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Abstract

In questa tesi, analizzo un meccanismo fisico, detto diking, responsabile per il trasporto
del magma attraverso la crosta terrestre e la sua eruzione. Il diking è analogo alla
fratturazione idraulica, che coinvolge un fluido che si propaga in un solido elastico-fragile
creando una sottile fessura, fratturando il solido davanti a sé, fluendo nell’allungamento
della fessura appena creato, e lasciandosi dietro una coda che tende a chiudersi. I percorsi
delle fratture idrauliche riempite di magma, o dicchi, possono essere non-verticali quando
il campo di stress elastico è non-litostatico e spazialmente eterogeneo. La determinazione
della velocità di propagazione lungo questi cammini è importante per stimare il tempo
disponibile prima dell’inizio di una eruzione. Valuto una stima delle velocità di risalita
dei dicchi su percorsi di ascesa non-verticali, combinando una soluzione analitica per la
velocità di un dicco con soluzioni semi-analitiche per il campo di stress imposto da carichi
gravitazionali, come il carico dovuto ad un edificio vulcanico appoggiato alla superficie
terrestre. Sviluppo uno script MatLab che calcola la velocità di ascesa in funzione
della profondità. Applico il mio metodo per stimare la velocità di dicchi in classiche
configurazioni di stress. Il mio script può essere utilizzato per stimare il tempo di risalita
di un volume di magma e, quindi, il tempo disponibile per la gestione dell’emergenza
dopo che i segnali precursori vengono individuati.



Abstract

In this thesis, I analyse a physical mechanism, called diking, responsible for the transport
of magma through Earth crust and its eruption. Diking is similar to hydraulic fracturing,
which involves a fluid propagating in a brittle-elastic solid building a thin crack, frac-
turing the solid ahead, flowing into the newly-formed crack elongation, and pinching the
crack tail shut behind. The pathways of magma-filled hydraulic fractures, or dikes, may
be non-vertical when the elastic stress field is non-lithostatic and spatially heterogeneous.
Determining the propagation velocity along these pathways is important to estimate the
time that is available before eruption onset. I estimate the ascent velocities of dikes on
non-vertical ascent pathways, combining an analytical solution for the velocity of a dike
with semi-analytical solutions for the stress field imposed by gravitational loads, such
as the load due to a volcanic edifice resting on the Earth’s surface. I develop a MatLab
script calculating the ascending velocity as a function of depth. I apply my method to
estimate the velocity of dikes in archetypal stress configurations. My script can be used
to estimate the ascent time of a magma batch and, thus, the time available for emergency
management after precursory signals are detected.
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Introduction

Volcanoes erupting at the Earth’s surface are evidence of the ability of magmas to
migrate through the crust from regions of production or storage to the Earth’s surface
(Tait and Taisne, 2013). The Earth’s lithosphere is brittle, meaning that it fractures
when stress overcomes a threshold value depending on the type of rock, temperature and
pressure conditions. Since permeable or open pathways in the lithosphere are rare and
faults tend to heal and become impermeable soon after slippage, usually fluids cannot
use pre-existing pathways to ascend. Fluids within the lithosphere may, thus, open their
own pathway by fracturing the rock if they are pressurised. This originates hydraulic
fractures, which are fluid-filled opening cracks propagating due to the pressure at their
tips overcoming the fracture toughness of rock. Dikes (or ‘dykes’) are magma-filled
hydraulic fractures.

Figure 1: A) A frozen dike on the coast in Southwest Iceland, with a thickness of 3 m
(person for scale). B) Part of the volcanic fissure formed during the 1783 Laki eruption
in southern Iceland. The feeder dike must have been at least 27 km long. Taken from
Gudmundsson et al. (2018).

From field observations at active or extinct volcanoes, we know that melt transport by
magma-filled fractures in Earth’s crust is an essential physical mechanism contributing
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Introduction

to volcanic processes. Eruptive vents and fissures in volcanic settings result from dikes
intersecting the surface during their propagation. It is clear, therefore, that the dynamics
of dikes is fundamental to the occurrence of volcanic eruptions.

Dikes have also a wider relevance to the dynamics of our planet and to the industry. In
fact, they also constitute the main mechanism of plate accretion at divergent boundaries
(mid-ocean ridges or continental rifts) (Lister and Kerr, 1991; Wright et al., 2012; Rivalta
et al., 2015). Moreover, diamonds are transported to the surface within rapidly-ascending
dikes filled with low-viscosity magmas called kimberlites. Furthermore, a mechanism
similar to diking is hydraulic fracturing, i.e. the injection of highly-pressurised fluids
(e.g. water, CO2, brine or other fluids) inside rock to enhance rock permeability for
geothermal purposes, or to store CO2 into underground reservoirs, or to retrieve mineral
deposits of gas and oil (Rivalta et al., 2015). Hydraulic fracturing is relevant for all
fluids injected into brittle-elastic solids, and has considerable relevance to many fields of
applied science and engineering.

Dikes are fractures in brittle-elastic rock filled with magma. Therefore, a variety of
processes are simultaneously acting and ideally need to be accounted for:

• fluid dynamics of a compressible fluid flowing between moving walls;

• fracture and elasticity of host rock, plasticity at the fracture tips;

• heat transfer which causes phase changes in magmas (crystallisation and bubble
nucleation and growth);

• variable physical and rheological properties of magma, as crystallisation may in-
crease magma viscosity by orders of magnitude, while density may decrease sub-
stantially if bubbles are present.

A typical approach in physical modelling consists in reducing complexity by examining
each aspect on its own first, and subsequently coupling some together to reach a more
comprehensive description. By following this procedure, the rich phenomenology of
diking can be successfully explained and, at best, the models even show some predictive
power.

The first groundbreaking studies about the orientation of dikes in the field were
carried out by Anderson (1905), who observed that dikes mostly align perpendicular to
the principal stress axis of least compression, and explained this in terms of minimisation
of work against the elastic forces in the rock. The first analytical models for the ascent
of buoyancy-driven fluid-filled fractures were conducted by Weertman (1971) to model
water-filled crevasses in glaciers. Weertman (1980) later applied the same model to dikes.

The study of dike propagation has paramount importance in the realisation of physics-
based models of volcanic hazard assessment, as stressed by Rivalta et al. (2019); Mantiloni
et al. (2021, 2023). In order to forecast location and time of impending future eruptions,
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Introduction

we must rely not solely on past eruptive episodes (this approach is employed in statistics-
based models, which may be however heavily limited in volcanic systems where data is
scarce), but on determining dike pathways in the crust according to their controlling
parameters. This is primarily done, first, by examining and interpreting sequences of
ground deformation and seismic swarms prior to possible volcanic activity (Tait and
Taisne, 2013), and second, by developing comprehensive models of diking. By calculating
the dike pathway, we retrieve the expected location of future eruptive vents (Rivalta et al.,
2019). If we can determine their ascent speeds, then we can also forecast whether the
magma batch may get arrested on its way, or, if the magma-filled fracture is expected
to breach the surface, how much time is available before this occurs. That may be
very useful, as lack of information on what to expect increases risks during emergencies.
Volcanic areas are sometimes densely populated (cfr. Campi Flegrei in Section 3.2),
and the application of physics-based dike propagation models along with statistical ones
already in use may contribute to grant longer advance warnings of the likelihood of an
eruption, with huge social and economic advantages.

Currently, the Campi Flegrei caldera (CF), which is located 12 km West of the Italian
city of Naples and hosts a population of 500k, is in a state of unrest. Ground deformation
and seismicity rates have been elevated for a decade and in the last years have shown
acceleration. Although this is debated, most scientists think that the magma reservoir,
located at a depth between 8 and 4 km, has been replenished as recently as 2012, although
it cannot be excluded that this has happened very recently as well. CF has hosted at
least three, and maybe up to about ten, caldera forming eruptions, the most recent of
which were the Campanian Ignimbrite (39ka), which had a volume of ∼ 300 km3, and the
Neapolitan Yellow Tuff (15ka), which had a volume of ∼ 40 km3 (Smith et al., 2011). The
last magmatic eruption at the caldera was the 1538 Monte Nuovo eruption (Guidoboni
and Ciuccarelli, 2011). Even a small eruption such as Monte Nuovo, which had a volume
of 0.025 km3 (Di Vito et al., 1987), would be disastrous today.

A dike may be in general driven by three factors: magma buoyancy, external stress
gradients, and the pressurisation of a feeding source. Dike pathways and ascent velocities
strongly depend on the stress field at depth: as mentioned above, stress steers magma
trajectories, that are not simply vertical along the crust, while the dip of the trajectory
at every point controls the intensity of the buoyancy pressure along the pathway. The
stress field anywhere in the Earth’s lithosphere is determined by many contributions,
the largest of which are the regional (far-field) stresses (in turn determined by plate
tectonics), and more local stresses imparted by the load of gravitational loading and un-
loading generated by topography changes. Other contributions are generated by faulting,
intrusions, pressurisation of magma chambers. By combining a model of the stress field
at the volcano with a model for the magma trajectories, we can potentially determine
the future magma pathways and vent distribution.

In this thesis, I aim to develop a simple model for the ascent velocities of dike
intrusions along curved and tilted pathways, and to apply this model to calculate the
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Introduction

expected velocity of magma pathways at CF.
In Chapter 1 , I will discuss the fundamental results of the theories of elasticity,

linear elastic fracture mechanics, fluid dynamics and rheology (i.e. flowing properties) of
magma, which need to be combined to provide a complete model of fluid-filled fractures
in the brittle crust (i.e. magmatic dikes). Available techniques to gather information
on dike propagation (mainly seismic data, deformation data at the Earth’s surface and
analog methods are considered) will also be listed, together with main observations, at
the beginning of the Chapter. In Chapter 2 , diking as a physical mechanism of magma
transport will be discussed. I will derive an estimate for the ascent speed of dikes in the
crust, based on the theories presented in the previous Chapter and some assumptions
which are commonly used in all the models formulated in the literature. In addition,
the steering effect of surface topography, through gradients in the stress fields that dikes
orient to, will be discussed – both pathways and ascent speed are influenced by this
interaction. Some real-world diking events will be briefly examined in Chapter 3 . I will
discuss my results in the context of these events, with particular attention to velocities
involved and time intervals before eruptions during which the dikes propagated in the
region. With the social importance of these models firm in mind, I will also discuss
my models in the context of the current crisis at the Campi Flegrei Caldera. Finally,
in Chapter 4 conclusions will be drawn and I will present some aspects which could
improve the understanding of the phenomenon of dike propagation, but not treated in
this discussion.
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Chapter 1

Background to the study of magmatic

dikes

Modelling magma transport by diking involves accounting for complex interactions
between the brittle-elastic response of cold host rock and the viscous flow of the enclosed
fluid. In addition, non-linear rock behaviours such as fracture and plasticity play an
important role in the dynamics of propagating magma batches (Rivalta et al., 2015).

As extensively discussed in Rivalta et al. (2015), this challenging coupling of multiple
processes has historically led to the development of two approaches, or ‘schools’, to
magma propagation modelling, which simplify the problem in two different ways. In the
toughness-dominated regime, it is assumed that an inviscid fluid fills the propagating dike
(or, simply, the crack). The removal of viscosity effects precludes all information on the
timescale of magma transport, but it dramatically simplifies the propagation problem, so
that this approach can be used to calculate the dike pathways in a heterogeneous stress
field, which is an important requirement at volcanoes. A simple analytical solution
in the toughness-dominated regime is the so-called Weertman crack (Weertman, 1971),
presented in more detail below (cfr. Section 2.1). In contrast, the viscosity-dominated
approach neglects energy dissipation by fracturing, so that the fluid dynamics becomes
dominant. These latter models output the dike velocity, but the much bigger mathemat-
ical complexities involved in solving the flow problem mean that only planar dikes can be
considered in this approach. Thus, it is not possible to take into consideration realistic
stress fields of volcanoes, which are heterogeneous and would most often induce bending
on the dike plane. Moreover, since the tilt of the dike pathway strongly influences the
buoyancy force along the trajectory, the velocities calculated on planar pathways are not
representative of realistic dike velocities.

Both strategies have clear limitations and are now considered two end-member dike
models. Both approaches provide 2-D semi-analytical descriptions and coupled toughness-
viscous models have been achieved through numerical modelling. The individual ap-
proaches have been generalised to 3-D also through numerical modelling, but coupled 3-D
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Chapter 1 - Background to the study of magmatic dikes

models have not yet been achieved. At the current state of the art, one-way coupling can
be used to combine the two approaches: (1) retrieve the dike pathway with a pathway-
only model, (2) retrieve dike velocity with a velocity-only model, using the pathway as
input. This method was successfully carried out by Pinel et al. (2017).

Figure 1.1: Schematic view of the strengths and weaknesses of the two approaches, with
the shape they expected for propagating dikes. Taken from Rivalta (2021).

The two approaches result in different dike geometries (Fig. 1.1) and dike propagation
dynamics. In the viscosity-dominated regime, a constant-width channel of magma is left
behind during propagation, whose thickness is proportional to the fluid viscosity. In
order to sustain propagation, coupling with a magma chamber is needed as a source that
continuously provides fluid. Thus, constant propagation velocity is obtained only by
imposing a constant influx of magma. In contrast, toughness-dominated dikes containing
a constant mass can reach ‘self-sustained’ or ‘self-driven’ propagation, provided their
volume is larger than a minimum volume for propagation, Vc, as better explained in
Section 2.1.

Combining these approaches into a comprehensive, although simple, model will be
the subject of my thesis, developed in Chapter 2. In this Chapter, I present some
preliminary notions. In Section 1.1, I introduce the geophysical observables connected
with magma propagation by diking. Observations are well-explained by combining the
results of the theories of linear elasticity and linear elastic fracture mechanics (LEFM,
for short), which I will present in Section 1.2, with the fluid dynamics and rheological
behaviour of magmas discussed in Section 1.3. I evaluate simple canonical states of
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Chapter 1 - Background to the study of magmatic dikes

stress for volcanic regions in Section 1.2, which are main controls on dike pathways and
velocities.

1.1 Geophysical observations of propagating dikes

Dikes and sills (their horizontal counterpart) are responsible for transporting magma
from great depth (up to 200 km below the surface!) and over vast lateral distances
(Rivalta et al., 2024). Propagation of magma by diking causes deformation (strains)
and stresses in the host rock (Watanabe et al., 2002; Tait and Taisne, 2013). Stresses
are forces acting within a continuous body. These are exerted on the material through
its surfaces: normal stresses act perpendicular to a surface, while shear stresses act
tangentially along the surface. Thus, stresses are forces per unit area, measured in Pa.

Geological observations of frozen dikes in the field and geophysical signals (in partic-
ular, surface deformation, gravity changes and seismicity) acquired during propagation
events inform numerical models of propagation.

Field observations In the field, magmatic intrusions are generally found as intercon-
nected systems of solidified dikes and sills, exposed by erosion. We see that sills may be
fed by thinner dikes, as shown in Fig. 1.2, and orientations from vertical all the way to
horizontal are possible for arrested dikes.

Figure 1.2: Dolerite Ferrar sills and their feeder dikes (Antarctica), from the New
Encyclopedia of Volcanoes (Rivalta et al., 2024).

Propagation, however, does not occur at random angles but it is closely connected
to the physical properties and stress state of their surrounding environment. Before
erupting at the surface, magma may travel significant distances (as much as tens of
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Chapter 1 - Background to the study of magmatic dikes

kilometres) underground, often forcing open new pathways rather than following pre-
existing conduits. At some volcanoes showing continuous activity, such as Stromboli
volcano in Italy, magmas mostly erupt using a pre-existing conduit, but these conduits
are expected to freeze rapidly if they are not supplied with continuous heat. When
activity diminishes, a new conduit is then formed by diking.

A common misconception is that existing pathways constitute the only viable conduits
for magma transport. Actually, existing pathways may be entirely bypassed, unless they
are favoured considering the stress state in the region (Rivalta, 2021). However, stresses
are continuously variable in volcanic settings (see the components of stress listed in
Section 1.1, all of them varying with different timescales), so that eruptions do not
happen always from the same fissure. Eruptive episodes in turn change the loading state
by deposition of products, and dikes move on other new pathways.

Figure 1.3: Orientation of eruptive fissures (red) and strike-slip faults (green) in the
Reykjanes peninsula (inset: expected orientation according to the Anderson theory).
Modified from Rivalta et al. (2024).

Moreover, magma channelling through pre-existing faults, although often proposed,
is infrequently found in the field (Rivalta et al., 2024). In fact, dikes orientation pattern is
considerably different from the one of shear-fractures, i.e., faults in the Earth’s lithosphere,
which tend to orient in order to encourage sliding between plates without opening walls
(Rivalta, 2024). Large work against elastic forces would thus be needed to dilate the two
walls of a fault. Fluid-filled fractures, instead, have to accommodate a volume and thus
will optimise according to this criterion. This can be seen in the field, where it becomes
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Chapter 1 - Background to the study of magmatic dikes

evident that dikes and faults orient themselves according to different patterns, once the
stress state of the region is known. The best examples are found in areas of gentle
topography such as the Reykjanes peninsula in Iceland (Rivalta et al., 2024). There,
NE-SW-oriented eruptive fissures cross-cut N-S oriented strike-slip faults, as shown in
Fig. 1.3.

As explained by Dahm (2000a), an opening fracture will minimise the work done
against elastic forces if it opens perpendicularly to the direction of the minimum com-
pressive stress σ3 (that is, aligned to the maximum compressive stress, σ1).

The condition of minimum work done against elastic forces actually paves the way for
numerical integration of dike pathways - in every point, the direction of the maximum
and minimum compressive stresses are found by numerical procedures and thus the
direction of new increment of the fracture length is identified. These simulations only
pertain to toughness-dominated regimes of dike behaviour; hence they give little to none
information about dike velocities along the path.

In the field, we observe dikes sometimes get arrested at layer discontinuities, or
suddenly changing their propagation direction. Sometimes, they keep on propagating
basically unaffected by any structural complexity in the host rock.

The shape of magmatic intrusions is inferred from the two-dimensional cross sections
of frozen dikes in the field, by mapping the contact between solidified magma and its
host rock. The third dimension is then usually obtained by typical values of aspect
ratio (thickness / breadth), once the thickness of the fracture’s aperture is measured.
As stated in Rivalta et al. (2024), magma compositions that are higher in silica, and
therefore higher viscosity, have a higher aspect ratio.

Seismic observations When shear stresses build up in the crust, surfaces previously
held together by friction may suddenly start to slip in opposite direction. This process
is known as ‘failure’, or ‘earthquake’, and results in seismicity.

As far as propagating dikes are concerned, small earthquakes appear in ‘clouds’
or ‘swarms’ and are due to the high stress concentration at the fracture’s tip (see
Section 1.2), causing host rock to fail with the advancing head of the dike. Localisation of
hypocentres in these seismic swarms provides insight into the geometry of the pathway of
ascending magmas. As shown in Fig. 1.4, propagation is rarely only vertical and curved
pathways are common, according to the stress field at depth.

Moreover, since the clouds of earthquakes induced by propagating dikes are migrating,
the dikes’ ascent velocities may be constrained from the time evolution of the swarms
(Rivalta et al., 2024). Geophysically-inferred dike velocities range from 1 km/day to a
few km/hour. These are in agreement with petrological evidence: it is required that
dikes propagate rather fast in order not to solidify at depth, and transport minerals,
such as diamonds, up to the surface, without damaging them.

Dikes might decelerate or accelerate during their ascent, especially when close to the

10



Chapter 1 - Background to the study of magmatic dikes

Figure 1.4: Spatio-temporal evolution of hypocentres along a cross-section of Piton de
la Fournaise volcano, preceding the 1998 eruption. Each plot shows by black marks the
events which occurred between the dates given at the bottom of the plot. In addition,
the events which occurred prior to those 100 earthquakes are plotted by grey marks.
The lower-right plot shows all the located events of the pre-eruption swarm. Taken from
Battaglia et al. (2005).

surface where topography is highly heterogeneous. Acceleration is often the preamble of
an eruption, while slowing dikes get typically stalled and freeze under the surface.

Geodetic observations Typical strain values for geophysical materials in laboratory
experiments are ǫ ∼ 10−8 − 10−9 (that is, a variation of ∼ µm over a length of ∼ 1 km).
Tectonic deformation rates are of the order of ∼ cm/year. Propagating dikes, in contrast,
induce much higher strain rates around their propagating tip. The ground above dike
intrusions can deform as fast as cm/hour as dikes approach the Earth’s surface. Dike
intrusions are quite easily recognised based on geodetic observations, since they create
distinctive patterns of ground deformation (Rivalta et al., 2024). Magma inside dikes
forces the opening of the dike walls, causing an uplift of rock volumes adjacent to the
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Chapter 1 - Background to the study of magmatic dikes

dike. Directly above the dike, in contrast, we observe subsidence due to the upper tip-
line of the crack being pulled down. At the surface, these intense strains concentrated in
a very small region may result in faulting, especially when dikes reach shallow depths.

Figure 1.5: Surface displacements at Manda Hararo volcanoes, Afar (Ethiopia) during
the 2005 dike event. Vectors show horizontal displacements, colours show vertical
displacements. Taken from Rivalta et al. (2024)

Geodetic monitoring techniques, such as GPS/GNSS or InSAR, are fundamental
tools used to detect and record ground swelling around volcanoes. These data can then
be matched to mathematical models describing the expected deformation for different
volume change geometries at depth. We then retrieve information (volume and spatial
distribution of magmatic intrusions) about deformation sources underneath the ground
by inversion. The volumes of geophysically-observed dikes from the last decades range
from about 105 m3 up to a few km3 Rivalta et al. (2024).
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Chapter 1 - Background to the study of magmatic dikes

Figure 1.6: Different time-dependent inversion models from Beauducel et al. (2020),
employed during the June 2014 pre-eruptive unrest at Piton de la Forunaise volcano.
Colours stand for the most recent date of each time window. Size of each source is
proportional to its associated volume variation. Transparent plain at depth = 0 km
simulates the sea level.

Geophysical analog models It is impossible to directly observe subsurface magma
ascent, and it is impossible to reproduce this with realistic experimental conditions in
the laboratory. Therefore, analog models are ordinarily employed. The rationale behind
these models is that although physical quantities are several order of magnitude less than
in real-world situations, there exist some adimensional numbers controlling the dynamics
of the process (e.g. the Reynolds number) that are kept constant for the laboratory and
the real setting.

Magma dikes can be visualised on a laboratory-scale through air or water injections
in gelatin in a transparent container, as carried out by, for example, Dahm (2000a) or
Watanabe et al. (2002). Once air gets injected through a small hole at the bottom of the
container, a crack forms, since air density is much smaller than gelatin’s. The crack has
an ‘inverse teardrop’ shape (see Fig. 1.7 and Fig.1.8). Only when enough air volume is
introduced, the fracture starts propagating slowly (Rivalta et al., 2024).
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Chapter 1 - Background to the study of magmatic dikes

Figure 1.7: Left: Shape of an ascending air-filled crack in gelatine. Right: Air-filled
cracks tipline versus a penny-shaped tipline. Taken from Davis et al. (2020).

Figure 1.8: Photograph of an experimental air-filled dike during propagation. Taken
from Muller et al. (2001).

1.2 Theory of elasticity and fracture mechanics

Materials are called elastic if they deform upon the application of a force and return
to their original shape when the force is removed (Turcotte and Schubert, 2014, p.185).
The prototype of elastic behaviour is the spring, described by Hooke’s Law:

F = k∆u (1.1)

where the force applied to the system F and displacement ∆u are linearly proportional
by a material constant.
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Chapter 1 - Background to the study of magmatic dikes

In the mechanical description of continuous bodies, Hooke’s law is generalised by
the introduction of the concepts of stress and strain, already defined in Section 1.1.
These physical quantities enjoy a mathematical description as the tensors σij and εij,
respectively. Tensors can be decomposed in an isotropic component and a deviatoric
component. For a linear elastic material, the following relations hold between the
isotropic and the deviatoric components of stress an strain, respectively:

1

3
σkk = Kεkk (K > 0) (1.2)

σ′

ij = 2µε′ij (µ > 0) (1.3)

The resulting generalised Hooke’s law relating stress and strain reads as:

σij = 2µεij +

(

K −
2

3
µ

)

εkkδij (1.4)

This is the constitutive equation for linear elastic solids (see rheology in Section 1.3). By
coupling this equation with the momentum conservation for continuous bodies, we obtain
the Cauchy-Navier equations for isotropic, homogeneous elastic media. By solving the
system of equations, the displacement field u is known for the material, once the external
forces are given.

Rocks, as any other solid material, present an elastic behaviour whenever:

i. applied stresses last relatively short times;

ii. stresses do not approach the resistance limit of the rock;

Elasticity provides a valid description for crustal rocks at relatively low temperatures
and confining pressures in the lithosphere.

Stress state in the lithosphere At great depth within the Earth’s crust, it is
reasonable to assume that the state of stress, at least to a first approximation, is
lithostatic:

σxx = σyy = σzz =
1

3
σkk ≡ plit (1.5)

This corresponds to a isotropic stress tensor σij = plitδij, and by solving the equations
of equilibrium one obtains for lithostatic pressure:

plit(z) = −ρrgz (1.6)

where z is the vertical coordinate, here taken positive upward, and ρr is the density of
the host rock.

Note that here and in the following discussion, we adopt the convention of considering
compressive stresses as positive.
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Chapter 1 - Background to the study of magmatic dikes

With increasing depth, temperature increases and anelastic processes of deformation
become more and more effective, leading to a relaxation of deviatoric stress (i.e., off-
diagonal components of σij becoming negligible).

This assumption, however, does not work well for volcanic settings, where many
processes may lead to the build-up of non-lithostatic stresses.

Figure 1.9: Schematic representation of the different sources of stress that may be present
at volcanoes. Adapted from Rivalta (2021)

Contributions to the stress field in volcanic settings include, roughly from larger to
smaller in intensity and spatial ‘reach’ (Rivalta et al., 2019):

• tectonic stress;

• loading due to volcanic edifice loading;

• edifice unloading e.g due to caldera collapse, landslides and flank collapses;

• intruded dikes;

• pressurisation of magma reservoir;

• major faults and earthquakes.

The stress state at volcanoes is, thus, complex and would require accurate, dedicated
modelling. Here, I will take a simple approach to the problem, by only considering
gravitational loading and unloading and by considering simple edifice or caldera geomet-
ries.
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Chapter 1 - Background to the study of magmatic dikes

The stresses induced by topographic loading A fundamental class of problems
in elastostatics is computing the stress and displacement in every point of an infinite
elastic half-space when a force is applied normally in a point P of the its surface. This
is usually referred to as Boussinesq problem (1878). Jaeger et al. (1969) delivers the 3-D
solution for the Boussinesq problem for a point load:

σxx =
N

2π

(

3x2z

r5
+

(1− 2ν)(y2 + z2)

r3(z + r)
−

(1− 2ν)z

r3
−

(1− 2ν)x2

r2(z + r)2

)

σyy =
N

2π

(

3y2z

r5
+

(1− 2ν)(x2 + z2)

r3(z + r)
−

(1− 2ν)z

r3
−

(1− 2ν)y2

r2(z + r)2

)

σzz =
N

2π

(

3z3

r5

)

σxy =
N

2π

(

3xyz

r5
−

(1− 2ν)xy(z + 2r)

r3(z + r)2

)

σyz =
N

2π

(

3yz2

r5

)

σxz =
N

2π

(

3xz2

r5

)

where r is the distance from the origin to the point (x, y, z).

Figure 1.10: Configuration with a strip load above the free surface. Modified from
Watanabe et al. (2002)
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Chapter 1 - Background to the study of magmatic dikes

If the total force is distributed over an infinitesimal strip of width dx, then N = Pdx
and the solution for a 2-D strip loading is obtained by integration for −a ≤ x ≤ +a. We
also impose a plain strain configuration, that is, whenever one dimension in a system
is very large compared to the others, one may assume that strains in that direction are
negligible. In plain-strain elasticity, thus, we consider only a cross section (the x − z
plane of interest) with the fracture having ‘infinite’ extension along the third dimension
(y axis). Earlier studies account for 10−2−10−4 as typical values of aspect ratios of dikes
(Rubin, 1995). Hence, they are often approximated as planar sheets, as I will discuss
in Section 2.1. This assumption remains accurate exclusively along a central axis if the
fracture is sufficiently broad in the y direction (Davis et al., 2023).

From Eq. 1.4, if we impose εyy = 0, one can easily obtain the condition:

σyy = ν (σxx + σzz) (1.7)

Jaeger et al. (1969) provides the following expressions for the stress tensor components:

σxx =
P

π
((θ1 − θ2)− sin (θ1 − θ2) cos (θ1 + θ2))

σzz =
P

π
((θ1 − θ2) + sin (θ1 − θ2) cos (θ1 + θ2))

σxz =
P

π
(sin (θ1 − θ2) sin (θ1 + θ2))

where the angles are defined in Fig. 1.10. A solution is also possible in terms of the
angles θ1, θ2 and the radii r1, r2. By substituting P with −P , one obtains a stress state
to model the unloading due to surface mass removal.

Similar equations are also valid for a triangle-shaped load and can be found in Dahm
(2000a).

Fracture and plasticity To a first approximation, elasticity may be adopted to
describe the behaviour of lithospheric rocks in which dikes propagate. However, in the
region in front of the dike tip, where strains are very intense and temperatures may be a
significant fraction of the rock solidus, we encounter significant deviations from an ideal
elastic behaviour.

At low temperatures and confining pressures, rocks are brittle-elastic solids, and
large deviatoric stresses cause fracture (Turcotte and Schubert, 2014, p.185). Whether
lithospheric rock will respond elastically or in a brittle fashion to an external perturbation
dramatically depends on the duration of the imposed stress. In order to induce fracturing
in the material, the timescale of transport of the perturbation needs to be much shorter
than the timescale of relaxation of the medium (Rivalta, 2024).

Fracturing is a non-linear, irreversible process that generates a displacement discon-
tinuity ∆u, or slip, along specific planes in the material. Another non-linear behaviour
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Chapter 1 - Background to the study of magmatic dikes

is plastic deformation. Like fracturing, it is valid for rock at high confining pressures,
but in different thermodynamic conditions. If deformation is plastic, the material yields
in a widespread, continuous manner, much like a fluid. The difference between brittle
and plastic response under some imposed stress is shown in Fig. 1.11.

Figure 1.11: Differences in fragile and ductile behaviour for a rock sample. Taken from
Rivalta (2024).

Slip may be parallel to the fracture plane, giving rise to shear fractures, or faults
(Mode II fracturing, or Sliding Mode, and Mode III fracturing, or Tearing Mode), as
explained in Jaeger et al. (1969, p.88). Dikes are predominantly tensile cracks, that is,
the two walls of the fracture move apart in a direction perpendicular to the plane of
the crack (Mode I fracturing, or Opening Mode), with magma occupying the intervening
space. Different modes of fracturing are presented in Fig. 1.12.

Lithostatic stress at z = 5 km depth is of the order of ∼ 100 MPa, and is therefore
sufficient to pinch close any tensile crack that may generate within the crust. However,
if the fracture is filled with a pressurised fluid, the overpressure against crack wall may
generate enough stress to overcome the lithostatic pressure of the host rock, and get the
fracture to stay open, as discussed in Chapter 2.

Linear Elastic Fracture Mechanics (LEFM) has addressed the problem of determining
the stress state near the tip of a tensile crack. In a local polar coordinate system (see
Fig. 1.13), with its origin at the crack’s tip, the stress field can be expressed as:

σij =
K√
2πr

fij(θ) +O(r) (1.8)

At the crack tip line, thus, the predicted stress becomes singular (r → 0), and its
intensity depends on the stress intensity factor K for mode-I fracturing. This quantity
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Figure 1.12: Schematic view of different fracture modes. Taken from Rountree et al.
(2002).

is defined once the crack geometry and the stress applied are known - thus, it can be
found analytically, numerically or even experimentally measured.

Figure 1.13: Schematic view of coordinate system at the crack tip. Taken from Atkinson
and Craster (1995).

As far as the study of dike propagation is concerned, we will be interested in determin-
ing a condition under which brittle fracture are allowed to start forming and, conversely,
what conditions cause dikes to cease propagating (Parfitt and Wilson, 2008). Fracture
occurs when stress at the crack tip overcomes a threshold at which molecular bonds are
broken,

σ > σcrit (1.9)

From Eq. 1.8, the order of magnitude of stress near the fracture will depend on its K.
Thus, the propagation criterion expressed with stress values is substituted by a condition
on the stress intensity factor and a critical value for K > K∗ = Kc. This quantity
is actually a rock property and it is called the fracture toughness. This represents a
measure of the maximum intensity of stress that the mineral grains at the dike tip
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Chapter 1 - Background to the study of magmatic dikes

can withstand before failing, and is the parameter actually controlling the processes of
magma propagation and arrest by diking, as we will see in Chapter 2.

As suggested by Rubin (1995), when dealing with the propagation of tensile cracks,
a useful distinction between three regions is made:

• the crack, where the material faces are completely separated;

• the intact host material, where deformation is essentially elastic (or in general is
adequately described by some other continuum model). Some (Rubin, 1993) also
consider a possible visco-elastic behaviour for host rock, in order to account for
different timescales of intrusions.

• an intermediate region surrounding the crack tip, the so-called ‘process zone’, where
the strength of the material has been exceeded and inelastic deformation occurs
rather than brittle fracturing. This region is effectively described by elasto-plastic
fracture mechanics. In the process zone, or damage zone, a lot of microcracks are
present. When the dikes become bigger, the process zone widens too, this can be
accompanied by earthquakes. These lead to dissipation of energy and their effect on
the elastic energy of the system should be included. This, eventually, also increases
fracture toughness. This is the reason why we cannot use laboratory values of Kc

for dike propagation in the field; instead, we use an ‘efficient’ fracture toughness
Keff

c some orders of magnitude larger (scale-dependency).

The divergent stress profile close to the crack tip reaches the yield strength of the material
at some distance from the crack tip. Inside the region, the material is plastic (microcracks
form), outside is linear elastic. A criterion establishes whether we can expect propagation
of the crack tip.

1.3 Fluid dynamics and rheology of magmas

Solids undergo finite deformation upon being stressed. In contrast, when a shear
stress is applied to a fluid, this responds by flowing: Newtonian fluids are characterised
by a linear relationship between stresses and rates of strain ˙εij.

Elastic solid Newtonian fluid
σ′

ij = 2µε′ij σ′

ij = 2ηε̇′ij

The definitions of strain and strain rate are, respectively:

εij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

ε̇ij =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)
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Chapter 1 - Background to the study of magmatic dikes

While strain is the result of a gradient in the displacement of elements of the solid
from its equilibrium position, strain rates are the result of gradients in the velocities
of displacements of fluid elements. As stated by (Turcotte and Schubert, 2014, p.411),
a rheological law for the fluid is the equation that relates imposed stresses to velocity
gradients in the fluid.

Rheology is the branch of science which studies the ‘flow’ of materials under some
imposed forces (e.g. a given state of stress). Many applications are found in fields of
medicine (emo-rheology), food industry, engineering, mathematics and geophysics. The
rheological behaviour of materials is described by a so-called constitutive equation - an
assertion about mechanical properties of the material in the form of a mathematical
functional relation between stress and strain (and their time-derivatives).

Crystal-free and bubble-free magmas behave as viscous fluids, or ‘Newtonian’ (Rubin,
1995).

Lubrication approximation of fluid dynamics In a fully bounded fluid, lubrication
theory is used to determine the pressure distribution on the fluid volume. It can be used
whenever one dimension of fluid flow is significantly smaller than the others. Dike length
scale L, along the z axis, is always some order of magnitude greater than the fracture’s
aperture w, along the x axis (see Fig. 1.14).

Figure 1.14: Schematic view of the dynamics of fluid-filled fractures in Dahm (2000b).
Actual fractures are even thinner in their extension along the x axis.

This determines an approximation to the Navier-Stokes equations governing fluid
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flow, which are written as:
{

∂p
∂x

= 0
∂p
∂z

− ρmg = η ∂2uz

∂x2

(1.10)

that is, pressure variations are neglected along the least significant dimension. The
vertical component of the velocity uz(x) is described by Hagen-Poiseuille flow for a fluid
filling a plane fracture with a moving boundary:

uz(x) =
1

2η

(

−
dpvisc
dz

)

(

h2 − x2
)

− v (1.11)

where the pressure decreases in the increasing z direction, so that the pressure drop
dpvisc/dz is negative.

Since everything is stationary, the net flow over a horizontal line within the fracture
must be zero (Dahm, 2000b). By imposing the condition

∫ +h

−h

uz(x) dx = 0 (1.12)

one obtains a useful equation relating viscous pressure drop and velocity of the filling
fluid:

dpvisc
dz

= −
3η

h2
v (1.13)

Very recently Furst et al. (2023) have combined fluid flow with dike trajectory in 2D.
Dahm (2000b) already paved the way for this result. However, a coupling for the 3D
problem is still missing.
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Chapter 2

Modelling magma transport by diking

Magma transport through the brittle crust occurs by diking, i.e., the propagation of
magma-filled fractures (Rubin, 1995). In industrial contexts, the same mechanism is also
called hydraulic fracturing.

The evidence that this process is prevalent compared to other proposed mecha-
nisms lies in observing the geometry of ascending magma-filled bodies, as described
in Chapter 1. Porous flow, for example, is a very important mechanism for magma
ascent but limited to regions of high permeability, which are typically restricted to the
deep regions where partial melting occurs, and to regions internal to magma reservoirs,
where temperature is high and partial melt is thermally stable. There, porous flow is
responsible for the migration of small melt pockets that would have not had sufficient
overpressure to fracture the more rigid rock matrix (Rubin, 1995).

Igneous bodies in the field include large granitic diapirs (e.g. the rocks constituting
much of the Alps), which have a more rounded aspect ratio than dikes. Diapirism, i.e.
the slow ascent of high-viscosity magmas in the viscoelastic deep crust, was historically
considered as a common mechanism for the uprise of magma through the crust (Rubin,
1993). However, ascent velocities predicted by a fluid dynamical model of diapirism
are too low even in hot crustal layers, and zero closer to Earth surface (Dahm, 2000a).
Solidification would prematurely arrest rising diapirs of magma. Currently, diapirs in
the field are interpreted as the ballooning of dikes filled with granitic magmas which
became arrested and inflated post-arrest through uprise of further magma contained in
the intrusion tail (McCarthy et al., 2015).

Diking, therefore, constitutes a viable model of rapid ascent of magmas of all compos-
itions (Cruden and Weinberg, 2018). Propagation velocities from analysis of seismicity
induced at the tips of propagating dikes range from about 0.1 to about 1 m/s. These
velocities allow dike intrusions to travel long distances in few days (Davis et al., 2023),
with little or no significant solidification, as suggested by Dahm (2000a). Since diking
events usually enfold in the time span of a few hours to a few days, physics-based models
are not only important for a better understanding of the physical mechanisms promoting
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volcanic eruptions, but they can also support hazard assessment, and could potentially
lead to real-time physics-based forecasting of magma ascent towards the surface. In
addition, data-driven approaches are commonly employed in forecasting models. Albeit
very successful in a wide range of contexts, these may perform poorly in volcanic settings
where a great deal of data is lacking.

Diking is predominant in the upper crust, as it requires rocks with a brittle behaviour.
In the lower part of the crust, where ambient pressures and temperatures favour a ductile
behaviour for rock, diking is inhibited. However, observations of seismicity migrations
clustering on flat bodies in the lower crust or even the lithospheric mantle exist (Cesca
et al., 2020; Wilding et al., 2023). Brittle fracturing of magmas at high temperature is
also possible whenever there is a sufficiently high contrast in viscosity with the enclosed
fluid and when strain rates are relatively high due to the rapid propagation (Rubin, 1993;
Tuffen et al., 2008). Timescales are thus fundamental to consider when considering the
plausibility of a diking model.

2.1 Dike formation and self-sustained propagation

Figure 2.1: Shape of a dike with its characteristic dimensions. The propagation direction
is also marked by an arrow. Modified from Watanabe et al. (2002)

Dikes are sheet-like (sometimes referred to as ‘tabular’) magma intrusions. Consistently
with empirical observation, three characteristic dimensions are defined (refer to Fig. 2.1):
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• length L = 2a (also called height for vertical dikes); it is the longest dimension,
with typical values in the range: 100 m < L < 10 km.

• thickness, or width w = 2h; typically, one has 10 cm < w < 10 m.

• breadth B, or lateral extent; for vertical propagating dikes, one always has B < L
with values in the range 1 km < B < 10 km.

Width is typically, as seen in the field, much smaller than length and breadth (vertical
and horizontal extents, respectively), so dikes are often reasonably approximated as 2-D
sheets in plain strain condition (see Fig. 2.2) - only a cross section along the breadth
dimension is considered so that B becomes irrelevant. 3-D models often use penny-
shaped cracks, so that the two horizontal dimensions (L and B) are actually both equal
to 2a (see Fig. 2.3).

Figure 2.2: Dimensions of dikes from the field. Left: Dike exposed by erosion on Piton
des Neiges, Reunion Island. Right: Dike reaching the surface at Nyiragongo. Taken from
Smittarello (2019).

As pointed out in Section 1.1, according to fracture mechanics principles, a fracture
in a brittle material (in our discussion, cold rock in the upper lithosphere) can extend if
the stress overcomes a critical threshold, and this condition is represented by the stress
intensity factor at the fracture tip, K, being greater than the rock’s fracture toughness
Kc.

Dynamic propagation of magma-filled cracks is driven by three main factors, which
can act simultaneously or in isolation: (Nakashima, 1993)

1. the buoyancy of magma with respect to the host rock;

26



Chapter 2 - Modelling magma transport by diking

2. the external stress field;

3. the pressurisation of a magma chamber feeding the dike.

The last point refers to the fact that if the dike is connected to a magma reservoir, it
gains an additional overpressure. However, once the dike has begun its propagation, the
chamber de-pressurises and does not contribute significantly anymore at later times. For
simplicity, in this thesis I concentrate on the first and second driving factors, and neglect
the feeding pressure of a magma chamber. This contribution can be added in future
studies.

The force balance between internal magma pressure pint and elastic stresses of host
rock directed normally to the dike aperture, σn, is referred to as the ‘overpressure’ of the
dike with respect to the surrounding environment:

δp0 = pint + σn (2.1)

It represents an important boundary condition to the problem of coupling elasticity and
fluid dynamics.

Fluid-filled fractures are expected to change their shape as a result of the equilibrium
between internal and external pressure. This way, they may reach a condition that leads
them to propagate (Dahm, 2000a). For uniform loading stresses, the elastostatic solution
for the dike thickness profile is elliptical and the thickness w at the centre is: (Rubin,
1995)

w(0) = 2h(0) =
1− ν

µ
δp02a (2.2)

Figure 2.3: A schematic view of a penny shaped-crack of length L = 2a. Modified from
Davis et al. (2020).

A 3-D penny-shaped crack with elliptical cross-section, filled with a fluid of uniform
overpressure δp0, has the volume: (Tada et al., 2000)

V =
8

3

1− ν

µ
δp0a

3 (2.3)
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Figure 2.4: Origin of the buoyancy gradient along the fracture. Taken from Rivalta et al.
(2024).

A fluid injected in a planar, vertical crack, however, will be subject to a non-
uniform overpressure. In fact, lithostatic stress increases more rapidly with depth than
hydrostatic stress in the magma (see Fig. 2.4). As a result, the overpressure in the dike
decreases with depth, following an approximately linear trend.

As studied by Dahm (2000b) excess pressure at depth z within the fracture is:

δp(z) = δp0 +∆γz,−a ≤ z ≤ +a (2.4)

where δp0 is the excess pressure at the centre of the fracture, and ∆γ is the overpressure
gradient, dp/dz, which, in the case of a vertical crack filled with a fluid of density ρm
within rock of density ρr is ∆γ = (ρr − ρm)g = ∆ρg. Cracks that are not vertical have
buoyant pressure gradients proportional to the sine of their dip angle δ (Rivalta, 2021).

The linear pressure gradient along the dike profile results in an asymmetric redistri-
bution of the enclosed fluid — more magma will flow towards the region of the fracture
which is less pressed from the external stresses. The dike will assume an inverse ‘teardrop
shape’, typical of the Weertman crack.

Due to the fluid redistribution within the dike, the stress intensity factor K at the
dike head will be greater than the one at the tail. Within a 3D framework, Davis et al.
(2020) showed that the condition K > Kc translates into a condition for the contained
volume, V : V = Vc. When this condition is met, the fracture head advances, while
at the tail the confining pressure squeezes the enclosed fluid, which flows upward. The
fracture eventually closes at its back, which translates into the condition K = 0. By
applying the conditions K+ = Kc and K− = 0, where the symbols + and − refer to
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the propagating tip and the tail tip, Davis et al. (2020) retrieves the critical volume
for a three-dimensional buoyancy-driven fluid-filled crack dipping by an angle δ (see
Appendix A for the full derivation):

VC =
1

16

1− ν

µ

(

9π4K8
c

∆γ5 sin5 δ

)1/3

. (2.5)

If the propagation direction, stress gradient and fluid quantity do not change drastic-
ally during propagation, the dike will maintain its ability to break rock at the front
tip. Hence, the crack will show a self-similar behaviour, with an approximately constant
shape and velocity, for great distances. No new influx is needed, so this propagation
style is referred to as ‘self-driven’, or self-sustained. The pressure sustaining dike motion
is given by:

∆p =

∫ +a

−a

dσn

dz
dz (2.6)

As suggested in Davis et al. (2020), some processes that might cause a reduction in
volume (e.g., loss of fluid within the dike tail or leaking of fluid into porous rock) may
promote dike arrest if they lead to V < Vc. It is necessary that any reduction in volume
is compensated by variations in the enclosed fluid by other mechanisms (e.g., exsolution
of gas in bubbles), as highlighted by Rivalta (2024). If the tail is filled with a viscous
fluid, the channel can never completely close (Dahm, 2000a). The quantity of fluid left
behind is small for low-viscosity fluids, and a more substantial quantity for high-viscosity
fluids.

Estimate of the velocity of propagating fluid-filled fractures

From LEFM, we know that once the condition K = Kc is met for the tip of an
‘empty’ fracture, then the fracture becomes unstable and propagates fast within the
solid. Fluid-filled fractures, however, do not behave in this manner (Rivalta, 2024), as
the fluid flow within the fracture needs to ‘catch up’ before the fracture can propagate
further. Time scales of fluid-filled fracture propagation are usually much greater than
ones for the propagation of an empty fracture - the latter should theoretically move at
the speed of sound in the material (as any dislocation in the continuous, Parfitt and
Wilson (2008)), but practically are not as fast. Still a considerable value, however, that
made the study of fracture mechanics very impelling to naval engineers whose crafts were
continuously hindered by the presence of unstable, dangerous fractures (Rivalta, 2024).

If the fluid is viscous, a pressure drop ∆pvisc < 0 within the crack will necessarily
develop. If we assume that the gradient of viscous pressure drop over the whole length
of the fracture is entirely due to the external stress gradient, then:

∆γ = −
dp

dz visc
(2.7)
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This viscous resistance is the physical parameter limiting the rate of fracture propaga-
tion. Thus, ascent speed will depend on this quantity. Indeed, driving forces for propaga-
tion (i.e., buoyancy) have to overcome resistance forces, which are viscous resistance and
fracture resistance (Lister and Kerr, 1991). Once the latter is ‘defeated’ by opening a
propagating fracture, only viscosity of the filling fluid actually controls the ascent of dikes
(Watanabe et al., 2002). Given that the physical quantity describing this effect is the
viscous pressure drop (or ‘viscous drag’), I need to relate it to the propagation velocity
of the fracture.

As suggested by Davis et al. (2023), the flow of the enclosed fluid in the fracture may
be considered laminar with good approximation - Reynolds number for this problem:

Re =
ρm2hv

η
=

ρmwv

η
(2.8)

is small, typically <∼ 103.
By assuming a Poiseuille flow, the viscous pressure drop gradient can be expressed

as:
dp

dz visc
= −

3ηv

h2
(2.9)

where h is the half-width of the penny-shaped crack, as defined in Section 2.1.
Re-arranging the equation, we obtain an esteem of the ascent speed of the fluid within

the fracture (Section 1.3):

v̄ =
w2

12η
∆γ (2.10)

in terms of the width w = 2h of the fracture (see Section 2.1), as in Davis et al. (2023).
At this point, it is clear that the fixed volume of injection V should appear as

an independent variable in the desired expression, that is, a parameter of the model.
Another important factor in controlling dike ascent is the stress gradient (which includes
both buoyancy and possibly many other processes), thus also ∆γ may be a useful input
parameter. From equation 2.3, one obtains:

δp0 =
3

8

µ

1− ν

V

a3
(2.11)

for the mean internal pressure within the fracture. Since for a penny-shaped crack,
equation

δp0 =
2

3
∆γa (2.12)

holds (see Appendix A), it is simple to obtain that the radius of the crack must be:

a =

(

9

16

µ

1− ν

V

∆γ

)1/4

(2.13)
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Since the mean aperture of a penny-shaped crack is w = V/πa2, the characteristic fluid
ascent speed v for a fixed volume V > Vc, 3-D fracture can be calculated as (Davis et al.,
2023):

vV =
w2

12η
∆γ =

4

27π2

1− ν

µ

∆γ2V

η
. (2.14)

This represents an estimate for the velocity of a fluid-filled crack of volume V subject
to a pressure gradient ∆γ. Numerical methods provide more precise solutions, coherent
with the approximations used (see, for example, Dahm (2000b)).

The predicted ascent velocity for a vertical magmatic dike calculated by Eq. 2.14 with
typical parameter values is of the expected order of magnitude, as shown in Table 2.1.

Quantity Symbol Unit Value
Poisson’s ratio ν // 0.25
Shear modulus µ Pa 5 · 109
Fracture toughness KC Pa ·

√
m 108

Fluid/rock density contrast ∆ρ kg/m3 100
Magma viscosity η Pa · s 50
Critical volume of propagation VC m3 2.1 ·106
Ascent velocity vV m/s 0.76

Table 2.1: The critical volume of propagation was calculated with Eq. 2.5. According
to Davis et al. (2020), magma propagation volumes at Piton de la Forunaise volcano
observed between 1998 and 2016 range from 0.05 - 3.2 ·106 m3. The ascent velocity
for a vertical crack was obtained from Eq. 2.14. The result is in agreement with the
seismically-inferred values reported at the beginning of this Chapter.

2.2 Interactions with the stress field generated by to-

pographic loading / unloading

In addition to buoyancy, other stress gradients normal to the dike may be present and
hence contribute to dike propagation and ascent speed. In particular, surface loads may
result in a heterogeneous stress field at depth. This in general results both in inclined
dike trajectories and pressure gradients developing along the dike profile. The problem
of which pathways a dike will follow during its ascent is then crucial to determine what
forces are acting on it.

The effect of surface topography on magma transport within the lithosphere has been
investigated by numerical and analogue experiments with air-filled fractures in gelatin
(see, for example, Dahm (2000a) or Watanabe et al. (2002)). In particular, the effect
of a topographic loading on the free surface was analysed for its evident geophysical
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relevance. Dike trajectories were seen to deviate and follow - as expected - the most
compressive stress axis, which is no longer vertical in these settings, but points towards
the load. Thus, dikes that originated at depth are attracted towards the centre of the
topographic load (see, for example, Fig. 2.5 and Fig. 2.6).

Figure 2.5: The observed paths of a crack upper tip in Watanabe et al. (2002) experiments
with air-filled fractures in gelatine. The depth and the distance are normalized by the
half width of the load (45 mm). Trajectories are steered depending on the ratio between
their excess pressure p̄ex and the loading pressure (kept constant) pload.

Figure 2.6: Taken from Muller et al. (2001). After completion of the experiment, with
propagation paths dyed green to highlight the trajectories of the buoyant air-filled dikes
in gelatine.

In fact, the effect of a topographic load is to rotate principal stress axes (Rivalta
et al., 2015), hence influencing dike trajectories and causing an accumulation of fluid
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in some regions or affecting the locations where fluid injections are most likely to reach
the free surface. This is especially true at shallow crustal levels, where stresses from the
volcanic edifice may overcome regional stresses (Watanabe et al., 2002).

Since the exerted compression by a load will be highest at shallow levels and taper off
at depth, if the z axis points upwards ascending dikes will experience a positive gradient
of normal stress while reaching for the loading edifice Rivalta (2024).

This gradient acts against the driving force of ascent, since it counterbalances negative
buoyancy with respect to the surroundings. Thus, when

∆γ = −∆ρg +
dσn

ds
= 0 (2.15)

the magma-filled crack will cease to ascend, as pointed out by Watanabe et al. (2002).
When this happens, dikes get stalled and emplacement occurs. Thus, topographic loading
also controls the depth of emplacement (see Fig. 2.7).

Figure 2.7: The calculated vertical ascent of an air-filed crack tip in gelatine under the
influence of a surface load, at x = 0, as a function of time. A greater load determines an
earlier termination for dike propagation. Taken from Watanabe et al. (2002).

The depth of emplacement of a vertical dike determined by a topographic load
modelled as a 2-D strip (cfr. Section 1.2), at the very centre of the load (x = 0), is
calculated by Watanabe et al. (2002) as:

dσn

ds

∣

∣

∣
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∣

∣

∣

x=0
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4P
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1
[

1 +
(

z
a

)2
]2 = 0 (2.16)

From this equation, it is clear that higher mountain loads cause deeper emplacement
depths for ascending dikes underneath. Unless a great reduction in density occurs, e.g.
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Chapter 2 - Modelling magma transport by diking

by bubble production, the buoyancy cannot propel further the dike. Numerical examples
are present in Fig.2.8 - typical values obtained by (Watanabe et al., 2002) for the depth
of emplacement are around ∼ 3− 5 km.

Figure 2.8: Vertical profile of the gradient of normal stress induced by a mountain load
modelled as a strip loading, at x = 0. The Level of Neutral Buoyancy represents the
depth of emplacement for dikes. Taken from Watanabe et al. (2002).

In this way, most dikes with similar size tend to get arrested at similar depth levels
under volcanic edifices (Rivalta, 2024). Also Pinel and Jaupart (2000) studied the
influence of the gravitational stress on magma ascent and showed that a volcanic edifice
can work as a magma filter that prevents the eruption of dense magmas (Watanabe et al.,
2002).

Thus, the specific arrangement of eruptive fissures and vents is heavily influenced
by the shape of a volcano’s edifice. In a cone-shaped loading scenario, the compressive
stress at the summit is greater than in lower area below the volcano flanks (Rivalta, 2024).
Thus, dikes that manage to overshoot across the depth of emplacement by a reduction
in relative density will propagate laterally down the flanks of the edifice. This results
in a radial pattern of vents in relation to the volcano’s axis, sometimes at considerable
distances from the summit.

At calderas, we observe distinctive spatial configuration of vents. The principal stress
axes are affected by topographic unloading, that is, removal of a substantial mass, so
that they ‘flip’ their orientation compared to the stress orientation induced by a load
- the direction of the most compressive stress axis, σ1, becomes the orientation of the
least compressive stress axis, σ3, and viceversa (Rivalta, 2024). In this case, ascending
dikes are steered away from the centre of the volcano. This results in a bowl-shaped
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Chapter 2 - Modelling magma transport by diking

arrangement for intrusions beneath the caldera, resulting in a circumferential pattern for
eruptive vents. These may be partly located intra-caldera, and partly located beyond
the caldera rim instead. Thus, the stress field at caldera acts as a sort of ‘stress barrier’,
as it traps ascending magmas as horizontal intrusions.

The radial pattern due to edifice loading and the circumferential pattern due to
caldera unloading are both present at Fernandina volcano, see Fig. 2.9.

Figure 2.9: Relief map of Fernandina with color-coded elevation. Circumferential and
radial fissures are highlighted by the black and red solid lines, respectively. Taken from
Corbi et al. (2015).

Dike trajectories for the case of volcanic edifices have been studied by Dahm (2000a)
and Maccaferri et al. (2011), while Corbi et al. (2015) and Corbi et al. (2016) analysed
propagation of dikes in calderas.
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Testing the model against some real

diking events

As presented in the previous Chapter, magma can ascend through the Earth’s crust
along vertical, but also inclined, pathways, depending on the stress state at depth.
An important factor to take into account for many volcanoes creating a heterogeneous
stress field are surface loads or unloading. Two archetypical scenarios are, respectively,
‘stratocones’ and calderas. A stratocone, also known as a stratovolcano, is a type of
volcano characterized by a steep, near-conical shape formed from layers of frozen lava,
tephra (volcanic ash, rocks, and fragments), and volcanic debris. Examples of stratocones
are Mt. Etna and Vesuvius. As seen in Section 2.1, ascent velocities depend on the tilt
of the trajectory and the gradient in external stress. It may be interesting to combine
the pathway models, firstly, for the case of a stratocone and, secondly, for a caldera, and
quantify the typical ascent velocities.

The determination of a dike’s ascent velocity is challenging for the following reasons:

1. The time needed for a dike to ascend depends on its ascent velocity. This informs
us on approximately when the eruption will take place.

2. The ascent velocity determines the strain rate of rocks, stressed by the dike transit-
ing by, thus influencing the energy release during deformation (whether it is seismic,
if strain rates are elevated and rocks respond in a brittle fashion even if they are
hotter, or aseismic).

3. Finally, the ascent velocity, determines what geochemical transformations may
occur in the ascending magma (variations of p and T in the magma create new
equilibra between minerals and dissolved volatiles, with some transformations being
favoured, but these need time to occur)

In this Chapter, I develop a simple dike propagation model involving calculation of
the velocity of a dike along a tilted trajectory in the stress field induced by a stratovolcano
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Chapter 3 - Testing the model against some real diking events

(Mt. Etna) and a caldera (Campi Flegrei). More specifically, I verify, with application
to the two Italian volcanoes, how the stress field induced by different topographic loads
and magma buoyancy affect the ascent velocity of magma on different pathways.

I formulated the following procedure: (see MatLab code in Appenix B)

1. I initialise physical parameters (geometry of the loading/unloading, with lateral
half-extent a and vertical dimension h, tectonic stress σtec, rock density ρr, magma
density ρm, magma viscosity η) relevant for my two case studies; these are printed
out at the end of the simulation along with the results.

2. I create a 2-D grid of points on the (x, z) plane; note that the z coordinate is
positive upward.

3. The stress tensor due to the presence of loading/unloading is computed at every
point of the grid. Then, a tectonic component (−5 MPa for Etna, −3.5 MPa for
CF) is added. I use the convention of positive compressive stresses.

4. The stress tensor is diagonalised at every point of the grid. The principal stresses
(σ3 and σ1 are, respectively, the least and most compressive stresses) and their
directions are computed by finding at every point the eigenvalues and eigenvectors
of the stress tensor. The dike pathway will follow the σ1 axis, while the driving
pressure gradient and velocity will depend on the orientation of the σ3 axis and its
intensity.

5. The gradient of the normal stress (σ3) is computed at every point in the grid, by
a discrete difference between adjacent values; the boundary are excluded to avoid
any numerical flaw.

6. the buoyancy pressure gradient is computed at every point in the grid, considering
the dike tilt angle if the dike (i.e. σ1) is not vertical.

7. Once a starting point is chosen for dike nucleation, the program computes the
trajectory by following σ1 at each iteration. Velocity along the points of the
trajectory is calculated by Eq. 2.14.

If the analytical 2-D pathway is parametrised by its arc length s, then I have
obtained a discretized version of v = v(s) = ds

dt
.

8. I derive a timescale estimate for the intrusion. At every point in the trajectory the
program computes dt = 1

v(s)
ds, where ds is the increment in the trajectory. The

entire path corresponds to a time:

T =

∫ sf

si

1

v(s)
ds (3.1)
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The time T can be used as a useful parameter to answer the impelling question of
when an eruption may occur (provided the dike erupts rather than getting trapped
at depth), once the first signs are detected.

9. I also estimate the average ascent speed during the entire intrusion pathways as:

v̄ =
L

T
=

1

T

∫ sf

si

ds (3.2)

We recall that the dike pathway is usually inferred from seismic data, while the volume
of the intrusion is available from geodetic measurements.

In Section 3.1, I apply my model to Mt. Etna in Sicily, estimating the depth of
emplacement of magmatic dikes under the strong topographic load beneath the large
volcanic edifice. To do so, I identify at what vertical point along the path the ascent
velocity vanishes. In Section 3.2, I finally apply my method to the Campi Flegrei caldera.

3.1 Numerical simulation for a propagating dike below

Mt. Etna

With its nearly interrupted volcanic activity, Mount Etna is one of the best monitored
volcanoes in the world. Much of the current volcanism at Etna volcano consists of:
(1) vertical ascent, followed by lateral movement of magma, radiating from the central
conduit down the flanks (Battaglia et al., 2011); (2) from about 2011, intense lava
fountain activity at two of the several summit craters of the volcano. I concentrate on
deep activities, as my stress models are simplified and I cannot propagate dikes within
the volcanic edifice.

The plumbing system of Mt. Etna has been studied over the last decades and
constrained by petrological and geophysical data, which suggest magma ascent from
a depth of almost 30 km (Palano et al., 2024). Magma reservoirs at Mt. Etna are
ephemeral: modelling of ground deformation data and magma geochemistry suggest
that reservoirs at different depths activate during different epochs. It is not clear whether
different reservoirs form and freeze repeatedly over the course of decades.

Magma propagating from great depth may be affected by the extraordinary topo-
graphic load, which is well-approximated by a cone-shaped edifice. The external stress
gradient acts against buoyancy to hinder further propagation, and dikes may stall at a
specific emplacement depth controlled by the load of the volcano and magma buoyancy.

By simulating the dike pathway under a triangle-shaped load, I find that ascending
dikes become trapped in a region at ∼ 10 km depth where their velocity becomes
approximately zero. I test the scenario assuming different density values for the magma.

Inputs to my simulation are shown in Tab. 3.1 and Tab. 3.2, while results are presented
in Tab.3.3. For the dike pathway illustrated in Fig. 3.1, I obtain the time-dependent
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depth illustrated in Fig. 3.2 and Fig. 3.3. The dike starts to slow down significantly at
depth around 12 km, and becomes arrested at depth of 10 km below sea level. The dike
velocity steadily decreases along the pathway, with a visible deceleration (Fig. 3.4), as
the effect of the topographic load becomes progressively more dominant over buoyancy
driving the crack.

Physical quantity Value Unit
Edifice radius 15 km
Edifice height 3.3 km

Tectonic (regional) stress -5 MPa
Lithospheric rock density 2700 kg/m3

Magma density 2500 kg/m3

Magma viscosity 30 Pa·s

Table 3.1: Physical quantities for the simulation.

Physical quantity Value Unit
Volume of dike intrusion 2 · 106 m3

X-coord location of dike nucleation 18 km
Z-coord location of dike nucleation -20 km

Table 3.2: Input parameters for the simulation: volume injection and trajectory starting
point.

Physical quantity Value Unit
X-coord location of dike emplacement 11.4 km
Z-coord location of dike emplacement -9.7 km
Time from start to end of propagation 4·103 h
Time from start to end of propagation 167 d

Average ascent velocity 0.0031 km/h

Table 3.3: Output results of the simulation: location of dike emplacement, total time of
propagation with an average ascent velocity.
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Simulation of a dike intrusion at Etna

Figure 3.1: Simulation of dike propagation at Etna, with input parameters defined in
Tab. 3.1 and Tab. 3.2. The dike gets stalled at the depth of emplacement. Direction
of the maximum compressive stress is marked by red arrows; direction of the minimum
compressive stress is marked by blue arrows.
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Figure 3.2: Simulation of dike pathway at Etna.
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Figure 3.3: Simulation of dike pathway at Etna. Time in days is plotted in logarithmic
scale.
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Figure 3.4: Simulation of dike pathway at Etna. Ascent velocity is plotted as a function
of the days from the beginning of propagation (left) and as a function of the travelled
length (right).
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Next, I considered magmas of different buoyancy. In particular, I carried out simulations
using different density values:

ρ = 1800 kg/m3

ρ = 2200 kg/m3

ρ = 2500 kg/m3

Dikes with lower buoyancy get stalled at greater depth, as expected (see the results by
Watanabe et al. (2002) in Fig. 2.8): for ρ = 2200kg/m3, the stalling depth is about 7 km,
while for ρ = 1800kg/m3, dikes stall at about 4.5 km (Fig. 3.5). Dike velocities are in the
range of geophysically-inferred values (Fig. 3.6 and Fig. 3.7), with a rapid deceleration
occurring when the dikes enter into the zone of influence of the load, at radial distance
from the base of the volcano of about 1 basal diameter of the volcano edifice.

Depth as a function of time (Fig. 3.14) can be compared to the result of Watanabe
et al. (2002) in Fig. 2.7. They found that propagating analog fractures stop when get
close to the base of the load, as dikes of different buoyancies in my simulation.
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Figure 3.5: Simulation of pathways at Etna for dikes filled with magmas of different
density. Density is measured in kg/m3.
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Figure 3.6: Simulation of pathways at Etna for dikes filled with magmas of different
density. Density is measured in kg/m3.
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Figure 3.7: Simulation of pathways at Etna for dikes filled with magmas of different
density. Density is measured in kg/m3. Ascent velocity is plotted as a function of
the days from beginning of propagation to emplacement (left) and as a function of the
travelled length (right).
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My result is in agreement with the formation of magma chambers at different depths
below Mt. Etna. Magma chambers may form after repeated intrusions of similar magmas
accumulating at the same depth, as suggested by modelling of deformation data in the
years 2000 and 2001 (see Fig. 3.8), where inflation and deflation sources feeding volcanic
activity were located at depths between 5 and 8 km, while sources feeding the current
lava fountain activity are located about 1 km below sea level (see Fig. 3.9). A correct
assessment of magma sources underneath the main edifice is crucial to evaluate the
hazard posed by this volcano and to better understand the dynamics of shallow magma
transport.

Figure 3.8: Map of Mt. Etna (left: aerial view, right: cross-section), with seismicity
(M > 1) occurring in the January 2000 - April 2021 period (events with M > 3.5 are
reported as stars) and the modelled sources of deformation. Taken from Palano et al.
(2024).

44



Chapter 3 - Testing the model against some real diking events

Figure 3.9: W-E section of Etna and different sources. S1 is the classic intermediate
storage (z ∼ 6± 2 km) modelled several times during the prolonged recharging periods
over the last 40 years. S3 is the source connected to the events of the lava fountain
sequence. Modified from Bonaccorso et al. (2021).

3.2 Numerical simulation for a propagating dike at

Campi Flegrei caldera

Campi Flegrei caldera is a large, shallow caldera, with a diameter of roughly 15 km
and a depth of about 300 m (Rivalta, 2024). After the main caldera-forming events (see
Introduction), post-caldera volcanism developed more than 70 monogenic vents focused
predominantly in the North-East sector of the caldera, presently onshore (Davis, 2021),
as shown in Fig. 3.10.

Despite the current large uncertainties on what to expect from a possible upcoming
magmatic eruption, we have historical accounts of the last one, which occurred as recently
as 1538. Guidoboni and Ciuccarelli (2011) collected a reliable archive of historical sources
coeval to the so-called Monte Nuovo eruption, this is highly informative also on what to
expect as precursory signals to a future possible eruption.

As suggested by Di Vito et al. (2016), ground uplift was present since the end of the
14th century. This increased quite steadily from 1400 to 1536, reaching values in the
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Figure 3.10: Map of the CF caldera with location of vents, colour-coded according to
the eruptive history during the last 15 ka. Taken from Rivalta et al. (2019).

order of cm/year. Such an uplift of the caldera floor meant that also the coastal strip
emerged, especially at the Pozzuoli area, which is located at the centre of the caldera.
Since the end of the 15th century this uplift was accompanied by strong seismicity, that
affected also the near city of Naples. From historical records presented in Guidoboni and
Ciuccarelli (2011), we know that around 30 h before the eruption also the seabed raised
considerably, with water flowing away and an enormous quantity of fish remaining in
the shoal. A maximum value of 18.8 m in ground uplift in the future vent-opening area
of Monte Nuovo (Di Vito et al., 2016) was reached. After a crack opened at 18.30 of
29th September, eruptive activty from the newly-opened vent continued, with decreasing
periods and resumptions, until 17th October, with seismicity carrying on for decade-
longer periods.

Monte Nuovo eruption hit locations distant from previous vents. Such eruptions
would have been hard to anticipate (Rivalta et al., 2019), even today, if we relied upon
the exclusive use of probability maps.

Currently, the caldera presents a net uplift of more than 1 m at the caldera centre
since 2012, after a period of subsidence. Such large deformations inevitably produce
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earthquakes. These earthquakes, thus, are rather a natural response of lithospheric rock
to the extreme strain, and no direct evidence is available to correlate them to any uprising
of magma.

A possible explanation for the current deformation may be the following. A magma
influx is present somewhere at depth, and magmas contain dissolved volatile components.
As the magma is decompressed during ascent or as it stalls at shallower depth, the volatile
solubility decreases, leading to a separation of the gaseous phase. The exsolved gases
rise through a porous hydro-thermal system located above the magmatic system. These
fluids within the hydro-thermal region are thus responsible for the uplift.

As magma is transported towards the surface in a dike, as during the Monte Nuovo
eruption, we expect a deviation from radial symmetry of deformations, since magma
intrusions are sheet-like and may strongly affect the pattern of deformation.

In my simulation, the caldera is modelled, in plane strain, as a rectangular excavation
lacking significant loading topography. The unloading is calculated with an effective
depth heff > h for the caldera, which accounts for the density of sediments which only
partially compensate for the missing crustal rocks after caldera collapse (Mantiloni et al.,
2024).

I adapted the parameters of the unloading in such a way that a trajectory departing
from a magma chamber at depth z = −4 km, from a location offset by x = 1 km from
the caldera centre, reaches the surface at the Monte Nuovo location (ca. 3.3 km radius
distance from the centre). This was indicated by Rivalta et al. (2019) as the most likely
‘radius’ for future vents at CF.

Inputs to my simulation are shown in Tab. 3.4 and Tab. 3.5, while results are presented
in Tab.3.6. For the dike pathway illustrated in Fig. 3.11 with a solid red line, I obtain the
time-dependent depth illustrated in Fig 3.12. While ascending dikes at Mt. Etna were
strongly decelerated, for the CF caldera dikes present a steep increase in their ascent
velocity while reaching for the Earth’s surface (Fig. 3.13). Acceleration is due to the
dike being progressively more buoyant, as the pathway in the last few kms under the
surface is almost vertical, as shown in Fig. 3.11.

Physical quantity Value Measurement unit
Caldera radius 7.5 km

Excavation depth (efficient) 0.3 km
Tectonic (regional) stress -3.5 MPa
Lithospheric rock density 2600 kg/m3

Magma density 2200 kg/m3

Magma viscosity 1000 Pa·s

Table 3.4: Physical quantities for the simulation

I also determine the pathway of an ascending dike nucleating from a hypothetical
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Physical quantity Value Measurement unit
Volume of dike intrusion 250 · 106 m3

X-coord location of dike nucleation 1 km
Z-coord location of dike nucleation -4 km

Table 3.5: Input parameters for the simulation: volume injection and trajectory starting
point

Physical quantity Value Measurement unit
X-coord location of eruption 3.4 km
Z-coord location of eruption 0.0 km

Time before eruption 12 h
Time before eruption 0.52 d

Average ascent velocity 0.41 km/h

Table 3.6: Output results of the simulation: location of eruption, total time of propaga-
tion with an average ascent velocity.
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Figure 3.11: Simulation of dike propagation at CF, with input parameters defined in
Tab. 3.4 and Tab. 3.4. Continuos line shows the simulated trajectory of the dike
responsible for the Monte Nuovo Eruption; the dashed line shows the trajectory of a
dike nucleating from greater depth and erupting outside the caldera. Direction of the
maximum compressive stress is marked by red arrows; direction of the minimum com-
pressive stress is marked by blue arrows.
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Figure 3.12: Simulation of dike pathway at CF.

Figure 3.13: Simulation of dike pathway at CF. Time in hours is plotted in logarithmic
scale.

magmatic source at greater depths. As seen in Fig. 3.11, intra-caldera eruptions are
possible only for dikes at shallower depths, such as the -4 km case.

The timescale of dike ascent is also in agreement with historical data, remarking
strong seismicity at about 12 hours before the eruption.
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Next, I consider the effect of magmas of different buoyancy filling the dikes (see
Fig. 3.14 and Fig. 3.15.). In particular, I carry out simulations using the following
densities:

ρ = 1800 kg/m3

ρ = 2200 kg/m3

ρ = 2500 kg/m3

I find that more buoyant dikes ascend more rapidly beneath the caldera, as expected.
In addition, dikes tend to accelerate after travelling about 2.5 km, i.e. when their
trajectories become increasingly vertical.
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Figure 3.14: Simulation of pathways at CF for different buoyant dikes. Density is
measured in kg/m3.

In conclusion, predicted ascent velocities for dike ascent beneath the CF caldera
suggest a timescale of hours (12 h for a dike with average buoyancy) before an eruption
occurs (see Fig.3.15), with dikes accelerating before reaching the surface.
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Figure 3.15: Simulation of pathways at CF for different buoyant dikes. Density is
measured in kg/m3. Ascent velocity is plotted as a function of the hours from beginning
of propagation to eruption (left), and as a function of the travelled length (right).
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Conclusions

Simulations carried out for CF and Etna achieve encouraging results. In particu-
lar, the last eruption at CF (Monte Nuovo, 1538) is simulated with a magmatic dike
nucleating from 4 km depth and ascending in a time interval of about 12 hours from
beginning to eruption. This value may be used as a quick estimate of the time before
another eruptive vent opens at CF, after the geophysical signals related to dike propaga-
tion are detected, provided that parameters do not change significantly.

However, this solution carries large uncertainties as it arises from some approximations.
In the first place, the stress state at depth was heavily simplified. In fact, I adopted

a plain strain assumption instead of a three-dimensional approach. In addition, the
presence of a magma chamber and possibly other magmatic intrusions almost certainly
interact with the dike pathway through alterations in the stress field. The magma
chamber was neglected also as a possible source of driving pressure for the dike. This
effect may be only significant at earlier times, but still may be taken into account.

Phase transitions in the filling fluid are possible due to variations in its thermodynamic
conditions. In particular, variations in fluid density ∆ρ due to bubbles forming inside the
fracture may also deplete the magmas of water molecules which has the effect of leading
to polymerization of the magmas, favouring a viscosity increase and the nucleation of
crystals. These in turn deeply influence the fluid viscosity, impeding fluid flow with an
increase in ∆η. The volatile component is thus an essential mechanism to be studied
in order to successfully model timescales of eruption. Variations in magma density and
viscosity that occur during dike ascent influence the ascent velocity and might be taken
into account in future studies.

Finally, I neglected heat conduction between the magmatic dike and its surroundings.
The timescale of propagation needs to be compared with the timescale of magma solid-
ification. A dike may get arrested in its propagation because of thermal effects, if it
freezes underneath the crust. This aspect is more important for high-viscosity magmas.
CF magmas are relatively low-viscosity, but they can become much higher viscosity as
they ascend and de-volatilise.
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Several parameters such as density ρ and viscosity η appear in the considered equation
for the ascent velocity. Thus, determining how variations of these quantities within
reasonable ranges would affect my results would allow me to estimate how uncertainties
on the parameters are propagated by the model onto model results. This can be
investigated by e.g. assigning a Gaussian distribution to the parameters ρ and η and then
examining the consequent distribution for the values of the velocity. The same reasoning
is true for the volume of the magma-batch, although a power-law type of distribution may
be well-suited rather than a Gaussian (we expect a great amount of small propagating
magma batches and fewer of bigger volumes).

4.1 Future prospects and implementation

Despite its many different simplifications, the method applied to determine the ascent
velocity of magmatic dikes along tilted pathway in the lithosphere seems promising. In
the future, validation on many other case studies from volcanic eruptions or analog
experiments may result beneficial to improve the reliability of my model. The ultimate
goal would be to increase its predictiveness towards physical observations, by including
the neglected aspects that are most required by real data sets.

Another possible development line could be to compare my model with the coupled
pathway-velocity model of Furst et al. (2023), also two-dimensional.

The most compelling priority, however, is expanding the model to compute the 3D
trajectory of dikes. Real dikes, in fact, are often seen to deviate away from the initial
plane of propagation (see, for example, the 2018 dike propagation at Sierra Negra,
Galápagos Islands, described in Davis et al. (2021)). The implementation of such a
feature may provide my model with more accurate trajectories, in order to achieve
time estimates even for more complex propagation scenarios. This would, on the other
hand, require longer computation times. My model allows to rapidly estimate the ascent
velocities of propagating magma batches, with a near-analytical approach.
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Appendix A

Analytical determination of a critical

volume of injection

In their article, Davis et al. (2020) state that the stress intensity factor for a Mode-I
penny-shaped fracture of radius (half-length) a subject to a generic linear stress gradient
can be expressed as the superposition of:

Figure A.1: Top: Propagating fracture as the superposition of a penny-shaped fracture
and a zero-volume crack subject to a linear pressure gradient. Bottom: Cross sections of
crack wall displacement, itp =interpenetration. Modified from Davis et al. (2020).

• KI for a penny-shaped fracture subject to a uniform pressure at its centre δp0:

KI =
2

π
δp0

√
πa (A.1)
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Appendix A - Analytical determination of a critical volume of injection

• KI for a penny-shaped fracture subject to a linear pressure gradient ∆γ where
pressure is equal to 0 at the fracture’s midpoint:

K±

I = ±
4

3π
∆γa

√
πa (A.2)

where + refers to the propagating tip and − to the basal tip, respectively.

To determine an expression for the critical volume of injection, i.e. volume of magma
necessary to trigger dike propagation, fracture mechanics is applied to a vertical, penny-
shaped crack of width w = 2h (L = B = 2a). The condition for fracture growth is
related to the stress intensity factors at the head and tail of the dike:

K+ = KC (A.3)

K− = 0 (A.4)

Requiring K−

I = 0 results in δp0 = 2/3∆γa and thus

δp± = δp(z = ±a) = (2/3± 1)∆γa (A.5)

Negative pressures in Eq. A.5 are interpreted as the fluid dragging the crack walls behind
when propagating upwards. Requiring K+

I = KC and substituting what we have found
for δp0 yields an expression for the pressure gradient:

∆γ = ∆ρg =
3

8

KC

a
√
πa

(A.6)

and one for the excess pressure at the centre of the fracture:

δp0 =
2

3
∆γa =

KC

4
√
πa

(A.7)

In addition, rearranging for a yields:

a =

(

3
√
πKC

8∆γ

)2/3

(A.8)

The fracture grows when it reaches a critical value for its volume: Davis et al. (2020)
calculates the volume of crack based on the equation for a crack pressurised by uniform
pressure δp0, as the antisymmetric pressure contribution integrates to zero. Thus using
Eq. 2.3 combined with Eqs. A.7 and A.8 results in (∆γ → ∆γ sin δ if dike is inclined)

VC =
1

16

1− ν

µ

(

9π4K8
C

∆γ5 sin5 δ

)1/3

(A.9)

According to Davis et al. (2020), this equation requires validation in order to evaluate
the bias due to approximating the shape of the propagating crack as circular. They carry
out this task by numerical integration.
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Appendix B

MatLab script to simulate dike

propagation

Here I attach one of the MatLab scripts employed in my simulations. In particular,
this code was used to simulate dikes of different buoyancies ascending at CF (see, for
example, Fig. 3.15). However, the functioning of the code is similar to all the ones used
in this thesis.

1

f unc t i on [ S ] = boxload_ZpositiveUpward (x , z , x0 , a , nu , P0)
3

x = x ( : ) ;
5 z = −z ( : ) ;

7 i f any ( z<0)
e r r o r ( ’Positive Z values: Z must be negative!’ )

9 end

11 % Str ip load ing from Dahm 2000
th1 = atan2 (x−x0+a , z ) ;

13 th2 = atan2 (x−x0−a , z ) ;
sxx = −P0/ pi ∗( th2−th1 −0.5∗ s i n (2∗ th2 )+0.5∗ s i n (2∗ th1 ) ) ;

15 s z z = −P0/ pi ∗( th2−th1+0.5∗ s i n (2∗ th2 )−0.5∗ s i n (2∗ th1 ) ) ;
sxz = −(−P0/ pi ∗ ( ( s i n ( th2 )).^2 −( s i n ( th1 ) ) . ^ 2 ) ) ;

17

syy = nu∗( sxx+szz ) ; % p la in s t r a i n cond i t i on
19

S = [ sxx syy szz sxz ] ;
21

23 % Parameters
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Appendix B - MatLab script to simulate dike propagation

% Magma and host rock dens i ty
25 rho = 2600 ; %kg m^−3, medium dens i ty

rho_m = [1800 2100 2450 ] ; %kg m^−3, magma dens i ty
27 % rho_m may change i f bubbles are pre sent

29 % E l a s t i c i t y and s t r e s s
g = 9 . 8 ; % m/ s ^2 , a c c e l e r a t i o n due to g rav i ty

31 nu = 0 . 2 5 ; % Poisson ’ s r a t i o
mu = 30 e9 ; % Pa , medium shear modulus

33 Kc = 200 e6 ; %Pa∗m^(1/2) , Rock f r a c t u r e toughness

35 Sxx_tec = 0 ; %Pa , r e g i o n a l s t r e s s
eta = 0 ; %Pa∗ s , magma v i s c o s i t y

37

% Load geometry
39 X0 = 0 ; %m, coo rd ina t e s o f load /unload cent r e

a = 0 ; % m, ha l f−width o f box
41 h = 0 ; % m, load excavat ion depth

43 % Typica l parameter va lue s f o r CF ca lde ra
eta_CF = 1e3 ;

45 Sxx_tec_CF = −3.5 e6 ;
a_CF = 7.5 e3 ;

47 h_CF = 0.3 e3 ;

49 x_start = 1e3 ;
% x−coord o f s t a r t i n g po int f o r r e f e r e n c e t r a j e c t o r y

51 z_start = −4e3 ;
% z−coord o f s t a r t i n g po int f o r r e f e r e n c e t r a j e c t o r y

53

% Parameters i n i t i a l i s a t i o n
55 eta = eta_CF ;

Sxx_tec = Sxx_tec_CF ;
57 a = a_CF;

h = h_CF;
59 P0 = − rho∗g∗h ; %Pa , l oad ing / unloading p r e s su r e

% use (+ loading , − unloading )
61 % Pos i t i v e compress ive s t r e s s , negat ive ex t en s i v e s t r e s s .

63 % Creat ing a g r id o f c a l c u l a t i o n po in t s
RangeX_i = −10e3 ;

65 RangeX_f = +10e3 ;
RangeZ_i = −20e3 ;
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Appendix B - MatLab script to simulate dike propagation

67 RangeZ_f = 0 ;

69 nx = 202 ; nz = 192 ; % Number o f c a l c u l a t i o n po in t s

71 x = l i n s p a c e (RangeX_i , RangeX_f , nx ) ;
z = l i n s p a c e (RangeZ_i , RangeZ_f , nz ) ;

73

[X, Z ] = meshgrid (x , z ) ;
75

M = numel (X) ;
77

S = ze ro s (M, 4 ) ;
79 [ S ] = boxload_ZpositiveUpward (X, Z , X0 , a , nu , P0 ) ;

% th i s r e s u l t s in a matrix S = [ Sxx Syy Szz Sxy ]
81 % in every po int o f the g r id ;

83 % Add t e c t on i c s t r e s
S = S + [ Sxx_tec 0 0 0 ] ;

85

Sol = ze ro s (M, 6 ) ;
87 % i n i t i a l i s a t i o n o f empty matrix ,

% to f i l l with s o l u t i o n o f e i g enva lue problem
89

% Matrix d i a g ona l i s a t i o n in every po int o f the g r id
91 f o r i = 1 : M

St r e s s = [ S( i , 1) S( i , 4)
93 S( i , 4) S( i , 3) ] ;

[ EigenVecMatrix , DiagonalMatrix ] = e i g ( S t r e s s ) ;
95 % EigenVecMatrix has the components o f the

% three e i g env e c t o r s as columns
97 % DiagonalMatrix has the thee e i g enva lu e s

% on the d iagona l and 0 otherw i se
99 Sol ( i , : ) = [ EigenVecMatrix ( : ) ’ . . .

DiagonalMatrix (1 , 1 ) DiagonalMatrix ( 2 , 2 ) ] ;
101

% Use the s o r t func t i on to put the e i g enva lu e s in ascending order
103 % and reo rde r the cor re spond ing e i g env e c t o r s .

% Find the index o f r eo rde red e lements :
105 [ d , ind ] = so r t ( d iag ( DiagonalMatrix ) ) ;

% Use ind to r eo rde r e lements ( from smal l to l a r g e ) :
107 Ds = DiagonalMatrix ( ind , ind ) ;

% Use ind to a l s o r eo rde r the e i g env e c t o r s so that
109 % they are c o r r e c t l y a s s o c i a t ed to the reo rde red e i g enva lu e s :
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Vs = EigenVecMatrix ( : , ind ) ;
111

Sol ( i , : ) = [ Vs ( : ) ’ Ds (1 , 1 ) Ds ( 2 , 2 ) ] ;
113 end

% Change s i gn to a l l e i g env e c t o r s i f the z−component
115 % of the e i g enve c t o r o f the l a r g e s t e i g enva lue i s negat ive :

So l ( So l ( : , 4 ) < 0 , 1 : 4 ) = − Sol ( So l ( : , 4 ) < 0 , 1 : 4 ) ;
117 % Incon s i s t en cy in the " ve r s e " o f e i g env e c t o r s in a f i e l d

% w i l l mess up s t r e am l i n e s p l o t s
119

Sigma1 = reshape ( So l ( : , 6 ) , s i z e (X) ) ;
121 % Sigma1 i s the most compress ive p r i n c i p a l s t r e s s

Sigma3 = reshape ( So l ( : , 5 ) , s i z e (X) ) ;
123 % Sigma3 i s the l e a s t compress ive p r i n c i p a l s t r e s s

125 Autoval1_1 = reshape ( So l ( : , 3 ) , s i z e (X) ) ;
% x component o f Sigma1 e i g enva lue

127 Autoval1_2 = reshape ( So l ( : , 4 ) , s i z e (X) ) ;
% z component o f Sigma1 e i g enva lue

129 Autoval3_1 = reshape ( So l ( : , 1 ) , s i z e (X) ) ;
% x component o f Sigma3 e i g enva lue

131 Autoval3_2 = reshape ( So l ( : , 2 ) , s i z e (X) ) ;
% z component o f Sigma3 e i g enva lue

133

t r a j e c t o r y = s t r eaml in e (X, Z , Autoval1_1 , Autoval1_2 , . . .
135 x_start , z_start ) ;

xData = get ( t r a j e c t o r y , ’XData’ ) ;
137 zData = get ( t r a j e c t o r y , ’YData’ ) ;

139 %%%%%%%%%%%%%%%
t r a j = [ xData ( 1 , : ) ; zData ( 1 , : ) ] ;

141 [S_CF] = boxload_ZpositiveUpward ( t r a j ( 1 , : ) , t r a j ( 2 , : ) , . . .
X0 , a , nu , P0 ) ;

143

S_CF = S_CF + [ Sxx_tec 0 0 0 ] ;
145

M_CF = s i z e ( xData ) ;
147

Sol_CF = ze ro s (M_CF(2 ) , 6 ) ;
149

f o r i = 1 : M_CF(2)
151 S t r e s s = [ S_CF( i , 1) S_CF( i , 4)

S_CF( i , 4) S_CF( i , 3) ] ;
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153 [ EigenVecMatrix , DiagonalMatrix ] = e i g ( S t r e s s ) ;
Sol_CF( i , : ) = [ EigenVecMatrix ( : ) ’ . . .

155 DiagonalMatrix (1 , 1 ) DiagonalMatrix ( 2 , 2 ) ] ;

157 [ d , ind ] = so r t ( d iag ( DiagonalMatrix ) ) ;
Ds = DiagonalMatrix ( ind , ind ) ;

159 Vs = EigenVecMatrix ( : , ind ) ;

161 Sol_CF( i , : ) = [ Vs ( : ) ’ Ds (1 , 1 ) Ds ( 2 , 2 ) ] ;
end

163 Sol_CF(Sol_CF ( : , 4 ) < 0 , 1 : 4 ) = − Sol_CF(Sol_CF ( : , 4 ) < 0 , 1 : 4 ) ;

165 Sigma1_CF = reshape ( Sol_CF ( : , 6 ) , M_CF) ;
Sigma3_CF = reshape ( Sol_CF ( : , 5 ) , M_CF) ;

167

Autoval1_1_CF = reshape (Sol_CF ( : , 3 ) , M_CF) ;
169 Autoval1_2_CF = reshape (Sol_CF ( : , 4 ) , M_CF) ;

Autoval3_1_CF = reshape (Sol_CF ( : , 1 ) , M_CF) ;
171 Autoval3_2_CF = reshape (Sol_CF ( : , 2 ) , M_CF) ;

%%%%%%%%%%%%%%%
173

dSigma3_dX_CF = d i f f ( [ Sigma3_CF ( 1 , : ) 0 ] ) . / d i f f ( [ xData ( 1 , : ) 0 ] ) ;
175 dSigma3_dZ_CF = d i f f ( [ Sigma3_CF ( 1 , : ) 0 ] ) . / d i f f ( [ zData ( 1 , : ) 0 ] ) ;

177 dSigma3_ds_CF = dSigma3_dX_CF.∗ Autoval1_1_CF + . . .
dSigma3_dZ_CF.∗ Autoval1_2_CF ;

179

DdSigma3_ds_CF = [ dSigma3_ds_CF (1 , 1 : end−1) dSigma3_ds_CF(1 , end −1) ] ;
181

f o r j = 1 : s i z e (rho_m, 2 )
183

Buoyancy_CF = ( rho−rho_m(1 , j ) )∗ g∗Autoval1_2_CF ;
185

D_g_CF = − DdSigma3_ds_CF + Buoyancy_CF ;
187

Vol_CF = 25 e6 ; % m^3 , volume o f magma batch i n j e c t e d
189

V_CF = 4/(27∗ pi ^2) ∗ (1−nu)/mu ∗ Vol_CF/ eta ∗ . . .
191 (D_g_CF(D_g_CF > 0 ) ) . ^ 2 ; % m/s , magma ascent speed

193 invV_CF = 1./V_CF;
STOP = s i z e (V_CF, 2 ) ;

195

60



Appendix B - MatLab script to simulate dike propagation

dl = d i f f ( [ xData ( 1 , 1 :STOP) xData (1 ,STOP) ] ) . . .
197 .∗ Autoval1_1_CF(1 , 1 :STOP) + d i f f ( [ zData ( 1 , 1 :STOP) zData (1 ,STOP) ] ) . . .

.∗ Autoval1_2_CF(1 , 1 :STOP) ;
199

dt = invV_CF .∗ dl ;
201

t_cumulative = ze ro s (1 ,STOP) ;
203 f o r i = 2 :STOP

t_cumulative (1 , i ) = t_cumulative (1 , i −1) + dt (1 , i ) ;
205 end

207 l_cumulative = ze ro s (1 ,STOP) ;
f o r i = 2 :STOP

209 l_cumulative (1 , i ) = l_cumulative (1 , i −1) + dl (1 , i ) ;
end

211

L = sum( dl ) ;
213 T = sum( dt ) ;

215 InputParameters = {
’Raggio della caldera (km)’ ;

217 ’ Profondit della caldera (km)’ ;
’Sforzo tettonico (MPa)’ ;

219 ’ D e n s i t della crosta (kg/m^3)’ ;
’ D e n s i t del magma (kg/m^3)’ ;

221 ’ Viscosit del magma (Pa*s)’ ;
’Volume of dike intrusion (km^3)’ ;

223 ’X-coord location of dike nucleation (Km)’ ;
’Z-coord location of dike nucleation (km)’ } ;

225 Values = [
a_CF/1 e3 ;

227 h_CF/1 e3 ;
Sxx_tec_CF/1 e6 ;

229 rho ;
rho_m(1 , j ) ;

231 eta_CF ;
(Vol_CF/1 e9 ) ;

233 xData (1 ,1 )/1 e3 ;
zData (1 ,1 )/1 e3 ] ;

235 InputT = tab l e ( Values , ’RowNames’ , InputParameters ) ;

237 OutputResults = {
’X-coord location of eruption (km)’ ;
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239 ’Z-coord location of eruption (km)’ ;
’Time in hours’ ;

241 ’Time in days’ ;
’Average ascent velocity (km/h)’ } ;

243 Values = [
xData (1 ,STOP)/1 e3 ;

245 zData (1 ,STOP)/1 e3 ;
T / 3600 ;

247 T / 86400 ;
(L/1 e3 )/ (T / 3 6 0 0 ) ] ;

249 OutputT = tab l e ( Values , ’RowNames’ , OutputResults ) ;

251 di sp ( InputT )
d i sp (OutputT)
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