
Alma Mater Studiorum · Università di Bologna
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Introduction

The term “Central Limit Theorem” (in short CLT), indicates a collection of theorems,

formulated between 1810 and 1935, regarding the convergence of distributions, densities

and discrete probabilities. In this thesis we gathered the most notable approximations

and theorems developed through the years, which all led to the current version of the

theorem. Probabilities for sums of independent random variables played already an

important role in probability theory of the 18th century, as in problems involving games

of chance (e.g. with regard to sums of dice rolls), and in the field of the theory of

errors, which began to emerge around 1750. Through this analysis, we can observe the

fundamental changes of Probability Theory, which started as a tool to solve physical,

social and moral problems, then gradually became essential for studying more abstract

problems, stochastic models and analytic methods.

In the first chapter, we examine the beginning of the history of the CLT during

the 19th century. The protagonists of the first half of this period are Pierre-Simon de

Laplace, Siméon-Denis Poisson, Johann Peter Gustav Lejeune Dirichlet and Augustin-

Louis Cauchy; then, in the second half, from the St. Petersburg school, Pafnuty Lvovich

Chebychev, Andrey Andreyevich Markov and finally Aleksandr Mikhailovich Lyapunov.

These authors tried to approximate the distribution of a sum of “errors of observation”

(the concept of random variables was coined by Kolmogorov only in 1933), but they all

obtained formulae too complicated for a direct numerical evaluation if the number of

errors exceeded a relatively small value. A notable result for “choses”, an early concept

for random variable, was studied by Poisson, who also coined the term “Law of Large

Numbers”, referring to the fact that, observing a large number of phenomena of the

same kind, he found that ratios of these numbers are “almost” constant. In the second

half of the century, the Russians of St. Petersburg introduced the CLT and started

writing proofs, by adjusting the conditions on the initial variables, obtaining further

approximations of sums of “independent quantités” to a normal distribution.

In the second chapter we continue the analysis on newer version of the CLT during the

20th Century, when probability theory became an object of study within mathematics
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ii INTRODUCTION

itself. In 1920 George Pólya coined the name “Central Limit Theorem”, to underline its

central role in probability theory. Also in 1920, Jarl Waldemar Lindeberg succeeded in

finally proving the theorem. We have also reported the work of Felix Hausdorff, Sergei

Natanovich Bernstein and Paul Lévy, who mostly worked with characteristic functions.

In the second section of the chapter we write about Lévy’s and Feller discoveries on

necessary and sufficient conditions for the theorem.

The third and final chapter presents the Weak and Strong Law of Large Numbers

and their proofs. In conclusion, we examine the modern version of the CLT and provide

its proof using Lévy’s continuity theorem.
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2.2 Lévy and Feller on Normal Limit Distributions around 1935 . . . . . . . 19

3 The Central Limit Theorem today 25

3.1 Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography 33

iii





Chapter 1

The beginning of the history of CLT

The term “Central Limit Theorem”, abbreviated with CLT, indicates a collection of

theorems, formulated between 1810 and 1935, regarding the convergence of distributions,

densities or discrete probabilities. The term itself was the title of a paper published

in 1920 by George Pólya, in order to underline its central role in probability theory.

Therefore, strictly speaking, one should not really refer to the central limit theorem in

connection with sums of independent random variables, but rather to a central limit

theorem on a case-by-case basis. We will now discuss the development of this theorem

from a basic idea in the natural and social sciences into an autonomous mathematical

theorem, or more correctly into an entire group of such theorems. The first approaches

to the theorem were influenced by Abraham De Moivre’s approximations to binomial

distributions. Before starting to illustrate the history of the theorem, we will give its

statement, as a reference for the approximations that follow.

Theorem 1.1 (Central Limit Theorem). Let (Xn)n be a sequence of real-valued

random variables i.i.d. in L2, with E[Xn] = µ and Var(Xn) = σ2 ∀n. If σ > 0, we have

Xn − µ

σ/
√
n

d−−→ Z ∼ N (0, 1). (1.1)

The “prehistory”: De Moivre’s approximations.

In 1733, De Moivre set himself the task of refining the main theorem of ars conjectandi

[1713] by Jakob Bernoulli, also known today as “Law of Large Numbers”. Bernoulli had

shown that for n identical and independent trials, if hn is the relative frequency of a

particular event occurring with probability p, then

lim
n→∞

P (|hn − p| ≤ ϵ) = 1 ∀ϵ > 0.

1



2 1. The beginning of the history of CLT

De Moivre was interested in a more precise approximation to the binomial distribution,

and described his method for the special case of p = 1
2
: he started his work with

P
(
Z =

[n
2

]
+ i
)
= 2−n

(
n[

n
2

]
+ i

)
. (1.2)

To approximate the probability (1.2) that exactly
[
n
2

]
+ i “successes” Z will be achieved

for a large number n of trials, De Moivre first provided the approximations

(
n

[n2 ]
)

2n
≈ 2√

2πn
and log

( n

[n2 ]+i
)(

n

[n2 ]
)
 ≈ −2

i2

n
. (1.3)

From (1.3), it follows

P
(
Z =

[n
2

]
+ i
)
≈ 2√

2πn
e−2 i2

n . (1.4)

This statement can be “translated” into a more modern form, a “local” limit theorem, but

this was not De Moivre’s main goal, which was instead to approximate P(|Z−
[
n
2

]
| ≤ t).

Furthermore, he still did not have a concept at his disposal to adequately match the idea

of the exponential function. He approximated the probability above according to

P
(∣∣∣Z −

[n
2

]∣∣∣ ≤ t
)
≈ 2

2√
2πn

t∑
i=0

e−2 i2

n

≈ 4√
2π

∫ t/
√
n

0

e−2y2dy =
4√
2πn

∫ t

0

e−2x2

n dx.

Probabilities for sums of independent random variables played an important role in

probability theory of the 18th century, as in problems involving games of chance (e.g.

with regard to sums of dice rolls) and in the field of the theory of errors, which began

to emerge around 1750. Thanks to De Moivre, around 1730 it was possible to establish

formulae for probabilities and density functions of sums of i.i.d. random variables if the

distribution of the individual summands could be expressed by simple algebraic terms.

However, even with a number of random variables that was still fairly small it became

impossible to numerically and analytically evaluate the results obtained in this way.

Although Daniel Bernoulli succeeded in 1780 in introducing an approximation method

that was completely different from the de Moivrian approach, its scope of application

remained limited to binomial distributions and thus to distributions of sums of two-

valued random variables. In the 18th century, it was impossible to get significantly

beyond de Moivre’s “limit” theorems.
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1.1 First approximations

Laplace

The history of the CLT actually starts in 1812, when Pierre-Simon de Laplace pub-

lished the first edition of his Théorie analytique des probabilités. This book considerably

influenced probability theory and mathematical statistics of the 19th century, by ana-

lyzing typical problems, stochastic models and analytic methods. Laplace was one of

the first mathematicians that pointed out the importance of probability theory in math-

ematics, and not only for applications to physical, social and moral problems. In many

problems referring to stochastic models depending on a large number of trials, probabili-

ties could only be expressed by formulae too complicated for direct numerical evaluation.

For example, he tried to compute the probability that the sum of the angles of inclination

of comet orbits (or the arithmetic mean of these angles, respectively) lay within certain

limits. Laplace assumed that the angles, measured against the ecliptic, were uniformly

distributed between 0◦ and 90◦, and also implicitly assumed that all angles were stochas-

tically independent. Using induction, Laplace successfully computed these probabilities

for an arbitrary number of comets. In the most simple case, each of the n variables had

the same uniform distribution between 0 and h. For the probability P that the sum of

those variables was between a and b with 0 ≤ a ≤ b ≤ nh , Laplace obtained

P =
1

hnn!

(
N∑
i=0

(
n

i

)
(−1)i(b− ih)n −

M∑
i=0

(
n

i

)
(−1)i(a− ih)n

)
, (1.5)

where N = min
(
n,
[
b
h

])
and M = min

(
n,
[
a
h

])
. Formulae of this kind were too com-

plicated for a direct numerical evaluation if the number of random variables exceeded a

relatively small value. Through the use of (1.5) alone, Laplace was unable to address the

hypothesis that the comets’ planes of motion resulted at “random”, so this work could

not develop usable approximations.

Thus, for a reasonable application of many of the results of probability calculus, particu-

lar considerations were needed to obtain useful approximations of the “formulae of large

numbers”.

Laplace had his first approach to the CLT in 1810, after modifying generating func-

tions. He considered X1, . . . , Xn i.i.d. random variables, with zero mean and which take

the values k
m
, with m a given natural number and k = −m,−m + 1, . . . ,m − 1,m and

respective probabilities pk. For the calculation of the probability

Pj = P

(
n∑
l=1

Xl =
j

m

)
for j ∈ [−nm, nm],
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Laplace made use of the generating function T (t) =
∑m

k=−m pkt
k. Due to the mutual

independence of the Xl’s, Pj is equal to the coefficient of tj in [T (t)]n, after carrying

out the multiplication. He then changed variable from t to eix and introduced the now

so-called characteristic functions in a special case. From

1

2π

∫ π

−π
e−itxeisxdx = δts, t, s ∈ Z,

it follows that

Pj =
1

2π

∫ π

−π
e−ijx

[
m∑

k=−m

pke
ikx

]n
dx. (1.6)

The last integral above was at least formally accessible to Laplace’s method of approxima-

tion. There was, however, a certain modification necessary, as Laplace did not consider

an expansion of the whole integrand around its maximum at x = 0, but only of the

power with exponent n (equal to the characteristic function). By expanding eikx in (1.6)

into powers of x one gets

Pj =
1

2π

∫ π

−π
e−ijx

[
m∑

k=−m

pk

(
1 + ikx− k2x2

2
− ik3x3

6
+ · · ·

)]n
dx.

Considering
∑m

k=−m pkk = 0, and by replacing m2σ2 =
∑m

k=−m pkk
2, we obtain

Pj =
1

2π

∫ π

−π
e−ijx

[
1− m2σ2x2

2
− iAx3 + · · ·

]n
dx,

where A is a constant depending on
∑m

k=−m pkk
3. By expanding

log

[
1− m2σ2x2

2
− iAx3 + · · ·

]n
=: log z

into a series of powers of x, we obtain

log z = −m
2σ2nx2

2
− iAnx3 + · · · ,

so

z = e−
m2σ2nx2

2
−iAnx3+··· = e−

m2σ2nx2

2 (1− iAnx3 + · · · )).

After transforming the variable of integration according to x = y√
n
, the result is

Pj =
1

2π
√
n

∫ π
√
n

−π
√
n

e
−ij y√

n e−
m2σ2y2

2

(
1− iAy3√

n
+ · · ·

)
dy,

For an approximation with a very large n he ignored all series terms with a power of
√
n

in the denominator, and set the limits of integration to ±∞. This way we get

Pj ≈
1

2π
√
n

∫ π
√
n

−π
√
n

e
−ij y√

n e−
m2σ2y2

2 dy,
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where the last integral is equal to

1

mσ
√
2πn

e−
j2

2m2σ2n . (1.7)

Summing up (1.7) for j
m

∈ [r1
√
n, r2

√
n], which can be approximated by integration

(dx ≈ 1√
n
), we obtain

P (r1
√
n ≤

∑
Xl ≤ r2

√
n) ≈

∑
j∈[mr1

√
n;mr2

√
n]

1

mσ
√
2πn

e−
j2

2m2σ2n

≈
∫ mr2

mr1

1

mσ
√
2π
e−

x2

2m2σ2 dx =

∫ r2

r1

1

σ
√
2π
e−

x2

2σ2 dx,

which corresponds to the integral form of the CLT. However, Laplace only treated par-

ticular problems concerning the approximation of probabilities of sums or linear combi-

nations of a great number of random variables1 (in many cases errors of observation),

and did not justify neglecting series terms of “higher order”. His most general version

of the CLT was as follows. Let ϵ1, . . . , ϵn be a large number of independent errors of

observation, each having the same density with mean µ and variance σ2. If λ1, . . . , λn

are constant multipliers and a > 0, then

P

∣∣∣∣∣
n∑
j=1

λj(ϵj − µ)

∣∣∣∣∣ ≤ a

√√√√ n∑
j=1

λ2j

 ≈ 2

σ
√
2π

∫ a

0

e−
x2

2σ2 dx.

Poisson

From 1824, Siméon-Denis Poisson formulated and proved the CLT generally for

“choses”, an early concept of random variables, and tried to discuss the validity of this

theorem mainly through counterexamples, without really proving it. He investigated the

asymptotic behaviour of the distribution of a sum of functions of the values of a “chose”,

where in several independent experiments these values were obtained with possibly dif-

ferent probabilities. He complicated his approach by considering a function essentially

to cover both sums of random values and of powers of these values in the same theo-

rem: all of these quantities are now described as random variables (a term coined by

Kolmogorov in 1933). We will now use modern terminology to describe his work, e.g. we

will use “random variable” instead of “chose” and so on. Poisson considered X1, . . . , Xs

to be a great number of random variables with density functions fn(x) = F ′
n(x), where

1The term “random variable” was coined by Kolmogorov only in 1933. We abuse of the term to

indicate errors of observation, values, or general quantities that these authors studied, which can now

be interpreted as random variables.
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Fn(x) = P(Xn ≤ x), which decrease sufficiently fast (he did not specify exactly how fast)

as their arguments tend to ±∞. He defined

ρn(α) cos(ϕn) :=

∫ b

a

fn(x) cos(αx)dx and ρn(α) sin(ϕn) :=

∫ b

a

fn(x) sin(αx)dx (1.8)

It is supposed that, for the absolute values ρn(α) of the characteristic functions of Xn

(1.8), there exists a function r(α) independent of n with 0 ≤ r(α) < 1, for all α ̸= 0 such

that

ρn(α) ≤ r(α).

Then, for arbitrary γ, γ′,

P

(
γ ≤

∑s
n=1(Xn − E[Xn])√
2
∑s

n=1Var(Xn)
≤ γ′

)
≈ 1√

π

∫ γ′

γ

e−u
2

du, (1.9)

where the approximation improves the larger s is, and the right side is the distribution

function of a normal distribution with expectation 0 and variance 1
2
. Strictly speaking,

Poisson’s analysis could be used for arbitrary γ, γ′, though he explicitly expressed end

results only for the special case γ = −γ′ < 0. We can write (1.9) using the standard

normal distribution: by replacing u = v√
2
, we obtain

P

(
γ
√
2 ≤

∑s
n=1(Xn − E[Xn])√
2
∑s

n=1Var(Xn)
≤ γ′

√
2

)
≈ 1√

2π

∫ √
2γ′

√
2γ

e−
v2

2 dv.

Poisson was convinced that this CLT was also valid for discrete random variables. In this

case one could assume that the values c1, . . . , cv of a random variable of this kind were sub-

ject to the respect probabilities γ1, . . . , γv, which were represented by γi =
∫ ci+δ
ci−δ f(z)dz,

with an “infinitely small” quantity δ and a “discontinuous” density function f .

The approximate stability of arithmetic means or relative frequencies, quite often ob-

served within different sequences of random experiments of the same kind, was so impor-

tant for Poisson’s probabilistic approach that he coined the term “Law of large numbers”

for this fact. In the introduction of his Recherches2, he characterized this law as follows:

The phenomena of any kind are subject to a general law, which one can call the “Law of

Large Numbers”. It consists in the fact, that, if one observes very large numbers of phe-

nomena of the same kind depending on constant or irregularly changeable causes, however

not progressively changeable, but one moment in the one sense, the other moment in the

other sense; one finds ratios of these numbers which are almost constant.

2Poisson, Siméon Denis 1837. Recherches sur la probabilité des jugements en matière criminelle et

en matière civile, précédés des règles générales du calcul des probabilités. Paris: Bachelier.
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It must be emphasized that Poisson’s interpretation of “law of large numbers” is

different from the modern definition of this term, which we will illustrate in Chapter 3.

After Poisson, probability theory lost its application to moral sciences and moved toward

a more mathematical point of view.

Dirichlet

In 1846, Johann Peter Gustav Lejeune Dirichlet discussed linear combinations α1x1+

· · · + αnxn of random errors. The densities of these errors were not only considered to

be symmetric and concentrated on a fixed interval, but also to be smooth, which implies

the existence of continuous derivatives. He presupposed that the sequence of the αv had

a positive lower bound α and a positive upper bound A, and that all variances of the

random errors should be uniformly bounded away from 0. For non-identically distributed

observation errors, it has to be assumed also a certain uniformity in the shape of all the

density functions fv, e.g. the existence of an upper bound C such that |f ′
v(x)| < C for

all x ∈ [−a, a] and all v. His main result was (expressed in “modern” limit assertion):∣∣∣∣∣P
(
−λ

√
n ≤

n∑
v=1

αvxv ≤ λ
√
n

)
− 2√

π

∫ λ
r

0

e−s
2

ds

∣∣∣∣∣ n→∞−−−→ 0,

where

r = 2

√√√√ 1

n

n∑
v=1

kvα2
v.

In his formula, Dirichlet used the integral form of the CLT with a few differences with

the modern one, where we usually use the standard normal distribution. In fact, by

doing a few changes, e.g. dividing both members by 1
2
r
√
n and changing variables with

x = s
√
2, we obtain a more familiar version of the CLT:∣∣∣∣∣P

(
−2λ

r
≤
∑n

v=1 αvxv∑n
v=1 kvα

2
v

≤ 2λ

r

)
− 1√

2π

∫ 2λ
r

− 2λ
r

e−
x2

2 dx

∣∣∣∣∣ n→∞−−−→ 0,

where we can consider
√∑n

v=1 kvα
2
v as the variance of the linear combination of errors.

Cauchy

In 1853, Augustin-Louis Cauchy established upper bounds for the error of a normal

approximation to the distribution of a linear combination
∑n

j=1 λjϵj of i.i.d. errors ϵj with

a symmetric density f vanishing for arguments beyond the compact interval [−k, k]. He
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additionally required that the λj should have “the order of magnitude” of 1
n
or less and∑n

j=1 λj =: Λ should be of the order 1
n
. More precisely, the first requirement means there

exists positive constants α and β independent of n such that, for all j = 1, . . . , n there

is a γ(j) ≥ 1 with

α ≤ nγ(j)|λj| ≤ β.

Cauchy used the notation c :=
∫ k
0
x2f(x)dx, and for v > 0 he obtained∣∣∣∣∣P

(
−v ≤

n∑
j=1

λjϵj ≤ v

)
− 2√

π

∫ v

2
√
cΛ

0

e−θ
2

dθ

∣∣∣∣∣ ≤ C1(n) + C2(n) + C3(n), (1.10)

where the functions C1, C2 and C3 tend to 0 as n increases, independently of v. These

results can be interpreted as a quite rigorous proof of the finite version of a CLT for

linear combinations of i.i.d. random variables. In fact, a “modern” CLT can be inferred

from Cauchy’s version by considering a sequence of independent random variables Xj,

distributed like Cauchy’s observational errors, and by setting in (1.10) λj = 1
n
, v =

a√
n
(a > 0) and c = 1

2
Var(X1), we obtain∣∣∣∣∣P
(
−a

√
n ≤

n∑
j=1

Xj ≤ a
√
n

)
− 2√

π

∫ a
2
√
c

0

e−x
2

dx

∣∣∣∣∣
≤ C1(n) + C2(n,

a√
n
) + C3(n)

n→∞−−−→ 0.

(1.11)

Like the previous case, we can write a more familiar formula containing the standard

normal distribution. By replacing x = y√
2
, we obtain∣∣∣∣∣P

(
− a√

2c
≤

∑n
i=1Xi√

nVar(X1)
≤ a√

2c

)
− 1√

2π

∫ a√
2c

− a√
2c

e−
−y2

2 dy

∣∣∣∣∣ n→∞−−−→ 0,

and since we consider the errors to be i.i.d., we can consider
√
nVar(X1) as the variance

of
∑n

i=1Xi.

1.2 The founders of “St. Petersburg school”

The founders of “St. Petersburg school”, in particular Chebychev, Markov and Lyapu-

nov, all had an influence on the history of the CLT. The first two worked with moments,

and this Theorem appears in their work to illustrate their methods in moment theory,

while the latter worked with it as a mathematical object of its own and he was the first

who rigorously proved the CLT.
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Chebychev

In 1887, Pafnuty Lvovich Chebychev introduced the CLT in the following version,

without a complete proof. Let ui be a sequence of independent random variables, each

with zero expectation. For these random variables he presupposed non negative densities

ϕi with moments of arbitrarily high order. He assumed that, for each order, an upper

and lower bound of the moments existed, uniformly for all random variables. Under

these assumptions, Chebychev stated that for any t < t′ ∈ R,

lim
n→∞

P

(
t ≤

∑n
i=1 ui√

2
∑n

i=0 E[u2i ]
≤ t′

)
=

1√
π

∫ t′

t

e−x
2

dx.

As for the results in the previous section, by replacing y =
√
x and defining r1 :=

√
2 t1

and r2 :=
√
2 t2, we obtain the usual formula

lim
n→∞

P

(
r1 ≤

∑n
i=1 ui√

2
∑n

i=0 E[u2i ]
≤ r2

)
=

1√
2π

∫ r2

r1

e−y
2

dy.

We can consider
√∑n

i=0 E[u2i ] as the standard deviation of
∑n

i=0 ui, since they are in-

dependent and for all j is valid that E[uj] = 0, so Var(uj) = E[u2j ]. Chebychev did not

prove the CLT rigorously, but his theorem was still important for two main reasons: first,

he stated his theorem for “quantités” and not for errors, as the other authors before him;

second, he explicitly stated conditions for the validity of the assertion, so he was the first

to express the CLT properly as a limit theorem.

Markov

After Chebychev had retired from teaching probability theory in 1882, his successor

became Andrey Andreyevich Markov, but only in 1898 he started his work on finding

a moment theoretic proof of the CLT. His proof of the CLT was actually a corollary

of more general moment theoretic results. His version of the CLT was as follows. Let

u1, u2, . . . be “independent quantités”, obeying the following conditions: E[uk] = 0 for

all k, for all natural m ≥ 2 there exists a constant Cm such that |E[umk ]| < Cm for all

k ∈ N and E[u2k] has a positive lower bound. Then

P

α
√√√√2

n∑
k=1

E[u2k] ≤
n∑
k=1

uk ≤ β

√√√√2
n∑
k=1

E[u2k]

 −−−→
n→∞

1√
π

∫ β

α

e−x
2

dx

for any α < β. As we can see, this formula is very similar to Chebychev’s results, with

just some differences in the conditions. Indeed, in 1898 Markov did not prove that the
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moments of each order of the suitably normed sum of random variables converge to those

of the normal distribution respectively, as it would have been essential for the application

of his main theorem to the case of the CLT. He gave that proof the year later and his

main result was: let X1, X2, . . . be a sequence of independent random variables, each

with expectation E[Xk] and variance σ2
k > 0, respectively, where∑n

k=1 E[|Xk − E[Xk]|r]
(
∑n

k=1 σ
2
k)

r
2

−−−→
n→∞

0 (1.12)

and ∑n
k=1(σ

2
k)
r−1

(
∑n

k=1 σ
2
k)
r−1

−−−→
n→∞

0 (1.13)

for all natural r ≥ 3, then

E

[(∑n
i=1(Xi − E[Xi])√

2
∑n

i=1 σ
2
i

)m]
−−−→
n→∞

1√
π

∫ ∞

−∞
tme−t

2

dt.

for each natural m. Afterwards, Markov noticed that condition (1.13) was superfluous,

because it could be deduced from the first condition (1.12) by means of the inequality

(σ2
k)
r−1 ≤ E[(Xk − E[Xk])]

2r−2 (r ≥ 3),

whose proof is quiet easy.

Markov’s and Chebychev’s inequalities.

We recall now two important results by these last two authors, which we still very much

use in modern probability theory. Markov’s result was as follows.

Theorem 1.2. For all random variables X which take values in Rd, λ > 0, and p ∈
[0,+∞[, it holds

P(|X| ≥ λ) ≤ E[|X|p]
λp

. (1.14)

In particular, if Y ∈ L2 is a real random variable, the Chebychev’s inequality holds as

P(|Y − E[Y ]| ≥ λ) ≤ Var(Y )

λ2
. (1.15)

Proof. As for (1.14), if E[|X|p] = +∞ there is nothing to prove, otherwise, by the

monotonicity property, we have

E[|X|p] ≥ E
[
|X|p1{|X|≥λ}

]
≥ λp E

[
1{|X|≥λ}

]
= λp P(|X| ≥ λ).

(1.15) follows from (1.14) by setting p = 2 and X = Y − E[Y ], indeed

P (|Y − E[Y ]| ≥ λ) ≤ E [|Y − E[Y ]|2]
λ2

=
Var(Y )

λ2
.
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Lyapunov

In 1900, Aleksandr Mikhailovich Lyapunov considered Chebychev’s and Markov’s

work on the CLT, he barely used moment theory whereas he tried to simplify their

results in order to find more general conditions for the CLT. In his proof, he used the

so-called “Lyapunov inequality”.

Lemma 1.3 (Lyapunov inequality). Let x′, x′′, x′′′, . . . be a sequence of positive numbers,

and let f(x) be any function whose values f(x′), f(x′′), f(x′′′), . . . are all positive. If one

generally sets

f(x′) + f(x′′) + f(x′′′) + · · · =
∑

f(x),

and by l,m, n one understands any numbers which are according to the inequalities

l > m > n ≥ 0,

then one has (∑
f(x)xm

)l−n
<
(∑

f(x)xn
)l−m (∑

f(x)xl
)m−n

.

Lyapunov proved the following theorem. Let x1, x2, x3, . . . be an infinite sequence of

independent random variables, for which the expectations E[xi] =: αi, E[(xi−αi)2] = ai,

and E[|x3i |] =: li exist, respectively. Furthermore, let

An :=
1

n

n∑
i=1

ai and L3
n := max

1≤i≤n
li.

Under the condition
L2
n

An
n− 1

3 −−−→
n→∞

0, (1.16)

for all z1 < z2 ∈ R, the modulus of

P

(
z1
√
2nAn <

n∑
i=1

(xi − αi) < z2
√
2nAn

)
− 1√

π

∫ z2

z1

e−z
2

dz

has an upper bound Ωn independent of z1, z2, such that

Ωn −−−→
n→∞

0.

The condition (1.16) is met, for example, if the absolute moments of third order li of

each single random variable have a uniform lower bound c. Then we have

L2
n

An
n− 1

3 ≤ C2

c
n− 1

3 −−−→
n→∞

0.

Later on he weakened the conditions for his theorem, by presupposing the existence of

the respective expectations αi, ai and di := E[|xi − αi|2+δ], with δ > 0 arbitrarily small.

From these it follows
(d1 + · · ·+ dn)

2

(a1 + · · ·+ an)2+δ
−−−→
n→∞

0. (1.17)
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Chapter 2

The CLT at the beginning of the

20th Century

2.1 The CLT in the Twenties

After the First World War, probability theory began to be discovered as a field for

ambitious analysts, even outside of Russia. The CLT consequently ceased to be an issue

merely for “users”, such as astronomers, geodetics specialists, insurance specialists, or

economists, who had actually produced quite impressive results in the second half of the

19th century, particularly in the field of error theory, and became an object of study

within mathematics itself. In the Twenties a lot of authors, such as von Mises, Pólya,

Lindeberg, Lévy, Bernstein and Hausdorff worked on the CLT, and found necessary and

sufficient conditions for the theorem.

Von Mises and Pólya

In 1919, Richard Von Mises conceived the notion of “distribution” as a monotonically

increasing function, being right continuous and having limit 0 as x → −∞ and limit 1

as x→ ∞, which was important for generality and also precision of analytic exposition.

Apparently one of the first to do so, he represented probabilities, as well as higher

moments, by Stieltjes integrals1 referring to those distributions. The use of Stieltjes

1The Stieltjes integral is a generalization of Riemann’s integral. Given two real-valued functions

f, g : R → R, let x0 = a < x1 < x2 < · · · < xi < · · · < xn = b be a partition of the interval [a, b] ⊆ R.
From each subinterval defined by the partition, consider a point ci ∈ [xi, xi+1]. The mesh δ(P ) of

the partition P is δ(P ) := maxxi∈P |xi+1 − xi|. The Riemann-Stieltjes integral of f with respect to

g, denoted by
∫ b

a
f(x) dg(x) is defined as follows: limδ(P )→0

∑
xi∈P f(ci)(g(xi+1) − g(xi)), if it exists

independently of the choice of points ci.

13
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integrals, in addition to the analytic skill employed in dealing with moments, proves

that von Mises was informed about the current development of moment theory, at least

in its main features. Based on Stieltjes integrals, von Mises formulated and proved

his local and integral CLTs for real- and vector-valued random variables as statements

about convolutions of discrete probability functions, densities, and distribution functions,

respectively. So, his exposition was purely analytic and did not resort to probabilistic

interpretations and concepts.

Let us briefly recall Pólya, the mathematician who coined the name “Central limit

theorem” in a 1920 article, to underline its central role in probability theory.

Lindeberg

The complete mathematical work of Jarl Waldemar Lindeberg contains only one truly

outstanding performance: the proof of the CLT under a very weak condition, which under

certain “natural” assumptions even proved to be necessary. Lindeberg’s arguments were

based on an entirely new analytic method, which would later be applied to far more

general problems. In 1920 Lindeberg, still without any knowledge of Lyapunov’s works,

had already proven the CLT for normed sums
∑n

k=1
Xk

rn
of mutually independent random

variables Xk , each with distribution Uk , with zero expectation, variance σ2
k, and finite

absolute moment of third order, presupposing that

1

r3n

n∑
k=1

∫ ∞

−∞
|x|3dUk(x) −−−→

n→∞
0, rn =

√√√√ n∑
k=1

σ2
k.

After certain modifications of his arguments, in 1922 he was able to publish his famous

proof of the CLT under even weaker conditions. He expressed this theorem in several ver-

sions. The version which comes closest to Lindeberg’s concepts is probably his “Theorem

III”: let U1, . . . , Un be the distribution functions of n mutually independent “probability

quantities” u1, . . . , un each with expectation 0 and variance σ2
k, where

∑n
k=1 σ

2
k = 1. Let

U(x) :=

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
Un(x− t1 − t2 − · · · − tn) dUn−1(tn−1) · · · dU1(t1).

Then U is the distribution of the sum of all random variables. Let

s(x) :=

|x|3 if |x| < 1

x2 otherwise.
(2.1)

Even if the positive number ϵ is taken arbitrarily small, a positive number η can be

chosen such that ∣∣∣∣∣U(x)−
∫ x

−∞

e−
t2

2

√
2π

dt

∣∣∣∣∣ < ϵ (2.2)
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if
n∑
k=1

∫ ∞

−∞
s(x) dUk(x) < η. (2.3)

Since U is the distribution of the sum of all random variables, it is equal to P(
∑n

k=1 Uk <

x). By setting ak = E[Uk] = 0 and b =
√∑n

k=1 σ
2
k = 1, we can write

U(x) = P
(∑n

k=1(Uk − ak)

b
< x

)
So, Lindeberg proved a theorem which can be applied both to normed partial sums

related to simple sequences of random variables and to sums of elements within different

rows of a triangular array of random variables. At the end of the proof he obtained∣∣∣∣U(x)− ∫ x

−∞
φ(t, 1)dt

∣∣∣∣ < 3
4

√
3

2

(
n∑
i=1

∫ ∞

−∞
s(x)dUi(x)

) 1
4

, (2.4)

with the abbreviation φ(x, σ) := 1
σ
√
2π
e−

x2

2σ2 . In 1922, from (2.4) he obtained the CLT in

its usual form: let (Xi) be a sequence of independent random variables with distributions

Vi. For simplicity it is assumed that E[Xi] = 0 for all i. Then, for all natural n and

for all i ≤ n, the random variables ui :=
Xi

rn
, with rn =

√∑
Var(Xi) and distribution

functions Ui(x) = Vi(rnx), are of the type required for Lindeberg’s Theorem (equations

(2.2) and (2.3)). From (2.4), under the condition
n∑
i=1

∫ ∞

−∞
s

(
x

rn

)
dVi(x) −−−→

n→∞
0,

with s as defined in (2.1), it follows that

lim
n→∞

P
(∑n

i=1Xi

rn
≤ x

)
=

∫ x

−∞

e−
t2

2

√
2π

dt.

Lévy in 1924 used the following condition, that was later called the “Lindeberg condi-

tion”, despite Lindeberg himself never wrote about it:

1

r2n

n∑
i=1

∫
|x|>trn

x2dVi(x) → 0 ∀t > 0. (2.5)

Hausdorff

Felix Hausdorff was mainly interested in the integral version of the CLT and used

Lindeberg’s method of proving it in his work. He presupposed “variables” (without

explaining this notion) X1, . . . , Xn with zero means, second-order moments a1, . . . , an,

and absolute third-order moments c1, . . . , cn. He deduced a finitary version of the CLT,

which he named “Lyapunov’s limit theorem”, and which can be summarized as follows.

If Φn denotes the distribution function2 of
∑n

k=1
Xk√
2bn

where b2n = a21 + · · · + a2n, and

2Hausdorff defined the distribution function F (x) of a random variable X by F (x) := P(X < x).
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dn = (c31 + · · ·+ c3n)
1
3 . Then, with the denotation Φ(x) := 1√

π

∫ x
−∞ e−t

2
dt,

|Φn(x)− Φ(x)| ≤ µ

(
dn
bn

) 3
4

,

where µ is a numerical constant. Hausdorff additionally noticed that the condition

dn
bn

−−−→
n→∞

0

was sufficient for the uniform convergence of Φn(x) to Φ(x). If we look closer to this

condition, we notice that the “Lyapunov condition” (1.17) from 1901 implies it. To prove

that, we show that, since E[Xi] = 0, a2i = E[X2
i ] = E[(Xi − E[Xi])

2] and c3i = E[|Xi|3] =
E[|Xi − E[Xi]|3], and then we use (1.17). We obtain

(
dn
bn

) 3
4

=

(
(d1 + · · ·+ dn)

1
3

(a1 + · · ·+ an)
1
2

) 3
4

=
(d1 + · · ·+ dn)

1
4

(a1 + · · ·+ an)
3
8

=

(
(d1 + · · ·+ dn)

2

(a1 + · · ·+ an)3

) 1
4

−−−→
n→∞

0.

Lévy

In a 1922 brief discussion of counterexamples to the CLT, Paul Lévy had considered

functions

φ(t) = e−a|t|
α

, (a > 0, 0 < α ≤ 2),

which he referred to as “characteristic functions” of stable laws. A probability law L is

called “stable” if it does not correspond to a degenerate distribution (i.e. a distribution

concentrated in one point), and if for independent random variables X1, X2, each with

probability law L , this condition is valid: for all a1, a2 > 0 such that 1
a
(a1X1 + a2X2)

likewise obeys the law L , with a necessarily uniquely determined. He emphasized the

advantages of characteristic functions over generating functions, especially because of

their property to be “always well defined without any restrictions on the probability

law”. The notion of stable law directly implies the following property: if there exists a

sequence of i.i.d. random variables (Xi)i∈N, and a sequence of positive numbers (Nn)n∈N

and a distribution function V such that

P
(∑n

i=1Xi

Nn

≤ x

)
+

1

2
P
(∑n

i=1Xi

Nn

= x

)
−−−→
n→∞

V (x)

in all points of continuity x of V , then V is the distribution function of a stable law.

Lévy considered stable distributions “natural” generalizations of the classic Gaussian

law, therefore, with regard to this author, the history of the CLT is closely connected

with his more general discussion of stable limit distributions.
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The laws of type Lα,β. We need ψ(t) = −c|t|α, where the complex coefficient xmay

depend on the sign of t. From the general properties of characteristic functions, which

had to be valid also for φ(x) = eψ(x) (in particular |φ(x)| ≤ 1, φ(0) = 1, φ(−x) = φ(x),

continuity), it followed

ψ(t) = −(c0 + sgn(t) c1i)|t|α, (2.6)

where α > 0, c0 ≥ 0, c1 ∈ R. For a closer specification of the constants c0 and c1,

Lévy designated certain probability laws, as “Laws of type Lα,β” if their characteristic

function had the form eψ(t), where ψ(t) was a function according to (2.6), c0 > 0, and

c1
c0

=

β tan(π2α) for α ∈ ]0, 1[ ∪ ]1, 2[

β for α ∈ {1; 2}.

He showed that, for all values of β and α ̸= 1, 2 under consideration, there exists a

probability density f with a characteristic function φ such that(
φ

(
t

n
1
α

))n
−−−→
n→∞

eψ(t). (2.7)

Lévy succeeded in proving that the convergence in (2.7) was uniform in each finite

interval of t-values, ψ(t) as defined above. In 1922, he proved a first version of the CLT,

as a special case of his theorem on the convergence to distributions of type Lα,β. For

a sequence of distribution functions (Fk)k∈N of independent random variables Xk, each

with zero expectation and variance 1, let

∀ϵ > 0 ∃a > 0 ∀k ∈ N :

∫
|ξ|≤a

ξ2 dFk(ξ) ≥ 1− ϵ.

Let (mk)k∈N be a sequence of positive numbers with

maxk=1,...,nm
2
k∑n

k=1m
2
k

−−−→
n→∞

0. (2.8)

Then

lim
n→∞

P

(∑n
k=1mkXk√∑n

k=1m
2
k

≤ x

)
=

1√
2π

∫ x

−∞
e−

t2

2 dt.

Lévy stressed the independence of his and Lindeberg’s work. He proved the CLT in

1924 by use of the method of characteristic functions under the modified “Lindeberg

condition” (2.5), which was especially appropriate to characteristic functions. This proof

largely corresponds to the now common standard proof contained in many textbooks on

probability theory. For a comparison of Lévy’s conditions with the modified Lindeberg

condition one has to refer to random variables Xk with zero expectations and variances

σ2
k. In this case, Lévy’s conditions are

∀ϵ > 0 ∃a > 0 : ∀k ∈ N,
1

σ2
k

∫
|ξ|≤aσk

ξ2dFk(ξ) ≥ 1− ϵ, (2.9)
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and after writing σ2
k instead ofm2

k in (2.8), the Lindeberg condition, with the abbreviation

r2n :=
∑n

k=1 σ
2
k is

∀t > 0 ∀η > 0 ∃n0 : ∀n ≥ n0,
1

r2n

n∑
k=1

∫
|x|≤rnt

x2 dFk(x) ≥ 1− η. (2.10)

Whereas Lévy’s first condition (2.9) aims at a certain uniformity among the single dis-

tribution functions, his second condition (2.8) requires each single variance to be small

compared with the variance of the entire sum. Lindeberg’s condition (2.10) stresses both

aspects at the same time; the uniformity required, however, is weaker than in Lévy’s

condition. In fact, this last condition can be deduced from both Lévy’s conditions to-

gether.

We will see more about Lévy and the CLT in the next section, as he continued his

studies on this topic later in his life.

Bernstein

In 1922, the same year in which Lindeberg’s and Lévy’s fundamental contributions

to the CLT appeared, Sergei Natanovich Bernstein published a paper containing the so-

called “Lemme fondamental”, which generalizes the assertion of the CLT towards “almost

independent” random variables, and can also be applied to sums of random variables

which form Markov chains3. The statement was as follows: let Sn = u1 + · · · + un,

E[S2
n] = Bn, E[u21] + · · · + E[u2n] = B′

n (it is always supposed that, for simplicity of

notation, E[ui] = 0). If, for each arbitrary set of already known values u1, . . . , ui−1, the

absolute values of the mathematical expectations of ui and u
2
i do not exceed αi and βi

respectively, and at the same time the mathematical expectation of |u3i | remains below

ci, then

P(z0
√
2Bn < Sn < z1

√
2Bn) −−−→

n→∞

1√
π

∫ z1

z0

e−z
2

dz,

presupposing that

1√
Bn

n∑
i=1

αi,
1

Bn

n∑
i=1

βi,
1

B
3
2
n

n∑
i=1

ci

tend to 0 together with 1
n
.

3A Markov chain (or Markov process) is a stochastic process describing a sequence of possible events

in which the probability of each event depends only on the state attained in the previous event. More

formally, a discrete-time Markov chain is a sequence of random variables (Xk) satisfying the Markov

property: P(Xn+1 = x|X1 = x1, . . . , Xn = xn) = P(Xn+1 = x|Xn = xn), if both conditional probabili-

ties are well defined, that is, if P(X1 = x1, . . . , Xn = xn) > 0.
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Gnedenko and Kolmogorov have hinted at the fact that Bernstein’s lemma together

with the additional remark in the particular case of independent variables yields very

general sufficient conditions for the convergence of the distributions of normed sums to

the normal distribution.

2.2 Lévy and Feller on Normal Limit Distributions

around 1935

In 1935, both Paul Lévy and William Feller proved that there are necessary and

sufficient conditions for the convergence of distributions of suitably normed sums of

independent random variables to the normal distribution.

Lévy

In the field of strong laws of large numbers, a significant part was played by neces-

sary and sufficient conditions for the almost sure convergence4 of a series of independent

random variables. Lévy’s own version was as follows: let (Xk) be a sequence of inde-

pendent random variables. For the existence of a sequence of real numbers ak such that∑∞
k=1(Xk − ak) almost surely converges, it is necessary and sufficient that there exists a

sequence (Yk) being equivalent to the sequence (Xk), for which
∑∞

k=1Var(Yk) converges.

Lévy applied the ideas associated with almost sure convergence to the CLT again: the

mutually analogous references, on the one hand between the divergence of the sums of

all variances and the almost sure divergence of the series of the random variables, on

the other hand between the divergence of the sums of all variances and the validity of

the assertion of the CLT, apparently led Lévy to consider equivalent random variables

in conjunction with the CLT as well. In this way, he arrived at the following theorem.

Let (Xk) be a sequence of independent random variables. If there exists a sequence

(Yk) of bounded random variables being equivalent to (Xk) such that max1≤k≤n |Yk| and
d2n∑n

k=1 Var(Yk)
→ 0, then one can find constants An and Bn > 0 such that the distribution

of
∑n

k=1
Xk

Bn
−An tends to the standard normal distribution. Lévy’s result was more gen-

eral than Lindeberg’s theorem ((2.2) and (2.3)) and he proceeded to find even necessary

conditions for the convergence to the normal distribution by further refining the basic

ideas which had led to the just-stated theorem. He considered normed sums of random

variables, each of them additively composed of one part being “very small in relation

4To say that the sequence Xn converges almost surely (or almost everywhere, or with probability 1,

or strongly towards X) means that P(limn→∞ Xn = X) = 1.
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to the total sum” and one possibly sizable but normally distributed part. In order to

be able to compare the size of an individual random variable to the overall sum, Lévy

created two new concepts, “dispersion” and its inverse, “concentration”, which proved

to be especially useful in discussing the convergence of series of random variables. He

defined the concentration fX(l) of the random variable X assigned to the interval of

length l > 0 as follows:

fX(l) := sup
−∞<a<∞

P(a < X < a+ l),

whereas he called dispersion of a random variable X a function φX : [0, 1[→ R+
0 with

φX(γ) := inf{x ∈ R+
0 |fX(x) ≥ γ}.

Roughly speaking, the dispersion is the minimum interval length related to a particular

probability and the concentration is the maximum probability related to a particular

interval length. Lévy considered sequences of random variables (Xk) and (ηk), where all

variables within each sequence were assumed to be independent. He presupposed that

Xk = ak + bkξk + ηk + η′k,

where ak and bk were constants, ξk obeyed a Gaussian law, and η′k met the condition

that P(η′k ̸= 0) was convergent, Ln denoted the dispersion of
∑n

k=1Xk, assigned γ = 1
2

and the variables ηk were assumed to be bounded such that max1≤k≤n
|ηk|
Ln

tends to 0.

Under the additional assumption that Ln → ∞, Lévy claimed that the distribution of

the suitably normed sum of the Xk would tend to a Gaussian law. Later on, he noticed

that the assumptions for the part η + η′ were equivalent to the condition

P
(
max
1≤k≤n

|Xk| > ϵLn

)
−−−→
n→∞

0 ∀ϵ > 0,

which turned out to be even sufficient for convergence to the normal distribution if all

random variables Xk could be considered small in the sense

max
1≤k≤n

P(|Xk| > ϵLn) −−−→
n→∞

0 ∀ϵ > 0.

Lévy also proved a “classical” version of the CLT: let (Xk) be a sequence of i.i.d. random

variables. The distribution sn :=
∑n

k=1Xk√
n

for n → ∞ tends to the standard distribution

Φ if and only if E[X2
1 ] = 1 and E[X1] = 0. Given the properties of the CLT, he only had

to show that, under the given assumptions,

P
(∑n

k=1Xk√
n

≤ x

)
→ Φ(x) ⇒ E[X2

1 ] <∞.
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For arbitrarily large positive X, he considered sequences of random variables (X ′
k) and

(X ′′
k ), where Xk = X ′

k +X ′′
k and

X ′
k :=

XK if |Xk| ≤ X

0 else.

Furthermore, Lévy introduced the denotations ϵ := P(|X1| > X), S ′
n :=

∑
X ′
k, S

′′
n :=∑

X ′′
k ,m :=

√
Var(X ′

1). He made plausible that S ′
n for sufficiently large n could be

represented with an arbitrarily small error by a sum of (1 − ϵ)n “nonzero” terms, and,

accordingly, S ′′
n by a sum of ϵ n, each distributed in the same way as X ′

1. Lévy asserted

(and proved) that the law of large numbers, after suitable norming, implied the con-

vergence of the distribution of the sum Sn to the Gaussian law, so it was a sufficient

condition for the CLT. He also showed that, in the special case of i.i.d. random variables

under the assumption of the convergence to the normal distribution (the CLT thesis),

they also obeyed the law of large numbers. This way, the law of large number is also

a necessary condition for the CLT. His main assertion can be expressed as follows: let

Ln be the dispersion of
∑n

k=1Xk assigned to an arbitrary, however fixed, probability

γ ∈]0, 1[, There exist sequences (an > 0) and (bk) of real numbers such that

P

(
1

an

n∑
k=1

(Xk − bk) ≤ x

)
−−−→
n→∞

Φ(x)

and

max
1≤k≤n

P(|Xk| > ϵLn) → 0 ∀ϵ > 0

if and only if

∀δ > 0 ∀η > 0 ∃n(δ, η) : ∀n ≥ n(δ, η), ∃X(n) > 0 :

(X(n))2∑n
k=1

(∫
|x|≤X(n)

x2dVk(x)−
(∫

|x|≤X(n)
xdVk(x)

)2) < η, (2.11)

and
n∑
k=1

P(|Xk| > X(n)) < δ.

Feller

William Feller started working on probability theory around 1934 and used cha-

racteristic functions as his main tool for proving the theorem. He generally based his

considerations on a sequence of distribution functions (Vn), all continuous on the right,

and the respective convolution functions Wn = V1 ∗ V2 ∗ · · · ∗ Vn. He tried to address
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the following problem: given a sequence of distribution functions (Vn(x)), do there exist

two number sequences (an) and (cn) such that Wn (anx+ cn) → Φ(x), where Φ(x) is the

standard normal distribution, and, if this is the case, how can such number sequences

be determined? Feller presupposed the negligibility5 of the Vk with respect to the total

convolution Wn. He basically demanded that there exist suitable bk such that, for each

x ̸= 0,

max
1≤k≤n

|Vk (anx+ bk)− E(x)| −−−→
n→∞

0,

where

E(x) =

0 for x < 0

1 else.

This demand is equivalent to the condition that for the random variables Xk obeying

the distributions Vk:

max
1≤k≤n

P(|Xk − bk| > ϵ an) −−−→
n→∞

0 ∀ϵ > 0. (2.12)

In his words, the sequence (Vk (x+bk)) together with the norming factors (an) belongs to

Φ(x) if the limit relation Wn (anx+ cn) → Φ(x), with cn = 1
an

∑n
k=1 bk and the condition

(2.12) are simultaneously met. The solution Feller found was: let (Vk) be a sequence of

distributions, all with zero median. For each δ > 0 let

pn(δ) := min

{
r ∈ R+

0

∣∣∣∣ n∑
ν=1

∫
|x|>r

dVν(x) ≤ δ

}
.

Then the presupposition

∀δ > 0 lim
n→∞

1

p2n(δ)

n∑
ν=1

∫
|x|≤pn(δ)

x2dVν(x) = ∞

is necessary and sufficient for the existence of sequences (an > 0), (bk) such that the

sequence (Vk (x + bk)) together with the norming factors an belongs to Φ(x). Feller’s

main results, written in a more modern way in order to compare it with Lévy’s work, was

as follows. Let (Xk) be a sequence of independent random variables whose distributions

Vk all have median 0. Then there exist sequences (an > 0) and (bk) of real numbers such

that

P

(
1

an

n∑
k=1

(Xk − bk) ≤ x

)
−−−→
n→∞

Φ(x)

and

max
1≤k≤n

P(|Xk − bk| > ϵ an) → 0 ∀ϵ > 0

5Given a function µ : N → [0, 1], we say µ is negligible if for all polynomials p, there exists n0 ∈ N,
such that ∀n ≥ n0, µ(n) ≤ 1

p(n) .
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if and only if

∀δ > 0 ∀η > 0 ∃n(δ, η) : ∀n ≥ n(δ, η),
p2n(δ)∑n

k=1

∫
|x|≤pn(δ) x

2dVk(x)
< η, (2.13)

where pn(δ) = min{r ∈ R+
0 |P(|Xk| > r) ≤ δ}.

Despite the formal conformity of (2.11) and (2.13), a direct proof for the equivalence

of these two conditions seems to be rather difficult. Still, the equivalence of Lévy’s and

Feller’s assertions concerning the convergence to the normal distribution can be quite

readily seen, but we do not report it in this thesis.
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Chapter 3

The Central Limit Theorem today

As we have already seen, interest in limit theorems in Probability Theory originally

arose from their statistical applications, though today there results have important uses

in many other fields as well. Let us consider a random experiment, in a probability space

(Ω,A,P), and let us focus in a real-valued random variable X : Ω → R associated with

it. A problem that comes naturally is determine, or better, estimate the distributions

of X. Broadly speaking, if X ∈ L1, we use limit theorems to estimate its mean, i.e.

µ = E[X].

Remark 3.1. Note that, by estimating the mean of X ∈ L1, this means you can calculate

E[f(X)], with f : R → R an arbitrary borel function such that f(X) ∈ L1. In particular,

for all B ∈ B, if f = 1B, you obtain

E[f(X)] = E[1{X∈B}] = P(X ∈ B) = PX(B).

Therefore knowing the expected values of E[f(X)] is equal to knowing the distribution

of X.

Remark 3.2. Note that, in order to estimate the mean of any random variable X ∈ L1,

you have to know how to estimate the probability of any event A ∈ A. In fact, it is

sufficient to choose X = 1A, then P(A) = E[1A].

Sequences of random variables and sample meaning

Let us find the mean µ of X : Ω → R, a generic random variable in L1. A classical

Statistic’s procedure is to do a large number of repetitions of the same aleatoric experi-

ment, taking notes of the value assumed by the random variable X, and then calculate

its sample meaning. More theoretically, you suppose to repeat the aleatoric experiment

infinitely many times, obtaining a sequence of random variables X1, X2, . . . , Xn, . . . , cor-

responding to the hypothetical values assumed by X in each experiment. It is reasonable

25
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to suppose X1, . . . , Xn, . . . independent and identically distributed (i.i.d.), or only that

they each have mean equal to µ. Naturally, we consider the sample mean:

Xn =
X1 + · · ·+Xn

n

Limit theorems study the asymptotic behaviour of the sample meaning Xn for n → ∞.

In particular, the Law of large numbers establishes when Xn → µ. The central limit

theorem investigates the distribution of Xn for n→ ∞.

3.1 Law of Large Numbers

In this entire chapter, (Xn)n is a sequence of real-valued random variables defined on

the same probability space (Ω,A,P). We assume that these variables are in L1 and have

the same expected value µ:

E[Xn] := µ, ∀n.

We define

Xn := X1 + · · ·+Xn, ∀n.

Definition 3.3. Let (Xn)n be a sequence of real-valued random variables defined on the

same probability space (Ω,A,P). We assume that these variables are in L1 and have the

same expected value: E[Xn] = µ, for every n.

• The sequence (Xn)n is said to satisfy the weak law of large numbers if

Xn
P−→ µ.

• The sequence (Xn)n is said to satisfy the strong law of large numbers if

Xn
a.s.−−→ µ.

A classic version of the weak law of large numbers comes directly from the Cheby-

chev’s inequality (1.15) is as follows. Let (Xn)n be a sequence of real-valued random

variables in L2 with mean µ and variance σ2. Suppose X1, . . . , Xn, . . . uncorrelated.

Then

Xn
P−→ µ.

In fact, P(|Xn − µ| ≥ λ) ≤ σ2

nλ2
, which converges to zero for n→ ∞.

Let us now consider two versions of the strong law of large numbers, which hold under

the additional assumption that the random variables X1, X2, . . . , Xn, . . . are i.i.d.. First,

we state the strong law of large numbers due to Kolmogorov (1930).
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Theorem 3.4 (Strong law of large numbers by Kolmogorov). Let (Xn)n be a

sequence of real-valued random variables i.i.d. in L1, with E[Xn] = µ ∀n. It is true that

Xn
a.s., L1

−−−−→ µ.

Theorem 3.5 (Strong law of large numbers). Let (Xn)n be a sequence of real-valued

random variables i.i.d. in L2, with E[Xn] = µ. It is true that

Xn
a.s., L2

−−−−→ µ.

Proof. Without loss of generality we can suppose µ = 0. In fact, if µ ̸= 0, it suffices to

consider Yi = Xi − µ and note that

Xn
a.s.−−→ µ ⇐⇒ Y n

a.s.−−→ 0,

where Y n = Y1+···+Yn
n

.

Convergence in L2. Now, let µ = 0. Regarding the L2-convergence of (Xn)n

towards µ = 0, we first note that Xn ∈ L2, since it is a linear combination of random

variables in L2. It remains to show that

E
[
|Xn − 0|2

]
= E

[
X

2

n

]
n→∞−−−→ 0. (3.1)

To this end, we compute the mean and variance of Xn. We have

E[Xn] =
1

n
E[X1] + · · ·+ 1

n
E[Xn] =

1

n
µ+ · · ·+ 1

n
µ = µ = 0.

Moreover,

Var(Xn) =
X1,...,Xnindep.

Var

(
1

n
X1 + · · ·+ 1

n
Xn

)
=

1

n2
Var(X1) + · · ·+ 1

n2
Var(Xn) =

σ2

n

Since Var(Xn) = E[X2

n], the limit in (3.1) follows from the fact that Var(Xn) =
σ2

n
.

Almost sure convergence. Given that (Xn)n converges to zero in L
2, we know that

there exists a subsequence that converges almost surely. However, this is not sufficient,

as we must prove that the entire sequence converges almost surely. To this end, we

construct a particular subsequence that converges almost surely. After that, we will

consider the asymptotic behavior of all the other terms in the sequence. We divide the

rest of the proof into two steps.

Step 1: subsequence converging to zero almost surely. Consider the subsequence

(Xn2)n, we show that it converges to zero almost surely:

Xn2
a.s.−−−→
n→∞

0. (3.2)
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As previously seen, we have that E[Xn2 ] = Var(Xn2) = σ2/n2. Therefore

∞∑
n=1

E[X2

n2 ] =
∞∑
n=1

σ2

n2
<∞.

Since X
2

n2 ≥ 0, we can exchange the series with the expected value, obtaining

E

[
∞∑
n=1

X
2

n2

]
<∞.

This implies that
∑

nX
2

n2 < ∞ almost surely. The fact that the series is convergent

implies that the general term of the series is infinitesimal:

X
2

n2
a.s.−−−→
n→∞

0,

which is equivalent to (3.2).

Step 2: the entire sequence converges to zero almost surely. For every natural number

n ≥ 1, let pn ∈ N be such that

p2n ≤ n < (pn + 1)2. (3.3)

We have that

Xn =
1

n

n∑
i=1

Xi =
1

n

p2n∑
i=1

Xi +
1

n

n∑
i=p2n+1

Xi =
p2n
n
Xp2n

+
1

n

n∑
i=p2n+1

Xi.

Thus,

Xn −
p2n
n
Xp2n

=
1

n

n∑
i=p2n+1

Xi. (3.4)

Now we show that the series with general term Xn − p2n
n
Xp2n

is almost surely finite. We

proceed as in Step 1, starting by considering the series of expected values:

∞∑
n=1

E

[(
Xn −

p2n
n
Xp2n

)2
]

(3.4)
=

∞∑
n=1

1

n2
E

 n∑
i=p2n+1

Xi

2 =
∞∑
n=1

1

n2
Var

 n∑
i=p2n+1

Xi


=

∞∑
n=1

1

n2

 n∑
i=p2n+1

Var(Xi)

 =
∞∑
n=1

n− p2n
n2

σ2
(3.3)

≤
∞∑
n=1

(pn + 1)2 − p2n
n2

σ2

=
∞∑
n=1

2pn + 1

n2
σ2

(3.3)

≤
∞∑
n=1

2
√
n+ 1

n2
σ2

1≤
√
n

≤
∞∑
n=1

3

n3/2
σ2 <∞.

Since the series of expected values is convergent, reasoning as in Step 1, we deduce that∑
n

(
Xn − p2n

n
Xp2n

)
<∞ almost surely, so the general term must be infinitesimal:

Xn −
p2n
n
Xp2n

a.s.−−−→
n→∞

0.
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Now, from Step 1 we know that Xp2n

a.s.−−−→
n→∞

0. Furthermore, using (3.3), we have that

p2n
n
→ 1. We conclude that

Xn
a.s.−−→ 0.

3.2 Central Limit Theorem

Let (Xn)n be a sequence of real random variables defined on the same probability

space (Ω,A,P). There are several versions of the Central Limit Theorem. This is the

classical one, with the usual assumptions X1, X2, . . . , Xn, . . . i.i.d. and in L2. Let

E[Xn] = µ Var(Xn) = σ2.

Then

E[Xn] = µ Var(Xn) =
σ2

n
.

Under the assumption σ > 0 (for the case σ = 0 see (3.8)), the central limit theorem

provides information about the distribution of the standardized sample mean:

Zn =
Xn − µ

σ/
√
n
, ∀n.

Theorem 3.6 (Central Limit Theorem). Let (Xn)n be a sequence of real-valued

random variables i.i.d. in L2, with E[Xn] = µ and Var(Xn) = σ2 ∀n. If σ > 0, we have

Xn − µ

σ/
√
n

d−−→ Z ∼ N (0, 1). (3.5)

Remark 3.7. We can rewrite (3.5) as follows:

Xn − µ

1/
√
n

d−−→ Y ∼ N (0, σ2).

This means that for a large n

Xn ≈ µ+
1√
n
Y.

So Xn = X1+···+Xn

n
has approximately law N (µ, σ

s

n
).

Remark 3.8. Note that if σ = 0 then Xn = µ a.s. for every n, so Xn = µ a.s., for every

n. In this case it follows directly that

Xn − µ

1/
√
n

d−−→ Y ∼ N (0, 0).
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Proof. To demonstrate convergence in distribution, we use Lévy’s continuity theorem1.

Let φ denote the characteristic function of Xn − µ (which does not depend on n, since

X1, . . . , Xn, . . . are identically distributed). Now, let’s calculate the characteristic func-

tion of

Zn =
Xn − µ

σ/
√
n

=
1

σ
√
n

n∑
k=1

(Xk − µ).

For any u ∈ R, we have

φZn
(u) = E

[
e
iu 1

σ
√
n

∑n
k=1(Xk−µ)

]
indep.
=

n∏
k=1

E
[
e
iu 1

σ
√
n
(Xk−µ)

]
=

(
φ

(
u

σ
√
n

))n
. (3.6)

Recall that Xk ∈ L2, so Xk − µ ∈ L2. Therefore, the characteristic function φ ∈ C2(R).
In particular, the following second-order Taylor expansion holds:

φ(u) = φ(0) + φ′(0)u+
1

2
φ′′(0)u2 + o(u2), for u→ 0.

Moreover, we recall that

φ(0) = 1, φ′(0) = iE[Xk − µ] = 0, φ′′(0) = −E[(Xk − µ)2] = −Var(Xk) = −σ2.

Thus,

φ(u) = 1− σ2

2
u2 + o(u2), for u→ 0. (3.7)

Using (3.6) in (3.7), we obtain

φZn
(u) =

(
1− 1

2

u2

n
+ o

(
u2

n

))n
−−−→
n→∞

e−
1
2
u2 .

We have thus demonstrated that the characteristic function of Zn converges to the char-

acteristic function of a random variable Z ∼ N (0, 1). By Lévy’s continuity theorem, we

conclude that Zn
d−→ Z.

Remark 3.9 (Convergence rate of Xn towards µ). The law of large numbers states

that Xn converges to µ. To find the convergence rate is equal to ask whether there exists

α > 0 such that

nα
(
Xn − µ

)
−→ Y ̸= 0. (3.8)

If we interpret the convergence mentioned above as convergence in law, the central limit

theorem states that (3.8) holds with α = 1
2
. In other words, the rate of convergence of

Xn towards µ is of the order of 1√
n
.

1Lévy’s continuity theorem. Let (µn)n∈N be a sequence of real distributions and let (φn)n∈N

be the sequence of the corresponding characteristic functions. It holds: i) if µn
d−→ µ then µ pointwise

converges to the CHF φ of µ, that is φn(η) −−−−→
n→∞

φ(η) for all η ∈ R; ii) conversely, if φn pointwise

converges to a function φ continuous in 0, then φ is the CHF of a distribution µ and it holds µn
d−→ µ.
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Remark 3.10 (Why does Z has normal distribution?). Suppose we only know that

Zn converges in distribution to some random variable Z (whose distribution is still

unknown). Now, consider the following subsequences of the sequence (Xn)n:

Xp
n := X2n, Xd

n := X2n+1,

that is, the subsequence of the random variables with even indices and the subsequence

with odd indices. Let Z
p

n and Z
d

n be the corresponding standardized sample means.

By the central limit theorem, both (Z
p

n)n and (Z
d

n)n also converge in distribution to a

standard normal random variable:

Zn
d−−−→

n→∞
Z, Z

p

n
d−−−→

n→∞
Zp, Z

d

n
d−−−→

n→∞
Zd,

with Z, Zp, and Zd having a N (0, 1) distribution. Note that the random variables Z,

Zp, and Zd may be defined on different probability spaces; the only requirement is that

they follow a N (0, 1) distribution. However, for future convenience, we assume they are

defined on the same probability space (Ω,A,P) and that Zp and Zd are independent.

Now, we note that

Z2n =
Z
p

n + Z
d

n√
2

.

We know that

Z2n
d−−−→

n→∞
Z.

Furthermore, since Z
p

n and Z
d

n are independent, just as Zp and Zd are, it can be shown

that
Z
p

n + Z
d

n√
2

d−−−→
n→∞

Zp + Zd

√
2

.

So the random variables

Z and
Zp + Zd

√
2

have necessarily the same distribution. Then the thesis follows from the remark below.

Remark 3.11. Let Z ∈ L2. Let also X and Y be random variables defined on the same

probability space, independent and distributed as Z. If the random variables Z and X+Y√
2

have the same law, then Z ∼ N (0, σ2), for some σ ≥ 0.

Proof. We note that E[Z] = 0 and Z ∼ 1√
n

∑n
i=1Xi, with (Xi)i a sequence of i.i.d.

random variables. In fact the characteristic function of Z is φZ(η) = e−
σ2η2

2 , which is

equal to

φ 1√
n

∑n
i=1Xi

(η) = E
[
e
iη 1√

n

∑n
i=1Xi

]
= E

[
n∏
i=1

e
iη 1√

n
Xi

]
=
(
e
iη 1√

n
Xi

)n
by imposing n := 2m. Then, we conclude by using the CLT.
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Remark 3.12 (Theorem of Berry-Esseen). From the central limit theorem we know

that

Zn =
Xn − µ

σ/
√
n

d−−→ Z ∼ N (0, 1). (3.9)

Recall that convergence in distribution is equivalent to pointwise convergence of the cu-

mulative distribution functions at the continuity points of the limiting cumulative distri-

bution function. In this case, the limiting cumulative distribution function is continuous

everywhere, as the cumulative distribution function of Z is given by

Φ(x) =

∫ x

−∞

1√
2π
e−

1
2
z2dz, ∀x ∈ R.

So (3.9) is equal to

lim
n→∞

FZn
(x) = Φ(x), ∀x ∈ R.

The Berry-Esseen theorem provides a more precise estimate of the convergence of FZn

towards Φ. This is a particularly advanced result, for which we do not provide the proof.

Theorem 3.13 (Berry-Esseen Theorem). Under the same hypothesis of (3.5), suppose

also X1 ∈ L3, then

|FZn
(x)− Φ(x)| ≤ C

E[|X1|3]
σ3
√
n
,

for some C > 0. An open problem is the determination of the optimal constant C.

Currently, it is known that 0.4097 < C < 0.4748.

Finally, let us see a multidimensional variant of the central limit theorem (without

demonstration).

Theorem 3.14 (Vector central limit theorem).

Let (X(n))n, with X(n) = (X
(n)
1 , · · · , X(n)

d ), a succession A sequence of i.i.d. random

vectors in Rd in L2. Let µ = E[X(n)] ∈ Rd, Q = Var(X(n))) ∈ Rd×d, and

Xn =
X(1) + · · ·+X(n)

n
,

then it holds that
Xn − µ

1/
√
n

d−−→ Y ∼ N (0, Q).
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