrum is neces-
sarily non compact and G = R. This is becouse if the group is compact, there exists some group element,
parametrized by some tmax, such that

U(tmax) = U(0) = eiϕ I, ϕ ∈ [0, 2π) (3.83)

where the phase ϕ ∈ account that states are rays in the Hilbert space. Then, the spectral decomposition

U(t) =

∫
σc

dϵ e−
i
ℏ ϵt |ϵ⟩⟨ϵ| , I =

∫
σc

dϵ |ϵ⟩⟨ϵ| (3.84)

leads to

∀ϵ ∈ σc : e−
i
ℏ ϵtmax = eiϕ ⇐⇒ ∀ϵ ∈ σc : ϵ =

ϕ

tmax
+

2π

tmax
mϵ, mϵ ∈ Z (3.85)

which requires the spectrum to be discrete and rational.

Clock states

The most general clock state reads

|t⟩ =
∫
σc

dϵe−
i
ℏ ϵteig(ϵ) |ϵ⟩ (3.86)

and the overlap of two clock states is given by

⟨t|t′⟩ =
∫
σc

dϵ eiϵ(t−t
′) = χ(t− t′) (3.87)

where we define

χ(x) =


2πδ(x), σc = R
eiϵminx

(
πδ(x) + iP( 1x )

)
, σc = (ϵmin,∞)

i e
iϵminx−eiϵmaxx

x , σc = (ϵmin, ϵmax)

(3.88)

Where P denotes the Cauchy principal value.
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Ideal clock

From eq. (3.87) it follows that the clock states chosen above are orthogonal only if the spectrum is un-
bounded σc = R. In this case the POVM corresponds to a PVM (Projection Valued Measure)(2.2.1) and
the time operator Tc is self-adjoint and canonically conjugate to the hamiltonian Hc. In fact we have

U(t)† Tc U(t) = µ

∫
R
dt′ t′

(
U(t)† |t′⟩⟨t′|U(t)

)
= µ

∫
R
dt′ t′ (|t′ − t⟩⟨t′ − t|) = (3.89)

= µ

∫
R
dt′ t′ |t′⟩⟨t′|+ t µ

∫
R
dt′ |t′⟩⟨t′| = Tc + t I (3.90)

and differentiating with respect to t we obtain the canonical commutation relations

[Tc, Hc] = i I (3.91)

The states in the representation of the canonical variables are in fact related by a Fourier transform

|h⟩ = 1

2π

∫
R
dte−

i
ℏ g(h)eiht |t⟩ , |t⟩ =

∫
R
dϵeig(h)e−

i
ℏ ϵt |h⟩ (3.92)

We refer to these quantum clocks, which are perfect QRFs with H ≃ L2(R) and with a self-adjoint time
operator, as ideal clocks.

3.6.3 Discrete spectrum clock
The spectral decomposition of the hamiltonian is

Hc =
∑
j

ϵj |ϵj⟩⟨ϵj | (3.93)

Compact group

In the case of a (non deg.) discrete spectrum σd one is forced to consider a compact group G. The reason is
that if the group is non compact, we’ve shown above that G = R, in which case the completeness relation
diverges. In fact, given the clock states

|t⟩ = e−
i
ℏ tHc |0⟩ =

∑
j∈σd

e−
i
ℏ ϵjteig(ϵj) |ϵj⟩ , (3.94)

one has:

µ

∫
G

dt |t⟩⟨t| = µ
∑
i,j

|ϵi⟩⟨ϵj | ei(g(ϵi)−g(ϵj)
(∫

G

dte−
i
ℏ t(ϵi−ϵj)

)
(3.95)

= µ
∑
i,j

|ϵi⟩⟨ϵj | ei(g(ϵi)−g(ϵj)
(
δij |G|

)
= µ |G| . (3.96)

Therefore we can restrict to a unitary generator U(t) = e−
i
ℏ tHc which is periodic with smallest period τ ,

so that I = e−
i
ℏ τHc , t ∈ [0, τ ] and the normalization constant is fixed to µ = 1

|G| = 1
τ . Moreover, all

eigenvalues can be written as ϵj = j 2πτ with j ∈ Z.
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Clock states

The inner product between clock states (3.94) reads

⟨t|t′⟩ =
∑
j

e−
i
ℏ (t−t′) 2π

τ j , (3.97)

and it yields τδ(t− t′) only if all integers are present in the eigenvalue spectrum 16, e.g. σd = Z. Therefore,
both if the hamiltonian’s spectrum is continuous or discrete, one can have orthogonal clock states (i.e. a
perfect QRF) only if it is unbounded.

Considering a general discrete spectrum, one has:

Tc =
1

τ

∫ τ

0

dt t |t⟩⟨t| = 1

τ

∑
i

|ϵi⟩⟨ϵi|
∫ τ

0

dt t+
1

τ

∑
i̸=j

|ϵi⟩⟨ϵj |
∫ τ

0

dt te−
i
ℏ t(ϵi−ϵj)ei(g(ϵi)−g(ϵj)) =

(3.98)

=
τ

2
I+ i

∑
i ̸=j

ei(g(ϵi)−g(ϵj))

ϵi − ϵj
|ϵi⟩⟨ϵj | , (3.99)

so we find that the clock state are not eigenstates of the time operator

Tc |t⟩ =
τ

2
|t⟩+ i

∑
i ̸=j

eig(ϵi)

ϵi − ϵj
e−

i
ℏ ϵjt |ϵi⟩ (3.100)

The commutation relation between T and Hc reads

[Tc, Hc] = −i
∑
i ̸=j

eig(ϵi)−g(ϵj) |ϵi⟩⟨ϵj | (3.101)

and, substituting

|τ⟩⟨τ | =
∑
i,j

eig(ϵi)−g(ϵj) |ϵi⟩⟨ϵj | = I+
∑
i ̸=j

eig(ϵi)−g(ϵj) |ϵi⟩⟨ϵj | , (3.102)

one gets:

[Tc, Hc] = i (I− |τ⟩⟨τ |) . (3.103)

So in general the standard commutation relations are satisfied only on a subspace of the whole Hilbert space.
The relation between the clock’s states and the energy eigenstates now reads:

|t⟩ =
∑
i∈σd

e−
i
ℏ ϵiteig(ϵi) |ϵi⟩ |ϵi⟩ =

1

τ

∫ τ

0

dte−
i
ℏ g(ϵi)e−

i
ℏ tϵi |t⟩ . (3.104)

16as follows from the serie reprentation of the dirac delta, which is δ(x− a) =
∑+∞

k=−∞ e−
i
ℏ k(x−a)
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3.6.4 Examples
In this section, we provide examples of some of the most widely used models for a quantum clock.

Example 3.6.1. - Ideal clock. The simplest realization an unbounded and continuous spectrum, where
H = L2(R), is a single ultra-realtivistic particle, for which

Hc = cP = c

∫
R
p |p⟩⟨p| (3.105)

the clock’s states are fourier transform of momentum eigenstates, i.e. position eigenstates

|x⟩ =
∫
R
dpe−

i
ℏpx |p⟩ (3.106)

where we fixed the arbitrary phase g(p) = 0. The time operator is proportional to the position operator

Tc =
X

c
+ aI (3.107)

where the arbitrary constant a can be fixed in order to have ⟨Tc⟩ (0) = 0.

This example represents the archetype of an ideal quantum clock, where the time operator Tc is self-adjoint,
and the clock states are orthogonal. This orthogonality allows for perfect time measurements.

Example 3.6.2. - Salecker-Wigner-Peres clock. A common example of a discrete spectrum clock a spin-j
system with a 2j + 1 dimensional hilbert space. The hamiltonian is

Hc =

d−1∑
m=0

mω |m⟩⟨m| (3.108)

with m ∈ N and the general clock’s states are

|t⟩ = µ

d−1∑
m=0

e−iωmt |m⟩ (3.109)

We see that, in general, they are not orthogonal:

⟨t|t′⟩ = µ2
d−1∑
m=0

e−i2π
m
d (t−t′) (3.110)

However, there’s a finite subset of them ti =
2π
ωd i, i = 0, ..d − 1 which are orthogonal and form a proper

basis of the Hilbert space

|ti⟩ = µ

d−1∑
m=0

e−i2π
m
d i |m⟩ (3.111)

In fact, fixing µ = 1√
d

⟨ti|tj⟩ = µ2
d−1∑
m=0

e−i2π
m
d (i−j) = δi,j (3.112)

This is usually referred as time basis. The optimal POVM and the clock operator can be constructed using
this basis:
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
Ei = |ti⟩⟨ti| →

∑d−1
i=0 Ei =

∑d−1
m,n=0 |n⟩⟨m| 1

d

∑d−1
i=0 e

−i2π ω
d (n−m)i = I

Tc =
∑d−1
i=0 ti |ti⟩⟨ti|

(3.113)

This is an example of an imperfect QRF (3.2.4) for the compact group G generated by the hamiltonian
(3.108).

The time operator does not obey canonical commutation relations, since:

[Tc, Hc] =
1√
d

d−1∑
i,m=0

timω (|ti⟩⟨m| ⟨ti|m⟩ − |m⟩⟨ti| ⟨m|ti⟩) (3.114)

For instance, one immediately see that

⟨n| [Tc, Hc] |n⟩ = ⟨ti| [Tc, Hc] |ti⟩ = 0 (3.115)

It turns out [45] that the canonical commutation relation can be approximately satisfied, with an expo-
nentially small error in the clock’s dimension, if one restricts to the space spanned by complex gaussian
superposition of clock states.

|ψ(m0)⟩ =
d−1∑
i=0

G(m0, σ) |ti⟩ (3.116)

where G(m0, σ) is a complex gaussian distribution. These states are referred as quasi-ideal clock states.

In contrast, to the previous example, the Salecker-Wigner-Peres clock represents a more common real-world
example of a discrete spectrum clock. Unlike the ultra-relativistic particle, this clock is imperfect because
its hamiltonian spectrum is discrete, leading to non-orthogonal clock states. This imperfection reflects the
general limitation that many quantum systems face: considering real systems, with discrete energy levels
or a continuous but bounded energy spectrum, time cannot be measured perfectly, and the covariant time-
POVMs are less precise.

Example 3.6.3. - QBIT-phase clock. A particular case of the previous example is a spin j = 1/2 or
2-level system, which is the symplest model of a quantum clock. The hamiltonian is

Hc =
ℏω
2

(I− σz) (3.117)

and the clock’s states

|t⟩ = 1√
2

(
|0⟩+ e−iωt |1⟩

)
(3.118)

with t ∈ [0, 2πω ]. Physically they can be preparred by putting an atom in a coherent superposition |γ+⟩ of
its two hyperfine energy levels, then letting it evolve freely. The optimal covariant POVM is:

E(t) =
ω

π
|t⟩⟨t| , (3.119)

while the corresponding time operator is:

Tc =
ω

π

∫ 2π
ω

0

dt t |t⟩⟨t| = 1

ω
(πI+ σy) . (3.120)

Therefore one has
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[Tc, Hc] =
1

2
[σz, σy] = −iσx, (3.121)

so the canonical commutation relations are satisfied only on the subspace generated by the state |γ−⟩, which
is the eigenstate of σx with eigenvalue −1. One can also see this by looking at the scalar product of clock’s
states: they are orthogonal only if the time elapsed is t− t′ = π

ω

⟨t|t′⟩ = 1

2

(
1 + e−iωt(t

′−t)
)
= e−iω

(t′−t)
2 cos

(
ω
(t′ − t)

2

)
. (3.122)

Physically this reflects the fact that one can extract the information about the time elapsed only when the
initial state has evolved into a perfectly distinguishable state. Starting form the state |γ+⟩ one has then
exact information about the time elapsed after a half-period t⊥ = π

ω , when the state is |γ−⟩. Therefore the
"orthogonalization time" t⊥, which is inversely proportional to the energy spacing ∆E = ℏω, determines
the clock’s precision.

This statement can be made even more precise. Operationally, the precision in time ∆T can be defined
as the shortest timescale we are able to observe. Thus, given any dynamical observable O, by means of
which we "observe" the flow of time, we can define ∆T as the time required by the expectation value ⟨O⟩
to change of a standard deviation σ2

O. In our case, consider the observable Tc of eq. (3.120), so that we
define precision in time measurements as:

∆T =
σTc

d ⟨Tc⟩ /dt
(3.123)

Using σy |0⟩ = −i |1⟩ and σy |1⟩ = i |0⟩ we can easily compute

⟨Tc⟩ =
1

ω
(π + sin(ωt))〈

T 2
c

〉
=

1

ω2

(
1 + π2 + 2π sin(ωt)

)
(3.124)

So we can read out the standard deviation

σ2
Tc

=
〈
T 2
c

〉
− ⟨Tc⟩2 =

1

ω2

(
1− sin2(ωt)

)
=

1

ω2
cos2(ωt) (3.125)

Thus, the "precision" of the clock (3.123) is

∆T =
1

ω
=

ℏ
∆E

(3.126)

This limitation is overcome in practice by considering a sample of clocks and performing a large serie of
measurements. The information about the time elapsed is extracted by looking at the distribution of the
outcomes:

|ψ(t)⟩ = 1√
2
(|0⟩+ e−iΩt |1⟩) = 1

2
((1 + e−iωt) |γ+⟩+ (1− e−iωt) |γ−⟩) (3.127)

so one has p+(t) = | ⟨+|ψ(t)⟩ |2 = cos2(ωt2 ) and similarly p−(t) = | ⟨−|ψ(t)⟩ |2 = sin2(ωt2 ).

The QBIT-phase clock offers the simplest and most accessible model of a quantum clock, involving a two-
level system. Its simplicity makes it an excellent pedagogical example, showing how even a basic system
can act as a quantum clock. This example reinforces the concept that even for two-level systems, time
can be represented using a POVM, although the states are non-orthogonal and measurement precision is
limited. The QBIT clock also illustrates a key principle: the precision of quantum clocks is tied to the
system’s "energy spread" of clock’s states (see chapter 5.2).
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3.6.5 Summary
One aspect of the "problem of time" in quantum theory is the difficulty of representing time as an observ-
able, since a self-adjoint time operator only exists for unphysical systems with an unbounded spectrum
hamiltonian. This issue is resolved by defining the time observable using a more general covariant POVM
(see 2.61), which includes the unphysical operator as a special case.

A quantum clock can then be defined as a generic quantum system in a dynamical state, i.e., in a non-trivial
superposition of energy eigenstates. The broader the superposition, i.e. the larger the energy spread, the
more distinguishable the clock states become through the covariant time POVM.

An infinitely precise clock, or ideal clock, corresponds to a Fourier transform of energy eigenstates, which
in turn requires an unbounded spectrum. Only in this ideal case can one define sharp time measurements
(PVMs) capable of distinguishing every instant of time.

In the more general case, a clock is represented by a finite, often discrete, superposition of energy eigen-
states. The states of these clocks are not fully distinguishable, so one must rely on unsharp measurements
(or POVM, see 2.2.2) with finite resolution.
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Appendix

3.A Time POVM for a non-degenerate spectrum
Consider a degenerate hamiltionian

Hc |ϵ, α⟩ = ϵ |ϵ, α⟩ , I =
∑
ϵ,α

|ϵ, α⟩⟨ϵ, α| (3.128)

From eq. (3.77) follows that

|t⟩ = U(t) |0⟩ (3.129)

⟨ϵα, t|ϵα, t⟩ = e−
i
ℏ ϵt ⟨ϵα, 0|ϵα, 0⟩ (3.130)

Now we can ask whether it is possible to satisfy the completeness property of the POVM:

∫
µ |t⟩⟨t| =

∑
h,h′

∫
dtµe−

i
ℏ t(h−h

′)

∑
α,α′

|ϵα⟩ ⟨ϵα|0⟩ ⟨0|h′α′⟩ ⟨h′α′|

 (3.131)

Integration over dt yields a δh,h′ , which simplifies the previous expression to

∫
µ |t⟩⟨t| =

∑
h

∑
α,α′

|ϵα⟩ ⟨ϵα|0⟩ ⟨0|ϵα′⟩ ⟨ϵα′|

 (3.132)

The only way to get the identity is requiring

⟨ϵα|0⟩ ⟨0|ϵα′⟩ = δα,α′ ∀h (3.133)

which can only be satisfied if the spectrum is non-degenerate. Only in this case one can hope to find an
"optimal" measurement in terms of a POVM described by a single real number t.
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Chapter 4

Quantum clocks in general relativity

To date, all experiments in regimes where both quantum mechanics and general relativity are relevant are
fully compatible with the non-metric, Newtonian gravity—despite its thorough disproof for classical sys-
tems. For instance, the first experiment measuring the effect of gravity on a quantum system was performed
by Colella, Overhauser, and Werner (COW) [46]. In this experiment, single neutrons travel in a superpo-
sition of paths at different heights above the Earth, and thus experience different gravitational potentials.
The superposed wavefunctions acquire a relative phase, which is measured from the interference pattern
when the amplitudes are recombined. Such effects are fully accounted for by a non-relativistic Schrödinger
equation with a Newtonian gravitational potential. At the same time, in all tests of general relativity so far,
the relevant observations have been explained within the laws of classical physics. A good example is the
Pound-Rebka experiment [47], where gravitational redshift on gamma rays was measured. This observation
can be fully described within classical electromagnetism in curved spacetime. Thus, the regime where both
classical general relativity and quantum mechanics are at play has not yet been subjected to experimental
verification.

The most common approach to investigate effects where both quantum mechanics and general relativity
are crucial is to look at high-energy quantum field theory in curved spacetime, predicting phenomena like
Hawking radiation or the effects of spacetime curvature on ultrarelativistic particles. However, these phe-
nomena lie beyond current experimental capabilities.

A parallel approach is to search for testable effects on Earth, which means in the accessible regime of weak
gravitational fields and low-velocities, i.e. where only the first special- and general-relativistic corrections
to Newtonian mechanics play a role. This allows to work in the so called one-particle regime, where labo-
ratory experiments can directly test quantum systems in superpositions.

One verified relativistic effect in this regime is time dilation, although it has not yet been tested when quan-
tum effects are also relevant. The theoretical framework of quantum clocks allows us to explore whether
new 1 physical effects emerge when general relativistic time dilation interacts with quantum systems that
exhibit features such as coherence or entanglement.

In this chapter, we introduce the framework of quantum clocks in the low-velocity and weak-gravitational
field regime, following the work in [24]. We explore how time dilation couples internal and external degrees
of freedom in a quantum clock, leading to decoherence of the clock’s position. Extending this to composite
systems with dynamical internal degrees of freedom (e.g., the vibrational modes of molecules) time dilation
provides a universal decoherence mechanism.

4.1 Composite particles as ideal clocks
A fundamental concept in general relativity is that of an ideal clock, which satisfies the "clock hypothesis."
According to this hypothesis, a clock correlates with the metric field such that its time-readings coincide
with the proper time predicted by the theory. In other words, ideal clocks measure proper time along their
trajectories.

1here "new" means that these effects should not be explainable in the framework of classic relativistic clocks, nor in that of quantum
clocks in a Newtonian spacetime.
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The simplest model for a material clock in general relativity is a point-like particle with an internal structure
that serves as a reference for time evolution. Examples include the internal constituents of a molecule, the
structure of an atom, or the spin of a quantum particle. Under certain approximations, this simple model
describes a physical realization of an ideal clock in General Realtivity.

4.1.1 hamiltonian
Consider a composite particle in an arbitrary coordinate system, following a wordline xµ(t) (where t is an
arbitrary parameter) and four-momentum pµ(x) = (p0(x), pj(x)), where H = cp0 is the energy compo-
nent. In the coordinates x′µ at which the particle is at rest, the four-momentum is p′µ(x

′) = (p′0(x
′), 0),

where cp′0 is the total rest energy, including both the rest mass-energy mc2 and the internal (or clock′s-)
hamiltonian Hc, describing the dynamics of the internal degrees of freedom.

cp′0 = Hrest = mc2 +Hc :=Mc2 (4.1)

Since the scalar product pµpµ is a coordinate-invariant quantity, it follows that p
′2
0 g

00 = pµp
µ. Hence the

energy component in an arbitrary reference frame reads

p0 =

√
1

g00
(
−pipjgij − g′00p

′2
0

)
(4.2)

Substituting g′00 = −1 and considering a static metric, where g00 = 1/g00 , we get the total hamiltonian
for a composite particle

H =
√
−g00 (c2pipjgij +H2

rest) (4.3)

4.1.2 Lagrangian
We now turn to the Lagrangian formalism. Using canonical variables (xi, pi), i = 1, ...3 for the kinematical
degrees of freedom and (qk, wk), k = 1, ..., N for the internal N degrees of freedom, the Lagrangian is

L =

3∑
j=1

pj
∂H

∂pj
+

N∑
k=1

wk
∂H

∂wk
−H (4.4)

Notice that the dependence on the internal degrees of freedom is only in Hrest = mc2 +Hc. The explicit
computation is reported in appedix (4.A). The result is

L = τ̇Lrest, τ̇ =
√
−gµν ẋµẋν =

∂H

∂Hrest
(4.5)

where ẋµ = ∂H
∂pµ

and, using the definition of rest hamiltonian 4.1, we have

Lrest =

N∑
k=1

wk
∂Hrest

∂wk
−Hrest =

N∑
k=1

wk
∂Hc

∂wk
−Hc −mc2 := Lc −mc2 (4.6)

This is the generalization of the standard lagrangian of a structureless particle L = −τ̇mc2.

Substituting this result into the equations of motion for the internal degrees of freedom

q̇k =
∂H

∂wk
=

∂H

∂Hrest

∂Hrest

∂wk
= τ̇

∂Hrest

∂wk
⇐⇒ dqk

dτ
=
∂Hrest

∂wk
(4.7)

This shows that the internal degrees of freedom evolve with respect to the proper time τ , regardless of the
external coordinates. In other worlds, one has

L
(
x,
dx

xt
, q,

dq

dτ

)
=
√
−gµν(x)ẋµẋν Lrest

(
qk,

dqk

dτ

)
≡ τ̇Lrest (4.8)
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4.1.3 Time dilation - clock’s hypothesis
Eq. 4.7 shows that the evolution of the internal degrees of freedom with respect to an arbitrary parameter t
is "redshifted", or "time dilated", by a factor τ̇ = dτ

dt . More generally, given any internal observable Oi, its
evolution with respect to the time parameter t is given by

dOi
dt

= {Oi, H} = {Oi, Hrest}
∂H

∂Hrest
= {Oi, Hrest}τ̇ ≡ {Oi, Hrestτ̇} (4.9)

where {·, ·} are the classical Poisson brackets and we use the fact that Oi = Oi(q
k, q̇k) only depends on

the internal degrees of freedom, so that only the internal hamiltonian Hrest contributes.

This shows that, for an observer using a time parameter t, the system’s internal evolution is time-dilated
by a universal factor τ̇ , or equivalently, the internal hamiltonian is redshifted by the same factor. Time
dilation can thus be understood as the result of interactions between internal (Hrest) and external (τ̇ ) degrees
of freedom, which ultimately arises from the general relativistic description of a composite system.

By clarifying this relationship, we can now explore how two systems following different trajectories in
spacetime experience different amounts of proper time, leading to observable differences in their internal
clock’s evolution. This insight is crucial for understanding time dilation in quantum systems.

For simplicity, we consider the internal "velocity" to be approximately constant, so that

dOi
dτ

= {Oi, Hrest} ≈ vOi (4.10)

Then, the above expression shows that the internal degrees of freedom of the system moving along a world
line γ evolve as if the time elapsed during this evolution was the proper lenght of the world line τγ =

∫
γ
dτ

∆γOi =

∫
γ

Ȯidt = vOi

∫
γ

dτ = vOiτγ (4.11)

Thus, considering two different trajectories, one has

∫
γ1

Ȯidt−
∫
γ2

Ȯidt = vOi (τγ1 − τγ2) (4.12)

In this precise sense we can regard a composite particle as an effective realization of an ideal clock in
General Relativity, which satisfies the "clock’s hypothesis."

4.1.4 Limit of a system of N relativistic particles
In [24], it is shown how a composite particle with the hamiltonian in equation (4.3) can be derived as the
limit of a system of N relativistic particles, which are sufficiently localized in spacetime. At a qualitative
level, the condition required is that a single coordinate chart must exist, covering all the regions occupied
by the N particles, in which the metric is approximately flat. This happens when the relative distances
between the particles are sufficiently small, such that variations of the metric over their spatial extension
can be neglected.

In this case, one can assign a single position degree of freedom to the center-of-mass of the system, which
describes a single world line. Strictly speaking, it is not necessary for all constituents to follow exactly the
same world line or move with the same velocity. Rather, the key requirement is that there is no considerable
time dilation between the particles.

This provides, on one hand, a condition for how localized the particles must be, so that variations of the
metric are negligible, and on the other hand, a condition on the scale of the total energy/momentum of the
system. More details can be found in the cited reference.
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4.2 Low-energy hamiltonian
A relativistic description of a single quantum particle is meaningful only at low energies, in the so-called
"one-particle regime", i.e. where the effects of quantum field theory (QFT) related to particle creation and
annihilation are negligible. In this regime, an effective description of the dynamics can be given by a Taylor
expansion of the hamiltonian (4.3) in powers of (p/mc) and (ϕ/c2), where ϕ is the gravitational field.

Considering a static metric, the hamiltonian in a generic coordinate system reads:

H =
√
−g00 (c2pipjgij +Mc2) (4.13)

where Mc2 = mc2 + Hc and Hc is the internal hamiltonian. First, we expand in powers of p/mc up to
second order

H =
√
−g00

(
Mc2 +

p2

2M

)
(4.14)

In the regime of weak gravitational fields, we describe the metric in the second-order post-Newtonian form,
which can be derived from a Taylor expansion of Schwarzschild’s metric in isotropic coordinates. This
is shown in Appendix (4.B). Choosing the coordinates of a static observer at rest at r = ∞, the post-
Newtonian metric reads

ds2 ≈ −c2dt2
(
1 + 2

ϕ(r)

c2
+ 2

ϕ(r)2

c4

)
+

(
1− 2

ϕ(r)

c2

)(
dr2 + r2dΩ2

)
(4.15)

Expanding the metric further

√
−g00 ≈

(
1 +

ϕ(r)

c2
+
ϕ(r)2

2c4

)
(4.16)

p2 = pipjg
ij = p2

(
1 + 2

ϕ(r)

c2

)
(4.17)

and neglecting terms of order p2ϕ(r)2/c4, p4/c4, ϕ(r)2/c4 or higher, the hamiltonian becomes

H =Mc2 +Mϕ(r) +
Mϕ(r)2

2c2
+

p2

2M
− 1

8

p4

M3c2
+

3

2

p2ϕ(r)

Mc2
(4.18)

Then, if the energy scale of the internal dinamics Hc is much smaller then the rest-mass mc2 energy, we
can expand the internal mass/energy M = m+Hc/c

2 in powers of Hc/c
2. At first order, the hamiltonian

reads:

H = Hcm +Hc

(
1 +

ϕ(r)

c2
− p2

2m2c2

)
(4.19)

where Hcm is the hamiltonian of the "centre of mass":

Hcm = mc2 +mϕ(r) +
mϕ(r)2

2c2
+

p2

2m
− p4

8m3c2
+

3

2

p2ϕ(r)

mc2
(4.20)

The main result is the coupling between the internal and external degrees of freedom corresponding to the
special and general relativistic time dilation factor 2, which (at lowest order) reads:

2Formally, to have an exact correspondance with the time dilation factor, which is given in terms of the configuration space
variables, one should adopt the "Routhian" formalism, which is a partial Legendre transform of the Lagrangian w.r.t. a subset of the
degrees of freedom. In particular, one can use the hamiltonian formalism for the internal d.o.f. and the Lagrangian formalism for the
external d.o.f. More details about this topic can be found in [24]

54



τ̇ =
√
−gµν ẋµẋν ≈

(
1 +

ϕ(r)

c2
− ẋ2

2c2

)
. (4.21)

The physical interpretation is clear: in an arbitrary "external" reference frame with time coordinate t, the
time scale of the internal dynamics will be subjected to the time dilation effect or, equivalently, the internal
energy will be redshifted. Notice that this coupling is entirely independent on the nature of the binding/in-
ternal energies, which leads to the universality of time dilation and redshift: it affects all "clocks" in the
same way, irrespectively of their specific composition.

4.2.1 Non-relativistic limit
The fully classical limit cannot be taken just by neglecting all terms of order O(1/c2) or higher. In fact,
this would be inconsistent with the experimental evidence of time dilation in composite systems with an
internal dynamics in a regime of very slow velocities and weak gravitational fields. For instance, the special-
relativistic time dilation, given by the factor (1− v2

2c2 ), has been observed using Alluminium ions moving at
velocities of the order of few meters per seconds. Similarly the gravitational time dilation has been observed
on clocks separated by a distance of the order h ∼ 30cm, where the time dilation factor is (1 + gh

c2 ) [48].

The reason is that the major role is played by the scale of energy of the internal dynamics. The only
consistent non-relativistic limit is, in fact, to consider the dynamical part of the internal energy Hc

3 to be
also small, such that the hamiltonian reduces to

H ≈ mc2 +mϕ(r) +
p2

2m
(4.22)

Only this limit is consistent with a Newtonian spacetime with an absolute, global time coordinate t. 4

4.2.2 Quantization
In classical relativity the distinction between rest mass and rest energy is purely conventional and is dictated
by the energy scale: we separate the contribution from the "frozen" degrees of freedom to the dynamical
ones. However, when considering a quantum system, the contribution of the dynamical degrees of freedom
is determined by the internal state of the clock. For each state |ei⟩ corresponding to an internal energy ei
the total energy energy will be mc2 + ei. Thus, by linearity, the "rest-mass" M becomes an operator that
acts on the internal degrees of freedom by means of the internal hamiltonian

m→M := m Ic +
Hc

c2
(4.23)

where quantities in capital letters are, from now on, understood as operators. With this choice, mc2 is the
mass-energy associated with the internal ground state |e0⟩ for which Hc |e0⟩ = 0.

A rigorous derivation of the hamiltonian operator can be provided as a low-energy limit of a QFT in a
curved background. In [24] and [hamiltonian-from-QFT] it is shown that one can start from a composite
bosonic quantum field ψI , I = 1, ..., N with action:

S =

∫
d4x

√
−g

∑
I

gµν∂µψI∂νψI +
∑
I,J

M2
IJc

2ψIψJ

 (4.24)

The Lagrangian can be diagonalized, obtaining the Klein-Gordon equation for each mode ψ̃a
3Formally, one could split the contribution of the internal energy into a dynamical part, played by the hamiltonian Hc, and a static

one Estatic. The non-relativistic limit is then Hc + Estatic ≈ Estatic.
4This is important when one looks at the symmetries of the theory. In fact, the Galilean group is recovered only in this limit,

whereas considering dynamical degrees of freedom requires its central extension, leading to the superselection rule for the mass in
QM. Details about this topic can be found in chapter 3.2 of [24].
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(
gµνDµDν −m2

ac
2
)
ψ̃2
a = 0 (4.25)

where Dµ is the covariant derivative. In the low-energy limit, when particle creation and annihilation
effects are negligible, one can treat the field as a single particle in first quantization, approximating the
field’s components as ψ̃a = exp

{
i
(
c2S0(x) + S1(x) + c−2S2(x) + ..

)}
, representing the internal state of

a composite particle. In this approximation, the Schrödinger equation is obtained and so the corresponding
hamiltonian. In particular, considering a post-newtonian background at order O(ϕ(r)/c2), the hamiltonian
reads:

H =Mc2 +Mϕ(X) +
1

2
M
ϕ(X)2

c2
+
P 2

2M
− P 4

8M3c2
+

3

2Mc2

(
ϕ(X)P 2 + [Pϕ(X)]P +

1

2
[P 2ϕ(X)]

)
(4.26)

which has the same form of the classical hamiltonian (4.18), except for the terms which are coupled in P
and ϕ(X), for which a direct canonical quantization leads to ordering ambiguities.

Then, if we consider the energy scale of the internal dinamics Hc to be much smaller then the rest-mass-
energy ⟨Hc⟩ ≪ mc2, we can expand (4.26) in powers of Hc/c

2. At first order we obtain

H = Hcm +Hc

(
1 +

ϕ(X)

c2
− P 2

2m2c2

)
(4.27)

where

Hcm = mc2 +mϕ(X) +
1

2
m
ϕ(X)2

c2
+
P 2

2m
− P 4

8m3c2
+

3

2mc2

(
ϕ(X)P 2 + [Pϕ(X)]P +

1

2
[P 2ϕ(X)]

)
As in the classical case, the above dynamics is fully compatible with the understanding of the hamiltonian
as a generator of time translations and with general relativistic understanding of time. Hc is a generator of
time translations with respect to the proper time τ and describes the dynamics of internal states in the rest
frame. To see this, we notice that the Schrödinger equation in the rest frame should be of the form:

iℏ
d

dτ
= Hc ⇐⇒ iℏ

d

dt
= Hcτ̇ (4.28)

Now, consider the hamiltonian (4.27). In the rest frame, where Hcm ∼ I, one has H = Hcτ̇(X,P ), where
the time dilation factor is expressed in term of phase space variables, instead of the usual configuration
space variables X, Ẋ . Thus, the Schrödinger equation reads

iℏ
d

dt
= Hcτ̇(X,P ) (4.29)

In appendix (4.C) it is shown, following [23], how the same coupling can be obtained in a fully field-
theoretic description, considering a sufficiently localized scalar field in a curved spacetime.

4.3 Universal decoherence due to gravitational time dilation
In the regime of low-velocities and weak gravitational fields, the hamiltonian of a composite particle reads
(at lowest order):

H = Hcm +Hc

(
1 +

ϕ(X)

c2
− P 2

2m2c2

)
(4.30)

The interaction term between internal and kinematical degrees of freedom is entirely independent of the na-
ture of the binding/internal energies and this leads to the universality of the resulting (special- and general-
relativistic) time dilation (or redshift): the clock’s degrees of freedom evolve at a rate τ̇(x, ẋ) that depends
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on its trajectory in spacetime. Different world lines correspond to a different time evolution, which is a
prediction of General Relativity that has been experimentally tested in various scenarios.

With this model at hand, one can consider a novel situation, where a composite quantum system follows a
superposition of two different trajectories. Quantum theory allows to assign a quantum state to the external
as well as the internal degrees of freedom of any composite system. Then, superposition principle of quan-
tum theory and relativistic time dilation imply that in this situation the clock runs in a superposition of two
different proper times. This novel phenomena can in principle be tested, for instance, in an interferometric
experiment.

In general, the "universal coupling" present in the hamiltonian (4.30) results in entanglement between the
external and internal degrees of freedom. This entanglement inevitably causes a loss of coherence in the
center of mass of a generic composite system. Thus, considering an interferometric experiment where the
system is placed in a superposition of two different paths, we expect a decoherence mechanism (see 2.1) to
manifest in testable effects on the visibility pattern.

In particular, we consider the following scenario, depicted in fig. (4.3.1): the kinematical degrees of free-
dom of a composite quantum system are put in a 50/50 coherent superposition of two different paths γ±, for
instance two arms of a Mach Zender interferometer, at different heights on the Hearth, where the gravita-
tional field takes two different values. In (2.1) we considered the same scenario, where the system becomes
entangled with a generic environment that acts as a which-path detector, leading to decoherence. In this
case, the role of the environment is played by the internal degrees of freedom and the generic interaction
(2.14) corresponds here to the time dilation factor coupled to the internal hamiltonian.

Figure 4.3.1: Gedanken-experiment of a quantum clock following a superposition of two paths γ± corre-
sponding to different values of the gravitational field ∆ϕ ≈ gh where h is the vertical distance between the
paths. Due to time dilation the internal degrees of freedom evolve into different states |τ0 + τ±⟩ depending
on the path, which can act as "which-way-detectors". The decoherence mechanism implies that the more
distinguishable these states are, the more visibility of the interference pattern will be reduced (see (2.22).

4.3.1 Pure clock’s state
We consider the composite system after the first beam splitter to be in a separable pure state, in the form

|Ψ(0)⟩ = |γsup⟩r ⊗ |τ0⟩c , |γsup⟩r =
1√
2

(
|γ+⟩r + |γ−⟩r

)
(4.31)

where γ± denotes the two paths, subjected to different gravitational fields. The subscripts c and r denote,
respectively, the internal and external degrees of freedom and stand for "clock" and "rod" (or "ruler")5 For
simplicity, we rewrite the hamiltonian (4.30) as

H = Hcm +Hc ⊗D (4.32)

5This notation will be more meaningful in chapter 5.2, where the kinematical and internal degrees of freedom serve, respectively,
as a reference frame for space (rod) and time (clock).
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where D = D(X,P ) is the time dilation factor. Furthermore, we consider a semiclassical approximation
so that all terms in the H , apart from the internal hamiltonian Hc, can be substituted with their expectation
values along the interferometric paths, which are fixed functions. Specifically, the position operator takes
the two values corresponding to the different heights of the paths X → x±, while we consider the mo-
mentum to be the same P → p. Additionally, we assume the accelleration the particle undergoes along the
"vertical" direction to be the same along the two paths, meaning that that time dilation is only given by the
difference in the gravitational field along the "horizontal" paths. Under these assumptions, we have:

Hcm |γ±⟩r := E±
cm |γ±⟩r , D |γ±⟩r := D± |γ±⟩r (4.33)

where

E±
cm = mc2 +

p2

2m
+mϕ(x±)−

p4

8m3c2
+

1

2
m
ϕ(x±)

2

c2
+

3

2mc2
ϕ(x±)p

2 (4.34)

D± =

(
1 +

ϕ(x±)

c2
− p2

2m2c2

)
(4.35)

The initial separable state evolves into :

|Ψ(t)⟩ = e−
i
ℏ tH |Ψ(0)⟩

=
1√
2

(
e−

i
ℏ tE

+
cm |γ+⟩r e

− i
ℏ tD+Hc |τ0⟩c + eiφe−

i
ℏ tE

−
cm |γ−⟩r e

− i
ℏ tD−Hc |τ0⟩c

)
:=

1√
2

(
e−

i
ℏ tE

+
cm |γ+⟩r |τ0 + τ+⟩c + eiφe−

i
ℏ tE

−
cm |γ−⟩r |τ0 + τ+⟩c

)
(4.36)

where φ is a generic additional contribution to the phase difference accumulated along the paths which
depends on the experimental setup. The reduced density matrix of the centre of mass degrees of freedom is

ρr(t) =
1

2

(
1 e−iφe−

i
ℏ t∆Ecm ⟨τ0| e−

i
ℏ∆τHc |τ0⟩c

eiφe
i
ℏ t∆Ecm ⟨τ0| ei∆τHc |τ0⟩c 1

)
(4.37)

where

∆τ = τ+ − τ− = t(D+ −D−) (4.38)

is the difference between the proper time accumulated alongh the different paths and ∆Ecm = E+
cm−E−

cm.
From (4.37) one can read out the interference pattern and the visibility, which is twice the magnitude of the
off-diagonal elements (see 2.8):

 pD± = 1
2 ± 1

2 | ⟨τ0| e
− i

ℏ∆τHc |τ0⟩c | sin(t∆Ecm + α+ φ)

V = | ⟨τ0| e−
i
ℏ∆τHc |τ0⟩c |

(4.39)

where α is defined by

⟨τ0| e−
i
ℏ∆τHc |τ0⟩c = | ⟨τ0| e−

i
ℏ∆τHc |τ0⟩c |e

iα (4.40)

To derive quantitative statements we need to choose a particular model for the quantum clock.

QBIT-clock

The symplest model for a quantum clock is a two level system (see 3.6.3) where the clock’s states are
coherent superpositions of internal-energy’s eigenstates

|τ0⟩c =
1√
2

(
|0⟩c + e−

i
ℏωτ0 |1⟩c

)
, |τ0 + τ⟩c = e−

i
ℏ τHc |τ0⟩c =

1√
2

(
|0⟩c + e−iω(τ0+τ) |1⟩c

)
(4.41)
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and ℏω is the difference between the two energy levels. The scalar product between clocks state reads

⟨t|t′⟩c =
1

2

(
1 + e−iω(t

′−t)
)
= e−i

ω(t′−t)
2 cos

(
ω(t′ − t)

2

)
(4.42)

Specifically, we are interested in

⟨τ0|τ0 +∆τ⟩c = e−
i
ℏ

ℏω∆τ
2 cos

(
ω∆τ

2

)
= e−

i
ℏ ⟨Hc⟩∆τ cos

(
ω∆τ

2

)
(4.43)

where ⟨Hc⟩ = ℏω/2 is the average internal energy. The probability (4.39) to observe interference and the
visibility read


pD± = 1

2 ± 1
2

∣∣cos(ω∆τ2 )∣∣ sin( t∆Ecm

ℏ + ⟨Hc⟩∆τ
ℏ + φ

)
V =

∣∣cos(ω∆τ2 )∣∣ (4.44)

The physical interpretation becomes clear when we express this result in terms of the resolution of the
clock t⊥ = π

ω (see 3.6.3), which is the time it takes to evolve a clock-state into an orthogonal (i.e., perfectly
distinguishable) state:

V =

∣∣∣∣cos(π2 ∆τ

t⊥

)∣∣∣∣ (4.45)

When the difference in the proper time accumulated is comparable to its resolution ∆τ ≈ t⊥, the two su-
perposed clock’s internal states are nearly orthogonal, hence distinguishable. The clock’s internal state can
serve as a measurement device that "knows" which path the particle takes, affecting the overall coherence
in the system.

Considering any periodic quantum clock with a discrete spectrum (see 3.6.3), this decoherence effect will
also be periodic: the which-way information is periodically stored into orthogonal clock states. Impor-
tantly, this periodicity is advantageous for experimental verification since it allows the differentiation of the
time dilation effect from other factors, such as visibility losses due to experimental imperfections or other
environmental decoherence mechanisms, which typically follow an exponential decay ∼ e−t/Td .

For completeness, in appendix (4.D) we explicitly compute ∆τ and ∆Ecm for this specific scenario. The
result is


pD± = 1

2 ± 1
2 | cos

(
tω2

∆ϕ
c2

)
| sin

(
t∆ϕ
ℏ
(
m+ ⟨Hc⟩

c2 + ĒGR

c2

)
+ φ

)

V =
∣∣∣cos(tω2 ∆ϕ

c2

)∣∣∣ (4.46)

where ∆ϕ = ϕ(x+) − ϕ(x−) ≈ hg corresponds to the gravitational potential difference. Notice that the
phase has three contributions: ΦN = t m∆ϕ

ℏ comes from the newtonian coupling, ΦGR = tĒGR

ℏ comes
from its general-relativistic correction and α = ∆τ⟨Hc⟩

ℏ = t∆ϕ⟨Hc⟩
c2ℏ comes from the time-dilation effect on

the quantum clock’s internal dynamics. A plot of the predicted visibility pattern is depicted in fig. (4.3.2)

It’s important to stress that the main result of this Gedanken-experiment is the drop in visibility (decoherence
effect), which can only be explained assuming that the time dilation effect, as predicted by GR, applies to
quantum systems in superposition. In particular it’s crucial that the internal energy contributes to the total
mass as an operator

m→ m+
Hc

c2
=M (4.47)
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Only in this case the total hamiltonian (5.22) contains an interaction term that couples internal and external
degrees of freedom, resulting in an entangled state and, consequently, in a decoherence effect.

On the contrary, a semiclassical version of the mass-energy equivalence would result in a semiclassical
coupling of the form

m → m+

〈
Hc

〉
c2

, H = Hcm +
〈
Hc

〉(
1 +

ϕ(X)

c2
− P 2

2m2c2

)
(4.48)

Figure 4.3.2: Plot of the difference between the probabilities pD± (4.39) to find the particle in the detectors
D± of the Mach Zender interferometer (4.3.1) as a function of the t for which the particle travels in a
superposition of two different trajectories at constant heights. The dashed, black line corresponds to the
same function in the absence of the internal degrees of freedom, so it has no modulation in the visibility and
the frequency is given by the newtonian potential with the general relativistic corrections to the centre-of-
mass dynamics, that in the main text are referref to as ΦN + ΦGR. Adding the clock’s degrees of freedom
results in the blue line, i.e. in an additional phase shift α and in the periodic modulation of the visibility,
that is captured by the red line. The values are chosen so that α = ∆ϕω

2c2 = 1Hz. While the effects on
relative phase can be understood in terms of classical corrections to the Newtonian potential, the visibility
modulation can only be explained if the internal degrees of freedom of the quantum clock undergo general
relativistic time dilation, as a consequence of the coupling term in the total hamiltonian (4.32). Fig. taken
from [24].

This coupling (Eq. 4.48) cannot create entanglement, hence it gives a different prediction on the visibility.
However it provides the same prediction for the phase of the visibility pattern. In fact, the phase difference
resulting from the newtonian potential and the time dilation effect in eq. (4.46) reads:

ΦN + α =
1

ℏ
t

(
m+

⟨Hc⟩
c2

)
∆ϕ (4.49)

Both this and the other general relativistic contribution ΦGR could be fully explained by a modified Newto-
nian potential in Euclidean spacetime, i.e. considering additional terms in the coupling with the rest-mass
of the particle ∼ m

(
VN + Vadd

)
6.

The key takeaway is therefore the distinction between a fully quantum mechanical treatment (where the
internal energy is an operator and induces entanglement) versus a semiclassical approach (which only shifts
the energy levels without introducing entanglement). Observing a drop in visibility would simultaneously
disprove non-relativistic, Newtonian gravity as well as the classical description of the world lines of the
clocks.

Experimental realization

To have an idea about the possibility of realizing such a Gedanken experiment, we consider the best current
atomic clock, for which ω ∼ 1015Hz. To observe a loss-and-revival in the modulation of the visibility for a

6More generally the phase acquired by a state during its time evolution is proportional to the action along the trajectory on which the
system moves. In the presence of any position dependent potential V (x) the phase dependens on the trajectory Φγ ∼

∫
γ dtV (x(t)).

A phase difference than arise whenevere there’s a potential difference along the two paths, even if alongh the single paths the potential
is uniform: ∆Φ = t(V (γ+) − V (γ−)), as in the case we considered above. In the case of an electromagnetic potential this is the
well-known Ahronov-Bohm effect, and an analogous effect is present for a Newtonian gravitational field, which results in the first
contribution to the phase, i.e. ΦN = tm∆ϕ

ℏ
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two level-system (4.45) one needs to accumulate a proper time difference of ∆τ = 2t⊥ along the two path,
which means

th ∼ 2t⊥
c2

g
= 2π

c2

ωg
∼ 10s ·m (4.50)

For instance one should be ablo to maintain a coherent superposition for 10s with a spatial separation of
1m. This seems to be still a great challenge: for neutrons, one of the best achievements is a separation of
h ∼ 10−2 m with a coherence time of t ∼ 10−4 [49]. To implement our “clock” in neutron interferometry
one can use spin precession in a strong, homogeneous magnetic field. However such quantum-clock could
reach frequencies only up to ω ∼ 109Hz , which is still a few orders of magnitude lower than necessary for
the observation of full decoherence due to a proper time difference. One could also try to measure only the
initial drop in the visibility, without waiting for a full orthogonalization of the clocks state, but in this case
we would loose the advantage of a periodicity of the signal. A more detailed analysis of the experimental
feasibility of this experiment can be found in [24].

4.3.2 General clock’s state
The previous result can be generalized to an arbitrary clock state, not necessarily pure. This allows us to
consider much more general physical systems as clocks, for instance the vibrational degrees of freedom of
a molecule. One considers the centre-of-mass degrees of freedom to be in a coherent susperposition of the
two paths, while the clock to be in a possibly mixed state

ρ(0) = |γsup⟩⟨γsup|r ⊗ ρc, |γsup⟩r =
1√
2

(
|γ+⟩r + |γ−⟩r

)
(4.51)

As before we consider a semiclassical approximation of the system’s motion 7, so that:

H |γ±⟩r =
(
Hcm +Hc ⊗D

)
|γ±⟩r =

(
E±
cm +Hc ⊗D±) |γ±⟩r (4.52)

The evolution of the the system reads

ρ(t) =
1

2

∑
i,j=±

|γi(t)⟩⟨γj(t)|r ·
(
e−

i
ℏ τγiHcρce

i
ℏ τγjHc

)
, (4.53)

where τγi :=
∫
γi
dτ = tDi, with i = +,−, and

|γi(t)⟩r = e−
i
ℏ tE

i
cm |γi(0)⟩r . (4.54)

The coupling causes entanglement between internal and external degrees of freedom. Explicitly, The re-
duced density matrix of the centre of mass degrees of freedom reads

ρr(t) =
1

2

∑
i,j=±

|γi(t)⟩⟨γj(t)|r · trc
[
e−

i
ℏ τγiHcρce

i
ℏ τγjHc

]
=

1

2

∑
i,j=±

|γi(t)⟩⟨γj(t)|r · trc
[
e−

i
ℏ∆τijHcρc

]
. (4.55)

The visibility is twice the magnitude of the off diagonal terms, hence

V = |ρr(t)i ̸=j | =
∣∣∣trc [e− i

ℏ∆τHcρc

]∣∣∣ = ∣∣∣〈e− i
ℏ∆τHc

〉
c

∣∣∣ (4.56)

which is the generalization of (4.39). It shows that decoherence occurs whenever a proper time difference
is present, i.e. ∆τ ̸= 0, and whenever the internal state is not a pure eigenstate of internal energy, in which

7we consider semiclassical paths constrained to have coordinates z+ = R+ h, z− = R, p± = p
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case
〈
e−

i
ℏ∆τHc

〉
c

would be just a phase factor (the clock would be "frozen" in that eigenstate, without
evolving at all). Recall that in (2.1) we show that when the environment is in a classical mixture and gets
entangled with the system, it acts essentially as a classical source of noise, which can lead to decoherence,
even the mixed state itself does not carry which path information.

This generalization to arbitrary clock states emphasizes that the decoherence is a universal effect, applying
to any system that experiences time dilation, whether in a pure or mixed state. It’s important because many
real-world systems are not in pure states, and yet they still undergo decoherence.

Thermal states

A physically interesting case is a system with N internal independent degrees of freedom, each of them
in a thermal state at temperature T . This could describe for instance the normal modes of the vibrational
degrees of freedom of a molecule.

Although a detailed analysis is out of the scope of this thesis, this case is of outmost importance to un-
derstand the role that this universal decoherence mechanism can have in the physics of every-day life, i.e.
considering macroscopic systems with withN ∼ 1023 in the energy regime of classical GR in its weak-field
limit. Therefore we briefly present and comment the main results, following [24].

It is considered the case of N harmonic oscillators with charachteristic frequency ωi in a thermal state at a
temperature T . The visibility (4.56) reads

V =
∏
i

∣∣∣∣ 1− e−βT ℏωi

1− e−(βT+ i∆τ
ℏ )ℏωi

∣∣∣∣ (4.57)

The key observations are the following:

• Periodicity: The visibility is still a product of periodic functions, hence the visibility undergoes a
sequece of "loss and revivals". However revivals of the visibility depend on the lowest frequency
mode. Considering that for bulk matter the frequency of the lowest phononic mode decreases with
the linear size of the system, the revival time becomes increasingly long for larger systems. For
instance, considering a macroscopic system with N ∼ 1023 with typical frequencies ω ∼ 500Hz
and a superposition size h ∼ 1mm the visibility is below 0.01 already after 2s and the revival time
is trev = 2π

ω
c2

gh ∼ 1017 s, which is the scale of the age of the Universe.

• Dependence of the number of modes: The more modes the system comprises, the faster the visibility
becomes negligible with increasing the superposition size h or the time it lasts t, and the shorter is
the duration of the revival peaks. This is even more clear in the high temperature limit, where the std.
deviation of the energy of each harmonic oscillator is ∆H = kBT does not depend on the individual
frequency, the visibility can be approximated to

V ≈

(
1−

(
ghtkBT

ℏc2

)2
)N

2

≈ e
−
(

t
tdec

)2
, tdec :=

√
2

N

ℏc2

kBTgh
(4.58)

where gh = ∆ϕ is the difference in the gravitational field (at first order).

For example, consider a system at a temperature T = 300K and with frequencies ωi ∼ 1013Hz,
which is the typical magnitude for molecular vibrational modes. For a single-mode N = 1, the
visibility drops to 1

2 for the time dilation ∆τ = 10−12s. For the time dilation caused dominantly by
the gravitational potential difference ∆ϕ = gh, which reads ∆τ = ght

c2 with g ≈ 10m/s2 and h =
1mm the laboratory time tdec necessary to observe such a visibility drop is tdec = 107s (116 days).
It turns out that, already for a system with N = 1018, the decoherence time is tdec ≈ 1.7 · 10−5s.
Macroscopic object withN = 1023 constituents have decoherence time of order of few microseconds.

• Experimental challenges: An experimental verification of the decoherence induced by time dilation
for macroscopic particles encounters many challenges. The first, is to bring such systems in superpo-
sition of paths with a suffient spatial separation. One of the largest molecules with which interference
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has been observed which has the number of normal modesN = 2424 [50] one finds tdec ≈ 3.5 ·104s
(∼ 10h). Furthermore one has to suppress any other decoherence mechanism, as the scattering with
surrounding molecules and thermal radiation or the emission of thermal radiation by the system. This
requires such an experiment to be performed at liquid Helium temperatures and in ultra-high-vacuum.
However, the simple model of N independent harmonic oscillator used for the composition of the sys-
tem, necessary to estimate the time dilation decoherence rate, is very crude and we expect it to break
down at these low temperatures. Given a specific system, the time dilation decoherence could be esti-
mated more accurately by measurement of the internal energy fluctuations through the heat capacity.
Nevertheless, the rapid developments in controlling large quantum systems for quantum metrology
and for testing wave function collapse models will inevitably come to the regime where the time-
dilation-induced decoherence predicted here will be of importance. In the long run, experiments on
Earth will have to be specifically designed to avoid this gravitational effect on quantum coherence.

4.3.3 Summary
In this chapter, we have explored the theoretical framework of quantum clocks within the context of General
Relativity, showing that time dilation effects, which have been tested experimentally in numerous classical
systems, affects quantum systems in superposition in a unique way. In particular, the gravitational and
velocity-induced time dilation factor results in a coupling between internal and external degrees of freedom
which, in turn, can lead to a universal decoherence mechanism in composite quantum systems. The fact
that the decoherence depends on the difference in the accumulated proper times along the superposed paths
has far-reaching implications for experiments that probe the intersection of quantum mechanics and general
relativity.

In particular, the Mach-Zehnder-type interferometric experiments discussed provide a conceptual setup for
testing the decoherence effects induced by time dilation. Such experiments could probe whether quantum
clocks, in superpositions of different trajectories, experience gravitational time dilation in a manner consis-
tent with general relativistic predictions. The results of these experiments would not only provide empirical
validation of the theoretical framework but also test the universality of time dilation and gravitational red-
shift at the quantum level. In fact, the above analysis shows that, while the phase shift due to time dilation
can be explained within a semi-classical framework, the modulation of the visibility, leading to decoher-
ence, requires a full quantum mechanical treatment.

Finally, we have shown that in the case of macroscopic systems with many internal degrees of freedom, such
as molecules or larger objects, the decoherence rate increases drastically. As any decoherence mechanism
(2.1), the one caused by time dilation explains the emergence of classicality without any modification of
quantum mechanics8. On the one hand time dilation provides an ideal decoherence mechanism in the
context of reaserch on the quantum-to-classical transition, since it affects all systems and is present in any
general-relativistic background. Importantly, this effect can already play a significant role already classical
GR in its a weak-field limit. Thus, on the other hand, it could have significant implications for quantum
technologies, such as quantum computing and quantum communication, where maintaining coherence is
crucial.

8This is in contrast to the "collapse-models" approaches, that usually require beakdown of unitarity or include stochastic fluctua-
tions of the metric.
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Appendix

4.A Lagrangian of a composite particle
The Legendre transform of the hamiltonian (4.3) reads

L = pj
∂H

∂pj
+ wk

∂H

∂wk
−H

− 1

H
g00c

2pipi −
1

H
g00

∂H

∂Hrest

∂Hrest

∂wk
wk −H

= − 1

H
g00

(
c2pipi +HrestLrest −H2

rest −
H2

g00

)
= − 1

H
g00HrestLrest (4.59)

where Lrest = ∂Hrest

∂wk
wk and ẋi = ∂H

∂pi
= − 1

H g00c
2pi. Then, we can write

H2
rest

H2
= − 1

c2g00

(
c2g00 + ẋiẋi

)
=

1

c2
gµν ẋ

µẋν (4.60)

where we set the time coordinate to x0 = ct. Thus, one reaches (4.5):

L = Lrest

(
− 1

H
g00Hrest

)
= Lrest

∂H

∂Hrest

= Lrest
1

c

√
−gµ,ν ẋµẋν = Lrestτ̇ (4.61)

where the proper time τ is defined by the line element

c2dτ2 = −gµνdxµdxν (4.62)

4.B Post-newtonian metric
Starting from Schwarschield spacetime in spherical coordinates

ds2 = c2dt2
(
1 + 2

ϕ(r)

c2

)
− dr2

(
1 + 2

ϕ(r)

c2

)−1

− r2dΩ2 (4.63)

where ϕ(r) = −Gm
c2 is the Newtonian potential and dΩ2 = dθ2+sin2 θdϕ2. In order to obtain its isotropic

form one performs the following change of variables


r = ω

(
1 + Gm

2c2ω

)
, dr = dω

(
1− ( Gm2c2ω )

2
)

(
1 + 2ϕ(r)c2

)
=
(
1− 2Gmc2r

)
=

(
1− Gm

2ωc2

1− Gm
2ωc2

)2

=

(
1+

ϕ(ω)

2c2

1−ϕ(ω)

2c2

)2 (4.64)
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which yields:

ds2 = c2dt2

(
1 + ϕ(r)

2c2

1− ϕ(r)
2c2

)2

−

(
1− ϕ(r)

2c2

1 + ϕ(r)
2c2

)2 (
dr2 + r2dΩ2

)
(4.65)

The following Taylor expansion

(
1 + x

2

1− x
2

)2

= 1 + 2x+ 2x2 + o(x3) (4.66)

gives, up to order o
(
( ϕc2 )

2
)

,

ds2 = c2dt2
(
1 + 2

ϕ(r)

c2
+ 2

ϕ(r)2

c4
+ o

(
(
ϕ(r)

c2
)3
))

−
(
1− 2

ϕ(r)

c2
+ o

(
(
ϕ(r)

c2
)2
))(

dr2 + r2dΩ2
)

(4.67)

which is the post-Newtonian metric (4.15).

4.C Coupling hamiltonian in QFT
We consider a Klein-Gordon field of mass m localized in a "small" region of space V , such that the grav-
itational field can be considered approximately constant. Thus, considering a static gravitational field, one
has

gµν(x) ≈ gµν(x
′), ∀x, x′ ∈ V (4.68)

The action of a Klein-Gordon field ψ(x) in a generic spacetime (in c = 1 units) is

S = −1

2

∫
V

d4x
√
−g(x)

(
gµν(x)∂µψ(x)∂νψ(x) +m2ψ(x)2

)
(4.69)

Now we consider the region V to be at fixed height above the Earth, hence the Newtonian limit of Schwarschield’s
metric: gij = δij and g00(x) = −(1 + 2ϕ(x)), where ϕ(x) the gravitational potential. Substituting
g = g00(x) and g00 = 1/g00(x) the action reads

S = −1

2

∫
V

d4x
√
−g00(x)

(
(∂tψ(x))

2

g00(x)
+ |∇ψ(x)|2 +m2ψ(x)2

)
(4.70)

From S =
∫
V
dt L one can read out the Lagrangian

L =
1

2

∫
V

d3x

(
(∂tψ(x))

2√
−g00(x)

−
√

−g00(x)
(
|∇ψ(x)|2 +m2ψ(x)2

))
(4.71)

The hamiltonian is the Legendre transform

H =

∫
V

d3x π(x)∂tψ(x)− L (4.72)

where the conjugate momentum is

π(x) =
δL

δ(∂tψ(x))
=

∂tψ(x)√
−g00(x)

(4.73)

So the hamiltonian reads
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H =
1

2

∫
V

d3x
√
−g00(x)

(
π(x)2 + |∇ψ(x)|2 +m2ψ(x)2

)
(4.74)

In the above approximation, i.e. restricting to a volume where the gravitational field is approximately
constant, we get

H =
√
−g00(x)

(
1

2

∫
V

d3x
(
π(x)2 + |∇ψ(x)|2 +m2ψ(x)2

))
:=
√

−g00(x)H0 (4.75)

where x is some point in V and H0 is the hamiltonian is the usual Klein-Gordon hamiltonian in a finite
volume in Minkowski spacetime. The factor in front of H0 is the same redshift - or time-dilation - factor
we found for the hamiltonian of a classical composite particle (4.3): all energies measured in an external
reference frame (t, x) are redshiftd with respect to those measured in the frame (τ, 0), where τ is the proper
time (in this case the "comoving" frame with respect to the volume V we are considering). The special-
relativistic contribution from the "external" momentum is recovered by moving to an arbitrary coordinate
system.

4.D Proper time difference for a QBIT clock in a superposition of
different heights

In this section we compute explicitly the proper time difference and the difference in the centre of mass
energy between the two superposed path in the scenario depicted in Fig. (4.3.1). In particular, we consider
for simplicity semiclassical paths with fixed vertical coordinates z+ = R + h, z− = R and the same
momentum p± = p. In this case, the time dilation effect is only given by the gravitational field

∆τ =

∫
γ+

dt

(
1−

p2+
2m2c2

+
ϕ(x+)

c2

)
−
∫
γ−

dt

(
1−

p2−
2m2c2

+
ϕ(x−)

c2

)
(4.76)

= t

(
ϕ(R+ h)− ϕ(R)

c2

)
= t

∆ϕ

c2
(4.77)

The earth’s gravitational field can be expanded at first order ϕ(R + h) ≈ ϕ(R) + hϕ′(R) = ϕ(R) + hg,
where g = GNM

R2 and M the mass of the earth. Thus, one has

∆τ = t

(
gh

c2

)
(4.78)

where t is the total "time of flight". Similarly, we can compute the difference in the centre of mass energy,
which, neglecting the derivatives in the gravitational field, reads

Hcm = mc2 +mϕ(X) +
P 2

2m
− P 4

8m3c2
+
mϕ(X)2

2c2
+

3

2mc2
ϕ(X)P 2 (4.79)

Under the above approximations, one has

Hcm = mc2 +mϕ(x±) +
mϕ(x±)

2

2c2
+

3

2mc2
ϕ(x±)p

2 (4.80)

ΦGR± =
1

ℏ

∫
γ

dt
ϕ(x±)

c2

(
mc2 +

mϕ(x±)

2c2
+

3p2

2mc2

)
(4.81)

Thus, we reach the terms of eq. (4.46):

∆ΦGR = ΦGR+ − ΦGR− =
t

ℏ
∆ϕ

c2

(
mc2 +

mϕ

c2
+

3p2

2mc2

)
:=

t

ℏ
∆ϕ

c2
(
mc2 + EGR

)
(4.82)

where ϕ =
(
ϕ(R+ h) + ϕ(R)

)
/2 is the average gravitational field. The second and third contributions are

the general relativistic corrections to newtonian dynamics of the centre of mass, that we denote with EGR .
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Chapter 5

Quantum limitations on the
measurements of ST distances

A common foundational approach to physics is to assume key principles from different theories and inves-
tigate their consequences, often combining them through thought experiments. A prototypical example is
Einstein’s development of Special Relativity. By combining the relativity principle from Galilean mechan-
ics with the constancy of the speed of light from electromagnetism, simple thought experiments involving
light signals, clocks and "rods", led to the discovery of the contraction of lengths, time dilation, and the
relativity of simultaneity, which implied conceptual changes to the notions of space and time. Similarly, by
combining Heisenberg’s uncertainty principle ∆x∆p ≥ ℏ/2 from quantum mechanics with the relativistic
energy relation E2 = p2c2 +m2c4, one can reveal the limitations of the single-particle concept. For a rel-
ativistic particle, where E ∼ p, the uncertainty relation ∆x∆E/c ≥ ℏ/2 implies that if we push the spatial
resolution beyond the Compton wavelength ∆x ≤ ℏ/mc, the uncertainty in energy becomes larger than the
particle’s rest mass ∆E/2mc2 ≥ 1. This straightforward calculation highlights that relativistic quantum
mechanics has to face a resolution limit, beyond which a multiparticle theory is needed, i.e. Quantum Field
Theory (QFT).

In the same spirit, an operational approach to reference frames in quantum theory has been adopted in
the literature [14],[51],[15], to explore how the operational notions of space and time might change when
combining foundational principles of quantum theory and general relativity. This intersection of principles
allows us to question our classical assumptions about spacetime structure and measurements.

In quantum mechanics one specifies a space-time point by its coordinates, assuming a fixed, background
structure. However, according to the principles of General Relativity (GR), in particular diffeomorphism
invariance, space-time points have no physical meaning by themselves as they are not directly observable.
The only way to define space-time events and their relations is through space-time coincidences, i.e., inter-
sections between world-lines (see Appendix 5.A).

A common approach to defining events in spacetime involves a latticework of point-like clocks. The main
assumption is that these clocks correlate with the metric field such that their readings coincide with the
proper time predicted by the theory — this is known as the "clock hypothesis". If this hypothesis holds
true 1, a physical reference frame can be established over an extended region by arranging an array of ma-
terial clocks on a spacelike hypersurface. Spacetime can then be split into the (proper-) time measured by
the clocks and the spacelike distance between nearby clocks. This picture allows to define a physically
meaningful notion of space-time point: the clock records an event (ST coincidence) and labels it using the
(local proper-)time read when the event occurs. The spatial coordinates are defined via measurement of the
spacelike distances between the nearby clocks.

In the following sections, we will explore some limitations on the measurability of space and time that arise
when considering the quantum nature of clocks. In particular, in the first section, inspired by the famous
work by Salecker and Wigner [14], we investigate the limitation on Einstein’s synchonization of distant
clocks, showing that if one considers quantum clocks as composite systems with internal degrees of free-

1for instance, in the previous chapter (4), we show that, in the low-energy regime, composite systems are a physical realization of
ideal clocks, satisfying the clock hypothesis.
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dom, perfect synchronization seems to be unachievable.

In the second section, we investigate how the precision of time measurements in quantum clocks affects their
localization in space, showing that increasing the precision in time leads to a loss of spatial localization.
This trade-off emerges from putting together fundamental aspects from QM and SR. According to QM, a
very precise clock means a very large uncertainty in its energy [52]. According to SR energy is equivalent
to mass. Combining these two aspects, it follows that a very precise clock has a large uncertainty in the
mass, implying a large uncertainty in its time evolution.

5.1 Measurability of space-like distances and clock-synchronization
As explained in the introductory part, the measurement of distances between events in spacetime (ST) is es-
sential for making the definition of a coordinate system physically meaningful. While in a classical theory it
is reasonably assumed that these measurements can be carried out without restrictions, quantum mechanics,
in particular Heisenberg’s uncertainty principle, inevitably imposes fundamental limitations on them. This
issue was first pointed out by Salecker and Wigner [14].

In this section, we will first review the simple arguments used by Salecker and Wigner, who showed that
considering the quantum nature of clocks leads to fundamental limitations on the measurement of space-
like distances. The first novel part of the thesis consists on analyzing the consequencies of this limitation on
the synchronization of distant clocks. Specifically, we will discuss how Einstein’s synchronization of two
quantum clocks, when in a separable state, is inherently limited by the uncertainty in their relative distance.
Finally, we will explore whether entanglement between the positions of quantum clocks can be used to
overcome these limitations. We will show that, if one considers quantum clocks as composite systems with
internal degrees of freedom, perfect synchronization is not achievable in this way.

5.1.1 Space-like distances
The prototypical procedure for the measurement of spacetime distances involves a clock, a mirror and a
light signal: the light signal is sent from the clock to the mirror and reflected back, so that the coincidences
between the trajectories of light and the two massive objects define physical spacetime events. By measur-
ing of the elapsed proper time of the clock T one measures also the spacelike distance L = Tc/2 between
these two events. This setup essentially reduces the measurement of spatial distances to that of proper-time
intervals, relying on the constancy of the speed of light. This setup is sketched in Fig. (5.1.1) below.

Notice that, in a general spacetime, this measurement procedure is clearly restricted to distances which
are small compared to the curvature and to a static metric, otherwise the very notion of definite distance
between two events looses its meaning. Only in this case the measurement of spacelike-distances can be
reduced to the measurement of time intervals [14].

Figure 5.1.1: Prototypical setup to measure the spacelike distance between two events in flat spacetime.
A light signal is sent from a clock to a mirror and reflected back. The events are the coincidences of the
wordline of the light signal with the woldlines of the clock and the mirror. By measuring the elapsed proper
time T of the clock one also measures the spacelike distance L = T/2c.
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Under these restrictions, in the classical theory the spacelike distance between the clock and the mirror can
be measured with arbitrary precision, if the clock has arbirtary accuracy. However, if one considers the
clock to be a quantum system, its position and momentum are subjected to quantum uncertainty and this
inevitably reflects on an uncertainty on the measurement. In particular, given an uncertainty σX on the
position, due to the uncertainty principle the uncertainty on the velocity is, in the best scenario, of the order
ℏ/(2σXm). If the average time of flight of the light signal is T = 2L/c, the total uncertainty in position is:

δx ∼ σX +
ℏ

2σXm
T = σX +

ℏL
σXcm

= σX +
Lλc
σX

≳
√
Lλc (5.1)

where λc = ℏ/mc is the Compton wavelenght of the particle. The disequality follows from finding the
minimum of δx as function of σXr , which corresponds to σX =

√
λcL. This shows that even in optimal

cases, quantum mechanics sets a minimum uncertainty in measuring space-like distances. The fact that the
uncertainty grows with the distance reflects the spread of the wavefunction with time of a free particle (see
also chapter 5.2 ).

Another way to look at (5.1) is that a classical clock, or in general a classical measurement device 2, is
infinitely massive.

Operational approach in quantum gravity

To better understand the implications of this line of reasoning, it is insightful to introduce gravity, even
though it will be neglected in the following section. General relativity imposes further constraints on the
problem, as a sufficiently massive body will collapse into a black hole, preventing any signals from escaping
to an observer. Specifically, according to general relativity, if the mass of a body of finite size exceeds a
critical value, an event horizon forms, such that no signals can escape to the outside region. Therefore, the
radial size of the body must be larger than the Schwarzschild radius rS , given by:

r ≥ rS =
2Gm

c2
→ m ≤ c2r

2G
=

ℏr
cL2

p

(5.2)

Where Lp =
√
Gℏ/c3 is the Planck lenght. This shows that, as far as the body has a finite (radial) extension

r, the concept of a classical reference frame in the presence of gravity, represented by a physical system
with a limited mass, seems to be incompatible with the same concept in quantum mechanics. The only
theoretical solution is to consider an infinitely extended body r → ∞.

Thus, even at this level of reasoning, combining quantum mechanics and general relativity reveals that the
classical notion of a reference frame becomes fundamentally inadequate.

In [15] the mass bound (5.2) is combined qith the previously derived quantum mechanical bound (5.1),
obtaining:

δx ≥ Lp

√
L

r
(5.3)

This result indicates that there is a minimum uncertainty in the measurements of distances of the order of
the Planck length, which seems to be a model independent feature of quantum gravity.

5.1.2 Clock’s synchronization
The synchronization of distant clocks in a Minkowski spacetime can be achieved using Einstein’s protocol.
Consider two clocks at relative rest separated by a distance 2L, and a laboratory with a source of light in the
midpoint. Einstein’s synchronization consists of sending two perfectly time-correlated light signals 3 from

2where classical means it can in principle perform measurements with arbitrary accuracy, at least if the observed quantity is itself
classical

3Tight time correlations of photon pairs, generated from spontaneous parametric down-conversion (SPDC), are used in practice to
achieve distant clock’s synchronization. See, for instance, [53], [54]
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the midpoint between them: whatever is their relative velocity with respect to the source, in the rest frame
of the two clocks the time of flight of the photons is the same τ1 = τ2 = L/c (assuming the constancy and
isotropy of the speed of light). Thus, when the light signals reach the two clocks, they can set their initial
proper times τ1 = τ2 = τ0, thereby achieving synchronization.

Figure 5.1.2: Einstein’s syncrhonization protocol. When the source S lies a the midpoint between the two
clocks C1, C2, two light pulses are emitted. If the clocks are at relative rest, when they are reached by the
pulses, they can set their initial (proper) time to the same value τ1 = τ2 = τ0 to achieve synchronization.

However, once the quantum nature of the clocks is considered, the uncertainty in their positions leads to
limitations in the synchronization process. One can think to prepare the first clock at rest p0,1 = 0 and at
position x0,1 = −L, and similarly the second with p0,1 = 0 at a fixed distance x0,2 = L. However the
phase space variables of the clocks (xi, pi), i = 1, 2 are subjected to quantum fluctuations (δxi, δpi).

At T = 0 a light signal is emitted from the source. While the signal is travelling, the clocks move with a
velocity v = p/m which is 0 on average, but has some uncertainty δv = δp/m. Thus, to find the time T
the light takes to reach the clocks we have to solve for

T =
x+ Tp/m

c
⇐⇒ T =

x

c− p
m

(5.4)

By simple error propagation, one finds

δT 2 =

(
x0

m(c− p0/m)2

)2

δp2 +

(
1

(c− p0/m)

)2

δx2 (5.5)

Thus, considering x0 = L and p0 = 0 one has

δT 2 =

(
L

mc2

)2

δp2 +
δx2

c2
(5.6)

Considering the best scenario of gaussian wavepackets we have δx = σX = ℏ
2δp , hence:

δT 2 =

(
λc
L

2c

)2
1

σ2
X

+
σ2
X

c2
(5.7)

where λc = ℏ/mc is the Compton wavelenght. Its minimum corresponds to σ2
X = λcL

2 , and by inserting it
into (5.7) we find

δT 2 ≥ λcL

c2
(5.8)

The same bound can be found by considering the bound on spacelike distances found by Salecker and
Wigner and dividing it by the speed of light:
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δx2min = λcL ⇐⇒ δT 2
min =

λcL

c2
(5.9)

If the clocks are regarded as quantum systems, perfect synchronization is not achievable in principle. In
other words, a simultaneity surface t = const cannot be operationally defined in Minkowski spacetime
when the uncertainty principle is considered as a fundamental limit.

5.1.3 Thought experiment for a perfect synchronization
In the previous analysis we considered the two clocks to be preparred, from the laboratory frame, in a
separable state of the form

|Ψ⟩ = |ψp0=0,x0=−L⟩1 ⊗ |ψp0=0,x0=L⟩1 (5.10)

where |ψp0,x0
⟩i are, in the best scenario, gaussian wavepackets centered in phase space at (p0, x0).

The question arises whether entanglement between the two clocks can be used to overcome this fundamental
limit. In principle, perfect synchronization would require the two clocks to be in the same inertial frame
and the signal to start exactly from the midpoint between them. One way to approach this is to consider a
maximally entangled Einstein-Podolsky-Rosen (EPR) state, where the relative velocity v = p1

m1
− p2

m2
= 0

and the total position X = x1 + x2 = 0 vanish without uncertainty. For two quantum systems with the
same, fixed mass m, this condition can be achieved with an EPR state of the form:

|Ψ⟩ =
∫
dx1

∫
dx1 δ(x1 + x2) |x1⟩1 |x2⟩2 =

=

∫
dp1

∫
dp2 δ(p1 − p2) |p1⟩1 |p2⟩2

(5.11)

These correlations in continuous variables are not a pure idealization. For instance in ([55]) a scheme for
preparing this EPR state of distantly separated trapped atoms is proposed, in which the correlation is trans-
ferred from propagating light fields to the atoms via a set of interactions in a cavity. Thus, even if perfect
correlation as in eq. (5.11) is unphysical, these states can be very well approximated in reality.

Perfectly correlated EPR states correspond to complete knowledge about the relative velocity ṽ and the total
position xT , but maximum uncertainty about their canonically-conjugate variables, respectively the relative
position x̃ = x1 − x2 and total velocity vT = v1 + v2.

Formally, one can describe a system of two (non-interacting) particles with the phase space variables given
by following symplectic map:

x1 → x1 − x2 := x̃ p1 → p1 − p2
2

:= p̃

x2 → x1 + x2
2

:= xT p2 → p1 + p2 := pT

(5.12)

The canonically conjugate variables are now the relative position and momentum {x̃, p̃} = 1 and the total
position and momentum {xT , pT } = 1. Therefore one can in principle arbitrarily squeeze the states along
xT and p̃, which are commuting variables, but paying the price to increase the uncertainty on their conjugate
variables r̃ and pT .

In fact, the EPR state of eq. (5.11) can then defined as the limit of Gaussian states in these variables,
with infinite squeezing (delta function) along the total position xT but maximum uncertainty (uniform
distribution) along the relative position x̃:

δ(
x1 + x2

2
) = δ(xT ) = lim

s→∞

(√
1√
πes

exp

{
− x2T
2e2s

+
i

ℏ
xT pT,0

} √
es√
π
exp

{
− (x̃− x̃0)

2

2e−2s

})
(5.13)
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This corresponds, in terms of the conjugate variables, to infinite squeezing along the relative momentum p̃
but maximum uncertainty for the total momentum pT :

δ(
p1 − p2

2
) ∼ δ(p̃) = lim

s→∞

(√
es√
πℏ

exp

{
− (pT − pT,0)

2

2ℏ2e−2s

} √
ℏ√
πes

exp

{
− p̃2

2ℏ2e+2s
− i

ℏ
p̃x̃0

})
(5.14)

The uncertainty in the time of flight of the photons (5.7 can be expressed in terms of the relative velocity
and total position:0

δT ∼ δp̃

m

x̃0
c2

+
δxT
c

(5.15)

where δp̃
m = δṽ is the uncertainty in the clocks’ velocity and x̃0/c is the average time of flight. The dif-

ference with respect to the case of separable state is that δT depends on the variances of two commuting
variables that, in principle, can be "squeezed" jontly. Hence, in the case of fixed-mass systems, perfect
synchronization is in principle achievable through this entanglement-based protocol.

In a hypothetical scenario, one could measure the position of the second clock a time tM after the signal
has been emitted. If the clock is found at position xM such that xM

c < tM than the other clock will be at
position −xM and will be synchronized with the measured clock.

Dynamical mass

Considering real quantum clocks with internal degrees of freedom, the situation changes. A quantum clock
is a composite system where the mass becomes a dynamical entity (see (4.23 ). In this case, the relative
momentum and the relative velocity no longer coincide, and the simple synchronization protocol outlined
earlier no longer applies.

The previous entangled EPR state, incorporating internal degrees of freedom, reads:

|Ψ⟩ =
∫
dp1

∫
dp2 δ(p1 − p2) |p1⟩1 |p2⟩2

(∑
i

ci |mi⟩1

)∑
j

cj |mj⟩2

 (5.16)

where, without loss of generality, we consider a discrete internal energy spectrum (see (3.6.3) and for sim-
plicity we define mi = m + ϵi/c

2, where m is the rest mass and ϵi are the discrete eigenvalues of the
internal hamiltonian of the clocks (see 4.27).

In this case, velocities are no longer maximally correlated, so perfect synchronization is not possible. To
achieve synchronization one would need maximal correlations between the relative velocities of the clocks,
rather than their momenta:

v1 − v2 =
p1
m1

− p2
m2

= 0 → p1m2 − p2m1 = 0 (5.17)

This leads us to consider a different canonical transformation in phase space:

x1 → x1 − x2 := x̃ p1 → m2p1 −m1p2
m1 +m2

:= µṽ

x2 → m1x1 +m2x2
x1 + x2

:= xCM p2 → p1 + p2 := pT

(5.18)

that corresponds to the usual splitting between centre-of-mass and relative degrees of freedom. Now the
conjugate variables are the relative velocity and the relative position (x̃, µṽ), the c.o.m. position and the
total momentum (xCM , pT ). To achieve perfect synchronization one should consider wavefunctions with
both infinite squeezing along the relative velocity µṽ and along the total position xT . However, this cannot
be achieved, since they are not commuting variables. This is clear once we express
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xT = x1 + x2 = 2xCM + x̃(
m2 −m1

m1 +m2
) (5.19)

and {x̃, µṽ} = 1. In other words, the uncertainty in the time of flight of light depends on the variances of
two non-commuting variables

δT ∼ δṽ
x̃0
c2

+
δxT
c

(5.20)

As a result, even in principle, perfect synchronization cannot be achieved with quantum clocks that have
internal degrees of freedom. Notice that the error in the synchronization ultimately depends on how large
is the uncertainty on the internal energy states. In fact, considering the average mass-energy to be the same
m1,0 = m2,0, one has, by error progagation:

δxT ∼ x̃0
δmT

mT,0
(5.21)

where mT = m1 +m2.

This concludes the discussion on how quantum mechanical effects limit the synchronization of distant
clocks. While perfect synchronization seems to be in principle achievable with fixed-mass EPR states, the
inclusion of internal degrees of freedom in quantum clocks introduces fundamental limitations that make
perfect synchronization unachievable.
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5.2 Joint measurability of space and time
A classical material clock can continuously measure time with arbitrary accuracy while having well-defined
relative positions in space. The precision in time measurements of the clock has no impact on the precision
in the measurement of the spatial (or spacelike) distance with respect to the nearby physical systems. In
this section, we investigate whether this is true also in a quantum setting, i.e. when the clocks are regarded
as quantum systems.

When considering a quantum clock (see 3.6), the precision of time measurements is closely related to its
internal energy spectrum. Clock’s states are coherent superpositions of internal energy eigenstates, and the
broader this spectrum, the more distinguishable the clock states become, leading to higher temporal preci-
sion.

However, including the external (or kinematical) degrees of freedom of the clock, a critical trade-off arises.
As discussed in section (5.22), the internal dynamics of quantum clocks inevitably influence their external
dynamics due to the energy-mass equivalence principle. A quantum clock in a superposition of internal
energies is also in a superposition of masses. Given that the mass determines the external motion, an un-
certainty in the internal energy spectrum leads to an uncertainty in position, as the clock evolves in time.
This seems to imply a fundamental duality: as a quantum clock improves its time precision, it becomes
less effective as a spatial reference (a "rod"). In this way, a single quantum clock used as both a spatial
and temporal reference frame exhibits an unavoidable trade-off between spatial localization and temporal
accuracy.

A suited framework to investigate this fundamental issue is a single quantum clock used as a QRF (see 3)
both for space and time translations. Operationally, this corresponds to restricting to the minimum amount
of resources to define the space and time coordinates for another quantum system. In this minimalistic
approach, the clock serves as both a temporal and spatial reference, forcing us to confront the inevitable
trade-off between precision in these two domains.

In this section, we will first analyze the dynamics of two different states of a quantum clock with respect to
an external reference frame for spacetime coordinates. This analysis will help us understand the physical
principles underlying the trade-off between spatial and temporal precision. We will then consider the quan-
tum clock as a spacetime QRF for another quantum system, examining the implications of this trade-off
on the invariant (i.e., physical) algebra (see 5.56), ultimately demonstrating that the relative position of the
system w.r.t. the QRF can never be sharply defined.

5.2.1 States of a spacetime QRF
Throughout the whole section, we denote as "spacetime QRF" the internal, together with the external de-
grees of freedom of a quantum clock, i.e. Hcr = Hr ⊗Hc, where "c" stands for "clock", while "r" stands
for "ruler" (or "rod").

The trade-off between spatial localization and time precision arises naturally from the dynamics of a rela-
tivistic spacetime QRF. We consider a composite particle in a Minkowski spacetime in the low-energy (or
one-particle) regime, where p ≤ mc. At order O((p/mc)2), the hamiltonian (see 4.26) reads:

Hcr =
P 2
r

2M
+Mc2 (5.22)

where M = mr + Hc/c
2 and Hc is the hamiltonian of the internal degrees of freedom. This form of the

hamiltonian highlights how changes in the internal energy spectrum directly impact the external dynamics.
Specifically, the uncertainty in the internal energy Hc corresponds to an uncertainty in the effective mass
M , which influences how the clock propagates in space.

To study the dynamics of a spacetime-QRF, a choice for its states has to be made. In the following, we
will choose states that, on the one hand, permit us to easily perform computations and, on the other hand,
allow for a full control over the key parameters underlying the trade-off, namely the standard deviation of
the position operator σ2

Xr
and of the internal hamiltonian σ2

Hc
.
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External degrees of freedom - phase-space MUS

The most natural choice for the state of the "ruler" (external d.o.f.) is a coherent state, which is a gaussian
state both in momenta and position space and it is the minimum uncertainty state (MUS) for these variables
(i.e. in phase space), meaning it saturates the Heisenberg uncertainty principle

σ2
Xσ

2
Pr

− σ2
XrPr

≥ 1

4
|⟨[Xr, Pr]⟩|2 (5.23)

These states are gaussians centered around a peak momentum, say p0, independent of the mass of the par-
ticle.

Considering a spacetime QRF, i.e. including the clock’s degrees of freedom, MUS for position and momen-
tum must be separable states of the form

|ψ⟩P =

∫
dp ψp0,x0

(p) |p⟩r ⊗
∫
dϵ ϕϵ0,τ0(ϵ) |ϵ⟩c (5.24)

Here, ψp0,x0
(p) is a (normalized) Gaussian in phase space centered around (p0, x0), while ϕϵ0(ϵ) can be in

principle any complex function in (ϵ, τ) space. We will make a specific choice later on.

At a qualitative level, we can see that for each mass/energy mϵ = m + ϵ/c2, which are the eigenvalues of
the relativistic mass operator M = m + Hc/c

2, there is a common peak momentum p0. This implies a
different peak velocity v0,ϵ = p0

mϵ
, leading to different rates of evolution in configuration space:

x(t)ϵ = v0,ϵt =
p0
mϵ

t (5.25)

Initially the composite particle is localized within the spread σXr
= ℏ/2σPr

. However, as the system
evolves, each "branch," corresponding to a different internal energy (or mass), evolves at different velocities,
causing the system to delocalize further in space, as depicted in fig. (5.2.1). We will make this qualitative
statement more precise in the following section (5.2.2).

Figure 5.2.1: Evolution of a gaussian wavepacket in an equal superposition of three internal energy eigen-
states (in natural units, with ℏ = c = 1). Initial states at t = 0 (dashed, grey lines) and final states at t = 5
(solid, coloured lines). For each (integer) value of the mass-energy, the wavepacket evolves with a different
peak velocity. The result is a larger spread in position space. The figure is taken from [56].

External degrees of freedom - configuration-space MUS

An alternative choice is to start with an entangled state, such that for each mass in the superposition, we
have the same peak velocity v0 and hence a different peak momentum p0,ϵ = mϵv0. In this way each
branch evolves with the same rate in configuration space δx(t)ϵ = v0t and the dynamical coherent spread
in position is the same as for a particle with a fixed mass.

In appendix. (5.B.2) we show, following [56], that these states are the MUS in configuration space, meaning
that they minimize the Heisenberg uncertainty principle between position and velocity

σ2
Xr
σ2
Vr

− σ2
XrVr

≥ 1

4
|⟨[Xr, Vr]⟩|2 (5.26)
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where Vr = −i/ℏ [Xr, Hcr].

Figure 5.2.2: Evolution of "generalized gaussian" wavepackets, which have minimum uncertainty in con-
figuration space. Each packet corresponding to a different relativistic mass evolves with the same peak
velocity and spread at the same rate. Moreover, as we show in Appendix (5.B.2), these wavepackets remain
in general more localized under a free evolution with respect to the standard gaussian-wavepackets. The
figure is taken from [56].

Explicitly, they read

|ψ⟩C =

∫
dϵ

∫
dp ψv0,x0

(p, ϵ)ϕϵ0,τ0(ϵ) |ψp⟩c ⊗ |ϵ⟩r (5.27)

where each (normalized) gaussian wavefunction in phase space depends on the internal energy

ψv0,x0
(p, ϵ) =

(
1

2mϵℏΩ

) 1
4

exp

{
− 1

2mϵℏΩ
(p−mϵv0)

2 − i

ℏ
(p−mϵv0)x0

}
(5.28)

Here Ω is an arbitrary constant with the dimension of a frequency, which determines the initial spread.
Unlike standard MUS in phase space, the peak velocity v0 is independent of the mass, allowing each
"branch" to evolve at the same rate. However, the price to pay is that the initial position and momentum
spreads now depend on the mass:

σ2
x,mϵ

=
ℏ

2mϵΩ
⇐⇒ σ2

p,mϵ
=
mϵℏΩ

2
(5.29)

In Appendix. (5.B.2), we make a more detailed comparison between these two states, showing that MUS in
configuration space are the most appropriate description of a relativistic quantum clock, whose trajectories
in space-time are as localized as quantum mechanics allows.

We emphasize that, considering real clocks with a finite and discrete spectrum, these states are in principle
not hard to realize in practice. In fact, as the ground state of a harmonic potential for a massive particle is
a Gaussian with squared width σ2 ∝ 1/m, a particle in a superposition of internal mass-energies, cooled
down to the motional ground state of a harmonic trap that has a fixed frequency, would be prepared exactly
in a configuration-space MUS, with initial velocity given by the velocity of the trap in the laboratory refer-
ence frame [56], [57].

Clock’s degrees of freedom

We recall from (3.6) that an infinitely precise clock, or ideal clock, corresponds to an internal hamiltonian
Hc with an unbounded spectrum which allows to construct perfectly distinguishable time-states in the form

|τ⟩c =
∫
dϵ e−

i
ℏ (ϵ−ϵ0)τ |ϵ⟩c (5.30)

Furthermore, these states are eigenstates of the time operator Tc which is self-adjoint:

Tc =

∫
dτ τ |τ⟩⟨τ |c =

∫
dτ τ

(∫
dϵdϵ′e−

i
ℏ τ(ϵ−ϵ

′)

)
|ϵ⟩⟨ϵ′| (5.31)
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It’s easy to check that the standard deviation of the time operator over these time-states vanishes

σ2
Tc

=
〈
T 2
c

〉
c
− ⟨Tc⟩2c = 0 (5.32)

Considering the above MUS states of eqs. 5.24 and 5.27, this corresponds to the choice ϕϵ0(ϵ) = e−
i
ℏ τ0ϵ.

In the following analysis, we still consider an unbounded internal energy spectrum. However, instead of
ideal-clock’s states, which are fourier transform of energy eigenstates as in eq. (5.30) and, consequently,
are eigenstates of the (self-adjoint) time operator Tc, we consider Gaussian wavepackets

|τ⟩c =
∫
dϵ ϕϵ0(ϵ)e

− i
ℏ τϵ |ϵ⟩c , ϕϵ0(ϵ) =

(
1

2πσ2
Hc

) 1
4

exp

{
− (ϵ− ϵ0)

2

4σ2
Hc

}
(5.33)

The ideal-clock states are recovered in the limit of an infinite energy spread σHc
→ ∞. This choice has

two main advantages.

• First of all the energy spread σ2
Hc

consistutes an "effective" spectrum, which "simulates" a bounded
(hence physical) spectrum while allowing us to more easily perform integrations.

• More importantly, we can still consider the self-adjoint time operator Tc of eq. (5.31) and use σ2
Hc

as
a parameter for the clock’s precision in time measurements.

We will compute the standard deviation of the time operator explicitly in the next section. In general, we
can see that the internal-energy spread σ2

Hc
determines the distinguishability between clock states:

⟨τ |τ ′⟩ =
∫
dϵ |ϕϵ0(ϵ)|

2
e−iϵ(τ−τ

′) =

(
2σ2

Hc

πℏ2

) 1
2

exp

{
− (τ − τ ′)2

2
(
ℏ2/4σ2

Hc

)} (5.34)

which is a Gaussian in τ space with standard deviation ℏ2/4σ2
Hc

. Thus, we see that perfectly distinguishable
clock’s states occur only with an infinite energy spread σHc → ∞, in which case ⟨τ |τ ′⟩ = δ(τ − τ ′).

5.2.2 External description
In this section, we explore how the dynamics of a quantum clock affects the precision of measurements of
space and time with respect to an external reference frame, which corresponds to coordinates (x, t). Specif-
ically, we want to study how the precision of time and position measurements evolves over time due to the
coupling between the internal and external degrees of freedom of the relativistic hamiltonian (5.22).

The scope of this analysis is to understand the physical principles underlying the trade-off between spatial
and temporal precision and to characterize it quantitatively.

Dynamics

We consider now the dynamics of both MUS states. The standard (uncorrelated) gaussian state reads

|ψ⟩P =

∫
dp ψp0(p) |p⟩r ⊗

∫
dϵ ϕϵ0(ϵ) |ϵ⟩c (5.35)

where ψp0(p) is a Gaussian in phase space centered around (p0, x0 = 0), and similarly, ϕϵ0(ϵ) is the
Gaussian in (ϵ, τ) space of Eq. (5.33), with τ0 = 0. The time evolution of this state under the hamiltonian
(Eq. 5.22) is given by

|Ψ(t)⟩ = e−
i
ℏ tHcr |Ψ⟩ =

∫
dϵdp ϕϵ0(ϵ)ψp0(p)e

− i
ℏEcr(p,ϵ)t |p⟩r |ϵ⟩c (5.36)

where, considering mϵ = m+ ϵ/c2, we have :
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Ecr(p, ϵ) =
p2

2mϵ
+ ϵ (5.37)

Similarly, the MUS in configuration space reads

|ψ⟩C =

∫
dϵ

∫
dp ψv0,x0(p, ϵ)ϕϵ0(ϵ) |ψp⟩c ⊗ |ϵ⟩r (5.38)

where ψv0,x0
(p, ϵ), for each ϵ, is again a Gaussian in phase space (see 5.28) but centered around (x0,mϵv0),

while ϕϵ0(ϵ) is the same gaussian wavefunction we have above. The time evolution of this state under the
hamiltonian (Eq. 5.22) is given by

|Ψ(t)⟩C = e−
i
ℏ tHcr |Ψ⟩C =

∫
dϵdp ϕϵ0(ϵ)ψv0,x0

(p, ϵ)e−
i
ℏEcr(p,ϵ)t |p⟩r |ϵ⟩c (5.39)

Variance of the position operator - phase space MUS

We can compute the variance of the position operator Xr =
∫
dx x |x⟩⟨x|r from the reduced density ma-

trix of the "rod" (kinematical degrees of freedom). Considering MUS in phase space (5.36) up to order
O((Hc/mrc

2)4), and fixing for simplicity ϵ0 = 0 4, the variance evolves as follows (details in Appendix
(5.C):

σPXr
(t)2 = σ2

Xr
+

(
σPr

mr
t

)2

+ 3

(
σPr

mr
t

)2 σ2
Hc

m2
rc

4
+

(
p0t

mr

)2 σ2
Hc

m2
rc

4
(5.40)

We see that:

• the first two terms represent the the standard spread of the Gaussian wavefunction σ2
Xr

+
(
σPr

mr
t
)2

,
where σXr

= ℏ/2σPr
.

At second order O((Hc/mrc
2)2), two contributions arise due to the internal energy spread:

• the first contribution 3
(
σPr

mr
t
)2 ( σ2

Hc

m2
rc

4

)
, which is present even if p0 = 0, comes from the second-

order correction to the mass in the standard spread of the Gaussian wavefunction;

• the second contribution
(
p0t
mr

)2 σ2
Hc

m2
rc

4 , only present when p0 ̸= 0, accounts for the fact that different
"mass branches" propagate at different velocities, as depicted in fig. (5.2.1) .

The result is consistent with error propagation analysis, where the position variance grows quadratically in
time: considering X(t) = X + P

M t one has

δX(t)2 ∼ δX2
0 +

(
δP0

(
1

M2

)
0

t

)2

+

((
P

M2

)
0

δMt

)2

(5.41)

where the subscript O0 denotes the expectation value of the observable O.

Variance of the position operator - configuration space MUS

Considering configuration space-space MUS of Eq. 5.39, the variance in position reads (details in Appendix
5.D):

σCXr
(t)2 =

ℏ
2mrΩ

(
1 + Ω2t2

)(
1 +

σ2
Hc

m2
rc

4

)
(5.42)

4The effect of a non-zero average internal energy is just a shift of the rest mass mr → mr + ϵ0/c2, which does not modify the
results of this section. This is highlighted in Appendix (5.C).

78



We recall from eq. 5.28 (details in appendix 5.B.2) that

σ2
Xr,l.o. = ℏ/2mrΩ, σ2

Vr,l.o. =
σ2
Pr,l.o.

m2
r

= σ2
Xr,l.o.Ω

2 (5.43)

are the initial spread in the position and in the velocity at lowest order. Thus, we can rewrite the above
equation as follows:

σCXr
(t)2 =

(
σ2
Xr,l.o. +

σ2
Pr,l.o.

m2
r

t2

)(
1 +

σ2
Hc

m2
rc

4

)
(5.44)

In this form, it’s clear that:

• the first two terms σ2
Xr,l.o.

+
σ2
Pr,l.o.

m2
r
t2 represent the standard spread of the Gaussian wavepacket,

with the difference that now the initial spread in position and velocity both depend on the mass ;

• at second order O((Hc/mrc
2)2), only one contribution arise due to the internal energy spread, which

is the correction to the standard spread of the Gaussian wavepacket. This correction is present regard-
less of the average velocity v0.

The crucial difference with respect to the standard gaussian states, is that there’s no dynamical term pro-
portional to the average velocity or momentum (last term of eq. 5.40), reflecting the fact that each "mass
branch" propagates with the same average velocity v0, as depicted in fig. (5.2.2).

This result is also consistent with error propagation analysis: considering X(t) = X + V t one has
δX(t)2 ∼ δX2

0 + (δV0t)
2,where both δX0 and δV0 depend on the relativistic mass.

Variance of the time operator - phase space MUS

Similarly, from the reduced state of the clock (internal d.o.f.) one can compute the variance of the (self-
adjoint) time operator Tc =

∫
dτ τ |τ⟩⟨τ |c. For phase space MUS the variance reads (details in Appendix

(5.E)):

σPTc
(t)2 =

ℏ2

4

1

σ2
Hc

+ t2
σ2
P 2

r

4m4
rc

4
(5.45)

We see that:

• the first factor is the "intrinsic precision" of the clock, σPTc
(0)2 = ℏ2/4σ2

Hc
determines the distin-

guishability between clock’s states and is inversely proportional to the energy spread.

• At fourth order O((P/mc)4) a contribution arises from the dynamical coupling with the momentum.

Again, this is what we get from a simple analysis via error propagation, considering τ(t) = τ0 + t∆P ,
where ∆P = 1− P 2/2m2c2, one has δτ(t)2 = δτ20 + t2δ(∆P )

2 = δτ20 + t2
(
δP 2/2m2c2

)2
.

Variance of the time operator - configuration space MUS

In Appendix (5.F) we compute the variance of the time operator for the MUS state in configuration space,
which reads

σCTc
(t)2 =

ℏ2

4σ2
Hc

+
1

2

ℏ
mrc2Ω

v20
c2

+ t2
σ2
P 2

r

4m4
rc

4
(5.46)
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• The first two terms constitute the intrinsic precision of the clock, which is the initial variance of the
time operator:

σCTc
(0)2 =

ℏ2

4σ2
Hc

+
1

2

ℏ
mrc2Ω

v20
c2

(5.47)

This shows that, although in the case of configuration-space MUS a non vanishing average velocity
does not affect the spread in position (see eqs. 5.40 and 5.42), it does have an impact on clock’s
precision.

• The dynamical term ∼ t2 is formally equivalent to (5.45). The difference is in the variance of the
momentum operator, as we highlighted previously (see 5.28).

Trade-off

The trade-off is captured by considering the variance in the time operator and in the position operator
toghether and the relation between the spread of the wavefunctions. Considering a MUS in phase space,
one has


σPXr

(t)2 = σ2
Xr

+
(
σPr

mr
t
)2

+ 3
(
σPr

mr
t
)2 σ2

Hc

m2
rc

4 +
(
p0t
mr

)2 σ2
Hc

m2
rc

4

σPTc
(t)2 = ℏ2

4
1
σ2
Hc

+ t2
σ2
P2
r

4m4
rc

4

(5.48)

Similarly, considering a MUS in configuration space,


σCXr

(t)2 =
(
σ2
Xr,l.o.

+
σ2
Pr,l.o.

m2
r
t2
)(

1 +
σ2
Hc

m2
rc

4

)
σCTc

(t)2 = ℏ2

4σ2
Hc

+ 1
2

ℏ
mrc2Ω

v20
c2 + t2

σ2
P2
r

4m4
rc

4

(5.49)

We see that, to have a perfect clock one should both have an infinite intrinsic precision σHc → ∞ which
means an infinite internal-energy spread, and a negligible spread in the (squared) momentum σP 2

r
≈ 0.

Both conditions imply an infinite spread in position. A pictorial representation of the trade-off is given in
fig. (5.2.3) below.

Figure 5.2.3: Pictorial representation of the trade-off between precision in time measurements and localiz-
ability of quantum clocks, depicted as a space-ship that moves in space carrying a clock which measures
proper time along its worldline. The more localized is the clock in space, represented by the x axis, the more
the uncertainty in the time readings, represented by the "spread" in the t axis.

In particular, we emphasize that even when the average momentum (or velocity) of the clock vanishes
p0 = v0 = 0, still the variance in position has a term that is proportional to σ2

Hc
, which becomes bigger the

more precise the clock. This term is due to the (second order) relativistic correction to the rest mass of the
clock, and it reads
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
σPXr

(t)2 ≥ 3
(
σPr

mr
t
)2 σ2

Hc

m2
rc

4

σCXr
(t)2 ≥

(
σ2
Pr

mr
t
)

σ2
Hc

m2
rc

4

(5.50)

where, in the second expression, we identified σ2
Pr

≡ σ2
Pr,l.o.

= ℏmrΩ
2 . Thus, substituting σ2

Hc
σ2
Tc
(t) ≥

ℏ2/4 5 we have, for both MUS states:

σXr
(t)2σTc

(t)2 ≥
(

ℏ
2mrc

σPr

mrc
t

)2

(5.51)

The r.h.s. is characterized by three terms:

1. the Compton wavelenght of the clock ℏ
mc : this is the fundamental quantum limit to spatial localization

in the one-particle regime. It represents the smallest resolvable length scale for a particle of mass m
(see the introduction to the chapter 5).

2. The ratio σPr

mc between the (lowest-order) initial uncertainty in momentum and the maximum allowed
momentum in the regime, i.e. mc. This ratio indicates the degree of localization of the particle in
momentum space.

3. Linear dependence on time t: the uncertainty in position increases linearly with time as the wavepacket
spreads during its dynamical evolution.

Eq. (5.51) shows that, independently on its average velocity, the more a quantum clock is precise in time-
keeping σTc

→ 0, the higher its spatial delocalization σXr
→ ∞, and viceversa. This trade-off is a fun-

damental feature of quantum systems in relativistic settings, where the energy-mass equivalence principle
creates an unavoidable coupling between time and spatial measurements.

5Ultimately, this follows from the commutation relations [Tc, Hc] = iℏ, which holds in the case of a self-adjoint time operator.
Details can be found in chapter (3.6).
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5.2.3 Relational description
In this section we explore the consequences of the trade-off in the context of QRFs. In particular, we want
to describe the evolution of a quantum system Hs with fixed mass ms using a quantum clock as a QRF to
define its spacetime coordinates.

Using a relational, or G-invariant description 6, the state ρs(x, t) and observables O(x, t) of the system
at different times are defined relative to the state of the spacetime QRF. However, the previous analysis
suggests that a single quantum clock cannot serve as a perfect reference frame for both position and time
(see eq. 5.2.3). This has important consequences on how a states and observables of another system can be
described in the absence of an external, idealized reference frame.

In the following, we will formalize this "Gedanken-experiment" using the framework of QRFs of chapter
(3). In particular, by defining a covariant POVM (see 2.61), we will first compute explicitly the invariant
position X̃ , showing that the coupling between the internal and external degrees of freedom of the quantum
clock leads to non-trivial additional terms compared to the standard "relative position" obtained with a per-
fect QRF. Then, via the recovery operation (see 3.72), we will explicitly compute the variance of X̃ in the
case of a phase-space-MUS for the quantum clock.

Figure 5.2.4: Pictorial representation of the relational description of a spacetime QRF (space-ship) and a
quantum system. ρ′s (see eq. (5.54) is the state of the system whose space and time coordinates are defined
via (POVM) measurements with respect to the QRF. Thus, the uncertainty in space and time measurements
reflects on the relational states and observables of the system. In particular, we focus on the relative position
X̃ of eq. (5.65).

Quantum clock as a QRF

In the following section, we denote with Urc(x, t) and Us(x, t) the unitary representation of the group
of spatial and time translations of, respectively, the spacetime QRF, composed by the rod and the clock
Hrc = Hr ⊗Hc, and the system H∫ . The corresponding superoperator is denoted by the calligraphic font
U(x, t), which acts on operators: U(x, t) [·] = U(x, t) [·]U †(x, t).

Concerning the spacetime QRF, time translations are generated by the relativistic hamiltonian Hcr of eq.
(5.22), while the system we consider does not have internal dynamical degrees of freedom, so that its
hamiltonian reads simply Hs = P 2

s /2ms. The group of spatial translations is generated from the linear
momenta, Pr and Ps. Explicitly, the representations we use read

Urc(t) = exp

{
− i

ℏ
tHcr

}
, Ur(x) = exp

{
− i

ℏ
xPr

}
Us(t) = exp

{
− i

ℏ
tHs

}
, Us(x) = exp

{
− i

ℏ
xPs

}
(5.52)

Let us assume that Alice has access to an external reference frame (x, t), which she uses to prepare both
the quantum system and the quantum clock in the state:

ρrc ⊗ ρs (5.53)

6In our case G is the group of translations in space and time.
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If Bob lacks access to this external frame, he describes the system S via the "recovered state" (see 3.3)

ρ′s =

∫
dtdx p(x, t)⊗ Us(x, t)[ρs] (5.54)

where p(x, t) = trrc [Ex,tρrc] is the Born probability resulting from a (covariant POVM) measurement
Ex,t (see 2.61) on the QRF’s state preparred by Alice. As we show in (3.3.1), if the QRF ρrc is not perfect,
the state ρs undergoes decoherence in the momentum basis, increasing uncertainty in its relative position.

Correspondingly, given any observable Os ∈ L(Hs)
7 defined with respect to Alice’s external reference

frame, Bob describes it through the relational observable Õ ∈ L(Hs ⊗Hrc)

Õ =

∫
dxdt Ex,t ⊗ U

†
x,t [Os] (5.55)

This correspondance is expressed in tems of Born probabilities, as we shown in (3.72):

trs [Os ρ
′
s] = trrc,s

[
ρrc ⊗ ρs

∫
dxdt Ex,t ⊗ U

†
x,t [Os]

]
(5.56)

This equation shows that measurements of relational (or G-invariant) observables correspond to measure-
ments of the corresponding system’s observables on the "recovered" state.

Covariant POVM

The generators of space and time translations acting on the quantum clock’s Hilbert space Hr ⊗ Hc are,
respectively, the total momentum Pr and the low-energy hamiltonian Hcr (5.22). A covariant POVM can
be constructed starting from an arbitrary POVM element (the "seed") E0,0 and considering its "orbit" under
the group we are considering (see 2.61). In our case:

Ex,t = U
†
r (x)U

†
rc(t) [E0,0] (5.57)

where the group actions are defined above in eq. (5.52). The "seed" element must be chosen so that the
normalization condition is satisfied. In the case of a perfect reference frame, one would choose

E0,0 = |x = 0⟩⟨x = 0|r ⊗ |τ = 0⟩⟨τ = 0|c (5.58)

Then, its orbit is given by POVM elements in the form:

Ex,t = U
†
r (x)U

†
rc(t) [E0,0] =

∫
dpdp′e−

i
ℏx(p−p

′) |p⟩⟨p′| ⊗
∫
dϵdϵ′e−

i
ℏ t∆p(ϵ−ϵ′) |ϵ⟩⟨ϵ′| (5.59)

where ∆p =
(
1− p2

2m2c2

)
is the time dilation factor. The normalization condition reads:

Ir ⊗ Ic =
∫
dxdt Ex,t =

∫
dp |p⟩⟨p|r ⊗

∫
dϵdϵ′ eit∆p(ϵ−ϵ′) |ϵ⟩⟨ϵ′|c (5.60)

where we used the fact that integrating over x yields δ(p− p′). Now, changing variables t∆p → t, we can
integrate over time to get a δ(ϵ− ϵ′). The result is∫

dxdt Ex,t =

∫
dp

1

∆p
|p⟩⟨p|r ⊗

∫
dϵ |ϵ⟩⟨ϵ|c =

∫
dp

1

∆p
|p⟩⟨p|r ⊗ Ic ̸= Ir ⊗ Ic (5.61)

We see that the normalization condition is not satisfied. We have different possibilities:

1. We restrict the Hilbert space to the states |ψ⟩cr ∈ Hcr that satisfy

(∫
dp

1

∆p
|p⟩⟨p|r ⊗ Ic

)
|ψ⟩cr ≈ |ψ⟩cr (5.62)

Physically, we are requiring the time dilation factor ∆p to be negligible. For instance we could restrict
to gaussian states in momentum space with standard deviation σPr ≪ mc, so that the condition is
approximately satisfied.

7Here L(H) denotes the set of linear operators acting on the Hilbert space H.
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2. We consider the following POVM elements

E0,0 = {|0⟩⟨0|r ,∆Pr} ⊗ |0⟩⟨0|c (5.63)

where {A,B} = 1/2(AB + BA) is the anticommutator. Physically, we can think at this POVM as
measuring the proper time of the clock τ ≈ t∆p, instead of the "external" time t. Notice that, since
it’s a measuement in phase space, rather than in position space only, it cannot be sharp. Formally, we
see that |0⟩⟨0|r and ∆Pr

are non commuting. Following the above computation, we can easily check
that, with this choice, the normalization condition is satisfied.

In the following, we consider the second possibility, which leads to a covariant POVM defined over the
whole Hilbert space Hr ⊗Hc

Ex,t = U
†
r (x)U

†
rc(t)

[
{|0⟩⟨0|r ,∆Pr

} ⊗ |0⟩⟨0|c

]
(5.64)

Relative position

With a covariant POVM we can define the relative algebra (3.66). In particular we are interested in the
relative position of the system with respect to the QRF, which reads

X̃ =

∫
dxdt Ex,t ⊗ U

†
s (x, t)[Xs] (5.65)

where the POVM is (5.64). This operator is computed explicitly in Appendix (5.G) and it reads:

X̃ = Xs ⊗ Ir ⊗ Ic +
Ps
ms

⊗ 1

∆Pr

⊗ Tc

−Is ⊗Xr ⊗ Ic − Is ⊗ Pr
1

∆Pr

⊗ {Tc,
1

M
} (5.66)

where {A,B} = 1
2 (AB + BA) is the anticommutator. To understand the physical meaning we can notice

that, in the limit in which the "coupling term" Hc ⊗∆Pr
in the hamiltonian vanishes, the invariant position

reduces to

X̃ = Xs ⊗ Ir ⊗ Ic +
Ps
ms

⊗ Tc

−Is ⊗Xr ⊗ Ic − Is ⊗
Pr
mr

⊗ Tc (5.67)

which corresponds to the relative position of the system with respect to the "rod", both evolving with the
time of the clock.

Thus, we notice that the relativistic coupling in the hamiltonian (5.22) leads to non-trivial terms in the
invariant algebra of the system and the quantum clock. In particular,

• Since Tc measures the proper time, it is corrected by the time dilation factor Tc → Tc/∆Pr
8;

• The dynamics of the "rod" is determined by the dynamical mass operator M = mrIc +Hc/c
2.

At first order in O((Hc/mrc
2)n) the invariant position reads

X̃ = Xs ⊗ Ir ⊗ Ic +
Ps
ms

⊗ 1

∆Pr

⊗ Tc

−Is ⊗Xr ⊗ Ic − Is ⊗
Pr
mr

1

∆Pr

⊗ Tc

+Is ⊗
Pr
mr

1

∆Pr

⊗ {Tc,
Hc

mrc2
} (5.68)

8Recall, that 1/∆Pr corresponds to the Taylor expansion of the γ factor. See for instance eq. 4.21.
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Recovery operation

The correspondance between "recovery operation" and invariant algebra of eq. (5.56) allows us to directly
compute the variance of the relative position X̃ on a chosen state of the system+QRF. In fact, one has

trs [Xs ρ
′
s] = trrc,s

[(
ρrc ⊗ ρs

)
X̃
]

(5.69)

Physically, X̃ corresponds to the position of the system Xs if, lacking of an external reference frame, one
uses a QRF to define its spacetime coordinates. Instead of computing the directly the variance of the invari-
ant operator X̃ , we can equivalently compute the variance of Xs on the "recovered state" ρ′s.

For simplicity, we consider the system to also preparred at rest in a pure gaussian state centered around
some fixed distance (xs,0, ps,0) = (x0, 0):

|ψ0⟩s =
∫
dy ψ0,x0

(y) |y⟩s

Us(x, t) |ψ0⟩s = |ψ(x+ x0, t)⟩s =
∫
dy ψ0,x+x0(y, t) |y⟩s (5.70)

where ψx,0(y, t) is the initial gaussian after a free evolution for a time t, so its std.dev. is

σ2
Xs

(t) = σ2
Xs

+
(σPst

ms

)2
(5.71)

To compute the variance of Xs, we are interested in the following expectation values:〈
X̃
〉
=

∫
dtdx p(x, t) trs[ρs(x, t)Xs] =

∫
dtdx p(x, t)(x+ x0) (5.72)〈

X̃2
〉
=

∫
dtdx p(x, t) trs[ρs(x, t)X

2
s ] =

∫
dtdx p(x, t)

[
(x+ x0)

2 + σ2
Xs

(t)
]

=

∫
dtdx p(x, t)

[
(x+ x0)

2 + σ2
Xs

+
σ2
Ps

m2
s

t2
]

(5.73)

Phase space MUS

First, we consider the quantum clock to be preparred in a pure (standard) gaussian state at the origin x0 of
Alice’s frame. To avoid the dynamical delocalization which is typical of quantum clocks in these gaussian-
states (see previous section), we consider ⟨Pr⟩ = p0 = 0

ρrc = |0, 0⟩⟨0, 0|rc , |0, 0⟩rc =
∫
dpψ0,x0 |p⟩r ⊗

∫
dϵϕϵ0 |ϵ⟩c (5.74)

In appendix. (5.H) we compute explicitly the relevant integrals. The result is:∫
dxdt p(x, t) t2 =

〈
σ2
Tc

∆2
Pr

〉
∫
dxdt p(x, t) x = 0∫

dxdt p(x, t) x2 =
ℏ2

4m2
rc

2
+ σ2

Xr
+

〈
P 2
r

M2

σ2
Tc

∆2
Pr

〉
+

〈
ℏ2

4M2c2
1

∆Pr

〉
(5.75)

where the expectation values are taken over the clock’s wavepackets (5.74) and ∆Pr
= (1− P 2

r

2m2
rc

2 ) is the
special-relativistic time dilation factor. The variance of the relative position reads

σ2
X̃

= σ2
Xr

+ σ2
Xs

+
ℏ2

4m2
rc

2
+

〈
ℏ2

4M2c2
1

∆Pr

〉
+
σ2
Ps

m2
s

〈
σ2
Tc

∆2
Pr

〉
+

〈
P 2
r

M2

σ2
Tc

∆2
Pr

〉
(5.76)

Apart from the relativistic corrections due to the dime tilation factor ∼ ∆n
Pr

, we can read out the following
contributions:
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1. σ2
Xr

+ σ2
Xs

- are the spatial spreads of the initial wavefunction of the sistem and the clock;

2. ℏ2

4m2
rc

2 - is the squared Compton wavelenght of the clock with only the rest mass. As it is clear
from the computation (see Appendix 5.H), this term comes from the fact that the POVM (5.64)
involves two non commuting operators, i.e. the projector |x = 0⟩⟨x = 0|r and the dilation factor

∆Pr
= (1− P 2

r

2m2
rc

2 );

3.
〈

1
4

ℏ2

M2c2

〉
- is the "average" squared Compton wavelength of the clock with the relativistic mass.

Importantly, this term is not tied to the specific choice of clock state; instead, it is due to the unitary
evolution generated by the relativistic hamiltonian (5.22). Thus, we can argue that this term, written
as a generic expectation value as above, is completely independent on the choice of the states (details
in Appendix 5.H).

4.
σ2
Ps

m2
s
σ2
Tc

and
〈
P 2

r

M2

〉
σ2
Tc

- represent the usual spread of the wavefunction. However, instead of the
quadratic dependence on an external time-parameter t (see Eq. 5.40), we have the uncertainty in the
time readings of the clock.

Now, for our choice of states, where ⟨Pr⟩ = 0, we can substitute
〈
P 2
r

〉
= σ2

Pr
. Neglecting for simplicity

the relativistic corrections due to the time dilation factors, the standard deviation of X̃ reads

σ2
X̃

= σ2
Xr

+ σ2
Xs

+
ℏ2

4m2
rc

2
+

〈
ℏ2

4M2c2

〉
+
σ2
Ps

m2
s

σ2
Tc

+

〈
σ2
Pr

M2

〉
σ2
Tc

(5.77)

The important things to notice are:

1. In the absence of an external ideal frame, the time that defines the evolution is given by a measurement
on the quantum clock. Thus, the uncertainty in the clock readings σTc

propagates to the relative
position between the system and the clock. This is the "specular" side of the trade-off: the less precise
the clock, the higher the uncertainty in the system’s dynamics so the more indefinite its position.

2. Even if p0 = 0, so that the dynamical delocalization does not play any role, the spread in the internal
energy is still significant. In particular, we focus on 9:

σ2
X̃

≥
〈

ℏ2

4M2c2

〉
=

(
1

4

ℏ2

m2
rc

2

)(
1 + 3

σ2
Hc

m2
rc

4

)
(5.78)

This term represents the Compton wavelength of the clock, with a second-order relativistic correction
to the rest mass. Importantly, it arises purely from the unitary evolution under the relativistic hamil-
tonian (5.22), making it independent of the specific choice of states. This shows that an infinitely
precise clock (σHc

→ ∞) leads to an indefinite position as well.

Configuration space - MUS

Similarly, Alice can prepare the clock in a configuration space MUS:

ρrc = |0, 0⟩⟨0, 0|rc , |0, 0⟩rc =
∫
dϵ

∫
dp ψv0,x0=0(p, ϵ)ϕϵ0(ϵ) |p⟩c ⊗ |ϵ⟩r (5.79)

In appendix. (5.I) we compute explicitly the relevant integrals. The result is:

∫
dxdt p(x, t) t2 =

〈
σ2
Tc
(v0)

∆2
Pr

〉
∫
dxdt p(x, t) x = 0∫

dxdt p(x, t) x2 =
ℏ2

4m2
rc

2
+
〈
σ2
Xr

(M)
〉
+

〈
P 2
r

M2

σ2
Tc
(v0)

∆2
Pr

〉
+

〈
1

4

ℏ2

M2c2
1

∆Pr

〉
(5.80)

9As before, we set for simplicity the average energy ϵ0 = 0.
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where we denoted σ2
Tc
(v0) = ℏ2

4σ2
Hc

+
ℏv20

2Ωmϵc4
and σ2

Xr
(M) = ⟨ℏ/2MΩ⟩ (see 5.29). Thus, the variance

reads

σ2
X̃

=
〈
σ2
Xr

(M)
〉
+ σ2

Xs
+

ℏ2

4m2
rc

2
+

〈
ℏ2

4M2c2
1

∆Pr

〉
+
σ2
Ps

m2
s

〈
σ2
Tc
(v0)

∆2
Pr

〉
+

〈
P 2
r

M2

σ2
Tc
(v0)

∆2
Pr

〉
(5.81)

We see that the result is formally equivalent to phase space MUS, but with a different clock’s precision
σ2
Tc
(v0) and initial delocalization σ2

Xr
(M). This is consistent with or previous fundings (see 5.42 and 5.46).

We highlight that also in this case the variance of the relative position X̃ comprises the term

σ2
X̃

≥
〈

ℏ2

4M2c2

〉
=

(
1

4

ℏ2

m2
rc

2

)(
1 + 3

σ2
Hc

m2
rc

4

)
(5.82)

As we argued previously, this term is independent of the state of the clock, since it comes from the dynam-
ical evolution, i.e. from the relativistic hamiltonian (5.22).

Trade-off

From Eqs. (5.78) and (5.82), we can argue that the following inequality is always satisfied for any state of
the clock:

σ2
X̃

≥
〈

ℏ2

4M2c2

〉
≥ 1

4

ℏ2

m2
rc

2

σ2
Hc

m2
rc

4
(5.83)

Substituting σ2
Hc

≥ ℏ2

4σ2
Tc

10, we obtain

σX̃σTc ≥
(
1

4

ℏ2

m2
rc

2

)
=

(
λC
2

)(
λC
2c

)
, (5.84)

where λC denotes the Compton wavelength ℏ/mrc. This inequality expresses the trade-off between the
effectiveness of a single quantum clock as a resource for defining both spatial and temporal coordinates
of another quantum system. We see that as the precision of (proper) time measurements increases (i.e.,
σTc → 0), the uncertainty in the relative position X̃ with respect to another quantum system also increases.
Thus, the more precisely the clock measures time, the less precisely it can measure space-like distances.

While we claim that the physical phenomenon underlying this trade-off is general—stemming from the uni-
versal coupling between internal and external degrees of freedom of the spacetime QRF (see (5.22))—the
quantitative analysis presented in this section is tied to a specific model of the clock, namely one with a con-
tinuous and unbounded spectrum hamiltonian. Nevertheless, we believe this analysis lays the groundwork
for more comprehensive and general investigations in the future.

10We stress that this follows from the commutation relations [Tc, Hc] = iℏ, which holds in the case of a self-adjoint time operator.
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Appendix

5.A Hole argument
According to the principles of General Relativity, spacetime points defined in terms of coordinates have no
physical meaning. The only meaningful way to define ST points is in terms of ST coincidences, which are
the only events that can be verified by observations. In Einstein’s words ([58]) :

"In fact, if events consist in the motion of material points, then ultimately nothing would be ob-
servable but the meeting of two or more of these points. Moreover, the result of our measuring
are nothing but verifications of such meetings of the material points of our measuring device
with other material points, coincidences between the hands of a clock and points on the clock
dial, and observed point-events happening at the same place and at the same time."

This is the main physical consequence of a theory to be general covariant. The way Einstein reached this
conclusion is the famous "Hole argument", that can be summarized as follows ([1]).

Consider 2 ST points xA, xB in a region without matter ("hole") at which the metric field is different, for
instance flat at xA but not on xB :

ηµν = gµν(xA) ̸= gµν(xB) (5.85)

Now consider an active diffeomorphism ϕ that maps xA into xB , i.e. ϕ(xA) = xB . The metric field
transforms accordingly:

gµν(x) → g′µν(y) =
∂xα(y)

∂yµ
∂xβ(y)

∂yν
gαβ(x) (5.86)

Diffeomorphism invariance implies:

gµν(xA) = g′µν(ϕ(xA)) (5.87)

The crucial point is that diffeomorphism can be equivalently seen as an active transformation, which is
given by the pull-back of the metric (as any other field) g̃ = ϕ∗g, defined by

g̃(y) = g(ϕ−1(y)) (5.88)

Diffeomorphism invariance then also implies

g̃(x) = gµν(ϕ
−1(x)) = g′µν(x) (5.89)

The apparent paradox is the following: both g̃ and g are solutions of the same equations of motions, since
the active transformation is equivalent to a passive change of coordinates, that clearly leave the equations
of motion invariant; however if we compare them at the spacetime points xA and xB they have different
properties. In fact, combining (5.85), and we find

g̃µν(xB) = g̃µν(ϕ(xA)) = g′µν(ϕ(xA)) = gµν(xA) ̸= gµν(xB) (5.90)
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Equivalently, in terms of the curvature, which is a physical (gauge-invariant) quantity,

R̃(xB) = R̃(ϕ(xA)) = R(xA) ̸= R(xB) (5.91)

Assuming general covariance to be a fundamental principle, this implies that ST points have no physical
meaning.

To solve the apparent paradox one has to recognize that the only way to give physical meaning to space-
time points is to consider the coincidences of trajectories, which are themselves determined by metric and
therefore transform under active diffeomorphisms.
Consider in fact the same situation but with some matter in the hole. In particular consider two particles
a and b, whose worldlines (xa(τa), xb(τb)) intersect at the spacetime point B. Now, if we apply the same
diffeomorphism ϕ, the particle’s world lines (xa(τa), xb(τb)) are no longer solutions of the field equations,
since the gravitational field is now g̃. To map solutions into solutions, also the particles worldlines must be
transformed under the active diffeomorphism, so that now the intersection is in A = ϕ−1(B)

x̃a(τa) = ϕ−1((xa(τa)), x̃b(τb) = ϕ−1((xb(τb)) (5.92)

Instead of asking how is the metric field at A, we can ask how it is at the coincidence of the 2 worldlines.
The difference is that this spacetime event is not an unphysical label, but it is a physical event determined
by the field’s equations. Formally, assuming the intersection to be at some value τa = τb = 0, we find

R̃
∣∣
inters.

= R̃(x̃a(0)) = R(ϕ(x̃a(0)) = R(ϕ ◦ ϕ−1(xa(0))) = R(xa(0)) = R
∣∣
inters.

(5.93)

A general covariant theory is compatible with determinism only assuming that spacetime points have no
physical meaning by themselves. The physical reality cannot be described in terms of particles and fields on
a background spacetime: particles and fields (including the gravitational field) can only be localized with
respect to one another.

5.B MUS in configuration space

Given a pair of non-commuting observables X , Y ∈ L(H) with [X,Y ] = iĈ, a necessary and sufficient
condition for a state |ψ⟩ ∈ H to be a MUS for the pair is that it is a solution of the eigenvalue equation

(X − iλY ) |ψ⟩ = (x− iλy) |ψ⟩ (5.94)

where x, y are the expectation values of the pair and λ ∈ R is a real number whose magnitude is given by
|λ| = σψ,A/σψ,B and the sign is the opposite of c =< Ĉ >ψ . The proof can be found in many standard
QM books, for instance in [59].

5.B.1 MUS in phase space - standard coherent states
For the MUS in phase space one we substituteX → X , Y → P and Ĉ = c→ ℏ > 0, which implies λ < 0.
Defining for convenience −λ := 2σ2

ℏ e2r, where for completeness we include a "squeezing" parameter
r ∈ R, the eigenvalue equation reads

(
X + i

2σ2

ℏ
e2rP

)
|ψ⟩ =

(
x0 + i

2σ2

ℏ
e2rp0

)
|ψ⟩ (5.95)

To find the solution in position and momentum space we consider the corresponding representations of X
and P
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(
x+ 2σ2e2r∂x

)
ψ(x) =

(
x0 + i

2σ2

ℏ
e2rp0

)
ψ(x) ⇐⇒ ∂xψ(x) =

(
−e−2r (x− x0)

2σ2
+ i

p0
ℏ

)
ψ(x)

(5.96)(
iℏ∂p + i

2σ2

ℏ
e2rp

)
ψ(p) =

(
x0 + i

2σ2

ℏ
e2rp0

)
ψ(p) ⇐⇒ ∂pψ(p) =

(
−e2r 2σ

2

ℏ2
(p− p0)− i

x0
ℏ

)
ψ(p)

(5.97)

whose solution is the std. gaussian with squeezing parameter r.

ψ(x) = N exp

{
−e

−2r (x− x0)
2

4σ2
+ i

p0 (x− x0)

ℏ

}
(5.98)

ψ(p) = N exp

{
−e

2r (p− p0)
2

ℏ2/σ2
− i

x0 (p− p0)

ℏ

}

5.B.2 MUS in configuration space
We repeat the same procedure but now, instead of momentum, we look at the velocity operator, that is
defined by the hamiltonian via

V = Ẋ = − i

ℏ
[X,Hcr] (5.99)

We focus on the low-energy and low-velocity regime, where the hamiltonian of a composite particle is [56]

Hcr =
P 2

2M
+Mc2 (5.100)

This gives

V =
P

M
(5.101)

Notice that P and X act on the "rod" Hilbert space, while M = m + Hc

c2 acts on the clock’s one, so they
commute. The commutation relation reads

[X,V ] =
iℏ
M

(5.102)

To find the MUS one proceeds as in the std.case: we substitute X → X , Y → v̂ and Ĉ → ℏ
M , and again,

considering positive masses c = ℏ
m we have again λ < 0. Defining −λ := e2r

Ω , the eigenvalue equation
reads

(
X + ie2r

v̂

Ω

)
|ψ⟩ =

(
x0 + ie2r

v0
Ω

)
|ψ⟩ (5.103)

Now we can expand the states and the mass operator in the clock’s Hilbert space. Without loss of generality,
we consider a discrete spectrum {|ϵi⟩} with i ∈ Z and, for simplicity, we denote the different relativistic
masses with a single integer number mi = m+ ϵi/c

2 → m ∈ Z. Thus, we have

|Ψ⟩ =
∑
m

ϕm |ψm⟩ ⊗ |m⟩ (5.104)

M =
∑
m

mΠ̂m (5.105)
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so we get an eigenvalue equation for each mass sector

(
X + ie2r

P

mΩ

)
|ψm⟩ |m⟩ =

(
x0 + ie2r

v0
Ω

)
|ψm⟩ |m⟩ (5.106)

The solutions in position space can be found by solving for

(
x+ e2r

ℏ
mΩ

∂x

)
ψm(x) =

(
x0 + ie2r

v0
Ω

)
ψm(x)

⇐⇒ (5.107)

∂xψm(x) =

(
−e−2rmΩ

ℏ
(x− x0) +

i

ℏ
mv0

)
ψm(x)

and similarly in momentum space

(
iℏ∂p + ie2r

p

mΩ

)
ψm(p) =

(
x0 + ie2r

v0
Ω

)
ψm(p)

⇐⇒ (5.108)

∂pψm(p) =

(
−e+2r 1

mΩ
(p− p0)−

i

ℏ
x0

)
ψm(p)

The solutions are again gaussian wavepackets

ψm(x) = Nm exp

{
−e−2rmΩ

2ℏ
(x− x0)

2
+
i

ℏ
(x− x0) (mv0)

}
(5.109)

ψm(p) = Nm exp

{
−e+2r 1

2mℏΩ
(p−mv0)

2 − i

ℏ
(p−mv0)x0

}
(5.110)

that coincides with (5.28). The crucial difference w.r.t. the standard MUS in phase space is that

1. the initial position/momentum spread depends on the mass

σ2
x,m =

ℏ
2mΩ

⇐⇒ σ2
p,m =

mℏΩ
2

(5.111)

2. the peak momentum depends on the mass p0 = mv0, while peak velocity does not.

Physically this means that for each mass in the superposition the wavepackets moves with the same velocity,
rather than with the same momentum, so that they evolve with the same rate.

5.B.3 Time evolution
The time evolution of these states is easily found in momentum space, where the hamiltonian (5.22) is
diagonal and the evolution results in a phase factor. The wavefunction in position space is then found by a
fourier transform. The result is well known so we will just present it without derivation.

MUS in phase space

The MUS in phase space, which is initially uncorrelated, evolves into an entangled state via the hamiltonian
(5.100)

e−
i
ℏ tHcr

(
|ψ(x, t)⟩ ⊗

∑
m

ϕm |m⟩

)
=
∑
m

ψPm(x, t)ϕm |x⟩ |m⟩ (5.112)

where
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ψPm(x, t) =

[√
2πσ2

Xr

(
1 +

iℏt
2mσ2

Xr

)]− 1
2

exp

−
(
x− p0

m t
)2

4σ2
Xr

(
1 + iℏt

2mσ2
Xr

)
 exp

{
i

ℏ
xp0

}
exp

{
− i

ℏ
mc2t

(
1 +

p20
2m2c2

)}
(5.113)

is the standard time-evolved wavepacket for a fixed mass "m", except for the rest-mass energy, that gives an
additional phase factor. Computing the probability distribution

∣∣ψPm(x, t)
∣∣2 =

[
2πσ2

Xr

(
1 +

( ℏt
2mσ2

Xr

)2)]− 1
2

exp

−
(
x− p0

m t
)2

2σ2
Xr

(
1 +

( ℏt
2mσ2

Xr

)2)
 (5.114)

we can read out the spread in position for each mass eigenvalue

σXr,m(t)2 = σ2
Xr

[
1 +

(
ℏt

2mσ2
Xr

)2
]

(5.115)

We notice that the dynamical part of the spread depends on the mass, while the initial spread σXr (0)
2 = σ2

Xr

does not. The full variance in position can be computed directly from the reduced density matrix of the
kinematical degrees of freedom (tracing out the internal d.o.f.)

ρPr (t) =
∑
m

|ϕm|2
(
ψPm(x, t) |x⟩⟨x′|ψPm(x′, t)∗

)
(5.116)

So the average position reads

⟨Xr⟩P (t) =
∑
m

|ϕm|2 xm (5.117)

where xm = p0t
m is the average position for each mass in the superposition. Similarly we have

〈
X2
r

〉P
(t) =

∑
m

|ϕm|2 x2m (5.118)

where x2m = σXr,m(t)2 + x2m. Therefore the variance σ2
Xr

(t) =
〈
X2
r

〉P
(t)− ⟨Xr⟩P (t)2 reads

σPXr
(t)2 =

∑
m

|ϕm|2 σXr,m(t)2 +

∑
m

|ϕm|2 x2m −

(∑
m

|ϕm|2 xm

)2
 (5.119)

The physical meaning is clear once we separate the two contributions

1. the first one is present even when p0 = 0

σ2
Xr

+
∑
m

|ϕm|2
(

ℏt
2mσXr

)2

= σ2
Xr

+
∑
m

|ϕm|2
(σPr

m
t
)2

(5.120)

and corresponds to the usual spread of a (free) gaussian wavepacket, modified by the dynamical
relativistic mass.

2. the second one is present only if the initial velocity is non-zero

p20t
2

∑
m

|ϕm|2 1

m2
−

(∑
m

|ϕm|2 1

m

)2
 (5.121)

and reflects the fact that each mass propagates at a different velocity, as shown in Fig. (5.2.1).
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MUS in configuration space

For the time evolution of the MUS in configuration space (5.110) we can simply substitute p0 → mv0,
σ2
Xr

→ σ2
x,m = ℏ

2mΩ to the previous result. This gives

ψCm(x, t) =

[√
2π

ℏ
2mΩ

(1 + iΩt)

]− 1
2

exp

{
−mΩ

2ℏ
(x− v0t)

2

(1 + iΩt)

}
exp

{
i

ℏ
xmv0

}
exp

{
− i

ℏ
mc2t

(
1 +

v20
2c2

)}
(5.122)

Computing the probability distribution

∣∣ψCm(x, t)
∣∣2 =

[
2π

ℏ
2mΩ

(
1 + Ω2t2

)]− 1
2

exp

{
−mΩ

ℏ
(x− v0t)

2

(1 + Ω2t2)

}
(5.123)

we can read out the spread in position for each mass eigenvalue

σCx,m(t)2 =
ℏ

2mΩ

(
1 + Ω2t2

)
(5.124)

The total spread in position can be computed from the reduced density matrix of the kinematical degrees of
freedom:

ρr(t)
C =

∑
m

|ϕm|2
(
ψcm(x, t) |x⟩⟨x′|ψCm(x′, t)∗

)
(5.125)

Since the avg. position xm(t) = v0t, ∀m does not depend on the mass, we can immediately conclude

σCx (t)
2 =

∑
m

|ϕm|2 ℏ
2mΩ

(
1 + Ω2t2

)
(5.126)

We see that the dependence on the mass is only given by the initial spread σCx (0)
2 and there’s no dynamical

delocalization. This reflects the fact that ach mass propagates at the same velocity, as shown in Fig. (5.2.2).

Comparison

From the above analysis, we underline two main differences between the free evolution of the two MUS
states.

1. First of all, as one can argue just looking at the form of the wavefunctions, the MUS in phase space
are subjected to a mass-dependent delocalization, since they have a different velocity p0

m for each
mass in the superposition. On the contrary, MUS in configuration space spread out at the same rate.

2. Secondly, we can see that, even when the mass-dependent delocalization does not play a role, the
MUS in configuration space remain in general more localized. Considering a finite superposition of
masses, we can take two different MUS with the same initial spread:

σCXr
(0)2 =

∑
m

ℏ
2mΩ

= σPXr
(0)2 = σ2

Xr
(5.127)

Thus, comparing the dynamical spread, we find

σCXr
(t)2 − σPXr

(t)2 =

(
σ2
Xr

Ω2t2 −
∑
m

ℏ2

4σ2
Xr
m2

t2

)

=
t2Ω2

σ2
Xr

(
σ4
Xr

−
∑
m

ℏ2

4m2

)
(5.128)
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Substituting (5.127), we have

σCXr
(t)2 − σPXr

(t)2 =
t2Ω2

σ2
Xr

((∑
m

ℏ
2m

)2

−
∑
m

(
ℏ
2m

)2
)

≥ 0 (5.129)

5.C Variance of the position operator - MUS in phase space
The reduced density matrix of the "rod" (kinematical d.o.f.) can be computed by tracing out the internal
degrees of freedom from the pure state (5.36)

ρr(t) =

∫
dϵ |ϕϵ0(ϵ)|

2
∫
dpdp′ψp0(p)e

−itEp,ϵ ψp0(p)e
+itEp′,ϵ |p⟩⟨p′|

=

∫
dϵ |ϕϵ0,τ0(ϵ)|

2 |ψp0,x0,mϵ
⟩⟨ψp0,x0,mϵ

|r (5.130)

where |ψp0,x0,mϵ⟩⟨ψp0,x0,mϵ | is the standard gaussian wavefunction centered in (p0, x0) evolved in time by
the hamiltonian with eigenvalues Ep,ϵ = p2

2mϵ
, where mϵ = mr + ϵ/c2 is the relativistic mass. As in the

main text, we set the initial average position to x0 = 0. In position space, the gaussian wavefunction reads

ψmϵ(x, t) =

[√
2πσ2

Xr

(
1 +

iℏt
2mϵσ2

Xr

)]− 1
2

exp

−

(
x− p0

mϵ
t
)2

4σ2
Xr

(
1 + iℏt

2mϵσ2
Xr

)
 exp

{
i

ℏ
xp0

}
exp

{
− i

ℏ
p20
2mϵ

}
(5.131)

where σXr = ℏ
2σPr

is the initial spread. This is the standard gaussian wavepacket in the Schrödinger
picture, where the rest mass m is substituted by the relativistic mass mϵ. Notice that the average position
xϵ(t) =

p0
mϵ
t is different for each mass/energy in the superposition. From the probability distribution

|ψmϵ(x, t)|
2
=

[
2πσ2

Xr

(
1 +

( ℏt
2mϵσ2

Xr

)2)]− 1
2

exp

−

(
x− p0

mϵ
t
)2

2σ2
Xr

(
1 +

( ℏt
2mϵσ2

Xr

)2)
 (5.132)

we can read out the spread in position for each mass mϵ:

σXr,mϵ
(t)2 = σ2

Xr

[
1 +

(
ℏt

2mϵσ2
Xr

)2
]
= σ2

Xr
+

(
σPr

mϵ
t

)2

(5.133)

This is the standard spread in time of a gaussain wavepacket, where the time dependence is due to the
uncertainty in the velocity 11. The variance of the position operator can be computed directly considering
its first and second moment

⟨Xr⟩ (t) =
∫
dϵ |ϕϵ0,τ0(ϵ)|

2
xϵ(t)〈

X2
r

〉
(t) =

∫
dϵ |ϕϵ0,τ0(ϵ)|

2
x2ϵ(t) (5.134)

where x2ϵ(t) = σXr,mϵ
(t)2 + xϵ(t)

2 and xϵ(t) is the average position for each mass in the superposition.
Therefore the variance σ2

Xr
(t) =

〈
X2
r

〉
(t)− ⟨Xr⟩2 (t) reads

σXr
(t)2 =

∫
dϵ |ϕϵ0,τ0(ϵ)|

2

(
σXr,mϵ

(t)2 + xϵ(t)
2

)
−
(∫

dϵ |ϕϵ0,τ0(ϵ)|
2
xϵ

)2

= σ2
Xr

+

∫
dϵ |ϕϵ0,τ0 |

2

(
σPr

mϵ
t

)2

+

[∫
dϵ |ϕϵ0,τ0 |

2

(
p0t

mϵ

)2

−
(∫

dϵ |ϕϵ0,τ0 |
2 p0t

mϵ

)2
]

(5.135)

11Intuitively, an uncertainty in the velocity δv corresponds to an uncertainty in position δx = δvt
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Expanding mϵ at first order in ϵ/c2 we have

σP (x)(t)2 = σ2
Xr

+

(
σPr

mr
t

)2
〈(

1− ϵ

mrc2

)2
〉

+

(
p0t

mr

)2
[〈(

1− ϵ

mc2

)2〉
−
〈(

1− ϵ

mrc2

)〉2
]

(5.136)

We see that at this order the only modification is a correction due to the avg. internal energy

σP (x)(t)2 = σ2
Xr

+

(
σPr

mr
t

)2(
1− 2

ϵ0
mrc2

)
(5.137)

A dependence on the spread in the internal energy only appears considering an order higher, namely up to
O((ϵ/mc2)2), in which case the variance reads

σXr
(t)2 = σ2

Xr
+

(
σPr

mr
t

)2(
1− 2

ϵ0
mrc2

+ 3
σ2
Hc

+ ϵ20
m2
rc

4

)
+

(
p0t

mr

)2 σ2
Hc

m2
rc

4
(5.138)

Notice that the average internal energy can be re-absorbed in the rest mass, using the second order O(( Hc

mrc2
)2)

expansion

1

mn
r

(
1− n

ϵ0
mrc2

+
n(n+ 1)

2

ϵ20
m2
rc

2

)
≃
(

1

mr + ϵ0/c2

)n
(5.139)

Thus, the above equation reads

σXr
(t)2 = σ2

Xr
+

(
σPr

mr + ϵ0/c2
t

)2

+ 3

(
σPr

mr
t

)2( σ2
Hc

m2
rc

4

)
+

(
p0t

mr

)2 σ2
Hc

m2
rc

4
(5.140)

For simplicity, we can set ϵ0 = 0 without affecting the results of this section. This gives eq. (5.40) of the
main text.

5.D Variance of the position operator - MUS in configuration space
For the time evolution of the MUS in configuration space (5.28) we can simply substitute p0 → mv0,
σ2
Xr

→ σ2
x,m = ℏ

2mΩ to the standard gaussian-wavepacket (5.131). This gives

ψCmϵ
(x, t) =

[√
2π

ℏ
2mϵΩ

(1 + iΩt)

]− 1
2

exp

{
−mϵΩ

2ℏ
(x− v0t)

2

(1 + iΩt)

}
exp

{
i

ℏ
xmϵv0

}
exp

{
− i

ℏ
mϵ

v20
2
t

}
(5.141)

Computing the probability distribution

∣∣ψCmϵ
(x, t)

∣∣2 =

[
2π

ℏ
2mϵΩ

(
1 + Ω2t2

)]− 1
2

exp

{
−mϵΩ

ℏ
(x− v0t)

2

(1 + Ω2t2)

}
(5.142)

we can read out the spread in position for each internal-energy eigenvalue

σCXr,mϵ
(t)2 =

ℏ
2mϵΩ

(
1 + Ω2t2

)
(5.143)

The total spread in position is computed from the reduced density matrix of the "rod"

ρCr (t) =

∫
dϵ |ϕϵ0(ϵ)|

2 |ψv0,x0,mϵ
⟩⟨ψv0,x0,mϵ

|r (5.144)
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Since the avg. position xm(t) = v0t does not depend on the mass, the spread in position is given by

σCXr
(t)2 =

∫
dϵ |ϕϵ0(ϵ)|

2
σCXr,mϵ

(t)2 =

∫
dϵ |ϕϵ0(ϵ)|

2 ℏ
2mϵΩ

(
1 + Ω2t2

)
(5.145)

Expanding mϵ in (5.147) up to order O((ϵ/mc2)2) gives

σCXr
(t)2 =

ℏ
2mrΩ

(
1 + Ω2t2

)(
1− ϵ0

mrc2
+

σ2
Hc

m2
rc

4

)
(5.146)

Finally, using (5.139), we can absorb the average energy into the rest mass:

σCXr
(t)2 =

ℏ
2(mr + ϵ0/c2)Ω

(
1 + Ω2t2

)
+

ℏ
2mrΩ

(
1 + Ω2t2

)( σ2
Hc

m2
rc

4

)
(5.147)

By setting for simplicity ϵ0 = 0, we recover eq. (5.42) of the main text.

5.E Variance of the time operator - phase space MUS
The reduced density matrix of the clock (internal d.o.f.) can be computed by tracing out the kinematical
degrees of freedom from the pure state (5.35)

ρc(t) =

∫
dp |ψp0(p)|

2
∫
dϵdϵ′ϕϵ0(ϵ)ϕϵ0(ϵ

′)e−it∆p(ϵ−ϵ′) |ϵ⟩⟨ϵ′|

=

∫
dp |ψp0(p)|

2 |τ0 + t∆p⟩⟨τ0 + t∆p| (5.148)

Here we expanded

E(p, ϵ) =
p2

2mϵ
+ ϵ ≈ p2

2mr
+ ϵ(1− p2

2m2
rc

2
, (5.149)

so ∆p =
(
1− p2

2m2
rc

2

)
is the time dilation factor; then we defined

|τ0 + t∆p⟩ =
∫
dϵ ϕϵ0(ϵ)e

−it∆pϵ |ϵ⟩c (5.150)

that is the fourier transform of the gaussian states in the energy space. The reduced state of the clock (5.E) is
a mixture of clock states |t∆p⟩ weighted by the gaussian distribution in momentum space. For the variance
of the self-adjoint time operator

Tc =

∫
dτ τ |τ⟩⟨τ | =

∫
dϵdϵ′ τe−iτ(ϵ−ϵ

′) |ϵ⟩⟨ϵ′| (5.151)

we compute explicitly its first and second moment

⟨Tc⟩ = trc[ρc(t)Tc] =

∫
dp |ψp0(p)|

2
∫
dττ

∣∣∣ϕ̃(τ − t∆p)
∣∣∣2 (5.152)〈

T 2
c

〉
= trc[ρc(t)T

2
c ] =

∫
dp |ψp0(p)|

2
∫
dττ2

∣∣∣ϕ̃(τ − t∆p)
∣∣∣2 (5.153)

where

ϕ̃(τ − t∆p) =

∫
dϵ ϕϵ0(ϵ)e

−i(t∆p−τ)ϵ ∼ exp

{
− (τ − t∆p)

2

4σ2
Tc

}
(5.154)
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Considering ϕϵ0(ϵ) to be a gaussian state with std.dev σ2
Hc

, ϕ̃(τ − t∆p) will be a gaussian centered in
τ0 = t∆p with std.dev. σ2

Tc
= ℏ2/4σ2

Hc
, as it follows from the canonical commutation relations. Thus, one

has

⟨Tc⟩ =
∫
dp |ψp0(p)|

2
τ =

∫
dp |ψp0(p)|

2
t∆p = t ⟨∆Pr

⟩ (5.155)

〈
T 2
c

〉
=

∫
dp |ψp0(p)|

2
τ2 =

∫
dp |ψp0(p)|

2

(
σ2
Tc

+ (t∆p)
2

)
= σ2

Tc
+ t2

〈
∆2
Pr

〉
(5.156)

It follows that relavistic effects on the precision of the clock vanish at order O((p/mc)2) . We then need to
work at a precision higher than before, i.e. considering a time dilation factor

∆Pr
=

(
1− P 2

r

2m2c2
+

3P 4
r

8m4c4

)
(5.157)

At this order, one has the variance reads

⟨∆Pr
⟩2 =

(
1−

〈
P 2
r

〉
2m2c2

+
3

8

〈
P 4
r

〉
m4c4

)2

= 1−
〈
P 2
r

〉
m2c2

+
3

4

〈
P 4
r

〉
m4c4

+

〈
P 2
r

〉2
4m4c4

(5.158)

〈
∆2
Pr

〉
=

〈
1− P 2

r

m2c2
+

P 4
r

m4c4

〉
= 1−

〈
P 2
r

〉
m2c2

+

〈
P 4
r

〉
m4c4

(5.159)

σPT (t)
2 =

〈
T 2
c

〉
− ⟨Tc⟩ = σ2

Tc
+ t2

< P 4
r > − < P 2

r >
2

4m4c4
= σ2

Tc
+ t2

σ2
P 2

r

4m4c4
(5.160)

5.F Variance in time - configuration space MUS
The reduced density matrix of the clock reads (using the same expansion as in 5.E):

ρc(t) =

∫
dϵdϵ′

∫
dp ψv0,x0

(p, ϵ)ψv0,x0
(p, ϵ′)∗ ϕϵ0(ϵ)ϕϵ0(ϵ

′)e−
i
ℏ (ϵ−ϵ′)t∆p |ϵ⟩⟨ϵ′|c , (5.161)

where we recall

ψv0,x0
(p, ϵ) =

(
1

2mϵℏΩ

) 1
4

exp

{
− 1

2mϵℏΩ
(p−mϵv0)

2 − i

ℏ
(p−mϵv0)x0

}
. (5.162)

To compute clock’s variance, we need:

trc [T
n
c ρc(t)] =

∫
dϵdϵ′

∫
dp ψv0,x0(p, ϵ

′)ψv0,x0(p, ϵ)
∗ ϕϵ0(ϵ)ϕϵ0(ϵ

′)·

·
∫
dτ (t∆p − τ)ne−

i
ℏ (ϵ−ϵ′)τ (5.163)

where we changed variables t∆p − τ → τ . Now we make use of the following identities

∫
dt te

i
ℏ te = −iℏ∂eδ(e),

∫
dt t2e

i
ℏ te = −ℏ2∂2eδ(e) (5.164)

so that we can first change variables (ϵ, ϵ′) → ( ϵ+ϵ
′

2 , ϵ − ϵ′) := (E, e) and then we can integrate by parts.
For instance, we have
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trc [Tcρc(t)] =

∫
dϵdϵ′

∫
dp ψv0,x0

(p, ϵ′)ψv0,x0
(p, ϵ)∗ ϕϵ0(ϵ)ϕϵ0(ϵ

′)

(
τδ(ϵ− ϵ′)− iℏ∂eδ(e)

)
(5.165)

By expressing ϵ = E + e/2 and ϵ′ = E − e/2 we can easily integrate by parts. In particular, we deal with

(−iℏ)n ∂ne
(
ψv0,x0

(p,E + e/2)ψv0,x0
(p,E − e/2)∗ ϕϵ0(E + e/2)ϕϵ0(E − e/2)∗

)
δ(e) (5.166)

For simplicity, we consider τ0 = x0 = 0 so that the gaussians are fully real. We can check that

−iℏ ∂e
(
ψv0,x0(p,E + e/2)ψv0,x0(p,E − e/2) ϕϵ0(E + e/2)ϕϵ0(E − e/2)

)
δ(e) = 0 (5.167)

While we have

(−iℏ)2 ∂2e
(
ψv0,x0

(p,E + e/2)ψv0,x0
(p,E − e/2) ϕϵ0(E + e/2)ϕϵ0(E − e/2)

)
δ(e) (5.168)

=
ℏ2

4

(
1

σ2
Hc

+
2p2

ℏΩm3
Ec

4
− 1

m2
Ec

4

)
(5.169)

where the last term comes from the normalization factor of ψv0,x0
(p, ϵ). Thus, the expectation values read

trc [Tcρc(t)] =

∫
dϵ

∫
dp |ψv0,x0(p, ϵ

′)|2 |ϕϵ0(ϵ)|
2
t∆p = t ⟨∆Pr ⟩ (5.170)

and

trc
[
T 2
c ρc(t)

]
=

∫
dϵ

∫
dp |ψv0,x0

(p, ϵ′)|2 |ϕϵ0(ϵ)|
2(

t2∆2
p +

ℏ2

4

( 1

σ2
Hc

+
2p2

ℏΩm3
ϵc

4
− 1

m2
ϵc

4

))
(5.171)

Now, inserting
〈
p2
〉
= p20 + σ2

Pr
= m2

ϵv
2
0 +

mϵℏΩ
2 in the above expression gives:

trc
[
T 2
c ρc(t)

]
= t2

〈
∆2
p

〉
+

ℏ2

4σ2
Hc

+

〈
1

2

ℏ
Mc2Ω

v20
c2

〉
(5.172)

The variance in time then reads

σCTc
(t)2 =

ℏ2

4σ2
Hc

+
1

2

〈
ℏ

Mc2Ω

〉
v20
c2

+ t2
(〈

∆2
p

〉
− ⟨∆p⟩2

)
(5.173)

Following the calculations we did for phase-space MUS, we see that the dynamical corrections appears at
order ∼ p4/m4c4. The difference is that the initial time precision has a correction given by the average
velocity:

σCTc
(t)2 =

ℏ2

4σ2
Hc

+
1

2

〈
ℏ

Mc2Ω

〉
v20
c2

+ t2
σ2
P 2

r

4m4
rc

4
(5.174)

This is expected, since the configuration-space MUS are entangled from the beginning, so the clock’s
kinematics has an effect on the internal degrees of freedom. Since the second term is already of order
∼ c−4 and moreover we can assume v0/c ≪ 1, we can approximate the relativistic mass to the rest mass.
Thus, we recover Eq. (5.46) in the main text.
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5.G Invariant position
The invariant position (5.65), using the POVM (5.64), reads

X̃ =

∫
dxdt U

†
r (x)U

†
rc(t)

[
{|0⟩⟨0|r ,∆Pr} ⊗ |0⟩⟨0|c

]
⊗ U

†
s (x, t)[Xs] (5.175)

Firstly, we focus on spatial translations, which act only on the kinematical degrees of fredom. We compute

∫
dx U

†
r (x)U

†
s (x) [{|0⟩⟨0|r ,∆Pr

} ⊗Xs] =

=

∫
dx

∫
dpdp′ |p⟩⟨p′|r

1

2

(
∆′
p +∆p

)
e

i
ℏx(p−p

′) ⊗ (Xs + x)

Now we use

∫
dx xe

i
ℏxq = −iℏ∂qδ(q) (5.176)

and we change variables (p,′ p) → (p+ q/2, p− q) := (Q, q). This gives

∫
dp ∆p |p⟩⟨p|r ⊗Xs+

−iℏ
∫
dQdq |Q+ q/2⟩⟨Q− q/2|r

1

2

(
∆Q+q/2 +∆Q−q/2

)
(∂qδ(q))⊗ Is (5.177)

Now we express

|Q+ q/2⟩r = e+
i
ℏ

q
2Xr |Q⟩

⟨Q− q/2|r = ⟨Q| e+ i
ℏ

q
2Xr (5.178)

Integrating by parts, when the derivative acts on these terms we get the position operator, while the action
on the time dilation factors vanish. Expicitly, we get

∫
dp ∆p |p⟩⟨p|r ⊗Xs −

∫
dp {Xr,∆p |p⟩⟨p|r} ⊗ Is (5.179)

where {A,B} = 1
2 (AB + BA) is the anticommutator. Notice that, in the limit in which ∆p = 1, we

recover the usual relative position Xs −Xr.

Similarly, we can compute the time evolution, which acts through 5.22 on both the internal and external
degrees of freedom.

∫
dt U

†
rc(t)U

†
s (t)

[∫
dp ∆p |p⟩⟨p|r ⊗ |0⟩⟨0|c ⊗Xs −

∫
dp {Xr,∆p |p⟩⟨p|r} ⊗ |0⟩⟨0|c ⊗ Is

]
(5.180)

We consider the two terms separately

1. The action on the system’s Hilbert space reads

U
†
s (t)[Xs] = Xs + t

Ps
ms

(5.181)

While the action on the clock, by expanding |0⟩c =
∫
dϵ |ϵ⟩, reads

99



U
†
rc(t)

[∫
dp ∆p |p⟩⟨p|r ⊗ |0⟩⟨0|c

]
=

∫
dp ∆p |p⟩⟨p|r ⊗

∫
dt

∫
dϵdϵ′ e

i
ℏ (ϵ−ϵ′)t∆p |ϵ⟩⟨ϵ′|

=

∫
dp ∆p |p⟩⟨p| ⊗

∫
dt |t∆p⟩⟨t∆p| (5.182)

All toghether, reads

∫
dp ∆p |p⟩⟨p| ⊗

∫
dt |t∆p⟩⟨t∆p| ⊗

(
Xs + t

Ps
ms

)
(5.183)

By a change of variables t∆p → t we reach

Xs ⊗ Ir ⊗ Ic +
Ps
ms

⊗ 1

∆Pr

⊗ Tc (5.184)

2. For the second part of 5.180 we have to compute

−
∫
dt U

†
rc(t)

[∫
dp {Xr,∆p |p⟩⟨p|r} ⊗ |0⟩⟨0|c ⊗ Is

]
= −

∫
dt

∫
dp

∫
dϵdϵ′

(
{Xr,∆p |p⟩⟨p|r}+

( p
mϵ

+
p

m′
ϵ

)
t∆p |p⟩⟨p|r

)
⊗ |ϵ⟩⟨ϵ′|c e

− i
ℏ t∆p(ϵ−ϵ′)

(5.185)

The computation is analogous to the previous one: we first change time variable t∆p → t and we use

∫
dt te

i
ℏ te = −iℏ∂eδ(e) (5.186)

then we change variables (ϵ, ϵ′) → (ϵ + ϵ′/2, ϵ − ϵ′) := (E, e) and we integrate by parts. In particular,
expressing

|ϵ⟩ →
∣∣∣E +

e

2

〉
= e

i
ℏ

e
2Tc |E⟩ (5.187)

when the derivative acts on these terms, the time operator appears. Thus, we have

−Xr ⊗ Ic −
∫
dp

∫
dϵ

1

∆p
|p⟩⟨p|r

p

mϵ
{Tc, |ϵ⟩⟨ϵ|c}

:= −Xr ⊗ Ic −
Pr
∆Pr

{Tc,
1

M
}

The final result reads

X̃ = Xs ⊗ Ir ⊗ Ic +
Ps
ms

⊗ 1

∆Pr

⊗ Tc

−Is ⊗Xr ⊗ Ic − Is ⊗ Pr
1

∆Pr

⊗ {Tc,
1

M
} (5.188)

that coincides with (5.65).

100



5.H Recovery operation - phase space MUS
As initial initial state of the quantum clock we consider a separable state (MUS in phase space):

|0, 0⟩Prc =
∫
dpψp0,x0=0(p) |p⟩r ⊗

∫
dϵϕϵ0(ϵ) |ϵ⟩c (5.189)

where both wavepackets, in momentum and internal energy space, are gaussian. Explicitly

ψp0(p) =

(
1

2πσ2
Pr

) 1
4

exp

{
− (p− p0)

2

4σ2
Pr

}
, ψϵ0(ϵ) =

(
1

2πσ2
Hc

) 1
4

exp

{
− (ϵ− ϵ0)

2

4σ2
Hc

}
(5.190)

The "orbit of |0, 0⟩rc under the group of space and time translations is given by the states

|x, t⟩Prc = Urc(t)Ur(x) |0, 0⟩Prc =
∫
dp

∫
dϵψp0(p)e

− i
ℏxpe−

i
ℏ tEp |p⟩r ⊗ ϕϵ0(ϵ)e

− i
ℏ t∆pϵ |ϵ⟩c (5.191)

where the group action is defined in the main text (5.52) and ∆p = (1− p2

2m2
rc

2 ) is the time dilation factor.
The POVM measurment (5.64) performed by Bob is given by

Ex,t = U
†
r (x)U

†
rc(t)

[
{|0⟩⟨0|r ,∆Pr

} ⊗ |0⟩⟨0|c

]
(5.192)

Thus, the Born probability reads

p(x, t) = trrc

[
Ex,t |0, 0⟩⟨0, 0|rc

]
=

∫
dpdp′

1

2

(
∆p +∆p′

)
ψp0(p)ψp0,x0(p

′)∗e−
i
ℏx(p−p

′)e−
i
ℏ t(E(p)−E(p′)) ·

·
∫
dϵdϵ′ϕϵ0,τ0(ϵ)ϕϵ0,τ0(ϵ

′)∗e−
i
ℏ t(ϵ∆p−ϵ′∆p′ ) (5.193)

and we can check it’s a normalized probability distribution, i.e.
∫
dxdt p(x, t) = 1.

To compute the integrals we are interested in, we will often use the following relations:

∫
dt te−

i
ℏ te = −iℏ∂eδ(e)

∫
dx xe−

i
ℏxq = −iℏ∂qδ(q)∫

dt t2e−
i
ℏ te = −ℏ2∂2eδ(e)

∫
dx x2e−

i
ℏxq = −ℏ2∂2q δ(q) (5.194)

1. We start from the average time squared, in which case we can directly integrate over x, which gives
a δ(p− p′): ∫

dxdt p(x, t) t2

=

∫
dp |ψp0,0(p)|

2
∫
dt

(
t

∆p

)2 ∫
dϵ

∫
dϵ′ ϕϵ0,τ0(ϵ)ϕ

∗
ϵ0,τ0(ϵ

′)e−
i
ℏ t(ϵ−ϵ

′)

=

∫
dp |ψp0,0(p)|

2
∫
dt

(
t

∆p

)2 ∣∣∣ϕ̃ϵ0,τ0(t)∣∣∣2 =

〈
σ2
Tc

∆2
Pr

〉
where we define the time-wavefunction as the fourier tranform ϕ̃ϵ0,0(t) =

∫
dϵ ϕϵ0(ϵ)

2e−
i
ℏ tϵ.

2. The average position reads

∫
dxdt p(x, t) x

=

∫
dpdp′

1

2

(
∆p +∆p′

)
ψp0(p)ψp0,0(p

′)∗e−
i
ℏ t(E(p,ϵ)−E(p

′,ϵ′))

∫
dx xe−

i
ℏx(p−p

′) ·

·
∫
dϵdϵ′ϕϵ0(ϵ)ϕϵ0,0(ϵ

′)∗e−
i
ℏ t(ϵ−ϵ

′) (5.195)
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where E(p, ϵ) = p2

2mϵ
. Now we use (5.208) so that, changing variables (p, p′) → (p+p

′

2 , p− p′) and
integrating by parts, we reach

=

∫
dp |ψp0,0(p)|

2
∫
dϵ

∫
dϵ′ ϕϵ0(ϵ)ϕ

∗
ϵ0(ϵ

′)

[
p

2∆p

(
1

mϵ
+

1

mϵ′

)]∫
dt te−

i
ℏ t(ϵ−ϵ

′) (5.196)

Finally, we use again (5.208), we change variables (ϵ, ϵ′) → ( ϵ+ϵ
′

2 , ϵ− ϵ′) := (E, e) and we integrate
by parts. We see that

∂e

(
ϕϵ0,0(E + e/2)ϕ∗ϵ0,0(E + e/2)

(
1

mE+e/2
+

1

mE−e/2

))
= 0 (5.197)

Thus, we have

∫
dxdt p(x, t) x = 0 (5.198)

3. Similarly, we can compute

∫
dxdt p(x, t) x2

=

∫
dpdp′

1

2

(
∆p +∆p′

)
ψp0(p)ψp0,0(p

′)∗e−
i
ℏ t(E(p,ϵ)−E(p

′,ϵ′))

∫
dx x2e−

i
ℏx(p−p

′) ·

·
∫
dϵdϵ′ϕϵ0(ϵ)ϕϵ0,0(ϵ

′)∗e−
i
ℏ t(ϵ−ϵ

′) (5.199)

using (5.208) changing variables (p, p′) → (p+p
′

2 , p− p′) and integrating twice by parts we get

=

∫
dp |ψp0,0(p)|

2
∫
dt

∫
dϵ

∫
dϵ′ ϕϵ0(ϵ)ϕ

∗
ϵ0(ϵ

′)e−
i
ℏ t∆p(ϵ−ϵ′)·

·

[
ℏ2

4m2
rc

2
+

ℏ2

4σ2
Pr

∆p + i
ℏt
4

( 1

mϵ
− 1

mϵ′

)
∆p +

(
t
( p

2mϵ
+

p

2mϵ′

))2

∆p

]
(5.200)

Notice that the last two terms come from the unitary evolution of the clock ∼ exp
{
− i

ℏ tE(p, ϵ)
}

,
hence they do not strictly depend on the clock’s initial state.

By changing variables t∆p → t, and (ϵ, ϵ′) → ( ϵ+ϵ
′

2 , ϵ− ϵ′) and using (5.208), one has

=

∫
dp |ψp0,0(p)|

2
∫
dϵ |ϕϵ0(ϵ)|

2

[
ℏ2

4m2
rc

2
+ σ2

Xr
+

1

∆p

ℏ2

4m2
ϵc

2
+

p2

m2
ϵ

σ2
Tc

∆2
p

− 1

2

ℏ2p2

m4
ϵc

4

1

∆2
p

]
≈
〈
1

4

ℏ2

m2
rc

2

1

∆Pr

〉
+ σ2

Xr
+

〈
P 2
r

M2

σ2
Tc

∆2
Pr

〉
+

〈
1

4

ℏ2

M2c2
1

∆Pr

〉
(5.201)

where, in the second line, we neglected the term ∼ p2/c4. To sum up, we have the following results

∫
dxdt p(x, t) t2 =

〈
σ2
Tc

∆2
Pr

〉
∫
dxdt p(x, t) x = 0∫

dxdt p(x, t) x2 =
ℏ2

4m2
rc

2
+ σ2

Xr
+

〈
P 2
r

M2

σ2
Tc

∆2
Pr

〉
+

〈
1

4

ℏ2

M2c2
1

∆Pr

〉
(5.202)

that coincides with eq. (5.2.3) in the main text
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5.I Recovery operation - configuration space MUS
We consider the clock to be preparred in a configuration space MUS:

|0, 0⟩C =

∫
dϵ

∫
dp ψv0,x0=0(p, ϵ)ϕϵ0(ϵ) |ψp⟩c ⊗ |ϵ⟩r (5.203)

where we recall that

ψv0,x0(p, ϵ) =

(
1

2mϵℏΩ

) 1
4

exp

{
− 1

2mϵℏΩ
(p−mϵv0)

2 − i

ℏ
(p−mϵv0)x0

}
(5.204)

The "orbit of |0, 0⟩rc under the group of space and time translations is given by the states

|x, t⟩Crc = Urc(t)Ur(x) |0, 0⟩Crc =
∫
dp

∫
dϵψv0,0(p, ϵ)e

− i
ℏxpe−

i
ℏ tEp |p⟩r ⊗ ϕϵ0(ϵ)e

− i
ℏ t∆pϵ |ϵ⟩c

(5.205)

The POVM measurment (5.64) performed by Bob is given by

Ex,t = U
†
r (x)U

†
rc(t)

[
{|0⟩⟨0|r ,∆Pr} ⊗ |0⟩⟨0|c

]
(5.206)

Thus, the Born probability reads

p(x, t) = trrc

[
Ex,t |0, 0⟩⟨0, 0|Crc

]
=

∫
dpdp′

1

2

(
∆p +∆p′

)
ψv0,0(p, ϵ)ψ

∗
v0,0(p

′, ϵ′)e−
i
ℏx(p−p

′)e−
i
ℏ t(E(p)−E(p

′)) ·

·
∫
dϵdϵ′ϕϵ0(ϵ)ϕ

∗
ϵ0(ϵ

′)e−
i
ℏ t(ϵ∆p−ϵ′∆p′ ) (5.207)

and we can check it’s a normalized probability distribution, i.e.
∫
dxdt p(x, t) = 1. Again, we will often

use the following relations:∫
dt te−

i
ℏ te = −iℏ∂eδ(e)

∫
dx xe−

i
ℏxq = −iℏ∂qδ(q)∫

dt t2e−
i
ℏ te = −ℏ2∂2eδ(e)

∫
dx x2e−

i
ℏxq = −ℏ2∂2q δ(q) (5.208)

1. We start from the average time squared, in which case we can directly integrate over x, which gives
a δ(p− p′):

∫
dxdt p(x, t) t2

=

∫
dp

∫
dϵdϵ′ ∆pψv0,0(p, ϵ)ψ

∗
v0,0(p, ϵ

′)e−
i
ℏ t(E(p,ϵ)−E(p,ϵ

′)) ·

· ϕϵ0(ϵ)ϕ∗ϵ0(ϵ
′)

∫
dt t2e−

i
ℏ t(ϵ−ϵ

′)

where E(p, ϵ) = p2/2mϵ. The computation is similar to the one in (5.F). We use (??) and we
integrate twice by parts:

=

∫
dp

∫
dϵdϵ′ ∆p − ℏ2∂2e

(
ψv0,0(p,E + e/2)ψ∗

v0,0(p,E − e/2) ·

· e−
i
ℏ t
(
E(p,E+e/2)−E(p,E−e/2)

)
ϕϵ0,0(E + e/2)ϕ∗ϵ0,0(E − e/2)

)
δ(e)

=

∫
dp

∫
dϵ |ψv0,0(p, ϵ)|

2 |ϕϵ0(ϵ)|
2 ℏ2

4

(
1

σ2
Hc

+
2p2

ℏΩm3
ϵc

4
− 1

m3
ϵc

4

)
(5.209)
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Then, substituting
〈
p2
〉
= p20 + σ2

Pr
= m2

ϵv
2
0 +

mϵℏΩ
2 we see that the last term vanishes and we get

∫
dxdt p(x, t) t2 =

ℏ2

4σ2
Hc

+
ℏv20

2Ωmϵc4
(5.210)

which coincides with our previous fundings.

2. The average position reads

∫
dxdt p(x, t) x

=

∫
dϵdϵ′

∫
dpdp′

1

2

(
∆p +∆p′

)
ψv0,0(p, ϵ)ψ

∗
v0,0(p

′, ϵ′)e−
i
ℏx(p−p

′)e−
i
ℏ t
(
E(p)−E(p′)

)
ϕϵ0(ϵ)ϕ

∗
ϵ0(ϵ

′)e−
i
ℏ t(ϵ−ϵ

′)

∫
dx xe−

i
ℏx(p−p

′) (5.211)

Now we use (5.208) so that, changing variables (p, p′) → (p+p
′

2 , p− p′) and integrating by parts, we
reach

=

∫
dp |ψv0,0(p, ϵ)|

2
∫
dϵ

∫
dϵ′ ϕϵ0(ϵ)ϕ

∗
ϵ0(ϵ

′)

[
p

2

(
1

mϵ
+

1

mϵ′

)]∫
dt te−

i
ℏ t(ϵ−ϵ

′) (5.212)

Finally, we use again (5.208), we change variables (ϵ, ϵ′) → ( ϵ+ϵ
′

2 , ϵ− ϵ′) := (E, e) and we integrate
by parts. We see that

∂e

(
ϕϵ0,0(E + e/2)ϕ∗ϵ0,0(E + e/2)

(
1

mE+e/2
+

1

mE−e/2

))
= 0 (5.213)

Thus, we have

∫
dxdt p(x, t) x = 0 (5.214)

3. Similarly, we can compute

∫
dxdt p(x, t) x

=

∫
dϵdϵ′

∫
dpdp′

1

2

(
∆p +∆p′

)
ψv0,0(p, ϵ)ψ

∗
v0,0(p

′, ϵ′)e−
i
ℏx(p−p

′)e−
i
ℏ t(E(p)−E(p

′)) ·

· ϕϵ0(ϵ)ϕ∗ϵ0(ϵ
′)e−

i
ℏ t(ϵ−ϵ

′)

∫
dx x2e−

i
ℏx(p−p

′) (5.215)

using (5.208) changing variables (p, p′) → (p+p
′

2 , p− p′) and integrating twice by parts we get
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(5.216)

where now σ2
Pr

= mϵℏΩ/2. Notice that the last two terms come from the unitary evolution of the
clock ∼ exp

{
− i

ℏ tE(p, ϵ)
}

, hence they do not strictly depend on the clock’s initial state.
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By changing variables t∆p → t, and (ϵ, ϵ′) → ( ϵ+ϵ
′

2 , ϵ− ϵ′) and using (5.208), one has
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∫
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where, in the second line, we neglected the term ∼ p2/c4 and we denoted σ2
Tc
(v0) =

ℏ2

4σ2
Hc

+
ℏv20

2Ωmϵc4

and σXr
(M) = ℏ/2MΩ. To sum up, we have the following results

∫
dxdt p(x, t) t2 =
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(5.218)

that coincides with eq. (5.2.3) in the main text
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Chapter 6

Conclusion and Outlook

In this thesis, we use the framework of quantum reference frames (QRF) and quantum clocks in the context
of foundations of physics, in particular at the intersection of quantum mechanics (QM) and general relativ-
ity (GR). The principles of diffeomorphism invariance in GR imposes an operational approach to reference
frames in spacetime: spacetime coordinates are physically meaningful only if their corresponding reference
frame is a physical system, obeying the dynamical equations of the theory. Extending this principle to QM
introduces fundamental limitations that challenge classical assumptions about space and time.

Inspired by the work of Salecker and Wigner, we begin in section (5.1.2) by examining the synchronization
of distant quantum clocks. We found that, unlike in the classical case, perfect synchronization is inherently
unattainable when considering the quantum nature of clocks, particularly their internal degrees of freedom.
Quantum uncertainties prevents clocks from achieving absolute simultaneity, introducing a fundamental
limitation to the concept of simultaneous spacetime slices.

Then, in section (5.2), we investigate how the precision of time measurements affects the spatial localiza-
tion of quantum clocks. The relativistic coupling between a clock’s internal energy and its external motion
implies an unavoidable trade-off: improving temporal precision leads to greater uncertainty in spatial lo-
calization, and vice versa. This trade-off, which emerges from combining fundamental aspects of quantum
mechanics and special relativity, shows that a quantum clock cannot simultaneously serve as both an in-
finitely precise temporal and a perfectly localized spatial reference frame. The broader the clock’s energy
spectrum, the more precise its time measurements, but this also results in a larger spatial spread, revealing
an interconnectedness between the operational notions of space and time in quantum systems.

While we claim that the physical phenomenon underlying this trade-off is general — stemming from the
universal coupling between internal and external degrees of freedom of the spacetime QRF — the quan-
titative analysis we present is tied to a specific model of the clock, namely one with a continuous and
unbounded spectrum hamiltonian. Nevertheless, we believe this analysis lays the groundwork for more
comprehensive and general investigations in the future.

Overall, our analysis demonstrates that when the principles of quantum mechanics and relativity are com-
bined, the classical conception of spacetime and reference frames becomes fundamentally inadequate.
Quantum clocks do not exhibit the idealized classical behavior of continuous, precise timekeeping or perfect
spatial localization, suggesting the need for a fundamental rethinking of reference frames and spacetime.
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