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Abstract

Gravitational potential energy is the energy an object possesses due to its position in
a gravitational field. In astrophysics, this energy plays a fundamental role in various
processes, from star formation to regulating the maximum luminosity an accreting
object, such as a black hole, can emit before radiation pressure counteracts gravity
and slows further accretion. It also governs the dynamics of stars within galaxies.
In this thesis, we explore the key aspects of gravitational energy in astrophysical
phenomena. Chapter 1 focuses on the theoretical foundation, covering Newton’s
laws of motion and the law of universal gravitation. Chapter 2 applies these
principles to astrophysical contexts, as discussed earlier.



Sommario

L’energia potenziale gravitazionale è l’energia che un oggetto possiede a causa della
sua posizione in un campo gravitazionale. In astrofisica, questa energia gioca un
ruolo fondamentale in vari processi, dalla formazione stellare alla regolazione della
massima luminosità che un oggetto in accrescimento, come un buco nero, può emet-
tere prima che la pressione di radiazione contrasti la gravità e rallenti ulteriormente
l’accrescimento. Governa anche la dinamica delle stelle all’interno delle galassie. In
questa tesi, esploreremo i principali aspetti dell’energia gravitazionale nei fenomeni
astrofisici. Il Capitolo 1 si concentra sulle fondamenta teoriche, trattando le leggi
del moto di Newton e la legge di gravitazione universale. Il Capitolo 2 applica
questi principi a contesti astrofisici, come discusso in precedenza.
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1 Theoretical background

1.1 Historical background on gravity
Isaac Newton (1642–1727), arguably the greatest of any scientific mind in history,
was born on Christmas Day in the year of Galileo’s death. At age 18, Newton en-
rolled at Cambridge University and subsequently obtained his bachelor’s degree. In
the two years following the completion of his formal studies, and while living at home
in Woolsthorpe, in rural England, away from the immediate dangers of the Plague,
Newton engaged in what was likely the most productive period of scientific work
ever carried out by one individual. During that interval, he made significant dis-
coveries and theoretical advances in understanding motion, astronomy, optics, and
mathematics. Although his work was not published immediately, the Philosophiae
Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy ),
now simply known as the Principia , finally appeared in 1687 and contained much
of his work on mechanics, gravitation, and the calculus. The publication of the
Principia came about largely as a result of the urging of Edmond Halley, who paid
for its printing. Another book, Optiks , appeared separately in 1704 and contained
Newton’s ideas about the nature of light and some of his early experiments in optics.
Although many of his ideas concerning the particle nature of light were later shown
to be in error, much of Newton’s other work is still used extensively today.
Today, classical mechanics is described by Newton’s three laws of motion, along
with his universal law of gravity . Outside of the realms of atomic dimensions,
velocities approaching the speed of light, or extreme gravitational forces, Newtonian
physics has proved very successful in explaining the results of observations and ex-
periments.
We will introduce the Newtonian mechanics starting by the Newton’s laws of motion
and then pass to the Newtonian gravity.

1.2 Newton’s Laws of motion
Newton’s laws of motion, in the rather obscure language of Principia, takes the
following form:

1. The law of inertia. An object at rest will remain at rest and an object in
motion will remain in motion in a straight line at a constant speed unless
acted upon by an external force. To establish whether an object is actually
moving, a reference frame must be established. Non inertial reference frames
are accelerated with respect to inertial frames. The first law may be restated
in terms of the momentum of an object, p = mv, where m and v are mass
and velocity, respectively. Thus Newton’s first law may be expressed as “the
momentum of an object remains constant unless it experiences an external
force”.
The second law is actually a definition of the concept of force:

2. The net force (the sum of all forces) acting on an object is proportional to
the object’s mass and its resultant acceleration. If an object is experiencing n
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Figure 1: Newton’s third law.

forces, then the net force is given by

Fnet =
n∑

i=1

Fi = ma. (1.1)

However, assuming that the mass is constant and using the definition a ≡ dv
dt

,
Newton’s second law may be expressed as

Fnet = m
dv

dt
=

d(mv)

dt
=

dp

dt
; (1.2)

the net force on an object is equal to the time rate of change of its momentum,
p. Fnet =

dp
dt

actually represents the most general statement of the second law,
allowing for a time variation in the mass of the object.

3. For every action there is an equal and opposite reaction. In this law, action and
reaction are to be interpreted as forces acting on different objects. Consider
the force exerted on one object (object 1) by a second object (object 2), F12.
Newton’s third law states that the force exerted on object 2 by object 1, F21,
must necessarily be of the same magnitude but in opposite direction (see Fig.
1). Mathematically the third law can be represented as

F12 = −F21 (1.3)

1.3 Newtonian gravity
Classical gravity, which is invariably the dominant force in celestial dynamic systems,
was first correctly described in Newton’s Principia. According to Newton, any two
point objects exert a gravitational force of attraction to each other. This force
is directed along the straight line joining the two objects, is directly proportional
to the product of their masses, and is inversely proportional to the square of the
distance between them. Consider two point objects of mass m1 and m2 that are
located at position vectors r1 and r2, respectively. The gravitational force f12 that
mass m2 exerts on mass m1 is written

f12 = Gm1m2
r2 − r1
|r2 − r1|3

(1.4)
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The gravitational force f21 that mass m1 exerts on mass m2 is equal and op-
posite: f21 = -f12. Here the constant of proportionality G, is called the universal
gravitational constant and takes the value:

G = 6.673× 10−11 m3kg−1s−2.

1.4 Potential theory
Much of the mass of a galaxy resides in stars. Considering that a typical galaxy
contains ≈ 1011 stars, the task of compute the gravitational potential of such a large
quantity of stars is not practicable if we simply add the point-mass potentials of
all the stars together. For most purposes it is sufficient to model the potential by
smoothing the mass density in stars on a scale that is small compared to the size of
the galaxy, but large compared to the mean distance between stars.
Gravitational potential energy or just gravitational energy can be derived
from Newton’s laws and its universal law of gravity. Our goal is to calculate the force
F(x) on a particle of mass ms at a position x that is generated by the gravitational
attraction of a distribution of mass ρ(x′). Considering the small mass contributions
caused by the small volumes δ3x′ in x’:

δF(x) = Gms
x′ − x

|x′ − x|3
δm(x′) = Gms

x′ − x

|x′ − x|3
ρ(x′)d3x′ (1.5)

to the overall force from each small element of volume d3x′ located at x′.
Thus

F(x) = msg(x) where g(x) ≡ G

ˆ
x′ − x

|x′ − x|3
ρ(x′)d3x′ (1.6)

is the gravitational field, the force per unit mass.
If we define the gravitational potential Φ(x) by

Φ(x) ≡ −G

ˆ
ρ(x′)

|x′ − x|
d3x′ (1.7)

And notice that:
∇x

(
1

|x′ − x|

)
=

x′ − x

|x′ − x|3
(1.8)

We can write g as:

g(x) = ∇x

ˆ
Gρ(x′)

|x′ − x|
d3x′ = −∇Φ (1.9)

The potential is useful because is a scalar field that is easier to visualize than the
vector gravitational field but contains the same information.
If we take the divergence of (1.6), we find

∇ · g(x) = G

ˆ
∇x

(
x′ − x

|x′ − x|3

)
ρ(x′)d3x′ (1.10)
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We have that
∇x ·

(
x′ − x

|x′ − x|3

)
= 0 for x ̸= x′ (1.11)

Therefore, any contribution to the integral of equation (1.7) must come from the
point x’ = x and we may restrict the volume of integration to a small sphere of
radius h centered on this point. Since for sufficiently small h, the density will be
almost constant through this volume, we can take out ρ(x) out of the integral. The
remaining terms of the integrand, after a few steps and applying the divergence
theorem1 can be arranged as follows:

∇ · g(x) = −Gρ(x)
ˆ
|x′−x|=h

(x′ − x)

|x′ − x|3
· d2S′ (1.12)

Now on the sphere |x′ − x| = h we have d2S′ = (x′ − x)hd2Ω, where d2Ω is a small
element of solid angle. Hence equation (1.9) becomes

∇ · g(x) = −Gρ(x)

ˆ
d2Ω = −4πGρ(x). (1.13)

If we substitute equation (1.6) for ∇ · g, we obtain Poisson’s equation relating
the potential Φ to the density ρ;

∇2Φ = 4πGρ. (1.14)

Since g is determined from the gradient of a potential, the gravitational field is
conservative, that means, the work done against gravitational forces in moving two
stars from infinity to a given configuration is independent of the path along which
they are moved, and is defined to be the potential energy of the configuration.
Similarly, the work done against gravitational forces in assembling an arbitrary
continuous distribution of mass ρ(x) in independent of the details of how the mass
distribution was assembled, and is defined to be equal to the potential energy of
the mass distribution. An expression for the potential energy can be obtained by
the following argument. Suppose that some of the mass is already in place so that
the density and potential are ρ(x) and Φ(x). If we now bring in an additional small
mass δm from infinity to position x, the work done is δmΦ(x). Thus, if we add a
small increment of density δρ(x), the change in potential energy is

δW =

ˆ
δρ(x)Φ(x)d3x (1.15)

According to Poisson’s equation the resulting change in potential δΦ satisfies ∇2(δΦ) =
4πG(δρ), so

δW =
1

4πG

ˆ
Φ∇2(δρ)d3x. (1.16)

Using the divergence theorem, we may write this as

δW =
1

4πG

ˆ
Φ∇(δΦ) · d2S− 1

4πG

ˆ
∇Φ · ∇(δΦ)d3x, (1.17)

1The divergence theorem states that
´
V
∇ · F dV =

¸
∂V

F · dS
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where the surface integral vanishes because Φ ∝ r−1, |∇δΦ| ∝ r−2 as r → ∞, so the
integrand ∝ r−3 while the total surface area ∝ r2. But ∇Φ·∇(δΦ) = 1

2
δ(∇Φ·∇Φ) =

1
2
δ|(∇Φ)|2. Hence

δW = − 1

8πG
δ

(ˆ
|∇Φ|2d3x

)
. (1.18)

If we now sum up all of the contributions δW , we have a simple expression for the
potential energy,

W = − 1

8πG

ˆ
|∇Φ|2. (1.19)

To obtain an alternative expression for W, we again apply the divergence theorem
and replace ∇2Φ by 4πGρ to obtain

W =
1

2

ˆ
ρ(x)Φ(x)d3x. (1.20)

1.5 Spherical systems

Newton’s theorems

Newton proved two results that enable us to calculate the gravitational potential of
any spherically symmetric distribution of matter easily:

• Newton’s first theorem A body that is inside a spherical shell of matter
experiences no net gravitational force from that shell.

• Newton’s second theorem The gravitational force on a body that lies outside
a spherical shell of matter is the same as it would be if all the shell’s matter
were concentrated into a point at its center.

An important corollary of Newton’s first theorem is that the gravitational potential
inside an empty spherical shell is constant because ∇Φ = −g = 0. Thus we may
evaluate the potential Φ(r) inside the shell by calculating the integral expression
(1.4) for r located at any interior point. The most convenient place for r is the
center of the shell, for then all points on the shell are at the same distance R, and
one immediately has

Φ = −GM

R
(1.21)

From Newton’s first and second theorems, it follows that the gravitational attrac-
tion of a spherical density distribution ρ(r′) on a unit mass at radius r is entirely
determined by the mass interior to r :

F(r) = −GM(r)

r2
êr, (1.22)

where
M(r) = 4π

ˆ r

0

ρ(r′)r′2dr′. (1.23)
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An important property of a spherical matter distribution is its circular speed vc(r),
defined to be the speed of a particle of negligible mass (a test particle) in a circular
orbit radius r. We may readily evaluate vc by equating the gravitational attraction
|F| from equation (1.19) to the centripetal acceleration v2c/r:

v2c = r|F| = r
dΦ

dr
=

GM(r)

r
. (1.24)

Another important quantity is the escape speed ve defined by2

ve(r) ≡
√

2|Φ(r)|. (1.25)

A star at r can escape from the gravitational field represented by Φ only if it has
a speed at least great as ve(r), for only then does its (positive) kinetic energy 1

2
v2

exceed the absolute value of its (negative) potential energy Φ. The escape at r
depends on the mass both inside and outside r.

1.6 Virial theorem for a self-gravitating system
What is a self-gravitating system? is a system in which each part of the system
moves under the influence of the gravitational field generated by all the other parts
of the system. If the system consist in more that two objects the equations of motion
cannot in general be solved analytically. Given some initial values the, the orbits3

can, of course be found by numerical integration, but this does not tell us anything
about the general properties of all possible orbits. The only integration constant
available for an arbitrary system are the total momentum, angular momentum and
energy. In addition to these, it is possible to derive certain statistical results like the
virial theorem4. It concerns time averages only, but does not say anything about
the actual state of the system at some specified moment.
Suppose we have a system of n points masses mi with a radius vector ri and velocities
ṙi. We define a quantity A (the "virial" of the system) as follows:

A =
n∑

i=1

miṙi · ri. (1.26)

The time derivative of this is

Ȧ =
n∑

i=1

(miṙi · ṙi +mir̈i · ri). (1.27)

The first term equals twice the kinetic energy of the ith particle, and the second term
contains a factor mir̈i which according to Newton’s laws, equals the force applied
to the ith particle. Thus we have

Ȧ = 2K +
n∑

i=1

Fi · ri, (1.28)

2This result is correct only if the potential Φ(r) → 0 as r → ∞ we have assumed this so far for
systems with very extended mass distributions other zero points may be necessary

3Due to the limited length of this work we could not introduce the orbits inside a system
4Proof of the virial theorem taken from the text book "Fundamental Astronomy"
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where K is the total kinetic energy of the system. If
〈
x
〉

denotes the time average
x in the time interval

[
0, τ

]
, we have

〈
Ȧ
〉
=

1

τ

ˆ τ

0

Ȧdt =
〈
2K

〉
+

〈
n∑

i=1

Fi · ri

〉
. (1.29)

If the system remains bound i.e. none of the particles escapes, all ri’s as well as all
velocities will remain bound. In such case, A does not grow without limit, and the
integral of the previous equation remains finite. When the time interval becomes
longer (τ → ∞),

〈
Ȧ
〉

approaches zero, and we get

〈
2K

〉
+

〈
n∑

i=1

Fi · ri

〉
= 0. (1.30)

This is the general form of the virial theorem. If the forces are due to mutual
gravitation only, they have the expressions

Fi = −Gmi

n∑
i=1,j ̸=i

mj
ri − rj
r3ij

, (1.31)

where rij = |ri − rj|. The latter term in the virial theorem is now

n∑
i=1

Fi · ri = −G
n∑

i=1

n∑
i=1,j ̸=i

mimj
ri − rj
r3ij

· ri = −G
n∑

i=1

n∑
j=i+1

mimj
ri − rj
r3ij

· (ri − rj),

(1.32)
where the latter form is obtained by rearranging the double sum, combining the
terms

mimj
ri − rj
r3ij

· ri (1.33)

and
mjmi

rj − ri
r3ji

· rj = mimj
ri − rj
r3ij

· (−rj). (1.34)

Since (ri − rj) · (ri − rj) = r2ij the sum reduces

−G

n∑
i=1

n∑
j=i+1

mimj

rij
= W (1.35)

Where W is the potential energy of the system. Thus the virial theorem becomes
simply5 〈

K
〉
= −1

2

〈
W

〉
(1.36)

The following image illustrates how the virial theorem in its simplest form allows us
to derive fundamental physical properties of self-gravitating stellar systems, such as
their negative specific heat and their slow collapse as a consequence of "gravitational
evaporation" of stars, finally leading to the so-called gravothermal catastrophe, one
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Figure 2: Virial plane for self-gravitating systems. The straight line VT, in
black, represents, the equilibrium configuration of the system. The parallel lines in
colors represents the conservation of the total energy. We can see from the plot that
only E ⩽ 0 can be at equilibrium, because they are the only ones that intercept the
line VT. This graphic is a personal adaptation by professor Luca Ciotti (University
of Bologna), plotted by Claudia Crastolla (2022)

of the most important concepts for understanding the dynamical evolution of glob-
ular clusters.
No virialized states exist for positive values of E. Self-gravitating systems are viri-
alized if and only if its representative point is placed on the virial theorem line
K = |W |

2
like in Figure 2. On the same plane its drawn a family of straight lines

representing energy conservation K = |W | + E. If a system evolves at a constant
E, then its representative point can only move on the line fixed by the initial condi-
tions. Obviously, the line K = |W | represents systems of zero total energy, parallel
line above represent unbound systems, while parallel lines below represent systems
with total negative energy. The first important consequence that can be obtained by
inspection of Figure 2 is that only systems with total negative energy have a chance
of being virialized, as only the constant energy lines of this family have intersections
with the VT line. In practice, suppose we have a stellar system with given initial
conditions, so that we can determine the initial position of its representative point in
the virial plane. If the point is on the VT line, then the system is in equilibrium and,
if the equilibrium is stable, the point will remain there forever. If the total energy
is positive and energy losses are forbidden, the point will necessarily move on its
energy conservation line in the equation K = |W |+E without having the possibility
of virializing, as no intersections can occur with the VT line. Finally, if the total
initial energy is negative, one possibility –compatible with energy conservation – is
that the point moves and finally stops (after the phase of violent relaxation) on the
VT line at the position consistent with its negative total energy. In Figure 2 we can
see the violet path indicates a displacement of a auto-gravitating system through
different states of equilibrium. We can see that arising the temperature (decrease
in gravitational energy), the total energy of the system decreases, for this reason

5The scalar virial theorem
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self-gravitating systems are to be said that have negative specific heat capacity.

2 Gravitational energy in astrophysics and its ap-
plications

2.1 Globular clusters and gravothermal catastrophe
A globular cluster is a system of stars gravitationally bound. As we know, in a
globular cluster there is a phenomena called gravitational evaporation in which the
lighter stars that have v > ve "evaporate" from the system, this phenomena comes
from a series of interactions at high impact parameter with other stars in which
for every collision the star gains a little quantity of kinetic energy T until it over-
comes the energy of the gravitational potential Φ. In this case, the stars that escape
through gravitational evaporation have a total energy (E = T −Φ) that is very close
to zero (T ∼ Φ), when this happens, the systems starts losing stars, it contracts a
little bit and stars move faster. When the density of the central regions is ∼ 700
times higher than the average density, the central region starts to separate from the
outer regions. If we look at the graphic in Figure 2 and suppose we start with a
virialized system at point A and assume that a fraction of its kinetic energy is lost
because for some reason is ejected carrying away its kinetic energy (such in case of
gravitational evaporation) so that T is reduced and |W | remains almost unaffected.
Graphically this is represented by the arrow from point A to point B, in practice
we cooled the system at a fixed W. The system is now out of the equilibrium and
its point cannot stay at point B if the system is virialized the only place possible in
the virial plane is at point C corresponding to a more concentrated configuration
and a higher "temperature". In other words we can say that the system cooled, but
after virialization the self-gravity finally heated it to a greater temperature than the
initial one. What we have just descrived is the the physical basis of the phenomenon
of gravothermal catastrophe occurring in globular clusters.The progressive contrac-
tion of their inner regions associated with the continuous ejection of low-mass stars
produce the tendency toward equipartition6.

2.2 The formation of protostars and Jeans criterion
We will briefly study the birth of stars. The initial state is, roughly speaking, a gas
cloud that begins to collapse due to its own gravity. If the mass of the cloud is high
enough, its potential energy exceeds the kinetic energy and the cloud collapses.
From the virial theorem we can deduce that the potential energy must be at least
twice the kinetic energy. This provides a criterion for the critical mass necessary for
the cloud to collapse. This criterion was first suggested by Sir James Jeans in 1902.

6Means that each component of the system have the same kinetic energy and different potential
energy
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Jeans Criterion

Despite many successes, important questions remain concerning how stars change
during their lifetimes. One area where the picture is far from complete is in the
earliest stage of evolution, the formation of prenuclear-burning objects known as
protostars from interstellar molecular clouds. If globules and cores in molecular
clouds are the sites of star formation, what conditions must exist for collapse to
occur? Sir James Jeans (1877–1946) first investigated this problem in 1902 by con-
sidering the effects of small deviations from hydrostatic equilibrium. Although sev-
eral simplifying assumptions are made in the analysis, such as neglecting effects due
to rotation, turbulence, and galactic magnetic fields, it provides important insights
into the development of protostars. The virial theorem,

2K +W = 0, (2.1)

describes the condition of equilibrium for a stable, gravitationally bound system. It
can be seen that the virial theorem arises naturally in the discussion of orbital mo-
tion, and can be invoked to estimate the amount of gravitational energy contained
within a star. The virial theorem may also be used to estimate the conditions neces-
sary for protostar collapse. If twice the total internal kinetic energy of a molecular
cloud (2K) exceeds the absolute value of the gravitational potential energy (|W |),
the force due to the gas pressure will dominate the force of gravity and the cloud
will expand. On the other hand, if the internal kinetic energy is too low, the cloud
will collapse. The boundary between these two cases describes the critical condition
for stability when rotation, turbulence, and magnetic fields are neglected. Assum-
ing a spherical cloud of constant density, the gravitational potential energy is
approximately

W ∼ −3

5

GM2
c

R2
c

(2.2)

Where Mc and Rc are the mass and the radius of the cloud respectively. We may
also estimate the cloud’s internal kinetic energy, given by

K =
3

2
NkT (2.3)

where N is the number of particles. But N is just

N =
Mc

µmH

(2.4)

where µ is the mean molecular weight. Now, by the virial theorem, the condition
for collapse (2K < |W |) becomes

3MckT

µmH

<
3

5

GM2
c

Rc

(2.5)

The radius may be replaced by using the initial mass density of the cloud, ρ0,
assumed here to be constant throughout the cloud

Rc =

(
3Mc

4πρ0

)1/3

(2.6)
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After substitution into Eq.(2.5), we may solve for the minimum mass necessary to
initiate the spontaneous collapse of the cloud. This condition is know as the Jeans
criterion:

Mc > Mj (2.7)

where

Mj ⋍

(
5kT

GµmH

)3/2(
3

4πρ0

)1/2

(2.8)

is called the Jeans mass. A cloud will collapse only if its mass is larger than the
Jeans mass.

2.3 Accretion as a source of energy
For the nineteenth century physicists, gravity was the only conceivable source of
energy in celestial bodies, but gravity was inadequate to power the Sun for its known
lifetime. In contrast, at the beginning of the twenty-first century it is to gravity that
we look to power the most luminous objects in the Universe, for which the nuclear
sources of the stars are wholly inadequate. The extraction of gravitational potential
energy from material which accretes on to a gravitating body is now known to be
the principal source of power in several types of close binary systems, and is widely
believed to provide the power supply in active galactic nuclei and quasars. This
increasing recognition of the importance of accretion has accompanied the dramatic
expansion of observational techniques in astronomy, in particular the exploitation of
the full range of the electromagnetic spectrum from the radio to X-rays and γ-rays.
At the same time, the existence of compact objects has been placed beyond doubt
by the discovery of the pulsars, and black holes have been given a sound theoretical
status. Thus, the new role for gravity arises because accretion on to compact objects
is a natural and powerful mechanism for producing high-energy radiation.

Black holes and Eddington luminosity

Black holes (BH) represent the ultimate degree of compactness to which a stellar
configuration can evolve. Already at the end of the 18th century Laplace showed
that a sufficiently massive body would prevent the escape of light from its surface.
According to classical mechanics, the escape velocity from a body of radius R and
mass M is

ve =

√
2GM

R
(2.9)

This is greater than the speed of light, if the radius is smaller than the critical radius

RS
7 =

2GM

c2
(2.10)

The properties of black holes have to be studied on the basis of the general theory
of relativity, which is beyond the scope of this work. A black hole is black because
light undergoes a gravitational redshift. The photon, being redshifted infinitely has
energy and λ → 0.

7Schwarzschild radius
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Eddington luminosity

The Eddington luminosity is the maximum luminosity that a star, or in this case, a
black hole, can achieve where the outward force of radiation pressure is balanced by
the inward force of gravity. This concept is named after the British astrophysicist
Sir Arthur Eddington. We can make some assumptions to make the calculation of
this luminosity:

• Spherically symmetric accretion

• Optically thin regime

• LBH(ν) = LBH · f(ν)8

Let’s consider the flux, i.e the number of ergs per unit frequency passing through
the surface per second.

S(ν) =
LBH(ν)

4πr2
(2.11)

And consider the number of photons:

LBH(ν)

4πr2 · hν
(2.12)

We know that the energy of a photon is Ephoton = pc, where p = hν
c

. The momentum
carried by photons emitted from the central regions, per unit area per second, is
proportional to the energy flux and can be expressed as the following radiation
pressure:

Pphoton =
LBH(ν)

4πr2c
(2.13)

where LBH(ν) is the luminosity of the black hole at frequency ν, and r is the
radial distance from the source.
A "wind" of electromagnetic impulse. But we also have matter that is falling into
the BH, let’s suppose is pure ionized hydrogen, so heavy protons and light electrons.
What does this EM wind do? it transfers a bit of impulse to protons and electrons.
The impulse hits the electrons only,9 we have for the cross section of the electron:

σT = 6.65 · 10−25cm2 (2.14)

Let’s suppose that our EM "wind" is going to hit the electrons, how much of impulse
is transmitted? Our gas has an electron number ne, i.e the number of electrons per
unit volume at a distance r from the center. The answer to the question is

LBH(ν)neσT

4πr2c
(2.15)

And the total impulse per unit time is given from the sum of all impulses transferred
at all frequencies

LBHf(ν)ne(r)σT

4πr2c
(2.16)

8Where
´∞
0

LBH(ν)dν = LBH and
´∞
0

f(ν)dν = 1 it’s the SED
9because σT ∝ m−2 and we know that mp is ∼ 2000 times me
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that integrated at all ν gives us

Frad =
LBHne(r)σTCk

4πr2c
(2.17)

This equation gives us the quantity of impulse per unit time that is deposited in
the element of volume. The CK factor is the cross section of Klein-Nishina10, that
is when the cross section depends on ν. Eddington’s idea was that when the force
with which the wind presses equals the force of gravity, maybe the matter stops
falling. We have a deceleration, exceeding Eddington luminosity does not mean
that accretion stops, the effect is not instantaneous.
The force of gravity with which the BH pulls is

Fgrav =
−GMBH(neme + npmp)

r2
(2.18)

gravity pulls electrons and protons, instead the pressure is applied on electrons only.
Having neutral H we have ne ∼ np. But as mp ∼ 2000 times me we will consider
gravity that the volume undergoes is applied only to np. Finally we have the total
force:

Ftot =
1

r2

(
−GMBHnemp +

LBHneσT

4πc

)
(2.19)

We rewrite the Ftot as

Ftot =
−GMBHne(r)mp

r2

[
1− LBHneσT

4πr2c

r2

GMBHnemp

]
(2.20)

We are in optically thin regime. Now, we take the bracket and we put it equal
to zero, in doing so we have the critic luminosity, so when [...] is zero we have

Ledd =
4πcGmpMBH

σT

(2.21)

Exceeding the Eddington luminosity means that the gravity field is inverted at every
point. Being super-Eddington for some time is not forbidden11, is deceleration that
commands so the velocity slows down until is inverted outwards. We can see that
Ledd ∝ MBH , so a massive black hole can accrete large amounts of matter and emit
significant radiation until it exhausts its surrounding material.

2.4 Rotation curve in spiral galaxies and dark mat-
ter

Rotation curve of a galaxy is a property of the gravitational field. If we have a
system with cylindrical symmetry we will have a rotation curve. Let’s consider a

10If we consider QED we discover that the cross section is not independent of ν, so if we have
high energy photons we have CK , in this case we consider CK ∼ 1

11Is forbidden being always super-Eddington
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spiral galaxy in equilibrium and a test mass located at a point r from its center. We
remember equation for circular velocity

vc =

√
GM

r
=

√
|Φ| (2.22)

We see that this equation depends on the potential generated from the mass
distribution, the rotation curve vary depending on the specific area we are analyzing.
If we consider a spiral galaxy, we have different regimes to consider with their own
circular velocities generated:

• Point-like mass M: the simplest case we have the potential:

Φ(r) =
GM

r
(2.23)

and its angular velocity:

vc =

√
GM

r
(2.24)

We can see that vc ∝ 1√
r

and this kind of rotation curve is said to be Keple-
rian.

Figure 3

• Homogeneous sphere with constant density ρ(r), let’s consider Newton’s the-
orems seen in Chapter 1 and we imagine the sphere made of shells, the gravi-
tational field from all the shells is given by:

g = −GM(r)

r2
, M(r) = 4π

ˆ r

0

t2ρ(t)dt (2.25)

We have that the rotation curve of such a distribution is:

v =

√
GM(r)

r
(2.26)

We can see that is obviously not Keplerian. Because it does not only depends
from the distance from the center but also from how the mass distribution is
spread.

We have that in a spiral galaxy there is the bulge that we can approximate to a
homogeneous sphere as in equation (2.24). For the thin disk, things get complicated
because the rotation curve for a disk mass distribution is not easy to analyze because
inside a disk, the gravitational field at a distance r from the center not only depends
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from the mass that is inside r, but also from the mass that is outside r. We can
consider a surface density σ(r) that has a constant rotation curve. For distances
far away from the central regions we can consider the mass distribution as a point-
like mass and the curve is Keplerian. But, the rotation curves observed does not
present the Keplerian behavior, instead they present a flat pattern as seen in Figure
4 represented by the green line. Most of the stars in a typical spiral galaxy are in the

Figure 4: Credits: Prof. Richard Pogge from Ohio State University

inner 10 kpc or so. If stars provided all of its mass we would expect the following:

• The rotation speed should rise to a maximum speed in the inner parts.

• The rotation speed would then fall steadily with radius outside a radius of ∼
10 kpc (i.e., Keplerian), since most of the mass in stars is inside of our orbit
beyond that distance.

But, the observations show that the rotation speed stays roughly constant (a "flat
rotation curve") at large radii. Higher speeds at large radii mean you need to have
more mass at large radii than is observed in the stars and gas alone.
Astronomers using doppler effect manage to measure the rotation speed to observe
the rotation curve of the galaxy and verify if that matches the empiric one. In
particular it was Vera Rubin that studied the empiric rotation curves and observed
that they raise and then they remain flat. This gives us a hint of the presence of
some kind of matter that we are unable to observe, in fact Vera Rubin hypothesizes
that the galaxy is surrounded by a halo of dark matter (this theory was previously
hypothesized) with a density profile of ∼ R−2. This model however cannot work
properly because if we consider the disk of a spiral galaxy viewed face-on (let’s
suppose with no spiral arms) the brightness profile is described by an exponential
and its rotation curve rises and then remains flat. In the case of a disk mass
distribution, it is not possible to apply Newton’s theorems. We can observe however
inside the disk there is no need of dark matter because it follows the theoretical
rotation curve (flat). This occurs until ∼ 90% of the disk, after which the theoretical
rotation curve becomes Keplerian because when we are far away from the object
we can consider the gravitational field as it was produced from a point-like object.
Observing galaxies in HI, the part of the stars is microscopic with respect to the rest
of the galaxy, indeed there is a big amount of neutral hydrogen. Radio astronomers
discovered that the rotation curve of the clouds of HI remains flat, and therefore
there must be dark matter.
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