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Sommario

Questa tesi presenta la formalizzazione di risultati chiave del progetto “Lower
bounds for hypothesis testing based on information theory” utilizzando l’inte-
ractive theorem prover Lean 4. Il lavoro si concentra sulla formalizzazione
di strumenti di teoria dell’informazione, con particolare enfasi sulle diver-
genze e le loro applicazioni all’hypothesis testing. Il contributo principale
è la formalizzazione di una versione generale della disuguaglianza di data
processing (DPI) per le f-divergenze, un risultato fondamentale in teoria
dell’informazione. Vengono confrontate tre diverse dimostrazioni della DPI,
ciascuna con diversi gradi di generalità e ipotesi; la terza dimostrazione è
la più generale e mette in evidenza la connessione tra la DPI e il problema
di hypothesis testing. Oltre ai contributi teorici, la tesi riflette sulle scelte
d’implementazione, sulle sfide affrontate e sulle intuizioni emerse durante il
processo di formalizzazione. Questo lavoro sottolinea l’utilità degli interactive
theorem prover nell’affrontare problemi matematici complessi, offrendo nuove
prospettive nei campi della probabilità e della teoria dell’informazione.



Abstract

This thesis presents the formalization of key results from the “Lower bounds
for hypothesis testing based on information theory” project using the Lean
4 interactive theorem prover. The work focuses on formalizing tools from
information theory, with a particular emphasis on information divergences
and their applications to hypothesis testing. The main contribution is the
formalization of a general version of the data processing inequality (DPI)
for f-divergences, a fundamental result in information theory. We compare
three different proofs of the DPI, each with varying levels of generality and
assumptions; the third proof is the most general, and highlights the connection
between the DPI and hypothesis testing. In addition to the theoretical
contributions, the thesis reflects on the design decisions, challenges, and
insights gained during the formalization process. This work underscores
the utility of interactive theorem proving in tackling complex mathematical
problems, offering new perspectives in probability and information theory.
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Introduction

Although not yet a mainstream practice within the mathematical commu-
nity, the formalization and verification of mathematical proofs have attracted
increasing attention in recent years, particularly with the advent of interactive
theorem provers. These tools serve not only to guarantee the correctness of
proofs but also to facilitate the generalization and application of mathemat-
ical results across a range of domains. One such tool, Lean 4, has gained
significant traction within the mathematical community, offering a robust
platform for formalizing complex mathematical theories.

This thesis presents a description of a part of the formalization project
titled “Lower bounds for hypothesis testing based on information theory”1,
aimed at formalizing results about information divergences and their applica-
tions to hypothesis testing in Lean 4. To achieve this, the formalization of
several tools from information theory was necessary. Notably, some results
from the project have already been merged in an open-source library, and
further contributions are planned in the near future. The central result of
this thesis is the formalization of a very general version of the data processing
inequality (DPI), a fundamental result in information theory. Some space
will also be dedicated to the discussion of the design choices taken during the
formalization process, as well as the challenges encountered and the lessons
learned. The work is presented in five chapters, each focusing on a different
aspect of the project.

The initial chapter introduces the concept of interactive theorem provers,
with a particular emphasis on Lean 4. We first look at how a proof in
Lean looks like, and how to interact with the proof assistant, we briefly
discuss the logical foundations of Lean, then we describe its mathematical

1This work was carried out within the Scool team at the Inria center of the University
of Lille, under the supervision of Rémy Degenne (Univ. Lille, Inria, CNRS, Centrale Lille,
CRIStAL). See https://remydegenne.github.io/testing-lower-bounds/blueprint/

for a description of the project. We will frequently refer to the code, that can be found in
the following repository: https://github.com/RemyDegenne/testing-lower-bounds.

1

https://remydegenne.github.io/testing-lower-bounds/blueprint/
https://github.com/RemyDegenne/testing-lower-bounds


library (Mathlib), and the reasons why proof assistants can be beneficial for
mathematical research.

The second chapter serves to establish the fundamental concepts that are
essential for a comprehensive understanding of the subsequent material. This
includes a discussion of transition kernels, the Lebesgue decomposition, and
a version of the integration by parts formula.

The third chapter is dedicated to information divergences, wherein a
comprehensive overview of f-divergences, the Kullback-Leibler divergence, and
other measures of dissimilarity between probability distributions is provided.
These divergences play a pivotal role in numerous applications of informa-
tion theory. We approach their analysis from a highly general standpoint,
avoiding the limitation of focusing solely on probability measures and instead
considering a broader range of measures.

The fourth chapter takes a brief detour to discuss hypothesis testing, a
fundamental problem in statistics and information theory. We formalize key
concepts such as risk, and within this framework we define another information
divergence, called statistical information, which plays a crucial role in a proof
of the DPI.

The fifth chapter represents a pivotal contribution to this thesis, wherein
three distinct proofs of the data processing inequality for f-divergences are
presented. The DPI is a central result in information theory, stating that the
divergence between two measures cannot increase when we apply a (possibly
random) transformation. The initial proof has weak hypotheses but is limited
to deterministic kernels. The second proof is a generalization of the first,
extending its scope to Markov kernels but necessitating stronger hypotheses.
The third proof also covers Markov kernels but employs a distinct approach
that circumvents some of the assumptions of the second one.

The aim of this thesis is to demonstrate the power of interactive theorem
proving in formalizing complex mathematical concepts and to contribute to
the existing body of knowledge by providing new insights and generalizations,
particularly within the context of probability and information theory.
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Notation

• Let R be the real numbers, we indicate with R := R \cup \{ +\infty , - \infty \} the
extended real numbers and with R+ := [0,+\infty ) \cup \{ +\infty \} the extended
non-negative real numbers.

• Let \scrX be a set and F\scrX a \sigma -algebra on \scrX , then we say that (\scrX ,F\scrX )

is a measurable space. We often avoid writing the \sigma -algebra explicitly
when it is not necessary.

• Let \scrX be a measurable space, we denote by \scrM (\scrX ) the space of measures
on \scrX , and by \scrP (\scrX ) the space of probability measures on \scrX .

• Let \scrX ,\scrY be measurable spaces, \mu \in \scrM (\scrX ), A \subseteq \scrX a measurable set,
and f : \scrX \rightarrow \scrY a measurable function. We denote the integral of f
with respect to \mu over A with one of the following notations:

\int 
A
f \mathrm{d}\mu ,\int 

A
f(x)\mu (dx),

\int 
A
f(x) \mathrm{d}\mu (x). If the integral is over the entire space \scrX 

we can also write \mu [x \mapsto \rightarrow f(x)].

• Let \scrX be a measurable space, \mu \in \scrM (\scrX ), we say that a certain property
holds almost everywhere with respect to \mu (shortened \mu -a.e.) if there
exists a measurable set A \subseteq \scrX such that this property holds for all
x \in A and \mu (\scrX \setminus A) = 0.

• Let \scrX be a measurable space, \mu \in \scrM (\scrX ), f : \scrX \rightarrow R+ a measurable
function, we denote by f \cdot \mu the measure with density f with respect to
\mu , defined by (f \cdot \mu )(A) :=

\int 
A
f \mathrm{d}\mu for all measurable sets A \subseteq \scrX .

• Let p \in [0, 1], we denote by \mathrm{B}\mathrm{e}\mathrm{r}(p) the Bernoulli distribution with param-
eter p, that is the probability measure on \{ 0, 1\} such that \mathrm{B}\mathrm{e}\mathrm{r}(p)(\{ 0\} ) =
1 - p and \mathrm{B}\mathrm{e}\mathrm{r}(p)(\{ 1\} ) = p.

• Let \scrX ,\scrY be measurable spaces, \mu \in \scrM (\scrX ), \nu \in \scrM (\scrY ), we denote
by \mu \otimes \nu \in \scrM (\scrX \times \scrY ) the product measure of \mu and \nu . Moreover, if
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n \in N, we denote by \mu \otimes n = \mu \otimes \mu \otimes \cdot \cdot \cdot \otimes \mu the product of \mu with itself
n times.

• Let (\scrX ,F\scrX ) be a measurable space. We say that \scrX is a standard Borel
space if there exists a metric on \scrX that generates F\scrX as the Borel
\sigma -algebra and such that \scrX is complete and separable.

• Let f : \scrX \rightarrow \scrY be a function and A \subseteq \scrX , we denote by f| A : A \rightarrow \scrY 
the restriction of f to A. Note that we can also consider the restriction
of a measure \mu \in \scrM (\scrX ) to a sub \sigma -algebra \scrA \subseteq F\scrX , using the same
notation \mu | \scrA .
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Chapter 1

Interactive Theorem Provers

Interactive theorem provers, also referred to as proof assistants, are tools
that facilitate the formalization and verification of mathematical proofs. They
integrate elements of both programming and mathematics, enabling the
construction of proofs in a rigorous, formal language. We focus our attention
on Lean 4, since it is the proof assistant that we are using for our project.

1.1 Lean 4

Lean 4 is a functional programming language, but, more importantly for
our purposes, it is also an interactive theorem prover, i.e., a software that
allows the user to write mathematical definitions, statements, and proofs in
a formal language, automatically checking their logical correctness and, in
some cases, even assisting in the construction of the proofs.

The Lean theorem prover was initially developed by Leonardo de Moura
[Mou+15] and first released in 2013. Its latest iteration, Lean 4, was released
in 2021 [MU21] and has since been growing in popularity even among profes-
sional mathematicians, leading to some noteworthy formalization projects.
These formalization efforts include completed projects such as the Liquid
Tensor Experiment1 inspired by Peter Scholze, and the PFR (Polynomial

1https://leanprover-community.github.io/liquid/. This was a Lean 3 project.
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Freiman-Ruzsa Conjecture) project2 led by Terence Tao, as well as recently
started ones, like the FLT (Fermat’s Last Theorem) project3 led by Kevin
Buzzard. Moreover, from 2023 the development and maintenance of Lean
has been taken over by the recently established Lean FRO (Focused Re-
search Organization)4, with the aim of further developing the Lean ecosystem,
improving its performance and making it more user-friendly.

1.2 Reading Lean code

Looking at a piece of code in Lean for the first time can be intimidating,
especially for someone who is not accustomed to working with programming
languages. This section aims to provide a concise overview of the practical
aspects of utilizing Lean, as well as an explanation of how to interpret a Lean
proof.

It is first necessary to bear in mind that Lean is a programming language,
and therefore the main method of interacting with it is through a code editor.
The most popular code editor for Lean is Visual Studio Code5, which has a
Lean extension that provides syntax highlighting, autocompletion, and other
features that facilitate the writing of Lean code. However, there are other
options available, such as the Lean web editor6.

We will now examine an example of a definition in Lean, namely the
definition of a measurable function.

def Measurable {\alpha \beta : Type*} [MeasurableSpace \alpha ] [MeasurableSpace \beta ]

(f : \alpha \rightarrow \beta ) : Prop :=

\forall (t : Set \beta ), MeasurableSet t \rightarrow MeasurableSet (f  - 1’ t)

This piece of code defines what it means for a function f between two

2https://teorth.github.io/pfr/. See also [Tao23b; Tao23a].
3https://imperialcollegelondon.github.io/FLT/. This project has only recently

started and is anticipated to take years to complete.
4https://lean-fro.org.
5https://code.visualstudio.com.
6https://live.lean-lang.org.
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measurable spaces \alpha and \beta to be measurable. We will now break down this
definition in order to elucidate the meaning of each component.

• The first word is def, which is a keyword in Lean that is used to define
new objects, this tells Lean that a new object is about to be defined.
Other keywords similar to def are structure, which can be used for
definitions that bundle together multiple objects or properties, and
class, which also allows the object to be inferred by the typeclass
inference system, that will be described shortly.

• The next word is Measurable, which is the name of the object that we
are defining. At this stage, we may choose any name we wish; however,
it is good practice to choose a name that is descriptive of what we are
defining, since we will use it later to refer to this object.

The next part is a list of arguments, which serve as inputs for defining
the object in question. In our example, each time we want to say that some
function is measurable, Lean will require the following information: what are
the domain and codomain of the function, the fact that they are measurable
spaces, and the function itself. There are three different types of arguments,
which can be differentiated based on the type of brackets used to enclose
them.

• The first argument {\alpha \beta : Type*} indicates that \alpha and \beta , which will be
used later as domain and codomain of the function, are two generic
types; this is an implicit argument, as it is enclosed in curly braces { },
meaning that when we use this definition we will not need to specify
these types explicitly. Arguments in curly braces are usually meant to
be inferred from other arguments, for example in our case \alpha and \beta can
be inferred from the type of the function f . Throughout this thesis, we
will sometimes omit some of the implicit arguments, when they can be
readily understood from the context.

• The next two arguments [MeasurableSpace \alpha ] [MeasurableSpace \beta ] indi-
cate that \alpha and \beta are measurable spaces. These arguments are also
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implicit, but they are enclosed in square brackets [ ]; this means that
Lean will attempt to infer them using the typeclass inference system,
which is a mechanism that enables Lean to automatically find some
properties that were previously proven in special theorems called in-
stances. This same mechanism can also deduce certain properties based
on existing instances, for example we will never need to specify that R

is a topological space, because it can be inferred from the fact that it is
a pseudo-metric space. See also [MU21; SUM20] for more information
about typeclasses in Lean 4.

• The final argument (f : \alpha \rightarrow \beta ) is the function that is to be deemed
measurable; it is enclosed in parentheses ( ), meaning that it is an
explicit argument, and we will need to specify it every time we employ
this definition. For example if we want to say that the exponential
function exp is measurable, we would write Measurable exp.

• The portion of the code situated between the colon : and the colon equal
sign := represents the type of the object that is being defined. In this
case, it is Prop, since our object is the proposition that the function f

is measurable.

• The final component is the body of the definition, which represents the
actual content of the proposition that we are defining. We can read
it as follows: for every t subset of \beta (\forall (t : Set \beta )), if t is measurable
(MeasurableSet t), then the preimage of t under f is also measurable
(MeasurableSet (f  - 1’ t)).

We can notice how in the Lean code we can use a wide range of symbols,
including the Greek letters \alpha , \beta and the universal quantifier \forall . Indeed, any
Unicode character can be employed. This enables the code to resemble math-
ematical notation more closely, making it easier to read for mathematicians.

Let us look at another example, this time we consider a lemma with a
short proof:
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theorem add_sub_cancel (a b : R) : b + a − b = a := by

rw [add_comm]

rw [add_sub_assoc]

rw [sub_self]

exact add_zero a

Once more, we deconstruct the code in order to understand its meaning:

• The keyword theorem at the beginning is used to start a new theorem.
It can be substituted with lemma without altering the code’s meaning,
with example if we do not need to give it a name for later reference,
or with instance, which enables the result to be used by the typeclass
inference system.

• add_sub_cancel is the name that we are giving to the theorem, we will
be able to use it in later code to refer to this theorem.

• Before the colon : we have the arguments of the theorem, that is the
hypotheses that need to be verified for the theorem to hold. The same
kinds of arguments that were present in the definition can be used here,
with the same meaning. In this case, we only have two real numbers a
and b as explicit arguments.

• After the colon : we have the type of the theorem. This is where the
thesis of the theorem is presented, typically in the form of a proposition.
In this case, the thesis is that the equality b+ a - b = a holds (for all
real numbers a and b).

• Finally, after := by we have the proof of the theorem. This is a sequence
of proof steps, each one transforming the goal into a simpler one, until we
reach a goal that can be solved directly. The first step is rw [add_comm],
where add_comm is the name of a lemma stating the commutativity of
addition, and rw is the rewrite tactic, that allows us to replace a part of
the goal with an equivalent one. In this case it replaces b+ a with a+ b,
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transforming our goal from b+ a - b = a to a+ b - b = a. Similarly, the
next two lines use the lemmas add_sub_assoc (associativity of addition
and subtraction) and sub_self (subtraction of a number from itself is
zero) to further simplify the goal as follows:

a+ b - b = a \rightsquigarrow a+ (b - b) = a \rightsquigarrow a+ 0 = a

The last line, exact add_zero a, uses the exact tactic to finish the proof,
it instructs Lean that the goal is precisely equal to a previously proven
lemma, in this case add_zero applied to the number a, which states that
adding zero to a number does not alter it.

It should be noted that this proof can be written in a more concise manner,
for example we could have combined multiple rewrites in a single line: rw [

add_comm, add_sub_assoc, sub_self]. Or we could even have written the entire
proof as a single command using the tactic ring, which automatically solves
equations using the properties of a commutative ring.

Another thing to notice is that this proof employs a backward reasoning
approach, whereby we start from the goal, and simplify it until it becomes
trivial. It is also possible to use forward reasoning, starting from the hy-
potheses and building the proof step by step, but this is less common in
Lean.

It is important to mention that any code written in Lean is automatically
verified by a dedicated software component, known as the kernel, which
ensures its logical consistency. So if we make any mistake in our proof, the
kernel will not accept it, and will provide an error message that can be used
to identify the source of the issue.

Note that Lean will complain also if a proof is left unfinished. Nevertheless,
it is possible to write a partial proof and write the keyword sorry at the end,
this instructs Lean to accept the proof as it is (we can even omit the proof
altogether), so that we can postpone its completion to a later time, but still
use the result in other proofs.

10



Additionally, Lean can warn us that we are doing something that is not
recommended, for instance if a hypothesis is added to a lemma and never
used, or if a result is left with sorry in the proof, then the Lean linter will
show a yellow squiggle beneath the line and indicate the nature of the issue.

Moreover, Lean not only verifies the soundness of the proof but also
provides assistance in its construction. For instance, it keeps track of the
hypotheses and goals throughout the proof. This information is always
displayed to the user in a distinct window inside the editor, called the Lean
Infoview. The Infoview shows us the current state of the proof at the cursor
position, in particular it tells us what is the goal, what are the variables in the
context, and what are the hypotheses available. For example, if we position
the cursor at the end of the first line of the proof of the above theorem, the
Infoview will appear as follows:

a b : R

\vdash a + b − b = a

This tells us that the goal (after the symbol \vdash ) is to prove that a+b - b = a,
and that we have two real numbers a and b in the context.

1.3 Logical foundations of Lean

When doing mathematics, we must assume some axioms upon which to
build our theory, and the same is true when using a proof assistant. The
vast majority of mathematicians typically assume, more or less explicitly, the
axioms of Zermelo-Fraenkel set theory with the axiom of choice (ZFC) as a
foundation for their work. Lean, on the other hand, is based on dependent
type theory, in particular on the Calculus of Constructions [CH88], a logical
formalism also employed by other proof assistants, such as Coq/Rocq7.

At this point, a reasonable concern could be whether proving a statement
in Lean is equivalent to proving it in set theory, that is, can we trust the

7https://coq.inria.fr
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results that we obtain from Lean? The answer is affirmative. Indeed, it is
possible to build the usual set theory in Lean, and it has been proven that
Lean’s type theory is equiconsistent with a slightly strengthened version8 of
ZFC [Car19].

It is not necessary to know the details of type theory in order to use Lean,
but it is useful to keep in mind that the elementary object in Type theory is a
type, and that every object is a term (i.e. an element) of some type. Roughly
speaking, we can think of types as sets, but there are some key differences
from the usual set theory. For example, whereas an object may be an element
of multiple sets simultaneously, in type theory a term can only have a single
type. Consequently, if one wishes to treat a term as belonging to a different
type (as is the case when a natural number is regarded as an element of the
real numbers), it is necessary to employ a coercion, that is, a function from
the original type to the new one. Fortunately, Lean is designed to make this
process as smooth as possible, and it is often able to infer the correct coercion
automatically, sometimes without the end user even noticing it. A further
peculiarity of type theory is that propositions are types, and if we have a
proposition P , then a term p of type P (written P : Prop and p : P ) is a
proof of P . Furthermore, a proposition P can either have zero elements (if
it is not provable) or one element (if it is provable), meaning that all the
possible proofs of P are considered equivalent.

1.4 Mathlib

Writing mathematics in a proof assistant is not an easy task, and even
if a proof on paper appears to be relatively simple or brief, the act of
formalizing can be quite time-consuming. This is due in part to the necessity
of meticulously and precisely articulating each definition and proof, without
leaving any gaps, as the proof assistant will not take anything for granted.
For this reason, it is crucial to have a method for storing and sharing the

8In particular ZFC + \{ there are n inaccessible cardinals | n < \omega \} .
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results that have already been proven, so that they can be reused directly in
other proofs, both by the same author and by other users, without having to
prove them again. This is the purpose of Mathlib9, the mathematical library
of Lean.

At the time of writing, Mathlib contains more than 1.5 million lines of
code10, encompassing the majority of the mathematics taught in an undergrad-
uate course, as well as some more advanced topics. Mathlib is an open-source
project, and its development is driven by the community and orchestrated by
a team of maintainers. While contributions from any individual are welcome,
the code must undergo a review process conducted by a maintainer before
being merged into the main branch, and a high standard of quality is required.
This approach allows the library to grow rapidly, while keeping a high level
of coherence and maintainability.

One of the primary objectives of Mathlib is to provide lemmas that can
be reused in a multitude of contexts. Consequently, a continuous effort is
made to generalize the code as much as possible, trying to avoid superfluous
assumptions. This approach also has the advantage of making the true scope
of a mathematical result more evident. Furthermore, for each mathematical
object that is defined, there is a corresponding set of lemmas, typically referred
to as the API (Application Programming Interface) borrowing the term from
computer science, that are proven about it and facilitate the use of that object
in practice.

The use of Mathlib is essential for every Lean user who plans to formalize
any non-trivial mathematical theory, and as such it is also the basis of our
work. In particular, we rely heavily on the measure theory library, which
provides a solid foundation for the formalization of probability theory with
tools such as integrals, Radon-Nikodym derivatives, and disintegration of
measures; we also use the library’s section dedicated to convex functions.
Furthermore, we make extensive use of tactics, that are commands in Lean

9https://github.com/leanprover-community/mathlib4.
10For some statistics about Mathlib, see https://leanprover-community.github.io

/mathlib_stats.html.
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designed to facilitate the construction of proofs, automating some specific
tasks and making the proof process more efficient. For example, we use the
tactic measurability to help us prove that a function or a set is measurable,
congr to simplify the proof of equalities when some parts of the terms are
identical, and linarith that automatically solves linear arithmetic problems.

Throughout this thesis, we will frequently cite statements and results from
Mathlib. These can be found either in the online documentation11 or directly
in the source code12.

1.5 Why proof assistants?

There are numerous reasons why one might choose to use a proof assistant
to write mathematics, a collection of which can be found in [Avi24]. In this
section, I will focus on three of them: ensuring the correctness of the proofs,
facilitating the generalization of results, and enabling the coordination of
multiple researchers on the same project.

The trust placed in mathematics is based on the assumption that the
proofs are correct. This is typically ensured through the peer review process.
However, this process is heavily reliant on manual checking conducted by
humans, and occasionally small errors can slip through. For example, during
our formalization project, a small inconsistency was identified13 in the proof of
Theorem 1 in the paper "Rényi Divergence and Kullback-Leibler Divergence"
[EH14], which is a standard reference for the Rényi divergence, with a high
number of citations. Moreover, there may be instances where the intricacy of
the proof makes this process exceedingly challenging, or where the significance

11https://leanprover-community.github.io/mathlib4_docs/.
12https://github.com/leanprover-community/mathlib4/tree/master
13The authors have since published an errata: https://www.timvanerven.nl/assets/

publications/2014/Renyi-errata-2024-4-2.pdf.
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of the result requires a higher level of certainty14. The use of a proof assistant
can assist in this regard, as the software automatically checks the proof for
logical correctness. In the case of Lean, the piece of code responsible for
verification is referred to as the kernel. The kernel is a relatively concise
component that has been subjected to extensive testing and is designed to be
highly reliable. This makes it extremely unlikely for a proof accepted by Lean
to be incorrect. Moreover, it is possible to use other independently developed
kernels, further reducing the risk of bugs. In addition to its greater reliability,
this process is also considerably faster than manual checking15.

While ensuring the logical correctness of the proofs is a significant concern
for logicians and computer scientists, it can be argued that the majority of
errors that pass through the peer review process are minor discrepancies
that can be readily addressed and do not fundamentally impact the validity
of the primary result. Therefore, from a mathematical standpoint, a more
important reason to use a proof assistant is that it makes it easier to generalize
mathematical results. Let us illustrate this with an example.

This is our current formulation16 of the data processing inequality for the
KL divergence in Lean:

lemma kl_comp_right_le [StandardBorelSpace \alpha ]

[CountableOrCountablyGenerated \alpha \beta ]

[IsFiniteMeasure \mu ] [IsFiniteMeasure \nu ] [IsMarkovKernel \kappa ] :

kl (\mu \circ m \kappa ) (\nu \circ m \kappa ) \leq kl \mu \nu 

The first three lines contain the hypotheses, and the last one is the
thesis. We can notice that this version of the lemma assumes \mu to be a finite

14These were among the motivations cited by Peter Sholze while proposing the challenge
that inspired the Liquid Tensor Experiment. See https://www.ma.imperial.ac.uk/~b

uzzard/xena/pdfs/liquid_tensor_experiment.pdf.
15Checking a single new lemma typically takes less than a second, and the entire Mathlib

library can be checked in less than an hour.
16This statement can be generalized, in particular relaxing the hypotheses of standard

Borel space and countability. However, as will be discussed in Chapter 5, there are some
technical difficulties that have prevented us to do it so far.
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measure. What if we suspect that the result holds for general measures as
well? On paper, we would have to carefully examine the proof, to ascertain
whether the hypothesis is indeed superfluous. In Lean, we can simply erase
[IsFiniteMeasure \mu ] and see if the proof still compiles without throwing any
errors: if it does then we are done, otherwise the theorem prover will indicate
precisely where the proof fails, enabling us to either attempt to resolve the
issue or gain insight into why the proof does not hold in that generality.
After that, we could easily look for the lemmas that use this inequality and
determine whether it is possible to propagate the generalization. Furthermore,
in the event that any given lemma contains a hypothesis that is entirely
unused, Lean will automatically throw a warning, suggesting the user to
remove it.

Another advantage of using a proof assistant is that it allows multiple
researchers to work together on the same project, coordinating their efforts on
shared repositories (for example on GitHub), without the need to manually
check each other’s proofs or to meet to discuss in person. In particular, a
tedious and time-consuming aspect of working together on a mathematical
project is the necessity to verify the proofs of others; this is especially true
when the mathematicians are working together for the first time, and have
yet to establish mutual trust, or when the level of expertise of the researchers
is different, such as in the case of a student working with a professor. The use
of a proof assistant can remove this burden, as the software will automatically
check the proofs, allowing for a more focused interaction on the high-level
mathematical content and the general direction of the project. This is true
both in the case of a small project, such as the one presented in this thesis,
and in the case of larger projects, like the ones mentioned above, where the
use of a proof assistant can also help in the coordination of the work. In
the context of formalization efforts involving numerous people, the leading
researchers can define the goals, outline the structure of the project, and
provide the informal proofs. Meanwhile, other contributors can focus on
the formalization of the results, without the necessity of understanding the

16



entire project in detail, or even just give small contributions in their spare
time, which can collectively yield a significant outcome. One tool that can be
particularly useful in this context is leanblueprint17, a piece of software that
enables the creation of an informal blueprint for the project, wherein informal
statements can be linked to their formal counterparts. This tool automatically
produces a PDF document, as well as a website and a dependency graph. It
can be used to track progress, facilitate coordination, and document informal
proofs before they are formalized. Additionally, it can be employed to present
results after formalization is complete.

Lastly, it is worth mentioning that this is not an exhaustive list of the
advantages of using a proof assistant. For instance, these tools can be used
to support the teaching of mathematics, and they offer a way of enabling
computers to interact with rigorous mathematics. This can be useful in
the development of AI, where the formal proofs can be used to enhance the
capabilities of autonomous systems, with the potential to revolutionize the
way we do mathematics and to allow AI to help in mathematical research.

17https://github.com/PatrickMassot/leanblueprint.
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Chapter 2

Preliminary Notions

In this chapter we will introduce a number of definitions and results that
will prove useful in the sequel. In particular, we will define the concept of
kernel, which generalizes the notion of measure and will be central throughout
all the thesis. Then we will examine the Lebesgue decomposition for measures
and kernels, which enables us to define the Radon-Nikodym derivative and
singular parts; these are going to be at the heart of the definition of f-divergence
in the following chapter and will frequently appear in proofs. Finally, we
will present a version of the integration by parts formula that will be used to
prove the central result of this thesis, the data processing inequality.

2.1 Transition kernels

A concept that appears frequently in probability is that of conditioning.
For example, given two random variables X and Y , we can ask what is the
probability distribution of Y given the additional information that X has
assumed a specific value x. This is usually denoted by PY | X=x, and it is called
the conditional probability of Y given X.

Transition kernels (henceforth referred to as "kernels") are a way of repre-
senting the idea of a transformation that involves some degree of randomness,
i.e. a function that has stochastic outputs, and they offer a versatile approach

19
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to handling conditional probabilities. In the context of information theory,
they are used to represent channels through which information flows. More-
over, kernels can be regarded as both a generalization of measures and a
generalization of measurable functions. Consequently, many results mention-
ing these objects can be generalized to kernels. Throughout this thesis we will
use the language of kernels extensively. This section introduces the concept
of kernels as well as some operations that can be performed with them, and
some of their properties.

Definition 2.1.1 (Kernel). Let (\scrX ,F\scrX ), (\scrY ,F\scrY ) be measurable spaces. A
kernel from \scrX to \scrY is a function \kappa : \scrX \times F\scrY \rightarrow R+ such that for every x \in \scrX 
the function \kappa (x, \cdot ) is a measure on \scrY , and for every B \in F\scrY the function
x \mapsto \rightarrow \kappa (x,B) is measurable. We write \kappa : \scrX \rightsquigarrow \scrY .

Remark 2.1.2. Currently, in Mathlib a kernel \kappa : \scrX \rightsquigarrow \scrY is defined as a
measurable function \kappa : \scrX \rightarrow \scrM (\scrY ):

structure Kernel (\alpha \beta : Type*)

[MeasurableSpace \alpha ] [MeasurableSpace \beta ] where

toFun : \alpha \rightarrow Measure \beta 

measurable’ : Measurable toFun

This definition is equivalent to the aforementioned one, and relies on the
natural measurable structure that can be defined on the space of measures,
which Lean finds automatically using the typeclass instance system, thanks
to the following instance:

instance instMeasurableSpace : MeasurableSpace (Measure \alpha ) :=

\sqcup (s : Set \alpha ) (_ : MeasurableSet s), (borel R\geq 0\infty ).comap fun \mu => \mu s

That is, given a measurable structure over \scrX , we consider the smallest
sigma algebra on\scrM (\scrX ) such that for all measurable sets A \subseteq \scrX the projection
\mu \mapsto \rightarrow \mu (A) is measurable with respect to the Borel \sigma -algebra on R+.

Two special kinds of kernels are worth mentioning: the constant kernels
and the deterministic kernels. They occur when the function is degenerate,

https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Probability/Kernel/Basic.lean#L55-L68
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/MeasureTheory/Measure/GiryMonad.lean#L43-L45
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respectively in the first and second argument, and they are the reason why
we can say that kernels are a generalization of measures and measurable
functions.

Definition 2.1.3 (Constant kernel). Let \scrX ,\scrY be measurable spaces, \mu \in 
\scrM (\scrY ). The constant kernel with value \mu is the kernel defined by \kappa (x, \cdot ) = \mu 

for every x \in \scrX .

Definition 2.1.4 (Deterministic kernel). Let \scrX ,\scrY be measurable spaces,
f : \scrX \rightarrow \scrY a measurable function. The deterministic kernel associated with f

is the kernel defined by \kappa (x, \cdot ) = \delta f(x) for every x \in \scrX , where \delta y is the Dirac
measure at y.

We will sometimes refer to the deterministic kernel associated with f using
the same notation f .

The notation we use for kernels highlights the fact that we can think of
them as stochastic functions from a space to another, with the output being
not a single fixed value but rather a measure on the second space. This analogy
is more evident when the output measures are probability measures, as we
can interpret the output of the kernel as taking different values with certain
probabilities. Kernels that only output probability measures are referred to as
Markov kernels and they are the most commonly used. However, we can also
consider classes of kernels that satisfy weaker properties, and many results
that hold for Markov kernels can be extended to those classes.

Definition 2.1.5. Let \scrX ,\scrY be measurable spaces, \kappa : \scrX \rightsquigarrow \scrY a kernel. We
say that \kappa is:

• a Markov kernel if for every x \in \scrX the measure \kappa (x, \cdot ) is a probability
measure.

• a finite kernel if \kappa (x, \cdot ) is a finite measure uniformly in x, i.e. there
exists some M \in R such that for every x \in \scrX we have \kappa (x,\scrY ) \leq M .

• an s-finite kernel if it is a countable sum of finite kernels.
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Remark 2.1.6. It is evident that every Markov kernel is a finite kernel, and
that every finite kernel is s-finite. These classes of kernels are the analogues
of probability measures, finite measures and s-finite measures. Indeed, in the
case of a constant kernel, they are identical. One could notice, however, that
we are not defining an analogue of the \sigma -finiteness for measures, which is
widely used in measure theory. It is indeed possible to define the notion of
\sigma -finite kernel, as a kernel that is a countable sum of finite kernels that are
pairwise mutually singular1. This way the class of \sigma -finite kernels would find
itself between that of finite and s-finite kernels. However, for our purposes we
will only need finite and s-finite kernels and the definition of \sigma -finiteness is
not present in Mathlib at the moment. It is conceivable that with additional
effort, some of the results we have used and formalized could be extended
from finite to \sigma -finite kernels.

Remark 2.1.7. Recall that a measure \mu is said to be s-finite if it is a countable
sum of finite measures. This notion is not as widespread as that of finite or
\sigma -finite measure, but it is nevertheless sufficient for many purposes. Moreover,
this class encompasses many interesting measures that are not \sigma -finite. For
example, a measure that assigns infinite mass to a single point can still be
s-finite, as we can use a countable sum of Dirac measures to represent it at
that point. For a more detailed discussion on s-finiteness see [VO18].

Remark 2.1.8. Since the Dirac measure is a probability measure, all deter-
ministic kernels are Markov kernels.

Kernels can also be combined with measures or other kernels in various
ways, to obtain new measures or kernels.

Definition 2.1.9 (Composition). Let \scrX ,\scrY ,\scrZ be measurable spaces, \kappa : \scrX \rightsquigarrow 
\scrY , \eta : \scrY \rightsquigarrow \scrZ and \mu \in \scrM (\scrY ). We define the composition of \kappa and \eta and

1Here the notion of mutual singularity of kernels is intentionally left vague, as it can
be interpreted in different ways, giving rise to different definitions of \sigma -finiteness, all of
which collapse to the classic definition in the case of measures. See [VO18, Definition 1] for
additional details.
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the composition of \mu and \eta respectively as the kernel \eta \circ \kappa : \scrX \rightsquigarrow \scrZ and the
measure \eta \circ \mu \in \scrM (\scrZ ) such that for every x \in \scrX and B \in F\scrZ we have

(\eta \circ \kappa )(x,B) =

\int 
\scrY 
\eta (y,B)\kappa (x, dy),

and

(\eta \circ \mu )(B) =

\int 
\scrY 
\eta (y,B)\mu (dy).

Definition 2.1.10 (Composition product). Let \scrX ,\scrY ,\scrZ be measurable spaces,
\kappa : \scrX \rightsquigarrow \scrY , \eta : \scrX \times \scrY \rightsquigarrow \scrZ , \mu \in \scrM (\scrX ). We define the composition product
of \kappa and \eta and the composition product of \mu and \kappa respectively as the kernel
\kappa \otimes \eta : \scrX \rightsquigarrow \scrY \times \scrZ and the measure \mu \otimes \kappa \in \scrM (\scrX \times \scrY ) such that for every
x \in \scrX , A \in F\scrY and B \in F\scrZ we have

(\kappa \otimes \eta )(x,A\times B) =

\int 
A

\eta ((x, y), B)\kappa (x, dy),

and

(\mu \otimes \kappa )(A\times B) =

\int 
A

\kappa (x,B)\mu (dx).

Remark 2.1.11. The composition and composition product of a measure and
a kernel are just the special cases of the same operations between kernels
when one of the kernels is constant.

Moreover, we defined these operations based on their behavior when
applied to measurable sets or rectangles. However, these properties can be
easily extended to the case of integrals, in particular when we have a kernel
and a measure the following hold:

i)
\int 
B
f(y)(\kappa \circ \mu )(dy) =

\int 
\scrX 

\int 
B
f(y)\kappa (x, dy)\mu (dx),

ii)
\int 
A\times B

g(x, y)(\mu \otimes \kappa )(dx, dy) =
\int 
A

\int 
B
g(x, y)\kappa (x, dy)\mu (dx),

where \kappa : \scrX \rightsquigarrow \scrY , \mu \in \scrM (\scrX ), f : \scrY \rightarrow R and g : \scrX \times \scrY \rightarrow R are integrable
functions, A \in F\scrX and B \in F\scrY .
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Definition 2.1.12 (Product). Let \scrX ,\scrY ,\scrZ be measurable spaces, \kappa : \scrX \rightsquigarrow \scrY ,
\eta : \scrX \rightsquigarrow \scrZ . We define the product of \kappa and \eta as the kernel \kappa \times \eta : \scrX \rightsquigarrow \scrY \times \scrZ 
such that for every x \in \scrX , A \in F\scrY and B \in F\scrZ we have

(\kappa \times \eta )(x,A\times B) = \kappa (x,A)\eta (x,B).

Definition 2.1.13 (Parallel product). Let \scrX ,\scrY ,\scrZ ,\scrW be measurable spaces,
\kappa : \scrX \rightsquigarrow \scrZ , \eta : \scrY \rightsquigarrow \scrW . We define the parallel product of \kappa and \eta as the
kernel \kappa \| \eta : \scrX \times \scrY \rightsquigarrow \scrZ \times \scrW such that for every (x, y) \in \scrX \times \scrY , A \in F\scrZ 

and B \in F\scrW we have

(\kappa \| \eta )((x, y), A\times B) = \kappa (x,A)\eta (y,B).

Remark 2.1.14. The product and parallel product are the pointwise products
of the measures:

(\kappa \times \eta )(x, \cdot ) = \kappa (x, \cdot )\otimes \eta (x, \cdot ),

(\kappa \| \eta )((x, y), \cdot ) = \kappa (x, \cdot )\otimes \eta (y, \cdot ),

where \otimes is the usual product of measures.

Remark 2.1.15. The operations that we just described actually give rise to
kernels, in particular the measurability condition is satisfied. For a proof of
this, see [Kal21] and the Lean formalization.

Remark 2.1.16. In Lean, in order to distinguish the symbols used for these
operations from existing notation within the library, we employ the notations
\otimes k and \otimes m, respectively for the composition product between two kernels
and the composition product between a measure and a kernel. Similarly, we
use \circ k and \circ m for the composition, \times k for the product (the product between
measures is written \times m) and \| k for the parallel product.

We also define some special kernels that are useful for combining other
kernels in various ways.

Definition 2.1.17 (Identity, copy, discard and swap kernels). Let \scrX ,\scrY be
measurable spaces and \{ \ast \} a measurable space with one element. Then we
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define the identity, copy, discard and swap kernels as the deterministic kernels
id\scrX : \scrX \rightsquigarrow \scrX , copy\scrX : \scrX \rightsquigarrow \scrX \times \scrX , discard\scrX : \scrX \rightsquigarrow \{ \ast \} and swap\scrX ,\scrY : \scrX \times 
\scrY \rightsquigarrow \scrY \times \scrX associated respectively with the functions x \mapsto \rightarrow x, x \mapsto \rightarrow (x, x),
x \mapsto \rightarrow \ast and (x, y) \mapsto \rightarrow (y, x).

In some cases, when it is evident from the context, we may omit the
mention of the dependency on the spaces. Moreover, for the composition with
the swap kernel we use the notation (\cdot )\updownarrow , i.e. swap\scrX ,\scrY \circ \kappa = (\kappa )\updownarrow .

Remark 2.1.18. It is interesting to note that the operations that we have
defined above are not independent of one another; rather, some can be
composed to yield others. In particular, it is sufficient to define the composition
and parallel composition, along with the kernels in Definition 2.1.17, in order
to obtain the product and composition product as follows:

\kappa \times \eta = (\kappa \| \eta ) \circ copy\scrX ,

\mu \otimes \kappa = (id\scrX \| \kappa ) \circ copy\scrX \circ \mu = (id\scrX \times \kappa ) \circ \mu ,

\kappa \otimes \xi = (id\scrY \| \xi ) \circ (id\scrY \| swap\scrY ,\scrX ) \circ (copy\scrY \| id\scrX ) \circ (\kappa \| id\scrX ) \circ copy\scrX ,

where \mu \in \scrM (\scrX ), \kappa : \scrX \rightsquigarrow \scrY , \eta : \scrX \rightsquigarrow \scrZ and \xi : \scrX \times \scrY \rightsquigarrow \scrZ .
Using these basic operations it is possible to interpret kernels through the

lens of category theory. In particular, it is possible to define a category where
the objects are the measurable spaces and the morphisms are certain classes
of kernels, like Markov kernels. Categories constructed in this manner are
referred to as Markov categories or copy-discard categories. This approach
allows us to view probability theory from a very general point of view, and
can also be used to make kernel computations easier, by representing them
with string diagrams. For a more detailed discussion on this topic see [Per24;
Fri+23].

An important property of Markov kernels, that we will use frequently
in the following chapters, is that they preserve the total mass of a measure
when combined with it through composition or composition product. For
additional properties of these operations, see Appendix A and [Kal21].
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Proposition 2.1.19. Let \scrX ,\scrY be measurable spaces, \kappa : \scrX \rightsquigarrow \scrY a Markov
kernel, \mu \in \scrM (\scrX ). Then:

i) (\kappa \circ \mu )(\scrY ) = \mu (\scrX ),

ii) (\mu \otimes \kappa )(\scrX \times \scrY ) = \mu (\scrX ).

In particular, if \mu is a probability measure, then \kappa \circ \mu and \mu \otimes \kappa are
probability measures.

Proof. (i) By definition of composition we have

(\kappa \circ \mu )(\scrY ) =

\int 
\scrX 
\kappa (x,\scrY )\mu (dx) =

\int 
\scrX 
1\mu (dx) = \mu (\scrX ).

(ii) By definition of composition product we have

(\mu \otimes \kappa )(\scrX \times \scrY ) =

\int 
\scrX 
\kappa (x,\scrY )\mu (dx) =

\int 
\scrX 
1\mu (dx) = \mu (\scrX ).

#

Another important definition is that of Bayesian inverse, which is a way
to invert a kernel. Just like the inverse of a function, the Bayesian inverse
of a kernel is a new kernel that goes in the opposite direction. We can
think of the kernel \kappa : \scrX \rightsquigarrow \scrY as a source of observable data in \scrY given
some hidden parameter in \scrX , then the Bayesian inverse takes the observed
data and outputs a distribution representing how likely it is that the hidden
parameter was a certain value, given a prior distribution \mu \in \scrM (\scrX ) on the
hidden parameter space. The distribution on the parameter space outputted
by the Bayesian inverse is often called the posterior, so the Bayesian inverse
can also be called the posterior kernel. For another point of view on the
Bayesian inverse see [Cle+17; Dah+18].

In Chapter 4 we will see how the setting of hypothesis testing is similar to
the one we just described, and how the Bayesian inverse can be used to solve
some problems in this context. Moreover, we will use the Bayesian inverse in
one of the proofs of the data processing inequality (Theorem 5.2.5).
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Definition 2.1.20 (Bayesian inverse). Let \scrX ,\scrY be measurable spaces, \mu \in 
\scrM (\scrX ), \kappa : \scrX \rightsquigarrow \scrY . Then we say that a kernel \eta : \scrY \rightsquigarrow \scrX is a Bayesian
inverse of \kappa with respect to \mu if

(\eta \| id\scrY ) \circ copy\scrY \circ \kappa \circ \mu = (id\scrX \| \kappa ) \circ copy\scrX \circ \mu . (2.1)

In this case we write \eta = \kappa \dagger 
\mu .

Remark 2.1.21. The condition in Equation (2.1) is equivalent to each of the
following:

(\kappa \dagger 
\mu \times id\scrY ) \circ \kappa \circ \mu = (id\scrX \times \kappa ) \circ \mu , (2.2)

((\kappa \circ \mu )\otimes \kappa \dagger 
\mu )\updownarrow = \mu \otimes \kappa . (2.3)

The existence of a Bayesian inverse of a general kernel \kappa : \scrX \rightsquigarrow \scrY with
respect to a general measure \mu \in \scrM (\scrX ) is not always guaranteed. Neverthe-
less, if a Bayesian inverse exists, it is unique almost everywhere with respect
to \kappa \circ \mu .

The following remark presents some sufficient conditions for the existence
of the Bayesian inverse. See also Lemma 4.2.2 for an example where the
Bayesian inverse exists and can even be computed explicitly.

Remark 2.1.22. It is possible to impose certain conditions on the spaces,
kernel, and measure in order to guarantee the existence of the Bayesian
inverse. In particular, let \scrX be a standard Borel space, \scrY a measurable space,
\mu \in \scrM (\scrX ) a finite measure and \kappa : \scrX \rightsquigarrow \scrY a finite kernel. Then the Bayesian
inverse \kappa \dagger 

\mu exists.
These hypotheses are those employed in the Lean definition of the Bayesian

inverse:
def bayesInv [StandardBorelSpace \alpha ] [Nonempty \alpha ]

(\kappa : Kernel \alpha \beta ) [IsFiniteKernel \kappa ]

(\mu : Measure \alpha ) [IsFiniteMeasure \mu ] : Kernel \beta \alpha :=

((\mu \otimes m \kappa ).map Prod.swap).condKernel

We define the Bayesian inverse as the conditional kernel of the measure (\mu \otimes 
\kappa )\updownarrow . The conditional kernel is one of two objects defined by the disintegration

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Kernel/BayesInv.lean#L41-L44
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of a measure. This process involves taking a measure \nu \in \scrM (\scrX \times \scrY ) on a
product space and splitting it as the composition product of a measure on the
first space \nu \scrX \in \scrM (\scrX ) (the first marginal of \nu ) and a kernel \nu \scrY | \scrX : \scrX \rightsquigarrow \scrY ,
called the conditional kernel, such that \nu = \nu \scrX \otimes \nu \scrY | \scrX . This operation is
not always well-defined, but if \scrY is a standard Borel space and the measure
is finite then it is. See [Kal21] for more details about the disintegration of
measures.

Note also that the formalized definition requires the finiteness of the
measure and kernel. However, it may be possible to prove this result for
s-finite measures and kernels as well, with some additional effort.

2.2 Lebesgue Decomposition

In the context of measure theory, it is useful to consider the null sets, i.e.
the sets to which the measure assigns zero mass. In particular, it is interesting,
if we have two measures, to ascertain whether there are sets that are null for
one measure but not for the other, or whether there is a set that is null for
the first measure, while its complement is null for the second. This kind of
observation gives rise to the notions of absolute continuity and singularity
of measures, which are in some way analogous to the notions of parallel and
orthogonal vectors in linear algebra.

Definition 2.2.1 (Absolutely continuous measure). Let \scrX be a measurable
space and \mu , \nu \in \scrM (\scrX ). We say that \mu is absolutely continuous with respect
to \nu if for every A \subseteq \scrX measurable such that \nu (A) = 0 we have \mu (A) = 0. In
this case we write \mu \ll \nu .

Definition 2.2.2 (Mutually singular measures). Let \scrX be a measurable
space and \mu , \nu \in \scrM (\scrX ). We say that \mu and \nu are mutually singular if there
exists A \subseteq \scrX measurable such that \mu (A) = 0 and \nu (Ac) = 0. In this case we
write \mu \bot \nu .

Furthering the linear algebra analogy, just like we can decompose a vector
into the sum of its parallel and orthogonal parts with respect to another
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vector, we can, under some hypotheses, decompose a measure into the sum
of an absolutely continuous part and a singular part with respect to another
measure. This is referred to as the Lebesgue decomposition and allows us to
define the Radon-Nikodym derivative.

In the next chapter, we will see how this decomposition can be used to
compare two measures, by confronting separately their absolutely continuous
and singular parts. This will give rise to the notion of f-divergence.

In the sequel, given a measure \mu \in \scrM (\scrX ) and a measurable function
f : \scrX \rightarrow R, we will use the notation f \cdot \mu to denote the measure defined by
(f \cdot \mu )(A) =

\int 
A
f \mathrm{d}\mu for every measurable set A.

Theorem 2.2.3 (Lebesgue Decomposition). Let \scrX be a measurable space,
\mu , \nu \in \scrM (\scrX ) such that \mu is s-finite and \nu is \sigma -finite. Then there exists a
measure \xi \in \scrM (\scrX ) such that \nu \bot \xi and a measurable function f : \scrX \rightarrow R+

such that \mu = f \cdot \nu + \xi . Moreover, \xi is unique and f is \nu -a.e. unique.

Proof. See [Dud02, Theorem 5.5.3] for a proof of the case where both measures
are \sigma -finite. For the general case see the proof in Mathlib, in particular the
instance MeasureTheory.Measure.haveLebesgueDecomposition_of_sigmaFinite

for the existence and the theorems MeasureTheory.Measure.eq_singularPart

and MeasureTheory.Measure.eq_rnDeriv for the uniqueness. #

Remark 2.2.4. The measure \xi is called the singular part of \mu with respect to
\nu , and it is denoted by \mu \bot \nu . The function f is called the Radon-Nikodym
derivative of \mu with respect to \nu , and it is denoted by

d\mu 

d\nu 
. Moreover,

d\mu 

d\nu 
\cdot \nu is

called the absolutely continuous part of \mu with respect to \nu , since
d\mu 

d\nu 
\cdot \nu \ll \nu .

With these notations we have that \mu =
d\mu 

d\nu 
\cdot \nu + \mu \bot \nu .

Remark 2.2.5. In the case where \mu \ll \nu we have that \mu \bot \nu = 0 and \mu =
d\mu 

d\nu 
\cdot \nu .

This is also called the Radon-Nikodym theorem.

Remark 2.2.6. The hypothesis of \sigma -finiteness for \nu is necessary for the unique-
ness of the Radon-Nikodym derivative. Consider the following counter exam-
ple. Let \scrX := \{ \ast \} be a measurable space with one element, \mu \in \scrM (\scrX ) the

https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/MeasureTheory/Decomposition/Lebesgue.lean#L931-L967
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/MeasureTheory/Decomposition/Lebesgue.lean#L382-L420
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/MeasureTheory/Decomposition/Lebesgue.lean#L541-L550
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measure that assigns infinite mass to \ast . Observe that \mu is s-finite, but not
\sigma -finite. Let us consider the Lebesgue decomposition of \mu with respect to
itself. Since \mu assigns positive mass to every point in \scrX , the only measure
that is mutually singular with respect to \mu is the zero measure. Therefore,
the Lebesgue decomposition is of the form \mu = f \cdot \mu , for some function f .
But it is evident that every strictly positive function will work, therefore the
Radon-Nikodym derivative is not unique (not even almost everywhere).

Now that we have defined the Lebesgue decomposition for measures, a
natural question is whether this concept can be extended to kernels. The
naive way to do this is by considering the kernels \kappa , \eta : \scrX \rightsquigarrow \scrY as collections
of measures indexed by the elements of the domain and then applying the
Lebesgue decomposition to each of these measures:

\kappa (x) =
d\kappa (x)

d\eta (x)
\cdot \eta (x) + \kappa (x)\bot \eta (x).

The problem with this approach is that the resulting Radon-Nikodym deriva-
tive, which can be seen as a function \scrX \times \scrY \rightarrow R+, is measurable once we
fix the first argument, but it is not necessarily jointly measurable. It thus
becomes necessary to find an alternative means of defining the Lebesgue
decomposition for kernels, one that allows for the joint measurability required
for the calculation of integrals on the product space.

It turns out that it is possible to define the Radon-Nikodym derivative in
a way that is jointly measurable. However, this requires certain assumptions
to be made regarding the spaces, in particular we need the second space \scrY to
be countably generated, i.e. there exists a countable collection of sets that
generates the \sigma -algebra of \scrY ; alternatively we can require the first space \scrX 
to be countable.

Notice that these hypotheses are satisfied if the second space is a standard
Borel space, as this implies2 that it is countably generated.

2Let \scrY be a standard Borel space, then there exists a countable dense set D \subseteq \scrY and
the Borel \sigma -algebra is generated by the balls with rational radius with centers in D, which
are countable.
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Theorem 2.2.7 (Lebesgue decomposition theorem for kernels). Let \scrX ,\scrY be
measurable spaces such that \scrX is countable or \scrY is countably generated, and
let \kappa , \eta : \scrX \rightsquigarrow \scrY be finite kernels. Then there exists a kernel \xi : \scrX \rightsquigarrow \scrY such
that \eta (x) \bot \xi (x) for every x \in \scrX and a measurable function f : \scrX \times \scrY \rightarrow R+

such that \kappa (x) = f(x, \cdot ) \cdot \eta (x) + \xi (x) for every x \in \scrX . We denote \kappa \bot \eta = \xi 

and
d\kappa 

d\eta 
= f .

Proof. In the case where \scrX is countable, the naive approach works, since the

joint measurability over \scrX \times \scrY is then implied by the measurability of
d\kappa (x)

d\eta (x)
for every x \in \scrX . For the countably generated case, the proof involves a more
complicated construction, for the details see the definition ProbabilityTheory

.Kernel.rnDeriv in Mathlib and the relative file, in particular the lemma
ProbabilityTheory.Kernel.rnDeriv_add_singularPart. #

2.3 Generalized integration by parts

Integration by parts is one of the most powerful tools of real analysis,
which, in its standard version, requires the two functions to be differentiable.
However, for the purposes of our project, it is necessary to apply it in a
situation where we have no differentiability guaranteed, in fact, one of the
functions may even be discontinuous. In order to achieve this, we will present
a version of the theorem for the Riemann-Stieltjes integral and adapt it to
the Lebesgue integral.

For the definition and some properties of the Riemann-Stieltjes integral
see Appendix C and [Apo74, Chapter 7].

Theorem 2.3.1 (Integration by parts). Let a, b \in R such that a < b,
f, g : [a, b] \rightarrow R be bounded functions such that f is Riemann-Stieltjes inte-
grable with respect to g. Then g is Riemann-Stieltjes integrable with respect
to f , and we have\int b

a

f(x) \mathrm{d}g(x) +

\int b

a

g(x) \mathrm{d}f(x) = f(b)g(b) - f(a)g(a).

https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Probability/Kernel/RadonNikodym.lean#L234-L237
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Probability/Kernel/RadonNikodym.lean#L234-L237
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Probability/Kernel/RadonNikodym.lean#L388-L403
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Proof. See [Apo74, Theorem 7.6]. #

The Riemann-Stieltjes integral is closely related to a particular type of
Lebesgue integral, called the Lebesgue-Stieltjes integral. We will provide a
brief introduction to this concept and adapt the integration by parts theorem
to this setting, as this version of the theorem is the one that we have formalized
in Lean.

Definition 2.3.2 (Stieltjes function). Let f : R \rightarrow R. We say that f is a
Stieltjes function if it is nondecreasing and right continuous.

It can be proven (see [Whe15, Theorems 11.8 and 11.10]) that a Stieltjes
function f uniquely defines a measure on the Borel \sigma -algebra of R in the
following way.

Definition 2.3.3 (Lebesgue-Stieltjes measure and integral). Let f be a
Stieltjes function. We define the Lebesgue-Stieltjes measure associated with
f , denoted \Lambda f , as the only measure on the Borel \sigma -algebra of R such that for
every a, b \in R with a < b we have

\Lambda f ((a, b]) = f(b) - f(a).

Moreover, if g : R \rightarrow R, we call the integral
\int 
g \mathrm{d}\Lambda f the Lebesgue-Stieltjes

integral of g with respect to f .

Remark 2.3.4. f is the CDF (cumulative distribution function) of \Lambda f .

Remark 2.3.5. Definition 2.3.3 also works for nondecreasing right continuous
functions defined only on intervals, in that case the Lebesgue-Stieltjes measure
is defined only on the Borel \sigma -algebra of the interval.

The Stieltjes functions and the Lebesgue-Stieltjes measure are already
defined in Mathlib, but only for functions on the whole real line, not on
intervals.

Corollary 2.3.6. Let a, b \in R such that a < b, f, g be Stieltjes functions
such that f is continuous on [a, b]. Then we have\int 

(a,b]

f(x) \mathrm{d}\Lambda g(x) = f(b)g(b) - f(a)g(a) - 
\int 
(a,b]

g(x) \mathrm{d}\Lambda f (x).
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Proof. See Remark C.0.5. #

Remark 2.3.7. The integration by parts theorem is available in Mathlib, under
the name intervalIntegral.integral_deriv_mul_eq_sub_of_hasDeriv_right

(there are actually multiple lemmas nearby with slightly different hypotheses).
However, this formulation of the theorem requires both functions to be at least
continuous, while for our application one of the functions is not necessarily
continuous. The following is the statement of the integration by parts theorem
that is currently in the project:

lemma integral_stieltjes_meas_by_parts (f g : StieltjesFunction)

(a b : R) (hf : ContinuousOn f (Set.Icc a b)) :\int 
x in a..b, f x \partial g.measure

= (f b) * (g b) − (f a) * (g a) −
\int 
x in a..b, g x \partial f.measure := by

sorry

The proof of the theorem has yet to be formalized, and it is currently left
as a task for ourselves or other members of the Lean community to undertake
in the future. This decision of leaving an unproven result was dictated by
the will to focus our formalization efforts on the core part of the project,
namely the proof of the data processing inequality and the development of
information theory related objects. However, the inclusion of a non-formalized
element in a formalization project leaves some room for uncertainty about the
absolute solidity of the final results. To address this issue, in Remark C.0.5
we provide a comprehensive justification for the mathematical assumption
that we are operating under, based on reliable mathematical sources.

Note also that this situation gives us the opportunity to illustrate the
flexibility of Lean as a formalization tool. In fact, it allows us to assume a
result that we trust to be true, postponing the proof of that result and letting
us focus on building the piece of theory that we are currently most interested
in. Be warned, however, not to abuse this possibility, as it can lead to some
bugs, such as forgotten hypotheses in the result we are assuming to be true,
which can potentially undermine the soundness of the whole project and turn

https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/MeasureTheory/Integral/FundThmCalculus.lean#L1270-L1282
https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/ForMathlib/ByParts.lean#L25-L28
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out to be very time-consuming to fix, as the number of results depending on
the assumption becomes too large.



Chapter 3

Information divergences

Information divergences serve as a means of quantifying the dissimilarity
between two probability measures. They are employed extensively in the
fields of information theory, statistics, and machine learning. The majority
of the applications of divergences focus on probability measures. However,
divergences can also be defined for general measures, and in this work we will
consider them in this more general setting, restricting to smaller classes of
measures only when necessary.

This more general approach allows the application of techniques from
convex optimization to the study of divergences. For example, one may
consider a fixed measure and seek to identify the measure that minimizes a
divergence with respect to it. In fact, convex optimization often requires the
set of feasible solutions to be a convex cone. However, the set of probability
measures does not fall into this category, whereas the set of finite measures
does.

A potential definition of divergence (between probability measures) is
given in a categorical setting in [Per24, Chapter 2]. However, due to certain
technical complexities in its implementation1, this definition will not work

1The definition of divergence in [Per24] requires the divergence between a measure and
itself to be zero. This is not true for the current formalization of f-divergences, unless the
measure is \sigma -finite. See also Remark 3.1.4.
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for some of the divergences that we have implemented in the case of general
measures. For this reason, a general definition of divergence will not be
introduced in this chapter. However, a general principle in information theory
is information cannot be generated merely by manipulating existing data. As
divergences represent a means of quantifying information, it is reasonable to
posit that they should satisfy a property that reflects this principle. This
property is known as the data processing inequality, and it states that the
divergence between two measures cannot increase when both measures are
composed with the same Markov kernel. In this chapter we will describe
a large class of divergences, known as the f-divergences, along with some
specific examples of f-divergences and also some other divergences that do
not belong to this class. Chapter 5 we will provide further details about the
data processing inequality, and will present a proof demonstrating that this
inequality is satisfied by the aforementioned divergences.

Note that the notion of divergence does not require symmetry (in particular
a divergence does not need to be a distance). Indeed, many widely used
divergences like the Kullback-Leibler divergence (see Definition 3.2.1) are not
symmetric. A possible way to interpret this asymmetry is that divergences
can be understood as a way to quantify, in a binary testing setting, how easy
it is to exclude that the samples are taken from a probability distribution
\mu if they are actually sampled from another distribution \nu . The following
example is provided to illustrate this concept.

Example 3.0.1. Let \mu := \mathrm{B}\mathrm{e}\mathrm{r}(0.5) be the Bernoulli distribution with mean
0.5, and \nu the Dirac measure at 0, that is \nu := \mathrm{B}\mathrm{e}\mathrm{r}(0). If the true measure is
\mu then we have a chance to sample 1, in this case we can directly exclude that
the samples are taken from \nu with complete confidence. On the other hand,
if the true measure is \nu then we will never be able to exclude with certainty
that the samples are taken from \mu . This is reflected in the Kullback-Leibler
divergence between \mu and \nu being infinite, while the divergence between \nu 

and \mu is finite. In particular, as we will see in Example 3.2.4, \mathrm{K}\mathrm{L}(\mu , \nu ) = +\infty 
and \mathrm{K}\mathrm{L}(\nu , \mu ) = \mathrm{l}\mathrm{o}\mathrm{g}(2).
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3.1 f-divergences

Definition 3.1.1 (f-divergence). Let \scrX be a measurable space, \mu , \nu \in \scrM (\scrX )

and f : R+ \rightarrow R a convex function such that f(1) = 0. The f-divergence
between \mu and \nu is defined as

Df (\mu , \nu ) :=

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu + f \prime (\infty )\mu \bot \nu (\scrX ).

To understand the intuition behind f-divergences, it is instructive to
consider the Lebesgue decomposition \mu =

d\mu 

d\nu 
\cdot \nu + \mu \bot \nu . In the case where

\mu = \nu , this decomposition becomes \mu = 1 \cdot \mu + 0, therefore it is a good idea
to study how much the Radon-Nikodym derivative deviates from 1 and how
much the singular part differs from zero. The integral part of the f-divergence
is a way of quantifying the first part, i.e. how much \mu and \nu differ in the
regions where both have positive mass. The other part quantifies the degree
to which \mu assigns mass to the regions where \nu has zero mass. Different
choices of f correspond to different ways of weighing those elements. The
reasons for requiring f(1) = 0 should now be more apparent. Moreover, as
will be highlighted in Remark 3.1.6, this hypothesis is not overly restrictive.
The convexity of f , on the other hand, is a natural requirement, both because
it guarantees the existence of f \prime (\infty ) (see Remark D.0.2), it ensures some
desirable properties like the one in the following remark, and is crucial in all
the proofs of the DPI that we present in Chapter 5.

Remark 3.1.2. Let f : R \rightarrow R be convex, and \mu , \nu be finite measures. Then
for every line of equation y = ax + b that is tangent to the graph of f , we
have that the graph of f is above the line, that is f(x) \geq ax + b for every
x \in R. Therefore\int 

\scrX 
f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu \geq 

\int 
\scrX 

\biggl( 
a
d\mu 

d\nu 
+ b

\biggr) 
\mathrm{d}\nu = a

\int 
\scrX 

d\mu 

d\nu 
\mathrm{d}\nu + b\nu (\scrX ).

The left-hand side of this equation is finite, since \mu and \nu are finite measures,
and 0 \leq 

\int 
\scrX 
d\mu 

d\nu 
\mathrm{d}\nu \leq \mu (\scrX ) < +\infty . It follows that the integral cannot be  - \infty .

Moreover, for a similar reason, the integral of the negative part of f must be
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finite, hence the integral cannot be undefined. We conclude that the only

case where f

\biggl( 
d\mu 

d\nu 

\biggr) 
is not integrable is if the integral is +\infty .

Remark 3.1.3. The following is the definition of f-divergence formalized in
Lean:

def fDiv (f : R \rightarrow R) (\mu \nu : Measure \alpha ) : EReal :=

if \neg Integrable (fun x \mapsto \rightarrow f ((\partial \mu /\partial \nu ) x).toReal) \nu then \top 
else

\int 
x, f ((\partial \mu /\partial \nu ) x).toReal \partial \nu 

+ derivAtTop f * \mu .singularPart \nu Set.univ

This definition is slightly different from the aforementioned one. First,
we defined the f-divergence without any hypothesis on f . The convexity of
f and the fact that f(1) = 0 are still needed for many properties to hold;
however, we require these conditions as hypotheses of the specific lemmas, not
of the definition itself. This is a common practice in formal theorem proving,
as it allows us to talk about some mathematical objects without having to
explicitly state many hypotheses each time we mention them.

Another difference is in the way that this definition handles the case

where f

\biggl( 
d\mu 

d\nu 

\biggr) 
is not integrable: in this case Definition 3.1.1 can lead to

many different situations, since the integral could either be +\infty ,  - \infty or
undefined and f \prime (\infty )\mu \bot \nu (\scrX ) could be finite, +\infty or  - \infty ; consequently, the
f-divergence could be +\infty ,  - \infty or undefined. In the Lean definition we
chose to simplify this situation by setting the f-divergence to +\infty in all these
cases. This decision makes the implementation easier, since the integral part
is now always finite, eliminating the need to address undefined forms such
as \infty  - \infty . Furthermore, at present, there is no definition of integral in
Mathlib that allows us to talk about general integrals that can also have

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/FDiv/Basic.lean#L58-L62
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\pm \infty as values2, so handling the cases where the integral is infinite would
have required some tricks to circumvent the problem, potentially making the
formalization much harder. Another justification for this choice is that in
the case where f is convex and the measures are finite, hypotheses that are

requires for many results about f-divergences, f
\biggl( 
d\mu 

d\nu 

\biggr) 
is not integrable if and

only if the f-divergence is +\infty (see Remark 3.1.2).

The last difference is in the domain and codomain of the function f . In
Definition 3.1.1 we defined f as a function from R+ to R, this is the most
natural choice, as we apply f to the Radon-Nikodym derivative, which can
take values in R+, and there is no reason to exclude the possibility of f
taking infinite values, since we can still integrate it meaningfully. In the Lean
definition, however, we require f to be a function from R to R; this choice
is mainly dictated by the limits of the tools that we have at our disposal in
Mathlib.

First, the Bochner integral, which we use in the Lean definition, cannot
take as input a function with infinite values. Furthermore, working with the
type EReal in Lean is more cumbersome than working with the real numbers,
since its implementation in Mathlib is still lacking in some aspects3. Note
also that if we want f to be convex, then it can never take the value  - \infty 
unless it is constant. Furthermore, none of the functions that we will consider

2The two types of integrals currently implemented in Mathlib are the Bochner
integral, called MeasureTheory.integral, and the lower Lebesgue integral, called
MeasureTheory.lintegral. The Bochner integral takes a function with values in a
normed additive commutative group and gives back values in that same group, in our case
R is not a group, therefore the function must have values in R and the integral cannot be
infinite; in the case where the function is not integrable the integral takes the junk value 0.
The lower Lebesgue integral, on the other hand, takes a function with values in R+; it can
give back +\infty as a value, but it can only handle nonnegative functions. In our case, having
singled out the case when the function is not integrable, we can safely use the Bochner
integral.

3Actually, numerous results formalized during this project about EReal have been
added to Mathlib, and we have many other results that we use locally and we are planning
to port to Mathlib in the near future.

https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/MeasureTheory/Integral/Bochner.lean#L707-L711
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/MeasureTheory/Integral/Lebesgue.lean#L55-L57
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in this work will take infinite values, so this restriction is not a significant
limitation.

Regarding the domain, using R+ would have prevented us from lever-
aging most results from the convex analysis part of Mathlib like ConvexOn.

map_average_le (Jensen’s inequality), since they are stated for a real normed
space, a condition that R+ does not satisfy. Furthermore, in the case where
\mu is \sigma -finite, the Radon-Nikodym derivative is finite almost everywhere with
respect to \nu 4, so it is not really restrictive to take R as the domain of f .

Remark 3.1.4. Notice how both Definition 3.1.1 and the Lean definition of
f-divergence rely on the Radon-Nikodym derivative in a crucial way. This can
result in some issues, namely the f-divergence not being well-defined, if the
Radon-Nikodym derivative is not unique. This can occur if the measures lack
the \sigma -finiteness hypothesis, see Remark 2.2.6. For this reason we are going to
assume that all the measures are \sigma -finite in the rest of this chapter. Never-
theless, we encourage the reader to check the Lean code for more fine-grained
details about the hypotheses of the theorems and lemmas that we have formal-
ized. Indeed, some results might hold true even without the uniqueness of the
Radon-Nikodym derivative. For instance, see ProbabilityTheory.fDiv_zero,
which states that D0(\mu , \nu ) = 0 for every \mu , \nu \in \scrM (\scrX ).

Keeping the required hypotheses to a minimum during the formalization
is a generally good practice, not only because it increases the generality
of the results, but also because it improves the usability of the code, as
fewer hypotheses need to be stated each time a result is used, and better
performance, as it puts less of a burden on the Lean typeclass inference
system, which is often a bottleneck in the compilation process.

We now turn to a useful property of f-divergences: if we add a constant or
a linear part to the function f , the f-divergence changes by a quantity that
depends only on the total mass of the measures.

4See the Mathlib lemma MeasureTheory.Measure.rnDeriv_lt_top for a proof of
this fact.

https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/Convex/Integral.lean#L122-L131
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/Convex/Integral.lean#L122-L131
https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/FDiv/Basic.lean#L96-L97
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/MeasureTheory/Decomposition/Lebesgue.lean#L366-L375
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Proposition 3.1.5. Let \scrX be a measurable space, \mu , \nu \in \scrM (\scrX ), f : R+ \rightarrow R

a convex function, a, b \in R, \~f := x \mapsto \rightarrow f(x) + ax+ b. Then

D \~f (\mu , \nu ) = Df (\mu , \nu ) + a\mu (\scrX ) + b\nu (\scrX ).

Proof. The proof is just a simple computation:

D \~f (\mu , \nu ) =

\int 
\scrX 

\~f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu + \~f \prime (\infty )\mu \bot \nu (\scrX )

=

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu + a

\int 
\scrX 

d\mu 

d\nu 
\mathrm{d}\nu + b\nu (\scrX ) + f \prime (\infty )\mu \bot \nu (\scrX ) + a\mu \bot \nu (\scrX )

= Df (\mu , \nu ) + a\mu (\scrX ) + b\nu (\scrX ).

#

Remark 3.1.6. Using Proposition 3.1.5, we can see how the hypothesis f(1) = 0

is not really restrictive, since we can always add a constant part to f to make
it satisfy this condition: \~f(x) = f(x) - f(1).

Moreover, we can further modify f with a linear part to control its (right)
derivative. For example, we can consider a centered version of f by setting
\~f(x) = f(x) - f(1) - f \prime 

+(1)(x - 1). This results in \~f(1) = 0, \~f \prime (1) = 0 and
D \~f (\mu , \nu ) = Df (\mu , \nu ) - f(1)\nu (\scrX ) - f \prime 

+(1)(\mu (\scrX ) - \nu (\scrX )).

3.2 Kullback-Leibler divergence

The Kullback-Leibler divergence, also referred to as relative entropy,
represents a foundational concept in information theory, with applications
spanning diverse fields such as statistics and machine learning. For further
details about the KL divergence see [PW24, Chapter 2].

Definition 3.2.1 (Kullback-Leibler divergence). Let \scrX be a measurable
space and \mu , \nu \in \scrM (\scrX ). The Kullback-Leibler divergence between \mu and \nu is
defined as

\mathrm{K}\mathrm{L}(\mu , \nu ) :=

\left\{     
\int 
\scrX 
\mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\mu if \mu \ll \nu ,

+\infty otherwise.
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The following result demonstrates that the KL divergence can be seen as
an example of f-divergence, with f(x) = x \mathrm{l}\mathrm{o}\mathrm{g} x.

Proposition 3.2.2. Let \scrX be a measurable space, \mu , \nu \in \scrM (\scrX ) and f(x) :=

x \mathrm{l}\mathrm{o}\mathrm{g} x. Then Df (\mu , \nu ) = \mathrm{K}\mathrm{L}(\mu , \nu ).

Proof. First suppose that \mu \ll \nu , then by Proposition B.0.1 we have that
\mu \bot \nu = 0. Therefore,

Df (\mu , \nu ) =

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu + f \prime (\infty )\mu \bot \nu (\scrX )

=

\int 
\scrX 

d\mu 

d\nu 
\mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu 

By Proposition B.0.1 =

\int 
\scrX 
\mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\mu 

= \mathrm{K}\mathrm{L}(\mu , \nu ).

Now suppose that \mu \not \ll \nu , then by Proposition B.0.1 we have that \mu \bot \nu (\scrX ) > 0.
Notice also that f \prime (x) = \mathrm{l}\mathrm{o}\mathrm{g} x + 1, so f \prime (\infty ) = +\infty , and by Remark 3.1.2\int 
\scrX f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu >  - \infty . Hence,

Df (\mu , \nu ) =

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu + f \prime (\infty )\mu \bot \nu (\scrX ) = +\infty = \mathrm{K}\mathrm{L}(\mu , \nu ).

#

Remark 3.2.3. In the case where \scrX is discrete, the condition \mu \ll \nu is
equivalent to \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu ) \subseteq \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\nu ), where \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu ) := \{ x \in \scrX | \mu (\{ x\} ) > 0\} is
the support of \mu . In this case the KL divergence can be written as

\mathrm{K}\mathrm{L}(\mu , \nu ) =

\left\{       
\sum 

x\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu )

\mu (\{ x\} ) \mathrm{l}\mathrm{o}\mathrm{g}
\biggl( 
\mu (\{ x\} )
\nu (\{ x\} )

\biggr) 
if \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu ) \subseteq \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\nu ),

+\infty otherwise.

Notice also that we can consider the sum to be over all the elements of \scrX ,
with the understanding that 0 \mathrm{l}\mathrm{o}\mathrm{g}(0) = 0 \mathrm{l}\mathrm{o}\mathrm{g}(0

0
) = 0.

An analogous result also holds in the case of discrete measures.
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Example 3.2.4. Let p, q \in [0, 1], \mu := \mathrm{B}\mathrm{e}\mathrm{r}(p) and \nu := \mathrm{B}\mathrm{e}\mathrm{r}(q). Let us
compute the KL divergence between \mu and \nu .

We begin by considering the case where q \in \{ 0, 1\} . If p = q then \mu = \nu 

and by Proposition E.0.1 we have that \mathrm{K}\mathrm{L}(\mu , \nu ) = 0. If, instead, p \not = q, then
\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu ) \not \subseteq \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\nu ), and by Remark 3.2.3 we have that \mathrm{K}\mathrm{L}(\mu , \nu ) = +\infty .

Now suppose that q \not = 0, 1, therefore \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu ) \subseteq \{ 0, 1\} = \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\nu ).
To compute the Radon-Nikodym derivative, observe that it has to satisfy
\mu (\{ x\} ) = d\mu 

d\nu 
(x)\nu (\{ x\} ) for x \in \{ 0, 1\} , so we have that

d\mu 

d\nu 
(0) =

1 - p

1 - q
and

d\mu 

d\nu 
(1) =

p

q
. Hence, by Remark 3.2.3 we have that

\mathrm{K}\mathrm{L}(\mu , \nu ) =
\sum 
x\in \scrX 

\mu (\{ x\} ) \mathrm{l}\mathrm{o}\mathrm{g}
\biggl( 
\mu (\{ x\} )
\nu (\{ x\} )

\biggr) 
= \mu (\{ 0\} ) \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
\mu (\{ 0\} )
\nu (\{ 0\} )

\biggr) 
+ \mu (\{ 1\} ) \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
\mu (\{ 1\} )
\nu (\{ 1\} )

\biggr) 
= p \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
p

q

\biggr) 
+ (1 - p) \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
1 - p

1 - q

\biggr) 
.

We can summarize these computations with the following formula

\mathrm{K}\mathrm{L}(\mathrm{B}\mathrm{e}\mathrm{r}(p),\mathrm{B}\mathrm{e}\mathrm{r}(q)) = p \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
p

q

\biggr) 
+ (1 - p) \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
1 - p

1 - q

\biggr) 
,

with the understanding that 0 \mathrm{l}\mathrm{o}\mathrm{g}(0) = 0 \mathrm{l}\mathrm{o}\mathrm{g}(0
0
) = 0 and a \mathrm{l}\mathrm{o}\mathrm{g}

\Bigl( a
0

\Bigr) 
= +\infty for

every a > 0.

As we mentioned at the beginning of this chapter, a property that we
expect a good divergence to have is the data processing inequality. The
Kullback-Leibler divergence actually satisfies a stronger property, known as
the chain rule, which can be used to prove the DPI, but is not true for general
f-divergences.

Theorem 3.2.5 (Chain rule). Let \scrX ,\scrY be measurable spaces such that \scrY 
is a standard Borel space, \mu , \nu \in \scrM (\scrX ) finite measures and \kappa , \eta : \scrX \rightsquigarrow \scrY 
Markov kernels. Then

\mathrm{K}\mathrm{L}(\mu \otimes \kappa , \nu \otimes \eta ) = \mathrm{K}\mathrm{L}(\mu , \nu ) + \mathrm{K}\mathrm{L}(\mu \otimes \kappa , \mu \otimes \eta ).
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Proof. See the Lean code, in particular ProbabilityTheory.kl_compProd. #

An important consequence of the chain rule is the tensorization property
of the KL divergence, which allows for the straightforward computation of
the KL divergence between two product measures.

Corollary 3.2.6 (Tensorization). Let n \in N, (\scrX i)i\in \{ 1,...,n\} be a finite collec-
tion of countably generated measurable spaces and \mu i, \nu i \in \scrP (\scrX i) probability
measures for i \in \{ 1, . . . , n\} . Then

\mathrm{K}\mathrm{L}

\Biggl( 
n\prod 

i=1

\mu i,

n\prod 
i=1

\nu i

\Biggr) 
=

n\sum 
i=1

\mathrm{K}\mathrm{L}(\mu i, \nu i).

Proof. See the Lean code, in particular ProbabilityTheory.kl_prod_two. #

Remark 3.2.7. In particular, if we have multiple copies of the same measure,
i.e. \mu i = \mu and \nu i = \nu for every i, then the tensorization property tells us that

\mathrm{K}\mathrm{L}
\bigl( 
\mu \otimes n, \nu \otimes n

\bigr) 
= n\mathrm{K}\mathrm{L}(\mu , \nu ).

This is particularly useful when we have a number of independent samples
from the same distribution, which can be thought of as a single sample from
the product measure. This can happen in the context of hypothesis testing,
as seen in Example 4.0.4, and can be used, for example, to compute lower
bounds on the sample complexity of an estimation problem, i.e. the number
of samples needed to achieve a certain level of accuracy.

3.3 Hellinger and Rényi divergences

The Hellinger \alpha -divergences and the Rényi divergences are two important
parametric families of divergences that are closely related to each other. Both
families can be viewed as a generalization of the KL divergence, and some
slightly different definitions for them can be found in the literature [Rén65;
CA10; EH14]. The definitions presented in this section are those used in
our formalization. In particular, we use the definition of Rényi divergence

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Divergences/KullbackLeibler.lean#L548-L634
https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Divergences/KullbackLeibler.lean#L760-L764
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from [EH14], while the Hellinger \alpha -divergence is defined in such a way that
the Rényi divergence can be expressed in terms of it, using a transformation
similar to the one described in [CA10].

Many results about the Hellinger and Rényi divergences require the mea-
sures to be finite, at least with our proofs and current Mathlib tools. Conse-
quently, we are going to assume this hypothesis in this section. However, we
refer the reader to the Lean code for the versions of these results with more
precise and weak hypotheses.

Definition 3.3.1 (Hellinger function). Let \alpha \in [0,+\infty ). We call Hellinger
function of order \alpha the function f\alpha : R \rightarrow R defined as follows:

f\alpha (x) :=

\left\{         
1\{ 0\} (x) if \alpha = 0,

x \mathrm{l}\mathrm{o}\mathrm{g}(x) if \alpha = 1,

x\alpha  - 1
\alpha  - 1

otherwise.

Definition 3.3.2 (Hellinger \alpha -divergence). Let \alpha \in [0,+\infty ), \scrX be a measur-
able space and \mu , \nu \in \scrM (\scrX ). We define the Hellinger \alpha -divergence between
\mu and \nu as the f-divergence with the Hellinger function of order \alpha :

\mathrm{H}\alpha (\mu , \nu ) := Df\alpha (\mu , \nu ).

Proposition 3.3.3. Let \alpha \in [0,+\infty ), \scrX be a measurable space and \mu , \nu \in 
\scrM (\scrX ). Then the Hellinger divergence takes the following form:

\mathrm{H}\alpha (\mu , \nu ) =

\left\{                 

\nu 
\bigl( \bigl\{ 

x | d\mu 
d\nu 
(x) = 0

\bigr\} \bigr) 
if \alpha = 0,

\mathrm{K}\mathrm{L}(\mu , \nu ) if \alpha = 1,\int 
\scrX 
f\alpha 

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu if \alpha \in (0, 1) or \alpha > 1 and \mu \ll \nu ,

+\infty if \alpha > 1 and \mu \not \ll \nu .

Proof. First, notice that for all \alpha \not = 0, 1, f \prime 
\alpha (x) =

\alpha 
\alpha  - 1

x\alpha  - 1, therefore

f \prime 
\alpha (\infty ) =

\left\{   0 if \alpha < 1,

+\infty if \alpha \geq 1.
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(\bfitalpha = \bfzero ) This is a simple computation:

\mathrm{H}0(\mu , \nu ) =

\int 
\scrX 

1\{ 0\} 

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu = \nu 

\biggl( \biggl\{ 
x \in \scrX | d\mu 

d\nu 
(x) = 0

\biggr\} \biggr) 
.

(\bfitalpha = \bfone ) This follows directly from Proposition 3.2.2.

(\bfitalpha \not = \bfzero ,\bfone ) This is a simple application of the definition of f-divergence,
using the value of f \prime 

\alpha (\infty ) that we computed above and Proposition B.0.1. #

Definition 3.3.4 (Rényi divergence). Let \alpha \in [0,+\infty ), \scrX be a measurable
space and \mu , \nu \in \scrM (\scrX ). We define the Rényi divergence of order \alpha between
\mu and \nu as

\mathrm{R}\alpha (\mu , \nu ) :=

\left\{   1
\alpha  - 1

\mathrm{l}\mathrm{o}\mathrm{g} (\nu (\scrX ) + (\alpha  - 1)\mathrm{H}\alpha (\mu , \nu )) if \alpha \not = 1,

\mathrm{K}\mathrm{L}(\mu , \nu ) if \alpha = 1.

The following proposition ensures that our definition is consistent with the
one given in [EH14, Sumary table and Remark 1]. The values of the Rényi
divergence for the orders 0 and 1, where the other definition would clearly
become degenerate, are set as such to ensure continuity when considering
\mathrm{R}\alpha (\mu , \nu ) as a function of \alpha , see [EH14] for further details.

Proposition 3.3.5. Let \alpha \in [0,+\infty ), \scrX be a measurable space and \mu , \nu \in 
\scrM (\scrX ). Then the Rényi divergence takes the following form:

\mathrm{R}a(\mu , \nu ) =

\left\{                 

 - \mathrm{l}\mathrm{o}\mathrm{g}
\bigl( 
\nu 
\bigl\{ 
x | 0 < d\mu 

d\nu 
(x)
\bigr\} \bigr) 

if \alpha = 0,

\mathrm{K}\mathrm{L}(\mu , \nu ) if \alpha = 1,

1
\alpha  - 1

\mathrm{l}\mathrm{o}\mathrm{g}
\Bigl( \int \bigl( 

d\mu 
d\nu 

\bigr) \alpha 
\mathrm{d}\nu 
\Bigr) 

if \alpha \in (0, 1) or \alpha > 1 and \mu \ll \nu ,

+\infty if \alpha > 1 and \mu \not \ll \nu .

Proof. (\bfitalpha = \bfzero ) By Proposition 3.3.3 we have

\mathrm{R}0(\mu , \nu ) =
1

0 - 1
\mathrm{l}\mathrm{o}\mathrm{g} (\nu (\scrX ) + (0 - 1)\mathrm{H}0(\mu , \nu ))

=  - \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
\nu (\scrX ) - \nu 

\biggl( \biggl\{ 
x | d\mu 

d\nu 
(x) = 0

\biggr\} \biggr) \biggr) 
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=  - \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
\nu 

\biggl( 
\scrX 

\biggl\{ 
x | d\mu 

d\nu 
(x) = 0

\biggr\} \biggr) \biggr) 
=  - \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
\nu 

\biggl\{ 
x | 0 <

d\mu 

d\nu 
(x)

\biggr\} \biggr) 
.

(\bfitalpha = \bfone ) True by definition.

(\bfitalpha \in (\bfzero ,\bfone ) or \bfitalpha > \bfone and \bfitmu \ll \bfitnu ) By Proposition 3.3.3 we have

\mathrm{R}\alpha (\mu , \nu ) =
1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g} (\nu (\scrX ) + (\alpha  - 1)\mathrm{H}\alpha (\mu , \nu ))

=
1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
\nu (\scrX ) + (\alpha  - 1)

\int 
\scrX 
f\alpha 

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu 

\biggr) 
=

1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
\nu (\scrX ) + (\alpha  - 1)

\int 
\scrX 

1

\alpha  - 1

\biggl( \biggl( 
d\mu 

d\nu 

\biggr) \alpha 

 - 1

\biggr) 
\mathrm{d}\nu 

\biggr) 
=

1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
\nu (\scrX ) +

\int 
\scrX 

\biggl( 
d\mu 

d\nu 

\biggr) \alpha 

\mathrm{d}\nu  - \nu (\scrX )

\biggr) 
=

1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g}

\biggl( \int 
\scrX 

\biggl( 
d\mu 

d\nu 

\biggr) \alpha 

\mathrm{d}\nu 

\biggr) 
.

(\bfitalpha > \bfone and \bfitmu \not \ll \bfitnu ) By Proposition 3.3.3 we have

\mathrm{R}\alpha (\mu , \nu ) =
1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g} (\nu (\scrX ) + (\alpha  - 1)\mathrm{H}\alpha (\mu , \nu ))

=
1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g} (\nu (\scrX ) + (\alpha  - 1)(+\infty ))

=
1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g} (+\infty ) = +\infty .

#

Remark 3.3.6. As previously stated, the definition provided for the Hellinger
\alpha -divergence is such that the Rényi divergence can be expressed in terms
of it, through a specific transformation. Let us consider the case where
the measures are normalized, i.e. they are probability measures. Then the
transformation that we want to use is the following one:

y \mapsto \rightarrow 1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g} (1 + (\alpha  - 1)y) .
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Notice how this is a nondecreasing function; this feature makes it possible
to transfer some properties, like the data processing inequality, from the
Hellinger divergence to the Rényi divergence. We can see that when \alpha = 1,
this transformation becomes degenerate due to the division by zero, so we
have to treat this case separately anyway. Then, why do we define \mathrm{H}1 as the
KL divergence instead of assigning it some other junk value? This choice
can be readily justified by observing that \mathrm{l}\mathrm{i}\mathrm{m}\alpha \rightarrow 1

1
\alpha  - 1

\mathrm{l}\mathrm{o}\mathrm{g} (1 + (\alpha  - 1)y) = y

for every y \in R, so it is natural for the Hellinger divergence and the Rényi
divergence to coincide for \alpha = 1. In the case of more general (finite) measures,
the aforementioned transformation would yield a term of the form 1 - \nu (\scrX )

inside the logarithm, which is not what we want for the Rényi divergence. To
address this issue we have to make a slight modification to the transformation,
which now depends on the second measure:

y \mapsto \rightarrow 1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g} (\nu (\scrX ) + (\alpha  - 1)y) .

Let us look examine the definitions of the Hellinger and Rényi divergences
that we have formalized in Lean.

def hellingerFun (a : R) : R \rightarrow R :=

if a = 0 then fun x \mapsto \rightarrow if x = 0 then 1 else 0

else if a = 1 then fun x \mapsto \rightarrow x * log x

else fun x \mapsto \rightarrow (a − 1) - 1 * (x ^ a − 1)

def hellingerDiv (a : R) (\mu \nu : Measure \alpha ) : EReal :=

fDiv (hellingerFun a) \mu \nu 

def renyiDiv (a : R) (\mu \nu : Measure \alpha ) : EReal :=

if a = 1 then kl \mu \nu 

else (a − 1) - 1 * ENNReal.log ((\uparrow (\nu Set.univ)

+ (a − 1) * (hellingerDiv a \mu \nu )).toENNReal)

The design choices made for the implementation of these mathematical
objects are worthy of further observation and analysis. This will be addressed
in the following remarks.

Remark 3.3.7. We can notice that some if-else statement are used in the Lean

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Divergences/Hellinger.lean#L133-L141
https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Divergences/Hellinger.lean#L329-L333
https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Divergences/Renyi.lean#L70-L81
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definitions of the Hellinger function and the Rényi divergence. Managing
this kind of branching can be cumbersome, especially when we have to prove
results about these objects, since we frequently have to consider each case
separately in the proofs. Therefore, choosing the right place to put the
branching can make the formalization process easier and the code more
maintainable and elegant. As we already mentioned in Remark 3.3.6, with
the transformation that we are using for the Rényi divergence, it is impossible
to avoid separating the case \alpha = 1. In particular, in Lean, the division by
zero always yields 0. Therefore, regardless of the value assigned to \mathrm{H}1, the
resulting Rényi divergence would have been 0. Thus, in this instance, it was
unavoidable to separate this case with an if statement within the definition
of the Rényi divergence. However, the situation is different with \alpha = 0, and
with the Hellinger divergence and function. Indeed, we could have defined \mathrm{R}0

as in Proposition 3.3.5, leaving \mathrm{H}0 as a junk value. An alternative approach
would have been to define the Hellinger function without any branching; in
this case both \alpha = 0 and \alpha = 1 would have yielded the zero function5 and
the branching could have been incorporated either in the definition of the
Hellinger divergence or in the one of the Rényi divergence.

In our case, the choice has been to push the if statements to the definitions
that appear earlier in the code. This approach enables us to take care of the
different cases at an early stage, within the API of the Hellinger function,
so that many results about it can be used without having to deal with the
branching. For instance, the fact that the Hellinger function is convex and
continuous is true for all values of \alpha . Moreover, we can directly employ the
properties of general f-divergences on the Hellinger divergence. A further
reason to put the if statements in the definition of the Hellinger function in
our case is that it is the object that likely has the most limited API, given that
we only required certain lemmas pertaining to its continuity, measurability,
convexity, and integrability.

5Lean interprets division by zero as zero, and x ^ 0 as 1 for every x, in particular for
x = 0. So x0 - 1

0 - 1 =  - (1 - 1) = 0 and x1 - 1
1 - 1 = x - 1

0 = 0 for every x.
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Another possible choice could have been to avoid defining the Hellinger
function entirely and instead incorporate the if-else statements in the definition
of the Hellinger divergence, setting it as the f-divergence with x \mapsto \rightarrow x\alpha  - 1

\alpha  - 1
for

\alpha \not = 0, 1. Nevertheless, this approach would likely have resulted in greater
code duplication. In general, dividing a complex definition into smaller
parts facilitates the work, and improves code readability and maintainability.
Furthermore, as the function has been given a name, it is now easier to locate
relevant lemmas and references pertaining to it in the proofs.

Remark 3.3.8. In the definition of the Rényi divergence we use as logarithm
the function ENNReal.log, which is defined as follows:

def ENNReal.log (x : R\geq 0\infty ) : EReal :=

if x = 0 then \bot 
else if x = \top then \top 
else Real.log x.toReal

where Real.log is the standard natural logarithm function in Mathlib.
This function and its API have been developed in part during the course
of this project, along with its inverse function, EReal.exp, and are currently
included into Mathlib. The main reason for using this function instead of
Real.log is due to the latter’s anomalous behavior at 0, in particular Real.

log 0 is defined6 as 0, which renders it not monotone on [0,+\infty ). Moreover,
ENNReal.log can take infinite values as arguments, which can happen in our
use case; attempting to handle these cases with Real.log would have involved
more if statements. Lastly, the codomain of ENNReal.log, EReal, is more
suitable for our purposes, since it is the same as the codomain of the Rényi
divergence, and allows us to avoid some unnecessary coercions.

6See the Mathlib documentation for more details about the motivation of such choice.

https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/SpecialFunctions/Log/ENNRealLog.lean#L37-L45
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/SpecialFunctions/Log/ENNRealLog.lean#L37-L45
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/SpecialFunctions/Log/Basic.lean#L35-L41
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/SpecialFunctions/Log/ERealExp.lean#L34-L39
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/SpecialFunctions/Log/Basic.lean#L35-L41
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/SpecialFunctions/Log/ENNRealLog.lean#L37-L45
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/SpecialFunctions/Log/Basic.lean#L35-L41
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/SpecialFunctions/Log/ENNRealLog.lean#L37-L45


Chapter 4

Hypothesis Testing

Hypothesis testing represent a special case of the estimation problem,
which can be defined as the task of estimating a particular feature of an
underlying phenomenon, based on observed outcomes and a set of potential
models for that phenomenon. In particular, one can devise a (possibly
stochastic) function, referred to as an estimator, that takes the observed data
as input and produces an estimate of the feature of interest. An interesting
question then arises as to the means of assessing the performance of the test
and the optimal performance that can be attained on a given testing problem.

For our purposes, we will focus on a specific type of estimation problem,
known as simple binary hypothesis testing. In this context, the space of
potential models is limited to two elements, each corresponding to a measure
from which the observed data is sampled. The objective is to determine which
of the two is the most probable source of the data.

In addition, we will define another information divergence, called statistical
divergence, which will play a crucial role in a proof of the DPI in Chapter 5.

Definition 4.0.1 (Estimation problem). Let \Theta ,\scrX ,\scrY ,\scrZ be measurable spaces,
P : \Theta \rightsquigarrow \scrX the data generating kernel from the parameter space to the sample
space and two measurable functions y : \Theta \rightarrow \scrY and \ell : \scrY \times \scrZ \rightarrow R+, called
respectively the objective function and loss function. Then we say that
(P, y, \ell ) is an estimation problem, and a Markov kernel \^y : \scrX \rightsquigarrow \scrZ is said to
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be estimator. Moreover, we say that the estimation problem is:

• a parametric problem if \Theta is low dimensional, a nonparametric problem
otherwise.

• a testing problem if \scrY = \scrZ is discrete and \ell only takes the values 0 and
1.

• binary if it is a testing problem and \scrY has exactly 2 elements.

• simple if it is a testing problem and y is a bijection.

In conclusion, in simple binary hypothesis testing we can assume \Theta = \scrY =

\scrZ = \{ 0, 1\} , y to be the identity and \ell (y0, y1) = 1\{ y0 \not =y1\} for y0, y1 \in \scrY .

Remark 4.0.2. In principle, to formalize statements about an estimation
problem, it is sufficient to introduce the objects that define the problem,
namely P , y and \ell . However, since they are frequently used in conjunction,
it is advisable to bundle them into a single object, so we can introduce them
all at once when needed, thereby reducing the length and complexity of the
statements. In Lean, this can be achieved using a structure, as illustrated in
the following example:

structure estimationProblem (\Theta \scrX \scrY \scrZ : Type*) [MeasurableSpace \Theta ]

[MeasurableSpace \scrX ] [MeasurableSpace \scrY ] [MeasurableSpace \scrZ ] :=

P : kernel \Theta \scrX 
y : \Theta \rightarrow \scrY 
y_meas : Measurable y

\ell : \scrY \times \scrZ \rightarrow R\geq 0\infty 
\ell _meas : Measurable \ell 

Notice how the structure includes not only the data of the problem, i.e.
P , y and \ell , but also the measurability properties.

This structure was initially used in the project, however, after working
with it for some time, it became evident that it made the formalization
very cumbersome every time we had to perform an operation (for example
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composition with some kernel \kappa ) on P , as the entire structure had to be
redefined with the new kernel, even though the rest of the structure remained
unchanged. For this reason, we decided to remove P from the structure:

structure estimationProblem (\Theta \scrY \scrZ : Type*) [MeasurableSpace \Theta ]

[MeasurableSpace \scrY ] [MeasurableSpace \scrZ ] :=

y : \Theta \rightarrow \scrY 
y_meas : Measurable y

\ell : \scrY \times \scrZ \rightarrow R\geq 0\infty 
\ell _meas : Measurable \ell 

Remark 4.0.3. For the case of simple binary hypothesis testing, we defined an
element of type estimationProblem, with the specific data that characterize
this particular problem, as explained above:

def simpleBinaryHypTest : estimationProblem Bool Bool Bool where

y := id

y_meas := measurable_id

\ell := fun (y, z) \mapsto \rightarrow if y = z then 0 else 1

\ell _meas := Measurable.of_discrete

Where Bool is the type of boolean values, containing the elements true

and false, which is used to represent the space \{ 0, 1\} . Notice how in the
fields corresponding to the measurability of the functions, we provide a proof
that such property holds true.

Before introducing the concept of risk, let us give an example of estimation
problem.

Example 4.0.4. Let n \in N, \Theta = \scrY = \scrZ = [0, 1], \scrX := \{ 0, 1\} n, y : \Theta \rightarrow \scrY 
the identity function, \ell (p, q) = 1\{ p \not =q\} for p, q \in [0, 1] and P : \Theta \rightsquigarrow \scrX a kernel
defined by P (p) = Ber(p)\otimes n, where Ber(p) is the Bernoulli distribution with
mean p.

We can see how this problem is a parametric simple testing problem;
however, it is not binary, as there are more than two potential measures for

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Testing/Risk.lean#L39-L51
https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Testing/Binary.lean#L38-L46
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the data (we could make it binary by fixing only two possible parameters p
and q).

This problem can be interpreted as follows: we are observing a phenomenon
that repeats periodically and can always have one of two outcomes (for example
the fact that an object produced by a machine is defective or not); we want
to estimate what is the probability of each outcome, having observed the
phenomenon occur n times.

A potential estimator is the empirical mean of the observed data:

\^y(x) =
1

n

n\sum 
i=1

xi.

Thus, if we observe the data x = (1, 0, 1, 1, 1), the estimator would produce
the output \^y(x) = 4

5
.

It follows from the Law of Large Numbers that, as the value of n increases,
the performance of the estimator \^y will improve, and in general the task
of accurately estimating the parameter p will become easier. Therefore, an
interesting question is to determine the smallest value of n such that the
estimator performs well enough, also known as the sample complexity of the
problem. Information theoretic tools and inequalities, such as the DPI, can
be employed to provide lower bounds for the sample complexity of a problem.

4.1 Risk

An important problem in estimation is to assess the performance of an
estimator, based on its capacity to accurately predict the value of the objective
function. One method for evaluating an estimator is to fix a parameter \theta \in \Theta 

and consider the average loss of the estimator when the data is generated
according to the distribution P (\theta ), which is referred to as the risk of the
estimator. But we may be interested in different kinds or risk. For instance,
instead of selecting a fixed parameter, we may want to fix a prior \pi \in \scrM (\Theta ),
which represents our beliefs about the distribution of the parameter before
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having observed the data, and consider the average risk over all possible
values of the parameter. In this section we introduce different types of risk.

Definition 4.1.1 (Risk). Let (P, y, \ell ) be an estimation problem, \^y an esti-
mator and \theta \in \Theta . The risk of \^y at \theta is defined as

rP\theta (\^y) = (\^y \circ P )(\theta ) [z \mapsto \rightarrow \ell (y(\theta ), z)] .

Definition 4.1.2 (Bayesian risk). Let (P, y, \ell ) be an estimation problem, \^y
an estimator and \pi \in \scrM (\Theta ). The Bayesian risk of \^y for the prior \pi is defined
as

RP
\pi (\^y) = \pi 

\bigl[ 
\theta \mapsto \rightarrow rP\theta (\^y)

\bigr] 
= (\pi \otimes (\^y \circ P )) [(\theta , z) \mapsto \rightarrow \ell (y(\theta ), z)] .

Remark 4.1.3. Through simple kernel calculations, it is possible to prove that
RP

\pi (\^y) is equal to the mean of the measure \ell \circ (y \| \^y) \circ (\pi \otimes P ).

Additionally, we present an alternative formula and a lower bound for the
Bayesian risk in terms of the Bayesian inverse of P . Proposition 4.1.10 will
show how this lower bound can in fact be achieved in certain cases.

Proposition 4.1.4. Let (P, y, \ell ) be an estimation problem, \^y an estimator
and \pi \in \scrM (\Theta ) such that the Bayesian inverse P \dagger 

\pi exists. Then:

i) RP
\pi (\^y) = ((P \dagger 

\pi \times \^y) \circ P \circ \pi ) [(\theta , z) \mapsto \rightarrow \ell (y(\theta ), z)] ,

ii) RP
\pi (\^y) = (P \circ \pi )

\bigl[ 
x \mapsto \rightarrow \^y(x)

\bigl[ 
z \mapsto \rightarrow P \dagger 

\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)]
\bigr] \bigr] 
,

iii) RP
\pi (\^y) \geq (P \circ \pi )

\bigl[ 
x \mapsto \rightarrow \mathrm{i}\mathrm{n}\mathrm{f}z\in \scrZ P \dagger 

\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)]
\bigr] 
.

Proof. (i) To prove the first equality, we recall the definition of the Bayesian
risk RP

\pi (\^y) = (\pi \otimes (\^y \circ P )) [(\theta , z) \mapsto \rightarrow \ell (y(\theta ), z)] , and then perform some kernel
operations using Proposition A.0.2:

(P \dagger 
\pi \times \^y) \circ P \circ \pi = (\mathrm{i}\mathrm{d} \| \^y) \circ (P \dagger 

\pi \times \mathrm{i}\mathrm{d}) \circ (P \circ \pi )
By Equation (2.2) = (\mathrm{i}\mathrm{d} \| \^y) \circ (\mathrm{i}\mathrm{d}\times P ) \circ \pi 
By Proposition A.0.2 = (\mathrm{i}\mathrm{d}\times (\^y \circ P )) \circ \pi 
By Remark 2.1.18 = \pi \otimes (\^y \circ P ).



56 4.1 Risk

(ii) We continue from the equality in (i):

RP
\pi (\^y) = ((P \dagger 

\pi \times \^y) \circ P \circ \pi ) [(\theta , z) \mapsto \rightarrow \ell (y(\theta ), z)]

= (P \circ \pi )
\bigl[ 
x \mapsto \rightarrow (P \dagger 

\pi (x)\times \^y(x)) [(\theta , z) \mapsto \rightarrow \ell (y(\theta ), z)]
\bigr] 

By Fubini’s theorem = (P \circ \pi )
\bigl[ 
x \mapsto \rightarrow \^y(x)

\bigl[ 
z \mapsto \rightarrow P \dagger 

\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)]
\bigr] \bigr] 
.

(iii) To prove the last inequality it is sufficient to use (ii) and the fact
that, since \^y is a Markov kernel, we have

\^y(x)
\bigl[ 
z \mapsto \rightarrow P \dagger 

\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)]
\bigr] 
\geq \mathrm{i}\mathrm{n}\mathrm{f}

z\in \scrZ 
P \dagger 
\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)] \^y(\scrX )

= \mathrm{i}\mathrm{n}\mathrm{f}
z\in \scrZ 

P \dagger 
\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)] .

#

Definition 4.1.5 (Bayes risk). Let (P, y, \ell ) be an estimation problem and
\pi \in \scrM (\Theta ). The Bayes risk of (P, y, \ell ) for the prior \pi is defined as

\scrR P
\pi = \mathrm{i}\mathrm{n}\mathrm{f}

\^y:\scrX \rightsquigarrow \scrZ 
RP

\pi (\^y),

where the infimum is taken over Markov kernels.
Moreover, an estimator \^y is said to be a Bayes estimator for the prior \pi 

if it achieves the infimum of the Bayesian risk, that is, if RP
\pi (\^y) = \scrR P

\pi .

There are alternative approaches to quantifying the risk of an estimation
problem that do not require the specification of a prior, such as the minimax
risk. However, these will not be considered in this project.

The following proposition shows us that the composition of a Markov
kernel with the data generating kernel cannot reduce the risk, i.e. it can only
make the estimation task harder. This can be regarded as a form of data
processing inequality, which will be discussed in detail in Chapter 5. Indeed,
one of the proofs of the data processing inequality for the f-divergences relies
on this result.

Proposition 4.1.6. Let (P, y, \ell ) be an estimation problem, \pi \in \scrM (\Theta ) and
\kappa : \scrX \rightsquigarrow \scrX \prime a Markov kernel. Then we have

\scrR P
\pi \leq \scrR \kappa \circ P

\pi .
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Proof. It is sufficient to observe that composing a kernel with P produces the
same Bayesian risk as composing the estimator with the same kernel:

R\kappa \circ P
\pi (\^y) = (\pi \otimes (\^y \circ \kappa \circ P )) [(\theta , z) \mapsto \rightarrow \ell (y(\theta ), z)] = RP

\pi (\^y \circ \kappa ).

Then, we can conclude using the fact that an infimum is greater when taken
over a smaller set; in this case the sets are the set of all Markov kernels
\scrX \rightsquigarrow \scrZ and the set of all Markov kernels of the form \^y\prime \circ \kappa : \scrX \rightsquigarrow \scrZ with
\^y\prime : \scrX \prime \rightsquigarrow \scrZ :

\scrR P
\pi = \mathrm{i}\mathrm{n}\mathrm{f}

\^y:\scrX \rightsquigarrow \scrZ 
RP

\pi (\^y) \leq \mathrm{i}\mathrm{n}\mathrm{f}
\^y\prime :\scrX \prime \rightsquigarrow \scrZ 

RP
\pi (\^y

\prime \circ \kappa ) = \mathrm{i}\mathrm{n}\mathrm{f}
\^y\prime :\scrX \prime \rightsquigarrow \scrZ 

R\kappa \circ P
\pi (\^y\prime ) = \scrR \kappa \circ P

\pi .

#

Definition 4.1.7 (Generalized Bayes estimator). Let (P, y, \ell ) be an estimation
problem, \pi \in \scrM (\Theta ) and f : \scrX \rightarrow \scrZ a measurable function. We say that f
is a generalized Bayes estimator for (P, y, \ell ) with respect to the prior \pi if
it is of the form x \mapsto \rightarrow \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}z P

\dagger 
\pi (x)[\theta \mapsto \rightarrow \ell (y(\theta ), z)] for almost every x with

respect to P \circ \pi .

Remark 4.1.8. Note that the generalized Bayes estimator is a deterministic
kernel. This highlights the fact that, even though we allow the estimator
to include some randomness, the optimal performance can be attained by a
deterministic function, at least in the case where a generalized Bayes estimator
exists.

Remark 4.1.9. Just like the estimation problem, the generalized Bayes esti-
mator can be defined using a structure in Lean, as it carries more than one
piece of information: the measurability of the function and the fact that it
minimizes some quantity.

structure IsGenBayesEstimator [StandardBorelSpace \Theta ] [Nonempty \Theta ]

(E : estimationProblem \Theta \scrY \scrZ ) (P : Kernel \Theta \scrX ) [IsFiniteKernel P]

(f : \scrX \rightarrow \scrZ ) (\pi : Measure \Theta ) [IsFiniteMeasure \pi ] : Prop where

measurable : Measurable f

property : \forall m x \partial (P \circ m \pi ),
\int  - \theta , E.\ell (E.y \theta , f x) \partial (P\dagger \pi ) x

= \sqcap z,
\int  - \theta , E.\ell (E.y \theta , z) \partial (P\dagger \pi ) x

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Testing/Risk.lean#L223-L231
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We also defined a class for the property of an estimation problem to admit
a generalized Bayes estimator:

class HasGenBayesEstimator [StandardBorelSpace \Theta ] [Nonempty \Theta ]

(E : estimationProblem \Theta \scrY \scrZ ) (P : Kernel \Theta \scrX ) [IsFiniteKernel P]

(\pi : Measure \Theta ) [IsFiniteMeasure \pi ] where

estimator : \scrX \rightarrow \scrZ 
property : IsGenBayesEstimator E P estimator \pi 

We could have avoided the definition this class by simply introducing the
generalized Bayes estimator whenever we need it, with hypotheses of the
form (f : \scrX \rightarrow \scrZ ) (hf : IsGenBayesEstimator E P f \pi ). Nevertheless, there are
certain results, such as Proposition 4.1.10, that require the existence of a
generalized Bayes estimator but do not make use of it in the statement. In
such instances, it is preferable to have the property of admitting a generalized
Bayes estimator, thus obviating the need to introduce a function that will not
be used. Moreover, using a class rather than a structure allows us to use it as
an argument inside the square brackets, enabling Lean to infer it automatically
through the typeclass inference system whenever an instance of the property
is already available. This is the case, for example, of the simple binary
hypothesis testing problem, as outlined in the proof of Proposition 4.2.3.

The next result shows that if a generalized Bayes estimator exists, then it
is a Bayes estimator, and it achieves the lower bound for the Bayesian risk
given in Proposition 4.1.4.

Proposition 4.1.10. Let (P, y, \ell ) be an estimation problem, \pi \in \scrM (\Theta ) and
\^yB a generalized Bayes estimator for (P, y, \ell ) with respect to \pi . Then we have

RP
\pi (\^yB) = (P \circ \pi )

\biggl[ 
x \mapsto \rightarrow \mathrm{i}\mathrm{n}\mathrm{f}

z\in \scrZ 
P \dagger 
\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)]

\biggr] 
.

In particular, \^yB is a Bayes estimator and

\scrR P
\pi = RP

\pi (\^yB) = (P \circ \pi )
\biggl[ 
x \mapsto \rightarrow \mathrm{i}\mathrm{n}\mathrm{f}

z\in \scrZ 
P \dagger 
\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)]

\biggr] 
.

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Testing/Risk.lean#L257-L263
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Proof. Let us start by using Proposition 4.1.4:

RP
\pi (\^yB) = (P \circ \pi )

\bigl[ 
x \mapsto \rightarrow \^yB(x)

\bigl[ 
z \mapsto \rightarrow P \dagger 

\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)]
\bigr] \bigr] 

\^yB(x) is deterministic = (P \circ \pi )
\bigl[ 
x \mapsto \rightarrow \delta \^yB(x)

\bigl[ 
z \mapsto \rightarrow P \dagger 

\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)]
\bigr] \bigr] 

= (P \circ \pi )
\bigl[ 
x \mapsto \rightarrow P \dagger 

\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), \^yB(x))]
\bigr] 

By definition of \^yB = (P \circ \pi )
\Bigl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{i}\mathrm{n}

z
P \dagger 
\pi (x)[\theta \mapsto \rightarrow \ell (y(\theta ), z)]

\Bigr] 
.

So \^yB achieves the lower bound from Proposition 4.1.4, therefore it is a Bayes
estimator and the Bayes risk is equal to its Bayesian risk. #

4.2 Binary risk and statistical information

In the context of simple binary hypothesis testing, the data generating
kernel is of the form P : \{ 0, 1\} \rightsquigarrow \scrX , so we can view it as a pair of measures
\mu := P (0) and \nu := P (1) and will sometimes write P = (\mu , \nu ). Moreover,
a prior \pi \in \scrM (\{ 0, 1\} ) can be viewed as a pair of numbers in [0,+\infty ],
representing the mass that \pi assigns to 0 and 1 respectively; we will write,
with a slight abuse of notation, \pi = (\pi (0), \pi (1)). This framework allows us
to define certain quantities that can be used to compare the two measures.

First of all, let us see how the definitions given in the previous section can
be simplified in the case of simple binary hypothesis testing.

Proposition 4.2.1. Let (P, y, \ell ) be a simple binary hypothesis testing problem,
\^y : \scrX \rightsquigarrow \{ 0, 1\} an estimator and \pi = (\pi 0, \pi 1) \in \scrM (\{ 0, 1\} ). Then:

i) P \circ \pi = \pi 0\mu + \pi 1\nu ,

ii) rP0 (\^y) = (\^y \circ \mu )(\{ 1\} ),

iii) rP1 (\^y) = (\^y \circ \nu )(\{ 0\} ),

iv) RP
\pi (\^y) = \pi 0(\^y \circ \mu )(\{ 1\} ) + \pi 1(\^y \circ \nu )(\{ 0\} ).

Proof. Simple computations. #
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To perform a similar calculation for the Bayes risk, it is first helpful to
compute the Bayesian inverse of P .

Lemma 4.2.2. Let P : \{ 0, 1\} \rightsquigarrow \scrX be a kernel, \mu := P (0), \nu := P (1) and
\pi = (\pi 0, \pi 1) \in \scrM (\{ 0, 1\} ). Then the Bayesian inverse of P with respect to \pi 

is given by

P \dagger 
\pi (x) =

\biggl( 
\pi 0

d\mu 

dP \circ \pi (x), \pi 1
d\nu 

dP \circ \pi (x)
\biggr) 

for almost every x \in \scrX with respect to P \circ \pi .

Proof. Let us denote with \eta : \scrX \rightsquigarrow \{ 0, 1\} the kernel on the right-hand side of
the equation. Since the Bayesian inverse is unique up to a set of measure zero,
it is enough to show that \eta satisfies the defining property of the Bayesian
inverse:

(P \circ \pi )\otimes \eta 
?
= (\pi \otimes P )\updownarrow .

This is an equality between measures over \scrX \times \{ 0, 1\} , therefore it is sufficient
to prove it on sets of the form A\times \{ 0\} and A\times \{ 1\} for A \subseteq \scrX measurable.

(\pi \otimes P )\updownarrow (A\times \{ 0\} ) = \pi \otimes P (\{ 0\} \times A)

By definition of \otimes , 2.1.10 =

\int 
\{ 0\} 

P (\theta , A)\pi (d\theta )

= \pi (\{ 0\} )P (0, A)

= \pi 0\mu (A).

On the other hand, using the definition of the composition product once
more, we have

(P \circ \pi )\otimes \eta (A\times \{ 0\} ) =

\int 
A

\eta (x, \{ 0\} )(P \circ \pi )(dx)

By definition of \eta =

\int 
A

\pi 0
d\mu 

dP \circ \pi (x)(P \circ \pi )(dx)

By Proposition B.0.1 =

\int 
A

\pi 0\mu (dx)

= \pi 0\mu (A) = (\pi \otimes P )\updownarrow (A\times \{ 0\} ),
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where Proposition B.0.1 can be used since \mu \ll P \circ \pi = \pi 0\mu + \pi 1\nu if \pi 0 \not = 0;
in the case where \pi 0 = 0 the equality holds trivially.

Similar computations show that the equality also holds for A\times \{ 1\} . #

Proposition 4.2.3. Let (P, y, \ell ) be a simple binary hypothesis testing problem
and \pi = (\pi 0, \pi 1) \in \scrM (\{ 0, 1\} ). Then the Bayes risk of the problem for the
prior \pi is given by

\scrR P
\pi = (P \circ \pi )

\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{i}\mathrm{n}

\biggl\{ 
\pi 0

d\mu 

dP \circ \pi (x), \pi 1
d\nu 

dP \circ \pi (x)
\biggr\} \biggr] 

.

Proof. First, we demonstrate that the simple binary hypothesis testing prob-
lem admits a generalized Bayes estimator. Let us consider as a candidate the

function \^yB := 1E, with E :=

\biggl\{ 
x \in \scrX | \pi 0

d\mu 

dP \circ \pi (x) \leq \pi 1
d\nu 

dP \circ \pi (x)
\biggr\} 
. We

have that \^yB is measurable, since E is a measurable set, so we only need to
show that for every z \in \{ 0, 1\} the following holds:

P \dagger 
\pi (x)[\theta \mapsto \rightarrow \ell (y(\theta ), \^yB(x))]

?

\leq P \dagger 
\pi (x)[\theta \mapsto \rightarrow \ell (y(\theta ), z)].

By the definitions of y and \ell , and Lemma 4.2.2 we have

P \dagger 
\pi (x)[\theta \mapsto \rightarrow \ell (y(\theta ), z)] = \pi 0

d\mu 

dP \circ \pi (x)\ell (y(0), z) + \pi 1
d\nu 

dP \circ \pi (x)\ell (y(1), z)

= \pi 0
d\mu 

dP \circ \pi (x)1\{ 0\not =z\} + \pi 1
d\nu 

dP \circ \pi (x)1\{ 1\not =z\} 

= \pi 0
d\mu 

dP \circ \pi (x)1\{ z=1\} + \pi 1
d\nu 

dP \circ \pi (x)1\{ z=0\} .

Hence if \^yB(x) = 0 it follows that \pi 0
d\mu 

dP \circ \pi (x) \geq \pi 1
d\nu 

dP \circ \pi (x) and

P \dagger 
\pi (x)[\theta \mapsto \rightarrow \ell (y(\theta ), \^yB(x))] = \pi 0

d\mu 

dP \circ \pi (x)1\{ \^yB(x)=1\} + \pi 1
d\nu 

dP \circ \pi (x)1\{ \^yB(x)=0\} 

= \pi 1
d\nu 

dP \circ \pi (x)

\leq \pi 0
d\mu 

dP \circ \pi (x)1\{ 0\not =z\} + \pi 1
d\nu 

dP \circ \pi (x)1\{ 1\not =z\} .

On the other hand, if \^yB(x) = 1 we have \pi 0
d\mu 

dP \circ \pi (x) \leq \pi 1
d\nu 

dP \circ \pi (x) and

P \dagger 
\pi (x)[\theta \mapsto \rightarrow \ell (y(\theta ), \^yB(x))] = \pi 0

d\mu 

dP \circ \pi (x)1\{ \^yB(x)=1\} + \pi 1
d\nu 

dP \circ \pi (x)1\{ \^yB(x)=0\} 
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= \pi 0
d\mu 

dP \circ \pi (x)

\leq \pi 0
d\mu 

dP \circ \pi (x)1\{ 0\not =z\} + \pi 1
d\nu 

dP \circ \pi (x)1\{ 1 \not =z\} .

In both cases it is straightforward to check that the last inequality holds
whether z = 0 or z = 1.

Therefore, \^yB is a generalized Bayes estimator, and we can conclude the
proof by applying Proposition 4.1.10 as follows:

\scrR P
\pi = (P \circ \pi )

\biggl[ 
x \mapsto \rightarrow \mathrm{i}\mathrm{n}\mathrm{f}

z\in \{ 0,1\} 
P \dagger 
\pi (x) [\theta \mapsto \rightarrow \ell (y(\theta ), z)]

\biggr] 
As above = (P \circ \pi )

\biggl[ 
x \mapsto \rightarrow \mathrm{i}\mathrm{n}\mathrm{f}

z\in \{ 0,1\} 

\biggl( 
\pi 0

d\mu 

dP \circ \pi (x)1\{ z=1\} + \pi 1
d\nu 

dP \circ \pi (x)1\{ z=0\} 

\biggr) \biggr] 
= (P \circ \pi )

\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{i}\mathrm{n}

\biggl\{ 
\pi 0

d\mu 

dP \circ \pi (x), \pi 1
d\nu 

dP \circ \pi (x)
\biggr\} \biggr] 

.

#

Remark 4.2.4. Lemma 4.2.2 is, in fact, just a special case of a more general
result, stating that for almost every x and \theta we have

dP \dagger 
\pi (x)

d\pi 
(\theta ) =

dP (\theta )

d(P \circ \pi )(x).

Moreover, Proposition 4.2.3 can be extended to more general cases of estima-
tion problems, where the only requirement is for the parameter space to be
equal to \{ 0, 1\} .

Definition 4.2.5 (Bayes binary risk). Let \mu , \nu \in \scrM (\scrX ) and \pi \in \scrM (\{ 0, 1\} ).
The Bayes binary risk of \mu and \nu with respect to the prior \pi , denoted as
\scrB \pi (\mu , \nu ), is defined as the Bayes risk of the simple binary hypothesis testing
problem with data generating kernel P = (\mu , \nu ) and prior \pi .

Remark 4.2.6. Two expressions for the Bayes binary risk can be readily
derived, one using the definition of the Bayes risk and Proposition 4.2.1:

\scrB \pi (\mu , \nu ) = \mathrm{i}\mathrm{n}\mathrm{f}
\^y:\scrX \rightsquigarrow \{ 0,1\} 

\pi 0(\^y \circ \mu )(\{ 1\} ) + \pi 1(\^y \circ \nu )(\{ 0\} ),
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and the other using Proposition 4.2.3:

\scrB \pi (\mu , \nu ) = (P \circ \pi )
\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{i}\mathrm{n}

\biggl\{ 
\pi 0

d\mu 

dP \circ \pi (x), \pi 1
d\nu 

dP \circ \pi (x)
\biggr\} \biggr] 

. (4.1)

The binary risk inherits a kind of data processing inequality from the
Bayes risk, as shown in the following proposition.

Proposition 4.2.7. Let \mu , \nu \in \scrM (\scrX ), \pi \in \scrM (\{ 0, 1\} ) and \kappa : \scrX \rightsquigarrow \scrY a
Markov kernel. Then

\scrB \pi (\mu , \nu ) \leq \scrB \pi (\kappa \circ \mu , \kappa \circ \nu ).

Proof. This is an immediate application of Proposition 4.1.6, after noticing
that \kappa \circ P = (\kappa \circ \mu , \kappa \circ \nu ). #

We can now define a new information divergence, the statistical informa-
tion, which will prove to be crucial in the following chapter.

Definition 4.2.8 (Statistical information). Let \mu , \nu \in \scrM (\scrX ) and \pi \in 
\scrM (\{ 0, 1\} ). We define the statistical information between \mu and \nu with
respect to the prior \pi as

\scrI \pi (\mu , \nu ) = \mathrm{m}\mathrm{i}\mathrm{n}\{ \pi 0\mu (\scrX ), \pi 1\nu (\scrX )\}  - \scrB \pi (\mu , \nu ).

Remark 4.2.9. Consider an estimator \^y for the simple binary hypothesis
testing problem that is not allowed to look at the data. In other words, \^y
is a constant kernel, that is, a measure. We can use Proposition 4.2.1 and
Proposition A.0.3 to compute the Bayesian risk of \^y:

RP
\pi (\^y) = \pi 0(\^y \circ \mu )(\{ 1\} ) + \pi 1(\^y \circ \nu )(\{ 0\} ) = \pi 0\mu (\scrX )\^y(\{ 1\} ) + \pi 1\nu (\scrX )\^y(\{ 0\} ).

Since \^y is a Markov kernel, the quantity on the right is a convex combina-
tion of \pi 0\mu (\scrX ) and \pi 1\nu (\scrX ), so the infimum over all possible \^y is achieved
by taking \^y as a constant function1, so that the convex combination col-
lapses over the smallest of the two values. In other words, the minimum is
\mathrm{m}\mathrm{i}\mathrm{n}\{ \pi 0\mu (\scrX ), \pi 1\nu (\scrX )\} .

1Such an estimator always bets on the outcome that is more likely according to the
prior. We will refer to this estimator as "blind," as it is unable to examine the data.
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In light of this, the statistical information can be interpreted as represent-
ing the difference between the risk of the best possible estimator and the risk
of the best possible blind estimator. It is reasonable to consider this quantity
a divergence, as when the two measures are similar, observing the data does
not significantly enhance the estimator’s performance. Conversely, when the
measures are very different, employing a blind estimator can markedly impact
outcomes.

Remark 4.2.10. Considering an estimation problem and then optimizing over
the blind estimators is equivalent to considering the same estimation problem
with the data erased and then optimizing over all possible estimators. The
appropriate tool to erase some data in the context of information theory is
the discard kernel, which we will denote here by d\scrX . Using the discard kernel
we can write

\mathrm{m}\mathrm{i}\mathrm{n}\{ \pi 0\mu (\scrX ), \pi 1\nu (\scrX )\} = \scrB \pi (d\scrX \circ \mu , d\scrX \circ \nu ).

Thus, we can see the statistical information as a difference of two Bayes risks

\scrI \pi (\mu , \nu ) = \scrB \pi (d\scrX \circ \mu , d\scrX \circ \nu ) - \scrB \pi (\mu , \nu ). (4.2)

In the Lean code, Equation (4.2) is used as a definition for the statistical
information:

def statInfo (\mu \nu : Measure \scrX ) (\pi : Measure Bool) : R\geq 0\infty :=

bayesBinaryRisk (Kernel.discard \scrX \circ m \mu ) (Kernel.discard \scrX \circ m \nu ) \pi 

− bayesBinaryRisk \mu \nu \pi 

Furthermore, Equation (4.2) allows us to easily prove the non-negativity
of the statistical information, leveraging the data processing inequality for
the Bayes risk.

Proposition 4.2.11. Let \mu , \nu \in \scrM (\scrX ) and \pi \in \scrM (\{ 0, 1\} ). Then

\scrI \pi (\mu , \nu ) \geq 0.

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Divergences/StatInfo.lean#L35-L39
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Proof. The discard kernel is a Markov kernel (see Remark 2.1.8), so we can
apply Proposition 4.2.7 to get

\scrB \pi (\mu , \nu ) \leq \scrB \pi (d\scrX \circ \mu , d\scrX \circ \nu ).

Then we can use Equation (4.2) to conclude the proof. #

The data processing inequality for the Bayes risk can also be extended to
the statistical information, as shown in the following proposition.

Proposition 4.2.12 (DPI for the statistical information). Let \mu , \nu \in \scrM (\scrX ),
\pi \in \scrM (\{ 0, 1\} ) and \kappa : \scrX \rightsquigarrow \scrY a Markov kernel. Then

\scrI \pi (\kappa \circ \mu , \kappa \circ \nu ) \leq \scrI \pi (\mu , \nu ).

Proof. By Proposition 2.1.19, the composition with a Markov kernel does not
modify the total mass of a measure, so we have

\scrI \pi (\kappa \circ \mu , \kappa \circ \nu ) = \mathrm{m}\mathrm{i}\mathrm{n}\{ \pi 0(\kappa \circ \mu )(\scrY ), \pi 1(\kappa \circ \nu )(\scrY )\}  - \scrB \pi (\kappa \circ \mu , \kappa \circ \nu )
By Proposition 2.1.19 = \mathrm{m}\mathrm{i}\mathrm{n}\{ \pi 0\mu (\scrX ), \pi 1\nu (\scrX )\}  - \scrB \pi (\kappa \circ \mu , \kappa \circ \nu )
By Proposition 4.2.7 \leq \mathrm{m}\mathrm{i}\mathrm{n}\{ \pi 0\mu (\scrX ), \pi 1\nu (\scrX )\}  - \scrB \pi (\mu , \nu )

= \scrI \pi (\mu , \nu ).

#

Lastly, we will examine some alternative expressions for the statistical
information that will prove useful in the following chapter to relate it to a
particular f-divergence.

Proposition 4.2.13. Let \mu , \nu \in \scrM (\scrX ) be finite measures such that \mu \ll \nu ,
\pi \in \scrM (\{ 0, 1\} ) and \kappa : \scrX \rightsquigarrow \scrY a Markov kernel. Then we have:

i) \scrI \pi (\mu , \nu ) =

\left\{       
\nu 

\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{a}\mathrm{x}\{ 0, \pi 0

d\mu 

d\nu 
(x) - \pi 1\} 

\biggr] 
if \pi 0\mu (\scrX ) \leq \pi 1\nu (\scrX ),

\nu 

\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{a}\mathrm{x}\{ 0, \pi 1  - \pi 0

d\mu 

d\nu 
(x)\} 

\biggr] 
if \pi 0\mu (\scrX ) \geq \pi 1\nu (\scrX ),
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ii) \scrI \pi (\mu , \nu ) =  - 1

2
| \pi 0\mu (\scrX ) - \pi 1\nu (\scrX )| + 1

2
\nu 

\biggl[ 
x \mapsto \rightarrow 

\bigm| \bigm| \bigm| \bigm| \pi 0
d\mu 

d\nu 
(x) - \pi 1

\bigm| \bigm| \bigm| \bigm| \biggr] .
Proof. First, let us observe that, since \mu \ll \nu , we have that \mu , \nu \ll P \circ \pi =

\pi 0\mu + \pi 1\nu . We now consider the case where \pi 0\mu (\scrX ) \leq \pi 1\nu (\scrX ).
(i) We begin with the definition of the statistical information and use

the properties of the max and min, along with those of the Radon-Nikodym
derivative, to obtain the following:

\scrI \pi (\mu , \nu ) = \mathrm{m}\mathrm{i}\mathrm{n}\{ \pi 0\mu (\scrX ), \pi 1\nu (\scrX )\}  - \scrB \pi (\mu , \nu )

By Equation (4.1) = \pi 0\mu (\scrX ) - (P \circ \pi )
\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{i}\mathrm{n}

\biggl\{ 
\pi 0

d\mu 

dP \circ \pi (x), \pi 1
d\nu 

dP \circ \pi (x)
\biggr\} \biggr] 

\mathrm{m}\mathrm{i}\mathrm{n}\{ a, b\} = a+\mathrm{m}\mathrm{i}\mathrm{n}\{ 0, b - a\} = \pi 0\mu (\scrX ) - (P \circ \pi )
\biggl[ 
x \mapsto \rightarrow \pi 0

d\mu 

dP \circ \pi (x)
\biggr] 

 - (P \circ \pi )
\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{i}\mathrm{n}

\biggl\{ 
0, \pi 1

d\nu 

dP \circ \pi (x) - \pi 0
d\mu 

dP \circ \pi (x)
\biggr\} \biggr] 

By Proposition B.0.1 = \pi 0\mu (\scrX ) - \pi 0\mu (\scrX )

 - (P \circ \pi )
\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{i}\mathrm{n}

\biggl\{ 
0, \pi 1

d\nu 

dP \circ \pi (x) - \pi 0
d\mu 

dP \circ \pi (x)
\biggr\} \biggr] 

 - \mathrm{m}\mathrm{i}\mathrm{n}\{ a, b\} = \mathrm{m}\mathrm{a}\mathrm{x}\{  - a, - b\} = (P \circ \pi )
\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
0, \pi 0

d\mu 

dP \circ \pi (x) - \pi 1
d\nu 

dP \circ \pi (x)
\biggr\} \biggr] 

By Proposition B.0.1 = (P \circ \pi )
\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
0, \pi 0

d\mu 

d\nu 
(x)

d\nu 

dP \circ \pi (x) - \pi 1
d\nu 

dP \circ \pi (x)
\biggr\} \biggr] 

By Proposition B.0.1 = \nu 

\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
0, \pi 0

d\mu 

d\nu 
(x) - \pi 1

\biggr\} \biggr] 
.

(ii) We proceed with the calculations from the previous case, employing
the fact that the max can be expressed using the absolute value in the
following way: \mathrm{m}\mathrm{a}\mathrm{x}\{ a, b\} = 1

2
(a+ b+ | a - b| ).

\scrI \pi (\mu , \nu ) = \nu 

\biggl[ 
x \mapsto \rightarrow \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
0, \pi 0

d\mu 

d\nu 
(x) - \pi 1

\biggr\} \biggr] 
By the formula for the max =

1

2
\nu 

\biggl[ 
x \mapsto \rightarrow \pi 0

d\mu 

d\nu 
(x) - \pi 1 +

\bigm| \bigm| \bigm| \bigm| \pi 0
d\mu 

d\nu 
(x) - \pi 1

\bigm| \bigm| \bigm| \bigm| \biggr] 
By Proposition B.0.1 =

1

2

\biggl( 
\pi 0\mu (\scrX ) - \pi 1\nu (\scrX ) + \nu 

\biggl[ 
x \mapsto \rightarrow 

\bigm| \bigm| \bigm| \bigm| \pi 0
d\mu 

d\nu 
(x) - \pi 1

\bigm| \bigm| \bigm| \bigm| \biggr] \biggr) 
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Since \pi 0\mu (\scrX ) \leq \pi 1\nu (\scrX ) =  - 1

2
| \pi 0\mu (\scrX ) - \pi 1\nu (\scrX )| + 1

2
\nu 

\biggl[ 
x \mapsto \rightarrow 

\bigm| \bigm| \bigm| \bigm| \pi 0
d\mu 

d\nu 
(x) - \pi 1

\bigm| \bigm| \bigm| \bigm| \biggr] .
In the case where \pi 0\mu (\scrX ) \geq \pi 1\nu (\scrX ) both equations can be derived with

similar computations. #





Chapter 5

Data Processing Inequality

The Data Processing Inequality (DPI) is a fundamental result in the field
of information theory. It summarizes a pivotal idea about information: it
is not possible to generate new information by processing existing data. In
other words, raw data contain the most information, and the act of processing
it can only reduce the amount of information. In particular, the version of
the DPI that we are going to consider is a statement about f-divergences and
says that the f-divergence between two measures cannot increase when both
measures are composed with the same Markov kernel, in formulas:

Df (\kappa \circ \mu , \kappa \circ \nu ) \leq Df (\mu , \nu ).

If we interpret the measures as sources of data, then we can see the Markov
kernel as a channel that processes the data and the DPI tells us that this
channel cannot make it easier for us to distinguish between the two sources.
For further reading, see [PW24].

This chapter presents three different proofs of the DPI, resulting in three
versions of the inequality with slightly differing hypotheses. The initial
version is the most classical one, it applies only to deterministic kernels, that
is, measurable functions, and it does not require any assumptions regarding
the spaces. The second proof generalizes the result to Markov kernels; however,
it relies on some manipulations of the Radon-Nikodym derivative that require
relatively strong assumptions on the measurable spaces, in particular we
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need them to be standard Borel spaces. The final proof takes a different
approach, inspired by [LV06; Lie12]. It is based on a representation of the
f-divergences as the integral of the f-divergence of a particular parametric
function; the f-divergence of this function can in turn be seen as the statistical
information plus a term that only depends on the total masses of the measures.
By employing this representation, the DPI for general f-divergences can be
derived as a consequence of the DPI for the statistical information, which
is a very natural result implied by the definition of the Bayesian risk. The
third proof is the most general, as it applies to any Markov kernel and does
not require any assumptions regarding the spaces. It is surprising that an
apparently unrelated concept, such as the hypothesis testing framework, which
gives rise to a very specific divergence, can be used to prove such a general
result about f-divergences.

We begin with a remark that will be used to simplify some of the subsequent
proofs of the DPI.

Remark 5.0.1. In order to prove the DPI for finite measures and a fixed
Markov kernel \kappa : \scrX \rightsquigarrow \scrY , it is sufficient to prove it for the case where the
first measure is absolutely continuous with respect to the second.

Proof. Let \mu , \nu \in \scrM (\scrX ) be finite measures and let us assume that for
every pair of finite measures \mu \prime , \nu \prime \in \scrM (\scrX ) such that \mu \prime \ll \nu \prime we have
Df (\kappa \circ \mu \prime , \kappa \circ \nu \prime ) \leq Df (\mu 

\prime , \nu \prime ).
We can use the Lebesgue decomposition (see Theorem 2.2.3) to write

\mu =
d\mu 

d\nu 
\cdot \nu + \mu \bot \nu , and hence \kappa \circ \mu = \kappa \circ 

\biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 
+ \kappa \circ \mu \bot \nu .

Therefore, we have

Df (\kappa \circ \mu , \kappa \circ \nu ) = Df

\biggl( 
\kappa \circ 
\biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 
+ \kappa \circ \mu \bot \nu , \kappa \circ \nu 

\biggr) 
By Proposition E.0.2 \leq Df

\biggl( 
\kappa \circ 
\biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 
, \kappa \circ \nu 

\biggr) 
+ (\kappa \circ \mu \bot \nu )(\scrY )f \prime (\infty )

Since \kappa \circ 
\biggl( 
d\mu 

d\nu 
\cdot \nu 

\biggr) 
\ll \kappa \circ \nu \leq Df

\biggl( \biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 
, \nu 

\biggr) 
+ (\kappa \circ \mu \bot \nu )(\scrY )f \prime (\infty )

By Proposition 2.1.19 = Df

\biggl( \biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 
, \nu 

\biggr) 
+ \mu \bot \nu (\scrX )f \prime (\infty )



5. Data Processing Inequality 71

By Proposition E.0.2 = Df (\mu , \nu ).

#

5.1 DPI for measurable functions

In order to demonstrate the DPI for measurable functions, we will go
through a proof of the DPI for the restriction to sub \sigma -algebras, which can
be regarded as a consequence of Jensen’s inequality for the conditional expec-
tation. Then we will show that the f-divergence of two measures composed
with the same function is equal to the f-divergence of the restrictions of the
measures to an appropriate sub \sigma -algebra.

First, let us establish some results regarding the Radon-Nikodym derivative
of restricted measures.

Lemma 5.1.1. Let \scrX ,\scrY be measurable spaces, \mu , \nu \in \scrM (\scrX ) such that \mu \ll \nu ,
\scrA \subseteq F\scrX a sub-\sigma -algebra and f : \scrX \rightarrow \scrY a measurable function. Then:

i)
d\mu | \scrA 

d\nu | \scrA 
= \nu 

\bigl[ 
d\mu 
d\nu 

| \scrA 
\bigr] 
almost everywhere with respect to \nu ,

ii)
d(g \circ \mu )
d(g \circ \nu ) (g(x)) =

d\mu | g\ast \scrY 

d\nu | g\ast \scrY 
(x) for almost every x \in \scrX with respect to \nu | g\ast \scrY 

(therefore also with respect to \nu ),

where \nu [\cdot | \scrA ] is the conditional \nu -expectation with respect to \scrA and g\ast \scrY is
the comap of F\scrY under g (i.e. the \sigma -algebra generated by the sets of the form
g - 1(B) for B \in F\scrY )

Proof. First, it can be observed that, since \mu \ll \nu , we have \mu | \scrA \ll \nu | \scrA ,
\mu | g\ast \scrY \ll \nu | g\ast \scrY and g \circ \mu \ll g \circ \nu . Moreover, for every sub \sigma -algebra \scrG \subseteq F\scrY ,
every \scrG -measurable function f and every G \in \scrG the following equality holds:\int 

G

fd\nu | \scrG =

\int 
G

f\nu .
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(i) By the properties of the conditional expectation, it is enough to show
that for every A \in \scrA we have\int 

A

d\mu | \scrA 

d\nu | \scrA 
d\nu 

?
=

\int 
A

d\mu 

d\nu 
d\nu .

But we can easily see that this is indeed the case, since
d\mu | \scrA 

d\nu | \scrA 
is \scrA -measurable,

A \in \scrA and using Proposition B.0.1:\int 
A

d\mu | \scrA 

d\nu | \scrA 
d\nu =

\int 
A

d\mu | \scrA 

d\nu | \scrA 
d\nu | \scrA = \mu | \scrA (A) = \mu (A) =

\int 
A

d\mu 

d\nu 
d\nu .

(ii) It is enough to show that the integrals of the two functions over every
g\ast \scrY -measurable set coincide, but g\ast \scrY -measurable sets are of the form g - 1(B)

for some B \in F\scrY . Let B \in F\scrY , then by Proposition B.0.1 we have\int 
g - 1(B)

d\mu | g\ast \scrY 

d\nu | g\ast \scrY 
(x) \mathrm{d}(\nu | g\ast \scrY )(x) =

\int 
g - 1(B)

1 \mathrm{d}(\mu | g\ast \scrY )(x)

=

\int 
g - 1(B)

1 \mathrm{d}\mu (x)

=

\int 
B

1 \mathrm{d}(g \circ \mu )(y)

By Proposition B.0.1 =

\int 
B

d(g \circ \mu )
d(g \circ \nu ) (y) \mathrm{d}(g \circ \nu )(y)

=

\int 
g - 1(B)

d(g \circ \mu )
d(g \circ \nu ) (g(x)) \mathrm{d}\nu (x)

=

\int 
g - 1(B)

d(g \circ \mu )
d(g \circ \nu ) (g(x)) \mathrm{d}(\nu | g\ast \scrY )(x).

#

Theorem 5.1.2. Let (\scrX ,F\scrX ) be a measurable space, \mu , \nu \in \scrM (\scrX ) finite
measures, \scrA \subseteq F\scrX a sub-\sigma -algebra and f : R+ \rightarrow R a convex function. Then

Df (\mu | \scrA , \nu | \scrA ) \leq Df (\mu , \nu ).

Proof. Since
\bigl( 
d\mu 
d\nu 

\cdot \nu 
\bigr) 
| \scrA \ll \nu | \scrA and (\mu \bot \nu )| \scrA (\scrX ) = \mu \bot \nu (\scrX ), we can use the same

reasoning as in Remark 5.0.1 to assume without loss of generality that \mu \ll \nu ,
hence \mu | \scrA \ll \nu | \scrA .
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Thus, the proof becomes a computation using Jensen’s inequality:

Df (\mu | \scrA , \nu | \scrA ) =

\int 
\scrX 
f

\biggl( 
d\mu | \scrA 

d\nu | \scrA 

\biggr) 
\mathrm{d}\nu | \scrA 

=

\int 
\scrX 
f

\biggl( 
d\mu | \scrA 

d\nu | \scrA 

\biggr) 
\mathrm{d}\nu 

By Lemma 5.1.1 =

\int 
\scrX 
f

\biggl( 
\nu 

\biggl[ 
d\mu 

d\nu 
| \scrA 
\biggr] \biggr) 

\mathrm{d}\nu 

By Jensen’s inequality1 \leq 
\int 
\scrX 
\nu 

\biggl[ 
f

\biggl( 
d\mu 

d\nu 

\biggr) 
| \scrA 
\biggr] 
\mathrm{d}\nu 

Property of cond. exp. =

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu 

= Df (\mu , \nu ).

#

We are now ready to prove the first version of the DPI.

Theorem 5.1.3 (DPI, measurable functions). Let \scrX ,\scrY be measurable spaces,
\mu , \nu \in \scrM (\scrX ) finite measures, g : \scrX \rightarrow \scrY a measurable function and f : R+ \rightarrow 
R a convex function. Then

Df (g \circ \mu , g \circ \nu ) \leq Df (\mu , \nu ).

Proof. By Remark 5.0.1 we can assume without loss of generality that \mu \ll \nu ,
so \mu | g\ast \scrY \ll \nu | g\ast \scrY . Now we can conclude the proof using the DPI for the
restriction to sub \sigma -algebras:

Df (g \circ \mu , g \circ \nu ) =

\int 
\scrY 
f

\biggl( 
d(g \circ \mu )
d(g \circ \nu )

\biggr) 
(y) \mathrm{d}(g \circ \nu )(y)

=

\int 
\scrX 
f

\biggl( 
d(g \circ \mu )
d(g \circ \nu )

\biggr) 
(g(x)) \mathrm{d}\nu (x)

By Lemma 5.1.1 =

\int 
\scrX 
f

\biggl( 
d\mu | g\ast \scrY 

d\nu | g\ast \scrY 

\biggr) 
(x) \mathrm{d}\nu (x)

=

\int 
\scrX 
f

\biggl( 
d\mu | g\ast \scrY 

d\nu | g\ast \scrY 

\biggr) 
(x) \mathrm{d}\nu | g\ast \scrY (x)

1For a proof of the conditional Jensen’s inequality see [Hyt+16, Proposition 2.6.29].
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= Df (\mu | g\ast \scrY , \nu | g\ast \scrY )

By Theorem 5.1.2 \leq Df (\mu , \nu ).

#

Remark 5.1.4. Currently, in Lean, we have ProbabilityTheory.fDiv_trim_le,
which is a formalized version of the DPI for \sigma -algebras (Theorem 5.1.2), but
the proof still has a small gap, since Jensen’s inequality for the conditional
expectation is not yet in Mathlib. Moreover, we still lack a formalization of
the DPI for measurable functions (Theorem 5.1.3). However, this proof is
unlikely to be worked on in the near future, as a stronger version of the DPI
has already been developed (see following sections).

5.2 DPI for kernels in standard Borel spaces

In this section, we generalize the proof of the DPI to Markov kernels. The
proof will proceed by establishing another inequality for the f-divergence, that
features the composition product instead of the composition:

Df (\mu , \nu ) \leq Df (\mu \otimes \kappa , \nu \otimes \eta ).

Then we will use the equation defining the Bayesian inverse

((\kappa \circ \mu )\otimes \kappa \dagger 
\mu )\updownarrow = \mu \otimes \kappa 

to make the composition appear, and finally we will use the fact that if we
perform the composition product with the same kernel on both measures, the
f-divergence remains the same:

Df (\mu \otimes \kappa , \nu \otimes \kappa ) = Df (\mu , \nu ).

The limit of this proof is that it does not work for general measurable
spaces. In particular, we need the Bayesian inverse of the kernel with respect
to the measures to exist, which is not true in general. However, as previously
noted in Remark 2.1.22, it is sufficient that the first space is standard Borel.

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/FDiv/Trim.lean#L116-L126
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Moreover, in order to establish the first inequality, it is necessary to work with
the Radon-Nikodym derivative of the kernels, and for it to be well-behaved
the second space needs2 to be countably generated (or, alternatively, the first
space needs to be countable), as seen in Theorem 2.2.7 and Proposition B.0.2.

Proposition 5.2.1. Let \scrX ,\scrY be measurable spaces such that \scrX is countable
or \scrY is countably generated, let \mu , \nu \in \scrM (\scrX ) be finite measures, \kappa , \eta : \scrX \rightsquigarrow \scrY 
Markov kernels and f : R+ \rightarrow R a convex function. Then

Df (\mu , \nu ) \leq Df (\mu \otimes \kappa , \nu \otimes \eta ).

Proof. This is the definition of the f-divergence for the composition products:

Df (\mu \otimes \kappa , \nu \otimes \eta ) =

\int 
\scrX \times \scrY 

f

\biggl( 
d(\mu \otimes \kappa )

d(\nu \otimes \eta )

\biggr) 
\mathrm{d}(\nu \otimes \eta )+(\mu \otimes \kappa )\bot (\nu \otimes \eta )(\scrX \times \scrY )f \prime (\infty ).

We will handle the two terms separately.
Let us begin with the absolutely continuous part. First, notice that a

property holds for almost every (x, y) \in \scrX \times \scrY with respect to \nu \otimes \eta if
and only if for \nu -a.e. x the property holds for \eta (x)-a.e. y. Hence, using
Proposition B.0.2, we can establish that for almost every (x, y) with respect
to \nu \otimes \eta we have

d(\mu \otimes \kappa )

d(\nu \otimes \eta )
(x, y) =

d\mu 

d\nu 
(x)

d\kappa 

d\eta 
(x, y) =

d\mu 

d\nu 
(x)

d\kappa (x)

d\eta (x)
(y).

Therefore, we can write

\int 
\scrX \times \scrY 

f

\biggl( 
d(\mu \otimes \kappa )

d(\nu \otimes \eta )

\biggr) 
(\nu \otimes \eta ) =

\int 
\scrX \times \scrY 

f

\biggl( 
d\mu 

d\nu 
(x)

d\kappa (x)

d\eta (x)
(y)

\biggr) 
(\nu \otimes \eta )(dx, dy)

By Fubini’s theorem =

\int 
\scrX 

\int 
\scrY 
f

\biggl( 
d\mu 

d\nu 
(x)

d\kappa (x)

d\eta (x)
(y)

\biggr) 
\eta (x, dy) \mathrm{d}\nu (x)

By Jensen’s inequality3 \geq 
\int 
\scrX 
f

\biggl( \int 
\scrY 

d\mu 

d\nu 
(x)

d\kappa (x)

d\eta (x)
(y)\eta (x, dy)

\biggr) 
\mathrm{d}\nu (x)

2This is true at least for the proof that we currently have in Lean; however, it is possible
that this assumption can be removed with some additional work.

3We can use Jensen’s inequality here because f is convex and \eta is a Markov kernel, so
\eta (y) is a probability measure.
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=

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 
(x)

\biggl( 
d\kappa (x)

d\eta (x)
\cdot \eta 
\biggr) 
(x,\scrY )

\biggr) 
\mathrm{d}\nu (x). (5.1)

Regarding the singular part, we can use Proposition B.0.2 and Proposi-
tion 2.1.19 to write

(\mu \otimes \kappa )\bot (\nu \otimes \eta )(\scrX \times \scrY ) = (\mu \bot \nu \otimes \kappa )(\scrX \times \scrY ) +

\biggl( \biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 
\otimes \kappa \bot \eta 

\biggr) 
(\scrX \times \scrY )

= \mu \bot \nu (\scrX ) +

\int 
\scrX 
\kappa \bot \eta (x,\scrY ) \mathrm{d}

\biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 
(x)

= \mu \bot \nu (\scrX ) +

\int 
\scrX 

d\mu 

d\nu 
(x)\kappa \bot \eta (x,\scrY ) \mathrm{d}\nu (x). (5.2)

Moreover, since \kappa is a Markov kernel, we have, using the Lebesgue decom-
position (Theorem 2.2.7), that

d\mu 

d\nu 
(x) =

d\mu 

d\nu 
(x)\kappa (x,\scrY ) =

d\mu 

d\nu 
(x)

\biggl( 
d\kappa (x)

d\eta (x)
\cdot \eta 
\biggr) 
(x,\scrY ) +

d\mu 

d\nu 
(x)\kappa \bot \eta (x,\scrY ),

so we can use Lemma D.0.3 to obtain

f

\biggl( 
d\mu 

d\nu 
(x)

\biggr) 
\leq f

\biggl( 
d\mu 

d\nu 
(x)

\biggl( 
d\kappa (x)

d\eta (x)
\cdot \eta 
\biggr) 
(x,\scrY )

\biggr) 
+ f \prime (\infty )

d\mu 

d\nu 
(x)\kappa \bot \eta (x,\scrY ),

and integrating both sides with respect to \nu we get\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 
(x)

\biggr) 
\mathrm{d}\nu (x) \leq 

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 
(x)

\biggl( 
d\kappa (x)

d\eta (x)
\cdot \eta 
\biggr) 
(x,\scrY )

\biggr) 
\mathrm{d}\nu (x)

+f \prime (\infty )

\int 
\scrX 

d\mu 

d\nu 
(x)\kappa \bot \eta (x,\scrY ) \mathrm{d}\nu (x). (5.3)

To conclude the proof, we can put together the previous results in the
following way:

Df (\mu , \nu ) =

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu + \mu \bot \nu (\scrX )f \prime (\infty )

By Equation (5.3) \leq 
\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 
(x)

\biggl( 
d\kappa (x)

d\eta (x)
\cdot \eta 
\biggr) 
(x,\scrY )

\biggr) 
\mathrm{d}\nu (x)

+f \prime (\infty )

\int 
\scrX 

d\mu 

d\nu 
(x)\kappa \bot \eta (x,\scrY ) \mathrm{d}\nu (x) + \mu \bot \nu (\scrX )f \prime (\infty )

By Equation (5.1) \leq 
\int 
\scrX \times \scrY 

f

\biggl( 
d(\mu \otimes \kappa )

d(\nu \otimes \eta )

\biggr) 
\mathrm{d}(\nu \otimes \eta )
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+f \prime (\infty )

\biggl( \int 
\scrX 

d\mu 

d\nu 
(x)\kappa \bot \eta (x,\scrY ) \mathrm{d}\nu (x) + \mu \bot \nu (\scrX )

\biggr) 
By Equation (5.2) =

\int 
\scrX \times \scrY 

f

\biggl( 
d(\mu \otimes \kappa )

d(\nu \otimes \eta )

\biggr) 
\mathrm{d}(\nu \otimes \eta ) + f \prime (\infty )(\mu \otimes \kappa )\bot (\nu \otimes \eta )(\scrX \times \scrY )

= Df (\mu \otimes \kappa , \nu \otimes \eta ).

#

Remark 5.2.2. We can notice that the part of the proof concerning the
absolutely continuous part of the f-divergence is similar to the proof of the
DPI for measurable functions. Indeed, both proofs are based on Jensen’s
inequality.

We will now examine a special case of the previous inequality, in which
the two kernels coincide. In this instance the inequality becomes an equality.

Proposition 5.2.3. Let \scrX ,\scrY be measurable spaces such that \scrX is countable or
\scrY is countably generated, let \mu , \nu \in \scrM (\scrX ) be finite measures and \kappa : \scrX \rightsquigarrow \scrY 
a Markov kernel. Then

Df (\mu \otimes \kappa , \nu \otimes \kappa ) = Df (\mu , \nu ).

Proof. The proof is a simple computation:

Df (\mu \otimes \kappa , \nu \otimes \kappa ) =

\int 
\scrX \times \scrY 

f

\biggl( 
d(\mu \otimes \kappa )

d(\nu \otimes \kappa )

\biggr) 
\mathrm{d}(\nu \otimes \kappa ) + f \prime (\infty )(\mu \otimes \kappa )\bot (\nu \otimes \kappa )(\scrX \times \scrY )

By Proposition B.0.2 =

\int 
\scrX \times \scrY 

f

\biggl( 
d\mu 

d\nu 
(x)

\biggr) 
(\nu \otimes \kappa )(dx, dy)

+f \prime (\infty )

\biggl( 
(\mu \bot \nu \otimes \kappa )(\scrX \times \scrY ) +

\biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 
\otimes \kappa \bot \kappa (\scrX \times \scrY )

\biggr) 
Since \kappa \bot \kappa = 0 =

\int 
\scrX 

\int 
\scrY 
f

\biggl( 
d\mu 

d\nu 
(x)

\biggr) 
\kappa (x, dy) \mathrm{d}\nu (x) + f \prime (\infty )(\mu \bot \nu \otimes \kappa )(\scrX \times \scrY )

By Proposition 2.1.19 =

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 
(x)

\biggr) 
\kappa (x,\scrY ) \mathrm{d}\nu (x) + f \prime (\infty )\mu \bot \nu (\scrX )

=

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 
(x)

\biggr) 
\mathrm{d}\nu (x) + f \prime (\infty )\mu \bot \nu (\scrX )

= Df (\mu , \nu ).

#
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Lemma 5.2.4. Let \scrX ,\scrY be measurable spaces and \mu , \nu \in \scrM (\scrX \times \scrY ) finite
measures. Then

Df (\mu \updownarrow , \nu \updownarrow ) = Df (\mu , \nu ).

Proof. Let A \subseteq \scrX and B \subseteq \scrY be measurable sets, then we can use the
Lebesgue decomposition (Theorem 2.2.3) to write

\mu \updownarrow (B \times A) =
d\mu \updownarrow 

d\nu \updownarrow 
\cdot \nu \updownarrow (B \times A) + \mu \updownarrow \bot \nu \updownarrow (B \times A),

on the other hand we have

\mu \updownarrow (B \times A) = \mu (A\times B)

=

\biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 
(A\times B) + \mu \bot \nu (A\times B)

=

\biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 

\updownarrow 
(B \times A) + (\mu \bot \nu )\updownarrow (B \times A)

=

\biggl( 
d\mu 

d\nu 

\biggr) 
\updownarrow 
\cdot \nu \updownarrow (B \times A) + (\mu \bot \nu )\updownarrow (B \times A).

Therefore, the uniqueness of the Lebesgue decomposition (Theorem 2.2.3)
implies that

d\mu \updownarrow 

d\nu \updownarrow 
=

\biggl( 
d\mu 

d\nu 

\biggr) 
\updownarrow 

and \mu \updownarrow \bot \nu \updownarrow = (\mu \bot \nu )\updownarrow .

So we can conclude the proof by applying the definition of f-divergence:

Df (\mu \updownarrow , \nu \updownarrow ) =

\int 
\scrY \times \scrX 

f

\biggl( 
d\mu \updownarrow 

d\nu \updownarrow 

\biggr) 
\mathrm{d}\nu \updownarrow + \mu \updownarrow \bot \nu \updownarrow (\scrY \times \scrX )f \prime (\infty )

=

\int 
\scrY \times \scrX 

f

\biggl( \biggl( 
d\mu 

d\nu 

\biggr) 
\updownarrow 

\biggr) 
\mathrm{d}\nu \updownarrow + (\mu \bot \nu )\updownarrow (\scrY \times \scrX )f \prime (\infty )

=

\int 
\scrX \times \scrY 

f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu + \mu \bot \nu (\scrX \times \scrY )f \prime (\infty )

= Df (\mu , \nu ).

#

We are now ready to prove the DPI for Markov kernels in standard Borel
spaces.
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Theorem 5.2.5 (DPI, standard Borel spaces). Let \scrX ,\scrY be measurable spaces
such that \scrX is standard Borel and \scrY is countably generated or \scrX is countable,
let \mu , \nu \in \scrM (\scrX ) be finite measures, \kappa : \scrX \rightsquigarrow \scrY a Markov kernel and f : R+ \rightarrow 
R a convex function. Then

Df (\kappa \circ \mu , \kappa \circ \nu ) \leq Df (\mu , \nu ).

Proof. First, let us remark that, under the current assumptions, the existence
of the Bayesian inverses \kappa \dagger 

\mu and \kappa \dagger 
\nu is guaranteed by Remark 2.1.22.

Therefore, we can use Proposition 5.2.1 to obtain:

Df (\kappa \circ \mu , \kappa \circ \nu ) \leq Df ((\kappa \circ \mu )\otimes \kappa \dagger 
\mu , (\kappa \circ \nu )\otimes \kappa \dagger 

\nu )

By Lemma 5.2.4 = Df (((\kappa \circ \mu )\otimes \kappa \dagger 
\mu )\updownarrow , ((\kappa \circ \nu )\otimes \kappa \dagger 

\nu )\updownarrow )

By Equation (2.3) = Df (\mu \otimes \kappa , \nu \otimes \kappa )

By Proposition 5.2.3 = Df (\mu , \nu ).

#

Remark 5.2.6. The following is the formalization of this statement of the DPI:

lemma fDiv_comp_right_le [Nonempty \alpha ] [StandardBorelSpace \alpha ]

[CountableOrCountablyGenerated \alpha \beta ]

(\mu \nu : Measure \alpha ) [IsFiniteMeasure \mu ] [IsFiniteMeasure \nu ]

(\kappa : Kernel \alpha \beta ) [IsMarkovKernel \kappa ]

(hf : StronglyMeasurable f) (hf_cvx : ConvexOn R (Ici 0) f)

(hf_cont : ContinuousOn f (Ici 0)) :

fDiv f (\kappa \circ m \mu ) (\kappa \circ m \nu ) \leq fDiv f \mu \nu := by

We can notice how in the hypotheses we require the function f to be convex
only on the nonnegative real numbers, which is sufficient given that in the defi-
nition of f-divergence, f is only applied to nonnegative values. We also require
f to be continuous on the nonnegative real numbers and strongly measurable
on the entire real line. These hypotheses are needed for technical reasons in
the formalization, and they are not implied by the convexity. See also how the
hypothesis of the first space being countable or the second one being countably

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/FDiv/CompProd.lean#L565-L574
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generated is bundled in the class CountableOrCountablyGenerated \alpha \beta and
automatically inferred by the typeclass inference system.

Lastly, we want to remark that the formalized proof is slightly different
from the one presented here. In particular, it does not mention the Bayesian
inverse explicitly, but instead makes the composition appear from the compo-
sition product by taking the second marginal: \kappa \circ \mu = (\mu \otimes \kappa )\scrY . Then it uses
the disintegration to show that the f-divergence of the marginals is always
less than the f-divergence of the original measures4.

This approach is essentially equivalent to the one presented here and
requires the same assumptions on the spaces. In fact, as mentioned in
Remark 2.1.22, the Bayesian inverse can be seen as a special case of disinte-
gration.

5.3 DPI in general spaces

In this section we will show how the DPI can be extended to general
measurable spaces. This proof will adopt a completely different approach
than the previous ones, and it is inspired by [LV06; Lie12]. The idea is to
use a Taylor formula for convex functions where the error is expressed as the
integral of a parametric function \varphi \beta ,\gamma ; using this formula, we will be able to
express the f-divergence for a generic convex function in terms of the integral
of the f-divergence of \varphi \beta ,\gamma . Then, we will show how D\varphi \beta ,\gamma 

is closely related
to the statistical information, in particular being equal to the statistical
information with the addition of a term that is invariant under composition

4The idea is that, as mentioned in Remark 2.1.22, \mu = \mu \scrX \otimes \mu \scrY | \scrX . Therefore, using
Proposition 5.2.1 we obtain:

Df (\mu , \nu ) = Df (\mu \scrX \otimes \mu \scrY | \scrX , \nu \scrX \otimes \nu \scrY | \scrX ) \geq Df (\mu \scrX , \nu \scrX ).

For the second marginal it is enough to use the swap kernel and Lemma 5.2.4:

Df (\mu \scrY , \nu \scrY ) = Df ((\mu \updownarrow )\scrX , (\nu \updownarrow )\scrX ) \leq Df (\mu \updownarrow , \nu \updownarrow ) = Df (\mu , \nu ).
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with a constant kernel. This will allow us to use the DPI for the statistical
information, which we independently established in Proposition 4.2.12 as a
simple consequence of the definition of Bayesian risk, to prove the DPI for
D\varphi \beta ,\gamma 

and then for general f-divergences.
We begin by defining the parametric function \varphi \beta ,\gamma , which will be a piece-

wise linear function and will be called the hockey-stick function due to its
shape.

Definition 5.3.1 (Hockey-stick function). Let \beta , \gamma \in R be real numbers. We
define the hockey-stick function \varphi \beta ,\gamma : R \rightarrow R as

\varphi \beta ,\gamma (x) :=

\left\{   \mathrm{m}\mathrm{a}\mathrm{x}\{ 0, \gamma  - \beta x\} if \gamma \leq \beta ,

\mathrm{m}\mathrm{a}\mathrm{x}\{ 0, \beta x - \gamma \} if \gamma > \beta .

Remark 5.3.2. The hokey-stick function is continuous and convex on R,
moreover it is a piecewise linear function, being zero on one side of \gamma /\beta and
linear with slope \beta or  - \beta on the other side, depending on whether \gamma is greater
or smaller than \beta .

This function is well-defined for any real value of \beta and \gamma ; however, we will
primarily consider nonnegative values. This is because our goal is to establish
a relation between its f-divergence and the statistical information \scrI (\beta ,\gamma ), for
which negative values of \beta and \gamma do not make sense, since the two parameters
define a measure on \{ 0, 1\} . Moreover, in the event that precisely one of the
parameters is negative, it is easy to show that \varphi \beta ,\gamma (x) = 0 for all x > 0,
rendering its f-divergence trivially zero. We will be especially interested in
the case where \beta = 1, therefore also \gamma will be nonnegative.

The following proposition gives us the Taylor formula for convex functions.

Theorem 5.3.3 (Taylor formula for convex functions). Let f : R \rightarrow R be a
convex function and \gamma f its curvature measure (see Definition D.0.5). Then
for any a, b \in R we have

f(b) - f(a) - f \prime (a)(b - a) =

\left\{   
\int 
(a,b]

(b - x) \mathrm{d}\gamma f (x) if a \leq b,\int 
(b,a]

(x - b) \mathrm{d}\gamma f (x) if a > b.
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Proof. We will prove the case a > b, the other case is analogous.

Let us give a name to the function inside the integral: g(x) := (x  - b).
Recall that the curvature measure is defined as the Lebesgue-Stieltjes measure
associated with the right derivative. We can also consider the Lebesgue-
Stieltjes measure associated with g, which is just the classical Lebesgue
measure, in fact:

\Lambda g((x, y]) = g(y) - g(x) = y  - b - (x - b) = y  - x.

Now we can use integration by parts (Corollary 2.3.6) to change the
measure of the integral, making it a classical Lebesgue integral:

\int 
(b,a]

(x - b) \mathrm{d}\gamma f (x) =

\int 
(b,a]

g(x) \mathrm{d}\gamma f (x)

By Corollary 2.3.6 = f \prime 
+(a)g(a) - f \prime 

+(b)g(b) - 
\int 
(b,a]

f \prime 
+(x) \mathrm{d}\Lambda g(x)

= f \prime 
+(a)(a - b) - 

\int a

b

f \prime 
+(x) \mathrm{d}x

Fundamental theorem of calculus5 = f \prime 
+(a)(a - b) - (f(a) - f(b)).

#

The following corollary demonstrates how the integral in the Taylor formula
for a = 1 can be interpreted as an integral of the hockey-stick function, and
how it simplifies when we use a centered function, i.e. f such that f(1) = 0

and f \prime (1) = 0.

Corollary 5.3.4. Let f : R \rightarrow R be a convex function and \gamma f its curvature
measure. Then for every t \in R we have

f(t) - f(1) - f \prime (1)(t - 1) =

\int 
R

\varphi 1,y(t) \mathrm{d}\gamma f (y).

5For this version of the fundamental theorem of calculus with the right derivative see
the lemma intervalIntegral.integral_eq_sub_of_hasDeriv_right in Mathlib.

https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/MeasureTheory/Integral/FundThmCalculus.lean#L1120-L1130
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Moreover, if f(1) = f \prime (1) = 0, then

f(t) =

\int 
R

\varphi 1,y(t) \mathrm{d}\gamma f (y).

Proof. It is sufficient to observe that if 1 \leq t, then for every y \leq 1, we have
\varphi 1,y(t) = \mathrm{m}\mathrm{a}\mathrm{x}\{ 0, y  - t\} = 0, for 1 < y \leq t we have \varphi 1,y(t) = \mathrm{m}\mathrm{a}\mathrm{x}\{ 0, t - y\} =

t  - y and for t < y we have \varphi 1,y(t) = \mathrm{m}\mathrm{a}\mathrm{x}\{ 0, t  - y\} = 0. Therefore, the
integral coincides with the integral in the Taylor formula:\int 

R

\varphi 1,y(t) \mathrm{d}\gamma f (y) =

\int 
(1,t]

(t - y) \mathrm{d}\gamma f (y).

Similarly, if t < 1 we have\int 
R

\varphi 1,y(t) \mathrm{d}\gamma f (y) =

\int 
(t,1]

(y  - t) \mathrm{d}\gamma f (y).

#

We will now use this corollary to write the f-divergence of a convex function
as an integral of the f-divergence of \varphi 1,y. We will restrict our attention to the
case where one measure is absolutely continuous with respect to the other
and f(1) = f \prime (1) = 0, since this is sufficient to prove the DPI, thanks to
Remark 5.0.1 and Proposition 3.1.5. Nevertheless, this representation also
holds in the general case with minor modifications, see also Remark 5.3.6 for
more details.

Proposition 5.3.5 (Integral representation of f-divergence). Let f : R \rightarrow R

be a convex function such that f(1) = f \prime (1) = 0 and \mu , \nu \in \scrM (\scrX ) be finite
measures such that \mu \ll \nu . Then

Df (\mu , \nu ) =

\int 
R

D\varphi 1,y(\mu , \nu ) \mathrm{d}\gamma f (y).

Proof. Since \mu \ll \nu , we only have to deal with the integral part of the
f-divergence. Therefore, the proof is essentially a matter of swapping the
order of integration:
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Df (\mu , \nu ) =

\int 
\scrX 
f

\biggl( 
d\mu 

d\nu 
(x)

\biggr) 
\mathrm{d}\nu (x)

By Corollary 5.3.4 =

\int 
\scrX 

\int 
R

\varphi 1,y

\biggl( 
d\mu 

d\nu 
(x)

\biggr) 
\mathrm{d}\gamma f (y) \mathrm{d}\nu (x)

By Tonelli’s theorem6 =

\int 
R

\int 
\scrX 
\varphi 1,y

\biggl( 
d\mu 

d\nu 
(x)

\biggr) 
\mathrm{d}\nu (x) \mathrm{d}\gamma f (y)

=

\int 
R

D\varphi 1,y(\mu , \nu ) \mathrm{d}\gamma f (y).

#

Remark 5.3.6. This proof serves as an illustrative example of how the formal-
ization of a proof can become considerably longer and more challenging than
the informal proof. Indeed, the formalized result has been split into several
lemmas, for a total of over 300 lines of code, culminating in the result for the
general case ProbabilityTheory.fDiv_eq_lintegral_fDiv_statInfoFun. Part
of the reason for this is that, in the formalization, we decided to prove this
result for general measures and convex functions, but the absolutely continu-
ous and the mutually singular case were still written as separate lemmas, as
they were necessary to prove the general case. Some of these intermediate
lemmas were also proven for f(1) = f \prime (1) = 0 and subsequently generalized.
The decision to prove the result for general measures and functions, rather
than postponing the generalization to the proof of the DPI, was made to
facilitate its use in other contexts, independently of the DPI.

However, this was not the only reason that made this proof challenging, in
fact another tricky aspect was the swapping of the integrals. We usually have 2
tools at our disposal to swap integrals: Fubini’s theorem and Tonelli’s theorem.
In this case, since the integrand is nonnegative, the most appropriate choice
would be Tonelli’s theorem, as it does not require any integrability condition.
However, the version of Tonelli’s theorem available in Mathlib only works for
the lower Lebesgue integral. In contrast, the definition of f-divergence and

6We can use Tonelli’s theorem here because the hockey-stick function is nonnegative.

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Divergences/fDivStatInfo.lean#L539-L596
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the Taylor formula are based on the Bochner integral, for which only Fubini’s
theorem is available. At this point, two main options were viable: either stick
to the Bochner integral and try to address the integrability condition required
by Fubini’s theorem, or switch to the lower Lebesgue integral and use Tonelli’s
theorem. In reality, both options needed some work on the integrability of
a function, since also the lemma stating the equality of the Bochner and
the lower Lebesgue integral requires them. We decided to proceed with the
second option, given that working with the lower Lebesgue integral typically
presents fewer challenges. For example, it greatly simplified the proof of the
DPI, which leverages the monotonicity of the integral. This property is not
true for the Bochner integral, unless both functions are integrable7, whereas
it is always true for the lower Lebesgue integral.

The following result uses one of the formulas for the statistical information
from the previous chapter to show how it is related to the f-divergence of the
hockey-stick function.

Proposition 5.3.7. Let \scrX ,\scrY be measurable spaces, \mu , \nu \in \scrM (\scrX ) finite
measures such that \mu \ll \nu and \beta , \gamma \geq 0. Then

D\varphi \beta ,\gamma 
(\mu , \nu ) = \scrI (\beta ,\gamma )(\mu , \nu )+

1

2
| \beta \mu (\scrX ) - \gamma \nu (\scrX )|  - 1

2
\mathrm{s}\mathrm{g}\mathrm{n}(\beta  - \gamma ) (\beta \mu (\scrX ) - \gamma \nu (\scrX )) ,

where \mathrm{s}\mathrm{g}\mathrm{n}(t) = 1 if t \geq 0 and \mathrm{s}\mathrm{g}\mathrm{n}(t) =  - 1 if t < 0.

Proof. We initially consider the case where \gamma \leq \beta .

We will use the fact that the max can be expressed using the absolute
value in the following way: \mathrm{m}\mathrm{a}\mathrm{x}\{ a, b\} = 1

2
(a+ b+ | a - b| ).

D\varphi \beta ,\gamma 
(\mu , \nu ) =

\int 
\scrX 
\varphi \beta ,\gamma 

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu 

=

\int 
\scrX 
\mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
0, \gamma  - \beta 

d\mu 

d\nu 

\biggr\} 
\mathrm{d}\nu 

7This is due to the way the Bochner integral handles the non-integrable functions,
throwing a junk value of 0.
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By the formula for the max =

\int 
\scrX 

1

2

\biggl( 
\gamma  - \beta 

d\mu 

d\nu 
+

\bigm| \bigm| \bigm| \bigm| \gamma  - \beta 
d\mu 

d\nu 

\bigm| \bigm| \bigm| \bigm| \biggr) \mathrm{d}\nu 

By Proposition B.0.1 =
1

2
(\gamma \nu (\scrX ) - \beta \mu (\scrX )) +

1

2

\int 
\scrX 

\bigm| \bigm| \bigm| \bigm| \gamma  - \beta 
d\mu 

d\nu 

\bigm| \bigm| \bigm| \bigm| \mathrm{d}\nu 
By Proposition 4.2.13 =  - 1

2
(\beta \mu (\scrX ) - \gamma \nu (\scrX )) + \scrI (\beta ,\gamma )(\mu , \nu ) +

1

2
| \beta \mu (\scrX ) - \gamma \nu (\scrX )| .

The case where \gamma > \beta is analogous. #

Remark 5.3.8. In the event that the measures have the same total mass,
i.e. \mu (\scrX ) = \nu (\scrX ), we can see from Proposition 5.3.7 that the statistical
information and the f-divergence of the hockey-stick coincide. This is in
particular true when \mu and \nu are probability measures.

An alternative perspective on this phenomenon can be gained by examining
the representation of both divergences in terms of an integral of a max function.
In fact, by the definition of f-divergence we have:

D\varphi \beta ,\gamma 
(\mu , \nu ) =

\left\{       
\int 
\scrX 
\mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
0, \gamma  - \beta 

d\mu 

d\nu 

\biggr\} 
\mathrm{d}\nu if \gamma \leq \beta ,\int 

\scrX 
\mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
0, \beta 

d\mu 

d\nu 
 - \gamma 

\biggr\} 
\mathrm{d}\nu if \gamma > \beta ,

while for the statistical information, using the first formula from Proposi-
tion 4.2.13, we have:

\scrI (\beta ,\gamma )(\mu , \nu ) =

\left\{       
\int 
\scrX 
\mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
0, \gamma  - \beta 

d\mu 

d\nu 

\biggr\} 
\mathrm{d}\nu if \gamma \nu (\scrX ) \leq \beta \mu (\scrX ),\int 

\scrX 
\mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
0, \beta 

d\mu 

d\nu 
 - \gamma 

\biggr\} 
\mathrm{d}\nu if \gamma \nu (\scrX ) \geq \beta \mu (\scrX ).

Thus, it becomes evident how the two divergences are defined piecewise,
with the definitions differing solely in the condition pertaining to which piece
is taken: in the f-divergence what matters is the relation between \beta and \gamma ,
whereas in the statistical information these two quantities are weighted by
the total mass of the measures. From this point of view, it is evident that
when the total masses are equal the conditions are identical.

Moreover, we can notice how in the statistical information the two pieces
coincide when we have equality in the condition, while in the f-divergence
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they do not, suggesting that the statistical information is a more natural
concept.

At this point, we can finally prove the DPI for general spaces.

Theorem 5.3.9 (DPI, general spaces). Let \scrX ,\scrY be measurable spaces, \mu , \nu \in 
\scrM (\scrX ) finite measures, \kappa : \scrX \rightsquigarrow \scrY a Markov kernel and f : R \rightarrow R a convex
function. Then

Df (\kappa \circ \mu , \kappa \circ \nu ) \leq Df (\mu , \nu ).

Proof. By Remark 5.0.1, it is possible to assume without loss of generality
that \mu \ll \nu . Furthermore, invoking Remark 3.1.6 and the fact that the total
mass of the measures is invariant under the composition with a Markov kernel
(see Proposition 2.1.19), we can assume that f(1) = f \prime (1) = 0.

We begin by demonstrating that the DPI is satisfied for the hockey-stick
function, using the formula from Proposition 5.3.7 and the DPI for the
statistical information from Proposition 4.2.12:

D\varphi 1,y(\kappa \circ \mu , \kappa \circ \nu ) = \scrI (1,y)(\kappa \circ \mu , \kappa \circ \nu ) + 1

2
| (\kappa \circ \mu )(\scrX ) - y(\kappa \circ \nu )(\scrX )| 

 - 1

2
\mathrm{s}\mathrm{g}\mathrm{n}(1 - y) ((\kappa \circ \mu )(\scrX ) - y(\kappa \circ \nu )(\scrX ))

By Proposition 4.2.12 \leq \scrI (1,y)(\mu , \nu ) +
1

2
| (\kappa \circ \mu )(\scrX ) - y(\kappa \circ \nu )(\scrX )| 

 - 1

2
\mathrm{s}\mathrm{g}\mathrm{n}(1 - y) ((\kappa \circ \mu )(\scrX ) - y(\kappa \circ \nu )(\scrX ))

By Proposition 2.1.19 = \scrI (1,y)(\mu , \nu ) +
1

2
| \mu (\scrX ) - y\nu (\scrX )|  - 1

2
\mathrm{s}\mathrm{g}\mathrm{n}(1 - y) (\mu (\scrX ) - y\nu (\scrX ))

By Proposition 5.3.7 = D\varphi 1,y(\mu , \nu ).

We can then use the integral representation of the f-divergence from
Proposition 5.3.5, which is applicable given that \mu \ll \nu implies \kappa \circ \mu \ll \kappa \circ \nu ,
and the monotonicity of the integral to get the desired result:

Df (\kappa \circ \mu , \kappa \circ \nu ) =
\int 

R

D\varphi 1,y(\kappa \circ \mu , \kappa \circ \nu ) \mathrm{d}\gamma f (y)
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\leq 
\int 

R

D\varphi 1,y(\mu , \nu ) \mathrm{d}\gamma f (y)

= Df (\mu , \nu ).

#

Remark 5.3.10. As previously mentioned in Remark 5.3.6, the formalization
of this proof took a slightly different approach than the informal proof. In
particular, the generalization to the case where the measures are not absolutely
continuous and the function is not centered was not done in the proof of the
DPI, but at the level of the integral representation of the f-divergence and
the formula linking the statistical information and the f-divergence of the
hockey-stick function.

Remark 5.3.11. Note that the current proof of the DPI for general spaces
is not sorry-free, as it depends on a result whose proof is not completely
formalized. In particular, the proof of Remark 5.3.6 relies on the integration
by parts theorem (Theorem 2.3.1), which has not yet been formalized in
Mathlib (see Remark 2.3.7). Nevertheless, this is a well-established result
that can be relied upon with a reasonable degree of confidence (see also
Remark C.0.5), and we are confident that it will be formalized in the future.

Remark 5.3.12. The following is the formalization of this statement of the
DPI:

lemma fDiv_comp_right_le’ (\eta : Kernel \scrX \scrX ’) [IsMarkovKernel \eta ]

(\mu \nu : Measure \alpha ) [IsFiniteMeasure \mu ] [IsFiniteMeasure \nu ]

(hf_cvx : ConvexOn R univ f) (hf_cont : Continuous f) :

fDiv f (\eta \circ m \mu ) (\eta \circ m \nu ) \leq fDiv f \mu \nu := by

We can compare it with the formalized statement for the DPI for standard
Borel spaces in Remark 5.2.6 and see how the latter requires the first space
to be standard Borel, as well as some additional countability condition. In
contrast, this statement applies to every measurable space. However, we can
also notice how the convexity hypotheses are slightly different. In this case,
the function is required to be convex on the entire real line, whereas in the

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/Divergences/fDivStatInfo.lean#L614-L624
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standard Borel case, it is only required to be convex on the interval [0,\infty ).
The first condition is more stringent than the second one. This issue can be
partially mitigated by noting that the function can be modified at will on
the negative numbers; this allows us to extend any convex function on [0,\infty )

that has a finite right derivative at 0 to a convex function on the whole real
line. Nevertheless, if the right derivative at 0 is  - \infty (which is the case for
x \mapsto \rightarrow x \mathrm{l}\mathrm{o}\mathrm{g} x, used to define the Kullback-Leibler divergence), then it is not
possible to extend it to a convex function on the whole real line.

This limitation of the current proof arises from the fact that some of
the employed tools, in particular the definitions of Stieltjes function and
curvature measure, are implemented in Mathlib only for functions that have
certain properties on the entire real line. To extend the result, further work
is required. One possible approach is to generalize the definition of Stieltjes
function to allow the function to take infinite values. This would enable any
function that is monotone and right continuous on an interval to be extended
to a Stieltjes function. In fact, the function could be defined to be  - \infty on
the left of the interval, and +\infty on the right.

5.4 Consequences of the DPI

In this section we will examine some consequences of the DPI for f-di-
vergences. In particular, we will see how other inequalities involving the
operations between kernels and measures can be derived from it and how it
implies the DPI for the Rényi divergence.

Lemma 5.4.1. Let \scrX ,\scrY be measurable spaces, \mu , \nu \in \scrM (\scrX \times \scrY ) finite
measures and f : R \rightarrow R a convex function. Then we have:

i) Df (\mu \scrX , \nu \scrX ) \leq Df (\mu , \nu ),

ii) Df (\mu \scrY , \nu \scrY ) \leq Df (\mu , \nu ).

Proof. Notice how we can write the marginals of a measure as the composition
with the deterministic kernels associated with the projections, which will be
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denoted by \kappa \scrX := (x, y) \mapsto \rightarrow x and \kappa \scrY := (x, y) \mapsto \rightarrow y. The DPI can then be
employed to obtain the desired result:

Df (\mu \scrX , \nu \scrX ) = Df (\kappa \scrX \circ \mu , \kappa \scrX \circ \nu ) \leq Df (\mu , \nu ).

And similarly:

Df (\mu \scrY , \nu \scrY ) = Df (\kappa \scrY \circ \mu , \kappa \scrY \circ \nu ) \leq Df (\mu , \nu ).

#

We can use this lemma to prove two other inequalities and, indeed, an
equality involving the composition product.

Proposition 5.4.2. Let \scrX ,\scrY be measurable spaces, \mu , \nu \in \scrM (\scrX ) finite
measures, \kappa , \eta : \scrX \rightsquigarrow \scrY a Markov kernel and f : R \rightarrow R a convex function.
Then we have:

i) Df (\mu , \nu ) \leq Df (\mu \otimes \kappa , \nu \otimes \eta ),

ii) Df (\kappa \circ \mu , \eta \circ \nu ) \leq Df (\mu \otimes \kappa , \nu \otimes \eta ),

iii) Df (\mu \otimes \kappa , \nu \otimes \kappa ) = Df (\mu , \nu ).

Proof. (i), (ii) Using Proposition A.0.1, we can use the marginals of the
composition product to write the measure and the composition, then we
conclude using Lemma 5.4.1:

Df (\mu , \nu ) = Df ((\mu \otimes \kappa )\scrX , (\nu \otimes \eta )\scrX ) \leq Df (\mu \otimes \kappa , \nu \otimes \eta ).

And similarly for the second part:

Df (\kappa \circ \mu , \eta \circ \nu ) = Df ((\mu \otimes \kappa )\scrY , (\nu \otimes \eta )\scrY ) \leq Df (\mu \otimes \kappa , \nu \otimes \eta ).

(iii) We have already established one inequality from (i), so we only
need to prove the other one. To do that, recall that in Remark 2.1.18 we
saw how it is possible to write the composition product as a composition:
\mu \otimes \kappa = (id\scrX \times \kappa ) \circ \mu . We can therefore use the DPI once again:

Df (\mu \otimes \kappa , \nu \otimes \kappa ) = Df ((id\scrX \times \kappa ) \circ \mu , (id\scrX \times \kappa ) \circ \nu ) \leq Df (\mu , \nu ).

#
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Remark 5.4.3. It is interesting to note that in this case we deduce the inequality
(i) of the previous proposition as a corollary of the DPI. However, in the
proof of the DPI for standard Borel spaces from Section 5.2, the same
inequality (i) was proven separately (Proposition 5.2.1) and then used as the
first step to prove the DPI. The same observation is true for the equality
Df (\mu \updownarrow , \nu \updownarrow ) = Df (\mu , \nu ) from Lemma 5.2.4, which can easily be demonstrated
by noticing that (\cdot )\updownarrow is an involution and can be expressed as the composition
with a deterministic kernel, and then using the DPI twice.

Different combinations of those properties and the DPI imply each other
in various ways, making it possible to prove them in different orders. For
example, as we just saw in the proof of Proposition 5.4.2, the DPI implies
all the other properties. However, if we have (i), (iii), the equality for the
swap kernel and the existence of the Bayesian inverse then we can prove the
DPI (this is basically the proof of the DPI for standard Borel spaces from
Section 5.2). Moreover, if we have (ii) and (iii) we can bypass certain steps in
that same proof and directly establish the DPI, obviating the necessity for
the Bayesian inverse.

Finally, let us demonstrate how the DPI for f-divergences, in particular
for the Hellinger divergence, implies the DPI for the Rényi divergence.

Theorem 5.4.4 (DPI for Rényi divergence). Let \scrX be a measurable space,
\mu , \nu \in \scrM (\scrX ) finite measures, \kappa : \scrX \rightsquigarrow \scrY a Markov kernel and \alpha \in [0,\infty )

such that the DPI for the Hellinger \alpha -divergence holds. Then

\mathrm{R}\alpha (\kappa \circ \mu , \kappa \circ \nu ) \leq \mathrm{R}\alpha (\mu , \nu ).

Proof. For \alpha = 1 we have that \mathrm{R}1 = \mathrm{K}\mathrm{L} = \mathrm{H}1, so there is nothing to prove.
Let us now consider the case where \alpha \not = 1. Then, once we fix \nu , the

function t \mapsto \rightarrow 1
\alpha  - 1

\mathrm{l}\mathrm{o}\mathrm{g}(\nu (\scrX ) + (\alpha  - 1)t) is nondecreasing. Therefore, we can
apply the DPI for the Hellinger \alpha -divergence to get the result:

\mathrm{R}\alpha (\kappa \circ \mu , \kappa \circ \nu ) =
1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g} ((\kappa \circ \nu )(\scrX ) + (\alpha  - 1)\mathrm{H}\alpha (\kappa \circ \mu , \kappa \circ \nu ))

By Proposition 2.1.19 =
1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g} (\nu (\scrX ) + (\alpha  - 1)\mathrm{H}\alpha (\kappa \circ \mu , \kappa \circ \nu ))
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DPI for \mathrm{H}\alpha \leq 1

\alpha  - 1
\mathrm{l}\mathrm{o}\mathrm{g} (\nu (\scrX ) + (\alpha  - 1)\mathrm{H}\alpha (\mu , \nu ))

= \mathrm{R}\alpha (\mu , \nu ).

#

Remark 5.4.5. For \alpha > 1, we have that (f\alpha )\prime +(0) is finite, thus the Hellinger
function can be extended to a convex function over the entire real line, by
defining it to be linear with slope (f\alpha )

\prime 
+(0) for t < 0. Therefore, we can apply

Theorem 5.3.9 to have the DPI for the Hellinger \alpha -divergence and then extend
it to the Rényi divergence with Theorem 5.4.4.

However, when \alpha \leq 1 it is not possible to extend the Hellinger function
to the entire real line in a convex manner. Therefore, with the current
formalization we can prove the DPI for the Hellinger and the Rényi divergences
for \alpha \leq 1 exclusively within the context of standard Borel spaces, using
Theorem 5.2.5. Nonetheless, it should be feasible, with some additional effort,
to extend the proof of Theorem 5.3.9 to functions that are only convex on
the nonnegative reals (see Remark 5.3.12).



Conclusions

This thesis has presented a formalization project aimed at contributing to
the understanding of information theory and its applications to hypothesis
testing. We leveraged the power of the interactive theorem prover Lean 4 to
formalize key concepts, including f-divergences, the framework for estimation
problems, and the data processing inequality.

Our work resulted in several key achievements:

• Formalization of f-divergences: We formalized a comprehensive
API for f-divergences, treating them in a general setting that extends
beyond probability measures. This allows for broader applications and
theoretical insights.

• Formalization of the DPI: We presented three distinct proofs of the
DPI for f-divergences. These proofs vary in their generality and the
assumptions they require, thereby offering different perspectives on this
fundamental result.

• Contribution to Mathlib: The results that we have incorporated
to the Mathlib library during the project, and the ones we will add in
the near future, solidify the foundations of probability and information
theory in Lean 4, and pave the way for further research in these areas.

The chosen approach of using an interactive theorem prover offers a
number of advantages:

• Increased Rigor: Formal proofs eliminate errors and ambiguities that
can arise in traditional mathematical reasoning.

93
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• Replicability: All code and proofs are readily available for verification
and reusable by others.

• Generalization: The proof assistant helped us to keep track of very
fine-grained assumptions, allowing us to generalize results in a more
systematic way and gain insights that would have been harder to obtain
otherwise.

• Facilitated Collaboration: The use of a shared repository and the au-
tomatic verification of proofs enabled a seamless collaboration, allowing
us to focus our discussions on high-level concepts and insights.

One of the most interesting observations that emerged the project is
the seemingly unexpected connection between the DPI and the statistical
information. While the DPI is a fundamental result in information theory,
statistical information arises from the domain of hypothesis testing. As we
proved in Section 5.3, the DPI can be regarded as a consequence of a similar
inequality for the statistical information. However, the relationship between
these two domains goes in the opposite direction, too. Indeed, inequalities
involving the information divergences can be used to provide lower bounds on
the error of a statistical estimator in a hypothesis testing problem. Moreover,
if the test involves a variable number of samples, as in Example 4.0.4, we can
use those bounds to obtain results about the sample complexity, quantifying
how many observations necessary to achieve a specified level of confidence.

In summary, this thesis illustrates the efficacy of interactive theorem
provers in formalizing intricate mathematical concepts and contributes to
the expanding corpus of formalized knowledge in information theory and its
applications.
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Appendix A

Properties of kernel operations

This appendix will present some properties of kernels that we use in the
main text. In particular, we are going to examine an interesting relation
between the composition and the composition product of a Markov kernel
and a measure. We will also investigate how the composition and the parallel
product of kernels behave in relation to the composition and the swap kernel,
and what happens when we compose a constant kernel.

Proposition A.0.1. Let \scrX ,\scrY be measurable spaces, \kappa : \scrX \rightsquigarrow \scrY and \mu \in 
\scrM (\scrX ). Then:

i) (\mu \otimes \kappa )\scrX = \mu ,

ii) (\mu \otimes \kappa )\scrY = \kappa \circ \mu ,

where (\mu \otimes \kappa )\scrX and (\mu \otimes \kappa )\scrY are the marginals of the composition product
\mu \otimes \kappa , respectively on \scrX and \scrY .

Proof. (i) Let A \in F\scrX , then by definition of marginal measure and composi-
tion product we have

(\mu \otimes \kappa )\scrX (A) = (\mu \otimes \kappa )(A\times \scrY ) =

\int 
A

\kappa (x,\scrY )\mu (dx) =

\int 
A

1\mu (dx) = \mu (A).

(ii) Let B \in F\scrY , then by definition of marginal measure and composition
product we have

(\mu \otimes \kappa )\scrY (B) = (\mu \otimes \kappa )(\scrX \times B) =

\int 
\scrX 
\kappa (x,B)\mu (dx) = \kappa \circ \mu (B).

#

Proposition A.0.2. Let \scrX ,\scrX \prime ,\scrX \prime \prime ,\scrY ,\scrY \prime ,\scrY \prime \prime be measurable spaces, \kappa : \scrX \rightsquigarrow 
\scrX \prime , \eta : \scrY \rightsquigarrow \scrY \prime , \kappa \prime : \scrX \prime \rightsquigarrow \scrX \prime \prime and \eta \prime : \scrY \prime \rightsquigarrow \scrY \prime \prime . Then:
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• (\kappa \prime \| \eta \prime ) \circ (\kappa \| \eta ) = (\kappa \prime \circ \kappa ) \| (\eta \prime \circ \eta ),

• (\kappa \| \eta )\updownarrow = \eta \| \kappa .

Moreover, if \scrX = \scrY then:

• (\kappa \prime \| \eta \prime ) \circ (\kappa \times \eta ) = (\kappa \prime \circ \kappa )\times (\eta \prime \circ \eta ),

• (\kappa \times \eta )\updownarrow = \eta \times \kappa .

Proof. For the proof refer to the Lean code. #

Proposition A.0.3. Let \scrX ,\scrY ,\scrZ be measurable spaces, \kappa : \scrX \rightsquigarrow \scrY , \eta : \scrY \rightsquigarrow \scrZ 
a constant kernel (i.e. \eta (x, \cdot ) = \~\eta for every x) and \mu \in \scrM (\scrY ). Then:

i) \eta \circ \kappa (x) = \kappa (x,\scrY )\~\eta , for every x \in \scrX ,

ii) \eta \circ \mu = \mu (\scrY )\~\eta .

Proof. (i) For every B \subseteq \scrZ measurable we have

(\eta \circ \kappa )(x,B) =

\int 
\scrY 
\eta (y,B)\kappa (x, dy) =

\int 
\scrY 
\~\eta (B)\kappa (x, dy) = \kappa (x,\scrY )\~\eta (B).

(ii) This is just a special case of (i) with \kappa also constant. #



Appendix B

Lebesgue decomposition

This appendix presents two propositions that demonstrate some useful
properties of the Lebesgue decomposition of measures and kernels. For the
proofs we refer to [Kal21] and the Lean code.

Proposition B.0.1. Let \scrX be a measurable space and \mu , \nu , \xi \in \scrM (\scrX ) such
that a Lebesgue decomposition between \mu and \nu exists. Then the following
properties hold:

i) \mu \ll \nu if and only if \mu \bot \nu = 0.

ii) \mu \bot \nu if and only if
d\mu 

d\nu 
\cdot \nu = 0, that is

d\mu 

d\nu 
= 0 almost everywhere with

respect to \nu . This is also equivalent to \mu \bot \nu = \mu .

iii) If \mu \ll \nu , then for every \mu -integrable function f we have\int 
f \mathrm{d}\mu =

\int 
f
d\mu 

d\nu 
\mathrm{d}\nu .

In particular \mu (A) =

\int 
A

d\mu 

d\nu 
\mathrm{d}\nu for every measurable set A.

iv) If \mu , \nu and \xi are \sigma -finite and \mu \ll \nu , then for almost every x \in \scrX with
respect to \xi we have

d\mu 

d\xi 
(x) =

d\mu 

d\nu 
(x)

d\nu 

d\xi 
(x).

Proposition B.0.2. Let \scrX ,\scrY be measurable spaces such that \scrX is countable
or \scrY is countably generated, let \kappa , \eta : \scrX \rightsquigarrow \scrY be finite kernels and \mu , \nu \in \scrM (\scrX )

finite measures. Then the following properties hold:
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i) For every x \in \scrX and for almost every y \in \scrY with respect to \eta (x)

d\kappa 

d\eta 
(x, y) =

d\kappa (x)

d\eta (x)
(y).

ii) For every x \in \scrX , \kappa \bot \eta (x) = \kappa (x)\bot \eta (x).

iii) For almost every (x, y) \in \scrX \times \scrY with respect to \nu \otimes \eta 

d(\mu \otimes \kappa )

d(\nu \otimes \eta )
(x, y) =

d\mu 

d\nu 
(x)

d\kappa 

d\eta 
(x, y).

iv) For almost every (x, y) \in \scrX \times \scrY with respect to \nu \otimes \eta 

d(\mu \otimes \kappa )

d(\nu \otimes \kappa )
(x, y) =

d\mu 

d\nu 
(x).

v) (\mu \otimes \kappa )\bot (\nu \otimes \eta ) = \mu \bot \nu \otimes \kappa +

\biggl( 
d\mu 

d\nu 
\cdot \nu 
\biggr) 
\otimes \kappa \bot \eta .



Appendix C

Riemann-Stieltjes integral

In this appendix we will introduce the definition of the Riemann-Stieltjes
integral, and present some basic properties associated with it. For a more
detailed discussion see [Apo74, Chapter 7], see also [Whe15, Chapter 11.3]
for a more complete introduction to the Lebesgue-Stieltjes integral.

The Riemann-Stieltjes integral represents a generalization of the Riemann
integral. Their definitions are, in fact, quite similar, the only difference being
that in the Riemann-Stieltjes integral the weights for the Riemann sum are
not the lengths of the intervals, but rather the differences between the values
of a function at the endpoints. Indeed, if we take that function to be the
identity, we recover the classic Riemann integral.

Definition C.0.1 (Riemann-Stieltjes integral). Let a, b \in R such that a < b,
f, g : [a, b] \rightarrow R be bounded functions. We call a partition of [a, b] a finite
sequence of points P = \{ x0, x1, . . . , xn\} such that a = x0 < x1 < . . . <

xn = b; moreover we denote by tP = \{ t1, . . . , tn\} a set of points such that
tk \in [xk - 1, xk] for every k = 1, . . . , n and \Delta gk := g(tk) - g(tk - 1). We define
the Riemann-Stieltjes sum of f with respect to g over the partition P as

S(P, f, g) :=
n\sum 

k=1

f(tk)\Delta gk.

Then, f is said to be Riemann-Stieltjes integrable with respect to g on [a, b] if
there exists a number A \in R such that for every \varepsilon > 0 there exists a partition
P\varepsilon of [a, b] such that for every partition P \subseteq P\varepsilon and every choice of points
tP we have | S(P, f, g)  - A| < \varepsilon . In this case, we denote the number A by\int b

a
f \mathrm{d}g, or

\int b

a
f(x) \mathrm{d}g(x), and we call it the Riemann-Stieltjes integral of f

with respect to g on [a, b].
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Theorem C.0.2. Let a, b \in R such that a < b, f, g : [a, b] \rightarrow R such that
f is continuous and g has bounded variation. Then f is Riemann-Stieltjes
integrable with respect to g.

Proof. See [Apo74, Theorem 7.27]. #

The following theorem guarantees that the Lebesgue-Stieltjes integral and
the Riemann-Stieltjes integral coincide when both are defined.

Theorem C.0.3. Let a, b \in R such that a < b, f, g : [a, b] \rightarrow R such that
f is nondecreasing and right continuous and g is bounded, measurable and
Riemann-Stieltjes integrable with respect to f . Then\int 

(a,b]

g \mathrm{d}\Lambda f =

\int b

a

g \mathrm{d}f.

Proof. See [Whe15, Theorem 11.11]. #

Remark C.0.4. Note that, while the Riemann-Stieltjes integral is a gener-
alization of the Riemann integral, the Lebesgue-Stieltjes integral is not a
generalization of the Lebesgue integral, but rather a special case of it, since
it is a Lebesgue integral with respect to a particular measure.

Indeed, the Lebesgue integral is strictly more general than the Lebesgue-
Stieltjes integral, as there exist measures that are not of the form \Lambda f for
any Stieltjes function f . This can be readily observed by noting that any
Lebesgue-Stieltjes measure is finite on bounded intervals, but not all measures
satisfy this property (for instance the counting measure on the real line does
not).

Remark C.0.5. We will now demonstrate that the statement of the integration
by parts theorem integral_stieltjes_meas_by_parts that we have formalized
(see Remark 2.3.7) is a consequence of Theorem 2.3.1.

First of all, note that the integrals in the Lean statement are actually
Lebesgue-Stieltjes integrals, in fact f and g are Stieltjes functions, and the
notation \partial f.measure indicates the Lebesgue-Stieltjes measure associated with
f, which is defined in Mathlib. Moreover, f is continuous by the hypothesis

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/ForMathlib/ByParts.lean#L25-L28
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hf and g is of bounded variation on [a, b], since it is a Stieltjes function;
therefore, by Theorem C.0.2 f is Riemann-Stieltjes integrable with respect to
g; by Theorem 2.3.1 we also have that g is Riemann-Stieltjes integrable with
respect to f . These integrability conditions are a prerequisite to apply the
other theorems, and also serve to guarantee us that the integrals in the Lean
code are well-defined and do not take junk values. We now conclude using
Theorem C.0.3 (which is applicable, since g is a Stieltjes function and thus
bounded on [a, b] and measurable) to show that the integrals in the statement
of Theorem 2.3.1 are actually equal to Lebesgue-Stieltjes integrals. Therefore,
under our hypotheses, the statement of Theorem 2.3.1 is equivalent to the
one we have formalized.

This remark also serves as a proof of Corollary 2.3.6.



Appendix D

Convex functions

In this appendix we will present a straightforward inequality for convex
functions and introduce the concept of curvature measure associated with a
convex function.

First, let us establish the necessary notation.

Definition D.0.1. Let f : R \rightarrow R be a function. We denote by f \prime 
+ the right

derivative of f , whenever it is defined. Moreover, we denote by f \prime (\infty ) :=

\mathrm{l}\mathrm{i}\mathrm{m}t\rightarrow \infty f \prime 
+(t) the limit of the right derivative at infinity, whenever it exists.

Remark D.0.2. If f is convex, then the right derivative exists at every point.
Moreover, f \prime 

+ is nondecreasing, thus ensuring the existence of the limit f \prime (\infty ).
In Lean, we define f \prime (\infty ) as follows:

def derivAtTop (f : R \rightarrow R) : EReal :=

limsup (fun x \mapsto \rightarrow (rightDeriv f x : EReal)) atTop

where limsup ... atTop is the limsup of a function as the argument goes
to infinity, whereas rightDeriv f is the right derivative of f , which takes
the junk value 0 at the points where the right derivative does not exist.
This, in conjunction with the fact that the limsup always exists, guarantees
derivAtTop f to be well-defined for every function f : R \rightarrow R, regardless of
its properties.

Since in Lean there is currently no definition of right (or left) derivative,
we had to define it ourselves, based on the more general derivWithin, and
prove some API lemmas about it, including linearity lemmas, results about
the right derivative of convex functions and its relation with the slope.

Now we proceed to prove a simple inequality for convex functions that
involves f \prime (\infty ).

106

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/DerivAtTop.lean#L74-L76
https://github.com/leanprover-community/mathlib4/blob/56da879cb76abc5a23e18182c5b3d79f6be0e7aa/Mathlib/Analysis/Calculus/Deriv/Basic.lean#L129-L135
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Lemma D.0.3. Let f : R \rightarrow R be a convex function. Then for every x, y \in R

we have
f(x+ y) \leq f(x) + yf \prime (\infty ).

Proof. If y = 0 the inequality is trivial.
Let us assume that y > 0. Since the slope of a convex function is always

less than its right derivative at the right endpoint, we have that

f(x+ y) - f(x)

y
\leq f \prime 

+(x+ y) \leq \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

f \prime 
+(t) = f \prime (\infty ),

where the second inequality comes from the fact that the right derivative of a
convex function is nondecreasing.

Analogously, if y < 0 we have that

f(x+ y) - f(x)

y
\leq f \prime 

+(x) \leq \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

f \prime 
+(t) = f \prime (\infty ).

#

Remark D.0.4. Note that the same lemma holds true under less restrictive
assumptions on the convexity of f , for example see le_add_derivAtTop’’ in
the Lean code for a proof in the case where f is convex only on [0,+\infty ) and
x, y \geq 0.

Convex functions are also linked to Stieltjes functions. Indeed, if f is
convex, then its right derivative is defined everywhere, nondecreasing and
right continuous, therefore it is a Stieltjes function, and we can define the
Lebesgue-Stieltjes measure associated with it.

Definition D.0.5 (Curvature measure). Let f : R \rightarrow R be a convex function.
Then the Lebesgue-Stieltjes measure associated with the right derivative of f
is referred to as the curvature measure of f , and we denote it by \gamma f := \Lambda f \prime 

+
.

Remark D.0.6. The name curvature measure comes from the fact that if f is
twice differentiable then

\gamma f (A) =

\int 
A

f \prime \prime (x) \mathrm{d}x.

https://github.com/RemyDegenne/testing-lower-bounds/blob/924b9e460fe895b3cfdc0c7892e5d5878013756d/TestingLowerBounds/DerivAtTop.lean#L284-L289


Appendix E

Properties of f-divergences

In this appendix we list some additional properties of the f-divergences
defined in Section 3.1.

Proposition E.0.1. Let \scrX be a measurable space, \mu , \nu \in \scrM (\scrX ) and f a
convex function such that f(1) = 0. Then the following hold:

i) if \mu \ll \nu , we have that Df (\mu , \nu ) =
\int 
\scrX f

\biggl( 
d\mu 

d\nu 

\biggr) 
\mathrm{d}\nu ,

ii) if \mu \bot \nu , we have that Df (\mu , \nu ) = f(0)\nu (\scrX ) + f \prime (\infty )\mu (\scrX ),

iii) Df (\mu , \mu ) = 0.

Proof. ((i), (ii)) They follow trivially from Proposition B.0.1.
(iii) This is a special case of (i), using the fact that f(1) = 0. #

Proposition E.0.2. Let \scrX be a measurable space, \mu , \mu 1, \mu 2, \nu \in \scrM (\scrX ) finite
measures and f a convex function such that f(1) = 0. Then the following
hold:

i) if \mu 1 \ll \nu and \mu 2 \bot \nu , then Df (\mu 1 + \mu 2, \nu ) = Df (\mu 1, \nu ) + \mu 2(\scrX )f \prime (\infty ),

ii) Df (\mu , \nu ) = Df

\biggl( 
d\mu 

d\nu 
\cdot \nu , \nu 

\biggr) 
+ \mu \bot \nu (\scrX )f \prime (\infty ),

iii) if \mu 1 \ll \nu and \mu 2 \ll \nu , then Df (\mu 1+\mu 2, \nu ) \leq Df (\mu 1, \nu )+\mu 2(\scrX )f \prime (\infty ),

iv) Df (\mu 1 + \mu 2, \nu ) \leq Df (\mu 1, \nu ) + \mu 2(\scrX )f \prime (\infty ).

Proof. (i) From Proposition B.0.1 it follows that
d(\mu 1 + \mu 2)

d\nu 
=

d\mu 1

d\nu 
+

d\mu 2

d\nu 
=

d\mu 1

d\nu 
\nu -a.e., and (\mu 1 + \mu 2)\bot \nu = \mu 1\bot \nu + \mu 2\bot \nu = \mu 2. Therefore, by definition of

f-divergence we have

Df (\mu 1 + \mu 2, \nu ) =

\int 
\scrX 
f

\biggl( 
d\mu 1 + \mu 2

d\nu 

\biggr) 
\mathrm{d}\nu + f \prime (\infty )(\mu 1 + \mu 2)\bot \nu (\scrX )
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=

\int 
\scrX 
f

\biggl( 
d\mu 1

d\nu 

\biggr) 
\mathrm{d}\nu + f \prime (\infty )\mu 2(\scrX )

= Df (\mu 1, \nu ) + \mu 2(\scrX )f \prime (\infty ).

(ii) This is an immediate consequence of (i).
(iii) From Lemma D.0.3 we have that for every x \in \scrX 

f

\biggl( 
d\mu 1

d\nu 
(x) +

d\mu 2

d\nu 
(x)

\biggr) 
\leq f

\biggl( 
d\mu 1

d\nu 
(x)

\biggr) 
+

d\mu 2

d\nu 
(x)f \prime (\infty ),

moreover \mu 1 + \mu 2 \ll \nu , therefore

Df (\mu 1 + \mu 2, \nu ) =

\int 
\scrX 
f

\biggl( 
d\mu 1 + \mu 2

d\nu 

\biggr) 
\mathrm{d}\nu 

=

\int 
\scrX 
f

\biggl( 
d\mu 1

d\nu 
+

d\mu 2

d\nu 

\biggr) 
\mathrm{d}\nu 

\leq 
\int 
\scrX 
f

\biggl( 
d\mu 1

d\nu 

\biggr) 
\mathrm{d}\nu +

\int 
\scrX 

d\mu 2

d\nu 
f \prime (\infty ) \mathrm{d}\nu 

= Df (\mu 1, \nu ) + \mu 2(\scrX )f \prime (\infty ).

(iv) Using the Lebesgue decomposition (Theorem 2.2.3) we have that

Df (\mu 1 + \mu 2, \nu ) = Df (
d\mu 1

d\nu 
\cdot \nu + \mu 1\bot \nu +

d\mu 2

d\nu 
\cdot \nu + \mu 2\bot \nu , \nu )

By (i) = Df (
d\mu 1

d\nu 
\cdot \nu +

d\mu 2

d\nu 
\cdot \nu , \nu ) + \mu 1\bot \nu (\scrX )f \prime (\infty ) + \mu 2\bot \nu (\scrX )f \prime (\infty )

By (iii) \leq Df (
d\mu 1

d\nu 
\cdot \nu , \nu ) +

\biggl( 
d\mu 2

d\nu 
\cdot \nu 
\biggr) 
(\scrX )f \prime (\infty ) + \mu 1\bot \nu (\scrX )f \prime (\infty ) + \mu 2\bot \nu (\scrX )f \prime (\infty )

By (i) = Df (\mu 1, \nu ) +

\biggl( 
d\mu 2

d\nu 
\cdot \nu + \mu 2\bot \nu 

\biggr) 
(\scrX )f \prime (\infty )

= Df (\mu 1, \nu ) + \mu 2(\scrX )f \prime (\infty ).

#


	Introduction
	Notation
	Interactive Theorem Provers
	Lean 4
	Reading Lean code
	Logical foundations of Lean
	Mathlib
	Why proof assistants?

	Preliminary Notions
	Transition kernels
	Lebesgue Decomposition
	Generalized integration by parts

	Information divergences
	f-divergences
	Kullback-Leibler divergence
	Hellinger and Rényi divergences

	Hypothesis Testing
	Risk
	Binary risk and statistical information

	Data Processing Inequality
	DPI for measurable functions
	DPI for kernels in standard Borel spaces
	DPI in general spaces
	Consequences of the DPI

	Conclusions
	Appendices
	Properties of kernel operations
	Lebesgue decomposition
	Riemann-Stieltjes integral
	Convex functions
	Properties of f-divergences

