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“Obvious” is the most dangerous word in mathematics.





Introduction

Fourier series, the one-dimensional wave equation, and regular Sturm-Liouville prob-

lems have long been fundamental tools in mathematics and physics. Since their inception,

these concepts have been intertwined, with each providing insights and applications for

the others. This dissertation dwells on the intricate relationships between these three

areas, exploring their theoretical foundations and practical implications. By investigat-

ing generalized Fourier series, solving the wave equation and analyzing Sturm-Liouville

problems, we aim to contribute to a deeper understanding of their functioning.

First, let us linger on the historical context for a while. The concept of Fourier series

can be traced back to the ancient Greeks, who studied periodic phenomena like sound

waves. However, the systematic development of Fourier series theory began in the 18th

century.

The main figures that contributed to the development of this theory are Joseph

Fourier and Leonhard Euler. The first one was a French mathematician, who gave life to

the idea of representing periodic functions as infinite sums of sine and cosine functions

while investigating on heat conduction. The second one was a Swiss mathematician

who, among many accomplishments in various field of mathematics, pushed the growth

of the mathematical tools necessary for the understanding of Fourier theory, including

the concept of complex numbers. Sturm-Liouville problems obviously inherited their

name from Jacques C. F. Sturm and from Joseph Liouville, who developed the theory of

Sturm-Liouville problems in the 1830s and contributed to the study of their applications.

Jean-Baptiste d’Alembert was the one who derived the wave equation in the 18th century

while studying the vibrations of a string, while Pierre-Simon Laplace extended the wave

equation to three dimensions to describe the propagation of gravitational waves.

But enough about history. This dissertation aims to lay the groundwork for the

understanding of generalized Fourier series (chapter 2), then study how to actually build

them through the investigation of regular Sturm-Liouville problems (chapter 3) and

finally see them in action while solving the one-dimensional wave equation (chapter 4).

More specifically, in chapter 2 we will define what an inner product space is and
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ii INTRODUCTION

prove that L2 is one, and that it is a normed vector space too. After recalling the

definitions of orthogonality and orthonormality, we ask ourselves if it is possible to find

a set of orthonormal functions {ϕn}n∈N such that for any f ∈ L2 one can write it as

f =
∑

⟨f, ϕn⟩ϕn. In order to do that we define and study norm convergence in L2.

Finally, we end up proving that it is possible to find sets of functions as described a few

lines back. Those sets are said to be orthonormal bases and the series you can build with

them are the so-called (generalized) Fourier series.

In chapter 3 we are going to study how one can actually build orthonormal bases.

We will be able to do that thanks to the preliminary study of adjoint linear operators,

during which we are going to focus on the second-order differential operator L defined

as L(f) = rf ′′ + qf ′ + pf , and study the so-called Lagrange’s identity. The latter

will explicitly tell us the difference between formally and actually self-adjoint operators.

Afterwards, we define what regular Sturm-Liouville problems are and study two of the

most important theorems regarding them. The most important result (and fulcrum of

this whole thesis) is the fact that, by solving these kind of boundary value problems, one

can and will find enough functions to put together orthonormal bases. We actually build

the most important ones, too. Finally, with all these instruments at hand, we investigate

further the convergence properties of Fourier series with respect to the regularity of the

function they are supposed to be converging to, for it will be fundamental for the study

of the one-dimensional wave equation.

During chapter 4, we will first introduce linear partial differential operators and equa-

tions, and then take a look at what the superposition principle is and where its usefulness

lies. Afterwards, we will dwell on the derivation of the one-dimensional wave equation’s

model by making reasonable physical assumptions and mathematical deductions. After-

wards, once we have the differential equation at hand, we will try to solve it with the

technique of the separation of variables. By doing this, we will find exactly what we were

expecting, thanks to the knowledge we acquired about regular Sturm-Liouville problems.

Ultimately, we are going to study the global homogeneous Cauchy problem regarding the

one-dimensional wave equation, which will lead us to d’Alembert’s formula.
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Chapter 1

Notations

In this chapter we will clarify the notation used in order not to dive in it later. For

starters, the set of natural numbers N is considered by default without the zero element,

N∪{0} will be denoted as N0 and the set of integer numbers will be denoted Z, as usual.
R and C will be, respectively, the real and complex numbers sets, with Rn and Cn being

the correspondents n-dimensional vector spaces. The elements of these vector spaces are

essentially ordered n-tuples, and will be denoted as x = (x1, x2, ..., xn) for vectors both

in Rn and in Cn. In the application we are going to see, t will represent the time variable

and x the spatial variable.

Partial derivatives are denoted as following:

ux =
∂u

∂x
, uxx =

∂2u

∂x2
, uxy =

∂2u

∂x∂y
, etc.

A function f of one real variable is said to be in Ck(I), where I is an interval, if its

derivatives f ′, f ′′, ..., f (k) exist and are continuous on I. If a function f ∈ Ck(I) for all

k ∈ N then it is said that f ∈ C∞(I).

The following is the (classic) notation for intervals:

[a, b] = {x ∈ R : a ≤ x ≤ b} [a, b) = {x ∈ R : a ≤ x < b}

(a, b) = {x ∈ R : a < x < b} (a, b] = {x ∈ R : a < x ≤ b}.
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Chapter 2

Complete orthonormal systems and

Fourier series

In this chapter we will first give an introduction on inner product spaces and their

associated norm. Immediately afterwards, we are going to define the L2 function spaces

and its own inner product. Our main focus becomes finding, for L2 spaces, the equivalent

of an orthonormal basis in Ck. The main problem is that L2 is an infinite-dimensional

vector space, so we have to worry about convergence. With the completeness of L2 and

some theorems about orthonormal systems, we shall have our final answer, together with

the (generalized) Fourier series.

2.1 From Ck to L2

Definition 2.1. An inner product space (over C) is the pair (V, ⟨·, ·⟩), where V is a

vector space over C, while ⟨·, ·⟩ is a so-called inner product, which is a map

⟨·, ·⟩ : V × V → C

that, for all vectors a,b,c in V and for all scalars z, w in C, satisfies the followings:

1. Conjugate (or Hermitian) symmetry:

⟨a, b⟩ = ⟨b,a⟩. (2.1)

As a = a if and only if a is real, ⟨a,a⟩ is always a real number;

2. Linearity in the first argument:

⟨za+ wb, c⟩ = z⟨a, c⟩+ w⟨b, c⟩, (2.2)

3



4 2. Complete orthonormal systems and Fourier series

and this property, combined with conjugate symmetry, implies that the inner prod-

uct is conjugate linear (or antilinear) in the second argument, which means

that

⟨a, zb+ wc⟩ = z⟨a, b⟩+ w⟨a, c⟩; (2.3)

3. Positive-definiteness: if a ̸= 0 then

⟨a,a⟩ > 0.

Every inner product space has an associated norm defined by

∥a∥ = ⟨a, a⟩1/2. (2.4)

The standard inner product of two complex vectors a,b ∈ Ck is defined as

⟨a,b⟩ = a1b1 + a2b2 + ...+ akbk, (2.5)

hence the standard norm of a single complex vector is

∥a∥ = ⟨a, a⟩1/2 (2.6)

= (a1a1 + ...+ akak)
1/2 (2.7)

= (|a1|2 + ...+ |ak|2)1/2. (2.8)

Inspired by these definitions, we want to translate them into the language of function

spaces. To be able to do so, we have yet to define the function space in which we are

going to work. By using the Lebesgue integral and limiting ourselves to measurable

functions, which is a very weak regularity hypothesis, we allow ourselves to define

L2[a, b] =

{
f :

∫ b

a

|f(x)|2dx < +∞
}
,

the space of square-integrable functions. This is, first of all, an infinite-dimensional

vector space, and this fact alone will be the source of most of our problems. But let us

not hesitate further.

For starters, we can define its own inner product. To do that, as we said a few lines

back, we can let us be inspired by the definition of the standard inner product in Ck.

The key is to imagine that vectors of Ck are functions defined from the discrete domain

{1, ..., k} to Ck and that the vectors of L2[a, b] are their continuous version. The same

line of reasoning can be applied to discrete sums, of which the continuous version is the

integral. Therefore we define

⟨f, g⟩ =
∫ b

a

f(x)g(x)dx, and ∥f∥ =

(∫ b

a

|f(x)|2
)1/2

, (2.9)
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as our inner product and associated norm. This definition, although intuitive, has to be

checked, of course.

First, it is not obvious that the inner product of two functions f, g ∈ L2[a, b] is finite.

Remark 2.2. It is known that for any real numbers s and t

s2 + t2 − 2st = (s− t)2 ≥ 0 =⇒ st ≤ 1

2
(s2 + t2).

Therefore

|f(x)g(x)| ≤ 1

2
(|f(x)|2 + |g(x)|2),

and if f, g ∈ L2[a, b], the integral

⟨f, g⟩ =
∫ b

a

f(x)g(x)dx

is absolutely convergent. this means that the inner product is well-posed for all functions

f, g ∈ L2[a, b].

Second, there is a problem with the positive-definiteness of the inner product (hence

with its associated norm too), meaning that both fail to be true, if we consider a function

f ∈ L2[a, b] such that f(x) = 0 for almost every x ∈ [a, b]. However, this problem is

easily fixed: we can consider the equivalence relation

f ∼ g ⇐⇒ f(x) = g(x) for almost every x ∈ [a, b].

Conventionally, L2[a, b] /∼ is denoted L2[a, b].

Therefore (L2[a, b], ⟨·, ·⟩, ∥ · ∥) is a normed inner product space.

Definition 2.3. A set {fn}n∈N is said to be an orthogonal system (or set) when∫ b

a

fi(x)fj(x)dx = 0 for i ̸= j.

An orthonormal system (or set) is an orthogonal system of which the elements are

functions f with ∥f∥ = 1.

We are now able to utilize the Cauchy-Schwarz inequality, the triangle inequality and

the Pythagorean theorem, which explicitly work as follows:∣∣∣∣∫ b

a

f(x)g(x)dx

∣∣∣∣ ≤
√∫ b

a

|f(x)|2dx

√∫ b

a

|g(x)|2dx,√∫ b

a

|f(x) + g(x)|2dx ≤

√∫ b

a

|f(x)|2dx+

√∫ b

a

|g(x)|2dx,
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and ∫ b

a

∣∣∣∣∣
n∑

i=1

fi(x)

∣∣∣∣∣
2

dx =
n∑

i=1

∫ b

a

|fi(x)|2dx

when

∫ b

a

fi(x)fj(x)dx = 0 for i ̸= j.

Given the definitions of orthogonality and orthonormality, we want to know if there

is an infinite-dimensional analogue of the following theorem:

Theorem 2.4. Let {u1,u2, ...,uk} ⊂ V be an orthonormal set of vectors, with V a k-

dimensional vector space (and inner product space). Then, for any a ∈ V , the following

formula holds:

a = ⟨a,u1⟩u1 + ⟨a,u2⟩u2 + ...+ ⟨a,uk⟩uk.

Moreover,

∥a∥2 =
∣∣⟨a,u1⟩

∣∣2 + ∣∣⟨a,u2⟩
∣∣2 + ...+

∣∣⟨a,uk⟩
∣∣2.

That is, we aim to study if there is a way to write any function f ∈ L2[a, b] as∑
⟨f, ϕn⟩ϕn, where {ϕn}n∈N is an orthonormal set of functions. The main problem, as

anticipated earlier, is the dimension of L2[a, b] as a vector space, which is infinite. This

fact has two main implications:

1. we cannot tell if there are “enough” functions in {ϕn}n∈N by just counting the

linear independent ones, because there can be an infinite number;

2.
∑

⟨f, ϕn⟩ϕn is an infinite series, therefore we have to analyze its convergence.

2.2 Norm convergence and orthonormal bases

Let {fn}n∈N be a sequence of functions in L2[a, b]. We say that fn → f in norm if

∥fn − f∥ → 0, or more precisely,

fn −−−−→
n→+∞

f in norm ⇐⇒
∫ b

a

|fn(x)− f(x)|2dx −−−−→
n→+∞

0.

Definition 2.5. A sequence {an}n∈N of vectors is called a Cauchy sequence if ∥am −
an∥ → 0 as m,n → +∞. This means that the terms of the sequence get progressively

closer as one goes further out in the sequence. A normed vector space V is said to be

complete if every Cauchy sequence in V also has its limit in V .

It is only natural to ask ourselves if L2[a, b] is complete. The answer is “yes”, as we

are about to witness with the next theorem.
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Theorem 2.6. The followings stand:

1. L2[a, b] is complete with respect to the convergence in norm;

2. ∀f ∈ L2[a, b] there exists a sequence of continuous functions {fn}n∈N such that

fn → f in norm; moreover, the functions fn can be taken to be restrictions to the

interval [a, b] of (b-a)-periodic functions in C∞(R).

Now onto the main question: under what circumstances do infinite series converge?

To answer this question we must first prove a lemma:

Lemma 2.7. For any a and b in V , where V is an inner product space,

∥a+ b∥2 = ∥a∥2 + 2ℜ⟨a, b⟩+ ∥b∥2,

where ℜ is the function that associates to any complex number its real part.

Proof.

∥a+ b∥2 = ⟨a+ b, a+ b⟩

= ⟨a, a⟩+ ⟨a,b⟩+ ⟨b, a⟩+ ⟨b,b⟩

= ⟨a, a⟩+ ⟨a,b⟩+ ⟨a,b⟩+ ⟨b,b⟩

= ∥a∥2 + 2ℜ⟨a,b⟩+ ∥b∥2

Theorem 2.8 (Bessel’s Inequality). Let f ∈ L2[a, b] and let {ϕn}n∈N ⊂ L2[a, b] be an

orthonormal set, then
+∞∑
n=1

∣∣⟨f, ϕn⟩
∣∣2 ≤ ∥f∥2

Proof. First we notice that

〈
f, ⟨f, ϕn⟩ϕn

〉
= ⟨f, ϕn⟩⟨f, ϕn⟩ =

∣∣⟨f, ϕn⟩
∣∣2,

and thanks to the Pythagorean theorem we know that∥∥∥∥∥
N∑

n=1

⟨f, ϕn⟩ϕn

∥∥∥∥∥
2

=
N∑

n=1

∣∣⟨f, ϕn⟩
∣∣2.
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Hence, for any N ∈ N, by lemma 2.7,

0 ≤

∥∥∥∥∥f −
N∑

n=1

⟨f, ϕn⟩ϕn

∥∥∥∥∥
2

= ∥f∥2 − 2ℜ

〈
f,

N∑
n=1

⟨f, ϕn⟩ϕn

〉
+

∥∥∥∥∥
N∑

n=1

⟨f, ϕn⟩ϕn

∥∥∥∥∥
2

= ∥f∥2 − 2
N∑

n=1

∣∣⟨f, ϕn⟩
∣∣2 + N∑

n=1

∣∣⟨f, ϕn⟩
∣∣2

= ∥f∥2 −
N∑

n=1

∣∣⟨f, ϕn⟩
∣∣2,

and by letting N → +∞ we prove the statement.

This theorem tells us, that whenever f ∈ L2[a, b], the series
∑

|⟨f, ϕn⟩|2, of the

coefficients of
∑

⟨f, ϕn⟩ϕn, converges.

Now our main concern is to find out if, given any f ∈ L2[a, b] and an orthonormal

set {ϕn}n∈N ⊂ L2[a, b], we are allowed to say that

f =
+∞∑
n=1

⟨f, ϕn⟩ϕn. (2.10)

But before that, we have got to check that the right-hand side of the equation (2.10)

does make sense. Hence we state and prove the following:

Lemma 2.9. Let f ∈ L2[a, b] and let {ϕn}n∈N ⊂ L2[a, b] be an orthonormal set. Then

the series
∑

⟨f, ϕn⟩ϕn converges in norm and∥∥∥∥∥
+∞∑
n=1

⟨f, ϕn⟩ϕn

∥∥∥∥∥ ≤ ∥f∥

Proof. Thanks to Bessel’s inequality we know that
∑∣∣⟨f, ϕn⟩

∣∣2 converges, so, by the

Pythagorean theorem, ∥∥∥∥∥
m∑
i=n

⟨f, ϕi⟩ϕi

∥∥∥∥∥
2

=
m∑
i=n

∣∣⟨f, ϕi⟩
∣∣2 −−−−−→

m,n→+∞
0.

Hence
∑

⟨f, ϕn⟩ϕn is Cauchy and thus convergent, thanks to the completeness of L2[a, b].

Through another use of the Pythagorean theorem and Bessel’s inequality, we prove the
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statement, because ∥∥∥∥∥
+∞∑
n=1

⟨f, ϕn⟩ϕn

∥∥∥∥∥
2

= lim
N→+∞

∥∥∥∥∥
N∑

n=1

⟨f, ϕn⟩ϕn

∥∥∥∥∥
2

= lim
N→+∞

N∑
n=1

∣∣⟨f, ϕn⟩
∣∣2

=
+∞∑
n=1

∣∣⟨f, ϕn⟩
∣∣2 ≤ ∥f∥2

The holding of (2.10) for all functions f ∈ L2[a, b] implies a couple of facts:

1. if ⟨f, ϕn⟩ = 0 ∀n ∈ N then f = 0; one can read into this that the set {ϕn}n∈N has

to be “complete” in some way, that there have to be “enough” orthonormal vectors

belonging to this collection;

2. if the Pythagorean theorem extends to infinite sums, then the Bessel’s inequality

becomes an equality.

Bearing these thoughts in mind, we enunciate the following:

Theorem 2.10. Let {ϕn}n∈N ⊂ L2[a, b] be an orthonormal set. The followings are

equivalent:

1. if ⟨f, ϕn⟩ = 0 ∀n ∈ N then f = 0;

2. ∀f ∈ L2[a, b] we have that the series
∑

⟨f, ϕn⟩ϕn converges to f in norm;

3. ∀f ∈ L2[a, b] we have Parseval’s equation:

∥f∥2 =
+∞∑
n=1

∣∣⟨f, ϕn⟩
∣∣2

Proof. (1)⇒(2): thanks to lemma 2.9, we know that f ∈ L2[a, b] implies that
∑

⟨f, ϕn⟩ϕn

converges. We must show that it conveges to f . Let g = f −
∑

⟨f, ϕn⟩ϕn, then for all

m ∈ N,

⟨g, ϕm⟩ = ⟨f, ϕm⟩ −
+∞∑
n=1

⟨f, ϕn⟩⟨ϕn, ϕm⟩ = ⟨f, ϕm⟩ − ⟨f, ϕm⟩ = 0.

Therefore if (1) holds, g = 0.

(2)⇒(3): if f =
∑

⟨f, ϕn⟩ϕn, then because of the Pythagorean theorem,

∥f∥2 = lim
N→+∞

∥∥∥∥∥
N∑

n=1

⟨f, ϕn⟩ϕn

∥∥∥∥∥
2

= lim
N→+∞

N∑
n=1

∣∣⟨f, ϕn⟩
∣∣2 = +∞∑

n=1

∣∣⟨f, ϕn⟩
∣∣2.
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(3)⇒(1): if (3) holds and ⟨f, ϕn⟩ = 0 for all n ∈ N, then ∥f∥ = 0, which means that

f = 0.

Definition 2.11. If an orthonormal set {ϕn}n∈N ⊂ L2[a, b] satisfies any of the properties

(and therefore all of them) enumerated in theorem (2.10), then it is called a complete

orthonormal set or an orthonormal basis. Moreover, the coefficients ⟨f, ϕn⟩ are

said to be the (generalized) Fourier coefficients of the series
∑

⟨f, ϕn⟩ϕn, which is,

not very surprisingly, said to be the (generalized) Fourier series.

The only difference between orthogonal and orthonormal sets is that one has unit

vectors as elements, while the other does not. Hence sometimes it is more manageable to

require a set of vectors {ψn}n∈N to be orthogonal, instead of orthonormal. Afterwards,

one can obtain an orthonormal set by taking each vector that belongs to the orthogonal

one and normalizing it.

In conclusion, all we need to do now, is to actually find explicit orthogonal bases,

which we will do in the next chapter, through the definition and resolution of regular

Sturm-Liouville problems.



Chapter 3

Regular Sturm-Liouville problems

In this chapter we will investigate the properties of a large class of boundary value

problems on an interval [a, b], whose peculiarity is the fact that their solutions form

orthogonal bases for L2[a, b]. In order to do this, we will study the meaning of adjoint

operators and some of their properties. We are aiming for an equivalent of the spectral

theorem for linear differential operators working on the space L2[a, b]. Once we find it,

we will be able to build the most important orthonormal bases with it too. Finally, we

study “how well” can these Fourier series converge, relatively to the regularity of the

functions they are supposed to be converging to.

3.1 Adjoint operators and the Lagrange’s identity

Definition 3.1. Let S : DS → L2[a, b] and T : DT → L2[a, b] be linear operators, where

both DS and DT are subspaces of L2[a, b]. We say that S and T are adjoint to each

other if, for all f ∈ DS and g ∈ DT we have

⟨S(f), g⟩ = ⟨f, T (g)⟩.

We also say that S is self-adjoint if, for all f, g ∈ DS,

⟨S(f), g⟩ = ⟨f, S(g)⟩.

We shall now consider a linear differential operator L such that

L(f) = rf ′′ + qf ′ + pf,

where r, p, q ∈ C2[a, b] and r(x) ̸= 0 for all x ∈ [a, b] (which means that either r > 0 or

r < 0 on [a, b]). For the sake of our goal we do not have to linger on the domain’s choice

of the operators we are going to use, so from now on we will just take C2[a, b].

11



12 3. Regular Sturm-Liouville problems

Now let us investigate the identity of the adjoint of this operator L. It is only natural

to start from the definition and then take it from there. It is easy to notice, that the

product ⟨L(f), g⟩ can be studied term by term, thanks to the linearity of both the inner

product (with respect to the first variable) and the operator L, so we will do just that.

We want to move the derivatives from f to g, so the key now is the integration by parts.

Therefore, regarding the second order term, we obtain∫ b

a

(rf ′′)gdx = −
∫ b

a

f ′(rg)′dx+ rf ′g
∣∣∣b
a
=

∫ b

a

f(rg)′′dx+
[
rf ′g − f(rg)′

]b
a
,

while for the first order term we get∫ b

a

(qf ′)gdx = −
∫ b

a

f(qg)′dx+ qfg
∣∣∣b
a
.

Hence

⟨L(f), g⟩ =
∫ b

a

(rf ′′ + qf ′ + pf)gdx

=

∫ b

a

f
(
(rg)′′ − (qg)′ + pg

)
dx+

[
rf ′g − f(rg)′ + qfg

]b
a

= ⟨f, L⋆(g)⟩+
[
r(f ′g − fg′) + (q − r′)fg

]
,

where L⋆ is called the formal adjoint of L and is defined by

L⋆(g) = (rg)′′ − (qg)′ + pg = rg′′ + (2r′ − q)g′ + (r′′ − q′ + p)g.

L is said to be formally self-adjoint when L = L⋆, which in this case, one can see it

by comparing the coefficients of L and L⋆, translates to 2r′ − q = q and r′′ − q = 0, thus

providing the condition q = r′; so L assumes the following shape

L(f) = rf ′′ + r′f ′ + pf = (rf ′)′ + pf.

We can notice that when q = r′, the second boundary term vanishes. With that, we

proved the following theorem.

Theorem 3.2 (Lagrange’s Identity). If L is formally self-adjoint, then the following

holds:

⟨L(f), g⟩ = ⟨f, L(g)⟩+
[
r(f ′g − fg′)

]b
a
.

This identity tells us exactly where to look at for our next step. The difference

between the formal self-adjoint and the “actual” self-adjoint is
[
r(f ′g − fg′)

]b
a
, which

can be eliminated by imposing suitable boundary conditions. Usually, for a second-order
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differential operator, it is befitting to have two independent boundary conditions, which

in this case take the form

B1(f) = α1f1(a) + α′
1f

′
1(a) + β1f1(b) + β′

1f
′
1(b) = 0

B2(f) = α2f2(a) + α′
2f

′
2(a) + β2f2(b) + β′

2f
′
2(b) = 0

(3.1)

These two boundary conditions are said to be self-adjoint (with respect to the operator

L) if, for all f, g ∈ C2[a, b] that satisfy (3.1),[
r(f ′g − fg′)

]b
a
= 0.

Example 3.3. Here are two important examples of self-adjoint boundary conditions (with

respect to L):

1. let f and g be two functions that fit some separated boundary conditions. Then,

for example at a (it is analogous at b) we have

αf(a) + α′f ′(a) = 0 and αg(a) + α′g′(a) = 0, (3.2)

then r(f ′g−fg′) = 0 at x = a. As a matter of fact, when α′ = 0 the case is trivial,

since it means that f(a) = g(a) = 0, whereas if α ̸= 0 we are able to rewrite (3.2)

as

f ′(a) =
α

α′f(a), g′(a) =
α

α′ g(a),

so that

r(a)
(
f ′(a)g(a)− f(a)g′(a)

)
=
α

α′ r(a)
(
f(a)g(a)− f(a)g(a)

)
= 0.

2. let f and g be two functions that fit some periodic boundary conditions (f(a) =

f(b), f ′(a) = f ′(b), likewise for g). Then,[
r(f ′g − fg′)

]b
a
= r(b)

(
f ′(b)g(b)− f(b)g′(b)

)
− r(a)

(
f ′(a)g(a)− f(a)g′(a)

)
=
(
r(b)− r(a)

)(
f ′(a)g(a)− f(a)g′(a)

)
which means that there is the need of the supplementary condition r(a) = r(b) in

order for the periodic boundary conditions to be actually self-adjoint.
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3.2 Regular Sturm-Liouville problems

Definition 3.4. A regular Sturm-Liouville problem on the interval [a, b] is defined

by the following information:

1. L such that L(f) = (rf ′)′ + pf , a linear differential formally self-adjoint operator,

where r, r′, p ∈ C
(
[a, b],R

)
and r > 0 on [a, b];

2. B1(f) = 0 and B2(f) = 0 a set of homogeneous boundary conditions that are

self-adjoint with respect to the operator L;

3. w ∈ C
(
[a, b], (0,+∞)

)
.

The object himself is the boundary value problemL(f) + λwf = 0 ⇐⇒
(
r(x)f ′(x)

)′
+ p(x)f(x) + λw(x)f(x) = 0

B1(f) = B2(f) = 0,

with λ an arbitrary constant.

Remark 3.5. Since earlier we assumed r to be non-vanishing on [a, b], it has to be either

r > 0 or r < 0. If it is the latter, then we replace r, p and λ with −r,−p and −λ, so the

problem remains unchanged.

Remark 3.6. The function w ∈ C
(
[a, b], (0,+∞)

)
is called weight function, and it is

associated to

L2
w[a, b] =

{
f :

∫ b

a

|f(x)|2w(x)dx < +∞
}
,

which is the so-called weighted L2 space, a generalization of L2 spaces. It is a normed

inner product space too, thanks to the definitions

⟨f, g⟩w =

∫ b

a

f(x)g(x)w(x)dx = ⟨wf, g⟩ = ⟨f, wg⟩

and

∥f∥w =

(∫ b

a

|f(x)|2w(x)dx
)1/2

.

For most values of λ, the only solution of a given regular Sturm-Liouville problem

is f(x) ≡ 0. Eventually, there are non-trivial solutions: in that case λ is called eigen-

value and its corresponding solution is called eigenfunction of the given regular Sturm-

Liouville problem. However they are not relative to the operator L, but instead to the

operator M(f) = 1
w
L(f). Of course if f and g satisfy the given regular Sturm-Liouville

problem, then so does any of their linear combination, giving sense to the notion of
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eigenspace (relative to the given λ of course). The next theorem will sum up the main

properties of eigenvalues and eigenfunctions relative to a given regular Sturm-Liouville

problem:

Theorem 3.7. Let a regular Sturm-Liouville problem be given. Then:

1. all eigenvalues are real;

2. if f and g are eigenfunctions with eigenvalues λ and µ respectively, with λ ̸= µ,

then they are orthogonal in L2
w[a, b], i.e.

⟨f, g⟩w =

∫ b

a

f(x)g(x)w(x)dx = 0;

3. the eigenspace relative to any eigenvalue λ is at most 2-dimensional. If the bound-

ary conditions are separated, the eigenspace is always 1-dimensional.

Proof. (1): given λ an eigenvalue and f an eigenfunction with eigenvalue λ, we know

that

λ∥f∥2w = ⟨λwf, f⟩ = −⟨L(f), f⟩ = −⟨f, L(f)⟩ = ⟨f, λwf⟩ = λ⟨f, wf⟩ = λ∥f∥2w,

and since ∥f∥2w > 0, we obtain λ = λ, which means that λ is real.

(2): assuming that L(f)+λwf = 0 and that L(g)+µwg = 0, with f and g non-zero

and λ, µ ∈ R (thanks to the previous point), we can see that

λ⟨f, g⟩w = ⟨λwf, g⟩ = −⟨L(f), g⟩ = −⟨f, L(g)⟩ = ⟨f, µwg⟩ = µ⟨f, g⟩w.

Hence if λ ̸= µ then it must be that ⟨f, g⟩w = 0.

(3): the idea is that for any constants c1, c2 there exists a unique solution of L(f) +

λwf = 0 satisfying the initial conditions f(a) = c1 and f ′(a) = c2. That is, a solution is

determined by two constants, ergo the space of all solutions is 2-dimensional. Hence the

space of the solutions that fit the given boundary conditions is at most 2-dimensional. If

the given boundary conditions are separated, one of them will be like αf(a)+α′f ′(a) = 0,

which imposes the relation αc1 + α′c2 = 0 between c1 and c2, reducing the dimension of

the solution space to one. For most of the eigenvalues λ, the other boundary condition

will make the dimension drop to zero.

The next theorem guarantees instead, that eigenfunctions of regular Sturm-Liouville

problems do exist, and that there are enough of them to form orthonormal bases.
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Theorem 3.8. Let a regular Sturm-Liouville problem on [a, b] be given. Then there is

an orthonormal basis {ϕn}n∈N of eigenfunctions of L2
w[a, b]. If λn is the eigenvalue with

respect to ϕn, then λn −−−−→
n→+∞

+∞. Furthermore, if f ∈ C2[a, b] and fits the boundary

conditions, then
∑

⟨f, ϕn⟩ϕn converges uniformly to f .

With these tools at hand we can finally prove the following:

Theorem 3.9. The sets{
ei

nπx
L

}
n∈Z

and
{
cos
(nπx
L

)}
n∈N0

∪
{
sin
(nπx
L

)}
n∈N

are orthogonal bases for L2[−L,L], while{
cos
(nπx
L

)}
n∈N0

and
{
sin
(nπx
L

)}
n∈N

are orthogonal bases for L2[0, L].

Proof. To prove that those sets are actual orthogonal bases we just have to show the

regular Sturm-Liouville problem they come from, meaning:

1. by solving the problem u′′(x) = λu(x)

u(0) = u(L) = 0
(3.3)

we obtain {
sin
(nπx
L

)}
n∈N

,

an orthogonal basis of L2[0, L];

2. by solving the problem u′′(x) = λu(x)

u′(0) = u′(L) = 0

we obtain {
cos
(nπx
L

)}
n∈N0

,

an orthogonal basis of L2[0, L];

3. by solving the problem 
u′′(x) = λu(x)

u(−L) = u(L) = 0

u′(−L) = u′(L) = 0

we obtain {
ei

nπx
L

}
n∈Z

,

an orthogonal basis of L2[−L,L].
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Let us consider the first case. One can easily write the general integral of the equation

u′′(x) = λu(x) for any λ, however one will end up with null integration constants, most

of the time, in the attempt of satisfying the boundary conditions. More practically:

1. if λ = 0, then u(x) = c1x + c2, which satisfies the boundary conditions u(0) =

u(L) = 0 only if c1 = c2 = 0;

2. if λ > 0, then u(x) = c1e
λx + c2e

−λx, which satisfies the boundary conditions

u(0) = u(L) = 0 only if c1 = c2 = 0;

3. if λ < 0, then u(x) = c1cos(
√
−λx) + c2sin(

√
−λx), which satisfies the boundary

conditions u(0) = u(L) = 0 when c1 = 0 and for all c2, provided that sin(
√
−λL) =

0, that is

√
−λL = nπ for n ∈ N

λ = −n
2π2

L2
for n ∈ N.

Hence the eigenvalues and eigenfunctions of problem (3.3) are, respectively,

λn = −n
2π2

L2
and un(x) = cnsin

(nπx
L

)
for n ∈ N.

The other cases are similar.

In order to obtain orthonormal bases for L2[−L,L] and L2[0, L] we need the following

normalizing constants:

1.
√

1
2L

for
{
ei

nπx
L

}
n∈Z

on [−L,L];

2.
√

1
L
for
{
cos
(
nπx
L

)}
n∈N0

∪
{
sin
(
nπx
L

)}
n∈N on [−L,L] (for n = 0 we need

√
1
2L
);

3.
√

2
L
for
{
cos
(
nπx
L

)}
n∈N0

and
{
sin
(
nπx
L

)}
n∈N on [0, L] (for n = 0 we need

√
1
L
).

Now that we have orthonormal bases for L2[−L,L] and L2[0, L], we can use the follow-

ing proposition, which we shall state without proof, to transform them into orthonormal

bases for every other L2[·, ·] spaces. More precisely:

Proposition 3.10. Let {ϕn}n∈N be an orthonormal basis for L2[a, b], let c > 0 and let

d ∈ R. Then if we define ψn(x) = c1/2ϕn(cx + d), the set {ψn}n∈N is an orthonormal

basis for L2[a−d
c
, b−d

c
].
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3.3 Convergence and derivation of Fourier series

Using the bases that we have just extrapolated from regular Sturm-Liouville problems

we are going to find the classic Fourier coefficients. Afterwards, with those formulae at

our disposition, we can go further in the study of convergence of Fourier series.

More precisely, by using the orthonormal base of L2[−L,L]{√
1

L
cos
(nπx
L

)}
n∈N0

∪

{√
1

L
sin
(nπx
L

)}
n∈N

,

we obtain, for every n ∈ N,

⟨f,
√

1

L
cos
(nπx
L

)
⟩
√

1

L
cos
(nπx
L

)
=

1

L
⟨f, cos

(nπx
L

)
⟩cos

(nπx
L

)
=

1

L

∫ L

−L

f(x)cos
(nπx
L

)
dx cos

(nπx
L

)
,

and

⟨f,
√

1

L
sin
(nπx
L

)
⟩
√

1

L
sin
(nπx
L

)
=

1

L
⟨f, sin

(nπx
L

)
⟩sin

(nπx
L

)
=

1

L

∫ L

−L

f(x)sin
(nπx
L

)
dx sin

(nπx
L

)
,

therefore

an =
1

L

∫ L

−L

f(x)cos
(nπx
L

)
dx

bn =
1

L

∫ L

−L

f(x)sin
(nπx
L

)
dx,

(3.4)

although for n = 0 the coefficient relative to the sine function vanishes, while the coeffi-

cient relative to the cosine becomes

1

2L

∫ L

−L

f(x)cos
(nπx
L

)
dx =

1

2
a0.

In the same way, by using the orthonormal base of L2[−L,L]{√
1

2L
ei

nπx
L

}
n∈Z

we obtain, for every n ∈ N,

⟨f,
√

1

2L
ei

nπx
L ⟩
√

1

2L
ei

nπx
L =

1

2L
⟨f, ei

nπx
L ⟩ei

nπx
L

=
1

2L

∫ L

−L

f(x)ei
nπx
L dx ei

nπx
L ,
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therefore

cn =
1

2L

∫ L

−L

f(x)ei
nπx
L dx.

Both the definition and the lemma we are about to state will be of good use to us in

the next chapter.

Definition 3.11. Let f be defined on [0, L]. Then:

1. the extension of f on the interval [−L,L] defined by

feven(−x) = f(x)

for x ∈ [0, L] will be called even extension;

2. the extension of f on the interval [−L,L] defined by

feven(−x) = −f(x)

for x ∈ [0, L] will be called odd extension.

Lemma 3.12. If we consider Fourier coefficients of the sine and cosine series as in 3.4,

then:

1. if f is even,

an =
2

L

∫ L

0

f(x)cos
(nπx
L

)
dx and bn = 0;

2. if f is odd,

an = 0 and bn =
2

L

∫ L

0

f(x)sin
(nπx
L

)
dx.

Proof. We need to observe that

∫ L

−L

F (x)dx =


2
∫ L

0
F (x)dx if F is even

0 if F is odd∫ L

−L
F (x)dx otherwise.

Therefore if f is even, then f(x)cos(x) is even while f(x)sin(x) is odd; but if f is odd,

then f(x)cos(x) is odd while f(x)sin(x) is even. Hence, the statement holds.

Definition 3.13. PC[a, b] is the space of piecewise continuous functions on [a, b]:

f belongs in this set if it is continuous on [a, b] except maybe at finitely many points

x1, x2, ..., xk, and if, at each of these points, both the left-hand and the right-hand limits

exist and are finite, which means that, for 1 ≤ j ≤ k,

∃f(xj−) = lim
h→0+

f(xj − h) and ∃f(xj+) = lim
h→0+

f(xj + h).
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Definition 3.14. PS[a, b] is the space of piecewise smooth functions on [a, b]: f

belongs in this set if f ∈ PC[a, b], if f ′ exists and is continuous on (a, b) except maybe at

finitely many points x1, x2, ..., xK (which of course include all discontinuities of f), and

if f ′(a+), f ′(b−), f ′(xj−), f ′(xj+) exist for all 1 ≤ j ≤ K.

Definition 3.15. A function f is said to be in PC(R) (or PS(R)) if f ∈ PC[a, b] (or
f ∈ PS[a, b]) for any bounded interval [a, b].

Remark 3.16. Thanks to Weierstrass theorem, it is obvious that

PS[a, b] ⊂ PC[a, b] ⊂ L2[a, b],

hence everything we have proven until now in L2[a, b] will hold in PC[a, b] and in PS[a, b]
too.

Let us now define the partial sums of the Fourier series of f :

Sf
N(x) =

1

2
a0 +

N∑
n=1

(
ancos

(nπx
L

)
+ bnsin

(nπx
L

))
=

N∑
n=−N

cne
inπx

L . (3.5)

By this definition, it is possible to prove the following:

Theorem 3.17. If f ∈ PS(R) is 2L-periodic and Sf
N is defined as in (3.5), then

lim
N→+∞

Sf
N(x) =

1

2

(
f(x−) + f(x+)

)
for every x ∈ R. In particular,

lim
N→+∞

Sf
N(x) = f(x)

for every x at which f is continuous. In other words, if f ∈ PS(R) then its Fourier

series pointwise converges to it almost everywhere.

This actually tells us that if we take any f, g ∈ PS(R), redefine them as 1
2

(
f(x−) +

f(x+)
)
and 1

2

(
g(x−) + g(x+)

)
at their discontinuities, and observe that they have the

same Fourier series, then they are the same function. More precisely, this theorem implies

that, given the right circumstances, Fourier series are unique.

Having said when Fourier series converge pointwise to their respective functions, there

is one more important result left, which is the following:

Theorem 3.18. Let f ∈ C(R)∩PS(R)) be 2L-periodic. Then its Fourier series converges

to it uniformly and absolutely on R.
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To sum up all convergence results about Fourier series (associated, of course, to a

2L-periodic function f), we have:

1. norm convergence when f ∈ L2;

2. pointwise convergence when f ∈ PS;

3. uniform and absolute convergence when f ∈ C ∩ PS.

In the next chapter, we will need to know under what conditions we are able to derivate

Fourier series term by term, and that’s what the next theorems are about.

Theorem 3.19. Let f ∈ C[−L,L] ∩ PS[−L,L] be 2L-periodic. If an, bn, cn are the

Fourier coefficients of f and a′n, b
′
n, c

′
n are the Fourier coefficients of f ′, then

a′n =
nπ

L
bn, b′n = −nπ

L
an, c′n = i

nπ

L
cn.

Proof. To prove this, we merely need to integrate by parts; that is, taking c′n as an

example

c′n =
1

2L

∫ L

−L

f ′(x)e−inπx
L dx

=
1

2L
f(x)e−inπx

L

∣∣∣L
−L

− 1

2L

∫ L

−L

f(x)
(
−inπ

L
e−inπx

L

)
dx,

where
1

2L
f(x)e−inπx

L

∣∣∣L
−L

= 0

because f(L) = f(−L) and e−inπ = (−1)n = einπ. Since the procedure for a′n and b′n is

completely analogous, the statement holds.

The theorems 3.17 and 3.19 lead us directly to the next one:

Theorem 3.20. Let f ∈ C[−L,L] ∩ PS[−L,L] be 2L-periodic and let f ′ ∈ PS[−L,L].
If

1

2
a0 +

∑
n∈N

(
ancos

(nπx
L

)
+ bnsin

(nπx
L

))
=
∑
n∈Z

cne
inπx

L

is the Fourier series of f , then the Fourier series of f ′ is∑
n∈N

(
nπ

L
bncos

(nπx
L

)
− nπ

L
ansin

(nπx
L

))
=
∑
n∈Z

i
nπ

L
cne

inπx
L

for all x where f ′ exists. In the points x where f ′ does not exist (left-hand limit different

from right-hand limit), the series converges to 1
2

(
f(x−) + f(x+)

)
.
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Proof. Since f ′ ∈ PS[−L,L], for theorem 3.17 we have that

lim
N→+∞

Sf ′

N (x) =
1

2

(
f ′(x−) + f ′(x+)

)
,

and since f ∈ C[−L,L] ∩ PS[−L,L] is 2L-periodic we can apply theorem 3.19 and

substitute the coefficients, hence the statement holds.

There is just one item left on the list of all ingredients we shall need for later, which

is the following.

Theorem 3.21. Let f be 2L-periodic. If f ∈ Ck−1[−L,L] and f (k−1) ∈ PS[−L,L], then
the Fourier coefficients are such that∑

n∈N

|nkan|2 < +∞,
∑
n∈N

|nkbn|2 < +∞,
∑
n∈Z

|nkcn|2 < +∞.

Conversely, if there exist M > 0 and α > 1 such that the Fourier coefficients of f satisfy

either

|an| ≤
M

nk+α
and |bn| ≤

M

nk+α

or

|cn| ≤
M

|n|k+α
,

then f ∈ Ck.



Chapter 4

The 1-dimensional wave equation

In this chapter we will first give an introduction on linear partial differential operators,

which will be a fundamental ingredient for the contents of the current chapter. Then we

are going to derive the model that approximates the waving of a string, which is fixed

ad both ends, by making “reasonable” physical assumptions and translating them into

mathematical language. Later, we will solve the partial differential equation through the

method of the separation of variables, while paying particular attention to the operators

we are using. Finally, we shall consider the global version of the one-dimensional wave

equation problem, which shall allow us to derive d’Alembert’s formula and investigate

its properties.

4.1 Linear partial differential operators

Definition 4.1. A linear partial differential operator is an operation that trans-

forms a function u of x = (x1, x2, ..., xn) into another function L(u), and its general form

is the following:

L(u) = a(x)u+
n∑

i=1

bi(x)
∂u

∂xi
+

n∑
i,j=1

cij(x)
∂2u

∂xi∂xj
+ ...

There can be higher-order terms, but the sum conventionally contains finitely many

terms. The operator by itself may be written as

L = a(x) +
n∑

i=1

bi(x)
∂

∂xi
+

n∑
i,j=1

cij(x)
∂2

∂xi∂xj
+ ...

The word “linear” in the definitions refers to the fact that, given u1, u2, ..., uk any ade-

quately regular functions and given c1, c2, ..., ck any constants, then

L(c1u1 + c2u2 + ...+ ckuk) = c1L(u1) + c2L(u2) + ...+ ckL(uk).

23
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Definition 4.2. A linear partial differential equation is an equation of the form

L(u) = F,

where L is any linear partial differential operator, and F is a function of x. If F ≡ 0

then the equation is called homogeneous, otherwise it is called inhomogeneous.

Partial differential equations, such as the one-dimensional wave equation, usually

have too many solutions to be able to describe them all explicitly in a reasonable way.

Therefore boundary conditions come into play: with these one can drastically improve

the accuracy of the research of a particular solution. These too present themselves with

the form

B(u) = f,

with B being a linear differential operator and f a function defined on the boundary of

the domain of the equation at hand.

Example 4.3. Let us consider the spatial setting in which we will find ourselves, that is

the interval [0, L]. In the previous chapter, while studying the Lagrange’s identity, and

again in this chapter, during both the derivation of the model and the solution of the

one-dimensional wave equation, we will find some of the most common yet important

kind of boundary conditions: the separated ones, which are called like that because

they concern one endpoint at a time, namely

αf(a) + α′f ′(a) = 0 and βf(b) + β′f ′(b) = 0,

with α, α′, β, β′ ∈ R, (α, α′) ̸= (0, 0) and (β, β′) ̸= (0, 0).

Another set of commonly used non-separated boundary conditions consists of the

periodic ones, namely

f(a) = f(b), f ′(a) = f ′(b).

Boundary conditions can be homogeneous (f ≡ 0) or inhomogeneous too.

The linearity of L and B can be restated in the following way:

Theorem 4.4 (The Superposition Principle). If u1, u2, ..., uk satisfy the linear partial

differential equation L(uj) = Fj and the boundary conditions B(uj) = fj for 1 ≤ j ≤ k

and c1, c2, ..., ck are any given constants, then u = c1u1 + c2u2 + ...+ ckuk satisfiesL(u) = c1F1 + c2F2 + ...+ ckFk

B(u) = c1f1 + c2f2 + ...+ ckfk

This principle is of great importance, and we will use it in many different situations.

Let us see a couple of examples of what it allows us to do:
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Example 4.5. 1. Given a boundary problem likeL(u) = F

B(u) = f,

then the superposition principle allows us to study the solutions of the homogeneous

boundary problem L(u) = 0

B(u) = 0,

which is usually easier to handle. This works because if we have just one solution

v of the inhomogeneous problem and we want to find another solution u, then

w = u− v solves the homogeneous boundary problem, sinceL(w) = L(u− v) = L(u)− L(v) = F − F = 0

B(w) = B(u− v) = B(u)−B(v) = f − f = 0.

That means that in order to describe any solution of the inhomogeneous boundary

problem, it is enough for one to study the solutions of the homogeneous boundary

problem, and then just find one solution of the inhomogeneous boundary problem.

2. Considering the same boundary problem as the one from the previous example, we

separately study the problems L(u) = F

B(u) = 0,

and L(u) = 0

B(u) = f.

If we name u1 a solution of the first problem and u2 a solution of the second

problem, then v = u1 + u2 is such thatL(v) = L(u1 + u2) = L(u1) + L(u2) = F + 0 = F

B(v) = B(u1 + u2) = B(u1) +B(u2) = 0 + f = f.

What this means is that, starting from an inhomogeneous boundary problem with

inhomogeneous boundary conditions, one can break it down into many problems,

supposedly easier ones, and once one has solved them, one knows that the function,

resulting from the sum of each solution found, is a solution of the initial problem.
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4.2 Derivation of the model

Let us consider a perfectly flexible string of length L and linear mass density ρ0,

with the latter being constant when at rest. Being perfectly flexible means that the string

will have no resistance to bending. Let t ≥ 0 represent time, let x ∈ [0, L] represent the

projection on the horizontal axis of each point of the string and let u(x, t) represent the

vertical displacement of each point x of the string at every fixed time t. Since we have

to deal with the curve x = x

u = u(x, t)

with x ∈ [0, L] and fixed time t, the line element is

ds =
√

1 + u2xdx,

and since the mass remains constant throughout the whole movement, we can state that

ρds = ρ0dx =⇒ ρ
√

1 + u2x = ρ0.

Let us assume now that the only force in action here is the tension (i.e. no gravity, no

air resistance, etc.) and that the only movement is vertical with very small oscillations

(relatively to the length L of the string). We will call T(t, x) the tension vector that

represents the force applied by the right-hand side of the string, with respect to the point(
x, u(x, t)

)
, to the left-hand side of it. Of course −T(t, x) represents the opposite vector.

Both of them are tangent to the string thanks to the hypothesis of perfect flexibility.

At this point, we name T (t, x) the intensity of T(t, x) and α = α(t, x) the slope of

the string at the point
(
x, u(x, t)

)
with respect to the resting position. That simply

translates to

tgα = ux. (4.1)

If we then consider the interval [x, x + ∆x] of arbitrary length ∆x and impose that

the horizontal components of −T(t, x) and T(t, x+∆x) cancel themselves out, then we

have

T (t, x+∆x)cos
(
α(t, x+∆x)

)
+ T (t, x)cos

(
π + α(t, x)

)
= 0

T (t, x+∆x)cos
(
α(t, x+∆x)

)
− T (t, x)cos

(
α(t, x)

)
= 0.

At this point, one can see that if we divide by ∆x and let ∆x→ 0

∂

∂x

(
T (t, x)cos

(
α(t, x)

))
= 0

and therefore we have that

T (t, x)cos
(
α(t, x)

)
= τ, (4.2)
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which tells us that the horizontal component of the tension does not depend on the

position to which it is applied. Moreover, if we assume that the tension’s intensity is

proportional to the length of the string’s part generating it, then τ is independent of

time too, because the length of the string is constantly L’

Let us now consider the tension’s vertical component on the string’s section relative to

the interval [x, x+∆x]. Thanks to (4.1) and (4.2), the latter meaning that T = τ/cosα,

we can see that

T (t, x+∆x)sin
(
α(t, x+∆x)

)
− T (t, x)sin

(
α(t, x)

)
= τ
(
tg
(
α(t, x+∆x)

)
− tg

(
α(t, x)

))
= τ
(
ux(t, x+∆x)− ux(t, x)

)
= τ

∫ x+∆x

x

uxx(t, y)dy.

If we name f(t, x) a possible external force, we can add it to the last step of (4.2) to

obtain

τ

∫ x+∆x

x

uxx(t, y)dy +

∫ x+∆x

x

f(t, y)ρ(t, y)
√

1 + u2x(t, y)dy.

Thanks to the fundamental principle of dynamics, the following represents a force too:∫ x+∆x

x

utt(t, y)ρ(t, y)
√

1 + u2x(t, y)dy.

Therefore we are allowed to write∫ x+∆x

x

utt(t, y)ρ(t, y)
√
1 + u2x(t, y)dy

= τ

∫ x+∆x

x

uxx(t, y)dy +

∫ x+∆x

x

f(t, y)ρ(t, y)
√
1 + u2x(t, y)dy,

which is equal to∫ x+∆x

x

ρ0utt(t, y)dy −
∫ x+∆x

x

τuxx(t, y)dy −
∫ x+∆x

x

ρ0f(t, y)dy = 0∫ x+∆x

x

(
ρ0utt(t, y)− τuxx(t, y)− ρ0f(t, y)

)
dy = 0.

Since the interval of integration [x, x+∆x] is of arbitrary length we have

ρ0utt − τuxx − ρ0f = 0,

and by defining c2 = τ/ρ0 (and dividing the equation by ρ0), we obtain

utt − c2uxx = f.
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4.3 Separation of variables

In this section we will utilize the technique of separation of variables to solve the

homogeneous version of the linear partial differential equation we obtained in section

4.2, that is

utt(x, t) = c2uxx(x, t).

More precisely, our goal is to find a solution u of the form

u(x, y) = X(x)Y (y),

and if this method is to work, when we substitute this formula into the equation we

should be able to reorganize the terms in a way that the left-hand side contains only

objects that depend on one variable, and the right-hand side contains only objects that

depend on the other variable (we should obtain something like P (x) = Q(y)). This

method could be used with more than two variables, but that does not concern us.

Let us dive straight into the case of the 1-dimensional wave equation. The Cauchy-

Dirichlet problem presents itself as

utt − c2uxx = f for 0 < x < L and t > 0

u(0, t) = u(L, t) = 0 for t > 0

u(x, 0) = u0(x) for 0 < x < L

ut(x, 0) = v0(x) for 0 < x < L,

where the actual partial differential equation presents is L(u) = f ,which is an inhomo-

geneous linear partial differential equation, with

L =
∂2

∂t2
− c2

∂2

∂x2
, (4.3)

as its operator. Furthermore, the boundary of the domain Ω = [0, L] (we ignore tem-

porarily the time variable t) is ∂Ω = {0, L}, and the boundary conditions are of the form

B1(u) = f1 and B2(u) = f2 with

B1(u(x, t)) = u(0, t) and B2(u(x, t)) = u(L, t)

as operators. Therefore, since f1 = f2 = 0, we are in front of homogeneous periodic

boundary conditions.

Anyway, we will study the homogeneous version of the equation (which means that
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L(u) = 0 with L as described in (4.3)) so the problem really is the following:

utt − c2uxx = 0 for 0 < x < L and t > 0

u(0, t) = u(L, t) = 0 for t > 0

u(x, 0) = u0(x) for 0 < x < L

ut(x, 0) = v0(x) for 0 < x < L.

Now let us look for a solution U(x, t) = X(x)T (t); nothing guarantees that a solution

like this one exists, however we will be able to justify this assumption a posteriori. By

substituting U(x, t) in the homogeneous equation, we obtain

X(x)T ′′(t) = c2X ′′(x)T (t)

X ′′(x)

X(x)
=

T ′′(t)

c2T (t)
,

but for this equation to be verified when 0 < x < L and t > 0, we need both sides to be

constant. Therefore we need a certain λ ∈ R to have

X ′′(x)

X(x)
= λ for 0 < x < L

T ′′(t)

c2T (t)
= λ for t > 0.

(4.4)

The boundary conditions u(t, 0) = u(t, L) = 0 translate to X(0) = X(L) = 0, hence

the first equation of (4.4) has its own conditions:X ′′(x) = λX(x) for 0 < x < L

X(0) = X(L) = 0.
(4.5)

We have already found the eigenvalues and eigenfunctions of this Sturm-Liouville prob-

lem in chapter 3, and they are, respectively,

λn = −n
2π2

L2
and Xn(x) = cnsin

(nπx
L

)
for n ∈ N.

Now we can use them to solve the second equation of (4.4), namely

T ′′(t) = −n
2π2c2

L2
T (t)

from which we obtain the solutions

Tn(t) = αncos

(
nπct

L

)
+ βnsin

(
nπct

L

)
for n ∈ N.
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Ultimately, the separated-variables solutions of the partial differential equation and of

the boundary conditions, are of the following form (for n ∈ N):

un(t, x) = Tn(t)Xn(t) = sin
(nπx
L

)(
αncos

(
nπct

L

)
+ βnsin

(
nπct

L

))
Since un(0, x) = αnsin

(
nπx
L

)
, generally none of these solutions will satisfy the initial

condition u(0, x) = u0(x). However, we can leverage the superposition principle: since

the equation at hand is, as stated earlier, linear and homogeneous, we know that any

linear combination of un will still remain solutions of (4.5). Therefore we look for an

infinite series made of these solutions, and choose the right coefficients for it to both

converge and satisfy the initial conditions. Thus, we write

u(x, t) =
+∞∑
n=1

sin
(nπx
L

)(
αncos

(
nπct

L

)
+ βnsin

(
nπct

L

))
and impose

u(0, x) =
+∞∑
n=1

αnsin
(nπx
L

)
= u0(x) for 0 < x < L

ut(0, x) =
+∞∑
n=1

βn
nπc

L
sin
(nπx
L

)
= v0(x) for 0 < x < L.

(4.6)

For the function u(x, t) to be an actual solution, we have to be able to derivate it twice

in both t and x, so our main focus has to be the behaviour of the coefficients αn and

βn, hence we can do this by working on u0(x) and v0(x). We have both the ingredients

we need to make all of this happen, namely theorems 3.19 and 3.21, but we must tread

carefully.

First, we need to adjust the intervals on which u0(x) and v0(x) are defined, precisely

from [0, L] to [−L,L] and we can do that by performing an odd extension of both

functions, this way we can preserve the only-sine series too. Therefore, by following the

definition 3.11 and applying lemma 3.12, the Fourier coefficients of the series expansion

of u0,odd and v0,odd become, respectively

αn,u0 =
2

L

∫ L

0

u0,odd(x)sin
(nπx
L

)
dx =

2

L

∫ L

0

u0(x)sin
(nπx
L

)
dx

βn,v0 =
2

L

∫ L

0

v0,odd(x)sin
(nπx
L

)
dx =

2

L

∫ L

0

v0(x)sin
(nπx
L

)
dx,

which means that

αn =
2

L

∫ L

0

u0(x)sin
(nπx
L

)
dx

βn =
2

nπc

∫ L

0

v0(x)sin
(nπx
L

)
dx.
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Let us now rewrite u(x, t):

u(x, t) =
+∞∑
n=1

(
αnsin

(nπx
L

)
cos

(
nπct

L

)
+ βnsin

(nπx
L

)
sin

(
nπct

L

))
.

Suppose we can derive twice in t or x; one way or another we are going to end up

with n2 as a coefficient. To control this explosive behaviour we can utilize theorem 3.21

on the Fourier coefficients of u0 and v0. More precisely, we need

n2|αn| ≤
Mα

n2
and n2|βn| ≤

Mβ

n2
,

which are conditions equal to

|αn| ≤
Mα

n4
and |βn| ≤

Mβ

n4
,

for which the requirements u0 ∈ C4 and v0 ∈ C3 are enough (we have to keep in mind

that v0(x) = ut(0, x) and Mα,Mβ > 0 are constants).

Remark 4.6. Actually, leaning on 3.21, it would be enough to ask u0 ∈ C3 with u
(3)
0 ∈ PS

and v0 ∈ C2 with v
(2)
0 ∈ PS, but it is a very negligible upgrade from the previous

requirements.

4.4 D’Alembert’s formula

Let us consider the global Cauchy problem (L = +∞):
utt − c2uxx = 0 for t > 0, x ∈ R

u(0, x) = g(x)

ut(0, x) = h(x).

The equation

(∂2t − c2∂2x)u = 0

can be rewritten as

(∂t − c∂x)(∂t + c∂x)u = 0.

If we let u(x, t) = v(y, η) with y = x− ct and η = x+ ct, then

∂tu = −c∂yv + c∂ηcv

∂xu = ∂yv + ∂ηv,

which is

∂t − c∂x = −2c∂y

∂t + c∂x = 2c∂η.
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So now we obtained

utt − c2uxx = (∂t − c∂x)(∂t + c∂x)u = −4c2∂y∂ηv = 0 =⇒ vyη = 0,

and vyη = 0 has, as general integral,

∂

∂η

(
∂

∂y
v

)
= 0

v(y, η) =

∫
f(η)dη +G(y)

v(y, η) = F (η) +G(y),

where F and G are differentiable functions. By turning everything back to the initial

variables we obtain

u(x, t) = F (x+ ct) +G(x− ct),

i.e. u is the result of the overlapping of two waves (called solitons), traveling in opposite

directions at the same speed c.

By imposing the initial conditionsg(x) = u(0, x) = F (x) +G(x)

h(x) = ut(0, x) = c
(
F ′(x)−G′(x)

)
,

we obtain F +G = g

c(F −G) = H where H(x) =
∫
h(x)dx.

If we then multiply by c the first one and either add or subtract the second one to it we

get either 2cF = cg +H or 2cG = cg −H, hence

F =
1

2
g +

1

2c
H

G =
1

2
g − 1

2c
H,

which finally leads us to

u(x, t) =
1

2

(
g(x+ ct) + g(x− ct)

)
+

1

2c

(
H(x+ ct)−H(x− ct)

)
=

1

2

(
g(x+ ct) + g(x− ct)

)
+

1

2c

∫ x+ct

x−ct

h(y)dy,

which is known as d’Alembert’s formula. Whenever g ∈ Ck and h ∈ Ck−1 then u ∈ Ck

and it is the only one of that class by construction. Furthermore, one can notice the

total absence of regularization aspects in the equation, which means that the regularity

of u really solely depends on the regularity of the initial data.
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Now that we obtained this formula, we want to investigate what is so special about

it, apart from what has already been said about its regularity. The formula looks like

this:

u(x, t) =
1

2

(
g(x+ ct) + g(x− ct)

)
+

1

2c

∫ x+ct

x−ct

h(y)dy,

and to understand it better we need to think about the space-time plane, which, since

we are considering the one-dimensional case, is the set ST 1 = {(x, t) ∈ R× [0,+∞)}.
If we pick any point (x0, t0) ∈ ST 1, then we have

u(x0, t0) =
1

2

(
g(x0 + ct0) + g(x0 − ct0)

)
+

1

2c

∫ x0+ct

x0−ct0

h(y)dy,

which shows that in order to compute u(x0, t0) it is sufficient to know the value of g at

x0 ± ct0 and the value of h at every x such that x ∈ [x0 − ct0, x0 + ct0]. If we take a

step back then we can notice that for every point (x0, t0) ∈ ST 1 there are exactly two

straight lines that go through it and through either (x0 + ct0, 0) or (x0 − ct0, 0). What is

so special about them? Let us call γ+ the one that goes through (x0, t0) and (x0+ ct0, 0)

and γ− the one that goes through (x0, t0) and (x0− ct0, 0). Respectively, their equations

in ST 1 are

γ+ : t = −1

c
(x− x0) + t0

γ− : t =
1

c
(x− x0) + t0.

(4.7)

Hence if we consider the formula

u(x, t) = F (x+ ct) +G(x− ct),

we can easily see that F is constant on γ+, whereas G is constant on γ−. More precisely,

if we substitute the first equation of (4.7) in F (x+ ct), we obtain F (x0+ ct0), whereas if

we substitute the second equation of (4.7) in G(x+ct), we obtain F (x0−ct0). What this

means physically, is that as the solitons travel, their height remains constant except when

they cross one another. The curves γ+ and γ− are the vehicles through which information

is carried by the equation. That is why these lines are called characteristics.

Moreover, if we take any point (x0, t0) ∈ ST 1, then the characteristics that cross it

outline four different regions of ST 1, but only two of them are important: the southern

one, which is called domain of dependence relative to (x0, t0), and the northern one,

which is called domain of influence relative to (x0, t0). The first one has that name

because it is the one representing the past of the solution, and its points represent all

the different states of the solitons before they cross at time t0, whereas the second one

has that name because it is the one representing the future of the solution, and its points

represent all the different states of the solitons after they cross at time t0.
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