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Abstract

Person Re-Identification is a computer vision task that aims at retrieving a target person
across multiple, non overlapping cameras. It is a central component of any intelligent
surveillance system, and has seen a steady increase in research efforts. Despite the
problem’s considerable difficulty, state-of-the-art models have achieved impressive results
over all benchmark datasets, which has motivated us to investigate the applicability of
such models in a real-world scenario. To this end, we present a brief overview of the
most important aspects of person re-identification, as well as some experimental results
regarding the domain gap problem of person re-identification models, which to this day
remains the main challenge to the adoption of such models in a real-world setting.
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Chapter 1

Introduction

The increase in deep neural network performance over the last decade and its consequent
surge in popularity has led to a never-before seen amount of interest go towards the
implementation of intelligent systems into practical scenarios. One scenario that has
seen a constant increase in demand has been that of camera-based surveillance systems,
which have steadily grown in size and complexity, making relying on a human operator
more and more arduous. Person re-identification, often shortened to person re-id, is a
computer vision task that sits at the heart of any such system: its aim is to retrieve a
person of interest’s identity across multiple, non-overlapping cameras [13].

Even in its most basic form, person re-id has proven itself to be an extremely chal-
lenging task, mostly due to the reliance of the models on intrinsically weak visual features
(such as clothing, general appearance and objects carried) to perform the re-identification
[13]. Additionally person re-id datasets are hard to both gather and annotate.

Nevertheless, research has proceeded steadily in the past years, achieving extremely
promising results across all available person re-id datasets (on which state-of-the-art
models generally achieve a Rank-1 score of at least 90% [48, 38]), some of which will be
discussed in Chapter 2.

These results, together with the aforementioned interest in real-world intelligent sys-
tems, have motivated us to believe the applicability of such models is to be investigated.
To this end, we directed our efforts towards evaluating the performance of person re-id
state-of-the-art models on never-before seen data, to evaluate how such models would
perform in a real-world setting. This is done by measuring the model’s performance on
a dataset different from the one it was trained on, which evaluates the model on a new
set of subjects, camera angles, levels of occlusion, light levels, environmental conditions,
backgrounds and image qualities, all of which are crucial challenges that will be faced
by any person re-id model deployed in a real-world scenario. We used this method to
estimate, among all datasets at our disposal, the two most different datasets, meaning
the two datasets that present the biggest gap in performance when one is used for train-
ing and the other is used for testing. We then attempt to bridge this gap by merging
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the two datasets, retraining the model on the result and measure its performance on the
remaining datasets.

This thesis is structured as follows: in this chapter we give a brief overview of person
re-identification and the domain gap, we then move on to an overview of some of the
most important datasets in Chapter 2 (including every dataset used in our experiments).
Chapter 3 contains an outline of the models we used, as well as the most common
metrics in person re-id. The results of our experiments relating to the domain gap will
be presented in Chapter 4.

1.1 Person Re-Identification

The basic functionality of an intelligent camera-based surveillance system would be to be
to detect all pedestrians present in the current feed, track them as they move and retrieve
all images of a given person (which is essential in a number of surveillance applications,
for example long-term multi-camera tracking [13]) [48], both in the current feed of other
cameras and from a data bank of stored images/videos. In computer vision terms these
tasks are called as follows:

• Object Detection [61], which is the task of detecting and locating objects in a
given image or video. Most commonly camera-based surveillance systems will only
need to track people.

• Object Tracking [46], which is the task of tracking a set of bounding boxes as
they move. Each bounding box will be paired with an ID which will have to be
kept coherent throughout the tracking.

• Person Re-Identification [13, 48, 53, 52], which will implement the person re-
trieval part of the surveillance system.

Person Re-Identification (person re-id for short) is, as said, the computer vision task that
implements person retrieval: in its simplest and most widely studied form, it consists
of matching a given a person’s image, which will be called a query, against a set of
cross-camera images, which will be called a gallery, as shown in Fig 1.1.

Person Re-Identification presents numerous challenges. Depending on a number of
factors (some of which include camera angle and quality, distance from the subject and
subject pose, environmental factors and lighting conditions etc.), relying on more robust
biometric features, as is done in face recognition, to perform person re-id could be unfea-
sible [13]. Instead, person re-id models have to rely on more generic appearance based
features, such as clothing, which can be weak for associating people. For example, a per-
son recorded by two non-overlapping cameras could take off a coat, put one on, or, most
commonly, be wearing very similar clothing to some other person, as shown in Figure
2.4. This can result in cross-camera images representing two different identities being
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Figure 1.1: [48] The Person Re-Identification task: the query image of a woman is
matched against the gallery set produced by n independent cameras. The output is the
gallery subset that matches the query identity.

more alike than two cross-camera images representing the same identity, in classification
terms this means that intra-class variability can be greater than inter-class variability
[13].

The intrinsically weak nature of appearance features is compounded by the difficul-
ties inherent to the multi-camera setting of person re-id. First is the pose variation
of the subjects: given that images of the same person will be recorded from different
cameras at different times, there will be a great amount of variation in the subject’s
poses (e.g. the subject could be walking towards one of the cameras and away from the
other), in the levels of environmental occlusion (e.g. other pedestrians, cars) and lighting
conditions. Secondly, the fact that images will be taken from different cameras further
adds complexity to the problem, as the images will also be taken from different angles
and, possibly, with varying image qualities and backgrounds. Lastly, the training images
which will comprise the datasets are often generated using an object detector, which can
sometimes be inaccurate, producing misaligned training images or images that only par-
tially contain the subject, as shown in Figure 1.2 (f). However this is, as will be discussed
in Chapter 2, more of an asset than a liability: as said, it is reasonable to assume that
an intelligent camera-based surveillance system would employ an object detector and an
object tracker, meaning that that person re-id models should be prepared to sometimes
face malformed bounding boxes.
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Figure 1.2: [48] Some of the challenges presented by person re-id: (a) low resolution,
(b) pose and camera angle changes, (c) different imaging techniques, (d) environmental
occlusion, (f) inaccurate bounding box.

Variations

In this thesis we will solely focus on image-to-image Person Re-Identification, where
both the query and the gallery are image sets, but variations do exist and are worth
mentioning. The most closely related one is Vehicle Re-Identification, in which both the
query and the gallery will be images of vehicles, such as cars, trucks and motorbikes,
instead of people [3]. Other commonly studied variations include text-to-image person
re-id, where the gallery is searched not based on a query image, but based on a textual
description that acts as the query [41], or video person re-id, where either the gallery, or
the query, or both are comprised of videos instead of images [17].

1.2 The Domain Gap

One of the most important problems plaguing person re-id models is the domain gap.
Models, even high performing models, suffer a large performance degradation when tested
on a never-before seen dataset [47, 52].

The reason seems to be twofold: as said, person re-id is an extremely complicated
task, which in turn causes even small variations in the nature of the data (e.g. lighting
changes, different camera angles, different clothing styles, etc.), which will be extremely
common in data taken from different cameras and in different environments than those
used to create the model’s training dataset, have a great impact on model performance.
Secondly, because of the costly nature of gathering and annotating person re-id data,
most available datasets are, as will be discussed in Chapter 2, rather small in size, making
it even more difficult for models to learn generalized features.
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The domain gap is currently the biggest challenge to the deployment of person re-
id models in a real world setting, since a good performance cannot be guaranteed on
never-before seen data.
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Chapter 2

Datasets

As with all deep learning tasks, data plays a crucial role in the model’s performance. In
this chapter, we will present a brief overview of some of the most influential person re-id
datasets.

Figure 2.1: [49] Examples of images from three different person re-id datasets:
DukeMTMC-reID [36], CUHK03 [23] and Market-1501 [57].

Any effective person re-identification dataset will present challenges similar to the
ones present in a real-life scenario. To better capture these challenges most datasets
are produced from video footage recorded in a public setting (like a university campus).
The frames from the video footage are then passed to an object detector or processed
by hand in order to generate the bounding boxes for each pedestrian, some examples
from three different datasets can be seen in Figure 2.1. As said in the previous chapter,
person re-identification aims at retrieving a person’s identity (called a query) from an
image set (called gallery). The datasets for person re-id are, as is often the case with
deep learning datasets, split into the training set and the testing set. The testing set
will be further split into a query set and a gallery set. In order for this to be feasible,
each query identity (that is, each identity that appears at least once in the query set)
needs to be present in at least one, but preferably more, gallery images taken from a
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Dataset Year Identities Bounding Boxes Cameras
CUHK03 [23] 2014 1,360 13,164 6

Market-1501 [57] 2015 1,501 32,668 6

DukeMTMC-reID [36] 2016 1,812 36,441 8

MSMT17 [47] 2017 4,101 126,441 15

Airport [19] 2018 9,651 39,902 6

ENTIRe-ID [54] 2024 13,540 4.45M 37

ENTIRe-ID (Testing Set1) 2024 2,741 13,415 37

Table 2.1: Characteristics of the person re-id datasets that will be discussed in this
chapter. Highlighted datasets are the one used for our experiments in Chapter 4.

different camera. The bounding boxes produced from the raw video that satisfy these
prerequisite will be selected, the others will either be discarded or added as distractor
images. Distractor images, as will be discussed in Section 2.2, help make the dataset
closer to a real-world environment.

Figure 2.2: [53] The person re-identification data pipeline: first the raw footage is cap-
tured by a public camera, the bounding boxes are then made (by hand or with an object
detector), annotated, and are finally used by a model.

Each of the selected bounding boxes is then annotated with an ID corresponding to
the person it depicts, the camera’s ID and, optionally, a timestamp and/or track ID and
is finally added to the dataset. Table 2.1 provides a quick summary of the person re-id
datasets we will be presenting in this chapter.

2.1 CUHK03

CUHK03 is a dataset released in 2014 by Li et al. [23]. It was developed at the Chinese
University of Hong Kong and its main contributions to the field lie in its size and its
annotation method.

1As of the time of writing, only the testing set has been released.
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Figure 2.3: [23] Some examples of CUHK03 images. Each pair of adjacent images share
the same identity.

Compared to earlier works [39, 58, 27, 7, 16, 14], CUHK03 exhibits a much greater
magnitude in terms of data volume with 13,164 bounding boxes and 1,360 identities
extracted from footage recorded by 6 cameras, with each identity being captured by two
cameras and having an average of 4.8 images per identity in each of the two camera
views. For comparison, the VIPeR dataset [14] contains 632 image pairs taken by 2
cameras (each identity has one pair of images), and the CUHK02 dataset [22], released
by the same authors in 2013, contains 1,816 identities, with each identity appearing in
two cameras, but with only two images per camera view (for a total of 7,264 images).
This increase in size was pivotal for allowing the training of deep neural networks, which
generally requires large amounts of data to be effective.

The second major contribution of the dataset is the availability of both hand-crafted
and automatically detected bounding boxes. The hand-crafted bounding boxes (which
are the standard in earlier works) allow researchers to train and test the models under
ideal conditions, whereas the automatically detected ones (generated using a state of the
art object detector, the Deformable Part Model [11]) bring the dataset closer to what
would be seen by a real world automatic surveillance system, by introducing misalign-
ment and missing body parts (as can be seen in Figure 2.3), which can rarely be found
in hand-crafted bounding boxes.

Lastly, the footage used to create the dataset was recorded by six different cameras
(running on different settings) over the span of multiple months, introducing illumination
changes caused from weather variations, sun directions and shadows even within a single
camera view, thus adding a further layer of complexity (and realism) to the data.
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2.2 Market-1501

Introduced by Zheng et al. [57] in 2015, Market-1501 is a person re-identification dataset
consisting of 32, 668 bounding boxes representing, as the name implies, 1, 501 different
identities. The dataset was created from footage recorded by six cameras in front of a
campus market and introduced three main innovations: the usage of an object detector to
craft bounding boxes (following the lead of CUHK03 [23], Section 2.1), having each iden-
tity potentially be captured by more than two cameras and supplementing the dataset
with a distractor set to further amplify the effects of automatic pedestrian detection.

Figure 2.4: [57] Some examples of Market-1501 images: the top row consists of three
distinct identities that are easily told apart, the middle row contains three distinct identi-
ties that share very similar appearance and the bottom row consists of distractor images
(left) as well as junk images (right).

The pedestrian bounding boxes for the gallery set were generated using an object
detector (a Deformable Part Model [11], the same one used in the CUHK03 dataset
[23]), as opposed to manually hand-crafted bounding boxes. The usage of an object de-
tector introduces misaligned images and false alarms, which, contrary to intuition, help
the dataset account for detection errors, which will always be present in an intelligent
surveillance systems that employs object detectors to identify pedestrians. Each detected
bounding box was categorized using a ground truth hand-crafted bonding box and cal-
culating the ratio between the overlapping areas and the union of the two areas. The
bounding box was categorized as good if the overlap was at least 50% of the area ratio,
distractor if the ratio was less than 20% and junk otherwise, as shown in Figure 2.4.
The inclusion of junk and distractor images is, together with its size, what differentiates
Market-1501 from CUHK03 [23], where even the automatically detected bounding boxes
are all relatively accurate.

Market was also one of the first datasets where each identity potentially appears in
more than two cameras and with multiple images under each camera, as opposed to the
usual approach of having each identity only captured by two cameras [23, 14, 22], meaning
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that both the query and the gallery set may contain images from multiple cameras of the
same identity. This allows the model to obtain better discriminative information from
the multiple query images and is also more consistent with the practical use case.

Lastly, scale plays a vital role in every deep learning dataset, thus Market was further
enhanced with 500K distractor images (Figures 2.4 and 2.5 contain some examples).
These images consist of false alarms by the object detector as well as pedestrian bounding
boxes that do not reappear in the other cameras.

Figure 2.5: [57] Some examples of distractor images from the Market-1501 dataset.

This addition contributes to the dataset’s scale, as well as pushing it closer to the real-
world scenario, where detection errors and images containing non-reappearing identities
will be at least somewhat common.

2.3 DukeMTMC-reID

DukeMTMC-reID (Duke Multi Target Multi Camera re-identification) [36] is a dataset
released by Ristani et al. in 2016. It was crafted from footage recorded by 8 high quality
cameras placed on Duke University’s campus. It is one of the largest dataset consisting
of hand-crafted bounding boxes [49] extracted from high quality images. The footage
consists of an 85 minute recording taken from the time in between lectures (to guarantee
high pedestrian activity) for each camera. The cameras record at 1080p and 60 frames
per second. Each person was manually tracked by recording the person’s foot point of
contact with the ground, as can be seen in Figure 2.6. Finally, for each of the eight
cameras, the first five minutes of footage were reserved for training, and the remaining
for testing.
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Figure 2.6: [36] A frame with all the manually-annotated trajectories for each camera.

The people depicted within Duke often carry a wide variety of items and occlusion is
rather common.

The footage used to create the dataset was all recorded in the same scene (university
campus with soft overhead light), which limits the dataset’s variety in terms of back-
ground and lighting conditions. Additionally, since the bounding boxes are extracted
from hand-crafted trajectories, the dataset does not account for object detector or ob-
ject tracker errors, which will be seen by a real-world person re-id system.

2.4 MSMT17

The MSMT17 (Multi-Scene Multi-Time) person re-id dataset [47] was released in 2017
by Wei et al. It remains, at of the time of writing, one of the largest and most challenging
supervised person re-identification datasets.

The dataset was extracted from 180 hours of video recorded by 15 cameras set up on
a university campus. Contrary to previous works where all cameras recorded an outside
scene, the cameras for MSMT17 were split between outside (12 cameras) and inside (3
cameras). Some statistics on the on the distribution of identities amongst cameras and
time slots can be found in Figure 2.8. The video was extracted by selecting four days
with different weather conditions among a month of recording. For each day and for each
camera three hours of recording (taken in the morning, at noon and in the afternoon
respectively) were used. The presence of multiple scenes (indoor and outdoor), the high
number of cameras, as well as multiple time slots and varied weather conditions serves to
introduce complex illumination changes, scene and background changes, in addition to
the challenges commonly present in other person re-identification datasets (e.g. occlusion
and pose variations), as can be seen in Figure 2.7.
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Figure 2.7: [47] Some examples of MSMT17 images and the challenges they present.

The pedestrian bounding boxes were detected automatically using a Faster R-CNN
[35], which improves on the DPM [11] object detector that was the standard in earlier
works [57, 23] and provides fairly accurate detection without being as time-consuming
as manually handcrafting the bounding boxes.

Finally, the datasets contains 126,441 bounding boxes spanning 4,101 identities,
which is a significant improvement over earlier datasets, all of which contained less than
2,000 identities [57, 23, 22, 14], as can be seen in Table 2.1.

(a) Identities and bounding boxes on each cam-
era.

(b) Identities and bounding boxes for each time
slot.

Figure 2.8: [47] Some statistics on the MSMT17 dataset.

2.5 Airport

Airport [19] is a person re-identification dataset constructed from footage recorded inside
a major airport. The footage was recorded over the course of 12 hours in a single day
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by six cameras placed after the airport’s security checkpoints. Each 12 hour video was
randomly split into 40 five minute clips which were then used to create the dataset.

Figure 2.9: [19] Some bounding boxes from the Airport dataset.

Airport’s first contribution lies in its camera network and its environment: the cam-
eras used were the airport’s actual security cameras, not a camera system setup by a
research team in order to collect a person re-identification dataset. The security oriented
setup of this camera network introduces new challenges that had not been previously
considered. For example, in most earlier works, the cameras were set up parallel to the
ground, whereas in an actual security system the cameras would be set much higher,
close to the ceiling. Furthermore, most earlier datasets [47, 23] used footage recorded on
a university campus, thus limiting the variety of people recorded. In contrast, the inside
of an airport contains a much greater variety of people, and much more erratic crowd
dynamics (which generally depend on flights schedules). The cameras used in legacy
security system generally record on a lower quality than those used in earlier datasets,
as can be seen in Figure 2.9.

The second contribution lies in the data annotation process. The dataset was created
during the experimental deployment of a real time intelligent surveillance system [6], and
thus the bounding boxes were automatically generated using the ACF framework [9] to
detect people and a mix of the KLT tracker [28] and the FAST corner features [37] to
do the tracking. This naturally introduces false alarms and misaligned images into the
dataset. Of the 9,651 identities contained in the dataset, 1,382 reappear in at least two
cameras, the remaining unpaired identities were added to the dataset to make it more
challenging and realistic.

Disclaimer The ALERT Airport Re-Identification Dataset used in the research related
to this publication was generated and provided by ALERT (Awareness and Localization
of Explosives-Related Threats), a Department of Homeland Security Center of Excellence
(COE). The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the U.S. Department of Homeland Security.
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2.6 ENTI-ReID

ENTIRe-ID [54] is, to the best of our knowledge, the most recent and most extensive
supervised person re-identification dataset, having been released in 2024 and containing
more than four million images.

Most person re-identification datasets are, as can be seen in Table 2.1, rather small
in size when compared to other benchmarking datasets used in other areas of computer
vision (or deep learning in general). This contributes, as will be discussed in Chapter
4, to the presence of a rather sizeable domain gap, which remains to this day the main
obstacle to implementing person re-identification into real-world scenarios.

To contrast this, the ENTIRe-ID datasets contains 4.45 million images spanning
13,540 identities. The source footage was taken from 37 publicly available internet cam-
eras located in four different continents. This massively improves the standard for dataset
size: the closest ones are the LaST dataset [42], which is comprised of 228,156 images
spanning 10,862 identities, but was created from movie footage, and the MARS dataset
[56], which is a video extension of the Market-1501 dataset containing more than one
million of bounding boxes, but spanning only 1,261 identities captured by 6 cameras.

Figure 2.10: [54] Examples of images from the ENTIRe-ID dataset.

The 37 cameras used to capture the source footage were, as said, spread across four
different continents. This contributes greatly to diversify the environments captured by
each camera, which are influenced by both environmental factors (e.g. rain, fog, snow,
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sunlight, seasons, etc.) as well as cultural factors, which have a great impact on people’s
appearance. A larger scale also allows to capture a wider variety of activities, such as
riding vehicles (cars, bikes, bicycles, etc.), carrying items and walking pets on leashes.

Given the impracticality of manual labeling for such a large dataset, an object detec-
tion model (the YOLOv8 [18] model) was used, and only individual crops that exceeded
a threshold in confidence scores and pixel size were considered for the dataset. Frames
from each camera sequence were sampled, this was done both to improve efficiency and
account for the fact that consecutive frames would display very little variance, and an
object tracking algorithm (the ByteTrack [55] algorithm) was used to correctly iden-
tify people in consecutive frames. To make the algorithm more robust (accounting for
both object detection misfires and FPS drops in the live streams), all frames from the
streams were included in the object tracking process, even those containing confidence
scores below the threshold. This process results in person sequences for each camera,
each containing a maximum of 250 images. The researchers composed the sequences and
minimized the errors within by hand.

Lastly, the face of each person contained in the dataset was blurred. This was done
both to preserve the subject’s privacy as well as to push models away from learning facial
features which, depending on factors like pose, clothing and occlusion, may not always
be available.

2.7 Data Augmentation

Finally, given the relatively modest size of most person re-identification datasets, data
augmentation plays an important role during training, and thus we will discuss here
two data augmentation techniques that have become the norm in training person re-
identification models.

2.7.1 Horizontal Flip

Horizontal flipping is one of the most basic forms of data augmentation in person re-
identification and computer vision in general. It consists of flipping the image horizon-
tally with a given probability. In person re-identification, it can help the model to better
generalize pose information.

2.7.2 Random Erasing Augmentation

As discussed above, pedestrian bounding boxes often contain some form of occlusion,
which contributes to the complexity of the problem. In order to combat this, researchers
have attempted to include a wide variety of occlusion types in the datasets (e.g. vehicles,
railings, crowds, object detectors producing misaligned images, etc.). Nevertheless, most
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person re-id datasets are rather limited in scale, so to further push the model to adapt to
partial occlusion, the Random Erasing Augmentation, REA for short, was proposed by
Zhong et al. [59]. REA works as follows: each image will have a probability of undergoing
REA equal to pe, and those that do undergo REA have a randomly selected rectangle
erased with random pixels, as can be seen in Figure 2.11. The effects of REA have been
extensively studied by Luo et al. [29]. The study was conducted using a ResNet50 [15]
as a backbone and the Market-1501 and the DukeMTMC-reID [36] datasets for training.
During training each image was resized to 256x128 pixels, padded with 10 zero value
pixels and then randomly cropped to a 256x128 image.

Figure 2.11: [29] Bounding boxes undergoing REA.

The images then underwent horizontal flipping with a 50% chance. Finally, each
image was encoded in 32-bit float values in the range [0, 1], and the RGB channels were
normalized. The only training trick used in the baseline was a warmup period for the
learning rate of 10 epochs. The impact of REA was measured in terms of mAP and
CMC rank-1 (see Section 3.1) in two different settings: the same dataset setting, where
the model was trained and tested on the same dataset, and the cross-dataset setting,
where the model was trained on one of the two datasets and tested on the other.

Within the same domain, REA was found to improve both mAP and CMC rank-1 by
between 1% and 4%, as can be seen in Table 2.2. However, in the cross-dataset setting,
applying REA appears to harm the model’s performance by a similar margin. This is
conceivably due to the model overfitting the training set in order to compensate for the
extra occlusion [29].
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Settings
Market DukeMTMC

mAP rank-1 mAP rank-1

Same Dataset
Baseline 75.2 88.7 65.1 80.6
+REA 79.3 91.3 68.3 81.5

Cross-Dataset
Baseline 17.4 39.7 14.1 26.3
+REA 13.5 32.5 10.2 21.5

Table 2.2: The effects of REA [29]. The cross-dataset results are presented for the testing
dataset (using the other for training).
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Chapter 3

Models

Modern research into person re-identification relies heavily (one could even say entirely)
on deep learning. As said, person re-id consists of finding images in a gallery set con-
taining the same person as a given query image. This is achieved by making the models
learn deep discriminative features, which are then used to sort the gallery set according
to the distance of each sample from the query. This sorted list is what will be given as
output and will, hopefully, contain most, if not all, the gallery samples containing the
query. The model’s performance will be evaluated in how many correct samples are put
at the beginning of the sorted list (what this means in more mathematical terms will be
explored in Section 3.1).

Unfortunately, the field is too vast for us to give a complete overview of all possible
models and all the different training techniques that have been attempted, so, in this
chapter, we will give a brief overview of the metrics used to evaluate the models, since
these stay consistent across all research and will also be used in Chapter 4, and we will
focus on the CLIP framework by Radford et al. [34] and its very promising applications
in the field of person re-id [21].

3.1 Metrics

We will begin by explaining the two most common metrics used in person re-id, which
are called Cumulative Matching Characteristics and Mean Average Precision. They are
both metrics that can be used to evaluate retrieval systems, meaning systems whose aim
is to retrieve items similar to a given query (what an item is and what the world similar
means depends on the task, in person re-id, for example, the items are images depicting
a single person and the word similar means an image that shares the same identity as the
query image). These functions are essential for evaluating a trained model’s performance,
they are widely used across all person re-id research and will be used for our experiments
in Chapter 4.
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3.1.1 Cumulative Matching Characteristics

Cumulative Matching Characteristics Rank-k, often shortened to CMCk or Rank-k,
where k will be a positive integer, is, together with mean average precision, one of
the two most used metrics to evaluate person re-id models. It represents the probability
that a correct sample appears in the highest k scored gallery samples [53, 5, 38].

In mathematical terms, given a dataset D = (T,Q,G) (training set, query set and
gallery set respectively), a model M , and a distance function d we have that

CMCk(M,Q,G, d) =
1

|Q|
∑
q∈Q

acck(q,G
′)

Where | · | indicates the cardinality of a set and G′ will be the output of model M
on G sorted according to the distance from the output of model M on the query sample
q (in layman’s terms, G′ will be the gallery set sorted according to how close the model
currently thinks each gallery image is to query image q), and where acck is the accuracy
at k function:

acck(x, S) =

{
1 if a sample matching x is in the top-k samples of S

0 otherwise

As said, in the case of person re-id, ”a sample matching x” means an image containing
the same person as x, but the definition can be easily extended for classification, or any
other supervised retrieval task.

3.1.2 Mean Average Precision

The CMCk score gives the probability that a match for a given query image is present
the first k samples of a given scored list. It is well defined if, for every query image
q, there is only one gallery image gq that has the same identity as q (which is called a
ground truth for q), as is the case for older datasets like VIPeR [14]. In more modern
datasets however, for each query image multiple ground truths are present in the gallery
(e.g. the Market-1501 dataset contains an average of 14.8 ground truths for each query
sample [57]). Mean Average Precision [57] is a performance metric often used to evaluate
retrieval systems. It is, together with CMCk, the most used metric to evaluate person re-
id models. It is calculated, perhaps unsurprisingly, as the mean of the average precision
over all queries. The average precision is, in turn, the average value of the precision
of the model over all the queries. We will therefore start with explaining the precision
function Pk (sometimes written as P@k).

Given a sorted scored list G′ = (g1, . . . , gn) of items, each labeled by a ground truth
ti, a query sample q and its ground truth tq (in the case of person re-id the samples will
be images and the ground truths will be the person’s identity) then we can define the
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precision at k as the ratio of true positives within the first k samples of G′ and k. A
sample gi is considered a true positive if its ground truth ti matches tq. Thus the number
of true positives within the first k samples can be written as:

TPk = |{gi ∈ (g1, . . . , gk) : ti = tq}|

Where | · | is the cardinality of a set. We can then write the precision at k for query
sample q as:

Pk =
TPk

k

We also need to define the relevance-at-k function:

relk =

{
1 if tk = tq

0 else

With k ∈ {1, . . . , n}. Then we can define the average precision for a given query q,
its ground truth tq and the relative scored list as:

APq =
1

TPn

n∑
i=1

Pk · relk

Figure 3.1: [57] An example of Average Precision being different from CMC (which will
be 1.0 for all three rows). True positives are in in green and false positives are in red.

Once this is done the mean average precision is simply the mean of the AP function
over all the query samples [38].

mAP =
1

|Q|
∑
q∈Q

APq
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3.2 CLIP

Deep learning models are usually trained to perform a very specific task, and are generally
poor when applied, without any further training, to a new task [34]. In some cases a
model will perform poorly even on a different dataset that lies within the same task,
this is the case for person re-id [47, 52]. Another example of this comes from image
classification, which is the task of pairing a given image with a label, taken from a
predetermined set of labels. Image classifiers that are trained and achieve extremely
high results on benchmark datasets often perform poorly on more challenging sets of
data, for example images that underwent some form of distortion [8], texture alterations
[12], objects presented in unfamiliar poses [2], and when presented with real-world images
that are not as curated as the ones presented in common benchmarking datasets [4] (e.g.
occlusion, varied backgrounds, misalignment and pose variations). Additionally, most
classifiers are not usable on a new set of labels (different than the ones present in the
training dataset) without further training and, thus, additional data.

In addition to this, the datasets, which are essential to the training, are effort and
time consuming to produce (in person re-id in particular, data annotation can take a
long time, for example it took a year to manually annotate all the trajectories in the
DukeMTMC-reID dataset [36], which is rather small when compared to most modern
classification benchmarks).

Figure 3.2: [34] (1) The CLIP training process. (2) CLIP being adapted to image
classification. This is done by crafting a prompt for each class label; CLIP will then
predict which of the prompts goes with the image.

Contrastive Language Image Pre-training (CLIP for short) [34] is a framework from
OpenAI which aims at pairing visual features with natural language. This allows the
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model to learn visual features from natural language, which has a nearly unlimited scope,
as opposed to a fixed number of classes. The model learns generalized features and can
more easily adapt to never-before seen data or tasks without the need for further training,
which is referred to as zero-shot capabilities.

Architecture

CLIP works by training two models, a text encoder and an image encoder, which will map
the given text and the given image respectively into a low-dimensional shared embedding
space. The text encoder is a Transformer [45], which works on the encodings of each
token made with a lower case BPE [40], using a vocabulary size of 49,152. The image
encoder consists of either a ResNet [15] or a ViT [10]. Both these models produce a low-
dimensional (in this context ”low” means low when compared to the size of the original
input) output vectors, which are then fed to two linear layers which project them into
the shared embedding space.

Dataset

As existing datasets were either too small (like MS-COCO [24]) or lack high quality
metadata (like YFCC100M [43]) which could be used to create the (image, text) pairs,
the dataset used to train CLIP was created ad hoc. An additional, more practical,
advantage of using natural language for image supervision is the vast availability of such
data on the internet, which allows to gather large amounts of data with minimum human
effort required. In order to exploit this, the dataset was constructed from 400 million
(image, text) pairs extracted from the internet, using a set of 500,000 textual queries.
The queries were constructed starting from words present in at least 100 Wikipedia
articles and the resulting dataset has a word-count similar to that of WebText [33, 34].

Training

Training a model to learn an open-ended set of visual concepts through natural language
supervision requires high efficiency. This is because modern image classifiers, which
train for a limited number of labels, already require a large amount of resources to train.
For example, Xie et al. [51] had to train their EfficientNet-L2 on a Cloud TPU v3 Pod
containing 2048 cores for six days. In order for CLIP’s training to be feasible without
employing an inordinate amount of resources, a contrastive objective was used in place
of a generative one: instead of predicting the exact words that would go with a given
image, during training CLIP is given a batch of N images and N pieces of text, and
it will try to predict which of the possible N × N pairings actually occurred. This has
been shown to learn higher quality visual features compared to generative objectives [44],
which also require a higher amount of resources.
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This is done with a contrastive loss: a loss that will minimize the distance between
some feature embeddings, referred to as positive pairs, while maximizing the distance
between others, referred to as negative pairs. For CLIP, this will be used to bring the
features of an image and of a piece of text closer together if the (image, text) pair appears
in the batch, otherwise it will increase the distance between them.

In practice, CLIP learns a multi-modal embedding space, which is shared by both
the image and the text features, and it maximizes the cosine similarity of the true N
pairs of the batch while minimizing it for the remaining N2 −N negative pairs. In more
mathematical terms, given a batch of size B ∈ Z+ composed of {img1, . . . , imgB} images
and {text1, . . . , textB} pieces of text, the similarity between image imgi and text texti
is computed as:

S(Vi, Ti) = gV (I(xi)) · gT (T (texti)) (3.1)

Where [21, 34]:

• I(·) and T (·) are the functions computed by the image and text encoders, respec-
tively.

• gV (·) and gT (·) are the linear layers that project the given (image and text, respec-
tively) embedding into the shared embedding space.

These similarities are optimized using two contrastive losses, called image-to-text and
text-to-image respectively [34, 21]:

Li2t(i) = − log
exp (S(Vi, Ti))∑B
a=1
a̸=i

exp (S(Vi, Ta))
(3.2)

Lt2i(i) = − log
exp (S(Vi, Ti))∑B
a=1
a̸=i

exp (S(Va, Ti))
(3.3)

In these two losses, the numerator uses the similarity of the image, text pair that
actually matches, and thus has to be maximized, whereas the denominator uses the
similarities between the other, non-matching, pairs, which will be minimized [21].

Zero-Shot Transfer

In the context of CLIP, zero-shot transfer is the generalization to unseen datasets [34],
which in turn can be seen as the model’s ability to learn a task rather than just optimizing
for a benchmark. This can be seen as a proxy for zero-data learning, as theorized by
Larochelle, Erhan, and Bengio [20].
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Figure 3.3: [34] Zero-shot CLIP scores compared to the scores of a fully supervised
baseline.

CLIP can easily be adapted to image classification by creating a textual prompt for
each class, for example ”An image of a {object}”, where the token ”{object}” will be
replaced with the name of the class (e.g. cat, dog, car, etc.), the class predicted by CLIP
for a given image will be the one corresponding to the textual prompt that CLIP deemed
the more likely (e.g. if the prompt ”An image of a dog” was the more likely, then the
output will be the class ”dog”, as shown in Figure 3.2 (2)). This can sometimes be hard
to do in datasets where classes are simply numerical IDs, without an explicit textual
description, as is the case in some image classification datasets (e.g. Flowers-102 [32]).

Zero-shot CLIP has shown competitive results with a fully supervised baseline (a
trained ResNet [15]), outperforming it in 16 of the 27 datasets used, as can be seen
in Figure 3.3, which is an extremely promising result considering that it is obtained
in a Zero-Shot setting, a setting where CLIP had not been trained on any of the data
beforehand.
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3.3 CLIP-ReID

As stated in the previous section, CLIP works by jointly training an image and a text
encoder to learn a multi modal embedding space. This can also be viewed as using the
text encoder as a hyper-network to generate the weights for a linear classifier based on
a description of the image made using natural language [34]. This, in turn, means that
CLIP can learn a much richer set of visual features encoding higher semantics from the
textual description. This can be useful for person re-id, where a model’s performance
relies heavily on the quality of the extracted features.

Furthermore, the CLIP architecture has shown extremely promising results in a zero-
shot setting, particularly in zero-shot classification, meaning the classification of never-
before seen classes, even surpassing fully-supervised baselines. Person re-id can, in some
sense, be regarded as a zero-shot classification task, where the classes are simply the
people’s IDs: the models are trained on a dataset containing a finite number of IDs, but
will then be evaluated (and faced in the real world) with people that were not present
in the training set, meaning new, unseen IDs.

While exploiting CLIP seems like a promising premise, in practice it presents some
challenges. Namely, the person labels used in person re-id are simple numerical values
which lack any concrete natural language description. This has first been explored by
Li, Sun, and Li [21], whose work we will now explain in more detail.

Architecture and Training

As said, the main challenge to adapting CLIP to person re-id is the lack of concrete
class labels, which will just be numerical IDs representing each person captured in the
dataset, and thus will be devoid of any concrete textual description. This is overcome
by dividing the training in two stages:

• During the first stage, the two encoders are kept frozen (meaning their weights
do not get altered), and a set of learnable tokens [X]1, . . . , [X]M is optimized by
using it to construct a textual prompt ”A photo of a [X]1 . . . [X]M person”, as can
be seen in Figure 3.4 (c). This effectively overcomes the need for a concrete text
label. The idea of using learnable tokens to create CLIP’s textual prompt was
first introduced by Zhou et al. [60] (Figure 3.4 (b)), who sought to overcome the
limitations of manual prompt engineering.

• During the second stage, the learnable token’s weights are frozen and the image
encoder’s weights are unfrozen, as can be seen in Figure 3.4.
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Figure 3.4: [21] (a) The CLIP [34] training process. (b) The CoOp [60] approach which
adds learnable tokens to construct the text encoder’s prompt, this removes the need for
prompt engineering. (c) The CLIP-ReID [21] training process, during the first stage the
tokens are learned for each identity in the dataset, during the second stage the image
encoder is optimized.

Each image imgi in the training dataset is expected to have a person ID (pid for short)
associated with it, yi. This pid is used to compute the textual prompt (specifically the
tokens) associated with image imgi as ”An image of a [X]1 . . . [X]M person.”

First Stage During the first training stage, all parameters in the network, save for the
learnable tokens, are kept frozen. The learnable tokens [X]1, . . . , [X]M , with M being a
hyper-parameter (M = 4 was empirically determined to yield the best results [21]), are
optimized using the same two losses as CLIP (Equations (3.2) and (3.3)), with only some
minor modifications. In the similarity definition (Equation (3.1)), texti is replaced with
textyi , since the textual prompt solely depends on the person’s identity. Furthermore,
unlike CLIP, two different images may share the same pid, and thus share the same
textual prompt, so the Lt2i loss was changed to:

Lt2i(i) = − 1

|P (yi)|
∑

p∈P (yi)

log
exp (S(Vi, Tyi))∑B
a=1
a̸=i

exp (S(Va, Tyi))
(3.4)

Where P (yi) = {p ∈ {1, . . . , B} : yp = yi} is the set of all positives for yi present in
the batch. Then, just like in CLIP, the final loss was calculated as the sum of these two
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Algorithm 1 [21] Pseudo-code for the CLIP-ReID training process.

Input: Batch of xi images and the corresponding tyi texts, with i ∈ {1, . . . , B}. The
number M of tokens to be used.

1: Initialize I, T , gV and gT from the pre-trained CLIP.
2: Initialize the X1, . . . , XM tokens randomly.
3: while 1st stage do
4: S(Vi, Tyi) = gV (I(xi)) · gT (T (tyi))
5: Optimize [X]1, . . . , [X]M by Eq. (3.5)
6: end while
7: for all i ∈ {1, . . . , N} do
8: textyi = gT (T (tyi))
9: end for
10: while 2nd stage do
11: S(Vi, Tyi) = gV (I(xi)) · textyi
12: Optimize I by Eq. (3.10)
13: end while

losses [21]:

Lstage1 = Li2t + Lt2i (3.5)

Second Stage During the second stage only the image encoder I(·) is optimized, with
the rest of the network being kept frozen. The optimization was done in accordance with
the work of Luo et al. [29], employing both triplet and ID loss.

ID Loss is the person re-id equivalent of cross-enthropy, which is normally calculated
as [29]:

Lid(ID) =
N∑
i=1

−qi log pi (3.6)

Where pi are the prediction logits for class i and qi is the following constant:

qi =

{
1 if i = ID

0 otherwise

However, in person re-id the model will be evaluated on identities that were not
present in the training set, and thus it is important to prevent overfitting, especially
considering the small size of most datasets, so a different definition of qi was used, which
again was introduced by Luo et al. [29]:
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qi =

{
1− N−1

N
ε if i = ID

ε/N otherwise
(3.7)

Where ε ∈ R+ is a small positive constant, which helps prevent overfitting of the
training set.

Triplet loss is a contrastive loss calculated as [29, 21]:

Ltri = [dp − dn + α]+ (3.8)

Where [x]+ = max{x, 0}, dp and dn are the distances of the anchor from the positive
and the negative respectively (meaning the distance of the image being considered from
another image depicting the same person, and an image depicting a different person),
and α is a margin constant [29].

Additionally, the image-to-text loss from CLIP, Equation (3.2), can still be used,
allowing to better exploit the features generated by the text encoder, albeit with some
slight modifications [21]:

Li2tce(i) = −
N∑
k=1

qk log
exp (S(Vi, Tyk))∑N

ya=1
ya ̸=yk

exp (S(Vi, Tya))
(3.9)

Where qk is the same label smoothing mechanism used in ID Loss, Equation (3.7).
The final loss used in the second stage is simply defined as [21]:

Lstage2 = Lid + Ltri + Li2tce (3.10)

Evaluation

The experiments conducted by Li, Sun, and Li [21] were made using the same text
encoder provided by CLIP [34] and two different image encoders: a CNN (ResNet-50
[15]) with a global attention pooling layer, and a vision transformer (a ViT-B/16 [10]).
Two linear layers were used on the image and text features to match their dimensions.
Each of these models was evaluated using the mAP and CMC Rank-1 metrics (Section
3.1) on four different datasets: MSMT17 (Section 2.4 [47]), Market-1501 (Section 2.2
[57]), DukeMTMC-reID (Section 2.3 [36]) and Occluded-Duke [31]. For comparison, each
backbone (CNN and ViT) was also trained as a stand-alone model to better estimate
the impact of the CLIP-ReID framework.

The results are shown in Tables 3.1 and 3.2. It is apparent that the addition of the
CLIP-ReID framework provides a performance boost, which can be further increased
by adding Side Information Encoding (SIE) and Overlapping Patches (OLP) in the ViT
model [21]. The scores obtained on MSMT17 [47] in particular are, at the time of writing,
the highest scores achieved on the dataset on the Papers With Code website [1].
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Model Method
MSMT17 [47] Market-1501 [57]

mAP (%) Rank-1 (%) mAP (%) Rank-1 (%)

CNN
Baseline 60.7 82.1 88.1 94.7

CLIP-ReID 63.0 84.4 89.8 95.7

ViT
Baseline 66.1 84.4 86.4 93.3

CLIP-ReID 73.4 88.7 89.6 95.5
CLIP-ReID+SIE+OLP 75.8 89.7 90.5 95.4

Table 3.1: [21] CLIP-ReID results on the MSMT17 [47] and Market-1501 [57] datasets.

Model Method
DukeMTMC-reID [36] Occluded-Duke [31]
mAP (%) Rank-1 (%) mAP (%) Rank-1 (%)

CNN
Baseline 79.3 88.6 47.4 54.2

CLIP-ReID 80.7 90.0 53.5 61.0

ViT
Baseline 80.0 88.8 53.5 60.8

CLIP-ReID 82.5 90.0 59.5 67.1
CLIP-ReID+SIE+OLP 83.1 90.8 60.3 67.2

Table 3.2: [21] CLIP-ReID results on the DukeMTMC-reID [36] and Occluded-Duke [31]
datasets.

The framework was also evaluated on two Vehicle Re-Identification (Section 1.1)
datasets, VeRi-77 [26] and VehicleID [25].
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Chapter 4

Experimental Results

In order to investigate the applicability of person re-id models into the real world, we
sought to evaluate their adaptability to new scenarios which could differ widely from
the conditions presented into any training dataset. Unsurprisingly, the great amount of
variation that person re-id models have to account for (both due to human appearance
itself, the way this appearance is recorded and other environmental factors) cannot be
fully captured by a single dataset [52], and it has been found that models trained and
evaluated on a dataset will perform poorly on others. As we briefly mentioned in Section
1.2, this is referred to as domain gap.

This domain gap is a known challenge in person re-id [47, 52] and other computer
vision tasks [34] and is a fundamental obstacle to the deployment of a real-world re-
identification system. We therefore endeavored to accurately measure its effects on the
performance of the CLIP-ReID models [21], and perform some small experiments at-
tempting to mitigate them. Attempts towards bridging this gap have already been
made, usually in the form of domain adaptation [47, 52] or achieving more generalized
features, and although some success has been found, this challenge remains far from
being solved.

4.1 Methodologies

We choose to focus on the CLIP-ReID (Section 3.3 [21]) framework and models both
due to the high scores achieved (particularly on MSMT17 [47], which remains one of the
most challenging supervised person re-id datasets) and due to the fact that person re-id
can be seen as a zero-shot classification task (meaning the classification of unseen labels,
as explained in Section 3.2 and 3.3), in which CLIP has shown extremely promising
results [34]. Furthermore, these models include two simple backbones, made following
the baseline set by Luo et al. [29], which underlies many other person re-id frameworks
and models, and thus we believe that the experimental results obtained on them can be
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expected to remain consistent across other modern state-of-the-art models.
In order to assess the model’s performance on new data, we took the models trained

on the Market-1501 [57] and DukeMTMC-reID [36] datasets provided by Li, Sun, and
Li [21], and measured their performance (through the mAP and CMC Rank-1 metrics,
see Section 3.1) on different datasets. These tests are defined as Cross-Dataset Tests,
and are performed using the following datasets: CUHK03 [23], Airport [19], the test set
of ENTIRe-ID [54], Market-1501 [57] (for the models trained on DukeMTMC-reID) and
DukeMTMC-reID [36] (for the models trained on Market-1501). The results of these
tests are shown in the following section.

We used these cross-dataset tests to determine, for each model, the dataset it per-
formed the poorest on, and inferred this dataset to be the one most ”distant” from the
model’s original training dataset. We then merged this dataset with the original training
dataset and re-trained the model on this union, in hopes that this could allow the model
to learn more generalized features, and thus diminish the performance degradation.

4.2 Cross-Datasets Tests

Model Test Set mAP (%) Rank-1 (%)

ViT Baseline

Airport [19] 16.0 18.4
ENTIRe-ID [54] 29.3 29.2

DukeMTMC re-ID [36] 44.8 64.3
CUHK03 [23] 34.9 36.9

ResNet Baseline

Airport [19] 3.8 5.1
ENTIRe-ID [54] 11.9 11.7

DukeMTMC-reID [36] 17.3 30.8
CUHK03 [23] 8.7 8.6

ViT CLIP-ReID

Airport [19] 20.0 22.4
ENTIRe-ID [54] 38.9 38.4

DukeMTMC re-ID [36] 50.2 68.9
CUHK03 [23] 38.6 40.4

ResNet CLIP-ReID

Airport [19] 4.8 6.0
ENTIRe-ID [54] 13.3 12.8

DukeMTMC-reID [36] 21.0 36.8
CUHK03 [23] 8.8 8.9

Table 4.1: Cross-dataset scores for CLIP-ReID models [21] trained on the Market-1501
[57] dataset.

Table 4.1 shows the results of the cross-dataset tests (meaning tests made on a dataset
in a zero-shot setting) for all the models trained on the Market-1501 dataset [57]. Unsur-
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prisingly, the models that employ vision transformers [10] (ViT) as their image encoders
outperform their ResNet-based [15] counterparts, and the boost in performance provided
by the CLIP-ReID framework seems to carry on to the cross-dataset setting. Neverthe-
less, when comparing these scores to the ones the models obtained on the Market-1501
[57] test set shown in Table 3.1, the drop-off in performance is massive, particularly on
ResNet-based models, which experience a drop in mAP on the Airport dataset of 84.3%
(ResNet Baseline) and 83.3% (ResNet CLIP-ReID). The highest cross-dataset mAP score
was 50.2%, obtained by the ViT CLIP-ReID model on the DukeMTMC-reID dataset,
which is still 39.4% lower than what the exact same checkpoint had achieved on the
Market-1501 test set, as shown in Table 3.1. The CMC Rank-1 score suffered a similar
degradation across the board.

The checkpoints trained on the DukeMTMC-reID [36] obtained similar cross-dataset
scores, as shown in Table 4.2, but a bit lower than those obtained by their Market-1501-
trained counterparts. This leads us to believe that market is, despite its smaller size,
more complex than duke and thus models learn slightly more general features from it.

Model Test Set mAP (%) Rank-1 (%)

ViT Baseline

Airport [19] 10.0 12.9
ENTIRe-ID [54] 33.6 32.9
Market-1501 [57] 37.4 62.2
CUHK03 [23] 19.2 20.4

ResNet Baseline

Airport [19] 4.5 6.3
ENTIRe-ID [54] 19.7 19.4
Market-1501 [57] 21.5 47.5
CUHK03 [23] 6.1 5.9

ViT CLIP-ReID

Airport [19] 14.3 17.4
ENTIRe-ID [54] 40.2 40.3
Market-1501 [57] 43.4 70.7
CUHK03 [23] 25.9 27.6

ResNet CLIP-ReID

Airport [19] 5.3 7.2
ENTIRe-ID [54] 21.2 20.4
Market-1501 [57] 24.6 52.2
CUHK03 [23] 5.7 5.0

Table 4.2: Cross-dataset scores for CLIP-ReID models [21] trained on the DukeMTMC-
reID [36] dataset.

Across all models and all tests we performed, Airport [19] is the dataset where the
lowest scores are obtained. This is probably due to the difference in scene between
airport and most other datasets: both Market-1501 and DukeMTMC-reID were created
from footage taken in a university campus [57, 36], with the cameras being setup by
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researchers, whereas airport was created using the surveillance cameras of an actual
airport. This leads to a wide difference in camera angles, image quality, activities,
clothing etc., making Airport the most challenging dataset for models trained on Market-
1501 and DukeMTMC-reID.

4.3 Training on the Union of Datasets

In order to help close the domain gap, we re-trained the best performing model (ViT
CLIP-ReID [21]) on the union of Market-1501 [57] (the original training dataset which
yielded the best results in a cross-dataset setting) and Airport [19] (the dataset that
proved to be the most challenging in a cross-dataset setting) in the hopes that more
general re-id features could be learned from the resulting union. We first re-trained the
ViT CLIPRe-ID model, using the same training algorithm and settings used by Li, Sun,
and Li [21] and repeated the cross-dataset tests with the remaining datasets. The results
can be seen in Table 4.3.

Test Set mAP (%) ∆mAP (%) Rank-1 (%) ∆Rank-1 (%)
ENTIRe-ID [54] 46.2 +7.3 45.9 +7.5

DukeMTMC-reID [36] 53.5 +3.3 71.6 +2.7
CUHK03 [23] 41.8 +3.2 42.6 +2.2

Market-1501 [57] 89.0 -0.6 95.0 -0.4
Airport 64.0 +44.0 56.9 +34.5

Table 4.3: Cross-dataset test result for the ViT CLIP-ReID model [21] trained on the
union of Market-1501 [57] and Airport [19]. The difference in scores (the ∆ columns)
are given with respect to the corresponding cross-dataset scores obtained by the same
model trained on the Market-1501 dataset alone, as shown in Table 4.1.

The idea of training a model on the union of two or more datasets is not new.
For example, Marchwica, Jamieson, and Siva [30] sought to achieve scene-independent
re-id by training on a larger amount of data, obtained by merging between two and six
datasets. It is worth mentioning that, following the work of Xiao et al. [50], they balanced
the union of datasets by keeping ten images per person, ensuring to keep images from
all cameras the person appeared in (except for when the person appeared in more than
ten cameras, in which case one image per camera is kept). This is done to account for
the fact that different datasets might have more or less images per person, which could
lead to overfitting one of the datasets [30]. However, when merging only two datasets,
this balancing can lead to a great reduction in the number of images used, so we opted
to not balance the union.

Additionally, Luo et al. [29] found that Random Erasing Augmentation (Section
2.7.2), which is used in the CLIPRe-ID training process [21], harms model performance
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in a cross-dataset setting, and therefore we repeated the above training process and
testing procedures without it, the results can be seen in Table 4.4.

Test Set mAP (%) ∆mAP (%) Rank-1 (%) ∆Rank-1 (%)
ENTIRe-ID [54] 43.6 +4.7 43.1 +4.7

DukeMTMC-reID [36] 54.3 +4.1 72.3 +3.4
CUHK03 [23] 42.7 +4.1 44.3 +3.9

Market-1501 [57] 87.3 -2.3 94.6 -0.9
Airport [19] 69.4 +49.4 63.1 +40.7

Table 4.4: Cross-dataset test result for the ViT CLIP-ReID model [21] trained on the
union of Market-1501 [57] and Airport [19], without using Random Erasing Augmen-
tation [29, 59]. The difference in scores (the ∆ columns) are given with respect to the
corresponding cross-dataset scores obtained by the same model trained on the Market-
1501 dataset alone, as shown in Table 4.1.

As can be seen in Table 4.4, the mAP score over all datasets improved by between
4.1% and 4.7% and, similarly, the CMC Rank-1 improved by between 3.4% and 4.7%
for the model trained without REA. Meanwhile, adding Airport to the dataset did not
considerably hinder performance on the original Market-1501 dataset, which dropped
by 2.3% (mAP) and 0.9% (Rank-1). Naturally, the performance on the Airport [19]
dataset was greatly improved. It is worth noting that, in order to exploit the differences
between Market-1501 [57] and Airport [19] as much as possible, we created the training
set by adding every Airport image annotated with a valid and reappearing person ID
to Market’s training set, so the scores obtained by these models on Airport should not
be given much weight, they were added for the sake of completeness. Finally, as it was
expected, the cross-dataset scores receive a slight improvement when removing random
erasing augmentation from the training process, except on the ENTIRe-ID [54] dataset,
where the model trained with REA obtained, surprisingly enough, higher cross-dataset
scores.
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Chapter 5

Conclusions

Despite the rapid advancements made in the person re-id field [53, 48, 52], its deployment
into the real world with the same degree of accuracy obtained on benchmarks appears
to still be far.

We experimentally measured the effects of the domain gap on state-of-the-art models
[21] using various benchmarking datasets (including Airport [19], Market-1501 [57] and
DukeMTMC-reID [36]). The evidence we found shows that the CLIP-ReID [21] models
still suffer a massive performance degradation when faced with with data that presents
considerable differences with the training dataset, despite their impressive performance
in a more traditional setting. We attempted to bridge this gap by re-training the best
performing model on the union of the two most distant dataset in an attempt to mitigate
the domain gap without needing to dramatically improve the amount of labeled data
required, and achieved an average mAP improvement of 4.3% and an average CMC
Rank-1 improvement of 3.8%.
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