Scuola di Scienze Dipartimento di Fisica e Astronomia Corso di Laurea in Fisica

Estrazione del segnale di barioni charmati Λ_c^+ con tecniche di Machine Learning

Relatore:
Prof. Andrea Alici

Presentata da: Giovanni Pedrelli

Sommario

L'esperimento ALICE (A Large Ion Collider Experiment) a LHC (Large Hadron Collider) presso il CERN di Ginevra è dedicato allo studio delle collisioni tra ioni pesanti ultrarelativistici. Il programma di ricerca dell'esperimento però prevedere anche studi con ioni leggeri e con collisioni protone-protone e protone-ione al fine di confrontare le misure ottenute nelle collisioni tra ioni pesanti. L'obiettivo principale dell'esperimento è quello di studiare lo stato della materia chiamato Quark Gluon Plasma (QGP) che si forma in condizioni di altissima temperatura e densità di energia. A causa della sua breve vita media però, lo studio del QGP può essere condotto solo tramite misure indirette. Uno degli strumenti migliori per l'analisi delle sue proprietà è lo studio dei quark pesanti: questi, grazie alle loro masse elevate, vengono prodotti nelle primissime fasi della collisione, si propagano all'interno del QGP e interagiscono col sistema durante tutte le fasi della sua evoluzione. Le più recenti analisi sull'adronizzazione dei quark pesanti in collisioni protone-protone hanno mostrato però risultati inaspettati, compatibili con fenomeni di ricombinazione (coalescenza) o con la formazione di uno stato di QGP, non attesi in tali collisioni. Per interpretare correttamente tali risultati, il barione charmato Λ_c^+ è di particolare interesse; è possibile infatti valutare la correttezza dei diversi modelli teorici e fenomenologici, sviluppati in questi anni in seguito ai risultati di ALICE, misurando la sua sezione d'urto di produzione a bassi impulsi trasversi. La ricostruzione di questa particella risulta però complessa a causa della sua breve vita media e del basso rapporto tra segnale e fondo; per questo motivo è stato implementato un programma di analisi basato su tecniche di Machine Learning (ML) e di Neural Network (NN) per poter insegnare al modello come separare segnale e fondo nei dati. Questo programma, realizzato con il linguaggio Python, rappresenta il primo passo verso la realizzazione di un framework indipendente, nuovo rispetto a quelli utilizzati nelle analisi High Energy Physics (HEP). L'addestramento delle reti si è rivelato essere funzionante e ha mostrato la propria correttezza testato su dati prodotti dall'esperimento ALICE in cui si è considerato il canale di decadimento adronico $\Lambda_c^+ \to pK_S^0$.

Indice

In	trod	uzione	1
1	Adı	ronizzazione dei quark pesanti	3
	1.1	Il Modello Standard (SM)	3
	1.2	Adroni e Modello a Quark (QPM)	6
	1.3	La Cromodinamica Quantistica (QCD)	6
		1.3.1 Cromodinamica Quantistica Perturbativa (pQCD)	7
	1.4	Plasma di Quark e Gluoni (QGP)	8
	1.5	Collisioni tra particelle	9
		1.5.1 Collisioni tra ioni pesanti	10
	1.6	Evoluzione del QGP	11
	1.7	Adronizzazione di sapori pesanti in collisioni pp	12
		1.7.1 Funzioni di Distribuzione di Partoni (PDF)	14
		1.7.2 Funzioni di Frammentazione (FF)	14
	1.8	Adronizzazione di sapori pesanti in collisioni A-A	16
	1.9	Rapporto di produzione barione/mesone	18
		1.9.1 Adroni charmati in collisioni Pb-Pb a $\sqrt{s_{NN}} = 5.02 \text{TeV}$	18
		1.9.2 Adroni charmati in collisioni pp a $\sqrt{s} = 5.02 \mathrm{TeV}$ e a $\sqrt{s} = 13 \mathrm{TeV}$	19
2	Esp	perimento ALICE	23
	2.1	Large Hadron Collider (LHC)	23
	2.2	A Large Ion Collider Experiment (ALICE)	24
		2.2.1 Considerazioni sulla costruzione	26
		2.2.2 Particle Identification (PID)	27
	2.3	Inner Tracking System (ITS)	28
	2.4	Time Projection Chamber (TPC)	29
	2.5	Time Of Flight (TOF)	30
3	Ric	ostruzione del barione Λ_c^+	33
	3.1	Dati e variabili fisiche degli eventi	35
	3.2	Componenti software	38
		3.2.1 TensorFlow	38
		3.2.2 Keras	38
	3.3	Analisi preliminari: matrice di correlazione	39

3.4	Il mod	lello di Neural Network (NN)	40	
3.5	Scelta	dei Classifiers per il modello	42	
3.6	Verifica della correttezza del training			
	3.6.1	Confusion matrix (CM)	43	
3.7	Metric	che	44	
	3.7.1	Ranking delle variabili	45	
	3.7.2	Curva di ROC	45	
Conclu	ısioni		47	
Bibliog	grafia		49	

Introduzione

A Large Ion Collider Experiment (ALICE) è l'esperimento al Large Hadron Collider (LHC) del CERN dedicato allo studio delle collisioni tra ioni pesanti ultrarelativistici. Il programma fisico dell'esperimento prevede anche studi con ioni leggeri e con collisioni protone-protone e protone-ione come riferimento per le misure effettuate con collisioni tra ioni pesanti. Le recenti analisi sull'adronizzazione dei quark pesanti in collisioni pp hanno dimostrato risultati sorprendenti, compatibili con fenomeni di ricombinazione (coalescenza) o con la creazione di uno stato di Quark-Gluon Plasma (QGP), non attesi per tali sistemi collidenti. Lo studio del barione charmato Λ_c^+ è di particolare interesse in questo campo. La misura della sua sezione d'urto di produzione a bassi impulsi traversi p_T infatti permette di valutare il grado di precisione con cui i diversi modelli teorici e fenomenologici, sviluppati negli ultimi anni in seguito ai risultati di ALICE, sono in grado di riprodurre le misure sperimentali.

La ricostruzione di tale particella con metodi di analisi standard, che applicano tagli rettangolari su alcuni parametri caratteristici dei suoi decadimenti, risulta estremamente complessa a causa della sua breve vita media e dell'elevato fondo combinatoriale. Negli ultimi anni quindi le analisi condotte all'interno della collaborazione ALICE hanno fatto largo uso di tecniche di Machine Learning (ML) sempre più sofisticate.

Nel presente lavoro di tesi si è iniziata la scrittura di un framework di analisi per la ricostruzione del barione Λ_c^+ attraverso l'utilizzo di reti neurali convoluzionali (CNN). Sebbene strumenti di questo tipo esistano già sul mercato, come ad esempio la suite TMVA distribuita all'interno del software ROOT, la realizzazione di un framework totalmente indipendente offre notevoli vantaggi come una maggiore flessibilità e la possibilità di aggiungere nuove features e di personalizzarlo ed ampliarlo a piacimento. Per l'implementazione software sono state utilizzate le librerie open source TensorFlow e l'API Keras. Il pacchetto, comprendente al momento solo la parte di pre-analisi sulle variabili di ingresso e di addestramento della rete neurale, è stato testato con dati raccolti dall'esperimento ALICE riguardanti il barione Λ_c^+ ed in particolare il suo decadimento adronico $\Lambda_c^+ \to pK_S^0$. L'analisi si è concentrata nell'intervallo di impulso trasverso 1 < pT < 2 GeV/c.

Il capitolo 1 presenta una breve introduzione alla fisica del Modello Standard e in particolare alla teoria della Cromodinamica Quantistica (QCD) approfondendo il Quark Gluon Plasma (QGP) e il processo di adronizzazione dei quark pesanti nei diversi sistemi collidenti evidenziando l'importanza della misura della sezione d'urto di produzione della particella Λ_c^+ .

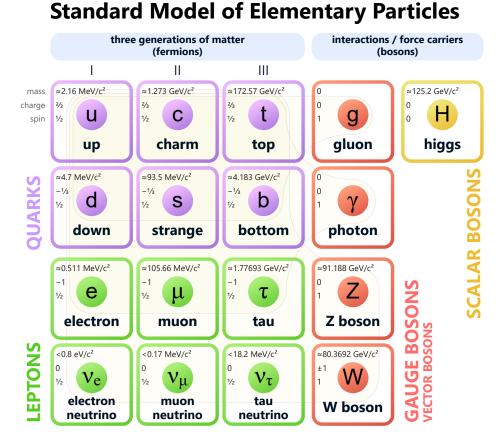
Nel capitolo 2 è brevemente introdotto l'esperimento ALICE del CERN e in particolare i suoi rivelatori le cui informazioni sono state utilizzate nell'analisi presentata in questa tesi.

Nel capitolo 3 si accenna brevemente al Machine Learning, alle Neural Network e al loro impiego nell'analisi qui svolta. Sono mostrati i risultati dell'addestramento della rete e i differenti metodi di valutazione della bontà dello stesso.

Capitolo 1

Adronizzazione dei quark pesanti

1.1 Il Modello Standard (SM)


La fisica delle particelle elementari ha lo scopo di indagare la struttura microscopica della materia andando alla ricerca dei suoi costituenti ultimi e delle loro interazioni. L'insieme delle teorie che meglio hanno saputo descrivere le evidenze sperimentali ha trovato una coerente formulazione teorica nel Modello Standard (Standard Model MS) della fisica delle particelle elementari. Ad oggi il modello prevede l'esistenza di tre tipologie di particelle elementari: quark, leptoni e bosoni mediatori i quali rappresentano tre delle quattro interazioni fondamentali, come rappresentato in figura 1.1, esclusa quella gravitazionale non spiegabile con le teorie attuali.

Il Modello Standard descrive dodici campi materiali dotati di massa che rappresentano i dodici sapori delle particelle materiali classificate in base alle loro interazioni. Queste particelle di spin ½ sono dette *fermioni* poiché seguono la statistica di Fermi-Dirac. I fermioni si dividono in sei quark e sei leptoni: i primi sono soggetti a tutte le interazioni naturali, mentre i secondi non interagiscono con la forza forte [1].

I quark up e down, charm e strange, top e bottom sono organizzati in doppietti o generazioni nelle quali il primo elemento è generalmente il più massivo e ha carica elettrica positiva di modulo uguale a ¾ quella dell'elettrone, mentre il secondo ha carica elettrica negativa di modulo uguale a ¼ di quella dell'elettrone.

I leptoni il cui nome deriva dal greco leptos, leggero, poiché solitamente di massa inferiore ai quark, sono organizzati in doppietti: elettrone, muone e tauone e relativi neutrini elettronico, muonico e tauonico; i primi tre hanno carica elettrica negativa e unitaria, mentre i neutrini hanno carica elettrica e massa nulle secondo il Modello Standard. Le più recenti evidenze sperimentali mostrano però che i neutrini acquisiscono massa attraverso meccanismi ancora ignoti.

Alle dodici particelle elementari corrispondono dodici antiparticelle teorizzate per la prima volta nel 1929 dal fisico britannico Paul Dirac. Queste particelle hanno caratteristiche fisiche come massa, spin e vita media uguali a quelle delle relative particelle, ma numeri quantici e cariche opposte.

Figura 1.1: Schema delle particelle elementari presenti nel Modello Standard con relativa massa, carica e spin [2].

In seguito troviamo le particelle mediatrici delle interazioni fondamentali. Queste particelle hanno spin 1 e sono dette bosoni, vettore o di gauge, poiché seguono la statistica di Bose-Einstein e corrispondono alle tre interazioni fondamentali spiegate dal Modello Standard: otto gluoni g mediatori dell'interazione forte, ciascuno con tre cariche di colore possibili, il fotone γ mediatore dell'interazione elettromagnetica e i bosoni Z^0 e W^\pm mediatori dell'interazione debole.

Infine nel 2012 al CERN di Ginevra è stato scoperto dagli esperimenti ATLAS [3] e CMS [4] un bosone scalare di spin 0 chiamato bosone di Higgs H associato al campo di Higgs col quale interagiscono tutte le particelle massive, fermioniche o bosoniche, per ottenere la loro massa tramite un meccanismo detto di rottura spontanea della simmetria ipotizzato nel 1964 da F. Englert e R. Brout [5], Peter W. Higgs [6] e G. S. Guralnik, C. R. Hagen e T. W. B. Kibble [7].

È bene precisare che quelle presentate non sono particelle in senso classico, ma si fa sempre riferimento a campi quantizzati in cui i campi materiali possiedono cariche interne che permettono l'accoppiamento coi relativi campi di forza. Le teorie che compongono il Modello Standard sono teorie di campo quantizzato (Quantum Field Theory QFT): la *Teoria Elettrodebole* che generalizza la Elettrodinamica Quantistica (Quantum Electrodynamics QED) e spiega i fenomeni elettromagnetici e di interazione debole e la *Cromodinamica Quantistica* (Quantum Chromodynamics QCD) che spiega l'interazione tra quark attraverso lo scambio di gluoni. Ancora però non siamo capaci di descrivere in senso quantistico l'ultima interazione naturale, quella gravitazionale, per questo non presente nel modello.

La fisica delle particelle studia fenomeni che coinvolgono corpi di dimensioni infinitesime a velocità prossime a quella della luce, è naturale quindi che il formalismo matematico del Modello Standard sia quello delle teorie di campo quantizzato che rappresentano l'evoluzione della meccanica quantistica in ambito relativistico e permettono lo studio di fenomeni sia quantistici sia relativistici e la creazione e distruzione di particelle.

Il concetto di campo quantizzato è associato sia alle particelle sia alle loro interazioni: le prime sono interpretate come manifestazione del relativo campo, le ultime come scambio di quanti virtuali col campo di forza relativo all'interazione in gioco. Il Modello Standard è una teoria quantistica di campo di gauge locale che nel linguaggio della teoria dei gruppi di simmetrie si indica come $SU(3)_C \times SU(2)_L \times U(1)_Y$ in cui, da sinistra, sono racchiuse le tre interazioni naturali: forte, debole e elettromagnetica.

Le interazioni nucleari forti sono a corto raggio per cui confinate all'interno degli adroni e descritte dalla simmetria inviolata $SU(3)_C$, dove C sta per colore, sulla quale poggia la Cromodinamica Quantistica (QCD, vedi la sezione 1.3). Lo spazio di $SU(3)_C$ ha $3^2-1=8$ generatori, cioè otto bosoni di gauge di spin 1 chiamati $gluoni\ g$ mediatori dell'interazione forte. Come detto prima, tra i fermioni solo i quark sono soggetti all'interazione forte ovvero possiedono la carica, di colore, di $SU(3)_C$ che può assumere tre valori convenzionalmente indicati come $red\ (r)$, $green\ (g)$ e $blue\ (b)$ e rispettivi anticolori. I quark interagiscono tra loro scambiando gluoni dotati di una doppia carica di colore: colore-anticolore, a differenza dei fotoni che sono elettricamente neutri e cioè non possiedono la carica del campo che mediano. Per questo motivo i gluoni possono interagire tra loro, mentre i fotoni no. Matematicamente questa differenza è descritta dalla non abelianità del gruppo della QCD e dalla abelianità di quello della QED.

Le interazioni debole e elettromagnetica sono descritte e unificate dalla simmetria $SU(2)_L \times U(1)_Y$, dove L sta per leptoni e Y per hypercharge, ipercarica, e dal meccanismo di Higgs di rottura della simmetria che permette alle particelle di acquisire la loro massa. Nella forma più semplice questo meccanismo produce 4 bosoni di gauge, vettori, di spin 1: due neutri di cui uno massivo (Z^0) e uno privo di massa (γ) e due carichi e massivi (W^{\pm}) più un bosone scalare di spin 0, il bosone di Higgs (H) [8].

1.2 Adroni e Modello a Quark (QPM)

I dati relativi agli esperimenti di diffusione profondamente inelastica e-p suggerirono un modello fenomenologico dell'interno dell'adrone che prese il nome di modello a partoni. Proposto da Richard Feynman nel 1969, questo modello ipotizza che i nucleoni, costituenti del nucleo atomico, non siano particelle elementari, ma siano costituiti da centri diffusori puntiformi detti partoni. In seguito i partoni vennero identificati con quark e gluoni e oggigiorno il termine partone indica quark e gluoni costituenti di un adrone indifferentemente.

Col termine *adrone* indichiamo le particelle composte di quark, solitamente più pesanti dei leptoni, il cui nome deriva dal greco *hadrón*, pesante, che possiedono carica di colore e che possono quindi interagire tramite forza forte. Solitamente i quark che costituiscono l'adrone vengono chiamati *quark di valenza*, mentre gluoni, quark e antiquark virtuali generati dalle forze forti che uniscono i quark di valenza vengono chiamati *mare*.

Il Modello a Quark noto anche come Modello a Partoni o Modello Quark-Partone (Quark-Parton Model QPM), è un modello che descrive gli adroni come composti di quark fornendone una semplice classificazione. Poiché i quark liberi, ovvero non legati assieme all'interno di un adrone, non sono mai stati osservati, è stato *postulato* che i quark siano confinati all'interno degli adroni, come verrà chiarito meglio nella sezione 1.3.

1.3 La Cromodinamica Quantistica (QCD)

Chiarita la struttura interna degli adroni, la QCD ci fornirà ora un quadro teorico più completo per descrivere le interazioni tra quark e gluoni.

Come già accennato nella sezione 1.1, la $Cromodinamica\ Quantistica\ (QCD)$ è la teoria di campo quantizzato che descrive l'interazione forte attraverso scambi di gluoni. È una teoria di gauge non abeliana con gruppo di simmetria $SU(3)_C$, possiede quindi 8 generatori o bosoni di gauge vettori di spin 1 mediatori dell'interazione forte, chiamati $gluoni\ g$ che possiedono a loro volta una doppia carica di colore: colore-anticolore. La QCD mostra come le uniche combinazioni di quark possibili per formare un adrone siano $mesoni\ (coppie\ quark-antiquark)\ e\ barioni\ (tripletti\ di\ quark\ e\ antiquark).$ Nonostante questo sono stati sperimentalmente osservati stati esotici di quattro e cinque quark e stati legati di soli gluoni.

Sperimentalmente non sono mai stati osservati quark liberi a causa del cosiddetto confinamento di colore: i quark si legano in doppietti o tripletti che devono necessariamente essere di colore bianco ovvero neutri cioè con carica di colore nulla. Il confinamento di colore prevede infatti che sia energeticamente favorevole la produzione di una ulteriore coppia quark-antiquark, chiamata jet adronico, nel caso si tentasse la separazione tra quark e antiquark in un mesone fornendo energia, rendendo impossibile l'ottenimento di un quark libero come mostrato in figura 1.2.

Un'altra importante proprietà della QCD è la *libertà asintotica* secondo la quale l'intensità dell'interazione forte è estremamente bassa ad alte scale di energia o piccole distanze; questo comporta che a brevissima distanza i quark siano sostanzialmente liberi.

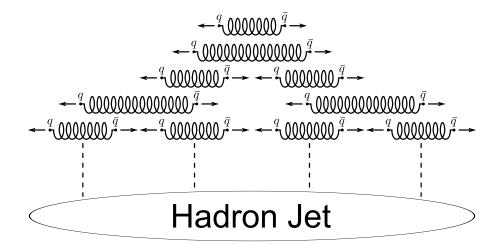


Figura 1.2: Rappresentazione grafica della rottura di stringa QCD nel vuoto [9]. La figura mostra come venga generata una coppia quark-antiquark quando un mesone riceve energia sufficiente: il gluone che lega i due quark si "allunga" finché non si spezza e forma una nuova coppia quark-antiquark.

In regime di alte energie o piccole distanze invece l'interazione è molto meno intensa permettendo l'utilizzo di approcci di calcolo perturbativi [10].

1.3.1 Cromodinamica Quantistica Perturbativa (pQCD)

Due sono gli approcci tradizionali alla QCD perturbativa. Il primo è il metodo detto dell'*Elemento di Matrice* (Matrix Element ME) [8] in cui i diagrammi di Feynman sono calcolati compiutamente per ogni ordine. In linea di principio questo metodo è il più rigoroso, ma incontra grandi difficoltà già al terzo ordine, tanto che i soli calcoli ad ora disponibili si arrestano al secondo ordine perturbativo.

Il secondo approccio è quello della Cascata di Partoni (*Parton Shower PS*) [11]. Si tratta in questo caso di produrre un numero arbitrario di partoni che combinati tra loro generano gli eventi a più jet. Questo è possibile poiché non vengono utilizzate le espressioni complete degli elementi di matrice, ma solo delle loro approssimazioni.

Per determinare il regime in cui la teoria perturbativa è applicabile è necessario valutare il valore di $Q^2 = -q^2$ con q quadrimomento trasferito nella collisione e segno negativo derivante dalla metrica di Minkowski [12]. Nel nostro caso, per grandi valori di Q^2 , l'interazione forte diventa meno intensa e può quindi essere trattata con metodi perturbativi rendendo così la QCD perturbativa (perturbative QCD, pQCD) un approccio valido.

1.4 Plasma di Quark e Gluoni (QGP)

Un modello euristico che permette di descrivere i quark confinati negli adroni è il MIT bag model [13]. Secondo questo modello i quark sono particelle di massa nulla all'interno di una scatola di dimensioni finite e infinitamente massivi all'esterno. In questo modo il confinamento non è altro che il risultato del bilancio tra pressione esterna e interna, quest'ultima data dall'energia cinetica dei quark stessi. I gluoni scambiati tra quark sono anch'essi confinati nella scatola la cui carica di colore totale deve essere nulla.

Questo modello fornisce ragioni sufficienti del perché ci aspettiamo di trovare nuove fasi della materia formata da quark oltre alla materia adronica: se la pressione esercitata dai quark interni crescesse oltre il valore della pressione esterna si verrebbe a creare un nuovo stato della materia a temperature e pressioni altissime in cui quark e gluoni non sono più legati, chiamato *Plasma di Quark e Gluoni* (Quark Gluon Plasma QGP). Una rappresentazione indicativa del diagramma di fase della materia fortemente interagente è riportato in figura 1.3.

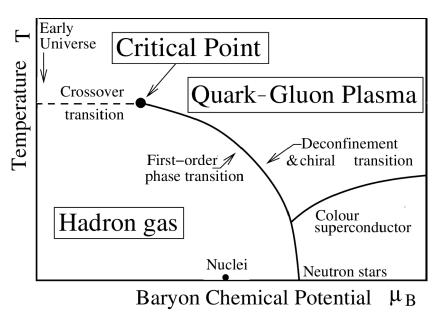


Figura 1.3: Diagramma di fase qualitativo della materia fortemente interagente [14].

Quando il sistema raggiunge la temperatura critica $T_C \approx 150$ –200 MeV avviene una transizione di fase del primo ordine tra materia adronica e QGP. La densità di energia nell'intorno di questa transizione presenta una discontinuità detta calore latente di deconfinamento. La regione di basse temperature e alte densità è detta regione di diquark matter o regione di superconduttività di calore. In queste condizioni avviene la formazione di coppie di quark non neutre di colore analoghe alle coppie di Cooper dei superconduttori.

La capacità dei barioni di ricombinare i quark per formare nuovi adroni è chiamata potenziale chimico barionico o *potenziale bariochimico*, influenza la composizione di barioni e mesoni prodotti nelle collisioni ed è formulato come segue:

$$\mu_B = \frac{\mathrm{d}E}{\mathrm{d}N_B}.\tag{1.1}$$

Un caso particolare è il QGP fortemente legato (strongly-coupled QGP sQGP) nel quale le interazioni tra quark e gluoni sono estremamente forti e non possono essere trattate con gli approcci convenzionali basati sulla teoria perturbativa.

1.5 Collisioni tra particelle

Nello studio della QCD le predizioni teoriche si basano sul calcolo perturbativo di sistemi di quark e gluoni dotati di colore, carica che rappresenta i gradi di libertà a piccola distanza; le osservazioni sperimentali invece sono fatte su stati finali di adroni, ovvero stati legati di partoni in singoletto di colore. È quindi necessario analizzare i processi che portano allo stato finale cercando di descriverli con le caratteristiche dell'interazione partonica iniziale.

Le collisioni tra ioni pesanti (A-A), ovvero tra i nuclei dei due atomi, accelerati ad energie relativistiche sono lo strumento migliore per studiare la materia nucleare in condizioni estreme di temperatura e densità di energia. È così possibile produrre numerose collisioni simultanee tra i vari nucleoni presenti nei due nuclei collidenti, creando un sistema ad altissima densità di partoni interagenti tra loro e riproducendo così in laboratorio le condizioni dell'universo primordiale frazioni di secondo dopo il Big-Bang, quando si presume che la materia in espasione si presentasse sotto forma di QGP.

L'avvenuta formazione di uno stato di QGP può essere verificata attraverso la misura di diversi effetti come gli spettri di impulso delle particelle prodotte, la soppressione o l'aumento di produzione di stati legati di quark pesanti e la presenza di moti collettivi. È poi necessario confrontare le misure ottenute con quelle di collisioni protone-protone (pp) alle stesse energie per assicurarsi che lo stato prodotto in collisioni A-A non sia una semplice sovrapposizione di urti pp e che si tratti effettivamente di QGP e non di un gas di adroni eccezionalmente denso.

A complicare ulteriormente questo quadro, le differenze tra i risultati ottenuti in collisioni A-A e pp potrebbero essere dovute all'utilizzo di proiettili estesi, i nuclei, nel primo caso, in particolare per le modifiche alle funzioni di distribuzione partonica nei nucleoni appartenenti ad un nucleo e alla presenza di scattering multipli prima di un hard scattering. È quindi necessario accertarsi che i risultati ottenuti in collisioni A-A non dipendano da questi effetti denominati di effetti di stato iniziale. Per fare ciò vengono utilizzate collisioni protone-ione p-A.

Negli anni sono state ottenute numerose evidenze sperimentali a favore della formazione del QGP in collisioni A-A da esperimenti ai collider SPS [15], RHIC e LHC [16]. Recentemente però in collisioni pp e p-A sono stati osservati gli stessi effetti normalmente associati al deconfinamento di quark, ovvero al QGP, e per questo motivo assolutamente non attesi: aumento di produzione di particelle strange, evidenze di collettività a basso impulso trasverso e presenza di correlazioni a lungo raggio con conseguenti misure di flusso ellittico e armoniche superiori. L'esperimento ALICE in particolare ha osservato un

aumento della stranezza, ovvero della produzione di particelle contenenti al loro interno uno o più quark strange s, in funzione della molteplicità dell'evento [17] confrontando collisioni pp, p-A e A-A in cui eventi pp ad alta molteplicità mostrano risultati molto simili a quelli ottenuti in collisioni A-A [18] [19] [20]. Una possibile spiegazione di questo fenomeno consiste nell'assumere che anche in collisioni pp ad alta molteplicità, in cui cioè avvenga più di una collisione partone-partone tra i costituenti dei due protoni interagenti, si possa creare uno stato di QGP. Questa ipotesi può spiegare la presenza di effetti collettivi negli stati finali. D'altro canto, le ridotte dimensioni del QGP eventualmente creato in collisioni pp e p-A sarebbero in accordo con la mancata osservazione di fenomeni di perdita di energia per partoni ad alto impulso trasverso nell'attraversare un mezzo con elevata densità di partoni liberi.

1.5.1 Collisioni tra ioni pesanti

L'unico metodo conosciuto per creare condizioni di temperatura e densità energetica così elevate da produrre artificialmente il QGP in laboratorio sono le collisioni tra ioni pesanti ultrarelativistici, $\beta = v/c \approx 1$.

Le dimensioni dei nuclei degli ioni collidenti sono molto maggiori rispetto a tutte le scale proprie della fisica delle particelle elementari che appunto studia i quark costituenti dei nucleoni che a loro volta costituiscono il nucleo. Per questa ragione la geometria delle collisioni gioca un ruolo fondamentale nell'analisi e interpretazione dei risultati sperimentali.

Nel sistema del centro di massa, grazie alla contrazione di Lorentz nella direzione longitudinale di propagazione del fascio, i due nuclei possono essere visti nel piano trasverso come dischi sottili di raggio $2R_A \approx 2A^{\frac{1}{3}}$ con A numero di nucleoni. Una rappresentazione grafica del processo è rappresentata in figura 1.4; alcune delle quantità rilevanti sono [21]:

parametro di impatto b distanza tra gli assi centrali dei nuclei in procinto di collidere, che caratterizza la centralità della collisione: l'urto si dirà centrale se b è molto piccolo e lo scontro è pressoché frontale, si dirà invece periferico se b è grande rispetto alle dimensioni delle particelle. La centralità dell'evento si esprime tipicamente in percentuali di sezione d'urto totale.

numero di nucleoni coinvolti i participants, N_{part} all'interno dei nuclei collidenti ossia il numero di neutroni e protoni dei due ioni che prendono parte alla collisione. I restanti vengono chiamati spettatori, spectators, e proseguono nella loro traiettoria quasi imperturbati.

numero totale di collisioni nucleone-nucleone incoerenti N_{coll} .

Numerosi modelli teorici sono stati sviluppati per descrivere le dinamiche di collisione a partire da queste quantità.

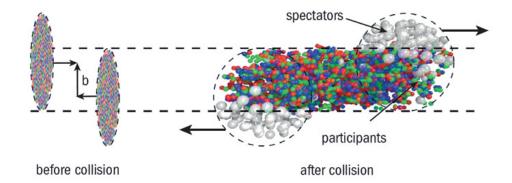


Figura 1.4: Rappresentazione geometrica della collisione tra i nuclei di due ioni pesanti [22]. Come mostrato, la collisione può coinvolgere solamente parte dei nucleoni presenti (participants), lasciandone fuori altri (spectators).

In fisica subnucleare si è soliti descrivere le traiettorie delle particelle in termini della variabile rapidità y o della variabile $pseudorapidità \eta$, definite rispettivamente come:

$$y = \frac{1}{2} \ln \left(\frac{E + p_L}{E - p_L} \right)$$

con $E=\sqrt{p^2c^2+m^2c^4}$ energia relativistica e p_L componente longitudinale del momento della particella rispetto all'asse del fascio e:

$$\eta = \frac{1}{2} \ln \left(\frac{p + p_L}{p - p_L} \right) = -\ln \left(\tan \frac{\theta}{2} \right)$$

con θ angolo tra impulso della particella e asse del fascio. Per particelle di massa nulla come il fotone rapidità e pseudorapidità coincidono, mentre per particelle massive questa corrispondenza vale solo nel limite ultrarelativistico.

1.6 Evoluzione del QGP

Avvenuta la collisione si ha la formazione di un plasma di quark e gluoni solo nel caso in cui vengano raggiunte le condizioni critiche di temperatura e densità di energia [23].

Nel caso in cui le condizioni richieste non venissero raggiunte il sistema entrerebbe in evoluzione idrodinamica, figura 1.5 a) a sinistra. Questo è il caso tipico delle collisioni tra protoni pp o di collisioni tra ioni pesanti A-A non sufficientemente energetiche e centrali. Subito dopo la collisione vi è una breve fase pre-adronica, in grigio, in cui i quark prodotti adronizzano in un "vuoto" QCD dopo la quale il sistema evolve come $gas\ di\ adroni$, in sostanza attraverso processi di frammentazione. Sebbene avvenga un sostanziale incremento di pressione e temperatura non si manifesta alcun deconfinamento di partoni in questo caso.

Nel caso in cui invece la collisione fosse sufficientemente energetica da soddisfare le condizioni di creazione del QGP, il processo rappresentato in figura 1.5 b) a destra è più complesso [24]:

- 1. Pre-Equilibrium phase ($t < \tau_0 \approx 1 \, \mathrm{fm/c}$): in questa fase i partoni diffondono l'uno sull'altro producendo quark e gluoni deconfinati in abbondanza. Vengono prodotte molte particelle ad elevato impulso trasverso ($p_T \gg 1 \, \mathrm{GeV/c}$) e una grande quantità di fotoni sia reali sia virtuali che decadono in coppie leptone-antileptone.
- 2. Termalizzazione ($t \approx 1-10 \,\mathrm{fm/c}$): questa fase è caratterizzata dalle interazioni elastiche e inelastiche tra i partoni del QGP. Le interazioni inelastiche hanno la peculiarità di poter cambiare la composizione di sapore delle particelle. A causa della pressione interna il sistema all'equilibrio termico inizia ad espandersi rapidamente raffreddandosi di conseguenza e convertendosi in un gas adronico (fase mista).
- 3. Adronizzazione ($t \approx 20\,\mathrm{fm/c}$): durante l'espansione il sistema si raffredda raggiungendo il valore critico di densità che dà inizio al processo di adronizzazione in cui quark e gluoni del QGP condensano in nuovi adroni. L'interazione tra gli adroni continua finché il relativo tasso è in grado di sostenere l'espansione del QGP e raggiunto un certo valore della temperatura cessano le interazione inelastiche tra i costituenti del sistema. Dopodiché la composizione di sapore del QGP si fissa raggiungendo il congelamento chimico (chemical freeze-out).
- 4. Congelamento termico (thermal freeze-out): quando la densità del sistema è tale da rendere la distanza media tra gli adroni maggiore del raggio di azione dell'interazione forte, per $T_{fo} \approx 120 \,\mathrm{MeV}$, le diffusioni elastiche tra gli adroni cessano e resta fisso anche lo spettro cinematico della materia risultante.

1.7 Adronizzazione di sapori pesanti in collisioni pp

Nello studio delle proprietà del QGP i quark pesanti charm c e bottom b rivestono un ruolo fondamentale poiché in virtù della loro massa elevata vengono prodotti in collisioni hard, ossia ad alto momento Q^2 trasferito, tra i partoni dei nucleoni solo nelle primissime fasi della collisione nucleo-nucleo, prima ancora che il sistema termalizzi e si formi lo stato di QGP. Questi quark quindi si propagano attraverso il sistema ultra-denso interagendo coi suoi costituenti e fornendo una misura diretta delle sue proprietà. Per poter comprendere appieno una misura effettuata in collisioni A-A però è necessario confrontarla con la stessa misura effettuata in collisioni pp e p-A, come chiarito nella sezione 1.5.

L'adronizzazione di sapori pesanti in collisioni pp attraverso il processo di frammentazione viene descritta matematicamente attraverso il teorema di fattorizzazione [26]. Data la scala del momento Q^2 trasferito nel processo di collisione, esso consiste nel separare il contributo perturbativo ad alta energia della produzione del leading parton dalla successiva conversione nello stato adronico a bassa energia non perturbativo. Il processo complessivo è:

$$p + p \rightarrow h + X$$

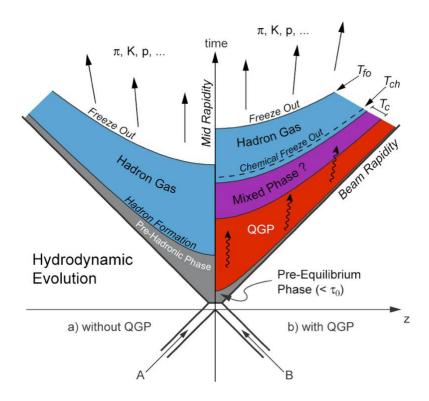


Figura 1.5: Evoluzione temporale di una collisione tra ioni pesanti in un piano simile a quello di Minkowski. a) a sinistra il caso in cui il sistema entra in evoluzione idrodinamica e diventa un gas adronico senza formazione di QGP. b) a destra il caso in cui le condizioni permettono la formazione del QGP che perdendo energia si trasforma anch'esso in gas adronico [25].

dove l'adrone di riferimento h è dato dal decadimento del partone c proveniente dallo scattering a+b dei partoni del protone $a+b\to c+d$.

Possiamo ora esprimere la sezione d'urto invariante della produzione dell'adrone nel medio range di rapidità per collisioni pp come:

$$\frac{\mathrm{d}\sigma_{pp}^{h}}{\mathrm{d}y p_{T} d^{2}} = K \sum_{abcd} \int \mathrm{d}x_{a} \, \mathrm{d}x_{b} \, f_{a}(x_{a}, Q^{2}) f_{b}(x_{b}, Q^{2}) \frac{\mathrm{d}}{\mathrm{d}\hat{t}} \sigma(a+b \to c+d) \frac{D_{h/c}^{0}}{\pi z_{c}}$$

con:

 $f_i(x_i, Q^2)$ Funzioni di Distribuzione dei Partoni (PDF) riferite ai partoni del protone.

 $\frac{\mathrm{d}}{\mathrm{d}\hat{t}}\sigma(a+b\to c+d)$ sezione d'urto elementare perturbativa QCD della produzione della particella c a partire dallo scattering dei partoni a+b.

 $D_{h/c}^0$ Funzione di Frammentazione (FF): elemento adimensionale che fornisce la probabilità che il partone c adronizzi nell'adrone finale h emettendo gluoni e trasportando una frazione del momento del partone iniziale. Le FF non sono calcolabili perturbativamente e devono essere quindi misurate sperimentalmente.

1.7.1 Funzioni di Distribuzione di Partoni (PDF)

Le evidenze sperimentali hanno mostrato che gli adroni non sono particelle elementari puntiformi, ma sono composte da partoni: quark e gluoni. Come detto nella sezione 1.2, i costituenti interni di un adrone possono essere divisi in quark di valenza, ossia i quark che effettivamente determinano i numeri quantici dell'adrone come uud per il protone p, e in partoni del mare o mare, ossia tutti i restanti partoni, gluoni e quark, creati e distrutti nei processi virtuali che avvengono all'interno dell'adrone secondo la QCD.

Consideriamo l'esempio del protone p. Denotiamo con

 $q^{v}(x)$ la densità di probabilità di un quark di valenza,

 $q^{s}(x)$ la densità di probabilità di un quark del mare,

g(x) la densità di probabilità di un gluone,

x la frazione del momento totale trasportato da un quark q o un gluone g.

Sapendo che i quark di valenza del protone sono uud, otteniamo la condizione:

$$\int_0^1 dx \, u^v(x) = 2 \qquad \int_0^1 dx \, d^v(x) = 1.$$

I quark del mare sono sempre prodotti in coppie $q\bar{q}$ e danno un contributo nullo al numero barionico:

$$\int_0^1 dx \left[u^s(x) - \bar{u}^s(x) \right] = 0 \qquad \int_0^1 dx \left[d^s(x) - \bar{d}^s(x) \right] = 0.$$

La stessa condizione è valida per gli altri quark del mare s^s , c^s , b^s e t^s . Il momento totale portato da tutti i partoni deve contribuire al momento totale, perciò si ha la condizione:

$$\int_0^1 dx \, x [u^v(x) + d^v(x) + \sum_q (q^s(x) + \bar{q}^s(x))] = 1$$

I quark pesanti sono inclusi nella presente trattazione, ma sono attivi solamente se la scala di energia Q del sistema è superiore alla massa m_q del quark pesante stesso.

In figura 1.6 sono mostrate le funzioni di distribuzione del momento dei partoni del protone a $Q^2=10\,\mathrm{GeV}^2$. È interessante notare come il termine dei gluoni rappresenti circa metà del momento totale.

1.7.2 Funzioni di Frammentazione (FF)

Per comprendere meglio le Funzioni di Frammentazione consideriamo il processo di annichilazione di un sistema elettrone-positrone per produrre una coppia quark-antiquark [28]

$$e^-e^+ \to q\bar{q}$$
.

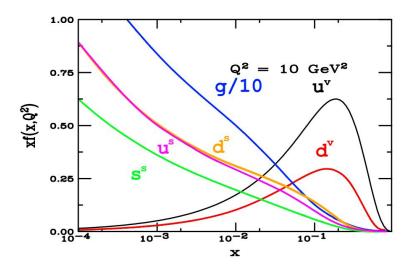


Figura 1.6: Funzioni di distribuzione del momento dei partoni del protone xf(x), secondo la parametrizzazione CTEQ6M dei partoni a $Q^2 = 10 \,\text{GeV}^2$. La distribuzione dei gluoni è divisa per 10 per migliorarne la visualizzazione [27].

Se l'energia della collisione è Q allora l'energia del fascio è $E_f = Q/2$, in maniera simmetrica, e i quark prodotti hanno energia $E_q = E_f$. Dunque se l'adrone h dello stato finale ha energia E_h , questo porterà una frazione di energia data da

$$z = \frac{E_h}{E_q} = \frac{2E_h}{Q}.$$

La sezione d'urto differenziale per la produzione di adroni come funzione di z è:

$$\frac{\mathrm{d}\sigma(e^-e^+\to hX)}{\mathrm{d}z} = \sum_q \sigma(e^-e^+\to q\bar{q})[D_q^h(z) + D_{\bar{q}}^h(z)].$$

Questa formula è data dall'applicazione del teorema di fattorizzazione senza le PDF e giustificata dal fatto che gli elettroni sono particelle elementari. La Funzione di Frammentazione $D_q^h(z)$ rappresenta la probabilità che l'adrone h dello stato finale trasporti una frazione z del momento iniziale del quark, descrive quindi la transizione partoneadrone nello stesso modo in cui la PDF descrive la struttura partonica di un adrone. Per quanto detto la somma delle energie di tutti gli adroni prodotti deve formare l'energia del quark iniziale:

$$\sum_{h} \int_{0}^{1} dz \, z D_{q}^{h}(z) = \sum_{h} \int_{0}^{1} dz \, z D_{\bar{q}}^{h}(z) = 1.$$

La molteplicità di h è data dalla somma delle probabilità di produrre h da tutti i possibili quark e antiquark:

$$n_h = \sum_{q} \int_{z_{\min}}^{1} \mathrm{d}z \left[D_q^h(z) + D_{\bar{q}}^h(z) \right]$$

dove $z_{\min} = 2m_h/Q$ è l'energia di soglia necessaria per produrre un adrone di massa m_h .

Le FF possono avere diverse parametrizzazioni. Spesso è utilizzata quella in cui

$$D_q^h(z) = N \frac{(1-z)^n}{z}$$

con N e n costanti specifiche per un dato adrone h. I parametri sono ottenuti sperimentalmente dal fit dell'immensa molte di dati disponibile per collisioni e^-e^+ .

Si ipotizza che le Funzioni di Frammentazione siano universali, pertanto una volta calcolati i parametri per le collisioni e^-e^+ , questi dovrebbero essere applicabili in altri casi come le collisioni ep, pp e $p\bar{p}$.

1.8 Adronizzazione di sapori pesanti in collisioni A-A

Fin dalle prime osservazioni di produzione di adroni in collisioni tra ioni pesanti fu evidente che il processo di adronizzazione fosse diverso dalla pura frammentazione nel vuoto. I modelli che tentano di spiegare questa differenza considerano che avvenga in concomitanza anche un secondo meccanismo chiamato ricombinazione o coalescenza. La differenza tra i due processi è che nella

frammentazione il momento iniziale è distribuito tra i frammenti, mentre nella

ricombinazione due o tre partoni vicini nello spazio delle fasi (posizione e momento) producono un adrone con momento trasverso pari alla somma dei momenti dei partoni iniziali

come mostrato il figura 1.7.

Il calcolo degli effetti di ricombinazione nelle collisioni tra ioni pesanti è particolarmente complesso poiché non è possibile scrivere la funzione d'onda di tutti i partoni che costituiscono il QGP.

La probabilità di trovare due o tre partoni vicini nello spazio delle fasi diminuisce all'aumentare del momento trasverso dell'adrone nello stato finale, per questo la ricombinazione contribuisce meno ad alti impulsi trasversi p_T dove la frammentazione risulta il fenomeno dominante. Inoltre l'effetto della ricombinazione è più significativo in collisioni centrali poiché queste ultime favoriscono maggiormente la transizione a QGP, mentre la frammentazione è tipica delle collisioni periferiche.

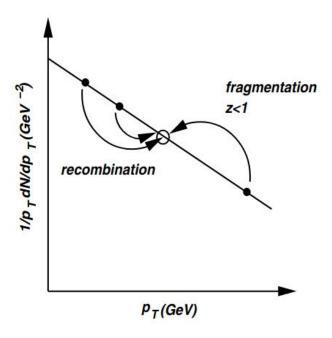


Figura 1.7: I meccanismi di ricombinazione e frammentazione in atto per creare lo stesso adrone nello stato finale in funzione dell'impulso trasverso p_T [28].

1.9 Rapporto di produzione barione/mesone

Come detto nella sezione 1.7, i quark pesanti sono di grande interesse per lo studio delle proprietà del QGP poiché, creati in coppia solo nei primissimi istanti della collisione, attraversano il sistema durante tutte le fasi della sua evoluzione interagendo coi suoi costituenti e fornendo una misura diretta delle sue proprietà.

Alcuni modelli teorici prevedono una produzione di barioni, stati legati di 3 quark, più abbondante di quella di mesoni, stati legati di 2 quark, in un mezzo denso deconfinato (QGP) per effetto di processi di adronizzazione per ricombinazione (coalescenza) tra quark che si aggiungono al processo di adronizzazione per frammentazione. Lo studio del rapporto di produzione barioni/mesoni in collisioni A-A e pp è quindi un importante strumento per studiare l'effetto del QGP sull'adronizzazione dei quark.

 $\Lambda_c^+(udc)$ e $D^0(c\bar{u})$ sono rispettivamente il barione e il mesone più leggeri contenenti un quark charm e possono essere identificati in un ampio intervallo di momento, per questo si prestano molto bene per valutare il rapporto di produzione barione/mesone nelle diverse collisioni.

1.9.1 Adroni charmati in collisioni Pb-Pb a $\sqrt{s_{NN}} = 5.02\,\mathrm{TeV}$

Contrariamente a quanto atteso, i valori misurati del rapporto barione/mesone mostrati in figura 1.8 non differiscono in maniera significativa tra di loro e in particolare non si osserva il consistente aumento della produzione di barioni charmati, riferito alla produzione di mesoni charmati, previsto dall'insorgere di meccanismi di ricombinazione in collisioni A-A (qui Pb-Pb). Infatti, nei processi di ricombinazione o coalescenza, la formazione di un barione è molto meno sfavorita rispetto alla formazione di un mesone a differenza dei processi di frammentazione che invece la disincentivano. Questo porterebbe a prevedere un valore del rapporto barione/mesone maggiore in collisioni A-A [24] come accennato sopra, sezione 1.9. Una possibile spiegazione è che tali o simili meccanismi siano già presenti e importanti, soprattutto a basso p_T , anche in collisioni pp e p-A alle energie di LHC. L'andamento del rapporto in funzione della molteplicità dimostra che, se presenti, tali meccanismi sono già all'opera anche a basse molteplicità.

Con l'espressione molteplicità o classi di molteplicità intendiamo il numero di particelle secondarie prodotte in un evento. Questo termine aiuta a organizzare e analizzare i dati delle collisioni: gli eventi con alta molteplicità possono essere più complessi, ma potenzialmente più informativi rispetto a quelli a bassa molteplicità. Questa categorizzazione permette una migliore comprensione dei processi fisici coinvolti.

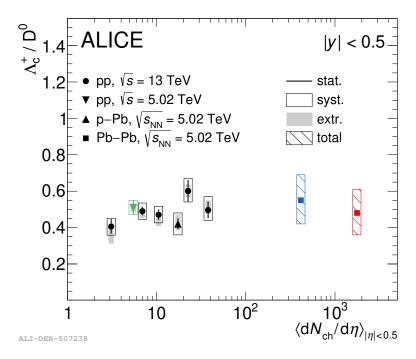


Figura 1.8: Valore del rapporto barione/mesone Λ_c^+/D^0 misurato dall'esperimento ALICE a LHC integrato su tutto lo spettro degli impulsi trasversi p_T del barione Λ_c^+ (sono stati utilizzati valori estrapolati dove non erano presenti misure sperimentali) per diversi sistemi collidenti: protone-protone pp, protone-nucleo p-Pb e nucleo-nucleo Pb-Pb, sia centrali sia periferici, in funzione della molteplicità [29]. Si può notare come il rapporto sia praticamente compatibile per tutti i tipi di collisioni entro gli errori sperimentali.

1.9.2 Adroni charmati in collisioni pp a $\sqrt{s} = 5.02 \,\text{TeV}$ e a $\sqrt{s} = 13 \,\text{TeV}$

I valori del rapporto di produzione Λ_c^+/D^0 misurati in collisioni pp alle energie di LHC risultano significativamente maggiori rispetto a quanto misurato in collisioni ep e e^+e^- e soprattutto rispetto a modelli teorici che assumono solo processi di frammentazione e utilizzano funzioni di frammentazione (FF) basate su tali esperimenti. Questi modelli prevedono un valore del rapporto di circa 0.1, con una debole dipendenza dal valore dell'impulso trasverso, significativamente inferiore al valore compreso tra 0.4 e 0.6 misurato in ALICE [30] [31] [32] [33] a bassi lavori di p_T (figura 1.9). Questa discrepanza può essere interpretata come una indicazione del fatto che le probabilità che un quark charm adronizzi in uno specifico adrone charmato, ovvero le Funzioni di Frammentazione (FF), non siano universali come ritenuto fino ad ora, ma dipendano dalle caratteristiche del sistema collidente.

Il rapporto Λ_c^+/D^0 in funzione dell'impulso trasverso sembra inoltre variare se considerato in diverse classi di molteplicità (figura 1.8), con il risultato, per collisioni pp ad elevata molteplicità, che si avvicina molto a quanto ottenuto in collisioni Pb-Pb ad energie del centro di massa nucleone-nucleone di 5.02 TeV.

I rapporti di produzione misurati da ALICE nel range di rapidità centrali $|\eta| < 0.9$ in collisioni pp a diverse energie del centro di massa riportati in figura 1.9 mostrano un certo accordo per i valori di impulso fuori dal bin $p_T = [0,1] \,\text{GeV/c}$, con un andamento descrescente, mentre i valori al suo interno, calcolati unicamente attraverso il canale di decadimento $\Lambda_c^+ \to pK_S^0$, sono molto diversi. I risultati espressi in intervalli di p_T sono compatibili entro gli errori sperimentali. In effetti l'analisi dei decadimenti a basso impulso trasverso è particolarmente delicata.

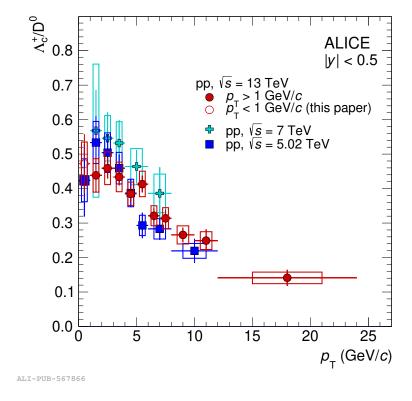


Figura 1.9: Rapporto di produzione degli adroni charmati Λ_c^+ e D^0 in funzione dell'impulso trasverso p_T in collisioni pp a energia cinetica nel centro di massa di $\sqrt{s} = 5.02 \,\mathrm{TeV}$, $\sqrt{s} = 7 \,\mathrm{TeV}$ e $\sqrt{s} = 13 \,\mathrm{TeV}$ misurati col rivelatore ALICE a LHC [34].

Le misure sperimentali prodotte dall'esperimento ALICE sono state confrontate con diversi modelli teorici e fenomenologici, al fine di verificarne l'attendibilità e la capacità di riprodurre i dati sperimentali. I modelli teorici riportati in figura 1.10 sono:

PYTHIA 8.243 Monash 2013 [35] un generatore Monte Carlo (MC) che implementa solo processi di frammentazione con FF per adroni charmati basate sulle misurazioni ottenute con collisioni e^+e^- . Predice un rapporto Λ_c^+/D^0 di circa 0.1 con una debole dipendenza da p_T e costituisce una grossa sottostima dei dati sperimentali, soprattutto a bassi range di impulso trasverso.

PYTHIA 8.243 [36] un generatore MC che implementa la *riconnessione di colore*. Questo modello di adronizzazione è basato sul *modello a stringhe di Lund*. Sono

presenti tre possibili modalità che introducono vincoli più o meno restrittivi sulla generazione: Mode 0 senza vincoli, Mode 2 con vincoli stretti, Mode 3 con vincoli più larghi. Questo modello predice piuttosto bene l'andamento del rapporto Λ_c^+/D^0 in particolare nella Mode 0.

- SHM+RQM (Statistical Hadronization Model Relativistic Quark Model) [37] un modello che calcola le frazioni di adroni charmati basandosi su densità termiche, dunque dipendenti dalla massa dello stato e dal fattore di degenerazione di spin. Fa uso di ulteriori stati barionici eccitati ancora non misurati, ma che si assume esistano secondo il modello relativistico dei quark (RQM). Secondo tale modello, l'incremento nella produzione di barioni charmati non è dovuto a Λ_c^+ primarie, ma a decadimenti di stati barionici di massa più elevata (Λ_c^+ di feed-down). Le previsioni di questo modello sono buone per tutti i range di p_T .
- Catania [38] un modello che assume che anche in collisioni pp si possa creare uno stato di QGP e che dunque l'adronizzazione avvenga sia per *frammentazione* che per *ricombinazione* (coalescenza).
- **QCM** [39] è un modello che ipotizza la formazione di adroni charmati, a basso p_T , dalla combinazione di quark charm con quark più leggeri (u, d, s) che si muovono alla stessa velocità.
- **POWLANG** [40] similmente al modello Catania, assume la creazione di uno stato di QGP anche in collisioni pp ed utilizza lo stesso meccanismo di adronizzazione inmedium sviluppato per descrivere i risultati ottenuti con collisioni Pb-Pb. In questo modello, la formazione di barioni charmati avviene dalla combinazione di quark charm con stati di diquark leggeri eccitati presenti nel plasma. Tra i vari modelli proposti, questo è quello che riproduce in maniera meno accurata l'andamento del rapporto Λ_c^+/D^0 in funzione di p_T .

Questi modelli, escluso PYTHIA 8.243 Monash 2013, forniscono previsioni simili in quasi tutto il range di impulso trasverso p_T , tranne nel bin [0,1] GeV/c. L'analisi dati in questo range è dunque molto importante, perché permette di distinguere i modelli teorici più affidabili da quelli che lo sono meno. È tuttavia un'analisi molto difficile a causa del bassissimo rapporto segnale su fondo. Inoltre, come si può vedere in figura 1.10, l'errore statistico e quello sistematico sono significativi, il che rende la misura sperimentale meno attendibile e di difficile interpretazione.

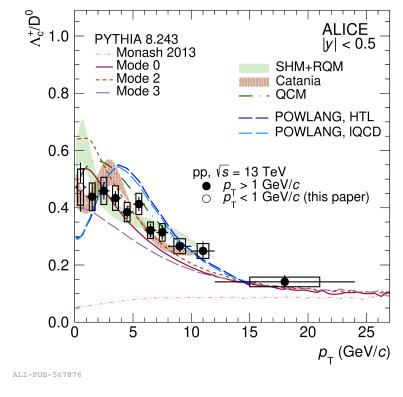


Figura 1.10: Rapporto di produzione Λ_c^+/D^0 in funzione dell'impulso trasverso p_T in collisioni pp a $\sqrt{s}=13\,\mathrm{TeV}$ confrontato con diversi modelli teorici [41].

Capitolo 2

Esperimento ALICE

2.1 Large Hadron Collider (LHC)

Il Large Hadron Collider (LHC) è l'acceleratore di particelle più grande al mondo ed è situato al laboratorio CERN (Organizzazione Europea per la Ricerca Nucleare) presso Ginevra in Svizzera. Questo imponente strumento scientifico rappresenta il vertice della ricerca nel campo della fisica delle particelle ed è progettato con l'obiettivo di sondare i segreti più profondi dell'universo e comprendere le leggi fondamentali della natura.

L'acceleratore è costituito da un anello circolare di circa 27 km di circonferenza, situato in un tunnel a circa $100\,\mathrm{m}$ sotto terra, all'interno del quale vengono fatti circolare fasci di particelle a velocità prossime a quella della luce. Prima di essere immesse in LHC le particelle vengono accelerate da un complesso sistema di pre-acceleratori, vedi figura 2.1, che ne incrementano in passi successivi l'energia cinetica fino a poter essere iniettate dentro l'anello di LHC e portate all'energia di collisione. In LHC potenti magneti superconduttori mantengono i fasci in un moto circolare e cavità a radiofrequenza forniscono il campo elettrico che incrementa l'energia delle particelle ad ogni passaggio. I magneti sono mantenuti nello stato di superconduttività grazie ad un sistema di raffreddamento a elio liquido che mantiene gli speciali cavi elettrici che compongono le bobine ad una temperatura di $-271\,^{\circ}\mathrm{C}$.

Raggiunte le energie di design dell'acceleratore, i fasci vengono fatti collidere in punti specifici dove si trovano gli esperimenti: i quattro principali rivelatori di LHC sono chiamati ATLAS, CMS, LHCb e ALICE.

ATLAS e CMS sono i rivelatori più grandi e sono general-purpose, ovvero non hanno un unico obbiettivo specifico di ricerca, bensì esplorano vari aspetti della fisica delle particelle. Essi lavorano in maniera indipendente l'uno dall'altro nonostante facciano ricerca sugli stessi aspetti della fisica. Il motivo di questa "competizione" è quello di effettuare le stesse misure sperimentali facendo due ricerche separate per convalidare in maniera più efficace i risultati ottenuti. Ad esempio, ATLAS e CMS sono stati responsabili della scoperta del Bosone di Higgs nel 2012.

ALICE e LHCb sono invece esperimenti specializzati in particolari fenomeni:

LHCb si occupa di indagare le sottili differenze tra materia e antimateria attraverso lo studio dettagliato di adroni contenenti quark bottom b.

ALICE si concentra sullo studio delle collisioni tra ioni pesanti, come spiegato nel capitolo 1, con la conseguente produzione di QGP, vedi la sezione 1.4, in sostanza nello studio delle fasi iniziali della vita dell'universo dopo il Big Bang.

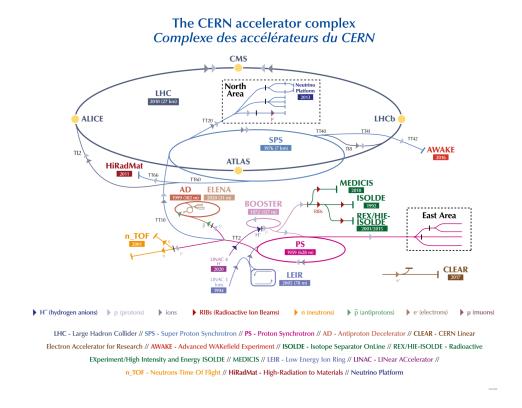


Figura 2.1: Sistema di rivelatori e acceleratori degli esperimenti del CERN di Ginevra [42].

2.2 A Large Ion Collider Experiment (ALICE)

ALICE: A Large Ion Collider Experiment [17] è un rivelatore progettato per studiare principalmente la QCD, vedi sezione 1.3, e più in generale la materia nucleare in condizioni estreme di temperatura e di densità di energia. Il rivelatore è stato costruito da una collaborazione che comprende più di 1000 fisici e ingegneri da 30 paesi del mondo. Rappresentato in figura 2.2 ha una dimensione di $(16 \times 16 \times 26)$ m³ e un peso complessivo di 10 000 tonnellate.

ALICE è composto da una parte centrale dedicata alla misura di adroni, elettroni e fotoni e da uno spettrometro a muoni che copre la regione ad alta rapidità. La parte centrale copre angoli polari da 45° a 135° ed è integrata in un grande magnete

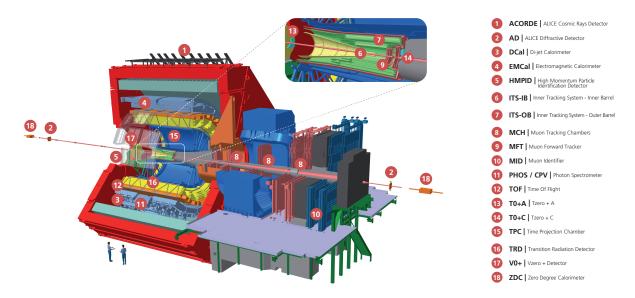


Figura 2.2: Spaccato del rivelatore ALICE con indicati i 18 sottorivelatori [43].

solenoidale riutilizzato dall'esperimento L3 che operava al precedente acceleratore, il Large Electron-Positron collider (LEP).

L'esperimento è composto da 18 differenti sistemi o rivelatori, come mostrato in figura 2.2, ognuno con la propria tecnologia specifica, ottimizzato in base ai requisiti fisici e alle condizioni ambientali alle quali è previsto che operi. Il vincolo di progettazione più severo consiste nel riuscire a sopportare l'ingente molteplicità carica prevista per collisioni Pb-Pb centrali. I diversi rivelatori sono stati ottimizzati per fornire una elevata risoluzione in impulso e un'eccellente identificazione delle particelle su un ampio intervallo di quantità di moto, fino alle molteplicità più elevate previste per LHC. Ciò consente una completa analisi dei segnali di adroni, elettroni, muoni e fotoni prodotti nelle collisioni.

Dall'interno verso l'esterno, la parte centrale contiene, vedi figura 2.3:

- 1. Inner Tracking System (ITS) composto da sei piani di rivelatori al silicio con elevata risoluzione spaziale,
- 2. Camera a Proiezione Temporale (Time Projection Chamber TPC),
- 3. rivelatori di Radiazione di Transizione (Transition Radiation Detector TRD),
- 4. rivelatore per la misura del Tempo di Volo (Time Of Flight TOF) delle particelle cariche,
- 5. rivelatore Cherenkov ad Immagini ad Anello (High Momentum Particle Identification HMPID) e due calorimetri elettromagnetici (PHOton Spectrometer PHOS e Electro Magnetic Calorimeter EMCal).

Tutti i rivelatori, eccetto HMPID, PHOS e EMCal, coprono l'intero angolo azimutale [17].

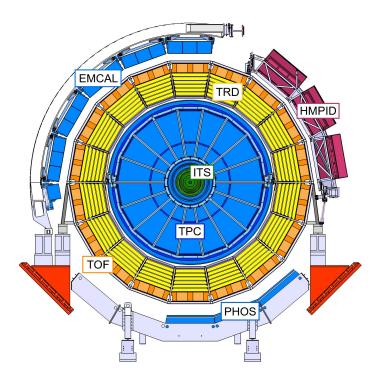


Figura 2.3: Sezione trasversale della parte centrale del rivelatore ALICE [44].

2.2.1 Considerazioni sulla costruzione

La costruzione e il design di ALICE sono stati guidati da specifici requisiti fisici e dalle condizioni sperimentali per le collisioni di particelle, originariamente pensate essere per eventi nucleo-nucleo, per poi svilupparsi anche in eventi protoni-protoni.

ALICE è l'unico esperimento a LHC espressamente progettato per lo studio della materia nucleare creata in collisioni di ioni pesanti relativistici e del QGP. Per questo motivo esso dovrà coprire il maggior numero di osservabili possibili studiando tutti i diversi fenomeni riconducibili alla formazione di uno stato di QGP insieme alle informazioni globali che possono descrivere l'evoluzione dinamica del sistema creato nel punto di collisione e la sua termodinamica. Le caratteristiche qlobali dell'evento come la molteplicità carica delle interazioni e il flusso di energia trasversa o a zero gradi definiscono la geometria della collisione: parametro di impatto, forma e orientamento della fireball, il volume di collisione, così come il numero di nucleoni interagenti nell'urto. Lo studio della produzione di adroni contenenti quark pesanti (charm e bottom) e i processi di frammentazione dei jet permettono di esplorare la cinematica dei partoni e la loro perdita di energia per interazione con il mezzo partonico ad alta densità. Il flusso ellittico è un osservabile sensibile alle proprietà fluidodinamiche del QGP, come la viscosità. Lo studio dei fotoni diretti può rivelare la formazione di un QGP in equilibrio termico. La produzione soppressa o aumentata di stati di quarkonia può essere utilizzata per studiare il deconfinamento e la ricombinazione partonica, mentre lo studio delle risonanze permette di investigare il ripristino della simmetria chirale e, insieme ai rapporti di produzione tra diverse specie di particelle, agli spettri e alle distribuzioni in impulso trasverso, l'evoluzione dinamica del sistema da una fase deconfinata a quella adronica.

La progettazione dell'esperimento ALICE è stata guidata dai requisiti fisici oltre che dalle condizioni sperimentali attese nelle collisioni nucleo-nucleo a LHC. ALICE è stato progettato per operare a molteplicità fino a 8000 particelle cariche per unità di rapidità, estrapolando i valori misurati nei precedenti esperimenti con collisioni nucleo-nucleo ad energie inferiori. Questa alta molteplicità, unita a luminosità attese in collisioni Pb-Pb a LHC moderate, ha portato alla scelta di rivelatori lenti ma ad elevata granularità (come la TPC e le camere SSD), immersi in un debole campo magnetico solenoidale da 0.5 T.

Un preciso tracciamento, insieme ad una elevata risoluzione in impulso e capacità di identificazione delle diverse particelle prodotte durante l'evoluzione del sistema sono caratteristiche distintive dell'esperimento ALICE. La misura dell'impulso delle particelle prodotte deve poter essere effettuata su un largo intervallo che si estende per oltre tre ordini di grandezza, dalle decine di MeV/c per lo studio di effetti collettivi fino a ben oltre $100\,\mathrm{GeV/c}$ per la fisica dei jet. Ciò si ottiene con una combinazione di material budget molto basso per ridurre il multiple scattering a basso impulso trasverso p_T (13% X0 fino all'estremità esterna della TPC) e un ampio braccio di leva di tracciamento fino a 3.5 m per garantire una buona risoluzione ad alto impulso p_T .

2.2.2 Particle Identification (PID)

ALICE si concentra sulla fisica a rapidità¹ centrali $|\eta| < 1$ come ad esempio la regione a più bassa concentrazione barionica e massima densità energetica. L'identificazione di particelle (Particle Identification, PID) su tutto il range di momenti p_T è essenziale siccome molti altri osservabili sono dipendenti o dalla massa o dal sapore della particella.

In ALICE vengono utilizzate quasi tutte le tecniche di PID note: perdita specifica di energia di ionizzazione dE / dx, time of flight (sezione 2.5), radiazione di transizione e radiazione Cherenkov, calorimetria elettromagnetica, rivelatori di muoni e ricostruzione topologica dei decadimenti.

Nonostante tutte queste tecniche di identificazione, è molto difficile selezionare segnali di decadimenti di sapori pesanti, come nel nostro caso quello della Λ_c^+ , vedi capitolo 3: è dunque richiesta l'acquisizione di un'enorme quantità di eventi con un alta efficienza del sistema di Data Acquisition (fino ad una frequenza di 1.3 GB/s su memoria fissa) per registrare un numero di eventi dell'ordine di grandezza di 10^7 in sole poche settimane.

Di seguito sono elencati i rivelatori di ALICE le cui informazioni sono state utilizzate nell'analisi presentata nel capitolo 3.

¹La *rapidità* è una grandezza adimensionale che è basata sul rapporto tra l'energia e la componente del momento lungo l'asse della collisione di una particella. È una misura alternativa dell'energia cinetica di una particella utilizzata frequentemente nelle collisioni ad alta energia perché ha proprietà utili sotto trasformazioni di Lorentz.

2.3 Inner Tracking System (ITS)

L'Inner Tracking System (ITS), schematizzato in figura 2.4 circonda la beam pipe (il tubo a vuoto all'interno del quale circolano i protoni e gli ioni) in cui scorre il fascio di particelle e consiste di sei strati cilindrici coassiali di rivelatori al silicio, localizzati da un raggio minimo di 4 cm, imposto dalle dimensioni della beam pipe, a un raggio massimo di 43 cm, necessario per il matching delle traiettorie con il successivo rilevatore, la TPC.

ITS copre un intervallo di pseudorapidità di $|\eta|$ < 0.9 e i suoi obiettivi sono:

- la localizzazione dei vertici primario e secondario,
- il tracciamento e l'identificazione di particelle con momento inferiore a 200 MeV/c e
- il miglioramento della *misura* del parametro d'impatto e dell'impulso delle differenti particelle cariche effettuata dalla TPC.

Per ottenere una risoluzione adeguatamente alta del parametro d'impatto, data l'elevata densità di particelle attesa nelle collisioni tra ioni pesanti a LHC (circa 50 particelle/cm²), sono stati scelti i Silicon Pixel Detectors (SPD) per i primi due strati a partire dall'interno e i Silicon Drift Detectors (SDD) per i successivi due. Per gli ultimi due strati, dove la densità di particelle prevista è ridotta a una particella/cm², sono stati scelti i Silicon micro-Strip Detectors (SSD). I quattro strati più esterni hanno un readout analogo e possono essere usati per la Particle Identification attraverso la misura della perdita di energia dE/dx nella regione non relativistica.

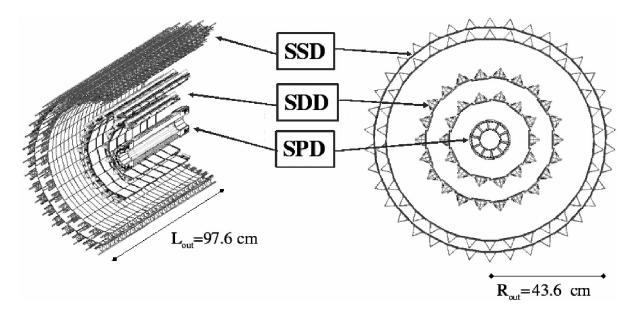


Figura 2.4: Spaccato e sezione interna dell'ITS di ALICE [17].

2.4 Time Projection Chamber (TPC)

La Time-Projection Chamber (TPC), mostrata in figura 2.5, è il principale rilevatore del central barrel per il tracciamento delle particelle. I suoi scopi sono di fornire misure precise di impulso delle particelle cariche in un range di p_T di $0.1-100\,\mathrm{GeV/c}$, attuare l'identificazione delle particelle e la localizzazione dei vertici di decadimento. La TPC ha una simmetria cilindrica, coassiale con la direzione del fascio, con una zona attiva compresa tra un raggio interno di $85\,\mathrm{cm}$ e uno esterno di $250\,\mathrm{cm}$.

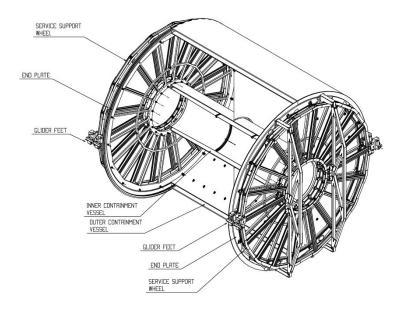


Figura 2.5: Rappresentazione schematica della struttura della TPC di ALICE [45].

L'interno del rivelatore è riempito con $90\,\mathrm{m}^3$ di una miscela di Ne–CO₂–N₂ in percentuali $85\,\%$, $10\,\%$ e $5\,\%$ rispettivamente. Quando questo gas è attraversato da una particella carica, viene ionizzato creando una traccia formata da elettroni liberi e lacune. Questi vengono guidati tramite un campo elettrico interno alle readout chambers, presenti sulle due basi del cilindro e composte da rivelatori Gas Electron Multipliers e composte da Multi-Wire Proportional Chambers (MWPCs), montate su 18 settori di forma trapezoidale).

La posizione degli hit sulle camere di readout, in aggiunta alla posizione lungo l'asse z, determinata misurando il tempo di arrivo del segnale sugli endcap della TPC, permettono un tracciamento digitale in 3 dimensioni della traccia rilasciata dalla particella carica. Ricostruendo l'intera traiettoria e il suo raggio di curvatura è possibile risalire all'impulso della particella carica che l'ha generata.

La PID viene effettuata attraverso la misura della ionizzazione specifica delle particelle dE/dx. Riportando questa misura in funzione dell'impulso della particella è possibile distinguere le diverse specie, come riportato in figura 2.6. Questa tecnica permette un'ottima separazione nella regione $1/\beta^2$ della Bethe-Bloch e ad alti p_T quando inizia la

risalita relativistica. Per momenti intermedi invece è necessario utilizzare altre tecniche di identificazione come ad esempio quella del Time-Of-Flight (TOF), sezione 2.5.

2.5 Time Of Flight (TOF)

Il rilevatore Time-Of-Flight (TOF) di ALICE, mostrato in figura 2.7 ha un ruolo fondamentale nella Particle Identification nel range di *impulsi intermedi*: è in grado di separare pioni e kaoni per $p_T < 2.5 \,\text{GeV/c}$ e kaoni e protoni per $p_T < 4 \,\text{GeV/c}$, nell'intervallo di pseudorapidità $|\eta| < 0.9$. Il TOF fornisce *misure sul tempo di volo* di ciascuna particella carica; questa informazione, combinata con le misure della lunghezza della traiettoria percorsa e dell'impulso della particella carica fornite da ITS e TPC, permette di calcolare la massa di tale particella e quindi di determinarne l'identità, tramite la formula:

$$\beta = \frac{v}{c} = \frac{L}{tc} = \frac{1}{\sqrt{\left(\frac{mc}{p}\right)^2 + 1}} \to m = \frac{p}{c}\sqrt{\frac{c^2t^2}{L^2} - 1}$$
 (2.1)

Come i rivelatori precedentemente mostrati, il TOF ha una forma cilindrica coassiale alla beam pipe ed è situato a una distanza di 3.8 m da quest'ultima. È formato da 1638 Multi-gap Resistive Plate Chambers (MRPC) raggruppati in 18 settori azimutali, ciascuno a sua volta suddiviso in 5 moduli contenenti diversi MRPC in base alla posizione: 15 per i moduli centrali e 19 per quelli intermedi o esterni.

Un esempio di Identificazione di Particelle con il rivelatore TOF è riportato in figura in cui la velocità delle particelle cariche è riportata in funzione del loro impulso.

La figura 2.8 illustra come avviene l'identificazione delle particelle tramite il rivelatore TOF. Nel grafico è riportata la velocità delle particelle cariche, misurata dal rivelatore in collisioni Pb-Pb ad energie del centro di massa di 5.02 TeV per coppie di nucleoni, in funzione del loro impulso; le bande più popolate rappresentano le diverse specie. La differenza tra velocità misurata e velocità attesa per ogni ipotesi di massa della particella, divisa per la risoluzione temporale del rivelatore, costituisce il potere di separazione del rivelatore.

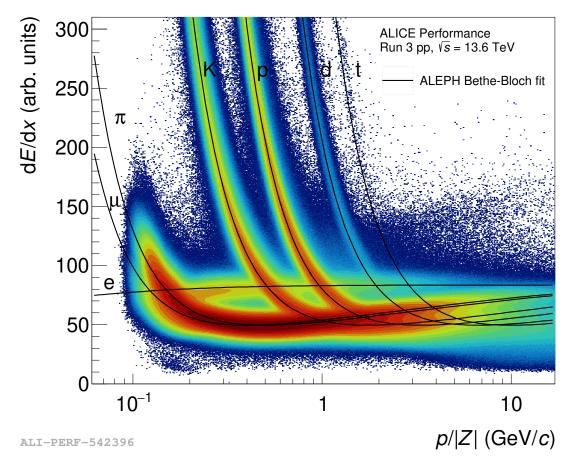


Figura 2.6: Misura della ionizzazione specifica in funzione dell'impulso della particella, è possibile notare come l'andamento vari in base al tipo di particella osservata [46].

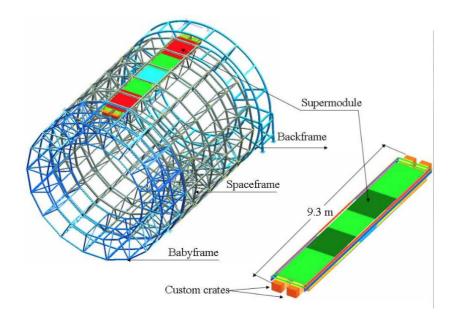


Figura 2.7: Rappresentazione schematica della struttura del TOF di ALICE [47].

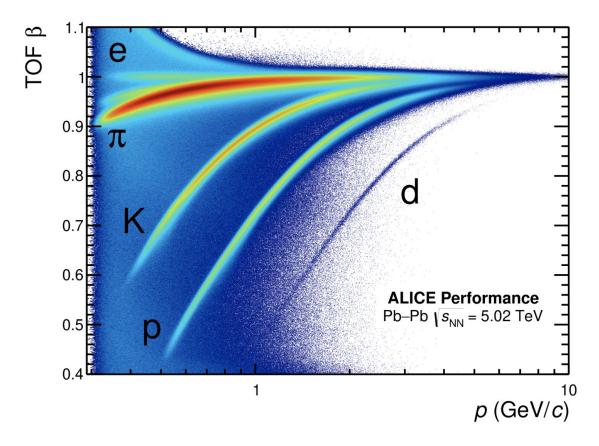


Figura 2.8: Velocità delle particelle cariche in funzione del loro impulso [48].

Capitolo 3

Ricostruzione del barione Λ_c^+

Come detto nella sezione 1.9, D^0 e Λ_c^+ sono rispettivamente il mesone e il barione più leggeri contenenti un quark charm c e per questo sono più abbondanti ad essere prodotti. Possono essere identificati nell'esperimento ALICE in un ampio intervallo di momento trasverso per cui si prestano molto bene per lo studio del loro rapporto di produzione.

L'identificazione avviene mediante la ricostruzione dei loro decadimenti carichi in volo. Le caratteristiche fisiche principali del Λ_c^+ sono un contenuto di quark udc, una massa di $(2286.46\pm0.14) \,\mathrm{MeV/c^2}$, un $I\left(J^P\right)=0\,(^{1}\!/_{2}^{+})$ e una vita media di $(2.024\pm0.031)\times10^{-13}\,\mathrm{s}$.

La Λ_c^+ possiede diversi canali di decadimento, ma l'esperimento ALICE ne analizza tre, due adronici e uno semileptonico:

$$\Lambda_c^+ \to p K^- \pi^+ \tag{3.1}$$

$$\Lambda_c^+ \to p K_S^0 \tag{3.2}$$

$$\Lambda_c^+ \to \Lambda e^+ \bar{\nu}_e \tag{3.3}$$

I Branching Ratio (BR) di questi canali di decadimento, ovvero le *probabilità* di decadimento di questi canali, sono rispettivamente:

- (6.28 ± 0.32) % per il canale 3.1,
- (1.59 ± 0.08) % per il canale 3.2 e
- (3.60 ± 0.40) % per il canale 3.3.

Nella presente tesi viene preso in considerazione solamente il canale di decadimento 3.2 $\Lambda_c^+ \to pK_S^0$ rappresentato in figura 3.1.

Il punto in cui avviene la collisione ad alta energia tra due protoni dei fasci collidenti viene detto vertice primario, nella figura 3.1 rappresentato in rosso, con la conseguente formazione del barione Λ_c^+ . In seguito la Λ_c^+ decade per interazione debole nel punto detto vertice secondario, rappresentato in verde in figura, con le particelle figlie che sono rispettivamente un protone p che è stabile e un mesone K_S^0 che a sua volta decade per interazione debole in due pioni carichi $\pi^+\pi^-$ con un BR del (69.20 ± 0.05) %. Sono questi ultimi due che vengono effettivamente rilevati dal rivelatore microvertice di ALICE.

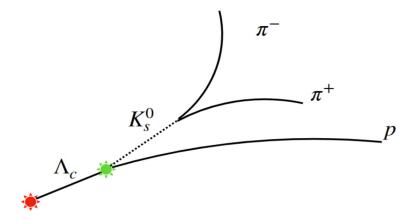


Figura 3.1: Rappresentazione grafica del decadimento del barione Λ_c^+ secondo il canale di decadimento 3.2 $\Lambda_c^+ \to p K_S^0$ [27].

La principale sfida nell'analisi di questa particella è rappresentata dalla sua brevissima vita media. Il barione Λ_c^+ ha un $c\tau=60\,\mu m$ e quindi in media decade dopo aver percorso una distanza inferiore alla precisione dei rivelatori di microvertice di ALICE che si attesta intorno ai 100 μm per impulsi trasversi $p_T\approx 1\,{\rm GeV/c}$. Questa situazione rende impossibile la distinzione netta tra vertice primario e vertice secondario: tale complicazione rende l'analisi considerevolmente più complessa.

Dal momento che non è possibile discriminare tra particelle provenienti dal vertice primario e dal vertice secondario, è necessario implementare metodi più avanzati per separare le particelle effettivamente prodotte dal decadimento di una Λ_c^+ dal fondo (detto anche background). Questo fondo è costituito da tutte le possibili combinazioni di particelle che non derivano dal decadimento di una Λ_c^+ , ma che presentano caratteristiche simili a quelle che effettivamente lo sono e che, se combinate, forniscono un valore di massa invariante accidentalmente simile a quello della massa di una Λ_c^+ .

A tale scopo, risulta particolarmente utile l'utilizzo di tecniche basate sul Machine Learning. In questa tesi, è stata impiegata una rete neurale che fa utilizzo delle librerie Keras e TensorFlow di Python.

3.1 Dati e variabili fisiche degli eventi

Il campione di dati utilizzato per gli eventi di segnale è costituito da eventi simulati dal generatore Monte Carlo PYTHIA8 [49]. In queste simulazioni, per aumentare la statistica, è stato posto il vincolo che ci sia almeno una Λ_c^+ che decade secondo il canale di decadimento di nostro interesse tra tutte quelle che vengono generate. Per ottenere una simulazione ancora più fedele sono stati "inseriti" i comportamenti dei rivelatori che compongono l'esperimento ALICE in modo da simulare nel modo più verosimile possibile le interazioni delle particelle con i materiali di cui sono costituiti tali rivelatori, nonché la formazione dei loro segnali di risposta. La simulazione del rivelatore ALICE e la propagazione delle particelle è stata fatta utilizzando il software GEANT3 [50].

Il campione di dati utilizzato per il fondo, background, invece è stato ottenuto dalle misure stesse di ALICE, prese nella seconda fase di presa dati (RUN 2), avvenuta negli anni dal 2016 al 2018. Negli eventi dei dati reali, sono state però selezionate solo candidate con una massa invariante ricostruita non compatibile con la massa di una vera Λ_c^+ .

Come spiegato più ampiamente nelle sezioni successive, il Machine Learning (ML) è lo studio di algoritmi capaci di imitare o trovare patterns nel campione di training attraverso l'esperienza. Un algoritmo di ML prende in input un insieme di variabili e applica delle funzioni per distinguerle nelle categorie conosciute. Si capisce dunque che la scelta di queste variabili di input è di grande importanza e una buona scelta permette all'algoritmo di separare le classi di eventi in segnale e fondo in maniera più efficiente.

Prendendo come riferimento la figura 3.1, si parlerà di protone p potenzialmente prodotto come di particella bachelor e di K_S^0 potenzialmente prodotta come di particella V^0 . Le variabili fisiche degli eventi registrate dai diversi rivelatori e dell'esperimento ALICE che verranno utilizzate per allenare la rete neurale sono riportate nella seguente tabella 3.1. Il nome che compare nella colonna "Variabile fisica" è quello utilizzato nel codice di analisi. La figura 3.2 mostra invece le distribuzioni di segnale e fondo di tutte le variabili in input per candidate Λ_c^+ ricostruite con un impulso trasverso nel range $1 < p_T < 2 \text{ GeV/c}$.

Variabile fisica	Descrizione	Valore
massK0S	massa invariante della particella V^0 , ottenuta	$497\mathrm{MeV/c^2}$
	a partire dalle tracce ricostruite delle figlie	437 MEV/C
	parametro d'impatto della particella bachelor	
tImpParBach	definito come la distanza minima tra la	
	traccia del bachelor e il vertice primario	
tImpParV0	$parametro\ d'impatto\ della\ particella\ V^0$	
ctK0S	$c\tau$ della particella V^0 assumendo che la sua	$2.68\mathrm{cm}$
	massa sia quella di una K_S^0	
cosPAK0S	coseno dell'angolo tra la direzione della	
	particella V^0 e la congiungente tra il vertice	vicino all'unità
	primario e il secondario	
nSigmapr	probabilità, in unità di deviazioni standard,	
	che la particella bachelor sia effettivamente un	
	protone ottenuta combinando le informazioni	
	dei rivelatori TOF e TPC di ALICE (somma	
	in quadratura delle due probabilità o solo	
	probabilità fornita dalla TPC per candidate	
	in cui l'informazione del TOF sia assente)	
	Distance of Closest Approach, ovvero distanza	
dcaV0	minima tra le tracce ricostruite delle due figlie	
	della particella V^0	

Tabella 3.1: Nomi, descrizioni e valori delle variabili fisiche utilizzate nell'allenamento della rete neurale.

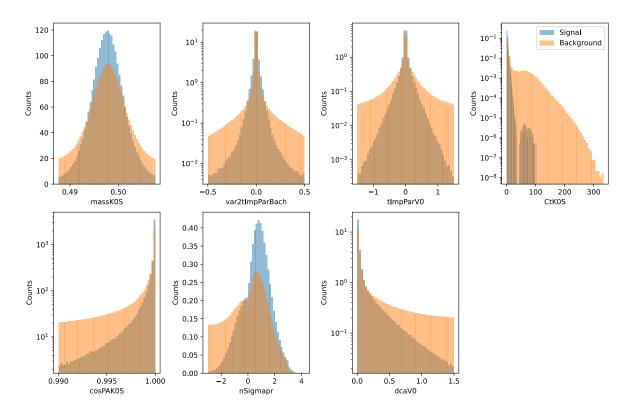


Figura 3.2: Variabili utilizzate per il classificazione degli eventi, viene messa in luce la differenza tra il segnale e il background.

3.2 Componenti software

Presentiamo brevemente le componenti software utilizzate per realizzare la rete neurale e per allenarla coi Data Trees forniti dall'esperimento ALICE.

3.2.1 TensorFlow

TensorFlow [51] è una libreria open-source per il calcolo, ed è particolarmente nota per le sue applicazioni nelle intelligenze artificiali (AI). È stata sviluppata da ricercatori e ingegneri del Google Brain team ed è utilizzata per sviluppare, allenare e distribuire modelli di machine learning: offre moduli, strumenti e risorse per la gestione dei dati, l'ottimizzazione dei modelli, il monitoraggio delle prestazioni e molto altro.

La libreria include diverse funzioni che rendono più agevole per gli sviluppatori creare e implementare modelli avanzati di apprendimento automatico, in particolare quelli basati su reti neurali. Le reti neurali (Neural Network NN) sono una classe di modelli di apprendimento automatico ispirati alla struttura e al funzionamento del cervello umano, sono particolarmente efficaci per compiti complessi come il riconoscimento di immagini e la comprensione del linguaggio naturale.

TensorFlow supporta vari linguaggi di programmazione, tra cui Python, ed è inoltre presente un'API (Application Programming Interface) molto utile chiamata Keras [52]. Un'API è un'interfaccia che permette a programmi software differenti di comunicare tra loro, fornisce inoltre un'interfaccia tra il software a basso livello e quello ad alto livello semplificando notevolmente la fase di scrittura del codice di programmazione da parte dell'utente. Oggi esistono svariate API per la creazione di intelligenze artificiali, ne sono esempio le API di OpenAI di ChatGPT oppure le API di TensorFlow, come Keras, utilizzata in questa tesi per allenare la rete neurale.

3.2.2 Keras

Inizialmente, Keras è stato sviluppato come un'interfaccia indipendente che poteva funzionare con diverse librerie di backend, tra cui TensorFlow, Theano e Microsoft Cognitive Toolkit. Tuttavia, con il rilascio di TensorFlow 2.0, Keras è stato ufficialmente incorporato in TensorFlow come tf.keras: questo ha reso Keras l'API maggiormente utilizzata per TensorFlow, ovvero un'interfaccia per costruire e addestrare modelli di deep learning (DL).

Per utilizzare Keras o più in generale il deep learning, in contesti dove si utilizza il framework ROOT scritto in C++ come in fisica delle particelle, è utile sapere analizzare e interpretare poche righe di codice per rendere agevoli delle analisi di strutture complesse di dati. In tali casi, si può sfruttare Keras per costruire modelli di reti neurali che aiutano nell'analisi multivariata dei dati e nella classificazione degli eventi come è stato fatto in questa tesi. Il codice di questa tesi è disponibile nella repository GitHub https://github.com/giopedro92/bachelor-thesis-code.

3.3 Analisi preliminari: matrice di correlazione

Prima di eseguire il training vero e proprio, è stato necessario produrre le matrici di correlazione lineare delle variabili in input, sia per il segnale, sia per il fondo, figura 3.3. Lo studio di queste matrici è importante perché variabili altamente correlate potrebbero compromettere l'apprendimento della rete o aumentare di molto il tempo di allenamento che dipende tra le altre cose dal numero di variabili in input. In questo caso specifico le variabili non presentano eccessive correlazioni tra di loro.

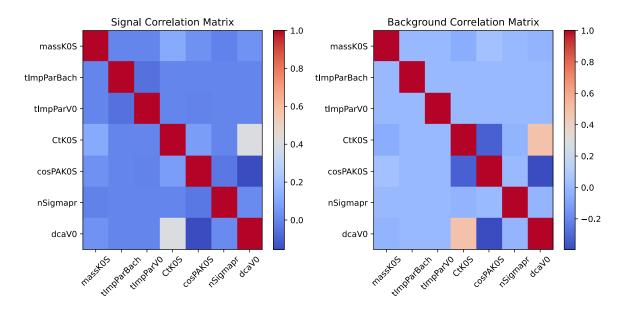


Figura 3.3: Matrici di correlazione lineare delle variabili in input a sinistra per il segnale e a destra per il fondo.

3.4 Il modello di Neural Network (NN)

Il codice è stato distribuito in 4 file, il main.py e

DataPreparation.py contenente la classe DataPreparation con al suo interno le funzioni load_data per caricare i dati dai tree e prepare_data per normalizzarli,

Classifier.py contenente le classi

SignalBackgroundClassifier con al suo interno le funzioni train_classifier per allenare la rete e evaluate_classifier per valutare l'allenamento,

NeuralNetwork con al suo interno le funzioni build_model e train_classifier per la costruzione e l'allenamento del modello di rete neurale e

Additional_evaluation con la suo interno la funzione plot_feature_importance per stampare l'importanza delle variabili del training,

MetricPrinter.py contenente la classe PrintMetrics per stampare le metriche dell'allenamento con al suo interno le funzioni plot_roc_curve e print_metrics.

Il modello di rete neurale è il cosidetto Sequential, che ha il vantaggio di essere semplice da costruire per chi è alle prime armi con la costruzione di reti neurali. Presenta inoltre una struttura lineare dove ogni strato ha un input e un output e l'output di uno strato diventa l'input dello strato successivo. Un'altra caratteristica importante è che questo modello è utilizzato prevalentemente per costruire reti neurali feedforward, ovvero dove i dati si muovono in una direzione, dall'input all'output, senza cicli [53].

Di seguito sono presenti le righe di codice per la costruzione del modello:

```
def build_model(self,
                        X_train,
2
                        neurons,
3
                        drop_out,
                        learning_rate):
5
6
           model = keras.Sequential([
                    layers.Input(
                        shape = (X_train.shape[1],)),
                    # layer di input, shape dimensione dei dati
                    layers.Dense(
11
                        neurons,
12
                        activation = "relu"),
13
                    # layer collegati a tutti i neuroni
                    layers.Dropout(
15
                        drop_out),
16
                    # spegne un tot di neuroni per non influenzare troppo la rete
17
                    layers.Dense(
18
                        neurons,
                        activation = "relu"),
20
```

```
layers.Dropout(
                         drop_out),
22
                    layers.Dense(1,
23
                                   activation = "sigmoid")])
25
           optimizer = keras.optimizers.Adam(
26
                learning_rate = learning_rate)
27
                # usa optimizer Adam
28
29
           model.compile(
30
                optimizer = optimizer,
                           = "binary_crossentropy",
32
                           = ["accuracy"],)
33
                # loss function pi
                                       adeguata per il problema
34
           return model
```

L'addestramento di una rete neurale è un processo complesso che coinvolge l'uso di algoritmi di ottimizzazione per regolare i pesi della rete in modo che possa eseguire correttamente un determinato compito. In generale l'obbiettivo è quello di minimizzare un gradiente rispetto a tutti i parametri del modello.

Il Stocastic Gradient Descent (SGD) è una variante dell'algoritmo di discesa del gradiente utilizzato per l'ottimizzazione delle reti neurali e in altri modelli di apprendimento automatico. Questo è caratterizzato da un processo randomico dell'analisi del gradiente e dal fatto che non analizza l'intero set di dati per aggiornare i pesi dei parametri ma appunto esegue l'analisi su dei batch che sono sottinsiemi randomici. Per ogni batch, la rete neurale esegue una previsione e in seguito ne calcola la perdita ovvero la differenza tra la previsione e il valore vero, di conseguenza calcola il gradiente della funzione di perdita rispetto ai pesi. Infine, aggiorna i pesi in direzione opposta alla crescita del gradiente per ridurre la perdita. Idealmente l'addestramento continua fino a quando la rete non mostra più miglioramenti significativi sul set di validazione, indicando che ha raggiunto una buona generalizzazione.

La crossentropy è una misura della differenza tra due distribuzioni di probabilità: la distribuzione reale dei dati e la distribuzione prevista dal modello. Nella classificazione, la crossentropy è comunemente usata come funzione di perdita: misura quanto efficacemente il modello preveda i dati sperimentali e ne penalizza le previsioni che sono lontane dalla verità effettiva. In librerie come TensorFlow e Keras, la crossentropy è implementata come una funzione di perdita predefinita e ne si può specificare il tipo durante la compilazione del modello come si può vedere nelle righe di codice. Esistono due forme principali di crossentropy utilizzate: quella qui utilizzata è detta binaria utilizzata per problemi in cui la risposta può appartenere solamente a due classi possibili, ad esempio vero o falso, mentre un'altra possibile è detta categorical crossentropy la quale è utilizzata per problemi di classificazione multivariata.

3.5 Scelta dei Classifiers per il modello

Per effettuare il training delle varie reti neurali sono stati utilizzati diversi classifiers, ovvero metodi di configurazione e addestramento del modello, ognuno dei quali con caratteristiche differenti.

Un batch è un sottoinsieme di esempio per l'addestramento utilizzato in un'unica iterazione dell'algoritmo di apprendimento; la dimensione di questo determina l'efficacia con cui si minimizza il gradiente stocastico: batches di dimensione ridotta possono portare a una stima più rumorosa del gradiente ma possono anche aiutare la rete a generalizzare meglio l'evento e a uscire dai minimi locali durante l'addestramento. D'altra parte, batches più grandi forniscono una stima più accurata del gradiente ma possono essere computazionalmente più costosi e potrebbero portare a una convergenza in un minimo locale meno ottimale.

Un'epoca è un termine che si riferisce al completamento di un intero ciclo di passaggio attraverso l'intero set dei dati di addestramento. Durante un'epoca l'algoritmo lavora attraverso ogni esempio di addestramento aggiornando i pesi della rete in base alla perdita calcolata per quegli esempi.

Parametro	Descrizione	Valore
	Numero di epoche di	
NumEpochs	addestramento per il	10
	modello	
	Dimensione del batch	
BatchSize	durante	32
	l'addestramento	

Tabella 3.2: Descrizione dei parametri del modello.

Dopo diversi tentativi è stato individuato il valore di 10 epoche come il migliore per i dati su cui desideriamo allenare la rete.

3.6 Verifica della correttezza del training

Durante l'allenamento la rete passa attraverso i dati di segnale e fondo che sono stati etichettati come 1 per il segnale e 0 per il fondo. La rete fa delle previsioni (asseganando valori 1 a quelli che pensa siano dati di segnale e 0 a quelli che pensa siano dati di fondo) che vengono poi validate da una parte dei dati su cui la rete non si allena.

Esistono molti modi per valutare la bontà dell'allenamento della rete.

3.6.1 Confusion matrix (CM)

Indicando il segnale come 1 (positive) e il fondo come 0 (negative) e indicando con 1 (true) l'ipotesi di correttezza che la rete fa e 0 (false) l'errore rispetto alla previsione della rete, possiamo disporre su una matrice il numero di dati correttamente riconosciuti o meno, come mostrato in figura 3.4. Chiamiamo (i valori tra parentesi identificano l'elemento di matrice):

True Positive (TP 1,1) i dati di segnale correttamente riconosciuti,

True Negative (TN 0,0) i dati di fondo correttamente riconosciuti,

False Positive (FP 0,1) i dati di fondo erroneamente classificati come segnale,

False Negative (FN 1,0) i dati di segnale erroneamente classificati come fondo.

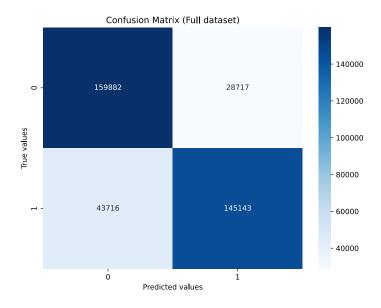


Figura 3.4: Confusion matrix dall'allenamento.

3.7 Metriche

Utilizzando le variabili introdotte nella precedente sezione è possibile introdurre diverse metriche che forniscono maggiori informazioni legate alla matrice di correlazione tutte definite in [0,1]:

precision è definita come

$$Precision = \frac{\text{correttamente classificati come positivi}}{\text{tutti quelli classificati come positivi}} = \frac{TP}{TP + FP}$$
(3.4)

ed è una misura della proporzione di esempi positivi classificati correttamente rispetto a tutti gli esempi classificati come positivi. In altre parole, quanto è affidabile il modello quando prevede una classe positiva?,

accuracy è definita come

$$Accuracy = \frac{\text{correct classifications}}{\text{total classifications}} = \frac{TP + TN}{TP + TN + FP + FN}$$
(3.5)

ed è una misura della proporzione di istanze correttamente predette (sia veri positivi che veri negativi) rispetto al numero totale di istanze,

recall (o tasso di veri positivi) è definita come

$$Recall = \frac{\text{correttamente classificati come positivi}}{\text{tutti i positivi}} = \frac{TP}{TP + FN}$$
 (3.6)

e misura la proporzione di esempi positivi classificati correttamente rispetto a tutti gli esempi positivi reali. In altre parole, quanto è completo il modello nel trovare tutti gli esempi positivi?,

tasso di errore definito come

$$Err = \frac{FP + FN}{TP + TN + FP + FN} \tag{3.7}$$

e misura la percentuale di errore delle previsione sul numero totale delle istanze,

F1-score è definita come

$$F1 = 2 * \frac{precision \cdot recall}{precision + recall} = \frac{TP}{TP + \frac{1}{2}(FP + FN)}$$
(3.8)

ed è una sorta di "media armonica" tra la precisione e la recall. Fornisce una misura bilanciata di entrambe queste metriche risultando particolarmente utile quando si ha a che fare con dataset sbilanciati (cioè quando le classi non sono rappresentate in modo equo). Un buon F1-score indica che il modello ha sia un'alta precisione che un alto recall.

Un modello perfetto avrebbe zero falsi positivi e zero falsi negativi e pertanto avrebbe precisione, accuracy, recall e F1-score pari a 1, mentre il tasso di errore sarebbe pari a 0.

Il modello ottenuto dalla nostra rete neurale ha dato i seguenti valori per le metriche sopra enunciate (solo quelle implementate): accuracy = 0.808, precision = 0.835 e f1 score = 0.800. I valori sono accettabili e comunque vicini all'unità.

3.7. METRICHE 45

3.7.1 Ranking delle variabili

La rete può apprendere più informazioni per l'allenamento da una variabile piuttosto che da un'altra, per questo è utile produrre una grafico di ranking delle diverse variabili utilizzate per l'allenamento.

In figura 3.5 è riportato il training. Non è stata compresa l'importanza tanto più grande rispetto alle altre della variabile CtK0S per il training: sembra essere stata ritenuta dalla rete molto più significativa nella distinzione del segnale dal fondo.

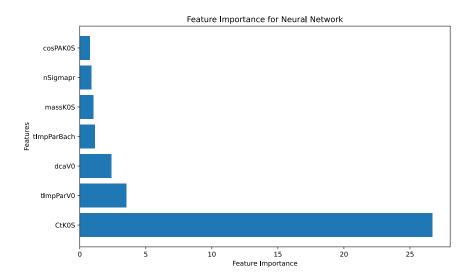


Figura 3.5: Ranking delle variabili di training.

3.7.2 Curva di ROC

La curva ROC (Receiver Operating Characteristic) è uno strumento grafico utilizzato per valutare le prestazioni di un modello di classificazione binaria come il nostro. Viene tracciata confrontando la Sensibilità (o Recall) con la Specificità (o il complemento della Specificità, noto anche come Tasso di Falsi Positivi).

Dopo l'allenamento la rete ha restituito la curva mostrata in figura 3.6. Sull'asse orizzontale è rappresentato il True Positive Rate (TPR) definito come

$$TPR = \frac{\text{Veri Positivi (TP)}}{\text{Veri Positivi (TP) + Falsi Negativi (FN)}},$$
(3.9)

mentre sull'asse delle ordinate è rappresentata la Background Rejection definita come il complemento del False Positive Rate (FPR):

Background Rejection =
$$1 - \text{FPR} = \frac{\text{Veri Negativi (TN)}}{\text{Veri Negativi (TN)} + \text{Falsi Positivi (FP)}}$$
 (3.10)

Questa misura rappresenta la proporzione di eventi negativi (background) correttamente identificati come tali dal modello.

Questa rappresentazione può essere utile in applicazioni come la fisica delle particelle, dove il background rappresenta rumore o eventi non interessanti, e si desidera ridurre al minimo l'inclusione di questi eventi massimizzando l'identificazione di eventi significativi (segnale).

Una curva vicina all'angolo superiore destro come quella ottenuta, indica un modello con ottime prestazioni, con alto TPR e alta Background Rejection (basso FPR).

Attraverso l'analisi delle curve ROC si può valutare la capacità della rete neurale di classificare correttamente gli eventi calcolando l'area sottesa dalla curva ROC (Area Under Curve, AUC). Il valore di AUC, compreso tra 0 e 1, equivale infatti alla probabilità che il modello, se vengono forniti un esempio positivo e negativo scelto in modo casuale, assegni un valore del classificatore per l'evento positivo maggiore di quello dell'evento negativo. Un valore di AUC pari a 0.5, corrispondente ad una curva ROC data da una retta con una inclinazione di -45° , corrisponde al caso di classificatore casuale (linea di "nessun beneficio"). Se il valore di AUC è meggiore di 0.5 significa che la rete è in grado di effettuare una classificazione degli eventi. Un valore di AUC pari a 1 rappresenta il classificatore perfetto.

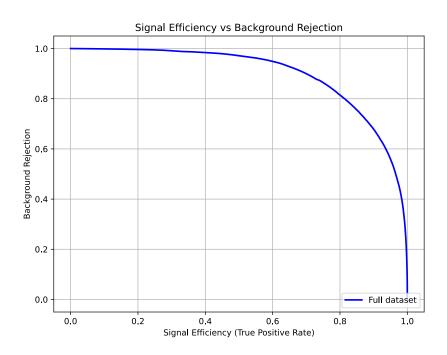


Figura 3.6: Curva di ROC dell'allenamento.

Conclusioni

Nel presente lavoro di tesi è stato implementato un programma di Machine Learning (ML) in grado di addestrare reti neurali convoluzionali (CNN) da utilizzare per analisi nel campo della fisica delle alte energie (High Energy Physics, HEP). Per l'implementazione software sono state utilizzate le librerie open source TensorFlow e l'API Keras. Il programma, scritto con il linguaggio di programmazione Python, comprende diversi strumenti per l'analisi preliminare delle variabili di ingresso, l'addestramento delle reti neurali e per il calcolo delle metriche per la valutazione della qualità del training.

Una volta completato, il programma è stato testato con dati forniti dall'esperimento ALICE riguardanti il barione Λ_c^+ ed in particolare il suo decadimento adronico $\Lambda_c^+ \to pK_S^0$. Il campione di segnale è stato prodotto da simulazioni di collisioni pp ad una energia del centro di massa di $\sqrt{s}=13\,\mathrm{TeV}$ prodotte con PYTHIA8 e GEANT3, mentre per il campione di fondo si sono utilizzati dati sperimentali raccolti dall'esperimento ALICE utilizzando candidate con una massa invariante ricostruita non compatibile con la massa di un barione Λ_c^+ . L'analisi si è concentrata nell'intervallo di impulso trasverso $1 < p_T < 2\,\mathrm{GeV/c}$.

I risultati ottenuti con questo test dimostrano la capacità dell'algoritmo implementato di addestrare in maniera adeguata il modello di ML. Per finalizzare la scrittura del framework, il prossimo step sarà l'implementazione dell'algoritmo che si occupa di applicare il modello addestrato ai dati reali. Tale framework fornirà un tool potente, flessibile e personalizzabile, da utilizzare non solo per la ricostruzione del barione charmato Λ_c^+ ma in generale per ogni tipo di analisi nel campo della fisica delle alte energie.

48 CONCLUSIONI

Bibliografia

- [1] W. N. Cottingham e D. A. Greenwood. An Introduction to the Standard Model of Particle Physics. 2nd. Cambridge: Cambridge University Press, 2007. ISBN: 978-0521852494. DOI: 10.1017/9781009401685. URL: https://library.oapen.org/handle/20.500.12657/64010 (cit. a p. 3).
- [2] Wikimedia Commons. Standard Model of Elementary Particles. Accessed: 2024-10-03. 2024. URL: https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg (cit. a p. 4).
- [3] The ATLAS Collaboration. «Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC». In: *Physics Letters B* 716.1 (set. 2012), pp. 1–29. ISSN: 0370-2693. DOI: 10.1016/j.physletb. 2012.08.020. URL: http://dx.doi.org/10.1016/j.physletb.2012.08.020 (cit. a p. 4).
- [4] The CMS Collaboration. «Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC». In: *Physics Letters B* 716.1 (set. 2012), pp. 30–61. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2012.08.021 (cit. a p. 4).
- [5] F. Englert e R. Brout. «Broken Symmetry and the Mass of Gauge Vector Mesons». In: *Phys. Rev. Lett.* 13 (9 ago. 1964), pp. 321–323. DOI: 10.1103/PhysRevLett. 13.321. URL: https://link.aps.org/doi/10.1103/PhysRevLett.13.321 (cit. ap. 4).
- [6] Peter W. Higgs. «Broken Symmetries and the Masses of Gauge Bosons». In: *Physical Review Letters* 13.16 (ott. 1964), pp. 508-509. DOI: 10.1103/PhysRevLett.13.508. URL: https://link.aps.org/doi/10.1103/PhysRevLett.13.508 (cit. a p. 4).
- [7] G. S. Guralnik, C. R. Hagen e T. W. B. Kibble. «Global Conservation Laws and Massless Particles». In: *Phys. Rev. Lett.* 13 (20 nov. 1964), pp. 585–587. DOI: 10.1103/PhysRevLett.13.585. URL: https://link.aps.org/doi/10.1103/PhysRevLett.13.585 (cit. a p. 4).
- [8] Lorenzo Vitale. « K^0 e Λ in DELPHI per sondare le proprietà di frammentazione nei decadimenti adronici della Z». 1995. URL: http://hdl.handle.net/10077/11331 (cit. alle pp. 5, 7).
- [9] Wikimedia Commons. Quark Confinement. Accessed: 2024-10-01. 2024. URL: https://commons.wikimedia.org/wiki/File:Quark_confinement.svg (cit. a p. 7).

[10] S. Braibant, G. Giacomelli e M. Spurio. Particelle e interazioni fondamentali: Il mondo delle particelle. 2ª ed. UNITEXT. Second edition, revised and expanded. Milan, Italy: Springer Milano, 2012. ISBN: 978-88-470-2753-4. DOI: 10.1007/978-88-470-2754-1. URL: https://link.springer.com/book/10.1007/978-88-470-2754-1 (cit. a p. 7).

- [11] B. A. Bambah et al. «QCD generators for LEP». In: Z Physics at LEP1: CERN, Geneva, Switzerland 20 21 Feb, 8 9 May and 4 5 Sep 1989. Workshop on Z Physics at LEP1. CERN. Geneva: CERN, lug. 1989, pp. 143-340. DOI: 10.5170/CERN-1989-008-V-3.143. URL: https://cds.cern.ch/record/199224 (cit. a p. 7).
- [12] Guido Altarelli. Interazioni fondamentali, Enciclopedia del Novecento. Accessed: 2024-10-03. 2004. URL: https://www.treccani.it/enciclopedia/interazioni-fondamentali_(Enciclopedia-del-Novecento)/ (cit. a p. 7).
- [13] Cheuk-Yin Wong. Introduction to High-Energy Heavy-Ion Collisions. World Scientific, 1994. DOI: 10.1142/1128. eprint: https://www.worldscientific.com/doi/pdf/10.1142/1128. URL: https://www.worldscientific.com/doi/abs/10.1142/1128 (cit. a p. 8).
- [14] Wikimedia Commons. *PhasDiagQGP*. Accessed: 2024-10-04. 2024. URL: https://en.wikipedia.org/wiki/File:PhasDiagQGP.png (cit. a p. 8).
- [15] The NA60+ Collaboration. «Study of hard and electromagnetic processes at CERN-SPS energies: an investigation of the high-μ_B region of the QCD phase diagram with NA60+». In: *JPS Conf. Proc.* 33 (2021). A cura di Naohito Saito, p. 011113. DOI: 10.7566/JPSCP.33.011113. arXiv: 1812.07948 [nucl-ex]. URL: https://arxiv.org/abs/1812.07948 (cit. a p. 9).
- [16] The ALICE Collaboration. «The ALICE experiment: a journey through QCD». In: *The European Physical Journal C* 84.8 (ago. 2024). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-024-12935-y. URL: http://dx.doi.org/10.1140/epjc/s10052-024-12935-y (cit. a p. 9).
- [17] The ALICE Collaboration. «The ALICE experiment at the CERN LHC». In: Journal of Instrumentation 3.08 (ago. 2008), S08002. DOI: 10.1088/1748-0221/3/08/S08002. URL: https://dx.doi.org/10.1088/1748-0221/3/08/S08002 (cit. alle pp. 10, 24, 25, 28).
- [18] STAR Collaboration. «Underlying event measurements in p+p collisions at $\sqrt{s}=200\,$ GeV at RHIC». In: Physical Review D 101.5 (5 mar. 2020), p. 052004. ISSN: 2470-0029. DOI: 10.1103/PhysRevD.101.052004. URL: https://link.aps.org/doi/10.1103/PhysRevD.101.052004 (cit. a p. 10).
- [19] The ALICE Collaboration. «Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions». In: *Nature Physics* 13.6 (apr. 2017), pp. 535–539. ISSN: 1745-2481. DOI: 10.1038/nphys4111. arXiv: 1606.07424 [nucl-ex]. URL: http://dx.doi.org/10.1038/nphys4111 (cit. a p. 10).

[20] The ALICE Collaboration. «Charged-particle production as a function of the relative transverse activity classifier in pp, p-Pb, and Pb-Pb collisions at the LHC». In: Journal of High Energy Physics 2024.1 (gen. 2024). ISSN: 1029-8479. DOI: 10. 1007/jhep01(2024)056. URL: http://dx.doi.org/10.1007/JHEP01(2024)056 (cit. a p. 10).

- [21] Carlos A. Salgado. «Lectures on high-energy heavy-ion collisions at the LHC». In: 2008 European School of High-Energy Physics. Lug. 2009, pp. 239—280. DOI: 10.5170/CERN-2009-002.239. arXiv: 0907.1219 [hep-ph]. URL: https://cds.cern.ch/record/1183649 (cit. a p. 10).
- [22] Alberica Toia. «Participants and spectators at the heavy-ion fireball». In: *CERN Courier* 53.4 (mag. 2013), pp. 31–34. URL: https://cds.cern.ch/record/1734942 (cit. a p. 11).
- [23] Anton Andronic. «An overview of the experimental study of quark–gluon matter in high-energy nucleus–nucleus collisions». In: *International Journal of Modern Physics A* 29.22 (ago. 2014), p. 31. ISSN: 1793-656X. DOI: 10.1142/s0217751x14300476. arXiv: 1407.5003. URL: http://dx.doi.org/10.1142/S0217751X14300476 (cit. a p. 11).
- [24] Sofia Strazzi. «Studio di tecniche di machine learning per la ricostruzione del barione charmato Λc in ALICE ad LHC». Corso di Studio in Fisica [L-DM270]. Laurea. Bologna, Italia: Università di Bologna, ott. 2019. URL: http://amslaurea.unibo.it/19155/ (cit. alle pp. 12, 18).
- [25] Klaus Reygers e Johanna Stachel. 6. Space-Time Evolution of QGP. Accessed: 2024-10-08. 2011. URL: https://www.physi.uni-heidelberg.de/~reygers/lectures/2011/qgp/qgp_06_space_time_evo.pdf (cit. a p. 13).
- [26] John C. Collins, Davison E. Soper e George Sterman. «Factorization of Hard Processes in QCD». In: Adv. Ser. Direct. High Energy Phys. 5 (2004), pp. 1–91. DOI: 10.1142/9789814503266_0001. arXiv: hep-ph/0409313 [hep-ph]. URL: https://arxiv.org/abs/hep-ph/0409313 (cit. a p. 12).
- [27] Matteo Fusconi. «Studio di tecniche di estrazione del segnale per barioni Λ_c^+ ricostruiti nell'esperimento ALICE». Corso di Studio in Fisica [L-DM270]. Laurea. Bologna, Italia: Università di Bologna, set. 2022. URL: https://amslaurea.unibo.it/id/eprint/26546 (cit. alle pp. 15, 34).
- [28] Ramona Vogt. *Ultrarelativistic heavy-ion collisions*. Amsterdam: Elsevier, 2007. ISBN: 978-0-444-52196-5. URL: https://shop.elsevier.com/books/ultra% 20relativistic-heavy-ion-collisions/vogt/978-0-444-52196-5 (cit. alle pp. 14, 17).
- [29] Annalena Sophie Kalteyer. «Charm production and hadronization in pp and p-Pb collisions at the LHC with ALICE». In: 29th International Workshop on Deep-Inelastic Scattering and Related Subjects. Proceedings of DIS2022: XXIX International Workshop on Deep-Inelastic Scattering and Related Subjects, Santiago de

Compostela, Spain, 2-6 May 2022. Lug. 2022. arXiv: 2207.07590 [nucl-ex]. URL: https://arxiv.org/abs/2207.07590 (cit. a p. 19).

- [30] The ALICE Collaboration. $\langle \Lambda_c^+ \rangle$ production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV». In: Journal of High Energy Physics 2018.4 (apr. 2018). 39 pages, 12 captioned figures, 5 tables, authors from page 34, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/4141, p. 108. ISSN: 1029-8479. DOI: 10.1007/jhep04(2018)108. arXiv: 1712.09581 [nucl-ex]. URL: http://dx.doi.org/10.1007/JHEP04(2018)108 (cit. a p. 19).
- [31] The ALICE Collaboration. « Λ_c^+ production in pp and in p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV». In: *Physical Review C* 104.5 (nov. 2021). 38 pages, 13 captioned figures, 3 tables, authors from page 33, published version, figures at http://alice-publications.web.cern.ch/node/6701, p. 054905. ISSN: 2469-9993. DOI: 10.1103/PhysRevC.104.054905. arXiv: 2011.06079 [nucl-ex]. URL: http://dx.doi.org/10.1103/PhysRevC.104.054905 (cit. a p. 19).
- [32] The ALICE Collaboration. « Λ_c^+ production and baryon-to-meson ratios in pp and p-Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV at the LHC». In: Physical Review Letters 127.20 (nov. 2021). 20 pages, 2 captioned figures, authors from page 14, published version, figures at http://alice-publications.web.cern.ch/node/6702, p. 202301. ISSN: 1079-7114. DOI: 10.1103/PhysRevLett.127.202301. arXiv: 2011.06078 [nucl-ex]. URL: http://dx.doi.org/10.1103/PhysRevLett.127.202301 (cit. a p. 19).
- [33] The ALICE Collaboration. «Measurement of prompt D⁰, Λ_c^+ , and $\Sigma_c^{0,++}(2455)$ production in pp collisions at $\sqrt{s}=13$ TeV». In: Physical Review Letters 128.1 (gen. 2022). 20 pages, 2 captioned figures + 2 captioned figures in appendix, authors from page 12, published version, figures at http://alice-publications.web.cern.ch/node/7197, p. 012001. ISSN: 1079-7114. DOI: 10.1103/PhysRevLett.128.012001. arXiv: 2106. 08278 [hep-ex]. URL: http://dx.doi.org/10.1103/PhysRevLett.128.012001 (cit. a p. 19).
- [34] The ALICE Collaboration. Measurement of Λ_c^+/D^0 production ratio in pp collisions at $\sqrt{s}=13$ TeV. ALICE Public Note. 2023. URL: https://alice-publications.web.cern.ch/sites/default/files/papers/9560/LcD0_onlyData.pdf (cit. ap. 20).
- [35] Peter Skands, Stefano Carrazza e Juan Rojo. «Tuning PYTHIA 8.1: the Monash 2013 Tune». In: *The European Physical Journal C* 74.8 (ago. 2014). Comments: 57 pages, p. 3024. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-014-3024-y. arXiv: 1404.5630 [hep-ph]. URL: http://dx.doi.org/10.1140/epjc/s10052-014-3024-y (cit. a p. 20).
- [36] Jesper R. Christiansen e Peter Z. Skands. «String formation beyond leading colour». In: Journal of High Energy Physics 8.8 (ago. 2015). 49 pages, 22 figures, p. 003. ISSN: 1029-8479. DOI: 10.1007/JHEP08(2015)003. arXiv: 1505.01681 [hep-ph]. URL: http://dx.doi.org/10.1007/JHEP08(2015)003 (cit. a p. 20).

[37] Min He e Ralf Rapp. «Charm-baryon production in proton-proton collisions». In: *Physics Letters B* 795 (ago. 2019), pp. 117-121. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2019.06.004. arXiv: 1902.08889 [nucl-th]. URL: http://dx.doi.org/10.1016/j.physletb.2019.06.004 (cit. a p. 21).

- [38] Salvatore Plumari et al. «Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC». In: *The European Physical Journal C* 78.4 (apr. 2018), p. 348. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-018-5828-7. arXiv: 1712.00730 [hep-ph]. URL: http://dx.doi.org/10.1140/epjc/s10052-018-5828-7 (cit. a p. 21).
- [39] J. Song, H.-h. Li e F.-l. Shao. «New feature of low p_T charm quark hadronization in pp collisions at $\sqrt{s} = 7$ TeV». In: *Eur. Phys. J. C* 78.344 (2018). DOI: 10.1140/epjc/s10052-018-5786-7 (cit. a p. 21).
- [40] A. Beraudo et al. «Heavy-flavor transport and hadronization in pp collisions». In: (2023) (cit. a p. 21).
- [41] The ALICE Collaboration. Measurement of Λ_c^+/D^0 production ratio in pp collisions at $\sqrt{s}=13$ TeV with model comparisons. ALICE Public Note. 2023. URL: https://alice-publications.web.cern.ch/sites/default/files/papers/9560/LcDOratio_withModels_withPOWLANG.pdf (cit. a p. 22).
- [42] Ewa Lopienska. The CERN accelerator complex, layout in 2022. Complexedes accélérateurs du CERN en janvier 2022. General Photo. 2022. URL: https://cds.cern.ch/record/2800984 (cit. a p. 24).
- [43] Arturo Tauro. «ALICE Schematics». General Photo. 2017. URL: https://cds.cern.ch/record/2263642 (cit. a p. 25).
- [44] Martino Gagliardi. Overview of ALICE results. Presentation at the 8th International Conference on New Frontiers in Physics (ICNFP 2019). Ago. 2019. URL: https://indico.cern.ch/event/754973/contributions/3535438/attachments/1896165/3128363/Gagliardi_ICNFP_220819_v6.pdf (cit. a p. 26).
- [45] William Korcari. «Analisi del segnale temporale del sistema a tempo di volo dell'esperimento ALICE a LHC per le procedure di controllo di qualita dei dati». Tesi di laurea, Corso di Studio in Fisica (L-DM270). Tesi di laurea (Laurea). Università di Bologna, dic. 2017. URL: https://amslaurea.unibo.it/id/eprint/14607 (cit. a p. 29).
- [46] Hirak Kumar Koley. Study of Resonance Production using Run 3 pp Collisions with ALICE. Rapp. tecn. 3 pages, 7 figures, The 42nd International Conference on High Energy Physics, ICHEP 2024. CERN, 2024. arXiv: 2409.20422. URL: https://cds.cern.ch/record/2912265 (cit. a p. 31).
- [47] The ALICE Collaboration. «Determination of the event collision time with the ALICE detector at the LHC». In: *The European Physical Journal Plus* 132.2 (feb. 2017). ISSN: 2190-5444. DOI: 10.1140/epjp/i2017-11279-1. URL: http://dx.doi.org/10.1140/epjp/i2017-11279-1 (cit. a p. 32).

- [48] URL: https://alice-figure.web.cern.ch/node/9150 (cit. a p. 32).
- [49] Robert Ciesielski e Konstantin Goulianos. «MBR Monte Carlo Simulation in PYTHIA8». In: *PoS* ICHEP2012 (2013). A cura di Antonio Limosani, p. 301. DOI: 10.22323/1.174.0301. arXiv: 1205.1446 [hep-ph]. URL: https://arxiv.org/abs/1205.1446 (cit. a p. 35).
- [50] R Brun et al. *GEANT 3: user's guide Geant 3.10, Geant 3.11; rev. version.* CERN Program Library Long Writeup W5013. CERN. Geneva, Switzerland: CERN, 1987. URL: https://cds.cern.ch/record/1119728 (cit. a p. 35).
- [51] TensorFlow Developers. *TensorFlow*. URL: https://zenodo.org/records/6574269 (cit. a p. 38).
- [52] Francois Chollet. Deep learning with Python. URL: https://www.simonandschuster.com/books/Deep-Learning-with-Python/Francois-Chollet/9781617294433 (cit. a p. 38).
- [53] Navin Kumar Manaswi. «Understanding and working with Keras». In: Deep learning with applications using Python: Chatbots and face, object, and speech recognition with TensorFlow and Keras. Apress, 2018, pp. 31–43 (cit. a p. 40).