
Università di Bologna

Dipartimento di Informatica - Scienza e Ingegneria (DISI)

Second Cycle Degree/Two Year Master in Software Engineering

Thesis For The Master Degree in Software Engineering

Neural Cox Model for Liver
Transplant

Thesis Advisor

Prof. Michele Lombardi
Candidate

Ugo Marchesini
0937-0000977872

Academic Year MMXXIII-MMXXIV

Essentially, all models are wrong, but some are useful.

George E. P. Box

Abstract

Liver transplantation is a crucial for patients with end-stage liver disease and predicting post-
transplant survival is a complex challenge. Deciding which patient receives a transplant or not is
an important and hard medical decision that takes into account many factors. The aim of this
thesis is to investigate a model capable of forecasting survival trends in patients subjected to liver
transplant. In particular, we exploit a hybrid neural Cox proportional hazards model. To the best of
our knowledge, this approach is novel and provides promising results. Indeed, this model is designed
in collaboration with Sant’Orsola hospital of Bologna to be integrated within the decision process of
surgeons. Our approach, which provides a data driven estimation of the the survivability function
associated to patients who do not receive a transplantation, is compared with the more classical Cox
survival model. More specifically, we compare our approach to two widely used libraries, namely,
scikit-survival and lifelines. The results obtained on a synthetic dataset prove that the neural
cox model effectively compares the classical model. We believe that the integration of deep learning
with classical statical approaches can surpass the limitation of both approaches: on the one hand,
classical cox model can be simplistic in describing complex relationships that neural networks can
instead capture; while on the other hand, the use of pre existing survival framework allows to obtain
a more transparent process within the realm of deep learning.

Keywords: survival analysis, neural networks, cox proportional hazard model, python.

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Application Domain . 1

2 Background 2
2.1 Cox Proportional Hazard Model . 2
2.2 Artificial Neural Network . 4
2.3 Brief History of Neural Network . 8
2.4 Survival Analysis . 11

2.4.1 Introduction . 11
2.4.2 Fundamental Concepts . 11
2.4.3 Computation . 14

2.5 Gray Box Model . 17
2.6 Related Works . 18

3 Metodology 20
3.1 Reference Library . 20
3.2 Architecture . 20
3.3 Creating The Model . 22
3.4 Parameter Identification . 22
3.5 Design of the output . 23

4 Experiment 29
4.1 Data Generation . 29

4.1.1 Parameter input . 29
4.1.2 Code . 30
4.1.3 Parameter Value . 33

4.2 Baseline distribution . 34
4.3 Pipeline . 36
4.4 Robusteness of the seeds . 37
4.5 Results . 38

4.5.1 F1 - Expected Future Lifeline Error . 38
4.5.2 F2 - Survivability Samples . 48
4.5.3 F3 - Survivability Error . 51

5 Conclusion 55

iv

6 Appendix 56
6.1 Model metrics for single seed . 56
6.2 Survivability error E1 . 58
6.3 Survivability error E2 . 60

Bibliography 62

List of Figures

2.1 Architecture of Cnn [27] . 5
2.2 Architecture of Gan [13] . 6
2.3 Architecture of AlexNet . 10
2.4 Map of mathematical entity used in survival analysis 16
2.5 Basic grey-box modeling approaches . 18

3.1 Architecture of application . 21
3.2 Neural network Cox layers . 22
3.3 Example not in scale of survivability curve for Heuristic E1 24
3.4 Example not in scale of survivability curve for Heuristic E2 in case T <= H

2 26
3.5 Example not in scale of survivability curve for Heuristic E2 in case T > H

2 26
3.6 Pipeline for neural model label creation and benchmarks 27

4.1 Baseline for orig method . 34
4.2 Baseline for weibull method . 34
4.3 Baseline for lognormal method . 35
4.4 Baseline for nbinom method . 35
4.5 Error of future lifetime for orig baseline E1 . 38
4.6 Error of future lifetime for lognormal baseline E1 . 39
4.7 Error of future lifetime for weibull baseline E1 . 40
4.8 Error of future lifetime for nbinom baseline E1 . 41
4.9 Error of future lifetime for orig baseline E2 . 43
4.10 Error of future lifetime for lognormal baseline E2 . 44
4.11 Error of future lifetime for weibull baseline E2 . 45
4.12 Error of future lifetime for nbinom baseline E2 . 45
4.13 Survivability curve for sample patient 1 with lognormal baseline E1 48
4.14 Survivability curve for sample patient 2 with lognormal baseline E1 48
4.15 Survivability curve for sample patient 3 with lognormal baseline E1 49
4.16 Survivability curve for sample patient 1 with lognormal baseline E2 49
4.17 Survivability curve for sample patient 2 with lognormal baseline E2 50
4.18 Survivability curve for sample patient 3 with lognormal baseline E2 50

vi

List of Tables

4.1 Dataframe.describe() for orig baseline E1 . 38
4.2 Dataframe.describe() for lognormal baseline E1 . 39
4.3 Dataframe.describe() for weibull baseline E1 . 41
4.4 Dataframe.describe() for nbinom baseline E1 . 41
4.5 Dataframe.describe() for orig baseline E2 . 43
4.6 Dataframe.describe() for lognormal baseline E2 . 44
4.7 Dataframe.describe() for weibull baseline E2 . 45
4.8 Dataframe.describe() for nbinom baseline E2 . 46
4.9 Survivability error of sksurv and lifelines . 51
4.10 Dataframe.describe() for survivability error of model lognormal baseline E1 52
4.11 Metrics for baseline hazard E1 . 52
4.12 Metrics for Beta E1 . 52
4.13 Dataframe.describe() for survivability error of model lognormal baseline E2 53
4.14 Metrics for baseline hazard E2 . 53
4.15 Metrics for Beta E2 . 53

6.1 Survivability error for sf version of rm model orig baseline E1 56
6.2 Survivability error for hsf version of rm model nbinom baseline E1 56
6.3 Survivability error for sf version of rm model lognormal baseline E2 57
6.4 Survivability error for hsf version of rm model weibull baseline E2 57
6.5 Dataframe.describe() for survivability error of model orig baseline E1 58
6.6 Dataframe.describe() for survivability error of model nbinom baseline E1 58
6.7 Dataframe.describe() for survivability error of model lognormal baseline E1 58
6.8 Dataframe.describe() for survivability error of model weibull baseline E1 59
6.9 Dataframe.describe() for survivability error of model orig baseline E2 60
6.10 Dataframe.describe() for survivability error of model nbinom baseline E2 60
6.11 Dataframe.describe() for survivability error of model lognormal baseline E2 60
6.12 Dataframe.describe() for survivability error of model weibull baseline E2 61

vii

Chapter 1

Introduction

1.1 Application Domain

Liver transplantation is a cornerstone treatment for end-stage liver disease and acute liver failure,
providing a vital lifeline for patients facing otherwise insurmountable health challenges , "whose
condition can’t be controlled with other treatments".[26]. This research aims to delve into the com-
plexities of survival analysis in general but oriented to the context of liver transplantation, seeking
to discover patterns, showing metrics for comparison with existing tools.

Survival analysis is a statistical approach to study the time to an event of interest, and is par-
ticularly suited to this investigation. In liver transplantation, the “event” typically refers to patient
mortality, with the primary goal of understanding the duration of survival and identifying deter-
minants that significantly influence this period. This analysis includes a range of methodologies,
from the Kaplan-Meier estimator, which provides an estimate of the survival functions, or the Cox
proportional hazard model, which can take into account the simultaneous influence of multiple
variables. The Cox proportional hazard model is the one chosen for this research.[4]

The aim of this study is twofold, on the one hand to find a solution in the context of neural
networks, since the use of a neural model together with the Cox model is scarcely present in the
scientific literature, on the other hand to compare the results with software tools already used in
the scientific community such as scikit-survival and lifelines.

In the following sections, we will provide a detailed overview of the methodology employed,
present and discuss the results.

1

Chapter 2

Background

During the development of this thesis it was necessary to address several topics that revolve around
software engineering. Some are necessary for the theoretical aspect such as the Cox Proportional
Hazard Model and survival analysis, others from an applicative point of view such as neural networks
or the gray-box model used for parameter identification, in this section they will be described with
a historical note regarding neural networks.

2.1 Cox Proportional Hazard Model

The Cox Proportional Hazards model, often referred to as the Cox model, is a statistical technique
used for survival analysis. Developed by Cox (1972), this model addresses the relationship between
covariates, for example a blood value, its coefficients called β and baseline hazard with the hazard
ratio and then survivability and survival time of subjects. Model take into account the risk of an
event occurring at a particular time point, given that the subject has survived up to that time.
Key Components of the Cox Proportional Hazards Model are :

1. Hazard Function: The hazard function, λ(t), represents the instantaneous rate at which
events occur, given no prior event. The Cox model states that hazards can be separated into
a baseline hazard function, λ0(t), which is common to all subjects and is dependent on the
covariates Xi and coefficients variables βi . Hazard is a non negative value.

2. Predictor or Covariates Variables: These are the variables that produce the hazard.
They can be continuous (e.g., age, vital measure) or categorical (e.g., sex and treatment type)
or binary. In the Cox model, the effects of these predictors were expressed exponentially to
ensure that the hazard remained positive.

3. Proportionality Assumption: A key assumption of the Cox model is that the hazard
ratios between individuals are constant over time. This implies that the effect of a predictors
variables on the hazard is multiplicative, meaning it’s proportional to the exponent of a sum
of the product of coefficients and covariates, and does not change over time.

2

2.1. Cox Proportional Hazard Model

Model Specification

The Cox model has the form :

λ(t|X) = λ0(t) exp(β1X1 + β2X2 + · · ·+ βpXp)

where λ(t|X) is the hazard function for a subject with a set of covariates variables X = (X1, X2, ..., Xn).
The term λ0(t) is the baseline hazard function and β1, β2, ..., βn are the coefficients of each covari-
ates. [7]
Exponential part exp(β1X1 + β2X2 + · · ·+ βpXp) is called baseline scaling factor , in this thesis is
also define as score risk.

Estimation and Interpretation

Estimating the coefficients β is typically performed using partial likelihood methods, which do
not require the knowledge of λ0(t). This feature allows the analysis of survival data without the
need to assume a particular parametric form for the baseline hazard function. [21]

The exponentiated coefficients, exp(βi), are interpreted as hazard ratios. For example, if
exp(β1) = 2, this indicates that the hazard for a subject with a one-unit increase in X1 is twice
that of a subject without such an increase, assuming all other variables are held constant. [5]

Applications and Limitations

The Cox Proportional Hazards model is widely used in various fields, including medicine, bi-
ology, and engineering, to study the time until an event occurs (e.g., death, relapse, and machine
failure). Its flexibility in handling censored data, where the event of interest has not occurred for
some subjects by the end of the study, adds to its robustness, some estimator manage censoring
introducing boundaries to initial assumption of Cox model.

However, this model has several limitations. The proportionality assumption may not hold in
all situations, and violations of this assumption can lead to biased estimates. Techniques, such as
time-dependent covariates or stratification, can be used to address these issues.[29]

Conclusion

The Cox Proportional Hazards model is a powerful tool for survival analysis, offering insights
into the relationships between covariates and all the features related to survivability like hazard and
survival time. Its ability to handle various types of data and flexibility in not requiring a specific
baseline hazard function make it a preferred choice for researchers. However, careful consideration
of the assumptions and limitations is crucial for obtaining accurate and meaningful results.

Ugo Marchesini 3

2.2. Artificial Neural Network

2.2 Artificial Neural Network

In this paragraph, the characteristics of AI are briefly highlighted.

Introduction

Neural networks, inspired by the structure and function of the human brain, are the cornerstone
of modern artificial intelligence (AI). These computational models has revolutionized fields from
computer vision and natural language to robotics and gaming. Their ability to learn from data
and make intelligent decisions has made them a necessity for advanced technological solutions. It
could be deemed as an approximation function because they are trained to imitate the relationship
between input and output

Neural Network Architecture

According to Artificial Intelligence : a modern approach : "Basically, a neural network is com-
posed of layers of nodes or neurons that process data and extract patterns. Neural networks are
composed of nodes or units connected by directed links. A link from unit j to unit i serves to propa-
gate the activation aj from j to i. Each link also has a numeric weight Wij associated with it, which
determines the strength and sign of the connection." [33]

The basic architecture includes:

1. Input Layer: The input layer receives the raw data. Each neuron in this layer represents a
feature or attribute of the input data.

2. Hidden Layers: These intermediate layers perform feature extraction and complex operation
, mathematical ones and more. Each neuron in the hidden layer receives input from the
previous layer, processes it, and passes it on to the next layer. The height (number of neurons
per layer) and width (number of hidden layers) can be varied, affecting the learning ability
of the network. The ability to manage non linear operator lead to potentially approximate
every possible function , some layer has an activation function that "fires" when a linear
combination of its inputs exceeds some threshold.[33]

3. Output layer: The output layer produces the final result, which could be the classification,
regression value, or any other expected output. In case of classification output it usually
means a probability to behave to that class.

Connections between neurons are associated with weights that are adjusted through training to
minimize errors in the network’s predictions. This process is governed by tuning hyperparameter
like learning rate, optimizer or loss function.

Ugo Marchesini 4

2.2. Artificial Neural Network

Types of Neural Networks

There are several types of neural networks, each designed for specific tasks;

1. Feedforward neural networks (FNNs): The simplest form where data is moved in one
direction from input to output. There are no cycles or loops in the network. They are mainly
used for pattern recognition and classification tasks.[10]

2. Convolutional Neural Networks (CNN): Specialized in processing grid-like data such as
images. They use convolutional layers to detect local hierarchies and patterns and make them
suitable for image and video recognition.[27][34]

3. Recurrent Neural Networks (RNN): Sequential prediction, such as time series, natural
language or daily flood. RNNs have connection formation cycles so they can retain memory of
previous inputs."While feedforward networks have different weights across each node, recurrent
neural networks share the same weight parameter within each layer of the network".[17]

4. Long Short-Term Memory (LSTM) Networks: A type of RNN-like gradient vanishing
problem that enables long-term learning capabilities. They are widely used in speech recognition.[14]

5. Generative Adversarial Networks (GAN): Consisting of two networks, "a generative
model G that captures the data distribution, and a discriminative model D that estimates the
probability that a sample came from the training data rather than G", essentially one compete
with each other. GANs are powerful for generating realistic synthetic data, such as images
and audio.[12]

Figure 2.1: Architecture of Cnn [27]

Ugo Marchesini 5

2.2. Artificial Neural Network

Figure 2.2: Architecture of Gan [13]

Applications of Neural Networks

Neural networks have a wide range of applications in various industries:

1. Health: They are used for diagnostic purposes, such as cancer detection in medical imaging,
epidemic prediction, and personalization of treatment plans.

2. Money: Neural networks help in credit scoring, fraud detection, algorithmic trading, and risk
management.

3. Automotive: They are crucial in the development of autonomous vehicles, enabling functions
such as object detection, lane keeping, and road planning.

4. Experience: From recommendation systems in streaming services to real-world language
translation and content generation, neural networks improve user experiences.

5. Manufacturing: They optimize supply chain management, predictive maintenance, product
failure detection,and process quality control.

6. Software Development : They suggest api or whole function to software developer com-
pleting source code with code completion features.

Challenges and Future Directions

Despite their successes, neural networks face several challenges:

1. Data requirements: Training deep neural networks could requires large amounts of labeled
data, which can be difficult and expensive. In some specific application like reinforced learning
do not need to be trained with label or true value, so they are not supervised but some task
could be computational challenging as well.

2. Computational resources: The training process is computationally intensive and often
requires specialized hardware such as GPUs or TPUs. Some SAAS website like such Google
Colaboratory that offers remote computation capabilities but could still not face some basic
problem due to the limits imposed by service provider.

Ugo Marchesini 6

2.2. Artificial Neural Network

3. Interpretability\Explainability: Neural networks are often seen as “black boxes” due to
their complex and opaque decision-making. Greater interpretability depends on trust and
transparency. Explainability resides on how the model explain results , output and parameters
, in human terms.[3]

4. Overfitting: Over trained neural network could not generalize the desired function , when
a neural network is overtrained is like it remembers training dataset underperforming on new
unseen data.

Some software framework like Tensorflow\Keras , PyTorch or ML from Microsoft offers powerful
api to build complex neural network application.

Ugo Marchesini 7

2.3. Brief History of Neural Network

2.3 Brief History of Neural Network

Historical hints [28]:

1. 1943 McCulloch and Pitts: defined the first binary threshold neuron model.

2. 1949 Hebb: from studies on the brain, he showed that learning is not a neuron property, but
it is due to a modification of synapses.

3. 1962 Rosenblatt: he proposed a neuron model that can be learned by examples: the percep-
tron.

4. 1969 Minsky and Papert showed the limitations of the perceptron: diminished enthusiasm on
neural networks.

5. 1982 Hopfield proposed a network model to create associative memories.

6. 1985 Rumelhart, Hinton and Williams: formalize supervised learning (Backpropagation)

7. 2006 Yoshua Bengio deep network

Introduction

Neural networks represent one of the most fascinating and revolutionary developments in the
field of artificial intelligence (AI). Their evolution has been a journey that has crossed several dis-
ciplines, including neurobiology , mathematics and computer science.

The Beginnings: The Artificial Neuron Model

In 1943, Warren McCulloch and Walter Pitts published a paper describing a mathematical model
of an artificial neuron. This model, known as the "McCulloch-Pitts neuron", used thresholds and
logic functions to simulate the behavior of biological neurons. Although rudimentary, this work laid
the foundation for future research on neural networks.

In 1949, six years after McCulloch and Pitts had shown how neural networks could compute,
McGill University physiologist Donald O. Hebb suggested how they could learn. He proposed the
idea that brain connections change as we learn different tasks, and that specific new neural struc-
tures account for knowledge. Hebb’s ingenious proposal dealt with the conductivity of synapses, or
connections between neurons. He postulated that the repeated activation of one neuron by another
through a particular synapse increased its conductivity. This change would make further activations
more likely and induce the formation of tightly connected paths of neurons in an otherwise loosely
connected structure :
"When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in one or both cells such that A
efficiency, as one of the cells firing B, is increased".[15]

Ugo Marchesini 8

2.3. Brief History of Neural Network

Adaptation and Learning: The Perceptron

In 1958, Frank Rosenblatt developed the perceptron, a type of neural network capable of learn-
ing to distinguish between different categories of input. The perceptron used a supervised learning
algorithm to adapt the weights of connections between neurons, improving its classification abil-
ity. However, the perceptron was limited and could not solve non-linearly separable problems, as
demonstrated by the book "Perceptrons" by Marvin Minsky and Seymour Papert in 1969.
Minsky’s early research experiences were in fish neurology and psychology: "Minsky did experi-
mental work in physical optics in the physics department He also grew interested in neurology and
talked to a zoology professor, John Welsh, into letting him use a roomful of equipment, where he
became an expert in the neurophysiology of crayfish (a small fresh-water lobster) Under the influence
of electrodes Minsky had attached to individual nerves of the animal’s claw, the crayfish picked up
a pencil, waved it around, and released it when Minsky excited the fibers that inhibited the closing
of the claws physics or dissecting crayfish, Minsky hung around the psychology laboratory, where
he was able to sample a cross-section of psychology as it existed in the late 1940s. At one end of
the lab was the behaviorist camp of B. F. Skinner and his followers, who then held sway over most
psychological research in the United States." [8]

The Rebirth: The Backpropagation Algorithm

Despite the initial limitations, interest in neural networks did not disappear. In the 1980s, a
crucial breakthrough was the introduction of the error backpropagation algorithm, developed by
Geoffrey Hinton, David Rumelhart, and Ronald Williams. This algorithm allowed training of mul-
tilayer neural networks , overcoming the limitations of the perceptron and paving the way for more
complex and powerful networks. "The backpropagation algorithm looks for the minimum of the error
function in weight space using the method of gradient descent. The combination of weights which
minimizes the error function is considered to be a solution of the learning problem" [31] A model
accurate description is found from the introduction of Learning representations by back-propagating
errors : "We describe a new learning procedure, back-propagation, for networks of neuron-like units.
The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the net and the desired output vector.
As a result of the weight adjustments, internal ’hidden’ units which are not part of the input or
output come to represent important features of the task domain, and the regularities in the task are
captured by the interactions of these units. The ability to create useful new features distinguishes
back-propagation from earlier, simpler methods such as the perceptron-convergence procedure." [32]

The Adventure of Deep Neural Networks

With the advancement of computer technology and the availability of large amounts of data,
deep neural networks (deep learning) have become practicable. These networks, made up of multiple
layers of artificial neurons, are capable of learning complex representations of data. In 2012, a major

Ugo Marchesini 9

2.3. Brief History of Neural Network

breakthrough occurred when a deep neural network called AlexNet won the ImageNet competition,
demonstrating the superiority of deep learning techniques in many tasks of visual recognition : "Our
results show that a large, deep convolutional neural network is capable of achieving recordbreaking
results on a highly challenging dataset using purely supervised learning".[22]

Figure 2.3: Architecture of AlexNet

Ugo Marchesini 10

2.4. Survival Analysis

2.4 Survival Analysis

2.4.1 Introduction

Survival analysis is a branch of statistics that deals with analyzing the time until an event of interest
occurs. This event could be death, the failure of a machine, the relapse of a disease, or any other
event that can be precisely defined and timed. Originating primarily in the field of medical research,
survival analysis has found applications across various disciplines, including engineering, economics,
and social sciences.[20] In engineering , and specifically in diagnosis and control, is called reliability
that a part of dependability.

2.4.2 Fundamental Concepts

Survival analysis revolves around three main components[20]:

• Survival Time: The duration between the starting point (e.g., diagnosis of a disease) and
the event of interest (e.g., death).When doing a survival analysis, we usually refer to the time
variable as survival time.We also typically refer to the event as a failure.[20]

• Censoring: This occurs when the exact survival time is unknown for some subjects. This
could be due to the study ending before the event occurs, the subject being lost to follow-up,
or the subject withdrawing from the study. There are three type of censoring : left-censored
, right-censored , interval-censored.

Left-centered : data can occur when a person’s true survival time is less than or equal to that
person’s observed survival time. For example the observation of the patient start after the
beginning of clinical study , or in the case of HIV first (positive) event of the patient like a
clinical exam is performed after the beginning of the study. It’s not possible to set at what
time first event occurs with the effect that survival time last longer then the period that the
person has been followed.

Right-centered : true survival time is equal to or greater than observed survival time. For
example when a patients exits observation.

Interval-censored : true survival time is within a known time interval. For example the
outcome of a HIV test of a patient is within two test , first negative and second positive , it’s
unknown the exact time of contagion.

There are generally three reasons why censoring may occur:
(1) a person does not experience the event before the study ends.
(2) a person is lost to follow-up during the study period.
(3) a person withdraws from the study because of death (if death is not the event of interest)
or some other reason (e.g., adverse drug reaction or other competing risk).

• Survival Function: Denoted as S(t), it represents the probability that the time to event
is longer than a specified time t. Mathematically, S(t) = P (T > t), where T is the random
variable representing the time to event.

Ugo Marchesini 11

2.4. Survival Analysis

Methods in Survival Analysis

Several statistical methods are used in survival analysis, each serving a specific purpose:

1. Kaplan-Meier Estimator: A non-parametric statistic used to estimate the survival function
from observed survival times. It provides a step function representing the probability of
survival over time and is useful for comparing survival curves between groups.

2. Cox Proportional Hazards Model: A semi-parametric model that assesses the effect of
explanatory variables on the hazard rate, which is the rate at which the event of interest
occurs. The Cox model assumes that the hazard ratios between groups are constant over
time. It’s a semi-parametric model because although the number of parameters is known, the
distribution of the baseline hazard is not known.

3. Parametric Models: These models assume a specific statistical distribution for the survival
times (e.g., exponential, Weibull, log-normal). They can provide more precise estimates when
the assumed distribution fits the data well.

4. Competing Risks Models: Used when subjects may experience one of several different types
of events, and the occurrence of one event prevents the occurrence of another (e.g., different
causes of death)."A competing risk is an event whose occurrence precludes the occurrence of
the primary event of interest. For instance, in a study in which the primary outcome was
time to death attributable to a cardiovascular cause, death attributable to a non cardiovascular
cause serves as a competing event." [2]

Applications of Survival Analysis

Survival analysis has wide-ranging applications:

• Medical Research: The primary application is in clinical trials and epidemiological studies
to evaluate the effectiveness of treatments, compare survival rates among patient groups, and
identify risk factors for diseases.[35]

• Reliability Engineering: Used to predict the lifespan of products and systems, device
failure, assess warranty claims, and plan maintenance schedules. For example, engineers
might use survival analysis to determine the probability of a machine part failing within a
certain period.[35]

Take in account differencies between the definition of reliability and avaliability in depend-
ability analysis reliability has some property[1] :

1. Ability of entity E to perform a desired function under given operational conditions and
for a given time interval

2. Assume an entity/item E s.t. it can fail, but it cannot be repaired

3. Reliability is measured as the probability that E is able to perform the required function
in time interval [0,t]

Ugo Marchesini 12

2.4. Survival Analysis

In dependability analysis avaliability has some property:

1. Assume E can fail and can be repaired

2. Availability is the ability of an entity E to be able to perform at time t the required function
under given operational conditions (more precisely is the probability of being in t into the
desired operational state).

3. It can be measured as probability A(t)=Pr(E is not down at time t), assuming is working
at 0

• Economics and Social Sciences: Applied to study job tenure, duration of unemployment,
time to divorce, and other life events. For example, economists might use survival analysis
to understand how long individuals stay unemployed and what factors influence the duration.
[9]

• Marketing: Helps in understanding customer churn, product life cycles, and the duration of
customer relationships. Businesses can use these insights to develop strategies for customer
retention, product development ,ranking , customer ratings, and contents size of description
of a mobile app. [25] [18][35]

Challenges and Future Directions

Despite its usefulness, survival analysis faces several challenges:

1. Censoring: Handling censored data appropriately is crucial for accurate analysis. Improper
handling can lead to biased results.

2. Complexity of Models: Advanced models, such as those involving time-varying covariates
or competing risks, can be complex and computationally intensive.

3. Assumptions of Models: Many survival analysis models rely on assumptions (e.g., pro-
portional hazards in the Cox model) that may not always hold true. Violations of these
assumptions can lead to incorrect conclusions.

4. Data Requirements: Large and well-structured datasets are often required to achieve reli-
able results. In many fields, collecting such data can be challenging.

Future research and advancements in survival analysis aim to address these challenges through:

1. Improved Computational Methods: Enhancements in computational power and algo-
rithms will allow for more complex and accurate models.

2. Machine Learning Integration: Combining survival analysis with machine learning tech-
niques can offer more flexible and powerful predictive models, especially for high-dimensional
data.

3. Robustness to Assumptions: Developing methods that are less sensitive to model as-
sumptions or that can dynamically adjust to violations of these assumptions will improve the
reliability of survival analysis.

Ugo Marchesini 13

2.4. Survival Analysis

2.4.3 Computation

Some definition

Letter T is used for the random variable for a time event, in this thesis means time of death ,
must me non negative.

Pr is a probability of an event ,

Survival function

S(t) = Pr(T > t) (2.1)

is the Survival function , means the probability the patient survive after time t , or the probability
of time of death is later of time t.

Lifetime distribution function

F (t) = Pr(T ≤ t) = 1− S(t) (2.2)

The lifetime distribution function, conventionally denoted F, is defined as the complement of the
survival function which represents the probability that the event of interest occurs earlier than
t.[35][36]

f(t) = F ′(t) =
d

dt
F (t) (2.3)

The function f(t) is the event density function or a probability density function of S(t) (PDF) , it
is the rate of death or failure events per unit time.

S(t) = Pr(T > t) =

∫ ∞

t
f(u) du = 1− F (t) (2.4)

The Survival function can be expressed as probability or a density function.

Hazard function

The hazard function h , is also denoted as λ

h(t) = lim
dt→0

Pr(t ≤ T < t+ dt|T ≥ t)

dt
= lim

dt→0

Pr(t ≤ T < t+ dt)

dt · S(t)
=

f(t)

S(t)
= −S′(t)

S(t)
(2.5)

Previuos expression states relationship between h , f, S. "The hazard function does not indicate the
chance or probability of the event of interest, but instead it is the rate of event at time t given that
no event occurred before time t".(Pag 5)[35]
Any hazard function must have these contrains :

1. hazard function must be not negative

∀t > 0, h(t) ≥ 0

Ugo Marchesini 14

2.4. Survival Analysis

2. sum of hazard must converge to infinite for t to infinite∫ ∞

0
h(t) dt = ∞

Cumulative hazard function

The cumulative hazard function is the integral , or the sum in case of discrete time , of the hazard
rate λ or h function from 0 to t.

Λ(t) = − logS(t) (2.6)

S(t) = exp(−Λ(t)) (2.7)

d

dt
Λ(t) = −S′(t)

S(t)
= λ(t) (2.8)

Λ(t) =

∫ t

0
λ(u) du (2.9)

The interpretation of cumulative hazard and hazard rate could be the following : "Hazard are
rates, and in that they are not unlike RPM revolution per minute of an automobile engine.Cumulative
hazards are the integral from zero to t of the hazard rates. Because an integral is really just a sum, a
cumulative hazard is like the total number of revolutions an automobile’s engine makes over a given
period"(Pag 15) [6]

Future lifetime

The expected future lifetime of a patient at time t giver is alive at time t0 :
starting with the probability of an event before t + t0

Pr(T ≤ t0 + t|T ≥ t0) =
Pr(t0 < T ≤ t0 + t)

Pr(T > t0)
=

F (t0 + t)− F (t0)

S(t0)
(2.10)

then the probability density
d

dt

F (t0 + t)− F (t0)

S(t0)
=

f(t0 + t)

S(t0)
(2.11)

the following equation , solved by integral by parts, compute the expected future lifetime as

1

S(t0)

∫ ∞

0
t · f(t0 + t)dt =

1

S(t0)

∫ ∞

t0

S(t)dt (2.12)

Ugo Marchesini 15

2.4. Survival Analysis

Figure 2.4: Map of mathematical entity used in survival analysis
[37]

Survivability S(t0) is conventionally 1 because it’s the time of the diagnosis of the patient. This
simplify the function that states that expected future lifetime is the integral of S(t) from t0 to ∞
or last observed event.

Ugo Marchesini 16

2.5. Gray Box Model

2.5 Gray Box Model

Modelling approach could be divided in :

1. White Box : we have theoretical knowledge of the system and the value of configuration
parameters.Complete explainability of the system. Usable for prediction without dataset.

2. Gray Box : we have theoretical knowledge of the system but the value of configuration
parameters. Parameter must be detected , for example in ANN could be trained with dataset.

3. Black Box : we don’t have neither theoretical knowledge of the system nor the value of
configuration parameters. No assumption on the inner mechanism of the system. Training
time could differ according to the used technology , for example a deeper DNN takes longer.
Data dataset must be avaliable and no explainability of the value of the parameter. Must be
trained and then use for prediction.

In this thesis will be use a gray box modelling approach (serial approch Type I [38]) in order to
detect parameter of Cox model (coefficients β , and baseline hazard) during the training phase
and predict survivability , hazard and future lifetime during prediction phase. Motivation of using
Grey-box model for parameter identification is also supported by experience : "Grey-box modeling
is an advantageous tool for system identification when obtained input/output experimental data are
insufficiently excited. The lack of information in the data can be often replaced with some additional
knowledge about the modeled system, which constricts the class of models under consideration." [30]

Ugo Marchesini 17

2.6. Related Works

Figure 2.5: Basic grey-box modeling approaches
[38]

2.6 Related Works

In this section is presented a summary of the content of a list of paper involved not deep neural
network and Cox model.

A scalable discrete-time survival model for neural networks : this paper addresses the problem
of survival analysis using a shallow neural model Nnet-survival, a discrete-time survival model that
is theoretically justified, naturally deals with non-proportional hazards that do not represent the
Cox model, with a good result for what concerns survivability.[11]

Continuous and discrete-time survival prediction with neural networks : it uses log-likelihood but
does not describe a particular neural network. Define a Constant Density Interpolation (CDI) where
S(t) is constant within two t interval, and Constant Hazard Interpolation (CHI) where hazard is
constant between 2 t interval, this method is used in various publications but its use is not considered
in this thesis.[23]

Time-to-event prediction with neural networks and Cox regression : in this paper the "proposed
loss function is verified to be a good approximation for the Cox partial log-likelihood", extend to non
proportional hazard assumption of Cox model and use SurvivalNet. [24]

Deep Neural Networks for Survival Analysis Based on a Multi-Task Framework : "introduce a
new method to calculate survival functions using the Multi-Task Logistic Regression (MTLR) model
as its base and a deep learning architecture as its core" but no neural network architecture is provide.

Five Years Survival of Patients After Liver Transplantation and Its Effective focus on Cox model

Ugo Marchesini 18

2.6. Related Works

using ANN without define a specific architecture.[19]
Neural Network-Based Piecewise Survival Models focus on : the piecewise constant density

model, the piecewise linear density model, the constant hazard model, and the linear hazard mode.
All methods based on shaping survivability as a piecewise with different contrains, also in this case
no neural achitecture model is provided.[16]

Ugo Marchesini 19

Chapter 3

Metodology

The main objective of the research is the comparison between existing software tools and a potential
new approach to calculate the survival of patients undergoing liver transplantation. In this phase,
generated mock data will be used. The tools used, apart from the already mentioned scikit-survival
and lifelines, are Visual Studio Code as IDE, Python as programming language and Tensorflow
Keras as framework for managing neural networks. A first version of the application that will
have to be developed has been provided, which already contains a library for generating mock data
and a method for the baseline hazard. Two neural models will be developed that have the same
architecture of the input and hidden layers, differing only in the output layer, each will be identified
uniquely. The developed model is identified from this point as rm (regressive model).

3.1 Reference Library

Software tools used as reference are scikit-survival and lifelines which provide an array of function
related to survial analisys. The main characteristics that will be compared are those related to
survivability, hazard and the parameters of the Cox model. Both library expose training capabilities
from a dataset in a form of time-to-event format that containt the event time and 2 flag for deceased
and censored. Occasionally scikit-survival is referred as sksurv.

3.2 Architecture

This section expose the achitecture of the application and the role of it’s main module
The modules described are to be understood in general as an abstraction of the data generation

pipeline and output benchmarks such as plots or tables, but despite this some "main" files of the
application work as described in the architecture.

1. Data Generation : is the module dedicated to the generation of mock data, the algorithm
used is the Discrete-time proportional hazards, the module accepts as parameters the seed and
the baseline hazard method, the censoring ratio, the number of beta coefficients , produces as
output a Pandas dataset , saves the dataset to a file

2. Data Build Model : the module is dedicated to the creation of neural models with the
Tensorflow Keras framework, the creation parameters such as the number of input and output

20

3.2. Architecture

Figure 3.1: Architecture of application
[38]

are passed from a global configuration file. It is possible to configure the initial values of the
network weights through a seed.

3. DataTraining : the module is dedicated to training models, both SkSurv and Lifelines and rm
, and is largely configurable. Hyperparameters are configurable through a global configuration
file.

4. Data Benchmark : the module is dedicated to processing parameters

Ugo Marchesini 21

3.3. Creating The Model

3.3 Creating The Model

The choice of the model is the result of attempts with deep networks. The research must satisfy
the requirement of building a predictive model according to the Cox model, the firsts attempts
went in the direction of building deep networks that allows to predict survivability using T as only
output label, but this path couldn’t identify, by architecture, the beta coefficients and the baseline
hazard, the first attempts also took into account the censoring event. Despite the exploration of
hyperparameters, the increase of states, the activation functions or the loss function, it was not
possible to achieve a significant result. The choice at this point fell on a shallow network that
implements the Cox function, with the T, survivability and optionally hazard as output.

Figure 3.2: Neural network Cox layers

There are two versions of the neural model, one with hazard, survivability and FLT (expected
future lifetime) called hsf and one with survivability and FLT. Both are used in the experimentation
phase. It has to consider Survivability layer as a cumulative sum of previous layer , in python is
computed by np.cumsum function, image is a semplification. The model proposed do not need bias
parameter.

3.4 Parameter Identification

Model has two main goal : identify parameter for cox model and predict key features of surviv-
ability analysis. It’s clear that accuracy of the first affect performance of the second. More model
parameters are similar to the generated ones more accurate will be the output of the network. For
the simplicity of the model the expected result is to perform better then other tools.

Ugo Marchesini 22

3.5. Design of the output

3.5 Design of the output

In order to train the neural network, it is necessary to build an output label function or ground
truth with which the network can compare to minimize the loss with the value predicted by the
network itself. Two heuristic functions have been identified, in this section their characteristics,
constraints and motivations will be explained. The calculations are intended for a continuous-time
context.

Heuristic E1

FLTe = T (3.1)

Se(0) = 1 (3.2)

Se(T) =
T

len(H)
(3.3)

Se(t >= len(H) + 1) = 0 (3.4)

Where S(t) is survivability from theory and Se(t) is survivability computed from heuristic.
H (horizon) is the array of times and len(H) the lenth.
Patients who survive after horizon are dropped from observation and are therefore "almost"

censored, it is assumed that they die on t after horizon for a conservative approach and computation
semplification, therefore at H + 1 all patients are dead, the hypothesis is that H is too small. It
is necessary to make a consideration about the calculation of FLTe starting from the survivability
curve Se created with the heuristic E1 : ∫ H+1

H
Se(t)dt > 0 (3.5)

∆FLTe(t) = FLTe(t)− FLT (3.6)

∀t > 0,∆FLTe(t) =
t

2
> 0 (3.7)

A heuristic that imposed Se(H) == 0 would cancel the contribution of ∆FLTe(t) , but would
impose as a constraint that no patient survives to time H, this is considered a violation of the
generated data. During the experimental phase it will emerge that the FLT prediction is conservative
despite the label being optimistic.

Ugo Marchesini 23

3.5. Design of the output

Figure 3.3: Example not in scale of survivability curve for Heuristic E1

Ugo Marchesini 24

3.5. Design of the output

Heuristic E2

FLTe = T (3.8)

Se(0) = 1 (3.9)

Se(T) =
1

2
(3.10)

Se(t >= 2 ∗ T) = 0 (3.11)

In this case we consider the survivability of the patient 1
2 at T, this is motivated by considering

that at T the patient is at his MTTF (mean time to failure) so he has a 50% probability of a death
event, in order to guarantee the conservation of the first constraint that comes from the theory
then the S(t) = 0 for t = 2 ∗ T , essentially the function is a right-angled triangle with height
S(0) = 1 and base 2 * T. In this case there is no ∆FLTe(t). It is necessary to make a consideration
regarding the calculation of the FTL starting from the survivability, given that FLTs =

∫∞
t0

S(t)dt,
the computation in the model is performed at discrete-time or it is a summation of array values that
covers up to H + 1 , the survivability of the E2 that exceeds H + 1 is not taken into consideration.

FLTs(T) =

T <= H

2 =⇒
∫∞
t0

S(t)dt

T > H
2 =⇒

∫ H
t0

S(t)dt

(3.12)

This means that for T > H
2 the FLTs will be conservative.

The equation 3.12 has as a consequence the rewriting of the equation 3.11 which concerns the
survivability at the last event.

T <= H
2 =⇒ Se(t >= 2 ∗ T) = 0

T > H
2 =⇒ Se(t >= len(H) + 1) = 0

(3.13)

During the experimentation phase, it will be evaluated how this feature impacts the performance
of the metrics.

There are two versions of the neural model: sf and hsf , for each it is necessary that the
instantiation of the model in pair with its output.

Ugo Marchesini 25

3.5. Design of the output

Figure 3.4: Example not in scale of survivability curve for Heuristic E2 in case T <= H
2

Figure 3.5: Example not in scale of survivability curve for Heuristic E2 in case T > H
2

Ugo Marchesini 26

3.5. Design of the output

Figure 3.6: Pipeline for neural model label creation and benchmarks

Hazard

Considerations on the calculation of the hazard are necessary. The model in the hsf version
requires the calculation of the hazard starting from the survivability which is the heuristic function.
In the Cox model, the calculation of the hazard starts from the covariates Xi , the coefficients betai
and the baseline hazard , while the calculation of the survivability is obtained once the hazard
has been obtained. The heuristic function instead defines a survivability function and to obtain
its corresponding hazard it is necessary to proceed "backwards". Starting from the definition of
survivability as a function of the hazard

S(t) = − exp(Λ(t))

and making it explicit for various t

S(0) = − exp(h(0))

S(1) = − exp(h(0) + h(1))

. . .

S(n) = − exp(h(0) + h(1) + · · ·+ h(n))

(3.14)

Ugo Marchesini 27

3.5. Design of the output

it is possible to obtain a system of linear equations of len(H) equations in len(H) unknowns

lnS(0) = −(h(0))

lnS(1) = −(h(0) + h(1))

. . .

lnS(n) = −(h(0) + h(1) + ...+ h(n))

(3.15)

or in more explit form better usable by python numpy library

lnS(0) = −h(0)

lnS(1) = −h(0)− h(1)

. . .

lnS(n) = −h(0)− h(1)− · · · − h(n)

(3.16)

whose solution are the values of the hazard for each t. It is possible to consider the fact that
in hazard is invariant meaning that an infinite number of combinations of covariates Xi, from the
coefficients betai and from the baseline hazard have as output according to the Cox model the same
value of hazard, therefore it is already possible at this point to identify that it will not be possible
to correctly identify the network parameters through its training.

Ugo Marchesini 28

Chapter 4

Experiment

4.1 Data Generation

The Data Generation module requires a subsection for further information.

4.1.1 Parameter input

In this section, the steps for generating the data will be briefly described.
The data generation algorithm takes as input this parameter :

1. number of Beta coefficients

2. number of patients

3. split ratio train/test

4. censoring ratio

5. baseline hazard method

6. baseline hazard length (or number of observed tte)

7. random data generation seed

A library provide 4 baseline hazard method : orig, weibull, lognormal, nbinomial.
The module has in outputs:

1. the covariates Xi for each patient, uniform random distribution between 0 and 1 excluded

2. the label for training the network: survivability, hazard and futurelifetime

The data structure (horizon) is defined as follows

horizon = [number of observed tte + 1 , min follow-up , max follow-up , step follow-up]

this data structure was used in the preliminary version but is no longer used in the latest , but
for backwards compatibility with the previous data generation it has remained.

The scikit-survival software library has some constraints for training its model

29

4.1. Data Generation

1. Constraint 1 : scikit-survival requires that test survival event lie within the range of train
survival event

2. Constraint 2 : horizons.max() <= test.max() or horizons.min() < test.min(), TTE of test
must encompass min end max time of horizon

3. Constraint 3 : every split ,segment in split_data_from_dataframe_multisegment python func-
tion, must have at least 2 event, at least 1 for train and 1 for test

The split function must satisfy a further constraint : every interval defined in horizon is defined as
a segment or split and in each segment the train test rate is satisfied, this implies that in particular
that in the last segment, the one after the last follow up must be at least one test sample, it must
not be the last one.

4.1.2 Code

To produce the dataset, it is necessary to produce the input parameters sequentially. In this section,
some key lines of code are dedicated to data generation.

Coefficients β

covars_coeff

=

np.random.uniform(low=config.beta_low, high=config.beta_high, size=self.args.n_covariates)

Covariates Xi

covars = np.random.rand(self.args.n_patients, self.args.n_covariates)

Baseline hazard

bhm = BaselineHazardMethods()

self.baseline_hazard

=

[bhm.get_method(self.baseline_hazard_method_name)(_) for _ in range(config.end_horizon)]

Function for generate dataset E1

simulation_df

=

generator_.query_E1_v1(h=bhm.get_method(self.baseline_hazard_method_name),

x=covars,

beta=covars_coeff)

Ugo Marchesini 30

4.1. Data Generation

Function for generate dataset E2

simulation_df

=

generator_.query_E2_v2(h=bhm.get_method(self.baseline_hazard_method_name),

x=covars,

beta=covars_coeff)

Structure for dataset

H = self.discrete_time_proportional_hazards(self.horizon,h,x,beta)

n_covars = x.shape[1]

cov_name = [f"x_{i}" for i in range(n_covars)]

data = DataFrame(

columns=["horizon"] + cov_name + ["h_t",

"deceased",

"censored",

"TTE",

"hazard",

"survivability",

"futurelifetime"],

dtype=object

)

Where "TTE","hazard","survivability" and "futurelifetime" are generated as described in method-
ology. Futurelifetime is normalize between 0 and 1.

Complete loop for data generation

#linear equation

A = self.get_matrix_A(config.baseline_hazard_size + 1)

random.seed(global_prj.seed)

for each patient compute flags

for i_patient in range(len(x)):

tte_value = -1

j_time = 1

is_censored = 0

is_deceased = 0

survivability = np.zeros(config.baseline_hazard_size + 1)

survivability[j_time - 1] = 1

Ugo Marchesini 31

4.1. Data Generation

future_lifetime = 0

while j_time < self.horizon:

chance = random.random()

if chance <= self.p_censoring:

tte_value = j_time

is_censored = 1

break

elif (self.p_censoring < chance)

and

(chance <= self.p_censoring + H[j_time, i_patient]):

corresponds to chance > 1 - P(survive)

tte_value = j_time

is_deceased = 1

future_lifetime = tte_value / (config.baseline_hazard_size)

break

else:

pass

j_time += 1

if tte_value >= 0 :

pass

else:

tte_value = config.baseline_hazard_size

if is_deceased != 1: # needed when patient dies at last observation

survived

is_censored = 1 # last time horizon

future_lifetime = tte_value / (config.baseline_hazard_size) # 1 by definition

survivability = self.get_survivability_E1(tte_value,config.baseline_hazard_size)

B = np.log(survivability)

hazard = np.linalg.solve(A, B)

row = np.zeros(1 + n_covars + 4 + 3, dtype=object)

i_column:int = 0

row[i_column] = config.baseline_hazard_size

i_column += 1

for i, v in enumerate(x[i_patient]):

row[i_column + i] = v

Ugo Marchesini 32

4.1. Data Generation

row[i_column + n_covars + 0] = H[-1, i_patient]

row[i_column + n_covars + 1] = int(is_deceased)

row[i_column + n_covars + 2] = int(is_censored)

row[i_column + n_covars + 3] = int(tte_value)

row[i_column + n_covars + 4] = hazard

row[i_column + n_covars + 5] = survivability

row[i_column + n_covars + 6] = future_lifetime

data.loc[i_patient] = row

Previous line expose how data is generated , how censoring and deceased event are choosen and
how are stored in a data structure that will be saved as json file.

4.1.3 Parameter Value

Data generation has this parameter value for all the duration of experiment :

1. number of Beta coefficients = 7

2. number of patient s= 10000

3. split ratio train/test = 0.2

4. censoring ratio = 0.01

5. baseline hazard method = [orig, weibull, lognormal, nbinomial]

6. baseline hazard length (or number of observed tte) = 60

7. random data generation seed = [40128,40129,40131,40134]

8. random model seed = [42,2001,1984,10191,100,221,451,2024]

Ugo Marchesini 33

4.2. Baseline distribution

4.2 Baseline distribution

The 4 baseline hazards used have constant values throughout the experiment.

1. orig : log_correction = 1.002, risk_correction = 3, decease_rate = 0.001

2. weibull : weibull_lambda = 60, weibull_kappa = 5

3. lognormal : lognormal_mu = 2, lognormal_sigma = 0.9

4. nbinomial : negative_binomial_n = 200, negative_binomial_p = 0.9

Figure 4.1: Baseline for orig method

Figure 4.2: Baseline for weibull method

Ugo Marchesini 34

4.2. Baseline distribution

Figure 4.3: Baseline for lognormal method

Figure 4.4: Baseline for nbinom method

Ugo Marchesini 35

4.3. Pipeline

4.3 Pipeline

The generation of results is done through the execution of scripts. The scripts have input parameters
defined in configuration files such as config.py or directly in the main of the executed file.

Generate Data

First the file generate_data_Ex.py is followed where x is the version of the heuristic. gener-
ate_data_Ex.py allows the generation of mock data, both those of typical inputs of a time-to-event
problem such as the time of the event (T) whether it is a death or censoring, and the output to
be provided to the network as supervised labels such as the hazard values, survivability for each
expected time and the T. The files are named data.<bm>.json , baseline_hazard.<bm>.npy and
beta.<bm>.npy where <bm> are the methods for generating the baseline hazard.

Generate X Y

generate_x_y_Ex.py allows the creation of the train and test files of x and y for the neural
network in its hsf or sf version starting from the data.<bm>.json , baseline_hazard.<bm>.npy
and beta.<bm>.npy.

Generate benchmark

In this phase, all the models are trained, both the sksurv and lifelines ones and the rm mod-
els. In input, there are the files from the previous phase and in output, the neural models and
the benchmark files with the beta and baseline_hazard parameters extracted from all the models
and collected in files of the type <bm>.bmk.csv. The script used has a name of the form gener-
ate_benchmark_Ex.py.

Generate Plot

This phase is composed of a set of scripts with the aim of generating drawings, tables starting
from the benchmark files generated in the previous phase.

Ugo Marchesini 36

4.4. Robusteness of the seeds

4.4 Robusteness of the seeds

The initialization of the parameters of the neural network can disturb the training result. In this
paragraph the results of a training with various seed will be illustrated:

42, 2001, 1984, 10191, 100, 221, 451, 2024

During the exposure of the results in generate_plot_Ex_F3.py the metrics that will demonstrate
the substantial robustness of the network to the initialization of the weights will be visible.

Ugo Marchesini 37

4.5. Results

4.5 Results

In this section the results of the experiments will be shown, divided by script.

4.5.1 F1 - Expected Future Lifeline Error

The generate_plot_Ex_F1.py script outputs box plots of FLT errors on the sksurv-kit , lifelines
and rm models. According to seaborn documentation: "A box plot (or box-and-whisker plot) shows
the distribution of quantitative data in a way that facilitates comparisons between variables or across
levels of a categorical variable. The box shows the quartiles of the dataset while the whiskers extend
to show the rest of the distribution, except for points that are determined to be “outliers” using a
method that is a function of the inter-quartile range." The error calculation is carried out on all
patients in a dataset, in particular on the dataset.1. As regards the rm model, all the seeds of the
models (8) are taken into consideration.

Figure 4.5: Error of future lifetime for orig baseline E1

- sksurv lifelines rm

count 2648 2648 2648
mean -0.373303 -0.148108 0.837364
std 0.488250 0.553287 1.567829
min -2.070085 -2.008368 -2.340332
25% -0.715417 -0.495635 -0.238274
50% -0.301691 -0.088969 0.547827
75% 0.019571 0.258855 1.480802
max 0.637465 1.113489 6.625526

Table 4.1: Dataframe.describe() for orig baseline E1

Ugo Marchesini 38

4.5. Results

Figure 4.6: Error of future lifetime for lognormal baseline E1

- sksurv lifelines rm

count 1508 1508 1508
mean -1.708762 -13.512008 3.666658
std 0.974322 4.390788 1.196521
min -5.041092 -20.819822 0.366877
25% -2.340052 -17.389882 2.871436
50% -1.668061 -14.150164 3.633177
75% -1.032679 -10.044308 4.495265
max 0.983616 -2.058698 6.822094

Table 4.2: Dataframe.describe() for lognormal baseline E1

Ugo Marchesini 39

4.5. Results

Figure 4.7: Error of future lifetime for weibull baseline E1

Ugo Marchesini 40

4.5. Results

- sksurv lifelines rm

count 1494 1494 1494
mean -0.020129 3.685576 -0.469571
std 0.590456 1.440856 0.936752
min -0.961195 0.297831 -2.505561
25% -0.468129 2.717292 -1.188734
50% -0.186019 3.783859 -0.576676
75% 0.342947 4.390283 0.214644
max 1.877410 8.580904 6.236416

Table 4.3: Dataframe.describe() for weibull baseline E1

Figure 4.8: Error of future lifetime for nbinom baseline E1

- sksurv lifelines rm

count 2806 2806 2806
mean -0.452776 6.384822 -1.176806
std 0.916857 2.636889 2.268408
min -2.934620 2.483639 -4.736751
25% -1.168143 4.818322 -2.884139
50% -0.424757 5.450116 -1.876407
75% 0.385262 8.129015 0.038940
max 1.161252 13.030403 8.251937

Table 4.4: Dataframe.describe() for nbinom baseline E1

Ugo Marchesini 41

4.5. Results

From these representations, which put different models in competition, it becomes evident that
the rm model can be defined as qualitatively competitive with other models created by widely used
frameworks. It can also be noted that there is a dependence on the baseline distribution.
The hypothesis that can be made is that since the E1 heuristic approximates an exponential, that
is, a function that is in the form:

xλt

distributions that have a similarity to an exponential distribution have a smaller error.

Ugo Marchesini 42

4.5. Results

Figure 4.9: Error of future lifetime for orig baseline E2

- sksurv lifelines rm

count 2648 2648 2648
mean -0.373303 -0.148108 3.908155
std 0.488250 0.553287 2.256224
min -2.070085 -2.008368 -0.322304
25% -0.715417 -0.495635 2.146486
50% -0.301691 -0.088969 3.068770
75% 0.019571 0.258855 6.101203
max 0.637465 1.113489 9.113644

Table 4.5: Dataframe.describe() for orig baseline E2

Ugo Marchesini 43

4.5. Results

Figure 4.10: Error of future lifetime for lognormal baseline E2

- sksurv lifelines rm

count 1508 1508 1508
mean -1.708762 -13.512008 6.826028
std 0.974322 4.390788 3.922383
min -5.041092 -20.819822 -1.138089
25% -2.340052 -17.389882 4.032566
50% -1.668061 -14.150164 5.513701
75% -1.032679 -10.044308 10.107318
max 0.983616 -2.058698 16.937363

Table 4.6: Dataframe.describe() for lognormal baseline E2

Ugo Marchesini 44

4.5. Results

Figure 4.11: Error of future lifetime for weibull baseline E2

- sksurv lifelines rm

count 1494 1494 1494
mean -0.020129 3.685576 -0.767771
std 0.590456 1.440856 1.085870
min -0.961195 0.297831 -3.518409
25% -0.468129 2.717292 -1.539793
50% -0.186019 3.783859 -0.808041
75% 0.342947 4.390283 -0.057648
max 1.877410 8.580904 6.502362

Table 4.7: Dataframe.describe() for weibull baseline E2

Figure 4.12: Error of future lifetime for nbinom baseline E2

Ugo Marchesini 45

4.5. Results

- sksurv lifelines rm
count 2806 2806 2806
mean -0.452776 6.384822 4.213793
std 0.916857 2.636889 4.695931
min -2.934620 2.483639 -1.566870
25% -1.168143 4.818322 1.429265
50% -0.424757 5.450116 2.674796
75% 0.385262 8.129015 4.951724
max 1.161252 13.030403 29.049124

Table 4.8: Dataframe.describe() for nbinom baseline E2

Ugo Marchesini 46

4.5. Results

The E2 heuristic performs worse than E1, this confirms the hypothesis that an output label
distribution similar to an exponential is more similar to the generated distribution.
The last consideration that can be made is that the model with E1 heuristic performs for some
distribution as well or better than the lifelines model but still worse than sksurv-kit.

Ugo Marchesini 47

4.5. Results

4.5.2 F2 - Survivability Samples

In this paragraph the survivability of the three models are put in competition for the entire obser-
vation time. Three generated patients were taken and the survival curves are shown only for the
lognormal baseline.

Figure 4.13: Survivability curve for sample patient 1 with lognormal baseline E1

Figure 4.14: Survivability curve for sample patient 2 with lognormal baseline E1

Ugo Marchesini 48

4.5. Results

Figure 4.15: Survivability curve for sample patient 3 with lognormal baseline E1

Figure 4.16: Survivability curve for sample patient 1 with lognormal baseline E2

The E1 heuristic for these samples is better than the one for E2 , the most interesting aspects
are that the rm model performs better than lifelines both because it is more precise and because it
is conservative compared to lifelines which is optimistic since F1, and in general for the prediction
of survivability or FLT it is preferable to have a conservative result.

Ugo Marchesini 49

4.5. Results

Figure 4.17: Survivability curve for sample patient 2 with lognormal baseline E2

Figure 4.18: Survivability curve for sample patient 3 with lognormal baseline E2

Ugo Marchesini 50

4.5. Results

4.5.3 F3 - Survivability Error

In this section, the metrics for the survivability error of each model are presented only for the
lognormal baseline hazard generation method.

metrics sksurv.breslow sksurv.efron lifelines.breslow lifelines.spline
mean -0.01244 -0.01149 -0.21346 -0.21290
var 0.00086 0.00092 0.00889 0.00901
mse 0.00102 0.00105 0.05445 0.05434
mape 6.25 5.66 79.40 79.590

Table 4.9: Survivability error of sksurv and lifelines

Ugo Marchesini 51

4.5. Results

E1

sf hsf
count 361920 361920
mean 0.05653 0.05956
std 0.05110 0.06412
min -0.04939 -0.05802
25% 0.02483 0.01976
50% 0.04718 0.04557
75% 0.07354 0.07721
max 0.41009 0.45686

Table 4.10: Dataframe.describe() for survivability error of model lognormal baseline E1

metrics sksurv.breslow sksurv.efron lifelines.breslow lifelines.spline rm.sf.42 rm.hsf.42
mse 9.30E-05 9.38E-05 0.00030 0.00029 0.00107 0.00245
rmse 0.00964 0.00968 0.01757 0.017206 0.03279 0.04956
mape 3.29E+17 3.32E+17 1.42E+17 1.60E+17 4.02E+16 2.64E+14

Table 4.11: Metrics for baseline hazard E1

metrics sksurv.breslow sksurv.efron lifelines.breslow lifelines.spline sf.42 hsf.42
mse 0.00502 0.00764 0.00493 0.00471 0.016555 0.02022
rmse 0.07086 0.08742 0.07027 0.06869 0.12866 0.14221
mape 12.21 14.63 12.24 12.02 14.65 15.57

Table 4.12: Metrics for Beta E1

Ugo Marchesini 52

4.5. Results

E2

- sf hsf
count 45240 45240
mean 0.068420 0.148443
std 0.048863 0.092878
min -0.023171 -0.064375
25% 0.037589 0.075524
50% 0.058866 0.156753
75% 0.085200 0.209108
max 0.405986 0.557202

Table 4.13: Dataframe.describe() for survivability error of model lognormal baseline E2

metrics sksurv.breslow sksurv.efron lifelines.breslow lifelines.spline rm.sf.42 rm.hsf.42
mse 9.30E-05 9.38E-05 0.00030 0.00029 0.00111 0.00878
rmse 0.00964 0.00968 0.01757 0.01720 0.03338 0.09370
mape 3.29E+17 3.32E+17 1.42E+17 1.60E+17 7.94E+16 126.79

Table 4.14: Metrics for baseline hazard E2

metrics sksurv.breslow sksurv.efron lifelines.breslow lifelines.spline sf.42 hsf.42
mse 0.00502 0.00764 0.00493 0.00471 0.01244 0.15335
rmse 0.07086 0.08742 0.07027 0.06869 0.11156 0.39161
mape 12.21 14.63 12.24 12.02 13.38 45.34

Table 4.15: Metrics for Beta E2

Ugo Marchesini 53

4.5. Results

Consideration

Using operator > as "performs better" (mean lower) it’s possible make some considerations that
can be done are that:

1. the rm model is robust to the initialization seed of the weight parameters of the neural networks
(see Appendix)

2. sksurv is the model, with both methods, that performs better overall

3. E1 performs better than E2 on future lifetime (mean , var)

4. model performs better than lifelines on future lifetime , in 6 out of 8 case mean is less , and
when mean is higher it’s conservative

5. E1 performs better than E2 on survivability (mse and mape)

6. baseline hazard parameter identification (mape): E2 > E1 for both version

7. beta parameter identification (mape): E2 sf > E1 sf > E1 hsf > E2 hsf

8. baseline hazard parameter identification for both heuristics (mape) : hsf version > sf versione
> lifeline > sksurv

9. baseline hazard parameter identification for both heuristics (mse) : sksurv > lifeline > hsf
version > sf version

10. beta parameter identification for both heuristics (mse) : sksurv or lifeline > sf version or hsf
version

11. beta parameter identification for both heuristics (mape) : sksurv ∼ lifeline ∼ sf version

Ugo Marchesini 54

Chapter 5

Conclusion

The "competition" between models led to the conclusion that although sksurv is the most accurate,
a shallow neural model with only 2 hidden layers is competitive with the lifelines prediction model.

The aim of obtaining the values of βi and baseline hazard through a gray-box model used as a
parameter identification tool did not give the expected results for the constraint of the hazard as
an invariant in the computation of the survivability.

The complete explainability of the model, the simplicity that leads to a low execution time and
low memory occupation, a good "conservative" accuracy of the future lifetime and a survivability
that has a distribution similar to the one generated are the positive results of the research.

Needs to satisfy constrains of sksurv and lifelines in order to compare to a model do not allow
to explore cases like all patients died before horizon.

Future implementations can include an identification of the baseline hazard and its parameters
because if it is true that the Cox model does not make assumptions on the distribution of the
baseline it is still possible to identify it during the creation phase of the output labels of the model
without invalidating the initial assumptions.

55

Chapter 6

Appendix

6.1 Model metrics for single seed

metrics 42 2001 1984 10191 100 221 451 2024
mean 0.06042 0.05457 0.05964 0.04753 0.06832 0.04802 0.06533 0.04840
var 0.00244 0.00258 0.00244 0.00273 0.00232 0.00277 0.00241 0.00269
mse 0.00609 0.00555 0.00600 0.00499 0.00699 0.00508 0.00668 0.00503
mape 12.03 10.89 11.84 9.95 13.84 10.05 13.25 10.03

Table 6.1: Survivability error for sf version of rm model orig baseline E1

metrics 42 2001 1984 10191 100 221 451 2024
mean 0.06349 0.05810 0.06235 0.05019 0.07092 0.05125 0.06877 0.05139
var 0.00390 0.00409 0.00391 0.00434 0.00372 0.00434 0.00379 0.00429
mse 0.00793 0.00747 0.00780 0.00686 0.00875 0.00697 0.00852 0.00694
mape 12.67 11.90 12.44 11.38 13.98 11.44 13.61 11.53

Table 6.2: Survivability error for hsf version of rm model nbinom baseline E1

56

6.1. Model metrics for single seed

metrics 42 2001 1984 10191 100 221 451 2024
mean 0.08050 0.07468 0.07926 0.06640 0.08689 0.06998 0.08796 0.06841
var 0.00217 0.00230 0.00218 0.00245 0.00209 0.00243 0.00215 0.00238
mse 0.00865 0.00788 0.00846 0.00686 0.00964 0.00733 0.00989 0.00706
mape 17.410 15.950 17.130 13.760 19.180 14.770 19.670 14.250

Table 6.3: Survivability error for sf version of rm model lognormal baseline E2

metrics 42 2001 1984 10191 100 221 451 2024
mean 0.15014 0.15139 0.15033 0.14946 0.15115 0.15146 0.15406 0.14844
var 0.00862 0.00880 0.00871 0.00870 0.00875 0.00870 0.00877 0.00862
mse 0.03116 0.03172 0.03131 0.03104 0.03159 0.03165 0.03251 0.03066
mape 41.550 41.850 41.640 41.430 41.780 41.810 42.340 41.230

Table 6.4: Survivability error for hsf version of rm model weibull baseline E2

Ugo Marchesini 57

6.2. Survivability error E1

6.2 Survivability error E1

sf hsf
count 635520 635520
mean 0.01475 0.01390
std 0.10270 0.11931
min -0.40409 -0.40544
25% -0.06824 -0.08549
50% -0.01073 -0.01847
75% 0.09774 0.11645
max 0.27439 0.29618

Table 6.5: Dataframe.describe() for survivability error of model orig baseline E1

sf hsf
count 673440 673440
mean -0.00170 -0.00322
std 0.18498 0.19012
min -0.29744 -0.29150
25% -0.13819 -0.15096
50% -0.05903 -0.05799
75% 0.10327 0.11445
max 0.74381 0.68320

Table 6.6: Dataframe.describe() for survivability error of model nbinom baseline E1

sf hsf
count 361920 361920
mean 0.05653 0.05956
std 0.05110 0.06412
min -0.04939 -0.05802
25% 0.02483 0.01976
50% 0.04718 0.04557
75% 0.07354 0.07721
max 0.41009 0.45686

Table 6.7: Dataframe.describe() for survivability error of model lognormal baseline E1

Ugo Marchesini 58

6.2. Survivability error E1

sf hsf
count 358560 358560
mean -0.00923 -0.00876
std 0.12765 0.13106
min -0.37842 -0.39286
25% -0.08593 -0.08023
50% 0.02339 0.02694
75% 0.07189 0.07576
max 0.46546 0.41874

Table 6.8: Dataframe.describe() for survivability error of model weibull baseline E1

Ugo Marchesini 59

6.3. Survivability error E2

6.3 Survivability error E2

sf hsf
count 635520 635520
mean 0.03843 0.09065
std 0.09722 0.13597
min -0.40398 -0.40544
25% -0.03510 -0.00290
50% 0.00119 0.04122
75% 0.11532 0.18223
max 0.30428 0.55824

Table 6.9: Dataframe.describe() for survivability error of model orig baseline E2

sf hsf
count 673440 673440
mean 0.04461 0.11854
std 0.15460 0.16052
min -0.20949 -0.27342
25% -0.05127 0.00340
50% -0.01267 0.07299
75% 0.10631 0.23223
max 0.80464 0.78152

Table 6.10: Dataframe.describe() for survivability error of model nbinom baseline E2

sf hsf
count 361920 361920
mean 0.07677 0.15081
std 0.04830 0.09336
min -0.02452 -0.06437
25% 0.04672 0.07763
50% 0.06881 0.15961
75% 0.09514 0.21192
max 0.42522 0.56384

Table 6.11: Dataframe.describe() for survivability error of model lognormal baseline E2

Ugo Marchesini 60

6.3. Survivability error E2

sf hsf
count 358560 358560
mean -0.02623 -0.02651
std 0.15885 0.15384
min -0.49780 -0.47972
25% -0.10701 -0.11204
50% 0.02560 0.02373
75% 0.07447 0.07207
max 0.46384 0.46404

Table 6.12: Dataframe.describe() for survivability error of model weibull baseline E2

Ugo Marchesini 61

Bibliography

[1] From lesson material (slide) of Diagnosis and Control course of Prof. Andrea Tilli, Unibo.

[2] Austin, P. C., Lee, D. S., and Fine, J. P. Introduction to the analysis of survival data in
the presence of competing risks. Circulation 133, 6 (2016), 601–609.

[3] AWS. Interpretability versus interpretability.

[4] bmj. Suvival analisis.

[5] Brembilla, A., Olland, A., Puyraveau, M., Massard, G., Mauny, F., and Falcoz,

P.-E. Use of the cox regression analysis in thoracic surgical research. Journal of thoracic
disease 10, 6 (2018), 3891.

[6] Cleves, M. An introduction to survival analysis using Stata. Stata press, 2008.

[7] Cox, D. R. Regression models and life-tables. Journal of the Royal Statistical Society 34, 2
(January 1972), 187–202.

[8] Crevier, D. AI: The Tumultuous Search for Artificial Intelligence 1993 New York. NY Basic
Books, 1993.

[9] Danacica, D.-E., and Babucea, A.-G. Using survival analysis in economics. survival 11
(2010), 15.

[10] deepai. Feedforward neural network.

[11] Gensheimer, M. F., and Narasimhan, B. A scalable discrete-time survival model for
neural networks. PeerJ 7 (2019), e6257.

[12] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A., and Bengio, Y. Generative adversarial networks. Communications of
the ACM 63, 11 (2020), 139–144.

[13] google. Generative neural network.

[14] Graves, A., and Schmidhuber, J. Framewise phoneme classification with bidirectional lstm
and other neural network architectures. Neural networks 18, 5-6 (2005), 602–610.

[15] Hebb, D. O. The organization of behavior: A neuropsychological theory. Psychology press,
2005.

62

BIBLIOGRAPHY

[16] Holmer, O., Frisk, E., and Krysander, M. Neural network-based piecewise survival
models. arXiv preprint arXiv:2403.18664 (2024).

[17] ibm. Recurrent neural network.

[18] Jung, E.-Y., Baek, C., and Lee, J.-D. Product survival analysis for the app store. Mar-
keting Letters 23 (2012), 929–941.

[19] Khosravi, B., Pourahmad, S., Bahreini, A., Nikeghbalian, S., and Mehrdad, G.

Five years survival of patients after liver transplantation and its effective factors by neural
network and cox poroportional hazard regression models. Hepatitis monthly 15, 9 (2015).

[20] Kleinbaum, D. G., and Klein, M. Survival analysis a self-learning text. Springer, 1996.

[21] Konstantinou, M., Biedermann, S., and Kimber, A. C. Optimal designs for full and par-
tial likelihood information—with application to survival models. Journal of Statistical Planning
and Inference 165 (2015), 27–37.

[22] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems 25 (2012).

[23] Kvamme, H., and Borgan, Ø. Continuous and discrete-time survival prediction with neural
networks. arXiv preprint arXiv:1910.06724 (2019).

[24] Kvamme, H., Borgan, Ø., and Scheel, I. Time-to-event prediction with neural networks
and cox regression. Journal of machine learning research 20, 129 (2019), 1–30.

[25] Li, S. Survival analysis. Marketing Research 7, 4 (1995), 16.

[26] mayoclinic. Liver transplant.

[27] medium. Convolutional neural network.

[28] From lesson material (slide) of Intelligent Systems course of Prof. Michela Milano, Unibo.

[29] Nguyen, V. Q., and Gillen, D. L. Censoring-robust estimation in observational survival
studies: Assessing the relative effectiveness of vascular access type on patency among end-stage
renal disease patients. Statistics in biosciences 9 (2017), 406–430.

[30] Rehor, J., and Havlena, V. Grey-box model identification–control relevant approach. IFAC
Proceedings Volumes 43, 10 (2010), 117–122.

[31] Rojas, R., and Rojas, R. The backpropagation algorithm. Neural networks: a systematic
introduction (1996), 149–182.

[32] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by
back-propagating errors. nature 323, 6088 (1986), 533–536.

[33] Stuart J. Russell, P. N. Artificial Intelligence: A Modern Approach. Prentice Hall, 2020.

[34] towardsdatascience. Convolutional neural network.

Ugo Marchesini 63

BIBLIOGRAPHY

[35] Wang, P., Li, Y., and Reddy, C. K. Machine learning for survival analysis: A survey.
ACM Computing Surveys (CSUR) 51, 6 (2019), 1–36.

[36] Wikipedia. Survival analysis.

[37] Wikipedia. Survival analysis map.

[38] Yang, Z., Eddy, D., Krishnamurty, S., Grosse, I., Denno, P., Lu, Y., and With-

erell, P. Investigating grey-box modeling for predictive analytics in smart manufactur-
ing. In International design engineering technical conferences and computers and informa-
tion in engineering conference (2017), vol. 58134, American Society of Mechanical Engineers,
p. V02BT03A024.

Ugo Marchesini 64

Acknowledgements

I would like to thank

• all the teachers of the courses I attended for the passion they transmitted to me and in par-
ticular to Dr Federico Balbo and Prof Michele Lombardi for providing guidance and feedback
throughout this project.

• all the friends who encouraged me.

Dedication

Dedico questa tesi a mia moglie e mio figlio
per l’amore e la pazienza che mi hanno dedicato durante questi studi , un’attenzione che è stata
fondamentale per completare questo percorso impegnativo, e al mio amico Nicola Santini che ci ha
lasciato troppo presto.

	List of Figures
	List of Tables
	Introduction
	Application Domain

	Background
	Cox Proportional Hazard Model
	Artificial Neural Network
	Brief History of Neural Network
	Survival Analysis
	Introduction
	Fundamental Concepts
	Computation

	Gray Box Model
	Related Works

	Metodology
	Reference Library
	Architecture
	Creating The Model
	Parameter Identification
	Design of the output

	Experiment
	Data Generation
	Parameter input
	Code
	Parameter Value

	Baseline distribution
	Pipeline
	Robusteness of the seeds
	Results
	F1 - Expected Future Lifeline Error
	F2 - Survivability Samples
	F3 - Survivability Error

	Conclusion
	Appendix
	Model metrics for single seed
	Survivability error E1
	Survivability error E2

	Bibliography

