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Chapter 1

Introduction

Mathematical modeling of physical phenomena is a well-established approach,

often advantageous in terms of time and resource efficiency, compared to ex-

perimental methods for studying complex systems. These problems, modeled

through partial differential equations (PDEs), depend on various input data,

such as material properties, boundary conditions, and source terms. While,

usually in simulations, these inputs are treated as fixed data, they can also be

considered as system parameters in search of an optimal design. An optimal

control problem involves manipulating these parameters, now termed control

variables, to minimize a cost function, the minimum of which represents the

desired condition of the system.

Optimal control theory has become a topic of significant interest in engi-

neering applications, especially for solving inverse problems. The traditional

trial and error approach can result in high computational and time costs,

whereas solving the inverse problem allows for faster attainment of the de-

sired outcome. Additionally, the mathematical framework of optimal control

enables the identification of innovative and non-intuitive solutions to complex

problems.

5



6 CHAPTER 1. INTRODUCTION

In contrast to direct simulations, solving an optimal control problem re-

quires addressing the physical system and the entire control system, com-

posed of the state (physical system), adjoint, and control equations. This

process must be iterated multiple times. Validated and commercial codes

increase the reliability of the optimization process. A possible approach is

to employ one code for solving the physical system and another for the con-

trol system to address the solution with a validated state solver. Since each

code depends on each variable of the optimal system, these variables must

be coupled.

State code State variables

Control parameter Control code

This work presents a temperature optimization achieved by coupling the

in-house FEMuS code with the widely used OpenFOAM code. This coupling

is facilitated through the open-source MED and MEDCOUPLING libraries.

Previous studies have demonstrated the feasibility of code coupling using

MED libraries in conjunction with the FEMuS and OpenFOAM codes [4, 14].

This approach is demonstrated through examples targeting different ob-

jectives, each employing distributed and boundary control techniques. The

control parameter may be a volumetric heat source or, depending on the

control location, either the wall temperature (Dirichlet type) or a heat flux

(Neumann type).

The thesis is structured as follows: it begins with an introduction to el-
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ements of functional analysis [35], followed by the numerical approximation

of function spaces and the numerical solution of PDEs within these spaces

[36]. Subsequently, the theory of optimal control is explored [30], along with

various minimization methods for its resolution [18]. The optimality system

is then derived for the three types of control: distributed, Dirichlet, and

Neumann. The focus then shifts to the coupling between the FEMuS and

OpenFOAM codes. The structure and internal coupling methods are illus-

trated [4, 14]. Finally, the numerical results are presented in two phases:

first, the uncoupled results are shown to validate the control system imple-

mented within FEMuS during this work, followed by the coupled results,

which validate and analyze the effectiveness of the coupling itself. This last

chapter also presents a nondimensional formulation for the control system.

Lastly, some conclusions are drawn.





Chapter 2

Finite Elements

2.1 Elements of Functional Analysis

In this section we briefly introduce some fundamental concepts of functional

analysis necessary for the numerical modeling of partial differential equations

(PDEs): the notion of vector spaces, normed vector spaces, and Banach

spaces. Then, we introduce the inner product for a vector space and Hilbert

spaces, followed by integrable function spaces and Sobolev spaces. Finally,

we also cover the strong and weak formulations of PDEs and the variational

derivatives of infinite-dimensional functionals.

Normed Vector Spaces. A space X is defined as a vector space over a

scalar field K if it is equipped with two operations that satisfy the following

properties:

1. A sum such that for u, v ∈ X, u+ v ∈ X,

2. A scalar multiplication such that for u ∈ X and a scalar a ∈ K, au ∈ X.

Let X be a real vector space. A function || · || : X → R+
0 , x 7→ ||x||, is called

9



10 CHAPTER 2. FINITE ELEMENTS

a norm if and only if the following conditions are satisfied:

1. ||x|| = 0 ⇐⇒ x = 0, for all x ∈ X,

2. ||x+ y|| ≤ ||x||+ ||y||, for all (x, y) ∈ X2,

3. ||λx|| = |λ|||x||, for all x ∈ X, and for all λ ∈ R.

If || · || is a norm on X, then (X, || · ||) is called a normed vector space.

Let (xn)n∈N be a sequence in this normed vector space. The sequence is

said to be convergent in X if and only if there exists a limit of the sequence

x ∈ X such that

lim
n→∞

||xn − x|| = 0. (2.1)

This definition of convergence is called strong convergence. Moreover, the

sequence is said to be a Cauchy sequence if and only if for every ϵ > 0, there

exists an n0 ∈ N such that, for every (m,n) ∈ N2 with n ≥ n0 and m ≥ n0,

||xn − xm|| ≤ ϵ. (2.2)

Finally, a normed space (X, || · ||) is said to be complete or a Banach space

if and only if every Cauchy sequence in X is convergent in X.

Hilbert Spaces. An inner product on a vector space X is a symmetric

bilinear form that associates with two vectors x, y ∈ X a scalar in the real

field R

⟨x, y⟩ : X2 → R, (2.3)

such that the following properties are satisfied:

1. ⟨x, x⟩ > 0,

2. ⟨x, y⟩ = ⟨y, x⟩,
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3. ⟨ax+ y, z⟩ = a⟨x, z⟩+ ⟨y, z⟩, for all a ∈ R.

If ⟨·, ·⟩ is an inner product on a real vector space X, then (X, ⟨·, ·⟩) is called
a pre-Hilbert space. A pre-Hilbert space is called a Hilbert space if and only

if (X, ⟨·, ·⟩) is a Banach space, where the norm || · || is defined from the inner

product by ||x|| :=
√
⟨x, x⟩.

Spaces of Integrable Functions. Let E be a measurable subset of Rm,

m ∈ N. For every p ∈ [1,∞), Lp(E) is defined as the space of all measurable

functions f : E → R such that

∫

E

|f(x)|p dx <∞. (2.4)

For every f ∈ Lp(E), its norm is defined as

||f ||p :=
(∫

E

|f(x)|p dx
) 1

p

, (2.5)

and the space (Lp(E), || · ||p) is a Banach space.

Given E ⊆ Rm measurable and f : E → R measurable, f is defined as

integrable if and only if f ∈ L1(E).

It is observed that for every measurable E ⊆ Rm, the map (f, g) 7→
∫
E
fg

defines an inner product on L2(E), thus L2(E) is a Hilbert space.

Fundamental Lemma of the Calculus of Variations. The support of

a function f : Ω → R defined on a space Ω ⊆ Rm, called supp(f), is the

closure of the set of points where f is not null

supp(f) := {x ∈ Ω : f(x) ̸= 0} ⊆ Ω. (2.6)
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Let Ω ⊆ Rm be open and k ∈ N0.

1. Let Ck(Ω) be the space of all functions f : Ω → R such that f has

continuous partial derivatives up to order k. Functions in Ck(Ω) are

said to be of class Ck(Ω).

2. Let Ck(Ω) be the space of all functions in Ck(Ω) such that their partial

derivatives extend continuously to Ω.

3. Let Ck
0 (Ω) be the space of all functions in Ck(Ω) that have compact

support contained in Ω, in other words, it is the space of functions that

vanish on the boundary ∂Ω.

If Ω ⊆ Rm is open and f ∈ L1(Ω), then

∫

Ω

fϕ = 0, ∀ϕ ∈ C∞
0 (Ω), (2.7)

implies that f = 0 everywhere.

As a consequence, if f, g ∈ C1(Ω) and f ◦ g ∈ C1
0(Ω), then the following

integration by parts formula holds

∫

Ω

g
∂f

∂xi
= −

∫

Ω

f
∂g

∂xi
, ∀i ∈ {1, . . . ,m}. (2.8)

Sobolev Spaces. Given f ∈ L1(Ω) and k ∈ N0, the function g ∈ L1(Ω) is

called the weak derivative of order k if and only if

∫

Ω

f
∂kϕ

∂xk
= (−1)k

∫

Ω

gϕ, ∀ϕ ∈ C∞
0 (Ω). (2.9)

If this is true, ∂kϕ
∂xk can be written in place of g.

Let Ω ⊆ Rm be open, and (k, p, α) ∈ N0 × [1,∞]. Let W k,p(Ω) be the

subspace of L1(Ω) consisting of all functions f such that its weak derivatives
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∂αf
∂xα exist and lie in Lp(Ω) for every α < k. The spaces W k,p(Ω) are called

Sobolev spaces. The following norm is defined for every p <∞

||F ||Wk,p(Ω) :=

(
k∑

α=0

∫

Ω

∣∣∣∣
∂αf

∂xα

∣∣∣∣
p
) 1

p

=

(
k∑

α=0

||∂
αf

∂xα
||pp

) 1
p

, (2.10)

in the case p = 2, it is called Hk(Ω) := W k,2(Ω).

For every (k, p, α) ∈ N0 × [1,∞], the Sobolev space W k,p(Ω) is a Banach

space. In particular, each Hk(Ω) is a Hilbert space concerning the following

inner product

⟨f, g⟩Hk(Ω) =
k∑

α=0

∫

Ω

∂αf

∂xα
∂αg

∂xα
=

k∑

α=0

〈
∂αf

∂xα
,
∂αg

∂xα

〉

L2(Ω)

. (2.11)

Strong and Weak Formulation. The weak formulation of partial differ-

ential equations is introduced by taking the Poisson equation with homoge-

neous Dirichlet boundary conditions as an example. Let Ω ⊆ Rm be open,

ϕ ∈ C2(Ω) ∩ C0(Ω), and q ∈ C0(Ω). The Poisson equation

−∇ · (∇ϕ(x)) = q(x), x ∈ Ω, (2.12)

can be rewritten as

−
m∑

i=1

∂

∂xi

(
∂ϕ

∂xi

)
= q(x), x ∈ Ω . (2.13)

We define the following system of equations for the unknown ϕ ∈ C2(Ω)





−
m∑

i=1

∂

∂xi

(
∂ϕ

∂xi

)
= q(x), x ∈ Ω,

ϕ(x) = 0, x ∈ ∂Ω,
(2.14)



14 CHAPTER 2. FINITE ELEMENTS

as the Poisson problem in strong form with homogeneous Dirichlet boundary

conditions. A function ϕ ∈ C2(Ω) that satisfies the system is called a strong

solution of the problem. In general, a strong solution to the problem has

conditions that are too restrictive to be of practical interest, so the search is

extended to generalized solutions through a reformulation of the problem.

Let ϕ ∈ C2(Ω) be a solution of (2.14). Multiply (2.13) by ψ ∈ C∞
0 (Ω)

and integrate over Ω, obtaining

−
∫

Ω

ψ

(
m∑

i=1

∂

∂xi

(
∂ϕ

∂xi

))
dx =

∫

Ω

ψ (q(x)) dx . (2.15)

Bringing everything to the left

−
∫

Ω

ψ

(
m∑

i=1

∂

∂xi

(
∂ϕ

∂xi

)
− q(x)

)
dx = 0 , (2.16)

the Fundamental Lemma of Variational Calculus can be applied to retrieve

equation (2.13). Integrating by parts, the equation (2.15) can be rewritten

as ∫

Ω

(
m∑

i=1

∂ψ

∂xi

∂ϕ

∂xi

)
dx =

∫

Ω

ψ (q(x)) dx. (2.17)

Let Ω ⊆ Rm be open and q ∈ L2(Ω). We define the following system of

equations for the unknown ϕ ∈ H1
0 (Ω)

∫

Ω

(
m∑

i=1

∂ψ

∂xi

∂ϕ

∂xi

)
dx =

∫

Ω

ψ (q(x)) dx, ∀ψ ∈ H1
0 (Ω), (2.18)

as the Poisson problem in weak form with homogeneous Dirichlet boundary

conditions. A function ϕ ∈ H1
0 (Ω) that satisfies the system is called a weak

solution of the problem. It is important to note that the condition imposed

on the solution is no longer to belong to C2, i.e., to be continuous with
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continuous first and second derivatives, but to H1, and thus integrable with

the first derivative integrable.

Variational Derivative. An operator A : X → Y is defined as a function

between two normed vector spaces (X, || · ||X) and (Y, || · ||Y ). A is called

bounded if and only if there exists a constant C ≥ 0 such that

||A(x)||Y ≤ C||x||X ,∀x ∈ X.

Operators with real values are called functionals. In particular, linear oper-

ators with real values are called linear functionals. The vector space of all

bounded linear operators between two normed vector spaces (X, || · ||X) and
(Y, || · ||Y ) is called L(X, Y ). In particular, the space L(X,R) of all bounded
linear functionals on X is called the dual space of X. The dual space of X

is denoted by X∗.

Let U = (X, || · ||X) and V = (Y, || · ||Y ) be normed vector spaces, f :

U → V , and u ∈ U .

1. Let h ∈ U . If u+th ∈ U for every sufficiently small positive t, and if

the limit

δf(u, h) := lim
t→0

f(u+ th)− f(u)
t

, (2.19)

exists in V , then δf(u, h) is called the directional derivative of f with

respect to u in the direction h.

2. Let u ∈ U . If the directional derivative δf(u, h) exists for every h ∈ U ,
then the operator

δf(u, ·) : U → V, h 7→ δf(u, h), (2.20)
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is called the first variation of f with respect to u. If it is also a bounded

linear operator, it is called the Gâteaux derivative and is denoted as

f ′
G(u). In this case, f is said to be differentiable according to Gâteaux.

3. Finally, f is said to be differentiable according to Fréchet if and only if

there exists a linear operator A : U → V such that for every h ̸= 0 ∈ U
with ||h||U → 0

||f(u+ h)− f(u)− Ah||V
||h||U

→ 0.

In this case, we write f ′
F (u) instead of A and it is called the Fréchet

Derivative of f with respect to u.

If f : Uad → V has a directional derivative with respect to u in the direction

h (respectively, first variation, Gâteaux, and Fréchet derivative), then the

following properties hold

1. Let f be as above and α ∈ R

δ(αf)(u, h) = αδ(f)(u, h),

(αf)′G(u) = αf ′
G(u),

(αf)′F (u) = αf ′
F (u).

(2.21)

2. Let f be as above and g : Uad → V which has a variational deriva-

tive with respect to u in the direction h (respectively, first variation,

Gâteaux, and Fréchet derivative)

δ(f + g)(u, h) = δ(f)(u, h) + δ(g)(u, h),

(f + g)′G(u) = f ′
G(u) + g′G(u),

(f + g)′F (u) = f ′
F (u) + g′F (u).

(2.22)
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2.2 Numerical Approximation

When seeking the solution of a partial differential equation numerically, it is

necessary to approximate the infinite-dimensional spaces defined previously

to finite-dimensional spaces. The choice of how to approximate the functional

space determines the numerical solution method used, such as the finite el-

ement method or the finite volume method. The spaces of primary interest,

which will be addressed in the approximation, are the Sobolev spaces H1 and

L2.

2.2.1 One-Dimensional Case

A preliminary overview is provided for the one-dimensional case, before mov-

ing on to the two-dimensional case. The three-dimensional case is analogous.

Approximation in S0
h. The space L2 of integrable functions, since it does

not impose conditions on their differentiability, can be represented by a basis

of infinite piecewise constant functions. The simplest approximation of this

space is through a finite basis of piecewise constant functions, see Figure 2.1.

Given a domain Ω ⊆ R1, it can be divided into N intervals defined by

N + 1 points

x0 < x1 < .. < xi < .. < xN−1 < xN ,

a function ϕ0
i is defined such that




ϕ0
i = 1 for xi < x < xi+1,

ϕ0
i = 0 otherwise.

(2.23)

The space S0
h is then defined as theN -dimensional functional space generated
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xi−1 xi xi+1 xi+2

1

φ0
i

Figure 2.1: Piecewise constant function.

by this basis

S0
h =

{
f ∈ L2(Ω) : f =

N−1∑

i=0

αiϕ
0
i , αi ∈ R

}
, (2.24)

which, as N →∞, coincides with L2.

In this way, a function f ∈ L2(Ω) can be approximated by another function

fh ∈ S0
h(Ω) defined as

fh =
N−1∑

i=0

αiϕ
0
i , (2.25)

where αi depends on how you want to approximate the function f . In the

case of a left approximation, the value of αi is given by f(xi), whereas for

a right approximation, αi is defined as f(xi+1). Alternatively, for a central

approximation αi is computed as the average f(xi)+f(xi+1)
2

, an example is

reported in Figure 2.2.

Considering each interval Ωi = [xi, xi+1] = [xi1, x
i
2], it is useful to pass from

this global formulation to a local one by transforming global coordinates into
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x0 x1 x2 x3 x4 x5 x6 x7 x8

fh(x)

f(x)

Figure 2.2: Piecewise constant approximation.

local canonical coordinates

ξi = −1 + 2
x− xi
xi+1 − xi

. (2.26)

Then, defining the shape function N0
1 corresponding to the restriction of ϕ0

i

on the i-th element




N0

1 = 1 for − 1 < ξ < 1,

N0
1 = 0 otherwise,

(2.27)

it is possible to define the approximation of f on Ωi as

f i
h = αiN

0,i
1 , (2.28)
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where αi is calculated as before. Obviously, in the case of piecewise constant

functions, only one shape function is needed.

Approximation in X1
h. Unlike L2, the space H1 consists of continuous

functions since their first derivatives must also be integrable. Therefore, the

most general representation of this space is through a basis of infinite linear

polynomials, see Figure 2.3. It is still possible to approximate the infinite-

dimensional space through a finite basis.

Using the same partition into N intervals of the domain Ω ⊆ R1 defined

earlier, the function ϕ1
i , called the first-order Lagrange polynomial, is defined

as 



ϕ1
i =

x− xi−1

xi − xi−1

for xi−1 < x < xi,

ϕ1
i =

xi+1 − x
xi+1 − xi

for xi < x < xi+1,

ϕ1
i = 0 otherwise.

(2.29)

xi xi+2xi+1xi−1

(xi
1) (xi

2)

ϕ1
i ϕ1

i+1

Figure 2.3: Linear Lagrange polynomial.
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The space X1
h is then defined as the N -dimensional functional space gen-

erated by this basis, such that

X1
h =

{
f ∈ H1(Ω) : f =

N∑

i=0

αiϕ
1
i , αi ∈ R

}
. (2.30)

As before, as N →∞, X1
h coincides with H1.

Given a function f ∈ H1, it can be approximated by an element of the

space X1
h defined as

fh =
N∑

i=0

αiϕ
1
i . (2.31)

In this case, it is noted that at each point xi, only the function ϕ1
i is non-

zero and specifically equal to 1. Therefore, αi corresponds to the value of

the approximated function at that point f(xi), an illustration is reported in

Figure 2.4.

The restriction of the functions ϕ1
i and ϕ1

i+1 on Ωi defines the two canonical

shape functions




N1,i

1 =
1− ξi
2

for − 1 < ξi < 1,

N1,i
1 = 0 otherwise,

(2.32)




N1,i

2 =
1 + ξi
2

for − 1 < ξi < 1,

N1,i
2 = 0 otherwise.

(2.33)

Therefore, the representation of the function f on the i-th element becomes

f i
h(x) =

2∑

j=1

N1
j (ξ(x))f(x

i
j). (2.34)
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x0 x1 x2 x3 x4 x5 x6 x7 x8

fh(x)

f(x)

Figure 2.4: Linear approximation.

Approximation in X2
h. A second possible approximation of the space

H1 is given by using quadratic polynomials, known as quadratic Lagrange

polynomials. They are reported in Figure 2.2.1.

Using the usual partition of Ω into N intervals, where in this case N

must be even and the N + 1 points are divided between vertices and nodes

according to the criterion




i = 0, 2, .., N → vertices,

i = 1, 3, .., N − 1→ nodes.
(2.35)

Each element Ωi = [x2i, x2i+2] consists of two vertices and one central node.

These are assigned the following local nomenclature: the vertex x2i is denoted

as xi1, the vertex x2i+2 is denoted as xi2, and the central node x2i+1 is denoted
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as xi3. A graphical representation is shown in Figure 2.5.

x2i−2 x2i−1 x2i+1 x2i+2 x2i+3 x2i+4

xi1

x2i

xi2xi3

Ωi

Figure 2.5: Local nomenclature of a 1D quadratic element.

The Lagrange polynomials ϕ2
i that form the basis of the space X2

h are

defined based on which point xi they belong to. If xi is a vertex





ϕ2
i =

(x− xi−1)(x− xi−2)

(xi − xi−1)(xi − xi−2)
for xi−2 < x ≤ xi,

ϕ2
i =

(x− xi+1)(x− xi+2)

(xi − xi+1)(xi − xi+2)
for xi < x < xi+2,

ϕ2
i = 0 otherwise,

(2.36)

and if it is a central node





ϕ2
i =

(x− xi−1)(x− xi+1)

(xi − xi−1)(xi − xi+1)
for xi−1 < x < xi+1,

ϕ2
i = 0 otherwise.

(2.37)

The space X2
h is then defined as the N+1 dimensional functional space gen-

erated by this basis

X2
h =

{
f ∈ H1(Ω) : f =

N∑

i=0

αiϕ
2
i , αi ∈ R

}
, (2.38)

which, as N → ∞, coincides with H1. Given a function f ∈ H1, it can be



24 CHAPTER 2. FINITE ELEMENTS

x2i x2i+2x2i+1 x2i+3x2i−1

(xi
1) (xi

2)(xi
3)

ϕ2
2i

ϕ2
2i+1

ϕ2
2i+2

Figure 2.6: Quadratic Lagrange polynomials.

approximated by

fh =
N∑

i=0

αiϕ
2
i , (2.39)

where αi = f(xi). A case of quadratic approximation is displayed in Figure

2.7.

The canonical shape functions are obtained by restricting the basis of X2
h

to the element Ωi




N2,i

1 =
1

2
(1− ξ)ξ for − 1 < ξ < 1,

N2,i
1 = 0 otherwise,

(2.40)




N2,i

2 =
1

2
(1 + ξ)ξ for − 1 < ξ < 1,

N2,i
2 = 0 otherwise,

(2.41)




N2,i

3 = (1− ξ)(1 + ξ) for − 1 < ξ < 1,

N2,i
3 = 0 otherwise,

(2.42)
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x0 x1 x2 x3 x4 x5 x6 x7 x8

fh(x)

f(x)

Figure 2.7: Quadratic approximation.

and the representation of the function on the i-th element can be written as

f i
h =

3∑

j=1

N2
j (ξ(x))f(x

i
j). (2.43)

2.2.2 Two-Dimensional Case

The discussion is extended to the two-dimensional case by considering a con-

vex domain Ω ⊆ R2 with boundary Γ. A partition of this domain into N

subdomains, or elements, Ωe is performed such that the union of all ele-

ments satisfies ∪N−1
e=0 Ωe = Ω. Furthermore, each element is distinct, ensuring

that Ωj ̸= Ωk for all j ̸= k. This subdivision of the domain is also called

a mesh and is made up of elements, nodes, and vertices (which in Figure

2.8 are represented respectively by squares and circles): each point {Pn}Nn
n=0
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Ω0

Ω1

Ω2

Ω3

Ω4 Ω5

Ω

Figure 2.8: Two-dimensional domain partition.

is represented by its coordinates xn. Additionally, it is useful to define a

connectivity map Pn(Pi, e) that returns the global numbering Pn of each

point given its local numbering Pi and the element to which it belongs e. In

this way, through also the appropriate formulation of canonical elements, it

is possible to reformulate the global problem into different local problems,

significantly simplifying it.

Approximation in S0
h. There are no particular differences from the one-

dimensional case: the space L2(Ω) is approximated by S0
h(Ω), and the ele-

ments of the N-dimensional basis that generate this space are the functions




ϕ0
i (x) = 1 for x ∈ Ωi,

ϕ0
i (x) = 0 otherwise.

(2.44)

Therefore, given any function f ∈ L2(Ω), it can be approximated by

fh(x) =
N−1∑

i=0

αiϕ
0
i (x), (2.45)
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where αi is the average value of f over the element Ωi.

Approximation in X1
h. For simplicity, we start from the local formula-

tion and then move to the global formulation. Consider the partition of

Ω ⊆ R2 described earlier, and take an element Ωi defined by the four vertices

[(xi1, y
i
1), (x

i
2, y

i
2), (x

i
3, y

i
3), (x

i
4, y

i
4)], this type of element is called a QUAD4.

y

x

P e
1 (x

e
1, y

e
1)

P e
4 (x

e
4, y

e
4)

P e
3 (x

e
3, y

e
3)

P e
2 (x

e
2, y

e
2)

Ωe

η

ξ

P e
1 (−1,−1)

P e
4 (−1, 1) P e

3 (1, 1)

P e
2 (1,−1)

Ω̂e

Figure 2.9: Transformation from global coordinates to canonical coordinates
for a QUAD4 element.

Starting from this element, we transform it to the canonical element by

converting global coordinates to canonical coordinates (see figure 2.9), asso-

ciating the four vertices of the element to the four vertices of the canonical

square [(−1,−1), (−1, 1), (1, 1), (1,−1)]. Then, by taking the tensor product

of the one-dimensional linear shape functions previously seen, we obtain the

four shape functions for the two-dimensional case

N1
1 (ξ, η) = N1

1 (ξ)N
1
1 (η) =

1− ξ
2

1− η
2

,

N1
2 (ξ, η) = N1

2 (ξ)N
1
1 (η) =

1 + ξ

2

1− η
2

,

N1
3 (ξ, η) = N1

2 (ξ)N
1
2 (η) =

1 + ξ

2

1 + η

2
,

N1
4 (ξ, η) = N1

1 (ξ)N
1
2 (η) =

1− ξ
2

1 + η

2
,

(2.46)
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which are equal to 1 at their respective vertices and 0 at all other points, see

figure 2.10.

ξ
η

N
1 1
(ξ
,η
)

ξ
η

N
1 2
(ξ
,η
)

ξ
η

N
1 3
(ξ
,η
)

ξ
η

N
1 4
(ξ
,η
)

Figure 2.10: Shape functions for X1
h on the 2D canonical domain.

Returning to global coordinates via the transformation

xi(ξ, η) =
4∑

j=1

xi
jN

1,i
j (ξ, η), (2.47)

one can approximate any function f over the element Ωi, knowing its values

{f(xi
j)}4j=1 at the vertices of the element Ωi

f i
h (xi(ξ, η)) =

4∑

j=1

f(xi
j)N

1
j (ξ, η). (2.48)

Finally, to extend the treatment to the entire domain Ω, it is necessary to
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sum the contributions of all N individual elements

fh(x) =
N−1∑

i=0

f i
h (xi(ξ, η)). (2.49)

Approximation in X2
h. In this case, consider a QUAD9 element Ωi de-

fined by the vertices [(xi1, y
i
1), (x

i
2, y

i
2), (x

i
3, y

i
3), (x

i
4, y

i
4)] and the nodes [(xi5, y

i
5),(x

i
6, y

i
6),

(xi7, y
i
7),(x

i
8, y

i
8),(x

i
9, y

i
9)], and then transform it into the canonical element re-

ported in Figure 2.11. As before, the shape functions, which must be equal to

(-1,-1)

(-1,1)

(1,-1)

(1,1)

34

21 5

6

7

8 9

η

ξ

Figure 2.11: Canonical QUAD9 element.

1 at their respective nodes and 0 at all other nodes, are defined by the tensor

product of the quadratic one-dimensional shape functions. Their graphical
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representation is shown in Figure 2.12.

N2
1 (ξ, η) = N2

1 (ξ)N
2
1 (η) = ξ

1− ξ
2

η
1− η
2

,

N2
2 (ξ, η) = N2

2 (ξ)N
2
1 (η) = ξ

1 + ξ

2
η
η − 1

2
,

N2
3 (ξ, η) = N2

2 (ξ)N
2
2 (η) = ξ

1 + ξ

2
η
1 + η

2
,

N2
4 (ξ, η) = N2

1 (ξ)N
2
2 (η) = ξ

ξ − 1

2
η
1 + η

2
,

N2
5 (ξ, η) = N2

3 (ξ)N
2
1 (η) = (1− ξ2) ηη − 1

2
,

N2
6 (ξ, η) = N2

2 (ξ)N
2
3 (η) = ξ

1 + ξ

2
(1− η2),

N2
7 (ξ, η) = N2

3 (ξ)N
2
2 (η) = (1− ξ2) η1 + η

2
,

N2
8 (ξ, η) = N2

1 (ξ)N
2
3 (η) = ξ

ξ − 1

2
(1− η2),

N2
9 (ξ, η) = N2

3 (ξ)N
2
3 (η) = (1− ξ2)(1− η2).

(2.50)

Finally, the approximation of a function f ∈ H1(Ω) in the space X2
h on

the element is

f i
h (xi(ξ, η)) =

9∑

j=1

f(xi
j)N

2
j (ξ, η), (2.51)

while at the global level

fh(x) =
N−1∑

i=0

f i
h (xi(ξ, η)). (2.52)

2.2.3 Gaussian Integration

On the canonical element, the test functions ϕi is represented by the polyno-

mial shape functions Nj. The Gaussian quadrature method is highly effective

for integrating on canonical coordinates. It approximates the integral by a

weighted sum of the integrated function evaluated at n points. Its formula-
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Figure 2.12: Shape functions for X2
h on the 2D canonical domain.

tion in the two-dimensional case is

∫

Ω̂e

f(ξ, η) dξ dη =
n∑

g=1

ωgf(ξg, ηg), (2.53)

and it is exact for polynomials of degree less than or equal to 2n− 1 in the

one-dimensional case and 2 k
√
n − 1 in the k-dimensional case. The weights

ωg and the coordinates (ξg, ηg) must be chosen appropriately, according to

the criterion shown in figure 2.13. Due to its accuracy and simplicity, this

technique is widely used for numerical applications as in the finite element

method, which will be discussed later.
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m np p ξp ηp Wp Position of points

11 1 1 0 0 4

3 4

1 − 1√
3

− 1√
3

1

1 4

3 2

2 1√
3

− 1√
3

1

3 − 1√
3

1√
3

1

4 1√
3

1√
3

1

5 9

1 −
√

3
5 −

√
3
5

25
81

1 2 3

4 5 6

7 8 9

2 0 −
√

3
5

40
81

3
√

3
5 −

√
3
5

25
81

4 −
√

3
5 0 40

81

5 0 0 64
81

6
√

3
5 0 40

81

7 −
√

3
5

√
3
5

25
81

8 0
√

3
5

40
81

9
√

3
5

√
3
5

25
81

Figure 2.13: Weights and coordinates for two-dimensional Gaussian quadra-
ture.
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2.3 Numerical Solution Techniques for PDEs

The previous sections provided an overview of the functional spaces needed

for partial differential problems, particularly in their weak formulation, and

described their discretization. With this knowledge, it is possible to intro-

duce some tools for the numerical solution of a partial differential equation.

Specifically, we will discuss the Finite Element Method and the Finite Volume

Method. Both methods solve the problem starting from its weak formulation,

allowing solutions with realistic regularity requirements for engineering ap-

plications.

2.3.1 Finite Element Method

This technique belongs to the Galerkin Method class, where the solution is

not obtained through the approximation of differential operators but through

the approximation of the space in which the solution is sought. The method

is based on partitioning the domain into elements, within which the solution

is given by a linear combination of the solution at the nodes weighted by the

shape functions

f i
h (x

i(ξ, η)) =
ne∑

j=1

f(xi
j)Nj(ξ, η). (2.54)

The degrees of freedom, i.e., the unknowns, of the problem are the values of

the function at the nodes, which allows converting a differential problem into

an algebraic one.

Poisson Equation. Consider a domain Ω ⊆ R2, and let us address the

solution of the Poisson problem defined in its weak formulation in (2.17)

∫

Ω

∇ϕ ·∇f dx =

∫

Ω

ϕq dx, ∀ϕ ∈ H1
Γ(Ω). (2.55)
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Approximate the solution space H1 with X1
h

f ∈ H1(Ω)→ fh ∈ X1
h(Ω),

ϕ ∈ H1(Ω)→ ϕh ∈ X1
h(Ω),

(2.56)

and rewrite the problem as

∫

Ω

∇ϕh ·∇fh dx =

∫

Ω

ϕhq dx, ∀ϕh ∈ X1
h(Ω). (2.57)

Since this must hold for any test function ϕh ∈ X1
h, we choose the shape

functions ϕ1
i as test functions, where i = 0, 1, .., Ndof − 1.

Next, divide the integral over the entire domain into the sum of integrals

over individual elements

N−1∑

e=0

∫

Ωe

∇ϕ1
i ·∇fh dx =

N−1∑

e=0

∫

Ωe

ϕ1
i q dx, (2.58)

and express fh as a linear combination of the values at the nodes weighted

by the shape functions

N−1∑

e=0

ne∑

j=1

f(xe
j)

∫

Ωe

∇ϕ1
i ·∇xN

1
j (ξe(x), ηe(x)) dx =

N−1∑

e=0

∫

Ωe

ϕ1
i q dx. (2.59)

Considering each integral separately, we note that the only non-zero test func-

tions ϕ1
i on element Ωe are those corresponding to the nodes of the element.

Therefore, we can rewrite the previous equation as

ne∑

j=1

f(xe
j)

∫

Ωe

∇xN
1
i (ξ(x), η(x)) ·∇xN

1
j (ξ(x), η(x)) dx = (2.60)

=

∫

Ωe

N1
i (ξ(x), η(x))q dx. (2.61)
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Perform a change of variables to transform the integral over element Ωe into

an integral over the canonical element Ω̂e, calculating the Jacobian of the

coordinate transformation x = (x, y)→ (ξ, η) defined as

J =




∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η


 =



∑ne

j=1 x
e
j

∂N1
j

∂ξ

∑ne

j=1 x
e
j

∂N1
j

∂η∑ne

j=1 y
e
j

∂N1
j

∂ξ

∑ne

j=1 y
e
j

∂N1
j

∂η


 , (2.62)

such that

∇xN
1
i = ∇N1

i · J. (2.63)

Thus, the integral in canonical coordinates is written as

ne∑

j=1

f(xe
j)

∫

Ω̂e

∇N1
i ·∇N1

j |J | dξ dη =

∫

Ω̂e

N1
i q(x

e(ξ, η))|J | dξ dη, (2.64)

which, when solved using Gaussian quadrature, becomes

ne∑

j=1

f(xe
j)

ng∑

g=1

ωg∇N1
i (ξg, ηg) ·∇N1

j (ξg, ηg) |J(ξg, ηg)| =

ng∑

g=1

ωgN
1
i (ξg, ηg)q(x

e(ξg, ηg)) |J(ξg, ηg)|.
(2.65)

Defining

aei,j =

ng∑

g=1

ωg∇N1
i (ξg, ηg) ·∇N1

j (ξg, ηg) |J(ξg, ηg)|,

bei =

ng∑

g=1

ωgN
1
i (ξg, ηg)q(x

e(ξg, ηg)) |J(ξg, ηg)|,
(2.66)



36 CHAPTER 2. FINITE ELEMENTS

the local algebraic system can be written as




ae1,1 ae1,2 ae1,3 ae1,4

ae2,1 ae2,2 ae2,3 ae2,4

ae3,1 ae3,2 ae3,3 ae3,4

ae4,1 ae4,2 ae4,3 ae4,4







f(xe
1)

f(xe
2)

f(xe
3)

f(xe
4)



=




be1

be2

be3

be4



, (2.67)

which condenses into

Aex = b. (2.68)

Using the connectivity map Pn(Pi, e), which, given the local numbering of

the node and the reference element, returns the global node numbering, it is

possible to assemble the global system

Ax = b. (2.69)

In figure 2.14, the process of transferring the local matrix Ae to the global

matrix A is shown. The procedure for the vector b is analogous.

2.3.2 Finite Volume Method

This method does not belong to the Galerkin method class anymore, even

though it can be grouped in the Discontinuous Galerkin method class. In

the same way as the Finite Element Method, the Finite Volume Method ap-

proximates the space in which the solution is sought partitioning the domain

into elements, but this time the solution is considered to be constant within

each element creating a piece-wise constant field. In this case, the unknowns

of the problems are the values of the function in the cells.
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ae1,1 ae1,2 ae1,3 ae1,4

ae2,1 ae2,2 ae2,3 ae2,4

ae3,1 ae3,2 ae3,3 ae3,4

ae4,1 ae4,2 ae4,3 ae4,4

... ...

... ... ...

... ...

... ...

...

[P
n (1, e), P

n (1, e)]
[P

n (1, e), P
n (2, e)]

[P
n (2, e), P

n (1, e)]

Figure 2.14: Assembly of the local matrix Ae into the global matrix A.

Poisson Equation. Consider a domain Ω ⊆ R2, and let’s address the

solution of the Poisson problem defined in its weak formulation in (2.17)

−
∫

Ω

ϕ∆f dx =

∫

Ω

ϕq dx, ∀ϕ ∈ L2(Ω), (2.70)

where ∆ is addressed to the Laplacian operator.

This time the solution f is sought in L2 instead of in H1, the solution
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space L2 is approximated with S0
h

f ∈ L2(Ω)→ fh ∈ S0
h(Ω),

ϕ ∈ L2(Ω)→ ϕh ∈ S0
h(Ω),

(2.71)

and the problem is rewritten as

−
∫

Ω

ϕ0
h∆fh dx =

∫

Ω

ϕ0
hq dx, ∀ϕ0

h ∈ S0
h(Ω). (2.72)

Since this must hold for any test function ϕ0
h ∈ S0

h, we choose the shape

functions ϕ0
i as test functions, where i = 0, 1, .., Ndof − 1.

As the first step, we rewrite the equation performing the Reconstruction

of the Gradient

∫

Ω

ϕ0
i∇ · Jh dx =

∫

Ω

ϕ0
i q dx, ∀ϕ0

i ∈ S0
h(Ω), (2.73)

where Jh = −∇fh. Next, divide the integral over the entire domain into the

sum of integrals over individual elements

N−1∑

e=0

∫

Ωe

ϕ0
i∇ · Je

h dx =
N−1∑

e=0

∫

Ωe

ϕ0
i q dx, ∀ϕ0

i ∈ S0
h(Ω), (2.74)

and since the only ϕ0
i non-null on the element Ωe is N0,e, we can rewrite it

as
N−1∑

e=0

∫

Ωe

N0,e∇ · Je
h dx =

N−1∑

e=0

∫

Ωe

N0,eq dx. (2.75)

Then we can integrate by parts the first term of the equation by obtaining

∫

Ω

N0,e∇ · Jh dx =

∫

Γ

N0,e(Jh · n) ds−
∫

Ω

∇N0,e · Jh dx, (2.76)
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and considering that N0,e = 1 over Ωe it becomes

∫

Ωe

∇ · Jh dx =

∫

Γe

(Jh · n) ds. (2.77)

Since the discrete solution fh is piece-wise constant the reconstructed gradient

Jh needs to be modeled, i.e., with a finite difference scheme, considering a

mesh made up from square elements the integral above Γe can be rewritten

as:

∫

Γe

(Jh ·n) ds = −
f e
h − f e,S

h

∆Sy
ΓS +

f e
h − f e,E

h

∆Ex
ΓE +

f e
h − f e,N

h

∆Ny
ΓN −

f e
h − f e,O

h

∆Ox
ΓO,

(2.78)

where f e,S
h , f e,E

h , f e,N
h , f e,O

h are respectively the value of f in the element under,

on the right, over and on the left of the element Ωe, where ΓS,ΓE,ΓN ,ΓO are

considered to be the length of the four frontiers of the square element, and

where ∆Sy,∆Ex,∆Ny,∆Ox are the distance in the four directions from the

near elements. Then defining the local matrix Ae terms

ae0 = −
ΓS

∆Sy
+

ΓE

∆Ex
+

ΓN

∆Ny
− ΓO

∆Ox
,

ae1 =
ΓS

∆Sy
,

ae2 =
ΓE

∆Ey
,

ae3 =
ΓN

∆Ny
,

ae4 =
ΓO

∆Oy
,

(2.79)

and the right-hand side term be

be =

∫

Ωe

q dx, (2.80)
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the local algebraic system can be written as

[
ae0 ae1 ae2 ae3 ae4

]




f e

f e,S

f e,E

f e,N

f e,O




=
[
be
]
, (2.81)

which condenses into

Aex = b. (2.82)

Again, using the connectivity map Pn(Pi, e), which, given the relative posi-

tion to the element Ωe (the element itself, the southern element and so on),

returns the global elements numbering, it is possible to assemble the global

system

Ax = b. (2.83)



Chapter 3

Optimal Control

3.1 Theory of Optimal Control

An optimization problem aims to control an output variable through the

appropriate variation of an input variable [30]. The input variable is called

control. In the case of the application considered, i.e. heat transport, it can

take the form of a volumetric heat source or a temperature or thermal flux

imposed on the wall. The output variable is called state variable. The desired

behavior of the state variable is measured through the appropriate definition

of a function F , called the objective functional, generally formulated to be

minimized at the optimal state.

Given Hilbert spaces U and H, a control q ∈ U , a state variable ϕ ∈ H,

ϕ0 ∈ H, and λ ∈ R+
0 , the functional of the optimization problem can be

defined as

F (q) =
1

2
||ϕ− ϕ0||L2 +

λ

2
||q||U . (3.1)

The first term is called the objective term as it ensures the effectiveness of

the imposed control, and the second term is called the control regularization

41
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term, as it helps to keep it within finite values. The parameter λ controls

the relative importance of the two terms.

It is also possible to add constraints arising from practical needs, such as

limiting the control within a certain range of values:

a ≤ q ≤ b. (3.2)

The additional constraints to which the system is subjected are primarily

represented by the physics to be controlled, and in the case of temperature

control the state variable must satisfy the heat equation and its boundary

conditions:

Aϕ = Bq. (3.3)

In cases where a partial differential equation forms the constraint, A can be

seen as some differential operator [35].

3.1.1 Adjoint Method

The optimization problem can be formulated by finding the functional (3.1)

minimum, which is referred to as

F (ϕ (q) , q)→ min,

thus the optimal control q must satisfy the Euler equation

F ′
F (q) = 0. (3.4)
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By explicitly writing the Frechét derivative of the functional concerning the

control parameter, we obtain

F ′
F (q) q̃ =

∫

Ω

(ϕ− ϕ0) (ϕ (q + q̃)− ϕ (q)) dΩ +

∫

Ω

q q̃ dΩ = 0, ∀q̃ ∈ L2.

(3.5)

Although the Euler equation provides a definition of the optimal control, it

is not suitable for the numerical solution of the problem. Firstly, because it

requires the knowledge of the state variable ϕ both at the control q and at

q + q̃, and because it does not provide a formulation for ∇F (q), necessary

to determine the descent direction in the minimization methods.

For this reason, the functional F is rewritten using the Lagrange equation,

also known as the Lagrangian, an auxiliary function that allows all con-

straints of the optimization problem to be concentrated into a single equation

L (ϕ, q, p) = F (ϕ, q)− ⟨Aϕ−Bq, p⟩ , (3.6)

where p is called the Lagrange multiplier. Considering the Poisson problem,

it is explicitly rewritten as

L =
1

2

∫

Ωd

(ϕ− ϕ0)
2 dΩ +

λ

2

∫

Ω

q2 dΩ +

∫

Ω

∆ϕ p dΩ +

∫

Ω

q p dΩ. (3.7)

Again, differentiating with respect to q, we obtain

L′
F (q) q̃ =

∫

Ω

(ϕ− ϕ0) (ϕ (q + q̃)− ϕ (q)) dΩ + λ

∫

Ω

q q̃ dΩ+

+

∫

Ω

(∆ϕ (q + q̃)−∆ϕ (q)) p dΩ +

∫

Ω

q̃ p dΩ,

(3.8)
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from this, integrating by parts twice and substituting ϕ̃ = ϕ (q + q̃) − ϕ (q),
it follows

L′
F (q) q̃ =

∫

Ω

(ϕ− ϕ0) ϕ̃ dΩ + λ

∫

Ω

q q̃ dΩ +

∫

Ω

ϕ̃ ∆p dΩ+

+

∫

Ω

q̃ p dΩ.

(3.9)

By appropriately choosing the Lagrange multiplier p, it is possible to elimi-

nate ϕ̃, in fact, if

∫

Ω

(ϕ− ϕ0) ψ dΩ =

∫

Ω

∆p ψ dΩ ,∀ψ ∈ H1, (3.10)

then

L′
F (q) q̃ =

∫

Ω

(λq + p) q̃ dΩ. (3.11)

Note that differentiating the Lagrangian with respect to the state variable ϕ

would yield the same formulation for the Lagrange multiplier p, this approach

will be used later to determine the adjoint system in different types of control.

Since L′
F (q) q̃ represents the action of L′

F (q) on q̃ as the inner product of

λq + p with q̃, we can write the gradient of the Lagrangian with respect to

the control parameter as

∇L (q) = λq + p. (3.12)

Furthermore, the new formulation of the Euler equation is derived as

L′
F (q) q̃ =

∫

Ω

(λq + p) q̃ dΩ = 0 ∀q̃ ∈ L2, (3.13)

which is equivalent to

q = −p
λ
. (3.14)
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3.1.2 Numerical solution

The numerical solution of optimal control problems relies on iterative algo-

rithms that determine an optimal control q through a sequence
(
q(n)
)
n∈N.

Cases where the control q is sought within the whole space Rn can be dis-

tinguished from cases constrained within a subset K ⊂ Rn. This discussion

will be limited to the first case. For solving this type of optimization, the

family of gradient descent methods will be shown, these methods require

knowledge of the gradient of the functional F , which makes them unsuit-

able for applications where the functional is difficult to differentiate or even

non-differentiable.

Given a solution q(n) at the n-th step, the solution at the next step is

obtained by moving from this starting point in the descent direction d(n)

according to the formula

q(n+1) = q(n) + ρ(n)d(n), (3.15)

where ρ(n) is called the step size. In gradient descent methods, the direction

d(n) is obtained at each iteration through the calculation of the gradient

∇F , which indicates the direction of maximum increase of the functional.

Below, two different strategies for choosing d(n) will be briefly discussed: the

steepest gradient method and the conjugate gradient method [18]. Note that,

in the previous equations the bold symbol has been used for scalar variables.

Nevertheless, for the minimization method, the vectors must be interpreted

as numeric vectors, i.e. the collection of the variable values on the degrees

of freedom of the computational grid. Therefore, q represents the numeric

vector that contains this value for each node. The same comment can be

drawn for d.
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Steepest gradient. The descent direction is set equal to the negative gra-

dient of the functional

d(n) = −∇F
(
q(n)

)
, (3.16)

if the functional is sufficiently differentiable F ∈ C2 (Rn) and the step size ρ

satisfies the following Wolfe conditions [30]

F
(
q(n) + ρ(n)d(n)

)
≤ F

(
q(n)

)
+ σρ(n)

(
d(n)

)T
∇F

(
q(n)

)
,

(
d(n)

)T
∇F

(
q(n) + ρ(n)d(n)

)
≥ δ

(
d(n)

)T
∇F

(
q(n)

)
,

(3.17)

where 0 < σ < δ < 1 are known constants, then the method is globally con-

vergent. The first is called the Armijo rule and requires that the change in the

functional value is proportional, according to a factor σ, to the product of the

step size ρ and the directional derivative of the functional
(
d(n)

)T
∇F

(
q(n)

)
.

The second condition ensures that the variational derivative of the functional

along the direction d(n) at q(n+1) is greater, in absolute value, than that com-

puted at q(n) weighted by δ. Moreover, in the case of a quadratic functional,

the method converges linearly, i.e.

|q(n+1) − q| ≤ C|q(n) − q|, (3.18)

with C < 1 and n sufficiently large.

Conjugate Gradient. This method improves the convergence of the clas-

sical steepest gradient method by moving along the directions

d(n) = −∇F
(
q(n)

)
+ β(n) d(n−1) . (3.19)
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The parameter β(n) ∈ R is obtained such that the directions d(n) and d(n−1)

are conjugate with respect to the Hessian matrix H, satisfying

(
d(n)

)T
Hd(n−1) = 0, (3.20)

and where H is constant, i.e. for a quadratic functional, we obtain the

following expressions for β

β(n) =
∇F

(
q(n)

)T
Hd(n−1)

(
d(n−1)

)T
Hd(n−1)

. (3.21)

In order to make the computation easier, the formula (3.21) can be rewritten

with the Fletcher-Reeves expression [19]

β
(n)
FR =

||∇F
(
q(n)

)
||2

||∇F (q(n−1)) ||2 , (3.22)

that has been implemented in the numerical algorithm.

If the functional F ∈ C1 (Rn) and its gradient is Lipschitz continuous,

and the step size ρ satisfies the strong Wolfe conditions

F
(
q(n) + ρ(n)d(n)

)
≤ F

(
q(n)

)
+ σρ(n)

(
d(n)

)T
∇F

(
q(n)

)
,

∣∣∣∣
(
d(n)

)T
∇F

(
q(n) + ρ(n)d(n)

)∣∣∣∣ ≥ −δ
(
d(n)

)T
∇F

(
q(n)

)
,

(3.23)

where 0 < σ < δ < 1
2
are known constants, then the method converges

globally and linearly.

Steepest Gradient and Conjugate Gradient methods. In this para-

graph, the two descent methods Steepest gradient (SG) and Conjugate Gra-

dient (CG) are briefly compared. An application of the two minimization



48 CHAPTER 3. OPTIMAL CONTROL

methods is presented, with an objective function in a two-dimensional do-

main to be minimized, f : R2 → R, such that

f(x, y) = 3x2 + 2y2 + 3xy + 2x+ 6y + 5. (3.24)

The function has a local minimum in x =
(
2
3
,−2

)
, and its minimum is

f (x) = −1
3
. In Figure 3.1 the trajectories of each method have been reported,

this initial comparison aims to qualitatively appreciate the differences in

the descent trajectories between the two methods. The convergence has

considered reached when ||xn+1 − xn|| ≤ ϵ, where ϵ = 10−6. The step size ρ

is considered fixed.
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Figure 3.1: Trajectory comparison between the two descent methods: SG
and CG.

In Figure 3.1 it is possible to notice how the CG method direction at each

step is influenced by the previous direction, this is what leads to the sinuous

behavior. In Table 3.1 some data, such as the number of iterations, the

functional and the coordinates reached, and their relative error with respect

to the theoretical results are reported.
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Method N. of iterations f (x) f(x)−f(x)
x

x ||x−x
x
||

SG 46 −0.333248 2.55 · 10−4 (0.672, 2.008) 0.009

CG 18 −0.333330 9.71 · 10−6 (0.668, 2.002) 0.002

Table 3.1: N. of iterations, functional and coordinates of the minimum, and
relative errors of the two minimizations realized with SG and CG methods.

Table 3.1 shows how the CG method consents to obtain better results:

both in terms of convergence, since it has the lower number of iterations, and

in the quality of the result.

The results above refer to a straightforward case, namely a two-dimensional

domain, and aim to provide a qualitative comparison of the two methods in

terms of efficiency and trajectories.

Numerical algorithm In this section, the numerical algorithm used for

the minimization problem is described. At first the state T, the adjoint Ta

and control q variable vectors are initialized, along with the functional F and

the auxiliary variable gold, that represents the functional gradient at the past

iteration. For the first iteration of the time loop the descent direction d(0)

is initialized as the anti-gradient direction, similarly to the steepest gradient

method.

After that, the time loop starts and the variables T,Ta,q and the func-

tional F are updated. Naturally, the time loop must be interpreted as an

iteration loop since our system is considered stationary. At this point, if the

convergence condition has not been satisfied yet, the new search direction

d is found through the calculation of the current functional gnew and the

parameter β. Otherwise, if the convergence is reached, the while loop is

terminated and the number of iterations and the minimum of the reached

convergent functional are collected.
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The Algorithm 3.1 illustrates only the mathematical aspect of the appli-

cation since the coupling algorithm between the codes is shown in the next

section. Therefore, this scheme does not take into account which code solves

a specific numerical field but shows the logical order for finding the numerical

solution considering the necessary steps of the minimization procedure.

Algorithm 3.1 Numerical Algorithm

1: procedure main()

Variables initialization.

2: n← 0
3: u(0) ← 0
4: T(0) ← T(u(0))

5: T(0)
a ← Ta(T

(0))

6: F (0) ← F(T(0),u(0))

7: gold ←∇F(u(0),T(0)
a )

8: s← −gold

Time loop.

9: while not stop do
10: u(n+1) ← u(n) + ρ · s
11: T(n+1) ← T(u(n+1))

12: T(n+1)
a ← Ta(T

(n+1))

13: F (n+1) ← F(T(n+1),u(n+1))

14: if
|F (n+1) −F (n)|
|F (n+1)| < ϵ then

15: stop
16: end if
17: gnew ←∇F(u(n+1),T(n+1)

a )

18: β ← ⟨gnew,gnew⟩
⟨gold,gold⟩

19: gold ← gnew

20: s← −gnew + β · s
21: n← n+ 1
22: end while
23: end procedure
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3.2 Distributed Control

Distributed control refers to when the control parameter acts on the internal

part of the solution domain Ω.

The optimal system is derived for stationary heat conduction physics,

applied to a domain Ω with boundary Γ. Specifically, a Dirichlet boundary

condition is imposed on the partition of Γ denoted by Γd, while a Neumann

boundary condition is imposed on the partition Γn. The state equation is

written in strong form as:





−α∆T = Q on Ω,

T = gd on Γd,

α∇T · n = gn on Γn.

(3.25)

Analogous to the Poisson equation, the functional becomes

F (T, g) =
1

2

∫

Ωd

(T − Td)2dΩ +
λ

2

∫

Ω

Q2 dΩ, (3.26)

where the regularization norm is defined on L2, the space in which the control

will be sought.

Euler Equation. By substituting ϕ with T , q with Q, and the Lagrange

multiplier p with Ta, the adjoint temperature, we reformulate the Lagrangian

as follows:

L =
1

2

∫

Ωd

(T − Td)2 dΩ +
λ

2

∫

Ω

Q2 dΩ +

∫

Ω

(α∆T )Ta dΩ+

+

∫

Ω

(Q)Ta dΩ−
∫

Γd

(T − gd)Ta dΓ−
∫

Γn

(α∇T · n− gn)Ta dΓ,
(3.27)
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where the boundary conditions of the problem have also been included. Note

that differentiating the Lagrangian with respect to the adjoint variable Ta

yields the state equation again:

L′
F (Ta) T̃a =

∫
Ω (α∆T ) T̃a dΩ +

∫

Ω

(Q) T̃a dΩ−
∫

Γd

(T − gd) T̃a dΓ−

−
∫

Γn

(α∇T · n− gn) T̃a dΓ,
(3.28)

which must hold for every variation T̃a, and is equivalent to the state problem

(3.25).

Adjoint Problem Differentiating the Lagrangian with respect to the state

variable T again, we obtain the system of equations for the adjoint variable

Ta:

L′
F (T ) T̃ =

∫
Ωd (T − Td) T̃ dΩ +

∫

Ω

(
α∆T̃

)
Ta dΩ +

∫

Ω

Q Ta dΩ−

−
∫

Γd

(
T̃
)
Ta dΓ−

∫

Γn

(
α∇T̃ · n

)
Ta dΓ.

(3.29)

We integrate by parts to isolate the variation T̃ :

∫

Ω

(
α∆T̃

)
Ta dΩ =

∫

Γ

(
α∇T̃ · n

)
Ta dΓ−

∫

Ω

α∇T̃ ·∇Ta dΩ

=

∫

Γ

(
α∇T̃ · n

)
Ta dΓ−

∫

Γ

αT̃ (∇Ta · n) dΓ+

+

∫

Ω

αT̃ ∆Ta dΩ,
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where, due to the boundary conditions on T , the boundary terms are zero

∫

Γ

(
α∇T̃ · n

)
Ta dΓ =

∫

Γd

(
α∇T̃ · n

)
Ta dΓ

=

∫

∂Γd

αT̃ Ta d∂Γ−
∫

Γd

αT̃ (∇Ta · n) dΓ = 0,

∫

Γ

αT̃ (∇Ta · n) dΓ =

∫

Γn

αT̃ (∇Ta · n) dΓ

=

∫

∂Γn

αT̃ Ta d∂Γ−
∫

Γn

αTa

(
∇T̃ · n

)
dΓ = 0.

To obtain the boundary condition on Γn, the respective boundary term is

reformulated:

∫

Γn

(
α∇T̃ · n

)
Ta dΓ =

∫

∂Γn

αT̃ Ta d∂Γn −
∫

Γn

αT̃ ∇Ta · n dΓ

= −
∫

Γn

αT̃ ∇Ta · n dΓ.

Rewriting equation (3.29) with the above modifications yields the adjoint

problem in weak form

L′
F (T ) T̃ =

∫
Ω (α∆Ta) T̃ dΩ +

∫

Ωd

(T − Td) T̃ dΩ−
∫

Γd

Ta T̃ dΓ

+

∫

Γn

(α∇Ta · n) T̃ dΓ,

(3.30)

and in strong form





α∆Ta = − (T − Td)ΘΩd
on Ω,

Ta = 0 on Γd,

α∇Ta · n = 0 on Γn,

(3.31)
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where ΘΩd
is addressed to the Heaviside function, defined nonzero on the

target region Ωd.

Control Equation In an analogous manner to what was done for the

Poisson equation, we differentiate the Lagrangian with respect to the control

parameter Q and then integrate by parts:

L′
F (Q) Q̃ =

∫

Ω

(T − Td) T̃ dΩ + λ

∫

Ω

QQ̃ dΩ+

+

∫

Ω

T̃ ∆Ta dΩ +

∫

Ω

Q̃ Ta dΩ.

(3.32)

Then we can simplify using the adjoint formulation in (3.30), obtaining the

expression for the control Q in weak form:

L′
F (Q) Q̃ =

∫

Ω

(λQ+ Ta) Q̃ dΩ, (3.33)

and in strong form

Q = −Ta
λ
. (3.34)

Starting from equation (3.33), the gradient of the functional can be ex-

pressed as:

∇F (Q) = λQ+ Ta. (3.35)

3.3 Dirichlet Boundary Control

In the case of Dirichlet boundary control, the control parameter is the tem-

perature imposed on the wall Tc.
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Control Problem System The state system is rewritten as





−α∆T = Q on Ω,

T = gd on Γi,

T = gd + Tc on Γc,

α∇T · n = gn on Γn,

(3.36)

and the functional

F (u, T, g) =
1

2

∫

Ωd

(T − Td)2dΩ +
λ

2

∫

Γc

|Tc|2 dΓ . (3.37)

The Euler and the Adjoint Problem equation. The formulation of

the Euler equation, referring to the functional (3.36) and the state problem

(3.37), becomes

L =
1

2

∫

Ωd

(T − Td)2 dΩ +
λ

2

∫

Γc

|Tc|2 dΓ +

∫

Ω

(α∆T )Ta dΩ−

−
∫

Γc

(T − gd − Tc)Ta dΓ−
∫

Γi

(T − gd)Ta dΓ−

−
∫

Γn

(α∇T · n− gn)Ta dΓ.

(3.38)

Taking the derivative with respect to the state variable T , we get

L′
F (T ) T̃ =

∫

Ω

(
α∆T̃

)
Ta dΩ−

∫

Ωd

(T − Td) T̃ dΩ−

−
∫

Γi+Γc

(Ta) T̃ dΓ−
∫

Γn

(α∇Ta · n) T̃ dΓ,

(3.39)

and performing the same steps as in the distributed case, the adjoint problem
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can be written in weak form as

L′
F (T ) T̃ =

∫

Ω

(α∆Ta) T̃ dΩ−
∫

Ωd

(T − Td) T̃ dΩ−

−
∫

Γi+Γc

(Ta) T̃ dΓ−
∫

Γn

(α∇Ta · n) T̃ dΓ,

(3.40)

and in strong form





α∆Ta = (T − Td)ΘΩd
on Ω,

Ta = 0 on Γi,Γc,

α∇Ta · n = 0 on Γn.

(3.41)

Optimality system. Taking the derivative of the Lagrangian, this time

with respect to the control parameter Tc, we get

L′
F (Tc) T̃c =

∫

Ωd

(T − Td) T̃ + λ

∫

Γc

Tc T̃cdΓ +

∫

Ω

αTa∆T̃ dΩ−

−
∫

ΓcTa

(
T̃ − T̃c

)
dΓ−

∫

Γi

Ta T̃ dΓ−

−
∫

Γn

α
(
∇T̃ · n

)
Ta dΓ,

(3.42)

where

T̃ = T
(
Tc + T̃c

)
− T (Tc) . (3.43)

To isolate the variation T̃ , we integrate twice by parts

∫

Ω

αTa∆T̃ dΩ =

∫

Γ

αTa

(
∇T̃ · n

)
dΓ−

∫

Ω

α∇Ta ·∇T̃ dΩ

=

∫

Γ

αTa

(
∇T̃ · n

)
dΓ−

∫

Γ

αT̃ (∇Ta · n) dΓ+

+

∫

Ω

αT̃∆TadΩ ,

(3.44)
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and using the boundary conditions imposed on T and Ta, we obtain

∫

Ω

αTa∆T̃ dΩ = −
∫

Γc

αT̃c∇Ta · n dΓ +

∫

Ω

αT̃∆TadΩ . (3.45)

Similarly

−
∫

Γn

α
(
∇T̃ · n

)
Ta dΓ = −

∫

∂Γn

αT̃ Ta d∂Γ +

∫

Γn

αT̃ (∇Ta · n) dΓ

=

∫

Γn

αT̃ (∇Ta · n) dΓ.
(3.46)

Thus, the equation (3.42) becomes

L′
F (Tc) T̃c =

∫

Ωd

(T − Td) T̃ + λ

∫

Γc

Tc T̃cdΓ−
∫

Γc

αT̃c (∇Ta · n) dΓ+

+

∫

Ω

αT̃∆TadΩ−
∫

Γc

Ta

(
T̃ − T̃c

)
dΓ−

∫

Γi

Ta T̃ dΓ+

+

∫

Γn

αT̃ (∇Ta · n) dΓ,
(3.47)

which can be further simplified using the adjoint system (3.40) to obtain

L′
F (Tc) T̃c = λ

∫

Γc

TcT̃cdΓ−
∫

Γc

αT̃c (∇Ta · n) dΓ +

∫

Γc

Ta T̃c dΓ. (3.48)

Finally, using the Ta boundary conditions

∫

Γc

TaT̃c dΓ = 0, (3.49)

the control equation can be rewritten in weak form as

L′
F (Tc) T̃c = λ

∫

Γc

T̃cTcdΓ−
∫

Γc

αT̃c∇Ta · n dΓ , (3.50)
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and in strong form as

Tc − α
∇Ta · n|Γc

λ
= 0. (3.51)

Gradient of the Functional. Starting from the equation (3.50), the gra-

dient of the functional can be expressed as

∇F (Tc) = λTc − α∇Ta · n|Γc . (3.52)

3.4 Neumann Boundary Control

In Neumann boundary control, the control parameter is the thermal flux h

imposed on the boundary.

Control Problem System. The state system is rewritten as





−α∆T = Q on Ω,

T = gd on Γd,

α∇T · n = gn on Γi,

α∇T · n = H on Γc,

(3.53)

and the functional

F (u, T, g) =
1

2

∫

Ωd

(T − Td)2dΩ +
λ

2

∫

Γc

H2 dΓ. (3.54)
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Euler and adjoint Equations. The Lagrangian is reformulated for the

state system (3.58) and for the functional (3.54)

L =
1

2

∫

Ωd

(T − Td)2 dΩ +
λ

2

∫

Γc

H2 dΓ +

∫

Ω

α∆T Ta dΩ−

−
∫

Γd

(T − gd)Ta dΓ−
∫

Γi

(α∇T · n− gn)Ta dΓ−

−
∫

Γc

(α∇T · n−H)Ta dΓ.

(3.55)

Again, by differentiating with respect to the state variable T

L′
F (T ) T̃ =

∫

Ωd

(T − Td) T̃ dΩ +

∫

Ω

α∆T̃ Ta dΩ−

−
∫

Γd

T̃ TadΓ−
∫

Γi+Γc

(
α∇T̃ · n

)
Ta dΓ,

(3.56)

and performing the same substitutions as in the distributed case, the adjoint

problem for Neumann control is obtained in weak form

L′
F (T ) T̃ =

∫

Ωd

(T − Td) T̃ dΩ +

∫

Ω

(α∆Ta) T̃ dΩ−

−
∫

Γd

(Ta) T̃ dΓ−
∫

Γi+Γc

(α∇Ta · n) T̃ dΓ ,

(3.57)

and in strong form





α∆Ta = (T − Td)ΘΩd
on Ω,

Ta = 0 on Γd,

α∇Ta · n = 0 on Γi,Γc.

(3.58)
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Control Equation. By differentiating the Lagrangian with respect to the

control parameter H one obtains

L′
F (H) H̃ =

∫

Ωd

(T − Td) T̃ + λ

∫

Γc

HH̃ dΓ +

∫

Ω

αTa∆T̃ dΩ−

−
∫

Γd

TaT̃ dΓ−
∫

Γi

α∇T̃ · n Ta dΓ−

−
∫

Γc

(
α∇T̃ · n− H̃

)
Ta dΓ,

(3.59)

where T̃ = T
(
H + H̃

)
− T (H). In a manner analogous to the previous

cases, the equation can be simplified to obtain the control equation in weak

form

L′
F (H) H̃ = λ

∫

Γc

HH̃ dΓ +

∫

Γc

TaH̃ dΓ, (3.60)

and in strong form

H = −Ta
λ
. (3.61)

Starting from the equation (3.60), the gradient of the functional can be

expressed as

∇F (H) = λH + Ta. (3.62)



Chapter 4

Coupling

This section details the approach used to couple the two codes, FEMuS and

OpenFOAM, which are the focus of the subsequent numerical results.

FEMuS [3] is an in-house multigrid finite element library developed in

C++ that uses a variety of open-source libraries, including PETSc for linear

algebra and LibMesh for mesh hierarchy management. The FEMuS library

has been extended to support coupling with a MED-compatible C++ inter-

face, utilizing the SALOME platform for enhanced interoperability.

OpenFOAM [25] is a widely recognized open-source, object-oriented C++

library primarily developed for computational fluid dynamics (CFD) simu-

lations. It is maintained separately by the ESI Group and the OpenFOAM

Foundation. The OpenFOAM library is based on the finite volume method

(FVM), which discretizes the computational domain into elements, or cells,

where PDEs are solved.

Next the coupling structure and an explanation of the coupling algorithm

are reported, for further details see [4].
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4.1 Coupling structure

To enable communication between the two codes, and more generally be-

tween any codes, it is necessary to create interfaces for each code capable

of translating internal data structures into a common format, i.e., the MED

format.

The MED and MEDCOUPLING libraries are structured to be optimized

for code coupling, meaning that the data structures in which the fields are

stored contain enough data to be correctly interpolated. Additionally, they

do not require external programs to be used, simplifying their use, and they

adopt all high-performance computing (HPC) paradigms by optimizing re-

source use and managing data exchange directly in memory without the need

for external file reading and writing.

These interfaces communicate through a central hub, forming a hub-and-

spoke model illustrated in Figure 4.1. This approach facilitates the addition

of further codes since, for each new code, only its interface needs to be cre-

ated to transfer data in the MED format, greatly reducing the development

resources required compared to an approach where each code is coupled sep-

arately.

Hub

Code 1

Code 2

Code 3 Code 4

Code 5

Code 6

Figure 4.1: Hub-and-Spoke structure representation.
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The coupling application thus uses three different classes for data transfer.

The first, OF interface, serves to translate OpenFOAM’s internal data struc-

tures into the common MED format. Similarly, the second class, F interface,

acts as an interface between FEMuS and the MED library. Finally, the third

class, MED class, is responsible for managing operations within the MED

library itself, such as storing, retrieving, and manipulating data. A partic-

ularly interesting feature of this class is its ability to interpolate a field on

a different mesh. The interpolation of a field, passing from a source field ϕs

defined on a source mesh Ωs into a target field ϕt defined on a target mesh

Ωt, is a fundamental action when coupling two codes that use different reso-

lution techniques, such as finite elements and finite volumes, or that simply

use different meshes.

At a higher level, the interaction between the codes and their operation

is managed. First, the two codes are initialized and configured, ensuring

they are ready to interact through the interface structures with an exchange

mesh and initialization numerical fields. Second, the synchronization of time

steps between the two codes is managed, ensuring that the two simulations

remain consistent with each other. At each time step, fields are exchanged,

the problem is solved, and convergence is monitored.

Through this platform, simulations that require exchanging volumetric

data, defined over the entire mesh, or boundary data can be performed. In

this discussion, both alternatives will be explored by solving a coupled dis-

tributed control problem for volumetric data exchange and boundary control

problems for boundary data exchange. In both cases, the general structure

of the code remains the same.
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4.2 Coupling algorithm

The object of this coupling is the solution of an optimal control system for

the heat transport equation. In particular, the system has been split into the

state system, solved by OpenFOAM, and the combined adjoint and control

system, solved by FEMuS. A graphical representation is reported in figure

4.2.

OpenFOAM

State equation

T

FEMuS

Control

q =





Q on Ω

TC on ΓD

H on ΓN

Adjoint equation

Ta

MED

routines

MED

routines

Figure 4.2: Coupling diagram.

As shown in the Algorithm 4.1, in the first step, both OpenFOAM and

FEMuS generate a copy of the mesh in MED format, where the field to be

passed to the other code will be set for interpolation.

Both interface classes, OF interface and F interface, have the function

init interface(), which extracts information such as connectivity and co-

ordinates from the original mesh of the two codes to create the copy in the

MED format. FEMuS, employing the Finite Element Method, handles bi-

quadratic fields and therefore a biquadratic mesh. Nonetheless to exchange

data with OpenFOAM which uses a linear mesh the FEMuS interface needs

a linear mesh as well. For this reason, the function init interface() from

the F interface, holding the information from the original biquadratic mesh

extracts the necessary data needed to create a linear mesh for the FEMuS
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Algorithm 4.1 Coupling Algorithm

1: procedure main()

2: Initialization of OpenFOAM and FEMuS structures.

Initialization of interfaces both for FEMuS and OpenFOAM.

3: function init interface()

4: Set interface name for reference at the supervisor level.

5: conn ← get mesh connectivity() ▷ Get interface mesh connectivity

6: coords ← get mesh coordinates() ▷ Get coordinates of mesh nodes

7: set map CodeFromToMED() ▷ Map mesh nodes ↔ MED mesh nodes

8: end function

9: function create mesh()

10: insert cells with conn information into the MED mesh structure.

11: setup coords information into the MED mesh structure.

12: creation of MED mesh copy from the mesh of FEMuS/OpenFOAM.

13: end function

14: function init med field on nodes/cells()

15: assigns the MED field to the corresponding interface MED mesh.

16: allocate med array() ▷ MED array memory allocation

17: init med field() ▷ Set MED field values to zero

18: end function

Time loop

19: it = 0

20: while non stop do

21: Solve system of equations (T ) of OpenFOAM.

22: get field from OF() ▷ Extract field T solution from OpenFOAM

23: fill med array() ▷ Write field T solution into MED array

24: update med field() ▷ Set MED array values into MED field T

25: interpolation() ▷ Interpolation P0 → P0 (from OF to F)

26: set field to F() ▷ Set field T solution into FEMuS

27: Evaluate Functional.

28: if convergence then

29: stop

30: end if

31: Solve system of equations (Ta, q) of FEMuS.

32: get field from F() ▷ Extract field q solution from FEMuS

33: fill med array() ▷ Write field q solution into MED array

34: update med field() ▷ Set MED array values into MED field q

35: interpolation() ▷ Interpolation P0 → P0 (from F to OF)

36: set field to OF() ▷ Set field q solution into OpenFOAM

37: it += 1

38: end while

39: end procedure
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coupling interface.

At this point, once the necessary data are stored, is possible to generate

copies of the two original meshes through the function create mesh() that

belongs to the med class.

Now both codes have a copy of their mesh in the MED format, so

the field that needs to be exchanged (T for OpenFOAM and q for FE-

MuS) is initialized on these meshes. To do that are used the functions

init med field on cells(), for OpenFOAM, and init med field on nodes(),

for FEMuS: both functions belong to the med class. Here an array is gen-

erated for each field, allocating the memory for it and enabling the MED

library to set the values of the MED fields. Now both codes have completed

the interface initialization, configuring MED mesh copies and MED fields, so

it is possible to proceed with the time loop.

The time loop begins with solving the state equation for T on Open-

FOAM, once the code has completed the calculation and has obtained a solu-

tion this is extracted from the solver using the function get field from OF()

belonging to the OF interface class. Then the solution is translated into a

MED array and transferred into the corresponding MED field, respectively

through the functions fill med array() and update med field() of the

med class class.

At this point, the field from OpenFOAM needs to be interpolated from

its MED mesh into the FEMuS MED mesh. The performed interpolation is

from P0 to P0, since FEMuS solves for biquadratic fields, there is a second

interpolation from P0 to P2 to set the field on FEMuS. The algorithm used

for this last interpolation is implemented in FEMuS [14]. So the field is firstly

interpolated from the P0 MED mesh of OpenFOAM into the P0 MED mesh

of FEMuS using the function interpolation() of the med class and in a
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second step into the biquadratic FEMuS field using an in-house interpolation.

At this point, the solution can be set into FEMuS as its own solution using

the set field to F() of F interface.

Once FEMuS has the T solution performed by OpenFOAM the system

functional is evaluated and the convergence condition is checked.

Now is possible to solve the FEMuS equation system, formed by the

adjoint temperature Ta, which uses the temperature T obtained from Open-

FOAM, and the control q. Once the calculations are performed is possible

to follow the same scheme reported for passing the data from OpenFOAM

to FEMuS backwards. That means using the function get field from F()

to extract the solution from FEMuS, then interpolate it from P2 to P0. At

this step, the P0 solution is used to fill a MED array through the function

fill med array() and then transferred into the corresponding MED field

using update med field().

Now the interpolation() function is used again in order to interpolate

the MED field of FEMuS onto the OpenFOAMMED mesh and finally set the

interpolated field on OpenFOAM using set field to OF(). At this point is

possible to re-iterate the procedure for each iteration of the time loop.

4.2.1 Interpolation algorithm

One of the key aspects of coupling is the interpolation of fields between the

grids of the different codes. In addition to being one of the most challenging

and delicate aspects of coupling codes, it is also necessary to study its impact

on the solutions and the errors it generates. As the coupling routine has

been defined, it is clear that there are two interpolations: the first from the

OpenFOAM cell-wise field to the FEMuS point-wise biquadratic field and

the second the opposite.
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Point-wise to cell-wise. How this interpolation is done depends on whether

it is between volume or boundary fields.

If it is between volume fields, the average value of each element of the

point-wise field is assigned to each cell of the cell-wise field. This average

value is calculated as the integral of the field above the element divided by

its area (or volume if the mesh is three-dimensional)

f e
h =

∫
Ωe

fh dx∫
Ωe
dx

. (4.1)

Expressing the field fh as the linear combination of the values at the nodes

weighted by the shape function we can write its integral above the element

as ∫

Ωe

fh dx =
ne∑

j=1

f
(
xe
j

) ∫

Ωe

N2,e
j dx. (4.2)

An example of interpolation is reported in Figure 4.3.
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Figure 4.3: Interpolation from point-wise to cell-wise field.

When the interpolated field is a boundary field, we assign the face central

node value of the point-wise field, see Figure 4.4.
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1 5 2

8 9 6

4 7 3

1 3 2

Figure 4.4: Central point of a two-dimensional (left) or one-dimensional
(right) boundary face.

Cell-wise to point-wise. In this case, the procedure is similar to that in

the opposite case. Still, instead of assigning the mean node value to each

cell, each node is given the mean value among the near cells values. If the

node is a corner the mean value is taken between all the four cells that share

the corner, otherwise only between the two confining cells. Instead, when a

node is a central one then its proper cell value is conserved. An example is

reported in Figure 4.5.
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Figure 4.5: Interpolation from cell-wise to point-wise field.
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4.2.2 Interpolation errors

In the coupling routine, the interpolation errors occur two times, one for

each interpolation process. The first is on the temperature field received by

FEMuS interpolation from the OpenFOAM grid to its own. It is important to

remember that this means interpolating a P0 field into a P2 field. Defining

an interpolation function I(T ) : TOF → TF it is possible to rewrite the

functional F as

F (I(T ), q) = 1

2

∫

Ωd

|I(T )− Td|2 dΩ +
1

2

∫

Ωc

|q|2 dΩc , (4.3)

and the adjoint variable Ta as

∆T̃a = I(T )− Td . (4.4)

After that, the control q will also be affected by the error in Ta

q̃ = q
(
T̃a

)
. (4.5)

This affects the functional computation since the control error will accumu-

late iteratively.

Moreover, we should also consider the error resulting from the control

interpolation q from the FEMuS grid to the OpenFOAM’s one. Now, we

use a biquadratic to piece-wise element field approximation. In Chapter 5

some considerations about the relative importance of the two interpolation

processes and their dependence on the computational grid are made.
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Numerical results

This chapter presents the numerical results for an optimal control application

solved by coupling FEMuS and OpenFOAM as described in Chapter 4. For

each case solved, the result obtained is compared with the result obtained

without coupling on FEMuS, which serves as the reference result.

The steady-state heat transport equation without convective contribu-

tion, which consists of a Laplacian with a volumetric heat source on the

right-hand side, gives the state of the system,

−α∆T = Q. (5.1)

The state described above is solved on a two-dimensional square domain

Ω shown in Figure 5.1 with boundary Γ. On the partition Γd, a Dirichlet

condition is imposed, and on Γn, a Neumann condition is imposed





−α∆T = Q in Ω,

T = gt on Γd,

α∇T · n = gn on Γn.

(5.2)

71
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∇T · n = 0

∇T · n = 0

T
=

T
1

T
=

T
2

Q

Γn

Γn

Γ
d

Γ
d

Figure 5.1: State of the problem.

Concerning the value of Q and the boundary conditions, in the following

sections, these parameters are described considering the different types of

optimal control. Nevertheless, the boundary conditions gd, gn are considered

to be constant on ΓD,ΓN respectively. Note that, considering a boundary-

type control the involved boundary conditions are still initialized with gd or

gn. So at every step, we impose at the boundary gd (or gn) plus Tc (or H),

where the control variable is initialized to zero.

Anyway, the objective functional which relates the state variable T with

the desired temperature Td remains the same for each type of control. In

particular, we have

F(T ) = 1

2

∫

Ωd

|T − Td|2 dΩ , (5.3)

where Ωd is the target region with target Td.

Regarding the controlled regions, for each simulation, the regularization

term is assumed to be solved only on Ωc ⊆ Ω. Therefore, the considered
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functional is

F(T, q) = 1

2

∫

Ωd

|T − Td|2 dΩ +
λ

2

∫

Ωc

|q|2 dΩ . (5.4)

We recall that in the case of boundary control, the second integral in the

right-hand side of Equation (5.4) has meaning naturally only on the con-

trolled portion of the domain which is a portion of Γ, thus or on the Dirichlet

boundaries or on the Neumann ones.

For each type of control, the results obtained with the coupled and uncou-

pled algorithms have been compared. In particular, we have considered the

same λ, ρ, and the same criterion for the convergence solution. Specifically,

considering the average functional of ten iterations F̄i at the iteration i, the

convergence has been obtained following

|F̄i − F̄i−1|
Fi

< ε , (5.5)

where ε has been set equal to 10−9.

Non-dimensional system In the following, a non-dimensional formula-

tion for the optimal control system is proposed. By using this formulation is

possible to compare results from similar problems but with different dimen-

sions or physical constants. Thus, the state variable T , the adjoint variable

Ta and the control q have been reported in the dimensionless formulation
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T ∗ =
T − gd
Tref − gd

, T ∗
a =

Taα

TrefL2
, q∗ =





Q∗ =
QL2

αTref
,

T ∗
c =

Tc
Tref

,

H∗ =
HL

αTref
,

(5.6)

where Tref = max (|Td|). Similarly, the space coordinates x are transformed

into x∗ = x/L, with L the length of the squared domain side. In order for

the optimal control system to remain coherent during the transition to these

non-dimensional variables, also the regularization factor λ must be consid-

ered. In fact, λ has a specific dimensionality that depends on the type of

control, and it turns into its dimensionless form too. Specifically, the follow-

ing dimensionless transformations apply to the three types of control

λ∗dist =
λα2

L4
, λ∗Dir =

λ

L
, λ∗Neu =

λα2

L3
. (5.7)

In the following results, for the sake of simplicity, the parameter λ will always

be presented with its dimensional value, i.e., the value used in the simulations.

However, its dimensionless value can be derived using formulas (5.7), with

L = 0.01 [m] and α = 1.433 · 10−7
[
m2

s

]
.

As said above, this approach allows for scaling the problem to different

materials or geometries. A brief demonstration of this concept is reported

below, within a distributed control case, case 1.
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5.1 Uncoupled results

A large part of the work has been dedicated to the implementation of the

control system, along with the minimization techniques, in the finite element

code FEMuS. For this reason, some introductory cases are presented to es-

tablish the proper functioning of the code and its functionalities. Two cases

are presented, both with a 80× 80 resolution grid is used. In addition, also

a comparison between the two implemented minimization techniques, the

steepest and the conjugate gradient methods, has been added.

5.1.1 Case 1

A first example is presented as a distributed control case, where the optimal

control system is defined in Section 3.2, with a single target zone Ωd with

target Td, and the controllable zone Ωc coincide with the entire domain Ω.

Defined Ω as a square Ω = [0, L]×[0, L], then Ωd = [L/5, 4L/5]×[2L/5, 3L/5].
The target zone Ωd is reported in Figure 5.2. The parameter λ is taken equal

to 10−2.

Ω

Ωd

Td

Figure 5.2: Single target region for the uncoupled problem.

In Figure 5.3 a surface plot of the non-dimensional temperature and the
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non-dimensional control is reported. We can notice how the temperature
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Figure 5.3: Three-dimensional representation of T ∗ (on the left) and Q∗ (on
the right) for the distributed control, considering the two-dimensional non-
dimensional domain.

reaches very well the target value in the target region, assuming a flat profile.

This is more noticeable in Figure 5.4, which shows the temperature plotted

across the target zone as a function of x∗. The control Q is flat inside the

target region since the temperature has to remain constant, on the contrary,

it has a very sharp behavior in correspondence with the edges of the region

near the left and right walls. In these walls we have a Dirichlet boundary

condition, therefore the temperature gradient is maximum.

To have a better look at the quality of the results, i.e. how much we

are near the real optimum, it is possible to use the Euler equation (3.34). If

the two terms of the equation Q and −Ta

λ
are identical, then the optimum

is reached. In Figure 5.4 are reported the two variables as a function of the

non-dimensional coordinate x∗ for y∗ = 0.5. As we can see the two profiles

are almost the same. This means that the optimum is near the real one.

Problem scaling. Starting from the problem defined above, with λ =

10−2 [s2], we scale it to a ten times bigger domain, i.e. considering Ls =
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Figure 5.4: The non-dimensional temperature T ∗ (on the left), and the con-
trol Q∗ compared with its analytic optimum expression (on the right), as a
function of x∗, for y∗ = 0.5.

0.1 [m]. To solve the problem on the new domain with the same effective

regularization is sufficient to calculate the new dimensional λ as

λs = λ∗
L4
s

α2
= 102

[
s2
]
. (5.8)

In Figure 5.5 we compare two cases, the first with λ, L and α and the second

with λs, Ls and αs = α. The state variable T and the control variable Q

are reported across the square domain’s diagonal. By keeping λ∗ constant

between the two cases, we can observe that the profile of the state variable T

remains the same. Recall that its dimensionless form, T ∗, depends solely on

the target value. This consideration proves the consistency of the proposed

non-dimensional system, which, as demonstrated, allows the optimal control

problem to be scaled to others, considering geometric similar domains and

other materials.
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Figure 5.5: Dimensionless control Q∗ (left) and temperature T ∗ (right) with
the same λ∗ but different domain, as a function of the non-dimensional di-
agonal r∗.

5.1.2 Case 2

In the code has been also implemented the possibility to have different target

regions, each with different targets, and to restrict the controllable region Ωc

to a subset of the domain Ω. Both these requests increase the complexity of

the system. Next, a Dirichlet boundary control case with two target regions

and a restriction of the controllable region is reported. For a boundary control

case, the target region is called Γc.

Defined Ω as a square Ω = [0, L] × [0, L], the controllable region Γc is

equal to half of the left wall, Γc = [0, L/2]. Instead, the target zone Ωd is

divided into two subzones Ωd,1 and Ωd,2, with target temperatures Td,1 and

Td,2, respectively. Specifically, Ωd1 = [L/5, 2L/5] × [L/5, 2L/5] and Ωd2 =

[3L/5, 4L/5]× [3L/5, 4L/5]. A representation is reported in Figure 5.6. The

parameter λ is taken equal to 10−8. In Figure 5.7, a surface plot of the

non-dimensional temperature is reported. Observing the surface plot on the

left, it is evident that the temperature imposed at the wall is significantly

higher than its value across the target region. Additionally, the right plot

clearly shows that the efficiency of the control is much lower compared to the
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Figure 5.6: Double target region for the uncoupled problem.

previous case. As mentioned earlier, this reduction in efficiency is due to the

increased complexity introduced by the restriction of the controllable region

and the presence of multiple targets.
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Figure 5.7: The state variable T ∗ as a function of y∗ for x∗ = 0.3, in the
middle of the target region (on the left), and across the two-dimensional
domain (on the right), for the Dirichlet boundary control.

In Figure 5.8, the obtained control profile is shown alongside a comparison

with its analytical optimal expression (3.51). On the left, we observe a spike

in the control profile near the boundary of the uncontrolled region. This is

because the target zone Ωd,2, located farther from the controlled boundary

Γc, is less effectively controlled, with the adjoint variable reaching very high
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values in this region. The profile of the adjoint temperature Ta is reported in

Figure 5.9. Despite the state does not perfectly match the target values, it

remains close to the optimal state, as illustrated on the right side of Figure

5.8.

This example contrasts with the previous case, where the target values

were met more accurately due to the problem’s simpler nature. Nevertheless,

both optimal control problems achieve their respective optimal solutions. It

is important to note that the obtained control, Tc, follows the Euler equation

only within the controllable domain Γc, as it is zero outside this region.
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Figure 5.8: Control Tc (on the left) and its comparison with the analytic
optimum expression (on the right) as a function of y∗, for x∗ = 0.

5.1.3 Minimization methods comparison

Recalling the first case reported above, it has been performed both with

the conjugate gradient (CG) and the steepest gradient (SG) methods, with

various grid configurations. Next, a brief comparison of the performance of

the two methods is reported.

Figure 5.10 shows the convergence ratio, defined as the ratio between

the number of iterations of the CG method and the SG method
ItCJ

ItSG
, as
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Figure 5.9: Adjoint temperature Ta across the bidimensional domain, for
Dirichlet boundary control.

a function of the final value of the functional and the mesh grid used. In

this case, threshold convergence was used instead of equilibrium convergence.

Results are reported for various functional thresholds and grid configurations.
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Figure 5.10: Convergence ratio between CG and SG methods, as a function
of the functional value threshold and the mesh grid.

From Figure 5.10 we can notice how the convergence ratio decreases both
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with the increase of the degrees of freedom of the problem and the decrease

of the threshold functional value. In particular, from the graph on the left,

we see the convergence ratio as a function of the functional threshold value

while on the right graph as a function of the grid size. On the left, we can

notice how the convergence ratio reaches a kind of plateau for finer grids.

On the contrary, it continues to decrease with the increase of the degrees of

freedom of the grid, as we can see on the right.

Taking the lowest functional value, 10−7, and the finest grid, 64 × 64,

as examples, the advantage of using the CG method over the SG method is

approximately two orders of magnitude. This demonstrates the significant

impact that the choice of minimization technique can have in an optimal

control application, or more generally, in optimization.

5.2 Coupled results

In this section, the coupled results are presented and validated using the

uncoupled code as a benchmark.

In the following examples, the controllable zone Ωc is considered to be

the all domain Ω, or in the case of boundary control all Γd and Γn respec-

tively. The target zone Ωd is divided into two subzones Ωd,1 and Ωd,2, with

target temperatures Td,1 and Td,2, respectively. Defined Ω as a square Ω =

[0, L]× [0, L], then Ωd1 = [L/5, 2L/5]× [L/5, 2L/5] and Ωd2 = [3L/5, 4L/5]×
[3L/5, 4L/5]. The target zones are schematically shown in Figure 5.11.

The coupled and uncoupled results are compared with the same λ and

ρ parameters. Unless otherwise specified, the results are obtained using a

40 × 40 resolution grid on FEMuS and 81 × 81 on OpenFOAM so that the

same number of degrees of freedom is used on both.
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Figure 5.11: Target zones.

5.2.1 Distributed control

In this case, the control q represents the source Q on the right-hand side

of the state equation, and the Dirichlet and Neumann boundary conditions

imposed on Γd and Γn, respectively, are homogeneous. The optimal control

system is defined in Section 3.2.

Coupling results. Three cases with three different values of λ were con-

sidered to appreciate different levels of regularization on the control. Specif-

ically, λ assumes the values 102, 100, 10−2. For each case, the trend of the

dimensionless control Q∗ and the dimensionless state T ∗ along the main di-

agonal of the domain, from the bottom left to the top right corner, as a

function of the dimensionless coordinate r∗ ∈ [0,
√
2] is reported.

Figure 5.12 shows the different behavior of the control parameter Q con-

cerning λ, and the corresponding effect on the state variable inside the con-

trolled regions. As λ decreases, the control Q∗ assumes a shape less smooth,

producing a sharp behavior close to the controlled areas. The case with

λ = 10−2 represents the less regularized solution, with corresponding temper-

atures inside the controlled region very close to the target value. Otherwise,
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Figure 5.12: Distributed control Q∗ and state T ∗ as a function of the dimen-
sionless diagonal coordinate r∗, for λ = 102, 100, 10−2.

with a λ = 102 the control Q∗ has a low effect on the state variable that is

not able to reach the target value on the controlled regions, as we can see

from the distance with the red line.
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In Figure 5.13 a surface plot of the non-dimensional temperature and

the non-dimensional control is reported. Specifically, only the case with the

lowest λ is shown, considering a 40× 40 finite element grid. With the three-

dimensional representation, the symmetric behavior of these variables can be

noticed. Moreover, the sharp trend ofQ∗ is present close to the target regions,

where several peaks can be observed. Regarding the temperature field, as

expected, two plateaus are present in the target regions, with opposite values

close to 1 and −1.
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Figure 5.13: Three-dimensional representation of T ∗ (on the left) and Q∗

(on the right) for the distributed control, considering the two-dimensional
non-dimensional domain.

In Table 5.1 the functional and the number of iterations have been re-

ported for the three different cases previously presented.

From Table 5.1, we better understand the numerical results depicted in

Figure 5.12, in particular considering the functional minimum. Indeed, for

each case of λ the first column represents the minimum of the functional,

while the second one reports the number of iterations employed for reaching
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λ
102 100 10−2 − 10−2(refined)

min(F) · 10−6 niter · 102 min(F) · 10−7 niter · 102 min(F) · 10−9 niter · 103

C 6.97 50.9 1.87 19.9 3.24− 3.02 2.1− 4.1

UC 6.91 6 1.83 4 2.96− 2.95 2.7− 1.2

Table 5.1: Minimum functional and number of iterations for the different
cases of the distributed control with both algorithms for a 40 × 40 grid. In
the last column, for the lowest λ value, the results for the refined grid are
also reported.

the convergence condition. Naturally, the first row reports the results for the

coupled case, while the second row represents the uncoupled scenario. It is

recalled that these results refer to a computational grid with 40×40 elements

(considering the FEM grid), therefore an 81× 81 grid for the FVM code has

been used to have the same degrees of freedom (81×81). Regarding min(F),
the first two values of λ show a good match for both algorithms, while a

major difference can be noted for the lowest value of λ.

In fact, with λ = 10−2, we observe some discrepancies between the cou-

pled and the uncoupled results compared to higher values of λ. This phe-

nomenon can be explained by the errors introduced during field interpolation

when transferring data from one code to the other. As the optimal state is

approached, the distance of the state from the objective |T − Td| decreases,
making the interpolation error on T , at first negligible, increasingly impor-

tant. This interpolation error limits the achievement of the real optimum

state since it is not possible to obtain a sufficiently accurate control.

On the other hand, the interpolation error can be improved by increasing

the number of degrees of freedom in the grid. In fact, in Figure 5.12 on

the last row, are also reported the same case of λ = 10−2 obtained with a

double refined grid, with a dashed line for the coupled case and with squared

markers for the uncoupled one. For the uncoupled case, slight differences
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can be noticed because the simulation has already found its optimum, but

for the coupled case an improvement has been obtained, especially for Q

which is very close to the uncoupled results. These conclusions can be also

drawn from Table 5.1 where the distance between the two minimum decreases

considering the refined solution.

In addition, the relative errors between the functional minimum increase

by decreasing the value of λ, going from 1 to 10 percent. However, the latter

value corresponding to the lowest λ can be improved until around 2% with

a double refined grid.
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Figure 5.14: Optimal control Q and its analytic expression at the optimum
state. The uncoupled case at the left, the coupled case in the middle, and
the refined coupled case on the right.

A measure of the quality of the optimization convergence can be obtained

using the Euler expression defined in (3.34). In Figure 5.14, the obtained con-

trol Q and its analytic optimal expression −Ta

λ
are compared. It is known

from theory that the exact optimum is achieved when the two are identical.

We can observe that for the uncoupled case, there is a perfect agreement

between the two lines, while some discrepancies are present for the coupled

case. This indicates that the numerical solution is slightly away from reach-

ing the true optimum. As previously mentioned, better results are obtained

considering the refined coupled case which is depicted on the right. This

analysis perfectly reflects the considerations made earlier about the func-
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tional minimum and also validates the accuracy of the uncoupled simulation,

which is used as a reference case.

Regarding the number of iterations, the situation for the distributed con-

trol is different between the two algorithms. This is true considering the first

two values of λ where the coupled case takes more iterations to satisfy the

convergence condition. For example, considering λ = 102 there is an increase

of almost one order of magnitude for the coupled case. However, this dif-

ference decreases when λ decreases, since for the most controlled case, i.e.

λ = 10−2 the number of iterations is similar.

In the last column, for the lowest λ the results with a refined mesh are

reported. Refining the grid we can notice that on one hand, we reach a lower

value of the functional, which means a better result and more similar to the

uncoupled case, on the other hand, the number of iterations increases. On

the opposite, the number of iterations for the uncoupled case decreases.

Grid ratios. For the distributed case, is investigated also the influence of

the difference between the degrees of freedom of the two codes. This compar-

ison aims to evaluate the impact of the interpolating routine on the overall

behavior of the algorithm, especially for the shape of the control Q, which

is the real output of the simulation. Therefore, three different grids have

been considered for the finite volume code (OpenFOAM), by fixing the finite

element computational grid with the same degree of freedom as the interme-

diate FVM grid. Moreover, the same simulations have been performed fixing

the FVM grid and varying the FEM grid. The results have been reported

in Figure 5.15, where with F is denoted the FEMuS grid, while with OF the

one of OpenFOAM. For these results, only the case with λ = 10−2 has been

performed, and the dimensionless control Q∗ is again reported as a function
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of the dimensionless diagonal r∗. From Figure 5.15 we can note the difference
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Figure 5.15: Control Q for different combinations of degrees of freedom be-
tween the two codes. On the left the FEM grid (F) is fixed, on the right the
FVM grid (OF) is fixed.

of the control Q∗ varying the computational grids of the CFD codes. If, on

the left, the change of the FVM grid seems to have a small influence on the

solution of the equation systems, on the right the situation is different. In

this case, the FVM grid is fixed and the FEM grid is changed. It can be

noticed that we have significant discrepancies when the coarsest FEM grid

is considered, while with finer grids the results are comparable with the first

case of grids combination.

It is observed that varying the OpenFOAM grid has much less influence

compared to varying the FEMuS grid. The interpolation error occurs when

the projected field no longer provides a good approximation of the original

one, i.e., when the target grid is not fine enough to represent it. Reconfirming

the observations made earlier, this reaffirms that the error occurs when the

temperature field is projected from the P0 grid to the P2 grid of FEMuS, and

when the latter is not sufficiently fine, the interpolation error becomes very

significant.

In table 5.2 we can confirm the previous impressions about the effective-
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OF 41×41 OF 81×81 OF 161×161
min(F) · 10−9 niter · 103 min(F) · 10−9 niter · 103 min(F) · 10−9 niter · 103

F 40×40 3.30 4.4 3.24 2.1 3.22 2.9

F 20×20 F 40×40 F 80×80
min(F) · 10−9 niter · 103 min(F) · 10−9 niter · 103 min(F) · 10−9 niter · 103

OF 81×81 4.47 6.2 3.24 2.1 3.04 3.0

Table 5.2: Minimum functional and number of iterations for the case λ =
10−2 varying the grid ratio of the two codes. In the first row, the FEMuS
mesh is kept fixed and the OpenFOAM mesh is varied, while in the second
row, it’s vice versa.

ness of the grid refinement in the two codes: we have a much greater impact

on the minimum of the functional by varying the FEMuS mesh compared to

varying the OpenFOAM mesh.

Moreover, it is interesting to note that the minimum number of iterations

corresponds to the case where the two meshes are identical.

5.2.2 Dirichlet boundary control

In this section, the boundary control case for the Dirichlet boundary condi-

tion is reported. For the boundary control, the volumetric source of the state

equation is zero, leading to a Laplace equation for T .

Grid convergence analysis. For the case λ = 10−6, a grid convergence

analysis was also performed for both the coupled and uncoupled cases.

From Figure 5.16 a good grid convergence can be noticed for both algo-

rithms, confirming the reliability of the numerical solutions. The finest grid

presents a solution that tends to be smooth also close to the boundary of

the control region. The boundary of the boundary Γ, corresponding to the

corner nodes of the domain, is the most problematic region since q is imposed
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Figure 5.16: Control T ∗
c for λ = 10−6, grid convergence

equal to zero.

Coupling results. In this paragraph, the control is represented by the

value imposed as a Dirichlet condition on Γd, with the Neumann condition

on Γn and the volumetric source Q being null. The optimal control system is

defined in Section 3.3. Three cases are shown with varying λ, assuming the

values 10−4, 10−6, 10−8. In each of these cases, the trend of the dimensionless

control T ∗
c on the left wall at x∗ = 0 and the state T at the center of the target

area Ωd,1 at x∗ = 0.3 is reported as y∗ ∈ [0, 1] varies. Since the simulation is

perfectly anti-symmetric to the line parallel to the y axis at x∗ = 0.5, only a

controlled wall and a target region are reported.

Also for the Dirichlet boundary control, the same conclusion of the Dis-

tributed case can be drawn for Figure 5.17. Specifically, a good match with

the temperature target value can be obtained with a low value of λ, which

corresponds to the less regular trend of the control T ∗
c . For this case, it can

be noticed a flat behavior of T ∗ very close to 1 in correspondence with the

controlled region Ω1.

In Figure 5.18 a surface plot of the non-dimensional temperature is re-
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Figure 5.17: Dirichlet boundary control T ∗
c and state T ∗ as a function of

the dimensionless coordinate y∗, at x∗ = 0 and x∗ = 0.3, respectively, for
λ = 10−4, 10−6, 10−8.

ported. Specifically, only the case with the lowest λ is reported, considering

a 40×40 finite element grid. With the three-dimensional representation, the
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anti-symmetric behavior of these variables can be noticed. Moreover, we can

appreciate how much the temperature at the controlled boundary increases

with respect to the target value that the target zones become unrecognizable.
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Figure 5.18: Three-dimensional representation of T ∗ for the boundary Dirich-
let control, considering the two-dimensional non-dimensional domain.

λ
10−4 10−6 10−8

min(F) · 10−4 niter · 102 min(F) · 10−6 niter · 102 min(F) · 10−8 niter · 103

C 7.09 9 6.77 5 1.17 3.4

UC 7.18 5 6.91 13 1.19 8.3

Table 5.3: Minimum functional and number of iterations for the different
cases of the Dirichlet boundary control with both algorithms for a 40 × 40
grid.

In Table 5.3 we can observe a better behavior of the coupled code with

respect to the uncoupled, on both the minimum reached and the number

of iterations. In any case, the differences between the two cases are very

minimal.
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5.2.3 Neumann boundary control

In this section, is reported the boundary control cases for the Neumann

boundary condition. For the boundary control, the volumetric source of the

state equation is equal to zero, leading to a Laplace equation for T .

Coupling results. Now are presented the numerical results obtained with

the Neumann boundary control, following the system defined in Section 3.4.

Also for this case, three values of λ have been employed to test the influence

of the control H on the state equation.

Here, the control is represented by the value imposed as a Neumann

condition on Γn, with the Dirichlet condition on Γd and the volumetric source

Q being null. Three cases are shown with varying λ, assuming the values

101, 100, 10−1. In each of these cases, the trend of the dimensionless control

H∗ on the bottom wall at y∗ = 0 and the state T at the center of the target

area Ωd,1 at y∗ = 0.3 is reported as x∗ ∈ [0, 1] varies. Once again, being

the simulation anti-symmetric only one controlled wall and one target region

have been reported.

The same comments of the previous cases can be also done for the Neu-

mann boundary control considering the result in Figure 5.19. A perfect

agreement between the state variable and the target temperature can be ob-

tained only with a lower value of λ since for greater value of this parameter

the control H∗ does not have sufficient effect on the temperature T ∗. On the

other hand, for a lower value of λ, some discrepancies can be noticed for the

control H∗ on the controlled boundary. In particular, the major difference

is present in the target region where for the uncoupled solution the control

H∗ seems to be more flat, concerning the coupled result. The explanation

is analogous to the distributed case. Once again, is reported the same case
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Figure 5.19: Neumann boundary control T ∗
c and state T ∗ as a function of

the dimensionless coordinate x∗, at y∗ = 0 and y∗ = 0.3, respectively, for
λ = 101, 100, 10−1.

of λ = 10−1 obtained with a double refined grid, with a dashed line for the

coupled case and with squared markers for the uncoupled one. Similarly,
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as in the distributed case, we can observe that the coupled and uncoupled

results become similar as the grid becomes finer. On the other hand, these

discrepancies, do not influence the state temperature T ∗ which is in perfect

agreement with the desired value for both algorithms. A slight difference

can be noticed for x∗ ≈ 0.8, where for the uncoupled algorithm T ∗ reaches a

lower value.

In Figure 5.20 a surface plot of the non-dimensional temperature is re-

ported. Specifically, only the case with the lowest λ is reported, considering

a 40×40 finite element grid. With the three-dimensional representation, the

anti-symmetric behavior of these variables can be noticed. Once again, with

boundary control at the wall, we obtain a much higher temperature than the

target value.
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Figure 5.20: Three-dimensional representation of T ∗, for the boundary Neu-
mann control, considering the two-dimensional non-dimensional domain.

As one can see in Table 5.4, the number of iterations increases both on the

coupled and in the uncoupled codes, decreasing the value of λ. For the case

with λ = 10−1 we again can observe the same pattern of the distributed case

above: finer is the grid on the coupled code lower is functional minimum.
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λ
101 100 10−1 − 10−1(refined)

min(F) · 10−6 niter · 103 min(F) · 10−7 niter · 103 min(F) · 10−7 niter · 103

C 1.27 1.1 6.09 5.2 2.24− 2.16 19.2− 96.4

UC 1.28 3.8 6.12 18.1 1.99− 1.97 39.0− 10.5

Table 5.4: Minimum functional and number of iterations for the different
cases of the Neumann boundary control with both algorithms for a 40 × 40
grid. In the last column, for the lowest λ value, the results for the refined
grid are also reported.





Chapter 6

Conclusions

In this work, an optimal control problem for the heat equation has been

implemented in the in-house code FEMuS and solved via coupling with the

external code OpenFOAM. The optimal control was solved by adopting the

adjoint method, while minimization was performed using the conjugate gra-

dient method.

In this setup, the state equation was solved within OpenFOAM. The ad-

joint equation and the control were handled by FEMuS. Specifically, the state

variable T was taken from OpenFOAM and used in the adjoint equation in

FEMuS. Conversely, the control variable q was computed in FEMuS and

transferred back to OpenFOAM, where it was applied either as a distributed

control (RHS) or as a boundary condition (boundary control). Data transfer

between the two codes was facilitated by the external library MEDCOU-

PLING.

The numerical results obtained through the coupled framework were com-

pared with those produced by the stand-alone FEMuS solution. For all three

types of control problems, a good agreement was observed between the two

methods. The differences may be due to interpolation errors for lower values

99
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of the regularization parameter λ since the numerical precision requested for

the state field T was very high.

Future work will focus on improving the current status of the optimal sys-

tem on FEMuS, implementing some regularization techniques [6] for better

handling boundary control cases, as well as an adaptive step-size calcula-

tion and other minimization techniques [18]. Moreover, this framework can

be extended to other systems of equations, ranging from Navier-Stokes and

Fluid-Structure Interaction (FSI) [12] to turbulence modeling [28] and shape

optimization [24]. The goal is to leverage existing multi-physics capabilities

of open-source codes such as OpenFOAM, which, while robust in many areas,

currently lacks optimal control functionalities based on the adjoint method.
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[10] L Chirco, R Da Vià, and S Manservisi. An optimal control method

for fluid structure interaction systems via adjoint boundary pressure.

Journal of Physics: Conference Series, 2017.

[11] L Chirco, V Giovacchini, and S Manservisi. An adjoint-based tempera-

ture boundary optimal control approach for turbulent buoyancy-driven

flows. Journal of Physics: Conference Series, 2020.

[12] Leonardo Chirco. On the optimal control of steady fluid structure inter-

action systems. PhD thesis, University of Bologna, 2020.

[13] P. G. Ciarlet. The finite element method for elliptic problems. Society

for Industrial and Applied Mathematics, 2002.
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