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Abstract

Nel corso di questo elaborato tratteremo la teoria di Kaluza Klein, essa unifica gravità
ed elettromagnetismo sfruttando le proprietà geometriche dello spazio. Nello specifico
si basa sull’assumere l’universo come localmente composto da cinque dimensioni di cui
quattro spaziali e una temporale ponendo la quarta dimensione spaziale come cerchio
sull’ordinario spazio di Minkowski quadridimensionale (M4 × S1). Questo unito alle
condizioni di periodicità e invarianza necessarie nella quinta dimensione permette diverse
considerazioni fisiche. Prima di affrontare il caso gravitazionale ci concentreremo sul
caso scalare e vettoriale andando a studiare come campi appunto scalari e vettoriali
nelle cinque dimensioni, così strutturate, producano diversi oggetti matematici nelle sole
quattro dello spazio di Minkowski.[Que15]

Il caso gravitazionale prevederà l’aggiunta della descrizione metrica dello spazio-
tempo cinque-dimensionale e noteremo come questo porti ad oservare, nello spazio quadri-
mensionale, non solo un campo gravitazionale ma anche uno elettromagnetico e uno
scalare ottenendo così l’unificazione voluta. [BL87] [Chu22]

Per finire tratteremo gli spazi proiettivi pesati e le loro varietà: enti matematici
necessari ad una trattazione più moderna delle idee proposte da Kaluza e Klein. In
questa parte daremo alcune definizione, lemmi e teoremi fondamentali per una prima
comprensione dell’argomento, per poi passare ad un esempio svolto.





Introduction

The first example of a theory unifying gravitation and electromagnetism was
developed by Kaluza in 1921 and then quantized by Klein in 1926.

The theory is developed starting from the simplest case in which a single extra spatial
dimension is compactified to a circle, and an electromagnetic-like field structure arises
in four dimensions from the higher-dimensional metric.

Although Kaluza-Klein theory makes incorrect predictions about the masses of ele-
mentary particles, it is of great importance because it establishes a framework that has
become one of the foundational pillars of modern physics, leading to advanced theories
such as Yang-Mills theory and string theory.

In modern theory the extra dimensions of the model are described by complex mani-
folds; obviously, a one-dimensional sphere is not enough to encompass all the possibilities
of generality. Therefore, weighted projective varieties are introduced, starting from fun-
damental definitions to a worked example via lemmas and theorems.
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Chapter 1

Kaluza Klein Theory

5 dimensional Kaluza Klein theory (Kaluza 1921, Klein 1926) unifies electromag-
netism with gravitation by starting from a theory of Einstein gravity in five dimensions.
Thus, the initial theory has five-dimensional general coordinate invariance. However, it
is assumed that one of the spatial dimensions compactifies so as to have the geometry
of a circle S1 of very small radius. Then, there is a residual four-dimensional general
coordinate invariance.

Before addressing the gravitational case, we first discuss simpler scenarios, examining
scalar and vector cases. For this chapter we use mostly what is in [BL87] [Que15]

1.1 Scalar in 5 dimensions

If we consider a massless 5D scalar φ(xM), M = 1, 2, 3, 4, 5 and put x5 = y spanning
a circle of radius r with y ≡ y + 2πr. Our spacetime is now M4 × S1. We can consider
the Fourier expansion

φ(xM) = φ(xµ, y) =
∞∑

n=−∞

φn(x
µ) exp

(
iny

r

)
,

because of the periodicity in y. Notice that the Fourier coefficients are functions of the
4D coordinates and therefore are, infinitely many, 4D scalar. Consider an action of the
form

S5D =

∫
d5x∂Mφ∂Mφ,

from which we can derive the equation of motion, using Eulero-Lagrange equation for
quantum field

∂L
∂φ

= ∂M
∂L

∂(∂Mφ)

1



2 1. Kaluza Klein Theory

we get

∂M∂Mφ = 0 =⇒
∞∑

n=−∞

(
∂µ∂µ −

n2

r2

)
φn(x

µ) exp

(
iny

r

)
= 0

=⇒
(
∂µ∂µ −

n2

r2

)
φn(x

µ) = 0

=⇒
(
∂µ∂µ −m2

n

)
φn(x

µ) = 0

where we used the Fourier expansion. These are infinitely many Klein-Gordon equations
for massive 4D fields with mass mass m2

n = n2

r2
. It is easy to see why only the zero

mode (n = 0) is massless. We can visualize the states as an infinite tower of massive
states. This is called Kaluza Klein tower and the massive states are called Kaluza Klein
or momentum states, since they come from the momentum in the extra dimension:

0

1/r

2/r

Figure 1.1: The Kaluza Klein tower of massive states. Masses mn = |n|
r2

grow linearly
with the fifth dimension’s wave number n ∈ Z.

To obtain the 4D action for all this particle we plug the Fourier expansion in the
5D action and notice we can separate the integral int the fifth dimension because no
quantities depend on it

S5D =

∫
d4x

∫
dy∂Mφ∂Mφ = 2πr

∫
d4x

∞∑
n=−∞

(
∂µφn(x

µ)∂µφn(x
µ)∗ − n2

r2
|φn|2

)
= 2πr

∫
d4x (∂µφn(x

µ)∂µφn(x
µ)∗ + . . .) = S4D + . . .

The 5D action reduces to one 4D action for a massless scalar field plus an infinite sum
of massive scalar actions in 4D. We can focus only on the zero mode (as Kaluza did),
then φn(x

M) = φn(x
µ). We speak in this case of dimensional reduction, it is equivalent

to truncating all the massive fields. In this case we are only interested in energies smaller
than 1

r
. More generally, if we keep all the massive modes we talk about compactification,



1.2 Vector in 5 dimensions 3

we consider the extra dimension compact and we account for it including all the Fourier
modes.

1.2 Vector in 5 dimensions

Let us now consider the case of an abelian vector field AM(xM) in 5D, which is similar
to the electromagnetic field in 4D. We can decompose the 5D massless vector field AM

as:

AM =

Aµ (4D vector field)

A4 =: ρ (4D scalar field)

Each component of the 5D field can be expanded in a discrete Fourier series over the
compactified dimension:

- For the vector field Aµ:

Aµ(x
µ, y) =

∞∑
n=−∞

An
µ(x

µ) exp

(
iny

r

)
,

where An
µ(x

µ) are the Fourier modes, and r is the radius of the compactified dimen-
sion.

- For the scalar field ρ (from A4):

ρ(xµ, y) =
∞∑

n=−∞

ρn(xµ) exp

(
iny

r

)
.

Thus, after dimensional reduction, we have an infinite tower of massive modes
corresponding to the Fourier coefficients An

µ and ρn, as we have seen for the 5D scalar.
As the 5D action for an abelian gauge field we consider:

S5D =

∫
d5x

1

g25D
FMNF

MN ,

where FMN = ∂MAN −∂NAM is the field strength tensor in 5D, and AM is the gauge
field.

The equations of motion are thus:

∂M∂MAN − ∂N(∂MAM) = 0.

In the Lorenz gauge ∂MAM = 0, this reduces to:

∂M∂MAN = 0.
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The 5D action reduces to the 4D effective action:

S5D → S4D =

∫
d4x

(
2πr

g25D
F (0)
µν F

(0)µν +
2πr

g25D
∂µρ0∂

µρ0 + . . .

)
,

where F
(0)
µν is the field strength of the 4D gauge field. Therefore we end up with a

4D theory of a gauge particle (massless), a massless scalar and infinite towers of massive
vector and scalar fields.

The 4D and 5D gauge couplings (coefficients of FµνF
µν and FMNF

MN) are related
by:

1

g24
=

2πr

g25D
.

Notice that 2πr is the volume of the conpactified extra dimension S1.

1.3 Gravitation in 5 dimensions: Kaluza Klein theory

We can now consider the graviton of the Kaluza Klein Theory. The metric GMN can
be expressed as:

GMN =


Gµν (graviton)

Gµ4 (vector)

G44 (scalar)

where µ, ν = 0, 1, 2, 3.
One possible solution is the 5D Minkowski metric: GMN = ηMN = (+,−,−,−,−),

as we can expect another one is a 4D Minkowski spacetime M4 times a circle S1, it is
the metric proposed by Kluza and is of the M4 × S1 type:

ds2 = W (y)ηµνdx
µdxν − dy2,

Where W (y) is a warp factor that is allowed by the symmetries of the background,
and y is restricted to the interval [0, 2πr], as we have already seen for the other cases.
For simplicity, we will set the warp factor to a constant.

Consider the physical excitation to the background metric:

GMN = ϕ−1/3

(
gµν − κ2ϕAµAν −κϕAµ

−κϕAν −ϕ

)

where κ is a constant to be fixed. As for the other cases we take the discrete Fourier
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expansion over the compactified dimension:

gµν =
∞∑

n=−∞

gnµνe
iny
r , Aµ =

∞∑
n=−∞

An
µe

iny
r , ϕ =

∞∑
n=−∞

ϕne
iny
r

we can plug the Fourier expansion in the metric and write it as:

GMN = ϕ(0)−1/3

(
g
(0)
µν − κ2ϕ(0)A

(0)
µ A

(0)
ν −κϕ(0)A

(0)
µ

−κϕ(0)A
(0)
ν −ϕ(0)

)
︸ ︷︷ ︸

Kaluza Klein ansatz

+ infinite tower of massive modes.

Consider a 5D Einstein-Hilbert action proportional to the simplest curvature
invariant, (5)R, the Ricci curvature scalar in 5D. Notice is the same form as the action
for 4D general relativity.

S = −M3
∗

∫
d5x
√
|G| (5)R.

Where M∗ is the fundamental mass scale of the high-dimensional theory and
G = det(GMN) = −ϕ

2
3 g with g = det(gµν) determinant of the 4D metric. Next, we plug

the zero mode part into the 5D Einstein-Hilbert action reducing it to a 4D action, as we
have done for the vector field:

S4D = −
∫

d4x
√
|g|
(
M2

plR +
1

4
ϕ(0)F (0)

µν F
(0)µν +

M2
pl

6

∂µϕ
(0)∂µϕ(0)

(ϕ(0))2
+ . . .

)
,

where in order to absorb the constant in the Maxwell term we have set κ−1 = Mpl =
√

hc
G

the 4D Planck scale, and put M2
pl = M3

∗ 2πr. Notice we can adjust M∗ and r to get the
right Planck mass, but nothing else constrain M∗ and r to a fixed value.

We have obtained a unified theory of gravity, electromagnetism, and scalar fields!

SGR = −
∫

d4x
√
|g|M2

plR,

SEM = −
∫

d4x
√
|g|1

4
ϕ(0)F (0)

µν F
(0)µν ,

SSC = −
∫

d4x
√
|g|

M2
pl

6

∂µϕ
(0)∂µϕ(0)

(ϕ(0))2
.

Notice the EM Lagrangian is multiplied by the scalar field ϕ. However, if ϕ is slowly
varying then we can approximate it as a constant and absorb it as a constant multiple
of the entire Lagrangian. The action literally reduces to

S4D = SEM + SGR
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1.3.1 A purely gravitational theory in 5 dimensions

It is possible to show that the results we obtained in the previous section can be
derived from a purely gravitational Theory in 5D

Consider the physical excitation to the background metric:

GMN =

(
gµν + κ2ϕ2AµAν κϕ2Aµ

κϕ2Aν ϕ2

)

Index juggling is performed with the 4D metric gµν and G = ϕ2g.
To be able to project physics down into the base 4D space-time, we impose the

cylinder condition:
∂5GMN = 0 (1.3.1)

This means that physical quantities should not change while moving along the fifth
dimension. It is possible to show that for Condition 1.3.1 rotating locally around the S1

components only changes the gauge field Aµ, particularly the 4D space-time metric is
left invariant.[Chu22]

Consider a 5D Einstein-Hilbert action like the one in the last section:

S = M3
∗

∫
d5x
√
|G| (5)R.

The expression for (5)R follows formally from the form of the metric and the Christoffel
symbols, we postulate it is in the from:

(5)R = R− κ2

4
ϕ2FµνF

µν − 2
∂µ∂

µϕ

ϕ

where R is the 4D Ricci curvature scalar.
Notice the term:

LEM = −1

4
FµνF

µν

has the same form of the electromagnetic Lagrangian; this is a hint of the separation we
have seen before. Therefore the action becomes:

S5D = M3
∗

∫
d5xϕ

√
|g|
(
R− κ2

4
ϕ2FµνF

µν − 2
∂µ∂

µϕ

ϕ

)
By the cylinder condition 1.3.1, none of these quantities depends on x5, so we can

integrate out x5. Suppose that C is the volume of the fifth dimension or equivalently the
circumference of the compactified dimension. Then the Kaluza Klein action becomes:

S5D = M3
∗

∫
d4xCϕ

√
|g|
(
R− κ2

4
ϕ2FµνF

µν − 2
∂µ∂

µϕ

ϕ

)
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Since the constant κ is arbitrary, set: κ−1 = Mpl =
√

hc
G

, at last:

S5D =

∫
d4x

√
|g|ϕRM2

pl −
∫

d4x
√
|g|1

4
ϕ3FµνF

µν − 2M2
pl

∫
d4x

√
|g|∂µ∂

µϕ

ϕ

which can be interpreted as:

S4D = SGR + SEM + SSF

with the same notation as before. Notice that, as before we have to play with the scalar
field to get the desired action.





Chapter 2

Weighted projective space

Weighted projective spaces appear to be generalizations of the usual projective space
(herein referred to as straight projective space), especially when we show that we can
simply embed weighted projective space into a large enough standard projective space.
But it turns out that, often, weighted projective spaces are more manageable than em-
bedding them in standard projective space. Some projective varieties can be more easily
described using weighted projective spaces.

Every algebraic geometric topic can be described in a geometric or algebraic way;
in this chapter, we will focus on the geometric description of weighted projective space.
The algebraic version uses some language from scheme theory that we will not discuss
in this thesis. See [Rei02] and [Hos16] for more. We discuss this topic because modern
theories utilize complex manifolds and particularly weighted projective space to describe
the extra dimensions in their model. For example Calabi-Yau manifolds can be described
with this formalism

2.1 Construction of Weighted projective space

Definizione 2.1.1. (Weighted projective space) A weighted projective space (wps) is
the quotient:

P(a0, . . . , an) = (An+1 \ 0)/G(a)
m , (2.1.1)

where (a0, . . . , an) with ai ∈ N is called a weight and G(a)
m , that is the multiplicative

group of a field (k×) with reference to a, act on (An+1 \ 0) by:

λ · (x0, . . . , xn) = (λa0x0, . . . , λ
anxn) ∀λ ∈ G(a)

m .

9
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We write point in P(a0, . . . , an) as |x0 : . . . : xn|a, omitting the subscript a if it is
clear that we are working in P(a) = P(a0, . . . , an).

It is obvious that setting a = (1, . . . , 1) gives us the straight projective space Pn =

P(1, . . . , 1) = (An+1 \ 0)/G(a)
m where the action of a is:

λ · (x0, . . . , xn) = (λx0, . . . , λxn) ∀λ ∈ G(a)
m .

We denote the coordinates by [x0 : . . . : xn] to distinguish it from the point |x0 : . . . :

xn|

2.2 Coordinate patches

In straight projective space we can define a standard decomposition give by:

Ui = {|x0 : . . . : xn| ∈ Pn |xi ̸= 0},

Hi = {|x0 : . . . : xn| ∈ Pn |xi = 0},

Pn = Hi ∪ Ui
∼= Pn−1 ∪ An, (2.2.1)

where 0 ≤ i ≤ n and Ui are called affine patches or coordinate patches. These patches are
useful as they provide a full covering of the projective space. So given some projective
variety, we can see how it intersects with the affine patches Ui and study these using all
our familiarity with affine space.

It is logical to define patches in wps in the same way, but unfortunately we have a
slight issue, the Ui are not isomorphic to An, but instead some quotient of An by a finite
group.

Definizione 2.2.1. (Quotient of affine space by a cyclic group) Define an action of µai

(cyclic group of order n) on An, called the action of type 1
ai
(a0, . . . , âi, . . . , an) by

ωai · (x0, . . . , x̂i, . . . , xn) = (ωa0
ai
x0, . . . , ω̂

ai
aixi, . . . , ω

an
ai
xn),

this induces an action on k[x0, . . . , x̂i, . . . , xn] given by ωai · xj = ωai
ai
xj and thus gives

rise to the affine quotient variety

An/µai = mSpec(k[x0, . . . , x̂i, . . . , xn]
ai)

as well as the map πi = (ιi)# : An → An/µai corresponding to the inclusion

ιi : k[x0, . . . , x̂i, . . . , xn]
µai ↪→ k[x0, . . . , x̂i, . . . , xn].
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Lemma 2.2.2. (Affine patches in wps) with Ui = {|x0 : . . . : xn| ∈ P(a0, . . . , an) |xi ̸= 0}
we have

Ui = An/µai

where we mean isomorphic in the usual sense: there exists an algebraic morphism given
by a polynomial map with polynomial inverse. We often write Ai = An/µai

Although the Ui is a nice affine space, it is a quotient one and so can be quite tricky
at times. Much easier is the idea of looking at the covering space of the affine patches.

Definizione 2.2.3. (Quotient and covering affine patches) Given some subset X ⊆
P(a0, . . . , an) we define the following:

Xi = X ∩ Ui ⊆ Ai

Xi = πi
−1X ∩ Ui ⊆ An,

we call Xi quotient affine patches and Xi covering affine patches of X

2.3 The problem of polynomial

Before we can define the notion of weighted projective varieties, we need to define a
homogeneous polynomial. We also need to discuss evaluating a polynomial at a point
and seeing whether or not a point is a zero of a polynomial. It turns out that the first is
not well defined while the second is (as long as our polynomial is weighted-homogeneous).

We will start by covering these topics and then proceed to define a variety in a
weighted projective space.

Definizione 2.3.1. (weighted polynomial ring) Define the polynomial ring in n+1 vari-
ables with weight a = (a0, . . . , an) as

ka[x0, . . . , xn] withwtxi = ai.

we think xi a degree ai monomial, for example,

deg(xi
ci) = aici

it follows

deg

(
n∏

i=0

xi
ci

)
=

n∑
i=0

aici
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Notice that degλ = 0 for anyλ ∈ k. For a general polynomial f ∈ ka[x0, . . . , xn] we
define the degree deg f as the maximum of all the degrees of the monomials in f .

Definizione 2.3.2. (weighted-homogeneous polynomial)
Let f ∈ k[x0, . . . , xn] where wtxi = ai for some weight a = (a0, . . . , an). We say that
f is a-weighted-homogeneous of degree d if each monomial in f is of weighted degree d:
∃ci ∈ k and some m ∈ N such that

f =
m∑
j=1

ci

(
n∏

i=0

xd(j)

i

)
and far all j ∈ {0, . . . ,m}

n∑
i=0

aid
(j)
i = d

We write ka[x0, . . . , xn]d ⊂ ka[x0, . . . , xn] as the additive group of all weighted-
homogeneous polynomials of degree d.

It can now be demonstrated why evaluating a weighted-homogeneous polynomial f
at a point p ∈ P(a) doesn’t make sense in general. From definition 1.3.2 we can see that:

f(λa0x0, . . . , λ
anxn) = λdf(x0, . . . , xn), (2.3.1)

with λ ∈ G(a)
m .

Let’s take p ∈ P(a0, . . . , an) then p = |p0 : · · · : pn| but by definition we also have
p = |λa0p0 : · · · : λanpn| for any λ ∈ G(a)

m . Assume λ ̸= 1, then using Equation 2.3.1

f(λa0x0, . . . , λ
anxn) = f(x0, . . . , xn) if and only if f(x0, . . . , xn) = 0,

looking at the points p ∈ P(a) at which f vanishes does make sense. It is well defined to
write that f(p) = 0 for some f ∈ ka[x0, . . . , xn] and p ∈ P(a).

With weighted-homogeneous polynomial we can define

Definizione 2.3.3. (Weighted-homogeneous ideal)
We say that an ideal I ⊂ ka[x0, . . . , xn] is a-weighted-homogeneous if it is generated by
a-weighted-homogeneous elements (of not necessary the same degree).

An equivalent definition can be: I is weighted-homogeneous if and only if every
element f ∈ I can be written as

f =

deg f∑
i=0

fi,

for a unique choice of fi ∈ Ka[x0, . . . , xn]∩ I. This definition need to be proved, a good
proof can be find in [Hos16] Lemma (3.0.7).
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Lemma 2.3.4. (Prime ideal)
A weighted-homogeneous ideal I ⊂ ka[x0, . . . , xn] is prime if and only if, whenever fg ∈
Iforf, g ∈ ka[x0, . . . , xn] with f, g both homogeneous, either finI or g ∈ I. That is, when
considering primality of the ideal, it is enough to check the usual definition on only the
homogeneous. elements of the ideal.

2.4 Weighted projective varieties

Aided by the definitions from the previous section, we can now define a weighted
projective variety in a similar manner to how we would for standard projective space.
[RR88].

Definizione 2.4.1. (Weighted projective varieties and their ideals)
let I ⊂ k[x0, . . . , xn] be a weighted homogeneous ideal. Define the weighed projective
variety associated to I by

V(I) = {p ∈ P(a0, . . . , an)|f(p) = 0 far all f ∈ I}.

Let V ⊆ P(a0, . . . , an). Define the ideal associated to V by

I(V ) = {f ∈ ka[x0, . . . , xn]|f(p) = 0 for all p ∈ V and f is a-weighted homogeneous}.

A subset V ⊆ P(a) is a weighted projective variety if it is of the form V(I) for
I ⊂ ka[x0, . . . , xn] some weighted homogeneous ideal.

It follows naturally that if V ⊆ W V is a subvariety of W . V weighted projective
varety is irreducible if it has no non-trivial decomposition into subvarietes:
V = Vi ∪ Vj, Vi, Vj ̸= ∅, V . We’ll write VI to mean V ◦ I

We now list some properties of weighted-homogeneous ideal that will be needed to
define a Zariski like topology on our weighted projective varieties.

Lemma 2.4.2. Let I, J ⊂ ka[x0, . . . , xn] be weighted-homogeneous ideals. Then

(i) V(I) ∩ V(J) = V(IJ)

(ii) V(I) ∪ V(J) = V(I + J)

(iii) ∅ = V(ka[x0, . . . , xn])

(iv) P(a0, . . . , an) = V({0}).
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Lemma 2.4.3. An arbitrary sum of weighted homogeneous ideals is a weighted homoge-
neous ideal

I =
∑
α∈A

Iα =

{∑
β∈B

fβ ∈ Iβ andB ⊂ Ais finite

}
.

Corollario 2.4.4. An arbitrary intersection of weighted projective varieties is
a weighted projective varietie:

⋂
I∈I

V(I) = V

(∑
I∈I

I

)
= V(J)

where
∑

I∈I = J ⊂ ka[x0, . . . , xn].

We can finally define a topology of varieties in a weighted projecive space

Definizione 2.4.5. (Zariski topology) The Zariski topology on P(a0, . . . , an) is given by
defining the closed sets of P(a0, . . . , an) to be those of the form V(I) for some weighted-
homogeneous ideal I ⊂ ka[x0, . . . , xn], that is, the weighted projective varieties.

One final thing to note before moving on is how we can use the construction of
weighted projective space to understand weighted projective varieties. The way that
we define f(p) = 0 for some a-weighted-homogeneous f and point p ∈ P(a) is really
by requiring that f(p̂) = 0, where p̂ ∈ An+1 \ {0} is a representative of p. We use
the requirement of f being a-weighted-homogeneous to ensure that this definition is
well-defined under a change of representatives.

So we can think of V(I) as a quotient of the affine ‘cone’:

V(I) =
Vaff(I) \ {0}

Gm

⊆ An+1 \ {0}
Gm

(2.4.1)

where Vaff(I) = {x ∈ An+1 | f(x) = 0 for all f ∈ I} and we consider I ∈ k[x0, . . . , xn] as
an ideal in the usual polynomial ring (i.e. with all weights equal to 1)

Definizione 2.4.6. Given X = V(I) for some weighted-homogeneous ideal
I ∈ ka[x0, . . . , xn], we write X̂ to mean Vaff(I), so that Eq. 2.4.1 can be written as

X =
X̂ ∩ (An+1 \ {0})

Gm

.

Notice that we don’t simply write X̂ \ {0} in Definition 2.4.6 since we don’t know a
priori that 0 ∈ X̂.
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2.5 The weighted projective Nullstellensatz

Lemma 2.5.1. Let ⊂ ka[x0, . . . , xn] be a weighted-homogeneous ideal and let V,W ⊂
P(a0, . . . , an). then

(i) I(V ) ⊆ ka[x0, . . . , xn] is a radical weighted-homogeneous ideal

(ii) if I ⊆ J then V(J) ⊆ V(I)

(iii) if V ⊆ W then I(W ) ⊆ I(V )

(iv) I ⊆ IV(I)

(v) V(I) = VIV(I)

Definizione 2.5.2. (Relevant ideals) An ideal I ⊂ ka[x0, . . . , xn] is relevant if:

(i) I ⊂ (x0, . . . , xn) (irrelevant ideal)

(ii) V(I) ̸= ∅.

Notice that if I is weighted-homogeneous then it is always strictly contained inside
the irrelevant ideal.

Lemma 2.5.3. (Equivalent definition of relevant) Let I ⊂ ka[x0, . . . , xn] be a weighted
homofìgeneous ideal. then the following are equivalent:

(i) I is relevant

(ii) I is is strictly contained inside ka[x0, . . . , xn] and is not equal to the irrelevant ideal

(iii) (x0, . . . , xn) ⊈ rad(I)

Definizione 2.5.4. (Maximal weighted-homogeneous ideals) Let I, J ⊂ ka[x0, . . . , xn]

ideal, I is said to be a maximal weighted-homogeneous ideal if I ⊊ J , then J =

(x0, . . . , xn) (irrelevant). That is if it is relevant and maximal amongst relevant weighted-
homogeneous ideals.

With all we have defined till now, we can state the weighted projective Nullstellensatz.

Teorema 2.5.5. (Weighted projective Nullstellensatz) Let I ⊂ ka[x0, . . . , xn] be a
weighted-homogeneous relevant ideal. Then

IV(I) = rad(I)
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Proof. Appendix A.1

Corollario 2.5.6. (Applied weighted projective Nullstellensatz) The maps V and I give us
an inclusion reversing bijection between weighted projective varieties and radical weighted-
homogeneous relevant ideals:radicalw.h.relevantideals

I ⊂ ka[x0, . . . , xn]

︸ ︷︷ ︸
IV act as the identity

V−−−−→
I←−−−−

radicalw.h.relevantideals

I ⊂ ka[x0, . . . , xn]

︸ ︷︷ ︸
VI act as the identity

I ⊆ J ⇒ V(J) ⊆ V(I)

I(Y ) ⊆ I(X)⇒ X ⊆ Y

Further, under this bijection, prime weighted-homogeneous ideals correspond to irre-
ducible varieties, and maximal weighted-homogeneous ideals to points.

2.6 Coordinate ring

Definizione 2.6.1. (Weighted-homogeneous coordinate rings) Let X = V(I) be a non-
empty weighted projective variety. Then define the weighted-homogeneous coordinate
ring of X to be

S(X) =
ka[x0, . . . , xn]

I(X)
.

If we write X̂ = Vaff(I) to mean the affine version of the correspondence V, Iaff
for I and A(Y) for the coordinate ring of an affine variety Y then

S(X) =
ka[x0, . . . , xn]

I(X)
=

ka[x0, . . . , xn]

Iaff(X̂)
= A(X̂)

2.7 Worked example

This section presents a simple example to understand how a weighted projective space
works.
Consider P(1, 1, 2), it is defined by:

P(1, 1, 2) = A3 \ 0)/G(a)
m

The points in P(1, 1, 2) are invariant under scaling with respect to the weighting. For
example

|0 : 3 : 2| = 2 · |0 : 3 : 2| = |0 : 6 : 8|
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To understand the space as a whole, we need to define a map

φ : [x0 : x1 : x2] 7→ [x2
0 : x0x1 : x

2
1 : x2].

We claim that this map has its image in P3. Firstly at least one of the monomials
will be non-zero, then we need to check if the image is invariant under scaling, we find
out it is:

λ · [x2
0 : x0x1 : x

2
1 : x2] = [λx2

0 : λx0x1 : λx
2
1 : λx2] = [x2

0 : x0x1 : x
2
1 : x2].

We have not defined an isomorphism between weighted projective space, but if we
can find an inverse map that is a polynomial in each coordinate (even though we have
not defined an isomorphsm for weighted projective space) we can think of P(1, 1, 2) as
isomorphic to the image of ϕ in P3. We see ϕ as an embedding of P(1, 1, 2) in P3. To
construct our inverse map we take some point [y0, y1, y2, y3] in the image. Unfortunately,
even though k is algebraically closed, we cannot take |y

1
2
0 : y

1
2
1 : y3| as our inverse map,

since this is not a polynomial in each coordinate. However, we notice that

y0 = x2
0, y1 = x0x1, y2 = x2

1, y3 = x2

for some |x0 : x1 : x2| ∈ P(1, 1, 2), and so

|x0 : x1 : x2| = x0|̇x0 : x1 : x2| = |x2
0 : x0x1 : x

2
0x2| = |y0 : y1 : y0y3|,

where y0, y1, y3 ̸= 0 and

|x1 : x0 : x2| = x1 · |x0 : x1 : x2| = |x0x1 : x
2
1 : x2| = |y1 : y2 : y2y3|,

elsewhere.
Thus, we identify two mutually inverse polynomial maps, which we, for now, consider

as an isomorphism:

φ : P(1, 1, 2)→ X ⊂ P3

|x0 : x1 : x2| 7→ |x2
0 : x0x1 : x

2
1 : x2|

φ−1 : X → P(1, 1, 2)

|y0 : y1 : y2 : y3| 7→

|y0 : y1 : y0y3| if y0, y1, y3 ̸= 0;

|y1 : y2 : y2y3| otherwise.
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understanding P(1, 1, 2) becomes a matter of understanding the set X ⊂ P3.
Another approach can be looking for the affine patches, P(1, 1, 2) can be covered by

3 patches. We notice that in U0

|x0, x1, x2| =
∣∣∣∣1, x1

x0

,
x2

x2
0

∣∣∣∣ becausex0 ̸= 0

that is isomorphic to A2, the same can be done for U1 = {x1 ̸= 0} giving us the 2 affine
patches:

U0
∼= A2 with coordinates

(
x1

x0

,
x2

x2
0

)
U1
∼= A2 with coordinates

(
x0

x1

,
x2

x2
1

)
for the last patches we need to consider U2 = A2/µ2 that we write as the action 1

2
(1, 1)

on A2, to have a better understanding of U2 let’s take into account it’s embedding φ in
P3, we have

|x0 : x1 : x2| 7→ |x2
0 : x0x1 : x

2
1 : x2|

and because P3 is a straight projective space in X ⊂ P3 it is true that

|x2
0 : x0x1 : x

2
1 : x2| =

∣∣∣∣x2
0

x2

:
x0x1

x2

:
x2
1

x2

: 1

∣∣∣∣
but that is isomorphic to Y ⊂ A3 with coordinates(

x2
0

x2

,
x0x1

x2

,
x2
1

x2

)
notice that they are not independent if we write (u, v, w) as coordinates in Y it is obvious
that uw = v2 so Y = V (uw = v2) and

U2
∼= V (uw = v2)



Conclusion

In this thesis, we have explored the fundamental principles of 5-dimensional Kaluza-
Klein theory, which elegantly unifies electromagnetism and gravitation. By compactify-
ing one of the spatial dimensions to a circle S1, we demonstrated how the theory retains
four-dimensional general coordinate invariance, paving the way for a deeper understand-
ing of fundamental forces in a higher-dimensional context.

Furthermore, we extended our discussion to the mathematical structures that un-
derpin modern version of these theories, particularly focusing on weighted projective
spaces and varieties. This exploration highlighted the importance of algebraic geometry
in providing a rigorous framework for studying the implications of Kaluza-Klein theory.

The insights gained from analyzing weighted projective spaces not only enhance our
comprehension of geometric constructs in theoretical physics but also offer potential
pathways for further research. This thesis bridges high-dimensional theories and alge-
braic geometry, laying the groundwork for exploring theories related to the unification
of fundamental interactions.

This work highlights the importance of Kaluza-Klein theory as a pioneering attempt
in the quest for a unified framework in modern physics and suggests that further ex-
ploration in both geometric and physical realms may reveal deeper connections between
these two fields.
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Appendix A

Proof

A.1 Nullstellensatz proof

The proof of the weighted projective Nullstellensatz is a technical one, we use the
approach explained in [Hos16]

Write X = V(I), then we have to prove that

IV(I) = I(X) = Iaff (X̂) = rad(I)

Since Iaff (X̂) is all about affine quantities (remember X̂ = Vaff(I) = {x ∈ An+1 |
f(x) = 0 for all f ∈ I}) we know from the affine Nullstellensatz that the last equality is
true. We work now to show the second one.

I(X) = Iaff (X̂)

Since I is relevant, X = V(I) ̸= ∅. We also know that X = VI(X), thus VI(X) ̸= ∅.
Hence I(X) is also relevant. So there are no constant polynomials in I(X), otherwise
I(X) would be the whole of ka[x0, . . . , xn]. Hence if f ∈ I(X), then f(0) = 0, because
f(0) is a polynomial with no constant term.

Also, if f ∈ I(X), then f(x) = 0 for all x ∈ X, i.e. f(x̂) = 0 for all representatives
x̂ ∈ X̂ \ {0}, as already stated we don’t know a priori if 0 ∈ X̂. So f ∈ Iaff(X̂ \ {0}).
But since f(0) = 0 as well, f ∈ Iaff(X̂), hence

I(X) ⊆ Iaff(X̂).

For the other inclusion let begin by proving that Iaff(X̂) is weighted-homogeneous.
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To do so we will show that if I ⊂ ka[x0, . . . , xn] is a weighted-homogeneous ideal,
then rad(I) ⊂ ka[x0, . . . , xn] is also a weighted-homogeneous ideal, then well use the
affine Nullstellensatz once again (remember that Iaff(X̂) are all affine quantities) to go
back.

To do so let g ∈ rad(I), so that gk ∈ I for some k ∈ N. Write d = deg g and let

gi = g ∩ ka[x0, . . . , xn]i for 0 ≤ i ≤ d

notice that for i > d this intersection will be empty. Furthermore by Definition 2.3.3
gi are uniquely determined by g and so it is enough to show that gi ∈ rad(I) for all
0 ≤ i ≤ d, to prove that g is a weighted-homogeneous polynomial.

We look first at gd. Because gkd = gk ∩ ka[x0, . . . , xn]d (since it is the only term of
high enough degree) and I is weighted-homogeneous, we must have that gkd ∈ I, and
so gd ∈ rad(I). But then (g − gd) ∈ rad(I) is a polynomial of strictly smaller degree
with homogeneous components g0, . . . , gd−1, thus (g − gd)

k′ ∈ I for some k′ ∈ N, so we
repeat the above process with gd−1 to show that gk′d−1 ∈ I, and thus gd−1 ∈ rad(I). After
repeating this finitely many times (since the total degree strictly decreases each time),
we have that gi ∈ rad(I) for all 0 ≤ i ≤ d. That prove rad(I) is weighted-homogeneous.

Now we just need to remember the affine Nullstellensatz, since we have calledX̂ =

Vaff(I):

Iaff(X̂) = IaffVaff(I) = rad(I),

is weighted-homogeneous.
Now let f be a generator of Iaff(X̂), f is weighted-homogeneous (as we have just

demonstrated). Also f(x̂) = 0 for all x̂ ∈ X̂, and so in particular f(x̂) = 0 for all
x̂ ∈ X̂ \ {0}.

Combining these two facts, we see that f ∈ I(X). Then, since all the generators of
Iaff(X̂) are in I(X), we have

Iaff(X̂) ⊆ I(X).

This concludes our proof.
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