ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

FACOLTA' DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA

TESI DI LAUREA

in

CIRCUITI ELETTRICI

STUDIO DI FATTIBILITA' DI UN SIMULATORE DI RADIAZIONE SOLARE REALIZZATO CON TECNOLOGIA LED

CANDIDATO Laura Sergio RELATORE: Chiar.mo Prof. Gabriele Grandi

Anno Accademico 2010/11 Sessione III

INDICE

INTRODUZIONE	5
CAPITOLO 1	
RADIOMETRIA E FOTOMETRIA	7
1.1 La luce	
CAPITOLO 2	
IL LED	15
2.1 Principio di funzionamento	15
CAPITOLO 3	
IL FOTOVOLTAICO	23
3.1 Principio di funzionamento di celle fotovoltaiche	24 27
CAPITOLO 4	
LA RADIAZIONE SOLARE	31
4.1 Radiazione di corpo nero	
CAPITOLO 5	
SIMULATORI SOLARI	35
5.1 Caratteristiche dei simulatori	35 37 38
CAPITOLO 6	
SIMULATORE SOLARE A LED	39
6.1 Vantaggi del LED 6.2 Scelta dei componenti 6.3 Calcoli radiometrici 6.4 Costruzione dello spettro 6.5 Prima soluzione 6.6 Seconda soluzione 6.7 Considerazioni	
CONCLUSIONI	59
APPENDICI	
7.1 Cree XLamp XL-M T3 7.2 XLamp XP-E K2 Blue: 7.3 XLamp XP-E Q4 Green 7.4 XLamp XP-E N4 Amber 7.5 XLamp XP-E N3 Red	
7.6 Nichia NCSE119AT Bluish Green	71

7.7 Nichia NCSA119T Amber	73
7.8 Muevo	75
7.9 Osram SFH4235 e SFH4233	77
7.10 OSA 440-740	<i>78</i>
7.11 Vishay VSMG 2700 e VSMF 3710	79
7.12 Tech-led Marubeni SMB 680-1100	80
7.13 Spettro solare una unità prima soluzione.	81
7.14 Spettro solare una unità seconda soluzione	84
BIBLIOGRAFIA E SITOGRAFIA	
Ringraziamenti	

Introduzione

Dalla nascita del primo LED negli anni 60 ad oggi, si è verificata una importante evoluzione di tale dispositivo soprattutto negli ultimi anni. Inizialmente semplici spie luminose, adesso sostituiscono sempre più spesso sorgenti di ogni tipo: lampade ad incandescenza e fluorescenza, retroilluminazione dei pannelli nelle tv, insegne, illuminazione stradale e automobilistica, comunicazioni ottiche. Questo perché si tratta di una sorgente che offre molteplici vantaggi tra cui elevate efficienza luminosa ed affidabilità, lunga durata, consumi contenuti e funzionamento in bassa tensione. Ma anche una grande versatilità di utilizzo perché di piccole dimensioni, colori saturi e varie tonalità di luce bianca. Inoltre risulta insensibile a umidità, vibrazioni e frequenti accensioni e spegnimenti.

Sempre negli anni 60 avviene la nascita dei primi pannelli fotovoltaici commerciali ed anche per loro c'è stata una notevole crescita tecnologica. Con il fotovoltaico l'uomo riesce finalmente ad utilizzare l'energia che gratuitamente viene distribuita ogni giorno dal sole. Si parla di un campo in continua evoluzione e i ricercatori di tutto il mondo studiano il comportamento di nuovi materiali per potere rendere questa conversione di energia sempre più efficiente.

Le aziende di produzione di pannelli fotovoltaici commercializzano un prodotto certificato che ha subito una fase di collaudo. La verifica di funzionamento dei pannelli è effettuata riproducendo artificialmente la luce solare e osservando le caratteristiche di risposta.

I dispositivi impiegati detti *simulatori solari*, sono costituiti da opportune sorgenti luminose, tipicamente lampade allo xeno. In questo progetto si vuole tentare di applicare la tecnologia LED per realizzare un simulatore di "nuova generazione a luce elettronica".

Per affrontare lo studio di fattibilità di questo simulatore nel **capitolo 1** verrà fatta una panoramica sulla fisica delle onde elettromagnetiche e dei loro metodi di misura: la fotometria e la radiometria. Successivamente nei **capitoli 2** e **3** verrà affrontato il principio di funzionamento dei LED e dei dispositivi fotovoltaici. I **capitoli 4** e **5** saranno dedicati a fornire nozioni sulla radiazione solare e sui simulatori solari in commercio. Nel **capitolo 6** verranno infine sviluppate ed analizzate delle soluzioni di fattibilità del progetto. Nell'**appendice** a fine trattato verranno inserite tutte le tabelle contenenti i calcoli effettuati per ottenere i risultati proposti.

Capitolo 2

RADIOMETRIA E FOTOMETRIA

In questa sezione si cercherà di cogliere i concetti fisici principali per apprendere le basi di radiometria e fotometria tralasciando ciò che esula da questo progetto, senza entrare troppo nel dettaglio qual'ora non fosse necessario. Non si intende di certo sminuire alcuni concetti trattandoli con troppa leggerezza e che per esigenze narrative non sono stati approfonditi adeguatamente.

1.1 La luce

Molto spesso nel corso della storia gli scienziati si sono trovati in disaccordo sulla natura della luce. Inizialmente si pensava che fosse uno sciame di corpuscoli che si muovevano in linea retta, poi si ipotizzò che invece fosse costituita da onde. Fu Maxwell che alla fine elaborò la teoria elettromagnetica della luce. D'altro canto il fenomeno di emissione di elettroni di una superficie metallica colpita dalla luce fece pensare nuovamente ad una natura corpuscolare. Fu il *fotone* ad unire tutte e due le teorie, la particella elementare *quanto di energia* della radiazione elettromagnetica, che incarna in se proprietà di onda e particella, ed è responsabile quindi della propagazione dell'energia elettromagnetica. Ogni fotone trasporta un'energia pari a

$$Q = h \cdot f$$

Equazione 1.1

in cui h è la costante di Plank e vale $h = 6,623 \cdot 10^{-34} J \cdot s$ e f è la frequenza di oscillazione.

La luce è la porzione di radiazione elettromagnetica percepita dall'occhio umano. Un'onda elettromagnetica viaggia nel vuoto ad una velocità pari a

$c=2,99792458\cdot10^8$ m/s

Equazione 1.2

riconosciuta come costante universale della natura. L'occhio umano è sensibile a radiazioni elettromagnetiche di lunghezze d'onda comprese fra circa 380 nm e 790 nm, percepite sotto forma di colori. Valori di lunghezze d'onda inferiori a 400 nm vengono definiti *radiazioni ultraviolette (UV)* e valori superiori a 800 nm *radiazioni infrarosse (IR)*.

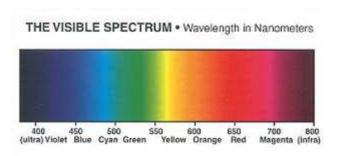


Figura 1.1:Spettro della radiazione visibile (VIS)

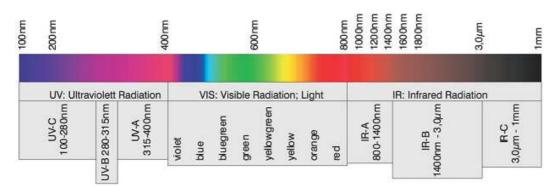


Figura 1.2: Spettro completo delle radiazioni elettromagnetiche

1.2 Legame tra radiometria e fotometria

La radiometria si occupa dello studio della misura delle radiazioni elettromagnetiche indipendentemente dalla loro collocazione nello spettro.

Il *watt* (*W*) è l'unità fondamentale per la potenza radiometrica, definita come il rapporto dell'energia di 1 *joule* al *secondo*. L'energia è funzione del numero di fotoni e della lunghezza d'onda secondo la relazione

$$Q = \frac{h \cdot c}{\lambda}$$

Equazione 1.3

In cui la lunghezza d'onda è la quantità

$$\lambda = \frac{c}{f}$$

Equazione 1.4

Che rappresenta la distanza fra due creste d'onda.

Figura 1.3: Lunghezza d'onda

Quindi radiazioni elettromagnetiche a diverse lunghezze d'onda trasportano quantità di energia differenti. L'occhio umano risponde diversamente alle varie lunghezze d'onda del campo del visibile con un picco di massima sensibilità in condizioni diurne alla lunghezza d'onda pari a 555 nm, corrispondente al colore verde-giallo. Quindi radiazioni elettromagnetiche di egual potenza radiometrica inducono percezioni visive diverse a seconda della lunghezza d'onda.

La fotometria studia i fenomeni ottici messi in relazione alla visibilità dell'occhio umano medio in condizioni *fotopiche* (giorno) e *scotopiche* (notte). La funzione di sensibilità spettrale viene definita dal CIE (*International Commission of Illumination*) *funzione di efficienza spettrale luminosa* e indicata con $V(\lambda)$.

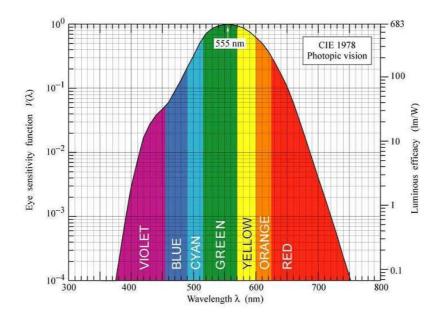


Figura 1.4: Funzione di efficienza spettrale luminosa fotopica

In presenza di condizioni scotopiche la curva di sensibilità trasla verso sinistra assumendo il suo valore massimo a 507 nm.

Il *lumen* (lm) è l'equivalente fotometrico del *watt* radiometrico e rappresenta il flusso di potenza radiante in relazione alla visibilità, detto flusso luminoso e indicato con Φ_{ν} espresso nella seguente relazione:

$$\Phi_{v} = 683 \int_{380}^{780} V(\lambda) \Phi_{e} d\lambda$$

Equazione 1.5

I pedici v e e stanno per Visual ed Energy indicando rispettivamente quantità fotometriche e radiometriche. Si può notare che alla lunghezza d'onda di 555 nm tale per cui l'efficienza spettrale relativa $V(\lambda)=1$ si ha la corrispondenza 1 W=683 lm. La quantità 683 lm/W spesso indicata con K_m è un fattore di normalizzazione ed in condizioni scotopiche viene sostituito con $K_m=1700$ lm/W. Tutte le grandezze radiometriche quindi, hanno una controparte fotometrica.

1.3 Grandezze radiometriche

- Flusso radiante ($Radiant\ Flux$): Φ_e , P. E' considerato la grandezza fondamentale in radiometria e rappresenta il flusso di energia elettromagnetica nell'unità di tempo, quindi una potenza. La sua unità di misura è il watt. Quando è riferito ad una sorgente di radiazione elettromagnetica (per es. lampada ad incandescenza, led) rappresenta il flusso complessivo di potenza emesso.
- Intensità radiante (*Radiant Intensity*): *I_e*. Descrive il flusso di potenza radiante in una determinata direzione individuata dall'*angolo solido*.

$$I_e = \frac{\Phi_e}{\Omega}$$
 La sua unità di misura è W_{sr} .

Equazione 1.6

Cos'è l'angolo solido: In geometria è l'astrazione nello spazio tridimensionale del concetto di angolo nel piano bidimensionale. Rappresenta quindi la porzione di spazio ottenuta dal passaggio di tre o più piani in un punto. Si misura in *steradianti* (sr). Lo steradiante è ottenuto tracciando una sfera di raggio r centrata nel punto P di intersezione dei piani ed eseguendo il rapporto fra la superficie A intercettata dalla sfera e il raggio della sfera al quadrato.

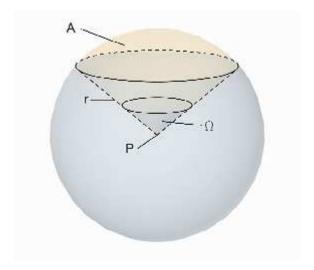


Figura 1.5: Angolo solido considerato come porzione di sfera individuata dal cono con vertice in P

La sua definizione è
$$\Omega = \frac{A}{r^2} [sr]$$

Equazione 1.7

E l'angolo solido giro misura
$$\Omega = \frac{4\pi r^2}{r^2} = 4\pi [sr]$$

Equazione 1.8

 Irradianza (*Irradiance*): E_e. Descrive la quantità di flusso radiante che incide su una superficie di area unitaria.

$$E = \frac{\Phi_e}{A}$$
 La sua unità di misura è W/m^2 .

Equazione 1.9

Generalmente non tutta la potenza radiante emessa da una sorgente raggiunge la superficie in esame, per cui può essere opportuno calcolare l'irradianza a partire dalla quantità effettiva di flusso in quella determinata direzione e cioè dalla intensità radiante:

$$E = \frac{\Phi_e}{A} = I \frac{\Omega}{A} = I \frac{A'}{d^2} \frac{1}{A} = I \frac{A \cos \theta}{d^2 A} = I \frac{\cos \theta}{d^2}$$
Equazione 1.10

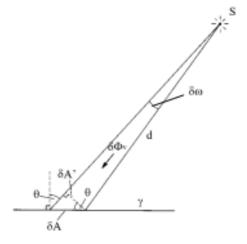


Figura 1.0.6: Calcolo della irradianza in condizione di non perpendicolarità del flusso radiante sulla superficie

Nella definizione delle precedenti grandezze radiometriche non è stato fatto nessun cenno alla dipendenza delle varie grandezze dalla lunghezza d'onda della radiazione. In effetti queste grandezze danno un risultato globale su come la potenza radiante è distribuita nello spazio, oppure investe una superficie, ma non dicono nulla riguardo la lunghezza d'onda. Per quantificare il contributo della radiazione elettromagnetica ad ogni lunghezza d'onda, sono introdotte le corrispondenti quantità *spettrali*.

Se indichiamo con $\Phi_{\lambda}(\lambda)$ la potenza radiante ad una determinata lunghezza d'onda, allora

$$\Phi_e = \int_0^{+\infty} \Phi_{\lambda}(\lambda) d\lambda$$

Equazione 1.11

E quindi la potenza radiante è data dal contributo delle singole quantità spettrali di potenza e si misura in *W/nm*.

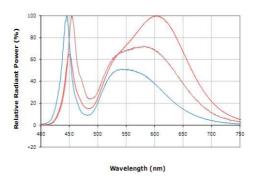


Figura 1.7: Distribuzione spettrale di potenza di alcuni led

Analogamente si può definire l'irradianza spettrale come il flusso di potenza spettrale che investe una superficie e si misura in $\frac{W}{m^2 \cdot nm}$.

1.4 Grandezze fotometriche

• Flusso luminoso (*Luminous Flux*): Φ_{ν} . Rappresenta la potenza radiante emessa da una sorgente riferita alla sensibilità spettrale relativa dell'occhio umano. E' la controparte fotometrica del flusso radiante. Si misura in *lumen* [lm] ¹.

¹ Contrariamente a come si può pensare, associando la corrispondenza lumen-watt, l'unità fondamentale in fotometria non è il lumen, bensì la candela. Seppure la sua definizione è derivata dal watt essa rappresenta una delle sette unità fondamentali del Sistema Internazionale di Unità di Misura (SI). La candela è l'intensità luminosa in una data direzione, di una sorgente che emette una radiazione monocromatica di frequenza pari a $540 \cdot 10^{12}$ Hertz (λ =555 nm), di intensità radiante in quella direzione di 1/683 watt per steradiante. Da qui deriva appunto la necessità del fattore di normalizzazione K_m nella definizione del lumen.

- Intensità luminosa (Luminous Intensity): I_{ν} . Quantifica il flusso luminoso emesso da una sorgente in una determinata direzione. E' la controparte fotometrica dell'intensità radiante. Si misura in candela[cd=lm/sr].
- Illuminamento (*Illuminance*): E_{ν} . Indica il flusso luminoso che investe la superficie di area unitaria. E' la controparte fotometrica della irradianza. Si misura in $lux[lx=lm/m^2]$.

PHOTOMETRY	UNIT	SYMBOL	RADIOMETRY	UNIT	SYMBOL
Luminous Flux	lm	$\phi_{\mathbf{V}}$	Radiant Flux	W	ф
Luminous Intensity	lm/sr = cd	I _v	Radiant Intensity	W/sr	I
Illuminance	$lm/m^2 = lx$	E _v	Irradiance	W/m ²	Е

Figura 1.8: Corrispondenza fra le varie unità

Capitolo 3

IL LED

Acronimo di *light emitting diode*, ovvero diodo ad emissione di luce. Il diodo è un componente elettronico a due terminali che consente il passaggio di corrente in una sola direzione. Esso è costituito di materiale semiconduttore opportunamente drogato.

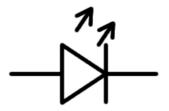


Figura 2.1: Simbolo grafico LED (quello del diodo invece non ha le frecce)

2.1 Principio di funzionamento

Per meglio capire il funzionamento di un diodo bisogna analizzare a livello microscopico le caratteristiche dei materiali di condurre elettricità. Dal punto di vista elettrico il comportamento di un materiale dipende dalla sua struttura atomica. Ogni atomo è formato da un nucleo e da elettroni che ruotano attorno ad esso occupando bande energetiche ben definite. Ogni banda contiene un numero di elettroni predefinito.

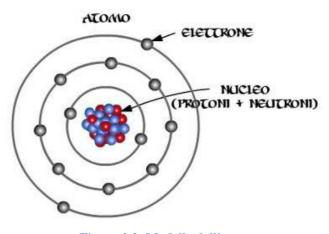


Figura 2.2: Modello dell'atomo

L'ultima banda occupata da elettroni prende il nome di *banda di valenza*, mentre quella vuota subito sopra *banda di conduzione*. Tra queste due bande vi è la così detta *banda proibita*. Gli elettroni che sono sulla banda di valenza, hanno bisogno di una certa quantità di energia per saltare nella banda di conduzione. Questa energia dipende appunto dalla banda proibita. E' possibile allora definire tre tipi di materiali: *isolanti, conduttori, semiconduttori*. Nei primi la banda proibita è talmente grande da permettere a solo pochi elettroni di avere energia sufficiente per scavalcarla. Nei conduttori invece tale banda è inesistente e la banda di valenza è parzialmente sovrapposta a quella di conduzione quindi molti elettroni sono liberi di muoversi nella banda di conduzione. Esistono poi i semiconduttori che manifestano entrambe le caratteristiche: posseggono una banda proibita più piccola che negli isolanti e quindi è necessaria poca energia per promuovere elettroni nella banda di conduzione.

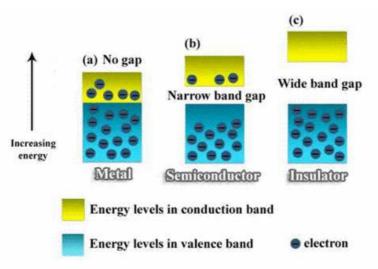


Figura 2.3: Differenze fra i materiali

Sono semiconduttori alcuni degli elementi del IV gruppo della tavola periodica quali il Carbonio, Germanio, Silicio ed inoltre anche l'Arseniuro di Gallio. Questi materiali hanno a disposizione nella banda di valenza quattro elettroni. Per incentivare la caratteristica di conduzione, il semiconduttore viene *drogato*, introducendo atomi di elementi trivalenti (III gruppo) oppure pentavalenti (V gruppo). Nel primo caso l'elemento trivalente stringe un legame covalente con i quattro elettroni del semiconduttore introducendo la mancanza di un elettrone (lacuna) nella banda di conduzione: il materiale si dice drogato di tipo P, in quanto c'è un deficit di cariche negative che rendono il materiale caricato positivamente. Nel caso di drogaggio con elemento pentavalente, tale elemento mette in condivisione quattro dei sui cinque elettroni, lasciandone quindi uno libero di muoversi: tale drogaggio viene detto di tipo N, in quanto l'eccedenza di elettroni rende il materiale caricato negativamente. Un

diodo viene realizzato accostando due pezzi di semiconduttore, uno drogato P e l'altro N. Nella zona di contatto si ha una ricombinazione tra elettroni e lacune per effetto dell'attrazione fra cariche opposte che viene chiamata zona di svuotamento, essendo priva di carica. Le cariche fisse che non si ricombinano determinano una differenza di potenziale ai capi della zona di svuotamento chiamata barriera di potenziale. Si ha polarizzazione diretta quando il diodo è collegato all'alimentazione con il polo positivo applicato alla regione P ed il polo negativo alla regione N. Si ha polarizzazione inversa quando il polo positivo è collegato alla regione N e d il polo negativo alla regione P. Per permettere lo scorrere della corrente è necessario che il diodo sia polarizzato direttamente ed inoltre bisogna vincere la barriera di potenziale che indica la tensione di soglia sotto la quale non si ha conduzione. Vinta questa tensione gli elettroni iniziano a muoversi dalla regione N verso la regione P spostandosi di lacuna in lacuna, permettendo lo scorrere della corrente dal polo positivo a quello negativo della batteria. Quando il diodo è anche un led, succede che quando l'elettrone occupa il posto di una lacuna decade verso un livello energetico minore e quindi emette energia sotto forma di fotoni.

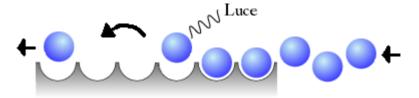


Figura 2.4: Emissione della luce da parte dell'elettrone

2.2 Generazione della luce

Il tipo di materiale utilizzato per drogare il semiconduttore determina l'energia del fotone e la lunghezza d'onda della radiazione:

$$E_2 - E_1 = h \cdot f$$

Equazione 2.1

Con h costante di Planck, f frequenza della radiazione e E_2-E_1 è la differenza fra i due livelli energetici.

E' quindi possibile generare radiazioni nel campo del visibile utilizzando dei droganti che emettono una radiazione avente lunghezza d'onda compresa fra 380 nm e 780 nm e quindi percepiti dall'occhio umano sottoforma di luce. Da come si evince, il led è una sorgente di radiazione *monocromatica*, quindi è percepita effettivamente come un colore ben definito.

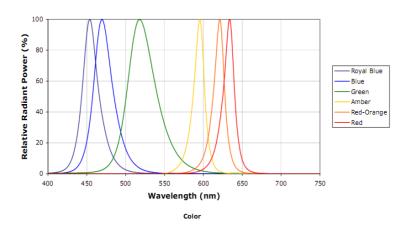


Figura 2.5: Esempio di distribuzione spettrale di potenza radiativa

Per generare luce bianca invece, esistono diversi metodi che si basano sulla mescolanza di colori o l'impiego di fosfori tra cui:

- Sintesi additiva dei tre colori primari RGB (*Red Green Blue*): vengono utilizzati tre led monocromatici la cui radiazione totale è percepita come bianca;
- Led blu o UV racchiuso in un involucro contenente fosfori che assorbono parte o
 tutta la radiazione ed effettuano una conversione di lunghezza d'onda. Nel caso del
 led blu vengono utilizzati fosfori gialli (il giallo è il colore complementare del blu,
 la loro mescolanza produce il bianco), nel caso dei led UV fosfori RGB.

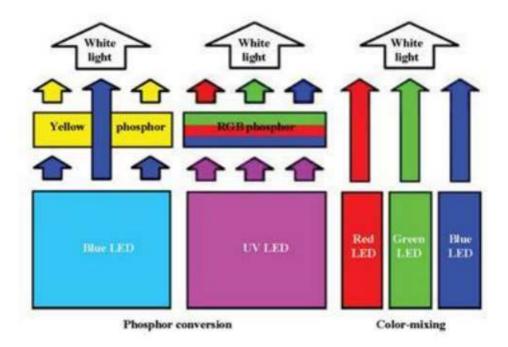


Figura 2.6: Generazione di luce bianca

Una prima grande suddivisione può essere differenziare i led a seconda se emettono una radiazione visibile oppure no. In base alla lunghezza d'onda di picco (la lunghezza d'onda per la quale si ha il picco di massima emissione della potenza radiante) si usano parametri diversi per caratterizzare i vari prodotti. In particolare quando il led emette luce visibile si utilizzano unità fotometriche che, come già mensionato nel capitolo 1, sono grandezze fisiche messe in relazione alla visione umana. Quando un led emette radiazione non visibile dall'occhio umano allora si utilizzano unità radiometriche.

2.3 Tipologie di LED

E' possibile suddividere la famiglia dei LED in quattro grandi categorie. In ognuna di esse è possibile distinguere molteplici caratteristiche diverse a seconda del loro impiego: dalla forma alle dimensioni.

• *THT* (*Through Hole Technology*): sono piccoli led incapsulati in cupole plastiche di 3 o 5 mm utilizzati principalmente come spie luminose o come emettitore infrarosso nei telecomandi. Sono alimentati con correnti al di sotto dei 350 mA e sono a bassa dissipazione di potenza.

Figura 2.7: Esempi di LED THT Cree

• *SMD o SMT (Surface Mounted Device or Technology):* sono led racchiusi in piccoli box che si poggiano direttamente sul circuito stampato su superficie isolante e vengono microsaldati in modo automatizzato. Ce ne sono di tantissimi tipi e a seconda del loro impiego possono essere a bassa, media o alta potenza dissipata.

Figura 2.8: Esempio di LED SMD Cree

• *HPLED (High Power LED):* si usa questa denominazione per LED alimentati con almeno 350 mA e che dissipano generalmente almeno 1W. Possono essere pilotati con valori molto elevati di corrente (es. 3 A) e producono una elevata emissione di radiazioni elettromagnetiche. Anch'essi hanno i terminali che fuoriescono lateralmente dal dispositivo e possono essere appoggiati direttamente sulla basetta, oppure montati su un'apposita piastra di dissipazione.

Figura 2.9: Esempio di power LED Cree

Figura 2.10: Stesso componente montato su basetta di dissipazione

• OLED (Organic LED): Sono l'evoluzione del componente esteso su una superficie. Sono costituiti da sottili fogli di materiale organico semiconduttore sovrapposti, dei quali i più interni fungono da emettitore di luce e conduttore e i più esterni da anodo e catodo. La sua superficie ha la struttura di una matrice di pixel. Il loro impiego è soprattutto nei display.

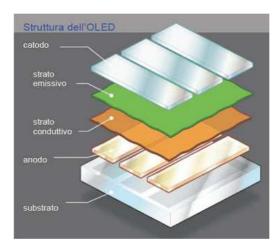


Figura 2.11: Struttura dell'OLED

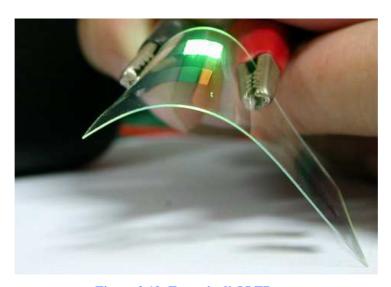


Figura 2.12: Esempio di OLED

Capitolo 4

IL FOTOVOLTAICO

In questo capitolo verrà illustrato il principio di conversione dell'energia da solare ad elettrica, la struttura dei sistemi fotovoltaici e le principali differenze fra le varie tecnologie. Il termine fotovoltaico deriva da *luce* e *volt* in onore di Alessandro Volta, inventore della pila elettrica. Nel 1905 Albert Einstein vinse il premio Nobel per la sua teoria sull'effetto *fotoelettrico*, ovvero sull'emissione di elettroni di una piastrina metallica investita da radiazione elettromagnetica.

3.1 Principio di funzionamento di celle fotovoltaiche

L'elemento base di un generatore fotovoltaico è la cella solare o fotovoltaica. Una cella solare è costituita di materiale semiconduttore drogato ed è sostanzialmente un diodo di grande sezione la cui forma dipende dalla tipologia di cella: quadrata, circolare o rettangolare. Tale diodo è racchiuso fra due elettrodi di cui uno è una piastra e l'altro è a forma di griglia oppure trasparente, per permettere il passaggio della radiazione solare.

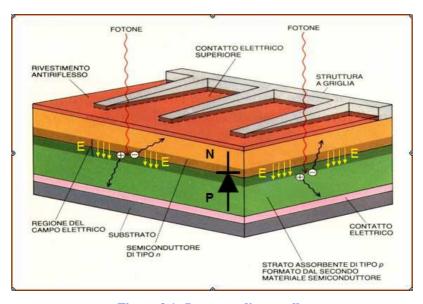


Figura 3.1: Struttura di una cella

Il suo funzionamento è quindi opposto a quello di un LED ovvero a seguito di fotoni incidenti sulla giunzione, la loro energia è utilizzata dagli elettroni per passare dallo stato di valenza a quello di conduzione generando una corrente elettrica. Si ricordi che l'energia di un fotone vale

$$Q = h \cdot \frac{c}{\lambda}$$

Equazione 3.1

Con h costante di Planck, λ lunghezza d'onda della radiazione e c velocità della luce.

Solo alcuni fotoni che hanno energia in eccesso rispetto al salto di energia fra banda di valenza e banda di conduzione riescono ad essere convertiti in elettricità dalla cella. Quindi non tutti i fotoni incidenti sulla giunzione generano corrente elettrica: ogni semiconduttore è predisposto a convertire solo una parte dell'energia proveniente dalla radiazione solare, tutta quella non convertita viene persa sottoforma di calore.

3.2 Modello equivalente

Per apprendere il funzionamento della cella, è possibile schematizzarla con un circuito equivalente composto da un generatore ideale di corrente proporzionale al valore dell'irradianza solare, un diodo ideale in parallelo e due resistenze.

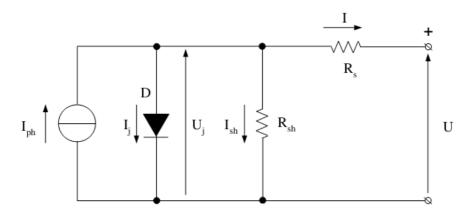


Figura 3.2: circuito equivalente

 R_{sh} corrisponde alla dispersione di corrente superficiale degli elettrodi e R_s corrisponde alla resistenza del semiconduttore, degli elettrodi e di contatto. La corrente che fluisce nel diodo

vale
$$I_J = I_0 \left\{ \exp\left(\frac{qV_D}{nkT}\right) - 1 \right\}$$

Equazione 3.2

In cui I_0 è la corrente di saturazione inversa del diodo, q è la carica dell'elettrone, V_D è la tensione ai capi del diodo, n è il fattore di idealità del diodo, k è la costante di Boltzman e T è la temperatura in kelvin.

Fissata l'irradianza o la temperatura è possibile individuare delle famiglie di curve tra la corrente assorbita dal carico:

$$I = I_{ph} - I_j - \frac{U_j}{R_{sh}}$$

Equazione 3.3

e la tensione ai morsetti:

$$U = U_i - R_s I$$

Equazione 3.4

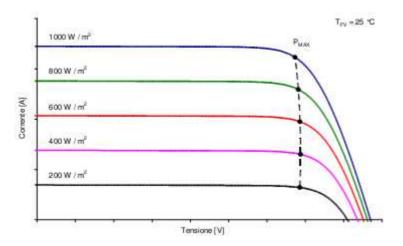


Figura 3.3: La corrente di corto circuito diminuisce con l'irradianza, la tensione di circuito aperto è pressoché costante al di sotto dei valori massimi della potenza

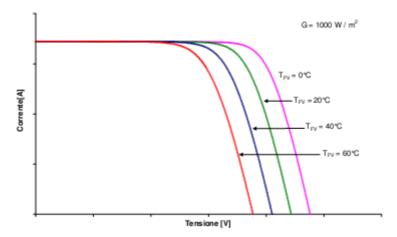


Figura 3.4: La tensione di circuito aperto diminuisce con l'aumentare della temperatura

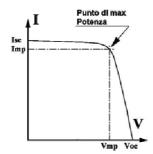


Figura 3.5: Caratteristica I(V)

Fissate irradianza e temperatura è possibile tracciare una curva caratteristica le cui coordinate sono tensione e corrente V_{mp} e I_{mp} . Indicando con I_{sc} la corrente di corto circuito e con V_{oc} la tensione con circuito aperto, si definisce il *fill factor*, ovvero il fattore di forma o riempimento, un indicatore del rendimento della cella in questione che per le celle al silicio generalmente vale:

$$K_f = \frac{V_{mp}I_{mp}}{V_{oc}I_{sc}} = 0.7 \div 0.8$$

Equazione 3.5

Un altro parametro importante che caratterizza le celle solari è l'efficienza di conversione definita come il rapporto fra la massima potenza fornita dalla cella e l'energia solare incidente per unità d'area:

$$\eta = \frac{V_m \cdot I_m}{E_{in}}$$

Equazione 3.6

Esplicitando i termini che definiscono l'efficienza si può notare come essa dipenda dal materiale utilizzato e dal fattore di forma:

$$\eta = \frac{I_{sc} \cdot E_g}{q \cdot E_{in}} \cdot K_f \cdot \frac{q \cdot V_{oc}}{E_g}$$

Equazione 3.7

In cui E_g è l'energy gap del semiconduttore.

3.2 Efficienza energetica

La conversione da potenza radiante a potenza elettrica è un processo che presenta diverse perdite dovute a molteplici fattori:

- Parte della radiazione incidente colpisce la griglia frontale e altra parte di essa viene riflessa dalla superficie della cella. Si stima una perdita mediamente del 10%. Per limitare questa perdita viene eseguito un trattamento antiriflesso sulla superficie della cella e si minimizza la superficie occupata dalla griglia.
- Energia in eccesso di alcuni fotoni incidenti. Questa energia non utilizzata inevitabilmente genera calore e induce perdite per circa il 30%.
- Energia in difetto di alcuni fotoni incidenti. Questi ultimi non hanno abbastanza energia da permettere il salto dell'energy gap da parte degli elettroni. Questa energia viene dissipata sottoforma di calore ed è dell'ordine del 20%.
- Alcuni degli elettroni che vengono messi in conduzione ricadono verso il livello energetico inferiore cedendo energia che verrà dissipata sotto forma di calore.
 Questo processo denominato fattore di ricombinazione introduce perdite di efficienza del 2%.
- Parte dell'energia prodotta viene dissipata dalle resistenze parassite e dal diodo stesso e dipende dal fattore di forma. Provoca perdite per il 20%.

A seconda della tecnologia costruttiva i livelli di efficienza oscillano fra il 8% e il 17%.

3.3 Moduli fotovoltaici e tecnologie costruttive.

Il modulo fotovoltaico, è un dispositivo piano formato dall'assemblaggio di celle fotovoltaiche connesse in serie, atto alla produzione di energia elettrica se esposto alla luce del sole. Più moduli interconnessi formano un pannello. Il materiale più comunemente usato è il silicio ed esistono diverse tipologie costruttive:

• Silicio monocristallino: è formato da fette di silicio (*wafer*) prelevate da *lingotti* cilindrici. Esse sono pertanto di forma circolare da cui viene scartato del materiale

per formare un quadrato. E' una tecnologia molto costosa e con efficienza dell'ordine del 16-17% .

- Silicio policristallino: è composto da lingotti a grana cristallina localmente ordinata.
 Può essere modellato della sezione che si necessita, quindi meglio si presta ad essere assemblato per formare moduli. E' meno costoso del monocristallo e ha un'efficienza del 15-16%.
- Silicio amorfo: presenta una struttura cristallina disordinata. E' molto meno costoso
 produrlo rispetto ai primi due ed ha un'efficienza del 8%. E' molto versatile perché
 può anche essere assemblato su strisce flessibili.

Il silicio amorfo presenta un'energy gap maggiore rispetto al monocristallino per cui risulta più efficiente nel convertire fotoni aventi lunghezza d'onda minore (verso il visibile) mentre il monocristallo è più efficiente nel convertire lunghezze d'onda verso l'infrarosso, così possono essere assemblati a strati: il primo strato amorfo che converte la parte visibile ed un secondo strato monocristallino che converte l'infrarosso.

Oltre al silicio sono molti altri i materiali utilizzati, ma soprattutto in fase di sperimentazione, per permettere un abbattimento dei costi e/o miglioramenti di efficienza: dai composti organici alle celle multi giunzione costituite dall'unione di materiali disposti a strati ognuno dei quali sensibile ad un porzione di spettro solare.

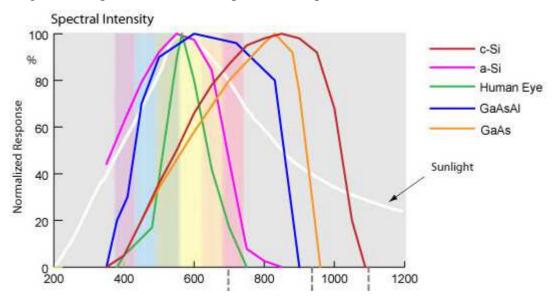


Figura 3.0.6: Risposta spettrale visiva e di differenti materiali

Per produrre il pannello, vengono saldate fra loro le celle e poi sigillate fra due lamine di cui una trasparente di vetro ad alta trasmittanza ed una di resina termoplastica (*tedlar o mylar*).

Figura 3.7: Silicio policristallino, monocristallino e amorfo

Capitolo 5

LA RADIAZIONE SOLARE

4.1 Radiazione di corpo nero

La luce bianca ha un unico colore per quanto sia formata dalla mescolanza di radiazioni aventi molteplici colori. Lo standard maggiormente utilizzato per caratterizzare una radiazione bianca è l'utilizzo del modello di Planck per le curve di emissione di corpo nero. Qualsiasi corpo solido o liquido emette radiazioni elettromagnetiche con spettro continuo. All'aumentare della sua temperatura aumenta il valore delle frequenze medie emesse (diminuiscono così le lunghezze d'onda medie) ed aumenta la potenza irradiata. Un *corpo nero* ha le proprietà di assorbire completamente qualsiasi radiazione lo colpisca o equivalentemente di non rifletterla. Esso è caratterizzato solamente da un parametro: la sua temperatura.

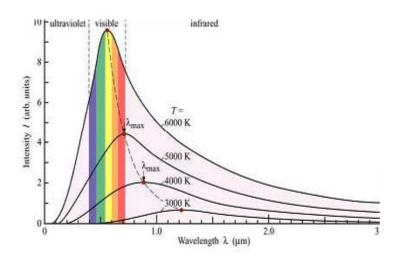


Figura 4.1: Curve spettrali di radiazione di corpo nero e diverse temperature

La lunghezza d'onda di massima radiazione ad una specifica temperatura T è data dalla *legge di Wien:*

$$\lambda_{\text{max}} = \frac{2880 \mu mK}{T}$$

Equazione 4.1

e la sua potenza radiante vale

$$W_s = \sigma_s T^4 \left[\frac{W}{m^2} \right]$$

Equazione 4.2

in cui $\sigma_s = 5.67 \cdot 10^{-8} [\frac{W}{m^2 K^4}]$ è la costante di Stefan-Boltzmann e T è la temperatura in Kelvin.

Un corpo nero di bassa temperatura emette principalmente nella gamma dell'infrarosso, come si può notare per temperature di 3000 K oppure 4000 K. All'aumentare della temperatura, il picco emissivo si sposta verso il campo del visibile. Sul diagramma cromatico nella figura seguente è possibile individuare tutti i colori percepibili dall'occhio umano. Ciascun punto sul diagramma è individuato dalle sue coordinate di colore ed in particolare verso il centro della figura, si può notare una linea che individua l'emissione di un corpo nero a diverse temperature. In tale regione passiamo per tutte le tonalità del bianco: dal bianco caldo al bianco freddo.

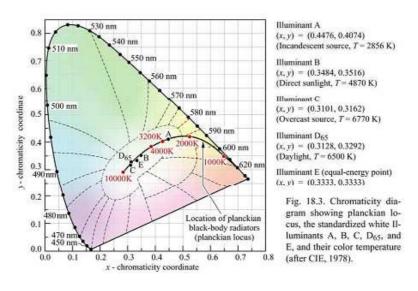


Figura 4.2: Diagramma cromatico

La temperatura di colore di una sorgente luminosa è la temperatura del corrispondente corpo nero che emette radiazioni della stessa cromaticità della sorgente in questione.

4.2 Il sole

Il sole si comporta idealmente come un corpo nero di temperatura 5900 K.

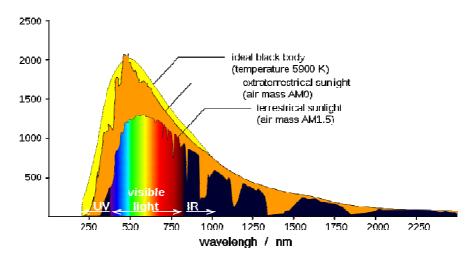


Figura 4.3: Spettro della radiazione solare

In figura si può notare come al livello del mare giunge solo una parte della radiazione emessa in quanto assorbita, riflessa e diffusa dalla nostra atmosfera. L'air mass (AM) rappresenta il rapporto fra la lunghezza del cammino nell'atmosfera terrestre della radiazione proveniente dal sole ed il cammino minimo quando il sole si trova allo zenit, cioè quando il sole è in posizione perfettamente verticale sul piano orizzontale in una determinata località. Pertanto, al di fuori della nostra atmosfera AM=0. Al livello del mare, quando la radiazione solare incide perpendicolarmente sull'atmosfera AM=1. Aumentando l'inclinazione dei raggi solari l'air mass aumenta. Ovviamente la radiazione solare cambia con l'ora del giorno ed il giorno dell'anno e quindi sono stati definiti degli standard su cui basarsi per effettuare delle simulazioni. Per gli Standard Test Conditions (STC) riguardo ai test su celle fotovoltaiche, si tiene conto di una insolazione pari a 1000 W/ m^2 (1 SUN) che corrisponde ad AM1.5.

Capitolo 6

SIMULATORI SOLARI

5.1 Caratteristiche dei simulatori

Il sole è la principale ragione per la quale è possibile la vita sulla terra. I ritmi di tutte le forme di vita sono scanditi dall'alternarsi del giorno e della notte. Seppur "onnipresente" molto spesso è nata la necessità di poterlo ricreare nei laboratori, nelle industrie, per poter effettuare dei test di funzionamento di apparecchiature o materiali (pannelli solari, materiali plastici, creme protettive, vernici...). Mai come al giorno d'oggi si è sentito parlare così spesso di energie alternative e fotovoltaico tanto che il mercato dei pannelli solari è in continua espansione. Sempre più aziende producono in questo settore e ovviamente maggiore è la richiesta di verifica dell'affidabilità del prodotto: si è dovuto quindi ricreare il sole sui banchi di test per poter verificarne le caratteristiche.

Esistono diversi organismi che legiferano sugli standard costruttivi e di misura da mantenere: i più importanti sono per l'America ASTM (*American Society for Testing Materials*), per l'Europa IEC (*International Electrotechnical Commission*) e per il Giappone JIS (*Japanese International Standards*). Secondo gli standard un simulatore solare è un dispositivo atto a replicare lo spettro solare soddisfacendo determinati requisiti. In pratica quindi è un complesso sistema formato da una lampada e diverse apparecchiature che convogliano la radiazione prodotta su una superficie bersaglio, che può essere utilizzato per effettuare test *indoor* riproducendo la luce del sole, a qualsiasi ora, per un tempo stabilito, senza interferenza da parte delle condizioni atmosferiche. In questi test si verifica la risposta della cella fotovoltaica effettuando una misurazione della caratteristica tensione-corrente.

Figura 5.1: Esempio di simulatore solare Oriel Newport

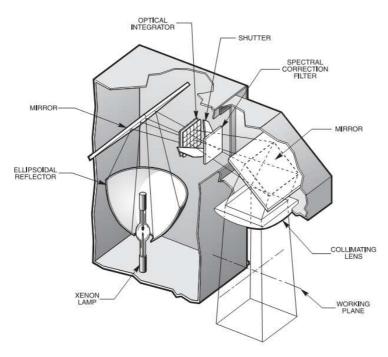


Figura 5.2: Vista dei particolari dello stesso simulatore di fig. precedente

La sorgente luminosa può essere una lampada allo xeno o alogena al mercurio o tungsteno. Generalmente la più utilizzata è costituita da lampade allo xeno, in quanto riproduce più fedelmente l'intero spettro mentre le alogene hanno un spettro più spostato o verso l'UV o verso l'IR. Esistono principalmente due tipi di simulatori solari: *a luce continua* e a *luce pulsata*. I primi possono generare la radiazione in modo continuato con un tempo di vita per la lampada di massimo 2000 ore, sono usati per testare pannelli di piccole-medie dimensioni o singole celle. I secondi generano fino a 10 milioni di flash della durata di massimo 10 *ms*, vengono impiegati per testare moduli di grandi dimensioni. Per avere un ordine di grandezza sui prezzi di questi dispositivi si fa riferimento a simulatori a luce continua dal listino di *Sciencetech*, azienda produttrice di molte tipologie di simulatori. I 36

modelli più economici di classe AAA che illuminano una superficie di massimo 10 cm x 10 cm costano intorno ai 12 mila euro. Mentre per i modelli più accessoriati con filtri per varie applicazioni che illuminano fino a 30 cm x 30 cm costano 180 mila euro.

In questo progetto si intende proporre un simulatore a luce continua, quindi che produce una radiazione costante nel tempo. Le specifiche impongono tre vincoli da soddisfare: corrispondenza spettrale, uniformità del fascio luminoso e stabilità nel tempo. A seconda della tolleranza rispetto ai valori desiderati, è possibile delineare tre categorie: A, B, C. Ogni sistema di simulazione quindi può essere identificato da tre lettere, che rappresentano nell'ordine la categoria di appartenenza di ciascun parametro.

Performance	St	andards Organization	ı
Parameter	ASTM	IEC	JIS
Spectral match			
Class A	0.75-1.25	0.75-1.25	0.75-1.25
Class B	0.6-1.4	0.6-1.4	0.6-1.4
Class C	0.4-2.0	0.4-2.0	0.4-2.0
Irradiation non-uniformity			
Class A	≤ 3%	≤ 2%	≤ 2%
Class B	≤ 5%	≤ 5%	≤ 3%
Class C	≤ 10%	≤ 10%	≤ 10%
Temporal instability			
Class A	≤ 2%	≤ 2%	≤ 1%
Class B	≤ 5%	≤ 5%	≤ 3%
Class C	≤ 10%	≤ 10%	≤ 10%

Figura 5.3: Caratterizzazione della classe di un simulatore

5.2 Corrispondenza spettrale (Spectral match):

Come già detto la radiazione solare che giunge al suolo dipende da molteplici fattori per cui è stato necessario introdurre un modello di riferimento su cui basarsi. Nel seguito si terrà conto della radiazione standard AM1.5G, ovvero la radiazione diretta al livello del mare più quella diffusa dall'atmosfera terrestre. Per verificare la corrispondenza spettrale, si considera lo spettro solare dai 400 nm ai 1100 nm e si suddivide questa banda in sei fasce. Non è quindi la forma dello spettro che influisce, bensì la percentuale di irradianza che rientra in queste sei fasce stabilite e la tolleranza rispetto a queste percentuali identifica la classe in riferimento al primo parametro.

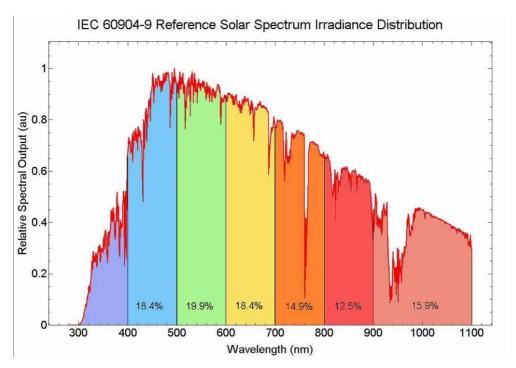


Figura 5.4: Composizione dello spettro solare del International Electrotechnical Commission

In figura 5.4 si può capire come è distribuita la potenza spettrale che giunge sulla superficie terrestre. Essa è costituita dal 71,6% di potenza nel campo del visibile e del 28,4% nel campo dell'infrarosso, preso come riferimento il valore massimo di 1100 nm.

5.3 Uniformità (Irradiation non-uniformity):

Questo parametro si riferisce alla uniformità del fascio di luce sulla superficie illuminata: questa caratteristica è sicuramente la più difficile da replicare in quanto la radiazione solare è molto uniforme. E' misurata come la percentuale di area sulla quale la radiazione non è uniforme, preso come riferimento un quadrato di 30 cm per lato o meno.

$$U = \pm 100 \cdot \frac{E_{\text{max}} - E_{\text{min}}}{E_{\text{max}} + E_{\text{min}}}$$

Equazione 5.1

5.4 Stabilità temporale (Temporal instability):

La stabilità della radiazione è misurata per un tempo di un secondo. Eventualmente si possono anche verificare i suoi valori per tempi maggiori, come 1 minuto o 1 ora.

Capitolo 7

SIMULATORE SOLARE A LED

In questo capitolo viene illustrato tutto il procedimento seguito per ottenere i risultati proposti, rimandando alle appendici le tabelle ed i calcoli numerici eseguiti.

6.1 Vantaggi del LED

Come già discusso nel capitolo sui simulatori solari, il mercato offre prodotti per la simulazione ad elevato costo, elevata manutenzione (ricambio continuo delle lampade) ed elevato ingombro. La tecnologia LED permette la realizzazione di dispositivi sicuramente meno costosi per quanto composti da molte unità: il costo massimo dei migliori power LED è sotto i 10 euro. Per i LED IR il costo può salire notevolmente in quanto tali dispositivi sono destinati a particolari applicazioni. L'accensione è praticamente immediata e le radiazioni emesse sono molto stabili nel tempo. La durata è di gran lunga superiore alle 1000 - 2000 ore delle lampade allo xeno, con tempi di vita di oltre 100 mila ore. Ovviamente alcune delle sue caratteristiche si degradano nel tempo, come la potenza irradiata o la lunghezza d'onda di picco. Le cifre statistiche comunque affermano che nelle peggiori condizioni di funzionamento dopo 6000 ore si ha un flusso luminoso medio di oltre il 97%. Inoltre l'ingombro di ogni singolo power LED montato sul supporto di dissipazione è di 20 mm e quello degli IR fino a 32 mm. Inoltre ogni LED ha un'efficienza molto elevata fino ai 150 lumen per watt per gli XM-L, il che li rende molto economici nei consumi. Cree ha già annunciato da diverso tempo di aver raggiunto la soglia 231 lm/W, limite fino a pochi mesi fa impensabile per un componente a singolo chip.

6.2 Scelta dei componenti

Per orientarsi in un mercato così vasto bisogna individuare innanzitutto quali sono le caratteristiche desiderate che devono avere questi dispositivi. Non si dimentichi che si

vuole "ricreare il sole", questi candidati dovranno essere molto potenti ed essere capaci di coprire l'intero spettro dai 400 ai 1100 nm. Per far ciò si è suddiviso lo spettro in visibile fino ai 640 nm ed infrarosso oltre i 650 nm, poiché questa suddivisione vi è a livello commerciale (in realtà fino ai 780 nm si è ancora nel visibile). In questo progetto non si vuole fare in alcun modo pubblicità: la scelta dei componenti è stata dettata semplicemente perché bene si adattavano allo studio in essere. Per la porzione di spettro nel visibile la scelta è ricaduta su *Cree inc.* e *Nichia Corporation*. Per la porzione dell'infrarosso è stato scelto inizialmente *Muevo-Technik*, scelta poi abbandonata per il costo dei componenti. Successivamente, al posto dei LED Muevo sono stati introdotti LED di diversi produttori tra cui *Osa Optolight*, *Osram, Vishay* e *Tech LED Marubeni*.

I componenti Cree utilizzati sono: XLamp XL-M T3 warm white; XLamp XP-E di vari colori, tra cui K2 Blue, Q4 Green, N4 Amber, N3 Red.

I componenti Nichia sono: NCSA119T Amber e NCSE119AT Bluish Green.

I componenti Muevo sono: gli high-power illuminators L(660, 680, 700, 750, 780, 850, 910, 940, 970, 1050)-66-60.

Tra gli altri produttori: Osa 440-740; Osram SFH4235 e SFH4233; Vishay VSMG2700 e VSMF3710; Tech LED Marubeni SMB 680-1100I e SMB 780-1100.

6.3 Calcoli radiometrici.

Generalmente per i LED monocromatici il parametro che identifica immediatamente il componente è la lunghezza d'onda di picco, mentre quelli bianchi si identificano con la tonalità della luce emessa, fredda, neutra, calda oppure con la correlata temperatura di colore. Quando il led emette radiazioni nella banda del visibile, i costruttori sono soliti indicare nei data sheet il valore del *flusso luminoso* in *lumen* e la curva normalizzata della distribuzione spettrale di potenza, quindi parametri espressi in parte fotometrici ed in parte radiometrici. I dati inerenti la radiazione solare sono espressi in unità radiometriche e quindi i risultati che si vogliono ottenere devono necessariamente essere compatibili per poterli confrontare. Nel capitolo 1 si è già parlato dalle relazioni che interorrono tra le varie quantità. Si parte dalla equazione che lega il flusso luminoso al flusso di potenza:

$$\Phi_{v} = 683 \int_{380}^{780} V(\lambda) \Phi_{e} d\lambda$$

Equazione 6.1

I passi per ottenere il valore della potenza radiante a partire dal flusso luminoso sono:

• Lettura sul grafico dei valori relativi della potenza spettrale radiante ad incrementi costanti $\Delta\lambda$ =10 nm: $P_{rel}(\lambda)^{-2}$

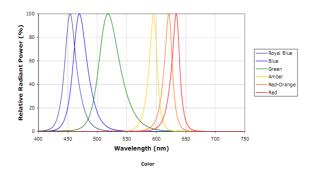


Figura 6.1: Distribuzione di potenza radiante relativa Cree XP

• Calcolo del flusso luminoso relativo per ogni incremento:

$$\Phi_{rel}(\lambda) = 683 * V(\lambda) * P_{rel}(\lambda) * 10$$

Equazione 6.2

• Determinazione del coefficiente di proporzionalità che lega il flusso totale relativo e il flusso totale fornito nel data sheet:

$$\Phi_{\text{max}} = \frac{\Phi_{\text{datasheet}}}{\sum_{380}^{780} \Phi_{\text{rel}}(\lambda)}$$

Equazione 6.3

• Calcolo dei valori spettrali del flusso luminoso assoluto e della potenza radiante:

$$\Phi(\lambda) = \Phi_{\text{max}} * \Phi_{\text{rel}}(\lambda) ; P(\lambda) = \frac{\Phi(\lambda)}{683*V(\lambda)*10}$$

Equazione 6.4

 2 Per non creare confusione nel seguito si indicherà la potenza radiante con P e il flusso luminoso con $\boldsymbol{\varphi}.$

Determinazione del valore totale della potenza radiante come area sotto la curva di distribuzione spettrale: P^{-3}

Questo valore trovato corrisponde a tutta la potenza irradiata dal dispositivo, bisogna quindi calcolare l'intensità radiante nella direzione perpendicolare al piano su cui giace il LED per ottenere il valore della irradianza. Il diagramma di direttività normalizzata è fornito dal data sheet. Assumendo che i raggi incidano sulla superficie da testare in modo perpendicolare, è possibile calcolare l'intensità massima come rapporto della potenza radiante totale e la somma delle intensità radianti relative:

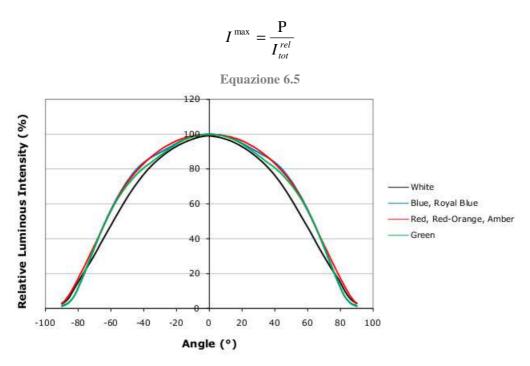


Figura 6.2: Grafico dell'intensità relativa

Finalmente l'irradianza è possibile calcolarla dall'intensità mediante la formula approssimata:

$$E = \frac{I}{d^2}$$

Equazione 6.6

in cui d è la distanza fra la sorgente e la superficie che inizialmente è assunta pari ad 1 m per effettuare i vari calcoli. Questo valore integrale trovato deve essere rappresentato

42

³ Per i LED IR per i quali è già fornita la potenza radiante questo è il punto di partenza.

spettralmente e cioè diviso per l'area relativa della curva di distribuzione spettrale per trovare il fattore di normalizzazione k

$$k = \frac{E}{Area(E^{rel})}$$

Equazione 6.7

ed infine moltiplicarlo per i valori spettrali relativi:

$$E(\lambda) = k \cdot E^{rel}(\lambda)$$

Equazione 6.8

Il nemico numero uno che influenza le performance dei LED è il calore generato nella giunzione che induce ad un progressivo decadimento del flusso luminoso. C'è una stretta dipendenza fra la corrente applicata al dispositivo e l'incremento di temperatura, forniti in un grafico dal costruttore. Per ottenere un buon compromesso fra prestazioni e affidabilità è stato scelto di alimentare i LED a valori di corrente del 50% del valore massimo per il white (che è il più potente) e del 70% del valore massimo per quelli colorati, mentre per i Muevo sono stati utilizzati i valori nominali forniti nel data sheet, in quanto non forniscono le curve della potenza in funzione della corrente. Per i sostituti dei Muevo è stato fissato anche per loro il 70% del valore massimo. Quindi, a partire dal valore del flusso luminoso fornito a determinate condizioni di funzionamento, si è ricavato il valore corrispondente alla corrente di pilotaggio fissata, che è stato poi utilizzato per i vari calcoli radiometrici ed indicata con $\Phi_{datasheet}$.

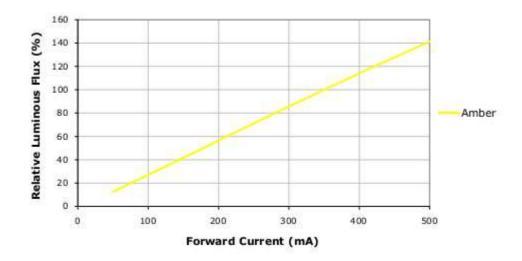


Figura 6.3: Flusso luminoso in funzione della corrente in Cree XP Amber

6.4 Costruzione dello spettro

Una volta calcolati tutti i valori dell'irradianza spettrale per ogni LED, questi sono stati ordinati in una tabella e poi sommati per calcolare l'irradianza spettrale totale derivante dalla loro combinazione. Essa è stata messa in relazione con i valori tabulati di quella standard ASTM 1.5G. Per ottenere una adeguata corrispondenza spettrale è stato necessario aumentare il numero di alcuni LED. L'unità minima di componenti è formata da 21 LED dei quali 2 bianchi, 2 blu, 3 verdi e poi gli altri di una unità. Con questa configurazione è possibile ottenere una corrispondenza spettrale di classe A in quanto l'escursione dei valori ottenuti rispetto a quelli standard è compresa fra 0.75 e 1.25.

La seconda proposta è formata di un totale di 37 LED: avendo sostituito i Muevo con elementi meno potenti è stato necessario aumentare il loro numero.

6.5 Prima soluzione.

L' "unità base di LED" composta dai 21 elementi, produce una irradianza ad 1 metro di distanza dalla superficie di test di E_B =2,2899W/m². Il valore di irradianza solare che si desidera ottenere, quello solare fra i 400 e i 1100 nm, vale E_S =744,8 W/m². Per fare in modo di avere un valore analogo bisogna agire sulla distanza dalla superficie ed inoltre replicando l'unità base di LED per conservare un'uniformità della radiazione soddisfacente. Con una singola unita è possibile ottenere il valore desiderato applicando la legge dell'inverso del quadrato:

$$d = \sqrt{\frac{E_B}{E_S}} = 0.055m$$

Equazione 6.9

Replicando il numero di unità a 2*2=4 si ottiene d=0,111m, replicando il numero a 3*3=9 si ottiene d=0,166m e replicando il numero di unità a 4*4=16 si ottiene d=0,222m. Un possibile schema elettrico è il seguente:

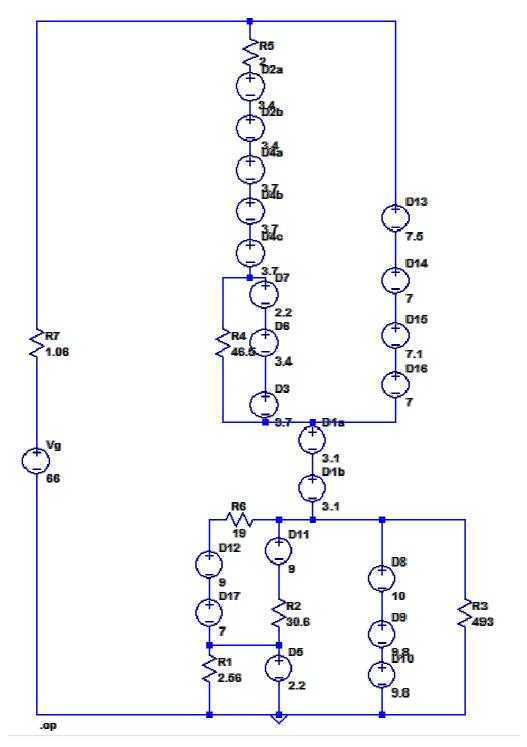


Figura 6.4: Schema elettrico prima soluzione

Nello schema i LED sono stati schematizzati con dei generatori di tensione costante, in quanto se pilotati a corrente costante essi impongono la caduta di tensione ai loro capi. Nella tabella seguente è possibile vedere nel dettaglio i parametri del circuito:

NR.	Simbolo	Componente	V(V)	I(A)	R(Ω)	P (W)	Costo unit.	TOT
2	D1	Cree xml white	3,1	1,5			8,99	17,98
2	D2	Cree xpe blue	3,4	0,7			4,42	8,84
1	D3	Nichia bluish	3,7	0,5			5,19	15,57
3	D4	Cree xpe green	3,7	0,7			2,66	2,66
1	D5	Cree xpe amber	2,2	0,35			2,48	2,48
1	D6	Nichia amber	3,4	0,5			3,95	3,95
1	D7	Cree xpe red	2,2	0,5			3,95	3,95
1	D8	Muevo 660	10	0,24			63,3	63,3
1	D9	Muevo 680	9,8	0,24			120,53	120,53
1	D10	Muevo 700	9,8	0,24			120,53	120,53
1	D11	Muevo 750	9	0,6			113,53	113,53
1	D12	Muevo 780	9	0,6			113,53	113,53
1	D13	Muevo 850	7,5	0,8			91,76	91,76
1	D14	Muevo 910	7	0,8			103,42	103,42
1	D15	Muevo 940	7,1	0,8			65,63	65,63
1	D16	Muevo 970	7	0,8			71,54	71,54
1	D17	Muevo 1050	7	0,6			326,59	326,59
1	R1				2,56	1,85		
1	R2				30,6	11		
1	R3				493	1,77		
1	R4				46,5	1,86		
1	R5				2	0,98		
1	R6				19	6,84		
1	R7				1,06	2,4		
1	Vtot circuito		64,4	1,5				
1	Gen.tensione		66	1,5		99		
11	Pcb						0,5	5,5
								1251,3

Figura 6.5: Legenda componenti e costi

Per ogni power LED è stato previsto l'inserimento di una piccola basettina di dissipazione di forma a stella esagonale, mentre i Muevo sono già forniti di elemento di dissipazione. L'ingombro totale per una singola unità di LED è di 110 mm x 100 mm.

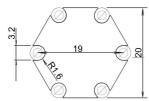


Figura 6.6: Basettina di dissipazione

Tale basetta di tipologia MPCB (Metal Printed Circuit Board) è un circuito stampato su substrato metallico (alluminio o rame) che consente la dissipazione del calore proveniente dal chip del LED.

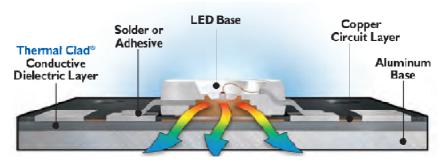


Figura 6.7: Sezione dell'assieme LED + MPCB

Esistono in commercio molti tipi di matrici preassemblate del tipo:

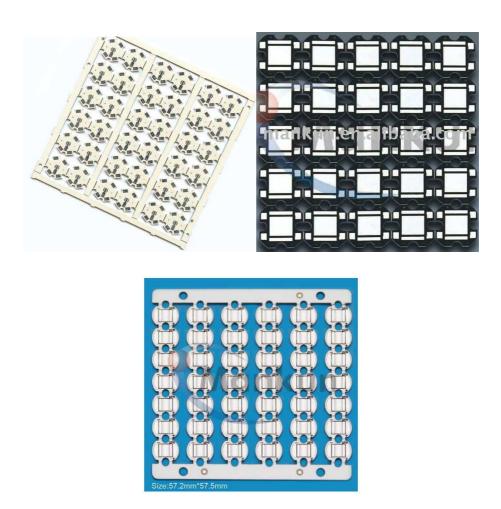


Figura 6.8: Esempi di array.

Oppure bisogna montare singolarmente le basettine su un supporto ed effettuare le connessioni e posizionare le resistenze sulla faccia anteriore dove sono i LED.

Eccone un esempio:

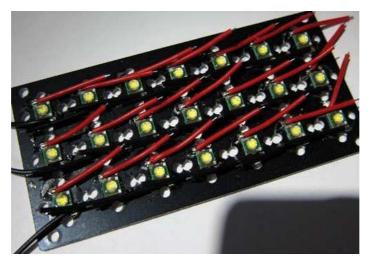


Figura 6.9:Esempio di collegamenti

Possibile disposizione dei LED:

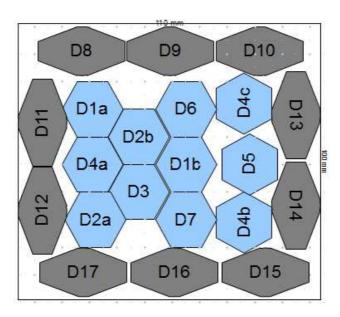


Figura 6.10: Struttura della prima cella

6.6 Seconda soluzione.

L' "unità base di LED" composta dai 37 elementi, produce una irradianza ad 1 metro di distanza dalla superficie di test di E_B =2,0978W/m². Con una singola unità si ottiene il valore dell'irradianza solare ad una distanza di d=0,053m.

Ancora una volta, replicando il numero di unità è possibile aumentare questa distanza: in particolare con 4 unità si ottiene d=0,106m, con 9 d=0,159m e con 16 d=0,21m.

Un possibile schema elettrico è il seguente:

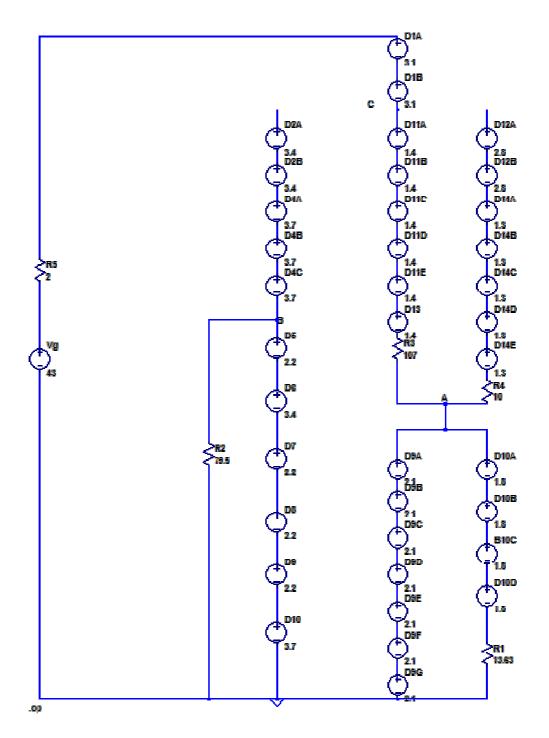


Figura 6.11: Schema elettrico seconda soluzione

NR.	Simbolo	Componente	V (V)	I (A)	R (Ω)	P (W)	Costo unit.	тот
2	D1	Cree xml white	3,1	1,5			9,2	18,4
2	D2	Cree xpe blue	3,4	0,7			4,42	8,4
1	D3	Nichia bluish	3,7	0,5			5,19	15,57
3	D4	Cree xpe green	3,7	0,7			2,66	2,66
1	D5	Cree xpe amber	2,2	0,35			2,48	4,96
1	D6	Nichia amber	3,4	0,5			3,95	3,95
2	D7	Cree xpe red	2,2	0,5			3,95	3,95
1	D8	Optolight 680	2,2	0,5			9,3	9,3
7	D9	Osa 740	2,1	0,25			12,35	86,85
4	D10	Optolight 780	1,8	0,55			8,77	35,08
5	D11	Vishay 2700	1,4	0,1			0,64	3,2
2	D12	Osram 4235	2,8	0,7			6,83	13,66
1	D13	Vishay 3710	1,4	0,1			0,459	0,459
5	D14	Osram 4233	1,3	0,7			5,56	27,8
1	R1				13,63	4,12		
1	R2				79,5	3,18		
1	R3				107	1,07		
1	R4				10	4,9		
1	R5				2	4,5		
1	Vtot circuito		40	1,5				
1	Gen.tensione		43	1,5		64,5		
37	Pcb						0,5	18,5
			•	•				253

Figura 6.12: Legenda componenti e costi

In questo caso sono stati messi tutti i LED sulla basettina di dissipazione ed una possibile disposizione dei componenti è la seguente:

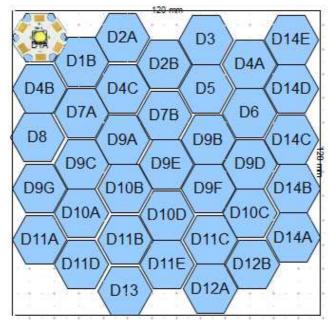


Figura 6.13: Struttura della seconda cella

L'ingombro totale è di 120 *mm* x 120 *mm*. Ovviamente in entrambi i casi si potrebbero diminuire notevolmente le dimensioni del circuito progettando una basetta unica sulla quale montare tutti i componenti.

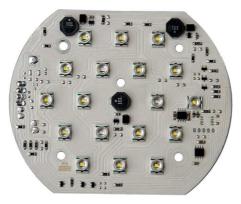
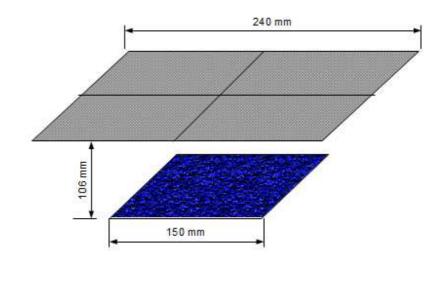



Figura 6.14: Esempio di basetta unica di dissipazione (Lubtech, azienda produttrice di MPCB)

6.7 Considerazioni

Analizzando i costi dei componenti si nota subito che la seconda soluzione è molto più economica della prima seppur costituita da un numero maggiore di componenti, anche per quanto riguarda le potenze in gioco. Bisogna inoltre evidenziare che per ottenere una radiazione il più uniforme possibile è necessario aumentare la distanza dalla superficie di test disponendo più "unità elementari" in modo da formare una matrice. Nei paragrafi 6.5 e 6.6 ci sono esempi di calcoli per 4, 9 e 16 unità. E' possibile partire con 4 unità per irraggiare una superficie pari ad una singola cella fotovoltaica (circa 150x150 *mm* o poco meno). Ovviamente aumentando il numero di unità è possibile testare superfici maggiori.



Figura 6.15: Configurazione da 4 unità. Prospettiva e pianta

L'approssimazione effettuata considerando i raggi incidenti perpendicolarmente sulla cella fotovoltaica diviene gradualmente imprecisa muovendosi verso i bordi della matrice formata dalle 4 unità di LED. Questo aspetto comporta una diminuzione dei valori dell'irradianza calcolati in quanto i LED hanno un angolo di emissione non perpendicolare alla cella. Per valutare l'approssimazione fatta bisogna fare alcune considerazioni. La situazione più sfavorevole si ha lungo la diagonale sulla quale si osservano gli angoli di incidenza maggiori. Tuttavia per avere un ordine di grandezza verrà effettuato il ragionamento osservando l'assieme di 4 unità e della cella fotovoltaica (della seconda soluzione), in sezione parallela ad un lato della stessa, lungo la quale si trovano mediamente 14 LED, semplificando il problema a monodimensionale. Viene cioè trascurato il contributo di tutti quei LED che si trovano sugli altri piani paralleli di sezione. Analizzando per ognuno l'angolo minimo e l'angolo massimo di incidenza sulla cella e assumendo tutti i LED con lo stesso grafico di direttività angolare (fig. 6.2), sono stati calcolati per ciascuno il valore minimo e il valore massimo dell'irradianza. Nella figura seguente è stato schematizzato quanto fatto sul primo LED:

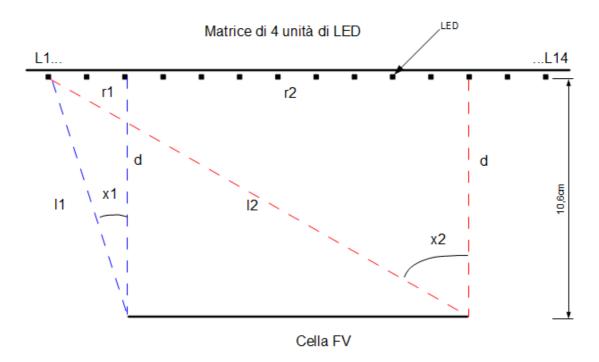


Figura 6.16: Angolo minimo di incidenza (blu) e massimo (rosso)

E' possibile calcolare l'angolo minimo x_1 delle radiazioni prodotte dal LED che incidono sulla superficie della cella FV:

$$x_1 = arctg \frac{r_1}{d} = arctg \frac{35}{106} = 18,27^{\circ}$$
Equazione 6.10

Inoltre si ha una ulteriore attenuazione per effetto della distanza minima che diviene l_1 :

$$l_1 = \sqrt{r_1^2 + d^2} = 111,6mm$$
Equazione 6.11

L'angolo massimo è calcolato analogamente a quello minimo:

$$x_2 = arctg \frac{r_2}{d} = arctg \frac{188}{106} = 60,6^{\circ}$$

Equazione 6.12

Inoltre si ha una ulteriore attenuazione per effetto della distanza massima che diviene l_2 :

$$l_2 = \sqrt{r_2^2 + d^2} = 216mm$$
Equazione 6.13

Per effetto dell'angolo, l'irradianza relativa risulta: $E_1^{rel}(x_1) = 0.94 \text{ e } E_2^{rel}(x_2) = 0.42$.

Per effetto della distanza i valori massimo e minimo per questo primo LED, applicando la legge dell'inverso del quadrato, sono:

$$E_{1\text{max}}^{rel} = 0.94 \cdot \left(\frac{106^2}{111.6^2}\right) = 0.85$$

Equazione 6.14

$$E_{1 \,\text{min}}^{rel} = 0.42 \cdot \left(\frac{106^2}{216^2}\right) = 0.1$$
Equazione 6.15

Avendo ottenuto per ciascun LED un valore massimo ed uno minimo dell'irradianza è possibile in prima approssimazione considerare il valor medio:

$$E_{med} = \frac{E_{\text{max}} + E_{\text{min}}}{2}$$

Equazione 6.16

Ripetendo la stessa procedura per tutti i LED, si ottengono i seguenti valori che danno un'idea sulla uniformità della sorgente:

LED	Xmin(°)	Lmin(mm)	$E_{ m max}^{\it rel}$	Xmax(°)	Lmax(mm)	$E_{ m min}^{\it rel}$	$E_{\it med}^{\it rel}$
L1	18,27	111,6	0,85	60,6	216	0,1	0,475
L2	8,6	107,2	0,96	58	200	0,15	0,555
L3	0	106	1	55,3	186	0,18	0,59
L4	0	106	1	52	172,5	0,22	0,61
L5	0	106	1	48	158,6	0,33	0,665
L6	0	106	1	43,6	146,4	0,41	0,7
L7	0	106	1	38,2	135	0,52	0,76
L8	0	106	1	38,2	135	0,52	0,76
L9	0	106	1	43,6	146,4	0,41	0,7
L10	0	106	1	48	158,6	0,33	0,665
L11	0	106	1	52	172,5	0,22	0,61
L12	0	106	1	55,3	186	0,18	0,59
L13	8,6	107,2	0,96	58	200	0,15	0,555
L14	18,27	111,6	0,85	60,6	216	0,1	0,475

Figura 6.17: Valori di angoli, distanze e irradianza

Graficando i valori medi dell'irradianza se ne ottiene la distribuzione spaziale in funzione del LED:

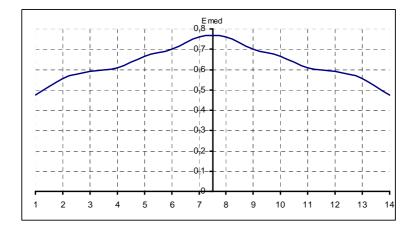


Figura 6.18: Grafico dell'irradianza

Per osservare invece l'uniformità della radiazione sulla superficie della cella fotovoltaica, per calcolare quindi il coefficiente di *non uniformità*, bisogna considerare i valori di irradianza relativa prodotti da ciascun LED in due posizioni rilevanti: il centro della cella FV e il bordo:

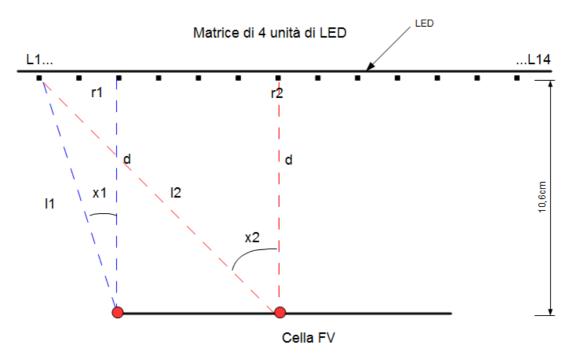


Figura 6.19: Calcolo uniformità sulla cella FV. Dettaglio del primo LED

Nella tabella seguente sono elencati per ogni LED i valori relativi dell'irradianza in funzione dell'angolo di incidenza sul punto laterale E^{rel}_{lat} e i valori della corrispondente distanza $\Delta \ell_{lat}$ ed i valori rilevati nella posizione centrale della cella FV. Nelle due colonne in grassetto è espresso il valore risultante dalla combinazione dei due effetti: angolo e distanza maggiorata.

LED	$E_{\it lat}^{\it rel}$	$\Delta \ell_{\; lat}$	$E_{lat.}^{rel}$ (ris.)	$E_{\it cent}^{\it rel}$	$\Delta\ell$ $_{cent}$	$E_{cent.}^{rel}$ (ris.)
L1	0,94	111,6	0,84803	0,75	154	0,35533
L2	0,99	107,2	0,96796	0,80	141	0,45213
L3	1	106	1	0,88	131	0,576172
L4	0,99	107,3	0,966157	0,90	122	0,679414
L5	0,94	111,6	0,84803	0,93	114	0,804054
L6	0,92	118	0,742396	0,98	108	0,94404
L7	0,88	126,5	0,617893	1	106,2	0,996237
L8	0,85	134	0,531889	1	106,2	0,996237
L9	0,78	149	0,394761	0,98	108	0,94404
L10	0,75	161,6	0,322694	0,93	114	0,804054
L11	0,7	175	0,256823	0,9	122	0,679414
L12	0,58	188,6	0,183213	0,88	131	0,576172
L13	0,60	202,8	0,163918	0,80	141	0,45213
L14	0,50	217,5	0,118758	0,75	154	0,35533
Valor medio			0,5687			0,68676

Facendo il valor medio dei dati di ogni LED e per ciascuna delle due posizioni, è possibile stabilire approssimativamente quanto vale l'indicatore di *non uniformità* della radiazione sulla superficie della cella FV:

$$U = \pm 100 \cdot \frac{E_{\text{max}} - E_{\text{min}}}{E_{\text{max}} + E_{\text{min}}} = \pm 100 \frac{0,687 - 0,569}{0,687 + 0,569} = \pm 9,4\%$$

Equazione 6.17

Quindi, compatibilmente con le approssimazioni effettuate, risulta accettabile la percentuale ottenuta del 9,4% in quanto gli standard sui simulatori impongono il vincolo di appartenenza alla classe C inferiore al 10%.

Questo significa che aver inizialmente assunto per tutti i LED il valore massimo dell'irradianza ha comportato dei risultati un po' più ottimistici di quello che sono nella

realtà dei fatti. Quindi per ovviare a questo inconveniente bisogna aggiustare sperimentalmente la distanza fra i due oggetti in modo da ottenere il valore dell'irradianza desiderato ed eventualmente pensare di disporre i LED su 4 superfici piane non complanari ed inclinate (a forma di tetto) in modo da minimizzare gli angoli massimi di incidenza e la distanza fra i due oggetti ed aumentando così l'uniformità della radiazione. Per far questo è necessario modificare la forma del supporto sul quale sono posizionati i LED da quadrata a trapezoidale o triangolare in modo da poterli accostare tra di loro lungo i lati formando le facce di una piramide a base quadrata oppure un tronco di piramide (seppur lasciando un foro centrale):

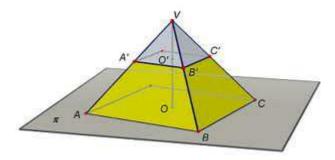


Figura 6.20: Piramide a base quadrata. In giallo il tronco di piramide le cui facce sono trapezi.

Una volta determinata la geometria è possibile inoltre modulare l'intensità di ciascun LED in modo inversamente proporzionale alla distanza dal centro, ovvero attenuando l'intensità dei LED più centrali ed incrementandola in quelli più marginali.

Per quanto riguarda la stabilità temporale i LED hanno un'accensione immediata, senza tempi di riscaldamento e in assenza di alcuno sfarfallio, quindi risulta essere senz'altro soddisfatta tale caratteristica.

CONCLUSIONI

Come è stato verificato in questo elaborato, ideare un simulatore di radiazione solare interamente a LED è possibile. Con 148 LED si è in grado di irradiare una cella di dimensione 150 *mm* x 150 *mm*. Il tutto con un ingombro veramente minimo: la sola dimensione della scheda 240 *mm* x 240 *mm* più l'apparato di alimentazione.

Analizzando i costi, il prezzo di partenza di questo dispositivo è di circa 253x4=1012 € (solo di componenti), mentre per i modelli base dei simulatori in commercio parte da circa 12 mila €. Certamente questo progetto presenta tant aspetti che è possibile migliorare ed ottimizzare: dalla scelta dei componenti, al progetto di una scheda sulla quale posizionare i LED riducendo l'ingombro ed aumentando l'uniformità, all'ideazione di un apparato ottico che possa convogliare la radiazione su di un'area ben delimitata, allo studio di un sistema di alimentazione efficace ed economico. Questo studio può essere inteso come un'idea di base che possa essere di supporto alla realizzazione di progetti più elaborati e complessi. Un ulteriore sviluppo potrebbe essere pensare di ideare un simulatore di radiazione ibrido, utilizzando la tecnologia LED per coprire la parte dello spettro nel visibile e altri tipi di sorgenti per la parte dell'infrarosso (per esempio ad incandescenza), perché come si è appreso, è proprio la porzione di spettro nell'infrarosso quella più difficile da replicare in quanto i LED che emettono radiazioni in quella banda sono tipicamente destinati a specifiche applicazioni.

Appendici

7.1 Cree XLamp XL-M T3

Calcolo	potenza		<u> </u>				
λ,nm	V (λ)	Prel(λ)	Φrel(lambda)		Φ(λ)=Φmax*Φrel(λ)	P(lambda) [W]	Area
390	0,0001	0,009	0,006147		4,43813E-05	0,00006498	0,0009747
400	0,0004	0,018	0,049176	0,00722	0,000355051	0,00012996	0,0078698
410	0,0012	0,2	1,6392		0,011835024	0,001444	0,020938
420	0,004	0,38	10,3816		0,074955152	0,0027436	0,033573
430	0,0116	0,55	43,5754		0,314614388	0,003971	0,042237
440	0,023	0,62	97,3958		0,703197676	0,0044764	0,045847
450	0,038	0,65	168,701		1,21802122	0,004693	0,041515
460	0,06	0,5	204,9		1,479378	0,00361	0,028158
470	0,091	0,28	174,0284		1,256485048	0,0020216	0,016606
480	0,139	0,18	170,8866		1,233801252	0,0012996	0,013718
490	0,208	0,2	284,128		2,05140416	0,001444	0,016606
500	0,323	0,26	573,5834		4,141272148	0,0018772	0,023465
510	0,503	0,39	1339,8411		9,673652742	0,0028158	0,033212
520	0,71	0,53	2570,129		18,55633138	0,0038266	0,042598
530	0,862	0,65	3826,849		27,62984978	0,004693	0,048735
540	0,954	0,7	4561,074		32,93095428	0,005054	0,052706
550	0,995	0,76	5164,846		37,29018812	0,0054872	0,057038
560	0,995	0,82	5572,597		40,23415034	0,0059204	0,06137
570	0,952	0,88	5721,9008		41,31212378	0,0063536	0,065341
580	0,87	0,93	5526,153		39,89882466	0,0067146	0,068951
590	0,757	0,98	5066,9038		36,58304544	0,0070756	0,071478
600	0,631	1	4309,73		31,1162506	0,00722	0,0722
610	0,503	1	3435,49		24,8042378	0,00722	0,071478
620	0,381	0,98	2550,1854		18,41233859	0,0070756	0,067868
630	0,265	0,9	1628,955		11,7610551	0,006498	0,060648
640	0,175	0,78	932,295		6,7311699	0,0056316	0,051623
650	0,107	0,65	475,0265		3,42969133	0,004693	0,04332
660	0,061	0,55	229,1465		1,65443773	0,003971	0,036822
670	0,032	0,47	102,7232		0,741661504	0,0033934	0,030685
680	0,017	0,38	44,1218		0,318559396	0,0027436	0,023826
690	0,0082	0,28	15,68168		0,11322173	0,0020216	0,017328
700	0,0041	0,2	5,6006		0,040436332	0,001444	0,012635
710	0,0021	0,15	2,15145		0,015533469	0,001083	0,009747
720	0,00105	0,12	0,86058		0,006213388	0,0008664	0,007581
730	0,00052	0,09	0,319644		0,00230783	0,0006498	0,005776
740	0,00025	0,07	0,119525		0,000862971	0,0005054	0,004332
750	0,00012	0,05	0,04098		0,000295876	0,000361	0,002527
760	0,00006	0,02	0,008196		5,91751E-05	0,0001444	0,001083
770	0,00003	0,01	0,002049		1,47938E-05	0,0000722	0,000361
780	0,000015	0	0		0	0	0
тот			54812,02653		395,7428315	0,13131014	1,3127765

Calcolo II	Calcolo Intensità radiometrica I [W/sr]									
angle	I rel	omega	I max		I(W/sr)					
5	0,99	0,0954		0,227826087	0,22555					
15	0,98	0,2833			0,22327					
25	0,94	0,4626			0,21416					
35	0,89	0,6278			0,20277					
45	0,8	0,774			0,18226					
55	0,67	0,8967			0,15264					
65	0,48	0,992			0,10936					
	5,75				1,31					

Calcolo i	rradianza E [W	//m2]		
				Imax/Atot
Approssi	miamo E=I ma	x (d=1 m)		0,00125
λ,nm	E rel(λ)	Area rel	Ε (λ)	Area tot
390	0,009	0,135	1,12761E-05	0,00017
400	0,018	1,09	2,25522E-05	0,00137
410	0,2	2,9	0,00025058	0,00363
420	0,38	4,65	0,000476102	0,00583
430	0,55	5,85	0,000689095	0,00733
440	0,62	6,35	0,000776798	0,00796
450	0,65	5,75	0,000814385	0,0072
460	0,5	3,9	0,00062645	0,00489
470	0,28	2,3	0,000350812	0,00288
480	0,18	1,9	0,000225522	0,00238
490 500	0,2 0,26	2,3 3,25	0,00025058 0,000325754	0,00288
510	0,39	4,6	0,000323734	0,00576
520	0,53	5,9	0,000664037	0,00739
530	0,65	6,75	0,000814385	0,00735
540	0,7	7,3	0,00087703	0,00915
550	0,76	7,9	0,000952204	0,0099
560	0,82	8,5	0,001027378	0,01065
570	0,88	9,05	0,001102552	0,01134
580	0,93	9,55	0,001165197	0,01197
590	0,98	9,9	0,001227842	0,0124
600	1	10	0,0012529	0,01253
610	1	9,9	0,0012529	0,0124
620	0,98	9,4	0,001227842	0,01178
630	0,9	8,4	0,00112761	0,01052
640	0,78	7,15	0,000977262	0,00896
650	0,65	6	0,000814385	0,00752
660	0,55	5,1	0,000689095	0,00639
670	0,47	4,25	0,000588863	0,00532
680	0,38	3,3	0,000476102	0,00413
690	0,28	2,4	0,000350812	0,00301
700	0,2	1,75	0,00025058	0,00219
710	0,15	1,35	0,000187935	0,00169
720 730	0,12	1,05 0,8	0,000150348	0,00132
740	0,09	0,8	0,000112761	0,001
750	0,07 0,05	0,35	0,000087703	0,00073
760	0,03	0,33	0,000002043	0,00044
770	0,02	0,15	0,000012529	6,3E-05
780	0,01	0,03	0,000012323	0,31-03
tot	18,187	181,825	0,022786492	0,22781

7.2 XLamp XP-E K2 Blue:

Calcolo	potenza							
λ,nm	V (λ)	Prel(λ)	Фrel(lamb	da)	Φ(λ)=Φmax*Φrel(λ)	P(λ) [W]	Area	
390	0,0001	0	0		0	0	0	
400	0,0004	0	0	0,0267	0	0	0	
410	0,0012	0	0		0	0	0	
420	0,004	0	0		0	0	0	
430	0,0116	0	0		0	0	0	
440	0,023	0	0		0	0	0,0467	
450	0,038	0,35	90,839		2,4218	0,0093	0,1333	
460	0,06	0,65	266,37		7,1014	0,0173	0,2199	
470	0,091	1	621,53		16,57	0,0267	0,2199	
480	0,139	0,65	617,09		16,452	0,0173	0,1333	
490	0,208	0,35	497,22		13,256	0,0093	0,0467	
500	0,323	0	0		0	0	0	
510	0,503	0	0		0	0	0	
520	0,71	0	0		0	0	0	
530	0,862	0	0		0	0	0	
540	0,954	0	0		0	0	0	
550	0,995	0	0		0	0	0	
560	0,995	0	0		0	0	0	
570	0,952	0	0		0	0	0	
580	0,87	0	0		0	0	0	
590	0,757	0	0		0	0	0	
600	0,631	0	0		0	0	0	
610	0,503	0	0		0	0	0	
620	0,381	0	0		0	0	0	
630	0,265	0	0		0	0	0	
640	0,175	0	0		0	0	0	
650	0,107	0	0		0	0	0	
660	0,061	0	0		0	0	0	
670	0,032	0	0		0	0	0	
680	0,017	0	0		0	0	0	
690	0,0082	0	0		0	0	0	
700	0,0041	0	0		0	0	0	
710	0,0021	0	0		0	0	0	
720	0,0011	0	0		0	0	0	
730	0,0005	0	0		0	0	0	
740	0,0003	0	0		0	0	0	
750	0,0001	0	0		0	0	0	
760	6E-05	0	0		0	0	0	
770	3E-05	0	0		0	0	0	
780	2E-05	0	0		0	0	0	
тот			2093,1		55,801	0,08	0,7998	
	350 mA=30	,6 lm, Fluss I	o a 700 m <i>l</i>	4=55,08 lm	(valore max corrente	1000 mA)		
70%								

Calcolo	Calcolo Intensità radiometrica I [W/sr]								
angle	I rel	omega	I max	I(W/sr)					
5	0,99	0,0954	0,1401	0,1387					
15	0,95	0,2833		0,1331					
25	0,92	0,4626		0,1289					
35	0,9	0,6278		0,1261					
45	0,8	0,774		0,1121					
55	0,7	0,8967		0,098					
65	0,45	0,992		0,063					
	5,71			0,7998					

Calcolo	irradianza	E [W/m2]		
				Imax/Atot
Appros	simiamo E	I max (d=1	m)	0,0047
λ,nm	E rel(λ)	Area rel	Ε (λ)	Area tot
390	0	0	0	0
400	0	0	0	0
410	0	0	0	0
420	0	0	0	0
430	0	0	0	0
440	0	1,75	0	0,0082
450	0,35	5	0,0016	0,0233
460	0,65	8,25	0,003	0,0385
470	1	8,25	0,0047	0,0385
480	0,65	5	0,003	0,0233
490	0,35	1,75	0,0016	0,0082
500	0	0	0	0
510	0	0	0	0
520	0	0	0	0
530	0	0	0	0
540	0	0	0	0
550	0	0	0	0
560	0	0	0	0
570	0	0	0	0
580	0	0	0	0
590	0	0	0	0
600	0	0	0	0
610	0	0	0	0
620	0	0	0	0
630	0	0	0	0
640	0	0	0	0
650	0	0	0	0
660	0	0	0	0
670	0	0	0	0
680	0	0	0	0
690	0	0	0	0
700	0	0	0	0
710	0	0	0	0
720	0	0	0	0
730	0	0	0	0
740	0	0	0	0
750	0	0	0	0
760	0	0	0	0
770	0	0	0	0
780	0	0	0	0
tot	3	30	0,014	0,14

7.3 XLamp XP-E Q4 Green

Calcolo	potenza						
λ,nm	V(λ)	Prel(λ)	Φrel(lambda	a)	Φ(λ)=Φmax*Φrel(λ)	P(λ) [W]	Area
390	0,0001	0	0		0	0	C
400	0,0004	0	0	0,007347	0	0	C
410	0,0012	0	0		0	0	C
420	0,004	0	0		0	0	C
430	0,0116	0	0		0	0	C
440	0,023	0	0		0	0	C
450	0,038	0	0		0	0	(
460	0,06	0	0		0	0	(
470	0,091	0	0		0	0	(
480	0,139	0	0		0	0	(
490	0,208	0	0		0	0	0,009184
500	0,323	0,25	551,5225		4,052036	0,001837	0,027552
510	0,503	0,5	1717,745		12,62027	0,003674	0,045919
520	0,71	0,75	3636,975		26,72086	0,00551	0,064286
530	0,862	1	5887,46		43,25517	0,007347	0,064286
540	0,954	0,75	4886,865		35,9038	0,00551	0,045919
550	0,995	0,5	3397,925		24,96455	0,003674	0,02755
560	0,995	0,25	1698,963		12,48228	0,001837	0,00918
570	0,952	0	0		0	0	(
580	0,87	0	0		0	0	(
590	0,757	0	0		0	0	(
600	0,631	0	0		0	0	(
610	0,503	0	0		0	0	(
620	0,381	0	0		0	0	
630	0,265	0	0		0	0	
640	0,175	0	0		0	0	(
650	0,107	0	0		0	0	(
660	0,061	0	0		0	0	(
670	0,032	0	0		0	0	(
680	0,017	0	0		0	0	(
690	0,0082	0	0		0	0	(
700	0,0041	0	0		0	0	(
710	0,0021	0	0		0	0	(
720	0,00105	0	0		0	0	(
730	0,00052	0	0		0	0	(
740	0,00025	0	0		0	0	(
750	0,00012	0	0		0	0	(
760	0,00006	0	0		0	0	(
770	0,00003	0	0		0	0	(
780	0,000015	0	0		0	0	(
тот			21777,46		159,999	0,029388	0,29388
Flusso a	350 mA=100 lm	, Flusso a 700) mA=160 lm	(valore max	corrente 1000 mA)	r	
70%							

Calcolo In				
angle	I rel	omega	I max	I(W/sr)
5	0,99	0,0954	0,05195	0,051431
15	0,95	0,2833		0,049353
25	0,92	0,4626		0,047794
35	0,88	0,6278		0,045716
45	0,75	0,774		0,038963
55	0,7	0,8967		0,036365
65	0,45	0,992		0,023378
	5,64		·	0,292998

Calcolo i	irradianza E [\	N/m2]		
				Imax/Atot
Appross	imiamo E=I m	ax (d=1 m)		0,001299
	- 10)		- 0)	
λ,nm	E rel(λ)	Area rel	Ε (λ)	Area tot
390	0	0	0	0
400 410	0	0	0	0
420	0	0	0	0
430	0	0	0	0
440	0	0	0	0
450	0	0	0	0
460	0	0	0	0
470	0	0	0	0
480	0	0	0	0
490	0	1,25	0	0,001624
500	0,25	3,75	0,000325	0,004871
510	0,5	6,25	0,000649	0,008118
520	0,75	8,75	0,000974	0,011365
530	1	8,75	0,001299	0,011365
540	0,75	6,25	0,000974	0,008118
550	0,5	3,75	0,000649	0,004871
560	0,25	1,25	0,000325	0,001624
570	0	0	0	0
580	0	0	0	0
590	0	0	0	0
600 610	0	0	0	0
620	0	0	0	0
630	0	0	0	0
640	0	0	0	0
650	0	0	0	0
660	0	0	0	0
670	0	0	0	0
680	0	0	0	0
690	0	0	0	0
700	0	0	0	0
710	0	0	0	0
720	0	0	0	0
730	0	0	0	0
740	0	0	0	0
750	0	0	0	0
760	0	0	0	0
770	0	0	0	0
780	0	0	0.005105	0.051053
tot	4	40	0,005195	0,051952

7.4 XLamp XP-E N4 Amber

Calcolo	potenza						
λ,nm	V (λ)	Prel(λ)	Φrel(lamb	da)	Φ(λ)=Φmax*Φrel(λ)	P(λ) [W]	Area
390	0,0001	0	0		0	0	C
400	0,0004	0	0	0,00602	0	0	(
410	0,0012	0	0		0	0	C
420	0,004	0	0		0	0	C
430	0,0116	0	0		0	0	C
440	0,023	0	0		0	0	C
450	0,038	0	0		0	0	C
460	0,06	0	0		0	0	C
470	0,091	0	0		0	0	C
480	0,139	0	0		0	0	C
490	0,208	0	0		0	0	C
500	0,323	0	0		0	0	C
510	0,503	0	0		0	0	C
520	0,71	0	0		0	0	C
530	0,862	0	0		0	0	C
540	0,954	0	0		0	0	C
550	0,995	0	0		0	0	C
560	0,995	0	0		0	0	C
570	0,952	0	0		0	0	0,01505
580	0,87	0,5	2971,05		17,8905	0,00301	0,04516
590	0,757	1	5170,31		31,1335	0,00602	0,04516
600	0,631	0,5	2154,87		12,9757	0,00301	0,01505
610	0,503	0	0		0	0	C
620	0,381	0	0		0	0	C
630	0,265	0	0		0	0	C
640	0,175	0	0		0	0	C
650	0,107	0	0		0	0	C
660	0,061	0	0		0	0	C
670	0,032	0	0		0	0	C
680	0,017	0	0		0	0	C
690	0,0082	0	0		0	0	C
700	0,0041	0	0		0	0	C
710	0,0021	0	0		0	0	C
720	0,00105	0	0		0	0	C
730	0,00052	0	0		0	0	C
740	0,00025	0	0		0	0	C
750	0,00012	0	0		0	0	C
760	0,00006	0	0		0	0	C
770	0,00003	0	0		0	0	C
780	1,5E-05	0	0		0	0	(
тот			10296,2		61,9997	0,01204	0,12043

Calcolo I				
angle	I rel	omega	I max	I(W/sr)
5	0,99	0,0954	0,02083	0,02062
15	0,96	0,2833		0,02
25	0,94	0,4626		0,01958
35	0,92	0,6278		0,01917
45	0,8	0,774		0,01667
55	0,67	0,8967		0,01396
65	0,48	0,992		0,01
	5,76			0,12
	•	•		

Calcolo	irradianza	E [W/m2]		
				Imax/Atot
Appros	simiamo E=	I max (d=1 n	າ)	0,00104
λ,nm	E rel(λ)	Area rel	Ε (λ)	Area tot
390	0	0	0	0
400	0	0	0	0
410	0	0	0	0
420	0	0	0	0
430	0	0	0	0
440	0	0	0	0
450	0	0	0	0
460	0	0	0	0
470	0	0	0	0
480	0	0	0	0
490	0	0	0	0
500	0	0	0	0
510	0	0	0	0
520	0	0	0	0
530	0	0	0	0
540	0	0	0	0
550	0	0	0	0
560	0	0	0	0
570	0	2,5	0	0,0026
580	0,5	7,5	0,00052	0,00781
590	1	7,5	0,00104	0,00781
600	0,5	2,5	0,00052	0,0026
610	0	0	0	0
620	0	0	0	0
630	0	0	0	0
640	0	0	0	0
650	0	0	0	0
660	0	0	0	0
670	0	0	0	0
680	0	0	0	0
690	0	0	0	0
700	0	0	0	0
710	0	0	0	0
720	0	0	0	0
730	0	0	0	0
740	0	0	0	0
750	0	0	0	0
760	0	0	0	0
770	0	0	0	0
780	0	0	0	0
tot	2	20	0,00208	0,02083
-				

7.5 XLamp XP-E N3 Red

Calcolo	potenza							
λ,nm	V(λ)	Prel(λ)	Φrel(lamb	oda)	Φ(λ)=Φmax*Φrel(λ)	P(λ) [W]	Area	
390	0,0001	0	0	-	0	0	0	
400	0,0004	0	0	0,0214	0	0	0	
410	0,0012	0	0		0	0	0	
420	0,004	0	0		0	0	0	
430	0,0116	0	0		0	0	0	
440	0,023	0	0		0	0	0	
450	0,038	0	0		0	0	0	
460	0,06	0	0		0	0	0	
470	0,091	0	0		0	0	0	
480	0,139	0	0		0	0	0	
490	0,208	0	0		0	0	0	
500	0,323	0	0		0	0	0	
510	0,503	0	0		0	0	0	
520	0,71	0	0		0	0	0	,
530	0,862	0	0		0	0	0	
540	0,954	0	0		0	0	0	
550	0,995	0	0		0	0	0	
560	0,995	0	0		0	0	0	
570	0,952	0	0		0	0	0	
580	0,87	0	0		0	0	0	
590	0,757	0	0		0	0	0	
600	0,631	0	0		0	0	0	
610	0,503	0	0		0	0	0,0536	
620	0,381	0,5	1301,1		27,901	0,0107	0,1608	
630	0,265	1	1810		38,813	0,0214	0,1608	
640	0,175	0,5	597,63		12,816	0,0107	0,0536	
650	0,107	0	0		0	0	0	
660	0,061	0	0		0	0	0	
670	0,032	0	0		0	0	0	
680	0,017	0	0		0	0	0	
690	0,0082	0	0		0	0	0	
700	0,0041	0	0		0	0	0	
710	0,0021	0	0		0	0	0	
720	0,0011	0	0		0	0	0	
730	0,0005	0	0		0	0	0	
740	0,0003	0	0		0	0	0	
750	0,0001	0	0		0	0	0	
760	6E-05	0	0		0	0	0	
770	3E-05	0	0		0	0	0	
780	2E-05	0	0		0	0	0	
тот			3708,7		79,53	0,0429	0,4289	
Flusso a	350 mA=56	5,8 lm, Flus	so a 500 m	A=79,52 lı	m (valore max corrent	te 700 mA)	70%	

Calcolo Intensità radiometrica I [W/sr]					
angle	I rel	omega	I max	I(W/sr)	
5	0,99	0,0954	0,0743	0,0736	
15	0,96	0,2833		0,0713	
25	0,94	0,4626		0,0698	
35	0,92	0,6278		0,0684	
45	0,8	0,774		0,0594	
55	0,67	0,8967		0,0498	
65	0,48	0,992		0,0357	
	5,76			0,428	

Calcol	o irradianz	a E [W/m2]		
				Imax/Atot
Appro	ssimiamo E	=I max (d=1	Lm)	0,0037
_				
λ,nm	E rel(λ)	Area rel	Ε (λ)	Area tot
390	0	0	0	0
400	0	0	0	0
410 420	0	0	0	0
430	0	0	0	0
440	0	0	0	0
450	0	0	0	0
460	0	0	0	0
470	0	0	0	0
480	0	0	0	0
490	0	0	0	0
500	0	0	0	0
510	0	0	0	0
520	0	0	0	0
530	0	0	0	0
540	0	0	0	0
550	0	0	0	0
560	0	0	0	0
570	0	0	0	0
580	0	0	0	0
590	0	0	0	0
600	0	0	0	0 0003
610 620	0,5	2,5 7,5	0,0019	0,0093 0,0279
630	1	7,5	0,0013	0,0279
640	0,5	2,5	0,0019	0,0093
650	0	0	0	0
660	0	0	0	0
670	0	0	0	0
680	0	0	0	0
690	0	0	0	0
700	0	0	0	0
710	0	0	0	0
720	0	0	0	0
730	0	0	0	0
740	0	0	0	0
750	0	0	0	0
760	0	0	0	0
770	0	0	0	0
780	0	0	0	0
tot	2	20	0,0074	0,0743

7.6 Nichia NCSE119AT Bluish Green

Calcolo	potenza						
λ,nm	V (λ)	Prel(λ)	Фrel(lamb	da)	Φ(λ)=Φmax*Φrel(λ)	P(λ) [W]	Area
390	0,0001	0	0		0	0	0
400	0,0004	0	0	0,02749	0	0	0
410	0,0012	0	0		0	0	0
420	0,004	0	0		0	0	0
430	0,0116	0	0		0	0	0
440	0,023	0	0		0	0	0
450	0,038	0	0		0	0	0
460	0,06	0	0		0	0	0
470	0,091	0	0		0	0	0
480	0,139	0	0		0	0	0,06873
490	0,208	0,5	710,32		19,5267	0,01375	0,20618
500	0,323	1	2206,09		60,6454	0,02749	0,20618
510	0,503	0,5	1717,75		47,2208	0,01375	0,06873
520	0,71	0	0		0	0	0
530	0,862	0	0		0	0	0
540	0,954	0	0		0	0	0
550	0,995	0	0		0	0	0
560	0,995	0	0		0	0	0
570	0,952	0	0		0	0	0
580	0,87	0	0		0	0	0
590	0,757	0	0		0	0	0
600	0,631	0	0		0	0	0
610	0,503	0	0		0	0	0
620	0,381	0	0		0	0	0
630	0,265	0	0		0	0	0
640	0,175	0	0		0	0	0
650	0,107	0	0		0	0	0
660	0,061	0	0		0	0	0
670	0,032	0	0		0	0	0
680	0,017	0	0		0	0	0
690	0,0082	0	0		0	0	0
700	0,0041	0	0		0	0	0
710	0,0021	0	0		0	0	0
720	0,00105	0	0		0	0	0
730	0,00052	0	0		0	0	0
740	0,00025	0	0		0	0	0
750	0,00012	0	0		0	0	0
760	0,00006	0	0		0	0	0
770	0,00003	0	0		0	0	0
780	1,5E-05	0	0		0	0	0
тот			4634,16		127,393	0,05498	0,5498

Calcolo I				
angle	I rel	omega	I max	I(W/sr)
5	0,98	0,0954	0,10219	0,10015
15	0,95	0,2833		0,09708
25	0,78	0,4626		0,07971
35	0,82	0,6278		0,0838
45	0,8	0,774		0,08175
55	0,65	0,8967		0,06643
65	0,4	0,992		0,04088
	5,38			0,5498

Calcolo	irradianza	E [W/m2]		
				Imax/Atot
Appros	simiamo E=	I max (d=1 n	າ)	0,0051
λ,nm	E rel(λ)	Area rel	Ε (λ)	Area tot
390	0	0	0	0
400	0	0	0	0
410	0	0	0	0
420	0	0	0	0
430	0	0	0	0
440	0	0	0	0
450	0	0	0	0
460	0	0	0	0
470	0	0	0	0
480	0	2,5	0	0,01275
490	0,5	7,5	0,00255	0,03825
500	1	7,5	0,0051	0,03825
510	0,5	2,5	0,00255	0,01275
520	0	0	0	0
530	0	0	0	0
540	0	0	0	0
550	0	0	0	0
560	0	0	0	0
570	0	0	0	0
580	0	0	0	0
590	0	0	0	0
600	0	0	0	0
610	0	0	0	0
620	0	0	0	0
630	0	0	0	0
640	0	0	0	0
650	0	0	0	0
660	0	0	0	0
670	0	0	0	0
680	0	0	0	0
690 700	0		0	
700 710	0	0	0	0
710	0	0	0	0
730	0	0	0	0
740	0	0	0	0
750	0	0	0	0
760	0	0	0	0
770	0	0	0	0
780	0	0	0	0
tot	2	20	0,0102	0,102
101		20	0,0102	0,102
<u> </u>	l			

7.7 Nichia NCSA119T Amber

Calcolo	potenza						
λ,nm	V (λ)	Prel(λ)	Φrel(laml	oda)	Φ(λ)=Φmax*Φrel(λ)	P(λ) [W]	Area
390	0,0001	0	0		0	0	0
400	0,0004	0	0	0,0032	0	0	0
410	0,0012	0	0		0	0	0
420	0,004	0	0		0	0	0
430	0,0116	0	0		0	0	0
440	0,023	0	0		0	0	0
450	0,038	0	0		0	0	0
460	0,06	0	0		0	0	0
470	0,091	0	0		0	0	0
480	0,139	0	0		0	0	0
490	0,208	0	0		0	0	0
500	0,323	0	0		0	0	0
510	0,503	0	0		0	0	0,0016
520	0,71	0,1	484,93		1,5663	0,0003	0,0048
530	0,862	0,2	1177,5		3,8033	0,0006	0,0081
540	0,954	0,3	1954,7		6,3138	0,001	0,0113
550	0,995	0,4	2718,3		8,7802	0,0013	0,0145
560	0,995	0,5	3397,9		10,975	0,0016	0,0178
570	0,952	0,6	3901,3		12,601	0,0019	0,021
580	0,87	0,7	4159,5		13,435	0,0023	0,0242
590	0,757	0,8	4136,2		13,36	0,0026	0,0275
600	0,631	0,9	3878,8		12,528	0,0029	0,0307
610	0,503	1	3435,5		11,097	0,0032	0,0307
620	0,381	0,9	2342		7,5647	0,0029	0,0275
630	0,265	0,8	1448		4,6769	0,0026	0,0242
640	0,175	0,7	836,68		2,7025	0,0023	0,021
650	0,107	0,6	438,49		1,4163	0,0019	0,0178
660	0,061	0,5	208,32		0,6729	0,0016	0,0145
670	0,032	0,4	87,424		0,2824	0,0013	0,0113
680	0,017	0,3	34,833		0,1125	0,001	0,0081
690	0,0082	0,2	11,201		0,0362	0,0006	0,0048
700	0,0041	0,1	2,8003		0,009	0,0003	0,0016
710	0,0021	0	0		0	0	0
720	0,0011	0	0		0	0	0
730	0,0005	0	0		0	0	0
740	0,0003	0	0		0	0	0
750	0,0001	0	0		0	0	0
760	6E-05	0	0		0	0	0
770	3E-05	0	0		0	0	0
780	2E-05	0	0		0	0	0
TOT			34654		111,93	0,0323	0,323
					<u> </u>		
	350 mA=80) Im, Flusso	a 500 mA	=112 lm (valore max corrente 7	00 mA)	
70%							

Calcolo	Intensi	tà radiomet	rica I [W/sr]
angle	I rel	omega	I max	I(W/sr)
5	0,99	0,0954	0,0661	0,0654
15	0,95	0,2833		0,0628
25	0,85	0,4626		0,0561
35	0,75	0,6278		0,0495
45	0,6	0,774		0,0396
55	0,45	0,8967		0,0297
65	0,3	0,992		0,0198
	4,89			0,323

Calcol	o irradianz	a E [W/m2]		
				Imax/Atot
Annro	scimiamo E	=I max (d=1	m)	0,0007
Appro	SSIIIIIAIIIO L	-illiax (u-1	. 111)	0,0007
λ,nm	E rel(λ)	Area rel	Ε (λ)	Area tot
390	0	0	0	0
400	0	0	0	0
410	0	0	0	0
420	0	0	0	0
430	0	0	0	0
440	0	0	0	0
450	0	0	0	0
460	0	0	0	0
470	0	0	0	0
480	0	0	0	0
490	0	0	0	0
500	0	0	0	0 0000
510	0	0,5	75.05	0,0003
520 530	0,1	1,5 2,5	7E-05 0,0001	0,001
540	0,2	3,5	0,0001	0,0017
550	0,3	4,5	0,0002	0,0023
560	0,5	5,5	0,0003	0,0036
570	0,6	6,5	0,0004	0,0043
580	0,7	7,5	0,0005	0,005
590	0,8	8,5	0,0005	0,0056
600	0,9	9,5	0,0006	0,0063
610	1	9,5	0,0007	0,0063
620	0,9	8,5	0,0006	0,0056
630	0,8	7,5	0,0005	0,005
640	0,7	6,5	0,0005	0,0043
650	0,6	5,5	0,0004	0,0036
660	0,5	4,5	0,0003	0,003
670	0,4	3,5	0,0003	0,0023
680	0,3	2,5	0,0002	0,0017
690	0,2	1,5	0,0001	0,001
700	0,1	0,5	7E-05	0,0003
710	0	0	0	0
720	0	0	0	0
730	0	0	0	0
740	0	0	0	0
750 760	0	0	0	0
760 770	0	0	0	0
780	0	0	0	0
tot	10	100	0,0066	0,0661
w	10	100	0,0000	0,0001

7.8 Muevo

	(660			68	0-700		750-780-810-940				850			
angle	I rel	I max	I(W/sr)	angle	I rel	I max	I(W/sr)	angle	I rel	I max	I(W/sr)	angle	I rel	I max	I(W/sr)
5	0,99	0,031	0,031	5	0,99	0,052	0,052	5	0,99	0,175	0,173	5	0,99	0,262	0,26
15	0,95		0,03	15	0,95		0,05	15	0,95		0,166	15	0,95		0,249
25	0,9		0,028	25	0,9		0,047	25	0,9		0,157	25	0,9		0,236
35	0,88		0,028	35	0,88		0,046	35	0,88		0,154	35	0,88		0,231
45	0,8		0,025	45	0,8		0,042	45	0,8		0,14	45	0,8		0,21
55	0,7		0,022	55	0,7		0,037	55	0,7		0,122	55	0,7		0,184
65	0,5		0,016	65	0,5		0,026	65	0,5		0,087	65	0,5		0,131
	5,72		0,18		5,72		0,3		5,72		1		5,72		1,5

	660		680		700		750		780		810	
nm	P rel(λ)	Ε(λ)										
630	0	0	0	0	0	0	0	0	0	0	0	0
640	0	0	0		0	0	0		0	0	0	
				0		0		0		0		0
650	0,5	0,00079	0		0		0		0		0	
660	1	0,00158	0	0	0	0	0	0	0	0	0	0
670	0,5	0,00079	0,5	0,00131	0	0	0	0	0	0	0	0
680	0	0	1	0,00262	0,35	0,00061	0	0	0	0	0	0
690	0	0	0,5	0,00131	0,65	0,00114	0	0	0	0	0	0
700	0	0	0	0	1	0,00175	0	0	0	0	0	0
710	0	0	0	0	0,65	0,00114	0	0	0	0	0	0
720	0	0	0	0	0,35	0,00061	0	0	0	0	0	0
730	0	0	0	0	0	0	0,35	0,00204	0	0	0	0
740	0	0	0	0	0	0	0,65	0,00379	0	0	0	0
750	0	0	0	0	0	0	1	0,00583	0,25	0,00109	0	0
760	0	0	0	0	0	0	0,65	0,00379	0,5		0	0
770	0	0	0	0	0	0	0,35	0,00204	0,75	0,00328	0	0
780	0	0	0	0	0	0	0	0	1	0,00437	0	0
790	0	0	0	0	0	0	0	0	0,75	0,00328	0,35	0,00204
800	0	0	0	0	0	0	0	0	0,5	0,00219	0,65	0,00379
810	0	0	0	0	0	0	0	0	0,25	0,00109	1	0,00583
820	0	0	0	0	0	0	0	0	0	0	0,65	0,00379
830	0	0	0	0	0	0	0	0	0	0	0,35	0,00204
840	0	0	0	0	0	0	0	0	0	0	0	0
850	0	0	0	0	0	0	0	0	0	0	0	0
860	0	0	0	0	0	0	0	0	0	0	0	0
870	0	0	0	0	0	0	0	0	0	0	0	0
880	0	0	0	0	0	0	0	0	0	0	0	0
890	0	0	0	0	0	0	0	0	0	0	0	0
900	0	0	0	0	0	0	0	0	0	0	0	0
910	0	0	0	0	0	0	0	0	0	0	0	0
920	0	0	0	0	0	0	0	0	0	0	0	0
930	0	0	0	0	0	0	0	0	0	0	0	0
940	0	0	0	0	0	0	0	0	0	0	0	0
950	0	0	0	0	0	0	0	0	0	0	0	0
960	0	0	0	0	0	0	0	0	0	0	0	0
970	0	0	0	0	0	0	0	0	0	0	0	0
980	0	0	0	0	0	0	0	0	0	0	0	0
980	0	0	0	0	0	0	0	0	0	0	0	0
		0		0		0	0	0		0	0	0
1000	0		0		0				0			
1010	0	0	0	0	0	0	0	0	0	0	0	0
1020	0	0	0	0	0	0	0	0	0	0	0	0
1030	0	0	0	0	0	0	0	0	0	0	0	0
1040	0	0	0	0	0	0	0	0	0	0	0	0
1050	0	0	0	0	0	0	0	0	0	0	0	0
1060	0	0	0	0	0	0	0	0	0	0	0	0
1070	0	0	0	0	0	0	0	0	0	0	0	0
1080	0	0	0	0	0	0	0	0	0	0	0	0
1090	0	0	0	0	0	0	0	0	0	0	0	0
1100	0	0	0	0	0	0	0	0	0	0	0	0
tot	2	0,00315	2	0,00524	3	0,00524	3	0,01748	4	0,01748	3	0,01748
Arel*∆λ	20		20		30		30		40		30	

	8	390			Ç	910			Ç	970		1050			
angle	I rel	I max	I(W/sr)	angle	I rel	I max	I(W/sr)	angle	I rel	I max	I(W/sr)	angle	I rel	I max	I(W/sr)
5	0,99	0,149	0,147	5	0,99	0,105	0,104	5	0,99	0,087	0,086	5	0,99	0,021	0,02
15	0,95		0,141	15	0,95		0,1	15	0,95		0,083	15	0,95		0,019
25	0,9		0,134	25	0,9		0,094	25	0,9		0,078	25	0,9		0,018
35	0,88		0,131	35	0,88		0,092	35	0,88		0,077	35	0,88		0,018
45	0,8		0,119	45	0,8		0,084	45	0,8		0,07	45	0,8		0,016
55	0,7		0,104	55	0,7		0,073	55	0,7		0,061	55	0,7		0,014
65	0,5		0,074	65	0,5		0,052	65	0,5		0,044	65	0,5		0,01
	5,72		0,85		5,72		0,6		5,72		0,498		5,72		0,114

	850		890		910		940		970		1050	
nm	P rel(λ)	Ε(λ)	P rel(λ)	Ε(λ)	P rel(λ)	Ε(λ)	P rel(λ)	Ε(λ)	P rel(λ)	Ε(λ)	P rel(λ)	Ε(λ)
630	0	0	0	0	0	0	0	0	0	0	0	0
640	0	0	0	0	0	0	0	0	0	0	0	0
650	0	0	0	0	0	0	0	0	0	0	0	0
660	0	0	0	0	0	0	0	0	0	0	0	0
670	0	0	0	0	0	0	0	0	0	0	0	0
680	0	0	0	0	0	0	0	0	0	0	0	0
690	0	0	0	0	0	0	0	0	0	0	0	0
700	0	0	0	0	0	0	0	0	0	0	0	0
710	0	0	0	0	0	0	0	0	0	0	0	0
720	0	0	0	0	0	0	0	0	0	0	0	0
730	0	0	0	0	0	0	0	0	0	0	0	0
740	0	0	0	0	0	0	0	0	0	0	0	0
750	0	0	0	0	0	0	0	0	0	0	0	0
760	0	0	0	0	0	0	0	0	0	0	0	0
770	0	0	0	0	0	0	0	0	0	0	0	0
780	0	0	0	0	0	0	0	0	0	0	0	0
790	0	0	0	0	0	0	0	0	0	0	0	0
800	0	0	0	0	0	0	0	0	0	0	0	0
810	0	0	0	0	0	0	0	0	0	0	0	0
820	0,25	0,00164	0	0	0	0	0	0	0	0	0	0
830	0,25	0,00104	0	0	0	0	0	0	0	0	0	0
840	0,75	0,00328	0	0	0	0	0	0	0	0	0	0
850	0,73	0,00452	0	0	0	0	0	0	0	0	0	0
	0,75	0,00656			0	0				0	0	0
860 870	0,75		0,25	0,00093	0	0	0	0	0	0	0	0
880	0,5	0,00328	0,5	0,00186		0,00066			0	0	0	0
		0,00164	0,75	0,00279	0,25	-	0	0	0			0
890	0	0	1	0,00372	0,5	0,00131	0	0	0	0	0	
900	0	0	0,75	0,00279	0,75	0,00197	0	0	0	0	0	0
910	0	0	0,5	0,00186	1	0,00262	0,25	0,00109	0	0	0	
920	0	0	0,25	0,00093	0,75	0,00197	0,5 0,75	0,00219	0	0	0	0
930		0		0	0,5	0,00131	0,75			0,00054		0
940	0	0	0		0,25	0,00066		0,00437	0,25	-	0	
950	0	0	0	0	0	0	0,75	0,00328	0,5	0,00109	0	0
960	0	0	0	0	0	0	0,5	0,00219	0,75	0,00163	0	0
970	0	0	0	0	0	0	0,25	0,00109	1	0,00218	0	
980	0	0	0	0	0	0	0	0	0,75	0,00163	0	0
990	0	0	0	0	0	0	0	0	0,5	0,00109 0,00054	0	3,8E-05
1000	0	0	0		0		0	0	0,25	-	0,1	_
1010	0	0	0	0	0	0	0	0	0	0	0,25	9,4E-05
1020	0	0	0	0	0	0	0	0	0	0	0,45	0,00017
1030	0	0	0	0	0	0	0	0	0	0	0,65	0,00024
1040	0	0	0	0	0	0	0	0	0	0	0,85	0,00032
1050	0	0	0	0	0	0	0	0	0	0	1	0,00038
1060	0	0	0	0	0	0	0	0	0	0	0,85	0,00032
1070	0	0	0	0	0	0	0	0	0	0	0,65	0,00024
1080	0	0	0	0	0	0	0	0	0	0	0,45	0,00017
1090	0	0	0	0	0	0	0	0	0	0	0,25	9,4E-05
1100	0	0	0	0	0	0	0	0	0	0	0,1	3,8E-05
tot	4	0,02622	4	0,01486	4	0,01049	4	0,01748	4	0,0087	5,6	0,0021
Arel*∆λ	40		40		40		40		40		56	

7.9 Osram SFH4235 e SFH4233

Osram	SFH42	235		Osram SFH4	233		
		850 nm			940	nm	
angle	I rel	I max	I(W/sr)	angle	I rel	I max	I(W/sr)
5	0,99	0,1233766	0,122143	5	0,99	0,064935	0,064286
15	0,95		0,117208	15	0,95		0,061688
25	0,9		0,111039	25	0,9		0,058442
35	0,85		0,10487	35	0,85		0,055195
45	0,7		0,086364	45	0,7		0,045455
55	0,6		0,074026	55	0,6		0,038961
65	0,4		0,049351	65	0,4		0,025974
	5,39		0,665002		5,39		0,35
max cur	rent 1A	max power 0,9	50W (per 850	0) e 0,500W (p	er 940)		
3 V				1,4 V			
700 mA							
70% de	l max :	0,665 W (per 850	0) e 0,35 W (per 940)			
2,8 V				1,3 V			

nm P rel(λ) E(λ) P rel(λ) E(λ) 630 0 0 0 0 640 0 0 0 0 650 0 0 0 0 660 0 0 0 0 670 0 0 0 0 680 0 0 0 0 690 0 0 0 0 700 0 0 0 0 710 0 0 0 0 720 0 0 0 0 730 0 0 0 0 740 0 0 0 0 750 0 0 0 0 770 0 0 0 0 780 0 0 0 0 810 0 0 0 0 820 0			850		940
640 0 0 0 0 650 0 0 0 0 660 0 0 0 0 670 0 0 0 0 680 0 0 0 0 0 690 0 0 0 0 0 700 0 0 0 0 0 710 0 0 0 0 0 720 0 0 0 0 0 730 0 0 0 0 0 740 0 0 0 0 0 750 0 0 0 0 0 760 0 0 0 0 0 770 0 0 0 0 0 800 0 0 0 0 0 820 0 0 0	nm	P rel(λ)	Ε(λ)	P rel(λ)	Ε(λ)
650 0 0 0 0 660 0 0 0 0 670 0 0 0 0 680 0 0 0 0 690 0 0 0 0 700 0 0 0 0 710 0 0 0 0 720 0 0 0 0 730 0 0 0 0 740 0 0 0 0 750 0 0 0 0 760 0 0 0 0 770 0 0 0 0 780 0 0 0 0 880 0 0 0 0 880 0 0 0 0 830 0,35 0,0014394 0 0 850 1	630	0		0	
660 0 0 0 0 670 0 0 0 0 680 0 0 0 0 690 0 0 0 0 700 0 0 0 0 710 0 0 0 0 720 0 0 0 0 730 0 0 0 0 740 0 0 0 0 750 0 0 0 0 760 0 0 0 0 770 0 0 0 0 780 0 0 0 0 790 0 0 0 0 810 0 0 0 0 820 0 0 0 0 830 0,35 0,0014394 0 0 850 1	640	0	0	0	0
670 0 0 0 0 680 0 0 0 0 0 690 0 0 0 0 0 0 700 0	650	0	0	0	
680 0 0 0 0 690 0 0 0 0 700 0 0 0 0 710 0 0 0 0 720 0 0 0 0 730 0 0 0 0 740 0 0 0 0 750 0 0 0 0 760 0 0 0 0 770 0 0 0 0 780 0 0 0 0 790 0 0 0 0 800 0 0 0 0 810 0 0 0 0 820 0 0 0 0 830 0,35 0,0014394 0 0 850 1 0,004126 0 0 880 0	660	0	0	0	0
690 0 0 0 0 700 0 0 0 0 710 0 0 0 0 720 0 0 0 0 730 0 0 0 0 740 0 0 0 0 750 0 0 0 0 760 0 0 0 0 770 0 0 0 0 780 0 0 0 0 790 0 0 0 0 800 0 0 0 0 810 0 0 0 0 820 0 0 0 0 830 0,35 0,0014394 0 0 850 1 0,004126 0 0 880 0 0 0 0 890 0	670	0	0	0	
700 0 0 0 0 710 0 0 0 0 720 0 0 0 0 730 0 0 0 0 740 0 0 0 0 750 0 0 0 0 760 0 0 0 0 770 0 0 0 0 780 0 0 0 0 790 0 0 0 0 800 0 0 0 0 810 0 0 0 0 820 0 0 0 0 830 0,35 0,0014394 0 0 840 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 990 <	680	0	0	0	0
710 0 0 0 0 720 0 0 0 0 730 0 0 0 0 740 0 0 0 0 750 0 0 0 0 760 0 0 0 0 770 0 0 0 0 780 0 0 0 0 790 0 0 0 0 800 0 0 0 0 810 0 0 0 0 820 0 0 0 0 830 0,35 0,0014394 0 0 840 0,65 0,0026732 0 0 850 1 0,0041126 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 990		0	0	0	
720 0 0 0 0 730 0 0 0 0 740 0 0 0 0 750 0 0 0 0 760 0 0 0 0 770 0 0 0 0 780 0 0 0 0 790 0 0 0 0 800 0 0 0 0 810 0 0 0 0 820 0 0 0 0 820 0 0 0 0 830 0,35 0,0014394 0 0 840 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 990 <	700	0	0	0	0
730 0 0 0 0 740 0 0 0 0 750 0 0 0 0 760 0 0 0 0 770 0 0 0 0 0 780 0 0 0 0 0 800 0 0 0 0 0 800 0 0 0 0 0 810 0 0 0 0 0 820 0 0 0 0 0 830 0,35 0,0014394 0 0 0 840 0,65 0,0026732 0 0 0 870 0,35 0,0014394 0 0 0 880 0 0 0 0 0 890 0 0 0 0 0 990 0 0	710	0	0	0	0
740 0 0 0 0 750 0 0 0 0 760 0 0 0 0 770 0 0 0 0 780 0 0 0 0 790 0 0 0 0 800 0 0 0 0 810 0 0 0 0 820 0 0 0 0 820 0 0 0 0 830 0,35 0,0014394 0 0 840 0,65 0,0026732 0 0 850 1 0,0041126 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 990 0 0 0 0 920	720	0	0	0	0
750 0 0 0 0 760 0 0 0 0 770 0 0 0 0 780 0 0 0 0 790 0 0 0 0 800 0 0 0 0 810 0 0 0 0 820 0 0 0 0 830 0,35 0,0014394 0 0 840 0,65 0,0026732 0 0 850 1 0,0041126 0 0 860 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 990 0 0 0 0 920 0 0 0 0 0	730	0	0	0	0
760 0 0 0 0 770 0 0 0 0 0 780 0 0 0 0 0 790 0 0 0 0 0 800 0 0 0 0 0 810 0 0 0 0 0 820 0 0 0 0 0 830 0,35 0,0014394 0 0 0 840 0,65 0,0026732 0 0 0 850 1 0,0041126 0 0 0 860 0,65 0,0026732 0 0 0 0 870 0,35 0,0014394 0 0 0 0 0 880 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0	0
770 0 0 0 0 780 0 0 0 0 790 0 0 0 0 800 0 0 0 0 810 0 0 0 0 820 0 0 0 0 830 0,35 0,0014394 0 0 840 0,65 0,0026732 0 0 850 1 0,0041126 0 0 860 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 880 0 0 0 0 890 0 0 0 0 990 0 0 0 0 910 0 0 0 0 920 0 0 0,65 0,0014069 9		0	0	0	0
780 0 0 0 0 790 0 0 0 0 0 800 0 0 0 0 0 0 810 0	760	0	0	0	0
790 0 0 0 0 800 0 0 0 0 0 810 0 0 0 0 0 820 0 0 0 0 0 830 0,35 0,0014394 0 0 0 850 1 0,0041126 0 0 0 860 0,65 0,0026732 0 0 0 870 0,35 0,0014394 0 0 0 880 0 0 0 0 0 890 0 0 0 0 0 900 0 0 0 0 0 910 0 0 0 0 0 920 0 0 0,35 0,0007576 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	770	0	0	0	0
800 0 0 0 0 810 0 0 0 0 0 820 0 0 0 0 0 830 0,35 0,0014394 0 0 0 840 0,65 0,0026732 0 0 0 850 1 0,0041126 0 0 0 870 0,35 0,0014394 0 0 0 880 0 0 0 0 0 890 0 0 0 0 0 900 0 0 0 0 0 910 0 0 0 0 0 920 0 0 0 0 0 0 930 0 0 0,65 0,0014069 0 0 0 0 0 0 0 0 0 0 0 0 0 0	780	0	0	0	0
810 0 0 0 0 820 0 0 0 0 830 0,35 0,0014394 0 0 840 0,65 0,0026732 0 0 850 1 0,0041126 0 0 860 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 900 0 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 0 0 950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0	790	0	0	0	0
820 0 0 0 830 0,35 0,0014394 0 0 840 0,65 0,0026732 0 0 850 1 0,0041126 0 0 860 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 900 0 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 0 0 0 950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0 0 0 0 0,35 0,0007576 </td <td>800</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	800	0	0	0	
830 0,35 0,0014394 0 0 840 0,65 0,0026732 0 0 850 1 0,0041126 0 0 860 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 900 0 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 0 0 0 950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0 0 0 0 0,35 0,0007576 970 0 0 0 </td <td>810</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	810	0	0	0	0
840 0,65 0,0026732 0 0 850 1 0,0041126 0 0 860 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 900 0 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 1 0,0021645 950 0 0 0,35 0,0007576 970 0 0 0 0 0 0 0,35 0,0007576 970 0 0 0 0 0 0 0 0 0 0 0 0 0 0	820	0	0	0	0
840 0,65 0,0026732 0 0 850 1 0,0041126 0 0 860 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 900 0 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 0,65 0,0014069 950 0 0 0,35 0,0007576 970 0 0 0 0 0 0 0 0,35 0,0007576 0 0 970 0 0 0 0 0 0 0 0 0 0 0 0	830	0,35	0,0014394	0	0
860 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 900 0 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 0,65 0,0014069 950 0 0 0,35 0,0007576 970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	840		0,0026732	0	0
860 0,65 0,0026732 0 0 870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 900 0 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 0,65 0,0014069 950 0 0 0,35 0,0007576 970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	850	1	0,0041126	0	0
870 0,35 0,0014394 0 0 880 0 0 0 0 890 0 0 0 0 900 0 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 0,65 0,0014069 950 0 0 0,35 0,0007576 970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	860	0,65		0	0
890 0 0 0 0 900 0 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 1 0,0021645 950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0 0 tot 3 0,0123377 3 0,0064935			0,0014394	0	0
900 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 1 0,0021645 950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0 0 tot 3 0,0123377 3 0,0064935	880	0	0	0	0
900 0 0 0 910 0 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 1 0,0021645 950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0 0 tot 3 0,0123377 3 0,0064935	890	0	0	0	0
910 0 0 0 920 0 0 0,35 0,0007576 930 0 0 0,65 0,0014069 940 0 0 1 0,0021645 950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0 0 tot 3 0,0123377 3 0,0064935		0	0	0	0
930 0 0 0,65 0,0014069 940 0 0 1 0,0021645 950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0 0 tot 3 0,0123377 3 0,0064935		0	0	0	0
930 0 0 0,65 0,0014069 940 0 0 1 0,0021645 950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0 0 tot 3 0,0123377 3 0,0064935	920	0	0	0,35	0,0007576
940 0 0 1 0,0021645 950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0 0 tot 3 0,0123377 3 0,0064935		0	0		
950 0 0 0,65 0,0014069 960 0 0 0,35 0,0007576 970 0 0 0 0 tot 3 0,0123377 3 0,0064935	940	0	0	·	
960 0 0 0,35 0,0007576 970 0 0 0 0 tot 3 0,0123377 3 0,0064935		0	0	0,65	
970 0 0 0 0 0 0 tot 3 0,0123377 3 0,0064935		0	0		
		0	0	_	0
		3	0,0123377	3	0,0064935
	Arel*Δλ	30		30	

7.10 OSA 440-740

Osa 440-740 xt

I *sr=Ptot--> sr=2*pi(1-cosx) in cui x è half power angle; Itip=50W/sr; x=45°-->sr=1,83 --> Pmax=0,0915 W @ 350mA 70% 350mA= 245 mA-->P=0,6*Pmax=0,6*0,0915=0,0549 W

	740 nm										
angle	I rel	I max	I(W/sr)								
5	0,99	0,0123649	0,012241								
15	0,85		0,01051								
25	0,8		0,009892								
35	0,75		0,009274								
45	0,5		0,006183								
55	0,35		0,004328								
65	0,2		0,002473								
	4,44		0,054901								

nm	P rel(λ)	Ε(λ)
630	0	0
640	0	0
650	0	0
660	0	0
670	0	0
680	0	0
690	0	0
700	0	0
710	0	0
720	0,35	0,0001443
730	0,65	0,0002679
740	1	0,0004122
750	0,65	0,0002679
760	0,35	0,0001443
770	0	0
780	0	0
790	0	0
800	0	0
810	0	0
820	0	0
830	0	0
840	0	0
850	0	0
860	0	0
870	0	0
880	0	0
890	0	0
900	0	0
910	0	0
920	0	0
930	0	0
940	0	0
950	0	0
960	0	0
970	0	0
tot	3	0,0012365
Arel*∆λ	30	

7.11 Vishay VSMG 2700 e VSMF 3710

Vishay VSMG 2700 Vishay VSMF3710

Pmax=40mW @100mA 70%*0,1 A=0,07 mA-->70%Pmax=28mW V=1,4V Pmax=40mW @100mA 70%*0,1 A=0,07 mA-->70%Pmax=28mW V=1,4V

	8	30 nm		890 nm					
angle	I rel	I max	I(W/sr)	angle	I rel	I max	I(W/sr)		
5	0,99	0,0050725	0,005021	5	0,99	0,005072	0,005021		
15	0,98		0,004971	15	0,98		0,004971		
25	0,95		0,004818	25	0,95		0,004818		
35	0,85		0,004311	35	0,85		0,004311		
45	0,75		0,003804	45	0,75		0,003804		
55	0,6		0,003043	55	0,6		0,003043		
65	0,4		0,002029	65	0,4		0,002029		
	5,52		0,027997		5,52		0,027997		

nm	P rel(λ)	Ε(λ)
630	0	0
640	0	0
650	0	0
660	0	0
670	0	0
680	0	0
690	0	0
700	0	0
710	0	0
720	0	0
730	0	0
740	0	0
750	0	0
760	0	0
770	0	0
780	0	0
790	0	0
800	0,25	0,0000317
810	0,5	0,0000634
820	0,75	0,0000951
830	1	0,0001268
840	0,75	0,0000951
850	0,5	0,0000634
860	0,25	0,0000317
870	0	0
880	0	0
890	0	0
900	0	0
910	0	0
920	0	0
930	0	0
940	0	0
950	0	0
960	0	0
970	0	0
tot	4	0,0005072
Arel*∆λ	40	

nm	P rel(λ)	Ε(λ)
630	0	0
640	0	0
650	0	0
660	0	0
670	0	0
680	0	0
690	0	0
700	0	0
710	0	0
720	0	0
730	0	0
740	0	0
750	0	0
760	0	0
770	0	0
780	0	0
790	0	0
800	0	0
810	0	0
820	0	0
830	0	0
840	0	0
850	0	0
860	0,25	3,17E-05
870	0,5	6,34E-05
880	0,75	9,51E-05
890	1	0,000127
900	0,75	9,51E-05
910	0,5	6,34E-05
920	0,25	3,17E-05
930	0	0
940	0	0
950	0	0
960	0	0
970	0	0
tot	4	0,000507
Arel*∆λ	40	

7.12 Tech-led Marubeni SMB 680-1100

Tech-led Marubeni SMB 680-1100

max current 600mA Pmax=90mW @500mA

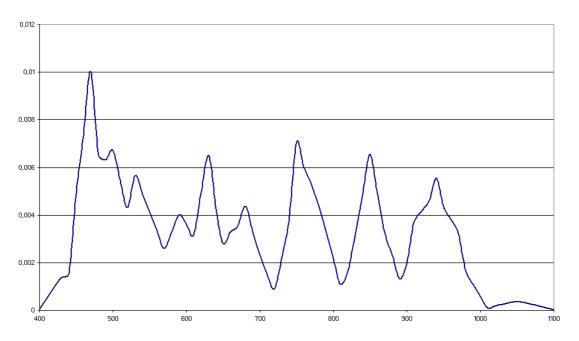
Tech-led Marubeni SMB 780-1100

Pmax=330mW @800mA 70% 0,8=0,56 mA P=231 mW 1,8 V

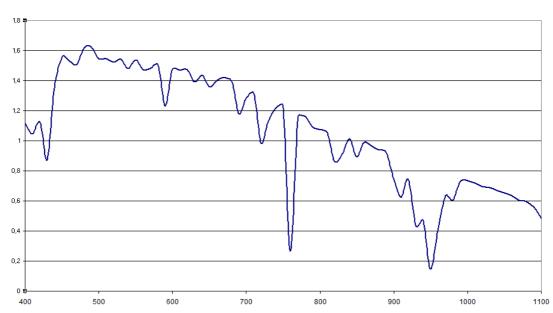
2.2V

Z,Z V				1,0 0						
		680 nm		780 nm						
angle	I rel	I max	I(W/sr)	angle	I rel	I max	I(W/sr)			
5	0,99	0,0160428	0,015883	5	0,99	0,041176	0,040764			
15	0,97		0,015562	15	0,97		0,039941			
25	0,95		0,015241	25	0,95		0,039117			
35	0,85		0,013637	35	0,85		0,035			
45	0,75		0,012032	45	0,75		0,030882			
55	0,62		0,009947	55	0,62		0,025529			
65	0,48		0,007701	65	0,48		0,019764			
	5,61		0,090001		5,61		0,230997			

	D ==1(1)	E (1)
nm	P rel(λ)	Ε(λ)
630	0,1	5,175E-05
640	0,25	0,0001294
650	0,7	0,0003623
660	1	0,0005175
670	0,7	0,0003623
680	0,25	0,0001294
690	0,1	5,175E-05
700	0	0
710	0	0
720	0	0
730	0	0
740	0	0
750	0	0
760	0	0
770	0	0
780	0	0
790	0	0
800	0	0
810	0	0
820	0	0
830	0	0
840	0	0
850	0	0
860	0	0
870	0	0
880	0	0
890	0	0
900	0	0
910	0	0
920	0	0
930	0	0
940	0	0
950	0	0
960	0	0
970	0	0
tot	3,1	0,0016043
Arel*∆λ	31	2,00.00.0
, 11 OI Δ/	<u> </u>	


nm	P rel(λ)	Ε(λ)
630	0	0
640	0	0
650	0	0
660	0	0
670	0	0
680	0	0
690	0	0
700	0	0
710	0	0
720	0	0
730	0	0
740	0	0
750	0,1	0,000133
760	0,25	0,000332
770	0,7	0,00093
780	1	0,001328
790	0,7	0,00093
800	0,25	0,000332
810	0,1	0,000133
820	0	0
830	0	0
840	0	0
850	0	0
860	0	0
870	0	0
880	0	0
890	0	0
900	0	0
910	0	0
920	0	0
930	0	0
940	0	0
950	0	0
960	0	0
970	0	0
tot	3,1	0,004118
Arel*∆λ	31	

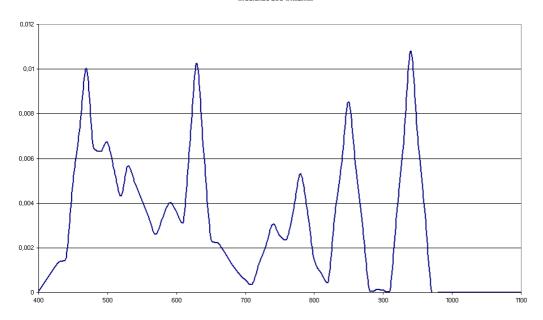
7.13 Spettro solare una unità prima soluzione.


	2	2	1	3	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	somma
nm	White	Blue	Bluish	Green	Am. C.	Am. N.	Red	660	680	700	750	780	850	910	940	970	1050	
400	5E-05	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5E-05
410	5E-04	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5E-04
420	1E-03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1E-03
430	0,001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,001
440	0,002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,002
450	0,002	0,003	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,005
460	0,001	0,006	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,007
470 480	7E-04 5E-04	0,009	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,01
490	5E-04	0,003	0,003	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,007
500	7E-04	0,003	0,005	1E-03	0	0	0	0	0	0	0	0	0	0	0	0	0	0,007
510	1E-03	0	0,003	0,002	0	0	0	0	0	0	0	0	0	0	0	0	0	0,005
520	0,001	0	0	0,003	0	7E-05	0	0	0	0	0	0	0	0	0	0	0	0,004
530	0,002	0	0	0,004	0	1E-04	0	0	0	0	0	0	0	0	0	0	0	0,006
540	0,002	0	0	0,003	0	2E-04	0	0	0	0	0	0	0	0	0	0	0	0,005
550	0,002	0	0	0,002	0	3E-04	0	0	0	0	0	0	0	0	0	0	0	0,004
560	0,002	0	0	1E-03	0	3E-04	0	0	0	0	0	0	0	0	0	0	0	0,003
570	0,002	0	0	0	0	4E-04	0	0	0	0	0	0	0	0	0	0	0	0,003
580	0,002	0	0	0	5E-04	5E-04	0	0	0	0	0	0	0	0	0	0	0	0,003
590	0,002	0	0	0	0,001	5E-04	0	0	0	0	0	0	0	0	0	0	0	0,004
600	0,003	0	0	0	5E-04	6E-04	0	0	0	0	0	0	0	0	0	0	0	0,004
610	0,003	0	0	0	0	7E-04	0,002	0	0	0	0	0	0	0	0	0	0	0,003
620 630	0,002	0	0	0	0	6E-04 5E-04	0,002	0	0	0	0	0	0	0	0	0	0	0,005 0,006
640	0,002	0	0	0	0	5E-04	0,004	0	0	0	0	0	0	0	0	0	0	0,008
650	0,002	0	0	0	0	4E-04	0,002	8E-04	0	0	0	0	0	0	0	0	0	0,004
660	0,001	0	0	0	0	3E-04	0	0,002	0	0	0	0	0	0	0	0	0	0,003
670	0,001	0	0	0	0	3E-04	0	8E-04	0,001	0	0	0	0	0	0	0	0	0,004
680	1E-03	0	0	0	0	2E-04	0	0	0,003	6E-04	0	0	0	0	0	0	0	0,004
690	7E-04	0	0	0	0	1E-04	0	0	0,001	0,001	0	0	0	0	0	0	0	0,003
700	5E-04	0	0	0	0	7E-05	0	0	0	0,002	0	0	0	0	0	0	0	0,002
710	4E-04	0	0	0	0	0	0	0	0	0,001	0	0	0	0	0	0	0	0,002
720	3E-04	0	0	0	0	0	0	0	0	6E-04	0	0	0	0	0	0	0	9E-04
730	2E-04	0	0	0	0	0	0	0	0	0	0,002	0	0	0	0	0	0	0,002
740	2E-04	0	0	0	0	0	0	0	0	0	0,004	0	0	0	0	0	0	0,004
750	1E-04	0	0	0	0	0	0	0	0	0	0,006	0,001	0	0	0	0	0	0,007
760 770	5E-05 3E-05	0	0	0	0	0	0	0	0	0	0,004	0,002	0	0	0	0	0	0,006 0,005
780	3E-03 0	0	0	0	0	0	0	0	0	0	0,002	0,003	0	0	0	0	0	0,003
790	0	0	0	0	0	0	0	0	0	0	0	0,004	0	0	0	0	0	0,004
800	0	0	0	0	0	0	0	0	0	0	0	0,002	0	0	0	0	0	0,002
810	0	0	0	0	0	0	0	0	0	0	0	0,001	0	0	0	0	0	0,001
820	0	0	0	0	0	0	0	0	0	0	0	0	0,002	0	0	0	0	0,002
830	0	0	0	0	0	0	0	0	0	0	0	0	0,003	0	0	0	0	0,003
840	0	0	0	0	0	0	0	0	0	0	0	0	0,005	0	0	0	0	0,005
850	0	0	0	0	0	0	0	0	0	0	0	0	0,007	0	0	0	0	0,007
860	0	0	0	0	0	0	0	0	0	0	0	0	0,005	0	0	0	0	0,005
870	0	0	0	0	0	0	0	0	0	0	0	0	0,003	0	0	0	0	0,003
880	0	0	0	0	0	0	0	0	0	0	0	0	0,002	7E-04	0	0	0	0,002
890	0	0	0	0	0	0	0	0	0	0	0	0	0	0,001	0	0	0	0,001
900 910	0	0	0	0	0	0	0	0	0	0	0	0	0	0,002	0,001	0	0	0,002 0,004
920	0	0	0	0	0	0	0	0	0	0	0	0	0	0,003	0,001	0	0	0,004
930	0	0	0	0	0	0	0	0	0	0	0	0	0	0,002	0,002	0	0	0,004
940	0	0	0	0	0	0	0	0	0	0	0	0	0	7E-04	0,004	5E-04	0	0,006
950	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,003	0,001	0	0,004
960	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,002	0,002	0	0,004
970	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,001	0,002	0	0,003
980	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,002	0	0,002
990	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,001	0	0,001
1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5E-04	4E-05	6E-04
1010	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9E-05	9E-05
1020	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2E-04	2E-04
1030 1040	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2E-04 3E-04	2E-04 3E-04
1040	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3E-04 4E-04	3E-04 4E-04
1060	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4E-04 3E-04	3E-04
1070	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2E-04	2E-04
1080	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2E-04	2E-04
1090	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9E-05	9E-05
1100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4E-05	4E-05
																		0,229

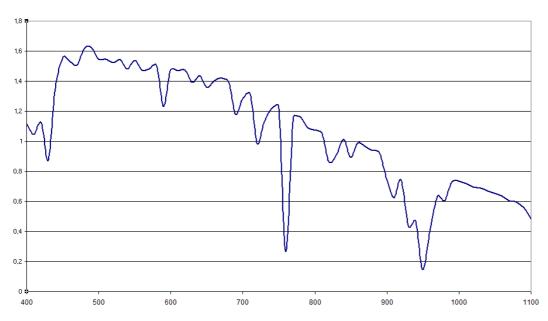
nm	Somma	Area	Percentuale P	% parziale	Rif STD	Rapporto	spettro AS	TM AM1.5G [W]
400	4,51E-05				ruii orb	парропо	1,114	
410	0,000501						1,048	
420	0,000952						1,123	
430							0,874	11,115
440	0,001554						1,349	
450	0,004895						1,559	
460	0,00732						1,529	
470							1,507	15,625
480	0,006518	0,064178	2,803758	3			1,618	16,2
490	0,006318	0,065217	2,849161	18,72268	18,40	1,02	1,622	15,835
500	0,006726	0,061005	2,665153	3			1,545	15,465
510	0,005475)			1,548	15,355
520	0,004316						1,523	
530	0,005657						1,544	
540	0,004875	0,044957	1,964028	3			1,482	15,105
550	0,004117	0,03738	1,633009)			1,539	15,065
560	0,003359	0,029803	1,30199)			1,474	14,775
570	0,002601	0,029575					1,481	14,915
580	0,003314	0,036697	1,603184				1,502	13,665
590	0,004026	0,038234			19,90	0,94	1,231	13,53
600							1,475	
610	0,003166	0,04037	1,763671				1,468	14,705
620	0,004908	0,057034	2,491635				1,473	14,325
630	0,006499	0,053867	2,353308	3			1,392	
640		0,035435	1,548076				1,434	
650	0,002813	0,03048		3			1,359	
660	0,003283	0,034114)			1,399	
670	0,003539		1,730256				1,419	14,075
680	0,004382	0,038304	1,673382				1,396	12,89
690	0,003279	0,027965			18,40	0,93	1,182	
700	0,002314						1,282	12,995
710	0,001511	0,012116					1,317	11,51
720	0,000912		0,693946	ò			0,985	10,565
730	0,002265	0,031138					1,128	
740	0,003963						1,219	
750	0,007044	0,065335	2,854283	3			1,234	7,5
760	0,006022						0,266	·
770							1,16	
780	0,00437)			1,163	
790	0,003278				14,90	1,08	1,091	10,815
800							1,072	10,635
810	-,						1,055	,
820	0,001639						0,861	8,885
830	0,003278						0,916	
840	-,	-,	,				1,015	-,-
850							0,893	
860	,						0,988	-, -
870	,						0,967	9,53
880							0,939	
890	,				12,50	1,10	0,923	
900	,		,				0,742	·
910	0,003715						0,624	·
920							0,744	
930							0,432	
940	-,						0,471	
950							0,147	,
960	,						0,42	
970	,						0,634	
980							0,604	·
990	,		,				0,732	,
1000							0,735	
1010							0,719	
1020 1030							0,698 0,69	
1030							0,69	6,625
1040							0,671	
1060							0,635	
1060							0,635	
1070			· · · · · · · · · · · · · · · · · · ·				0,604	6,005 5,77
1080							0,597	
1100	-				15,90	0.98	0,557	
1100	0,229035					Classe A:	75,278	
—	0,229030	2,209938	, 100,041	1		0,75 - 1,25	13,210	(avendo troncato fra 400 e 1100)
L	l	l	1	1	l	0,10 - 1,20		Navelluo ilolicato ila 400 e 1100)

Irradianza Led W/m2/nm

Irradianza solare AM1.5



7.14 Spettro solare una unità seconda soluzione.


	2	2	1	3	1	1	2	1	7	4	5	2	1	5	
	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	Ε(λ)	
nm	White	Blue	Bluish	Green	Am.C.	Am.N.	Red	SMB 680	OSA 740	SMB 780	VIS.830	Osr.850	VIS.890	Osr.940	Somma
400	5E-05	0	0	0	0	0	0	0	0	0	0	0	0	0	5E-05
410	0,0005	0	0	0	0	0	0	0	0	0	0	0	0	0	0,0005
420	0,001	0	0	0	0	0	0	0	0	0	0	0	0	0	0,001
430	0,0014	0	0	0	0	0	0	0	0	0	0	0	0	0	0,0014
440	0,0016	0	0	0	0	0	0	0	0	0	0	0	0	0	0,0016
450	0,0016	0,0033	0	0	0	0	0	0	0	0	0	0	0	0	0,0049
460	0,0013	0,0061	0	0	0	0	0	0	0	0	0	0	0	0	0,0073
470	0,0007	0,0093	0	0	0	0	0	0	0	0	0	0	0	0	0,01
480	0,0005	0,0061	0	0	0	0	0	0	0	0	0	0	0	0	0,0065
490	0,0005	0,0033	0,0026	0	0	0	0	0	0	0	0	0	0	0	0,0063
500	0,0007	0	0,0051	0,001	0	0	0	0	0	0	0	0	0	0	0,0067
510 520	0,001	0	0,0026	0,0019	0	0 7E-05	0	0	0	0	0	0	0	0	0,0055
530	0,0013	0	0	0,0029	0	0,0001	0	0	0	0	0	0	0	0	0,0043
540	0,0018	0	0	0,0039	0	0,0001	0	0	0	0	0	0	0	0	0,0037
550	0,0019	0	0	0,0029	0	0,0002	0	0	0	0	0	0	0	0	0,0043
560	0,0013	0	0	0,0013	0	0,0003	0	0	0	0	0	0	0	0	0,0034
570	0,0022	0	0	0	0	0,0004	0	0	0	0	0	0	0	0	0,0026
580	0,0022	0	0	0	0,0005	0,0005	0	0	0	0	0	0	0	0	0,0020
590	0,0025	0	0	0	0,001	0,0005	0	0	0	0	0	0	0	0	0,004
600	0,0025	0	0	0	0,0005	0,0006	0	0	0	0	0	0	0	0	0,0036
610	0,0025	0	0	0	0	0,0007	0	0	0	0	0	0	0	0	0,0032
620	0,0025	0	0	0	0	0,0006	0,0037	0	0	0	0	0	0	0	0,0068
630	0,0023	0	0	0	0	0,0005	0,0074	5E-05	0	0	0	0	0	0	0,0103
640	0,002	0	0	0	0	0,0005	0,0037	0,0001	0	0	0	0	0	0	0,0063
650	0,0016	0	0	0	0	0,0004	0	0,0004	0	0	0	0	0	0	0,0024
660	0,0014	0	0	0	0	0,0003	0	0,0005	0	0	0	0	0	0	0,0022
670	0,0012	0	0	0	0	0,0003	0	0,0004	0	0	0	0	0	0	0,0018
680	0,001	0	0	0	0	0,0002	0	0,0001	0	0	0	0	0	0	0,0013
690	0,0007	0	0	0	0	0,0001	0	5E-05	0	0	0	0	0	0	0,0009
700	0,0005	0	0	0	0	7E-05	0	0	0	0	0	0	0	0	0,0006
710	0,0004	0	0	0	0	0	0	0	0	0	0	0	0	0	0,0004
720	0,0003	0	0	0	0	0	0	0	0,001	0	0	0	0	0	0,0013
730 740	0,0002	0	0	0	0	0	0	0	0,0019	0	0	0	0	0	0,0021
750	0,0002	0	0	0	0	0	0	0	0,0029	0,0005	0	0	0	0	0,0031 0,0025
760	5E-05	0	0	0	0	0	0	0	0,0019	0,0003	0	0	0	0	0,0023
770	3E-05	0	0	0	0	0	0	0	0,001	0,0013	0	0	0	0	0,0024
780	0	0	0	0	0	0	0	0	0	0,0057	0	0	0	0	0,0053
790	0	0	0	0	0	0	0	0	0	0,0037	0	0	0	0	0,0037
800	0	0	0	0	0	0	0	0	0	0,0013	0,0002	0	0	0	0,0015
810	0	0	0	0	0	0	0	0	0	0,0005	0,0003	0	0	0	0,0008
820	0	0	0	0	0	0	0	0	0	0	0,0005	0	0	0	0,0005
830	0	0	0	0	0	0	0	0	0	0	0,0006	0,0029	0	0	0,0035
840	0	0	0	0	0	0	0	0	0	0	0,0005	0,0053	0	0	0,0058
850	0	0	0	0	0	0	0	0	0	0	0,0003	0,0082	0	0	0,0085
860	0	0	0	0	0	0	0	0	0	0	0,0002	0,0053	3E-05	0	0,0055
870	0	0	0	0	0	0	0	0	0	0	0	0,0029	6E-05	0	0,0029
880	0	0	0	0	0	0	0	0	0	0	0	0	1E-04	0	1E-04
890	0	0	0	0	0	0	0	0	0	0	0	0	0,0001	0	0,0001
900	0	0	0	0	0	0	0	0	0	0	0	0	1E-04	0	1E-04
910	0	0	0	0	0	0	0	0	0	0	0	0	6E-05	0	6E-05
920	0	0	0	0	0	0	0	0	0	0	0	0	3E-05	0,0038	0,0038
930 940	0	0	0	0	0	0	0	0	0	0	0	0	0	0,007	0,007
940	0	0	0	0	0	0	0	0	0	0	0	0	0	0,0108	0,0108
960	0	0	0	0	0	0	0	0	0	0	0	0	0	0,007	0,007
970	0	0	0	0	0	0	0	0	0	0	0	0	0	0,0038	0,0038
980	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
990	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1010	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1020	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1040	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1050	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1060	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1070	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1080	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1090	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
															0,2098

	0	A	Daniel De D	0/	DIL OTD	Danasata	44 A OT	504 ANAL 50 DAG
nm	Somma	Area	Percentuale P	% parziale	Rif. STD	Rapporto	•	[M AM1.5G [W]
400 410	4,51E-05 0,000501	0,0027313	0,13019935				1,114 1,048	10,81 10,855
420	0,000501	0,0072668	0,34640194 0,5554376				1,123	9,985
430	0,000932	0,011632	0,69877634				0,874	11,115
440	0,001576	0,0322453	1,53709982				1,349	14,54
450	0,001334	0,0610754	2,91140004				1,559	15,44
460	0,00732	0,0867732	4,13638907				1,529	15,18
470	0,010035	0,0827639	3,94527076				1,507	15,625
480	0,006518	0,064178	3,05930117				1,618	16,2
490	0,006318	0,0652173	3,10884212	20,429118	18,40	1,11	1,622	15,835
500	0,006726	0,0610054	2,90806321		,	.,	1,545	15,465
510	0,005475	0,0489594	2,33384641				1,548	15,355
520	0,004316	0,0498685	2,37717943				1,523	15,335
530	0,005657	0,0526589	2,5101964				1,544	15,13
540	0,004875	0,0449566	2,14303508				1,482	15,105
550	0,004117	0,0373796	1,78184622				1,539	15,065
560	0,003359	0,0298026	1,42065736				1,474	14,775
570	0,002601	0,029575	1,4098098				1,481	14,915
580	0,003314	0,0366969	1,74930356				1,502	13,665
590	0,004026	0,0382344	1,82259605	20,456534	19,90	1,03	1,231	13,53
600	0,003621	0,033937	1,6177424				1,475	14,715
610	0,003166	0,0496587	2,36717847				1,468	14,705
620	0,006765	0,085157	4,05934923				1,473	14,325
630	0,010266	0,0826376	3,93925175				1,392	14,13
640	0,006262	0,0432444	2,06141775				1,434	13,965
650	0,002387	0,0230664	1,09955368				1,359	13,79
660	0,002226	0,0201507	0,96056426				1,399	14,09
670	0,001804	0,0154196	0,73503678				1,419	14,075
680	0,00128	0,010826	0,51606651				1,396	12,89
690	0,000885	0,0072634	0,34624025	17,702401	18,40	0,96	1,182	12,32
700	0,000567	0,0047154	0,22477834				1,282	12,995
710	0,000376	0,0084319	0,40193878				1,317	11,51
720	0,001311	0,0170569	0,81308625				0,985	10,565
730	0,002101	0,0258073	1,23020617				1,128	11,735
740	0,003061	0,0279626	1,33294981				1,219	12,265
750	0,002532	0,0246007	1,172689				1,234	7,5
760	0,002388	0,0306618	1,46161764				0,266	7,13
770	0,003744	0,0452861	2,15874079				1,16	11,615
780	0,005313	0,0451608	2,15276834				1,163	11,27
790	0,003719	0,0260294	1,24079527	12,18957	14,90	0,82	1,091	10,815
800	0,001487	0,0116753	0,55655003				1,072	10,635
810	0,000848	0,006619	0,31552179				1,055	9,58
820	0,000476	0,0199415	0,9505903				0,861	8,885
830	0,003513	0,0466732	2,22486255				0,916	9,655
840	0,005822	0,0718199	3,42357946				1,015	9,54
850	0,008542	0,0703934	3,35557965				0,893	9,405
860	0,005537	0,0423937	2,02086313				0,988	9,775
870	0,002942	0,0151865	0,72392427				0,967	9,53
880	9,51E-05	0,0011095	0,05288874				0,939	9,31
890	0,000127	0,0011095	0,05288874	13,677249	12,50	1,09	0,923	8,325
900		0,0007925	0,03777767				0,742	6,83
910	6,34E-05		0,92548742				0,624	6,84
920	0,00382	0,054271	2,58704357				0,744	5,88
930	0,007035	0,0892856	4,25615526				0,432	4,515
940	0,010823 0,007035	0,0892856	4,25615526 2,57948804				0,471	3,09
950	0,007035	0,0541125	0,90282081				0,147	2,835
960 970		0,0189394	0,90282081				0,42 0,634	5,27 6,19
980	0	0	0				0,634	6,68
990	0	0	0				0,604	7,335
1000	0	0	0				0,732	7,335
1010	0	0	0				0,735	7,27
1020	0	0	0				0,698	6,94
1020	0	0	0				0,69	6,805
1040	0	0	0				0,69	6,625
1050	0	0	0				0,654	6,445
1060	0	0	0				0,635	6,195
1070	0	0	0				0,604	6,005
1080	0	0	0				0,597	5,77
1090	0	0	0				0,557	5,21
1100	0	0	0	15,544928	15,90	0.98	0,485	0,21
	0,209802	2,0978	99,9997999		.0,00	Classe A:	75,278	744,785
	-,-30002	,	11,100.000			0,75 - 1,25	. 5,2.0	(avendo troncato fra 400 e 1100)
		·	1			.,,		(= =ao (10110a(0 110 T00 0 1100)

Irradianza Led ₩/m2/nm

Irradianza solare AM1.5

BIBLIOGRAFIA E SITOGRAFIA

- [1] P.Mazzoldi, M.Nigro, C.Voci "Elementi di fisica, onde", 2006
- [2] Enea. F.Bisegna, F.Gugliermetti, M.Barbalace, L.Monti "Stato dell'arte dei led", 2010
- [3] Photo emission tech inc., M.K.Chawla "Step by step guide to selecting the right solar simulator for your solar cell testing applications",2009
- [4] E.F.Shubert "Light emitting diode",2006
- [5] A.Ryer "The light measurement handbook", 1997
- [6] Gigahertz-Optik Tutorial "Measurement of light, measurement with light", 2009
- [7] L.Bellia "Corso di illuminotecnica, appunti delle lezioni",2008
- [8] A.Nicolini "Illuminotecnica",2011
- [9] F.Spertino "Conversione fotovoltaica dell'energia", 2009
- [10] www.cree.com
- [11] www.nichia.co.jp
- [12] www.ir-led.de
- [13] www.vishay.com
- [14] www.osa-opto.com
- [15] www.osram-os.com
- [16] www.gizmology.net
- [17] www.ecse.rpi.edu
- [18] www.eyesolarlux.com
- [19] www.newport.com
- [20] www.intl-lighttech.com
- [21] www.photoemission.com
- [22] www.luxemozione.com
- [23] www.sciencetech-inc.com
- [24] www.alpha1-eg.com
- [25] www.lot-oriel.com
- [26] www.passionescienza.it
- [27] www.labsphere.com
- [28] www.capirepannellifotovoltaici.blogspot.com
- [29] www.tech-led.com
- [30] www.it.rs-online.com
- [31] www.uk.farnell.com

- [32] www.ledsales.com.au
- [33] www.futurelightingsolutions.com
- [34] www.lrc.rpi.edu
- [35] ww.lubtech.it
- [36] www.mankun.en.alibaba.com
- [37] www.bergquistcompany.com
- [38] www.wikipedia.it

Ringrazio sentitamente il Prof. Grandi che con le sue disponibilità e cordialità mi ha aiutata e supportata e ha reso possibile la realizzazione di questa tesi e alla Dott.ssa Anastasiya che ha collaborato attivamente e senza la quale non ce l'avrei fatta!

Desidero ringraziare tutte le persone che con il loro sostegno mi sono state vicine in questa lunga carriera di studi, che hanno creduto in me forse anche quando non ci credevo io e mi hanno dato la forza di andare avanti.

Questa vittoria la voglio dedicare alla mia famiglia perché senza di loro non sarei mai arrivata a questo traguardo e non sarei diventata la persona che sono ora.

Voglio ringraziare Stefano per avermi sopportato in questo periodo di alti e bassi e per avermi sostenuta con il suo affetto.

Grazie anche alla famiglia che ho trovato qui lontano dalla mia e che tante volte mi ha fatto sentire lo stesso a casa.

Un grazie a tutti coloro che c'erano prima e ci sono ancora adesso a festeggiare questa vittoria che è mia, ma è anche un po' loro.

Grazie di cuore a tutti voi.

Laura