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Abstract in Italiano

Questa tesi, svolta in collaborazione con Unipol e il Dott. Riccardo Casalini,

esplora le basi teoriche e metodologiche della Singular Spectrum Analysis

(SSA) nel contesto dell’analisi e previsione delle serie temporali, con parti-

colare attenzione ai suoi punti di forza e limitazioni. Un obiettivo centrale

è valutare le prestazioni dell’SSA con dati reali, in particolare un dataset

di temperature mensili di Bologna. L’efficacia dell’SSA viene valutata con-

frontando le sue capacità di ricostruzione del segnale con l’analisi di Fourier e

confrontando la precisione delle previsioni con i modelli ARIMA tradizionali.

I risultati indicano un aumento della temperatura di circa 1,5°C a Bologna

dal 1980 al 2019 e identificano modelli ciclici chiave, inclusi cicli annuali,

semi-annuali (6 mesi) e quasi-annuali (11 mesi). L’integrazione dell’SSA

con i modelli SARIMA migliora ulteriormente le prestazioni previsionali, in

particolare mantenendo la tendenza verso inverni più caldi nei cinque anni

successivi al 2019 e migliorando i risultati del backtesting. Sebbene il ciclo

semi-annuale sia significativo, escluderlo dalla ricostruzione dell’SSA migliora

la precisione delle previsioni, poiché il SARIMA cattura più efficacemente

questo ciclo quando applicato ai residui.



Abstract in English

This thesis, developed in collaboration with Unipol and Dott. Riccardo

Casalini, investigates the theoretical and methodological foundations of Sin-

gular Spectrum Analysis (SSA) in the context of time series analysis and

forecasting, with a focus on its strengths and limitations. A central aim is

to assess SSA’s performance with real-world data, specifically a dataset of

monthly temperatures from Bologna. The effectiveness of SSA is evaluated

by comparing its signal reconstruction capabilities to Fourier analysis and

benchmarking its forecasting accuracy against traditional ARIMA models.

The results indicate a temperature rise of approximately 1.5°C in Bologna

from 1980 to 2019 and identify key cyclical patterns, including annual, semi-

annual (6 months), and near-annual (11 months) cycles. Integrating SSA

with SARIMA models further improves forecasting performance, particu-

larly by maintaining the trend of warmer winters in the five years after 2019,

while also enhancing backtesting results. Although the semi-annual cycle is

significant, excluding it from SSA reconstruction enhances prediction accu-

racy, as SARIMA more effectively captures this cycle when applied to the

residuals.





Introduction

Time series modeling is a challenging and stimulating field of research.

While it is tempting to model time series relying on simplistic assumptions,

such as linearity, normality, and data stationarity, it is common experience

that time series may exhibit a much more complex behavior emerging from

the non-linear interaction of the system components, the impact of exoge-

nous factors - external shocks, technological changes, policy shifts, changes in

consumer preferences, news, and unexpected announcements- measurement

errors and parameter time variation, to mention a few commonly experienced

issues.

Ideally, the optimal approach for modeling and forecasting would be a

method that can effectively handle both linear and nonlinear, stationary and

non-stationary time series. Singular Spectrum Analysis (SSA) is a technique

that meets all of these criteria.

The development of SSA is often credited to researchers in the physical

sciences, particularly Broomhead and King (1986), Vautard and Ghil (1989),

and Vautard et al. (1992). This technique has since gained popularity in

fields such as meteorology, biomechanics, and hydrology (Ghil et al. 2002,

Alonso et al. 2005, Marques et al. 2006). However, the foundational con-

cepts of SSA were previously outlined by Basilevsky and Hum (1979), who

argued that traditional frequency domain methods, such as Fourier decom-
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4 INTRODUCTION

position, may be less suitable for social systems due to their lack of regular

periodic behavior. They proposed that discrete Karhunen-Loeve analysis is

better suited for applications in the social sciences. Following its successful

use in the physical sciences, SSA has begun to gain traction in economics

and finance as well (see, for example, Thomakos et al. 2002, Hassani and

Zhigljavsky 2009, Hassani et al. 2009).

What sets SSA apart is its nonparametric approach to time series anal-

ysis, which integrates elements of classical time series analysis, multivariate

statistics, multivariate geometry, dynamical systems, and signal processing.

Although SSA incorporates certain probabilistic and statistical concepts, it

does not impose stringent assumptions such as stationarity of the series or

normality of residuals. This flexibility makes SSA particularly well-suited for

analyzing complex, real-world data. Furthermore, SSA’s strength lies in its

decomposition-based approach, which effectively extracts information from

the (auto)covariance structure of a time series.

The aim of this thesis conducted in collaboration with Unipol and Dott.

Riccardo Casalini, whose expertise and support have been crucial in guiding

the research and ensuring its practical relevance, is to examine the theoretical

and methodological aspects of SSA in the context of time series analysis and

forecasting, emphasizing its strengths and limitations. Additionally, we are

interested in assessing how this technique performs with real-world data. To

this end, the effectiveness of SSA is evaluated through its application to a

dataset of monthly temperatures in Bologna. To comprehensively assess this

technique, we compare the results of signal reconstruction using SSA with

those obtained from the established Fourier analysis, and we benchmark the

forecasting capabilities of SSA against traditional ARIMA models.

The structure of the thesis is as follows:
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The first chapter describes the underlying principles and methodology of

SSA. It provides an explanation of how the technique operates, including the

mathematical and computational frameworks involved. The chapter outlines

the basic SSA algorithm, detailing and commenting on each step. It also

delves into the concept of separability, which is crucial for parameter selec-

tion in SSA. This chapter addresses the challenges associated with parameter

selection and formally describes the SSA recurrent forecasting algorithm, dis-

cussing its principles and connections to Linear Recurrent Formulas (LRFs).

The second chapter explores the application of SSA for various tasks,

including trend detection at different resolutions, smoothing, noise reduc-

tion, extraction of seasonal components, pattern recognition in short time

series, and forecasting. These tasks underscore the core capabilities of SSA.

To demonstrate the functionality of the basic algorithm, we use computer-

generated time series and evaluate performance using metrics, residual di-

agnostics, and statistical tests. We compare the results obtained with SSA

to those from ARIMA models and Fourier analysis to assess relative effec-

tiveness. Additionally, we present an automatic hyperparameters selection

technique based on cross-validation to optimize the basic SSA algorithm.

In the third and final chapter, we present applications of the technique

using the dataset of monthly maximum temperatures in Bologna. We com-

pare the performance of SSA with automatically selected hyperparameters

against SSA where parameters were chosen using integrated tests in the ba-

sic algorithm. Additionally, we evaluate Fourier analysis on this dataset,

considering various numbers of coefficients, and test multiple ARIMA mod-

els. Finally, we investigate the impact of combining the two SSA variants

with ARIMA models, selected based on the residuals of each technique, to

determine if this combination improves forecasting performance.
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Chapter 1

SSA methodology and principles

1.1 Basic SSA

Basic SSA is a model-free tool for signal reconstruction and extraction

of its principal components. It decomposes the original series into the sum

of a small number of independent and interpretable components, such as

a slowly varying "trend", "oscillatory" components (perhaps with different

amplitudes), and structureless "noise", and approximates the original signal

by summing the components obtained excluding noise.

The basic version of SSA consists of four steps, which are performed as

follows. Consider a univariate stochastic process {xt}t∈N and suppose that

a realization of size N ∈ N from this process is available XN = [x1, ..., xN ]

Let L ∈ N such that 2 ≤ L ≤ N . Embedding can be regarded as a map-

ping operation that transfers a one-dimensional time series XN into the mul-

tidimensional series X1, ..., Xk with vectors Xi = [xi, xi+1, ..., xi+L−1]
T for

i = 1, 2, ..., K where K = N − L + 1. These vectors group together L time-

adjacent observations and are supposed to describe the local state of the

underlying process. Vectors Xi are called L-lagged vectors. The result of this

13



14 CHAPTER 1

step is the trajectory matrix (or, L-trajectory matrix).

X = [X1, ..., XK ] = (xij)
L,K
i,j=1.

Note that trajectory matrix X is a Henkel matrix, which means that all the

elements along the diagonal i+ j = α are equal for α ∈ [2, K +L]. The con-

struction of the trajectory matrix constitutes the first step of the algorithm,

called the embedding step. The sole (and very important) parameter of this

step is the window length (or, embedding dimension) L.

The second step, the SVD step, makes the Singular Values Decomposition

(SVD) of the trajectory matrix X and represents it as a sum of rank-one bi-

orthogonal elementary matrices. Denote by λ1, ..., λL the eigenvalues of the

(auto)-covariance matrix C = XXT of size L × L in decreasing order of

magnitude (λ1 ≥ ... ≥ λL ≥ 0). Set d = max(i, such that λi > 0) = rankX.

If we denote Vi = XTUi/
√
λi, then the SVD of the trajectory matrix can be

written as:

X = X1 + ...+ Xd, (1.1)

where Xi =
√
λiUiV

T
i (i = 1, .., d). The matrices Xi have rank 1; therefore

they are elementary matrices, Ui (in SSA literature they are called ’factor em-

pirical orthogonal functions’ or simply EOFs) and Vi (often called ’principal

components’) stands for the left and right singular vectors of the trajectory

matrix. The collection (
√
λi, Ui, Vi) is called the i-th eigentriple of the ma-

trix X,
√
λi (i = 1, .., d) are the singular values of the matrix X and the set

{
√
λi}di=1 is called the spectrum of the matrix X. If all the eigenvalues λi,

i = 1, ..., d, have multiplicity one, then the expansion (1.1) is uniquely de-

fined. The first two steps together are considered as the decomposition stage

of Basic SSA and are performed in the ssaBasic(x,L) 1 method of the class
1ssaBasic(x,L) requires an array x and a positive scalar L, representing the time series

and the Lags for the analysis.
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ssaBasic which we implemented on Matlab.

The next two steps form the reconstruction stage. The grouping step

corresponds to splitting the elementary matrices Xi into several groups and

summing the matrices within each group. Let I = {i1, ..., ip} be a group of

indices i1, .., ip. Then the matrix XI corresponding the group I is defined as

XI = Xi1 + ... + Xip and it is called the resultant matrix. The split of the

set of indices J = 1, .., d into the disjoint subsets I1, .., Im corresponds to the

representation

X = XI1 + ...+ XIm (1.2)

The procedure of choosing the sets I1, ..., Im is called the eigentriple grouping

and is made by grouping(obj,G) 2 method in the ssaBasic class. For given

group I the contribution of the component XI into the expansion (1.2) is

measured by the share of the corresponding eigenvalues
∑

i∈I λi∑d
i=1 λi

.

The last step transfers each resultant matrix into a time series, which is

an additive component of the initial series XN . If zij stands for an element of

a matrix Z, then the k-th term of the resulting series is obtained by averaging

zij over all i,j such that i+j = k+1. This procedure is called diagonal averag-

ing, or Hankelization. This step is implemented in the reconstruction(obj,r)3

method, which use the static method hankelization(Y)4. The result of the

Hankelization of a matrix Z is the Hankel matrix HZ, which is the trajectory

matrix corresponding to the series obtained as a result of the diagonal aver-

aging. Note that the Hankelization is an optimal procedure in the sense that

matrix HZ is the nearest to Z, with respect to the matrix norm, among all

Hankel matrices of size L×K. In this turn, the Hankel matrix HZ uniquely

2G is an array which indicate as we made the grouping, i.e. same number in array G

are collected in the same group.
3r is the number of leading singular values.
4Y is a matrix.
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defines the series by relating the value in the diagonals to the values in the

series. By applying the Hankelization procedure to all resultant matrix, we

obtain another expansion:

X = X̃I1 + ...+ X̃Im

where X̃Ii = HXIi . In this way we obtain a decomposition of the initial series

into m additive components

xn =
m∑
k=1

x(k)
n , n = 1, ..., N, (1.3)

where for each k the series x
(k)
n is the result of diagonal averaging of the

matrix XIk .

Note that decomposition and reconstruction are two complementary stages.

In addition, both the singular values decomposition and the diagonal average

steps have some optimality characteristics in terms of matrix operations. It

is important to note that these characteristics are independent of the true

data generating process.

Below we separately comment on each step of the Basic SSA algorithm

in detail.

1.1.1 Embedding

It is possible to go from a one-dimensional space to a multidimensional

space by using the delay embedding. This consists of decomposing the time

series in a sequence of lagged vectors, which arises from the the method of

delays [7]. The latter is a technique used in time series analysis to reconstruct

the underlying dynamics of a system from a single observed time series.

Definition 1.1.1. Let F : Rn → Rn be a vector field and x : R → Rn the
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solution of the initial value problem

ẋ(t) = F (x(t)), x(0) = x0.

Then ϕt(x0) = x(t) is the flow of the vector field F .

The method of delays is based on Takens’ theorem.

Theorem 1.1.1. Let M be a compact manifold of dimension m. For pairs

(F, v), F a smooth (i.e C2) vectorfield and v a smooth function on M , it is

a generic property that ΦF,v(y) : M → R2m+1, defined by

ΦF,v(y) = (v(y), v(ϕ1(y)), ..., v(ϕ2m(y))))
T

is an embedding, where ϕt is the flow of F .

Here v(y) corresponds to the value of a measurement made on the system

in a state given by y ∈ M .

In practice it is necessary to relate the above to a time series of measure-

ments made on the system:

v1, v2, ..., vi, vi+1, ...,

where vi = v(ϕi(y)). Clearly here we are dealing with sampled time series

for which the sampling interval need not correspond to the unspecified and

arbitrary interval implied by the time one map, ϕ1, utilized in the theorem.

The pratical implementation of this theorem is called the method of delays.

At this stage it is convenient to introduce some vocabulary. The space

which contains the image of ΦF,v will be called the embedding space and its

dimension the embedding dimension. We will denote the embedding dimen-

sion by L to emphasize the fact that it will not, in general, equal 2m + 1

since the dimension of M is not known a priori. Nevertheless, it is supposed
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that L ≤ 2m + 1 to satisfy the Whitney embedding theorem. In applying

the method of delays a useful concept is an "(L,J)-window" which , makes

visible L elements of the time series. When J = 1 the elements are con-

secutive, and when J > 1 there is an interval of J sample times between

each visible element. At any stage the elements visible in the (L,J)-window

constitute the components of a vector in the embedding space, RL. As the

time series is advanced step-wise through the window, a sequence of vectors

in the embedding space is generated. These form a discrete trajectory. To

represent this we use the notion

Xi = ΦF,v(ϕi(y)) = (vi, vi+J , ..., vi+(n−1)J)
T .

For Singular Spectrum Analysis, we select J = 1 and L ∈]1, N [. The number

of lagged vectors will depend on the embedding dimension as K = N−L+1.

Each lagged vector will have the form:

Xi = [xi, xi+1, ..., xi+L−1]
T , 1 ≤ i ≤ K.

The matrix that is built from the organization of the lagged vectors as X =

[X1, ..., XK ] = (xij)
L,K
i,j=1 is called the trajectory matrix and it contains the

complete record of patterns that have occurred within a window of size L.

The main characteristics of this matrix are both the rows and columns of X

are subseries of the original series, and xi,j = xi+j+1 where 1 ≤ i ≤ K and

1 ≤ j ≤ L. The last property implies that the anti-diagonals of the matrix

present the same values, and the matrix is symmetric with respect the main

diagonal. The behavior of this trajectory matrix is that of a Hankel matrix.

The process of embedding can be summarized as X = HXN , where H is the

Hankalization operator and the aim of this step is to discern the nature of

the time series XN underlying its dynamics. In fact, through embedding we

obtain the trajectory matrix used to calculate the (auto)-covariance matrix
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of the time series. Suppose that XN = {xn}Nn=1 is a stationary time series

C =
1

K
XXT =


γ0 γ1 · · · γL−1

γ1 γ0 · · · γL−2

...
...

...
...

γL−1 γL−2 · · · γ0


where γm = E[XnXn−m], m = 0, ...L − 1 is the lag-covariance matrix of X

for N that goes to +∞ . The construction of this matrix is crucial since

it plays a fundamental role in the study of the dynamics of time series. In

fact, analyzing the (auto)-covariance matrix, in particular its eigenvectors

and eigenvalues, we can individuate dynamics of XN that we won’t capture

from the original series.

Note that C is a symmetric Toeplitz matrix and a well known modification

of the basic SSA method is the Toeplitz SSA. This alternative technique

required that X is a stationary time series and the decomposition of the

trajectory matrix is obtain by the SVD of C. A special case of Toeplitz

matrices are the Circulant, which are the basis of the Circulant SSA. In

[5] is proved that this three version of SSA (Basic, Toeplitz and Circulant)

are asymptotically equivalent. The matrices involved in these alternative

methods have special properties, such as eigenvalues and eigenvectors of a

circulat matrix have a closed form related to the famous Fourier transform

[36].

1.1.2 Singular value decomposition

SVD is the core of Singular Spectrum Analysis. It enables the decom-

position of the time series into interpretable components, facilitating the

analysis, noise filtering, and reconstruction of time series with greater clarity

and precision.
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The Singular Value Decomposition arises from the problem of generalizing

the Spectral Theorem from symmetric matrices n×n to any m×n matrices

[34].

Theorem 1.1.2. Given a L×K matrix X ∈ RL×K of rank r ≤ min(L,K)

there exist orthogonal matrices U ∈ RL×L and V ∈ RK×K such that X is

factored in the form

X = UΣVT (1.4)

where Σ ∈ RL×K is an L×K diagonal matrix, partitioned in the form:

 Σr 0

0 0


where Σr is a square diagonal matrix in Rr×r: Σr = diag(σ1, σ2, ..., σr) with

positive diagonal entries called the singular values of X and arranged in de-

creasing order: σ1 ≥ σ2 ≥ ... ≥ σr > 0.

The orthogonal matrices U,V are not unique, but the singular values

σi are. U,V are orthogonal matrices then UTU = UUT = IL and VTV =

VVT = IK . The spaces spanned by the columns of the matrix U are referred

to as vertical spaces RL. These columns represent the principal directions in

which the data of the Hankel matrix are distributed. The spaces spanned

by the columns of the matrix V are referred to as horizontal spaces RK .

These columns represent the temporal patterns associated with the principal

directions. Denoting the columns of U by Ui, i = 1, 2, .., L, and the columns

of V by Vi, i = 1, 2, ..., K, (1.4) can be written as a sum of r rank-1 matrices:

X =
r∑

i=1

σiUiV
T
i = σ1U1V

T
1 + ...+ σrUrV

T
r (1.5)

and we also have

σiUi = XVi, σiVi = XTUi.
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This makes it possible to rank the vectors in the column space and row space

of X: the most important direction in the column space is U1, with scale σ1,

and is reached by applying X to the vector V1. The second most important

direction is U2, etc. (for more details see [3]).

V and U are the matrices of eigenvectors of XTX and XXT and the

corresponding non-zero eigenvalues are λi = σ2
i , 5 i = 1, 2, .., r. In fact, let

C = XXT we have

C = XXT = UΣVVTΣUT = UΣ2UT .

The same operation can be applied by assuming C = XTX. This leads to

XTX = VΣ2VT . With these operations it is clear how the singular values

and singular vectors of X are related to the eigenvalues and eigenvectors of

XXT and XTX. The SVD factors V, U could, in principle, be obtained by

solving the eigenvalue problems of XTX and XXT . However, in practice,

loss of accuracy can occur in squaring the matrix X [18].

After this introduction to the SVD, we discuss its application for rank

reduction of a matrix. The main characteristic of a low-rank matrix is that its

elements are not independent from each other. Because of this, the problem of

approximating one matrix by another, with lower rank, cannot be formulated

in a straightforward manner, as a least-squares problem [9]. Instead of a least-

square inversion, one can use SVD to calculate the low rank approximation

of a matrix. Associated with the SVD expansion (1.5), we define a family of

reduced-rank matrix Xk obtained by keeping only the first k < r terms in

the expansion:

Xk =
k∑

i=1

σiUiV
T
i = σ1U1V

T
1 + ...+ σkUkV

T
k . (1.6)

5XTX has full rank then it will be positive definite and its eigenvalues will be positive.
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This low-rank approximation is optimal with respect to the Frobenius norm.

Given X ∈ RL×K , the Frobenius norm of X is defined by

∥X∥F =

√√√√ L∑
i=1

K∑
j=1

|xi,j|2.

Theorem 1.1.3. For every L×K matrix X, rank target k ≥ 1, and rank-k

L×K matrix B,

∥X−Xk∥F ≤ ∥X−B∥F

where Xk is the rank-k approximation (1.6) derived from the SVD of X.

We have seen how the process of rank reduction can be completed by the

use of SVD. With this information it is possible to understand the princi-

ples that lay behind the rank reduction techniques for noise attenuation and

identifying time series components. These concepts are fundamental in the

application of SSA.

Given that the eigenvectors of X arise from the (auto)-covariance matrix

XXT the components that present the most coherency in the data will be

weighted by singular values with higher values. This way, the decomposition

of the trajectory matrix in its singular spectrum is very useful to identify

trends in the data. Also, given that the signal in the time series is correlated

between time lagged windows, it will be represented by the largest singular

values. Because of this, singular values with less weight can be identified

as noise. When singular values are equal, multiple directions in the data

have the same importance. This can imply several things: The data might

contain oscillatory components that are combinations of multiple frequencies

with the same energy, or, the data has intrinsic symmetries, resulting, for

example, by two or more principal components having the same variance.

Remark 1.1.1. The SVD of the trajectory matrices used in Basic SSA is
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closely related to Principal Component Analysis (PCA) in multivariate analy-

sis and the Karhunen Loeve (KL) decomposition in the analysis of stationary

time series [16].

1.1.3 Grouping

The purpose of the grouping step is the separation of time series’ additive

components. Next, we will discuss in detail the very important concept of

separability. For now let’s say that the aim of this step is to find several

groups I1, ..., Im such that the matrices XI1 , ...,XIm satisfy (1.2) and are

close to certain Hankel matrices. From the point of multivariate geometry,

we can consider the grouping step as a decomposition of the trajectory space

Ld = span{U1, ..., Ud} into the orthogonal sum of subspaces: Ld =
⊕m

k=1 L(k)

, where L(k) = span{Ui, i ∈ Ik}.

Since each matrix component in (1.1) is completely determined by the

corresponding eigentriple, we shall talk about grouping of the eigentriples

rather than grouping of the elementary matrices Xi , i = 1, ..., d.

Some characteristics of the trajectory matrix eigentriples may help to

make the proper grouping for extracting the principal components of the

series. Let’s see how.

As mentioned above, usually every harmonic component with different

frequency produces two eigentriples with close singular value because the

decomposition captures both the sine and cosine parts (except for frequency

f = 0.5 corresponds to the Nyquist. At this frequency, the sine and cosine

components are not distinct and can be represented by a single saw-tooth

singular vector [33]). Another useful insight is provided by checking breaks

in the eigenvalue spectra and by considering a slowly decreasing sequence of

singular values as a noise series. Therefore, explicit plateaux in the eigenvalue
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spectra prompts the ordinal numbers of the paired eigentriples.

Consider the time series

xt = A cos

(
2π

k

N
t− ϕ0

)
+B sin

(
2π

m

N
t

)
+ ϵ, (1.7)

where N = 1000, t ∈ [1, N ], k = 10, m = 4 · k, ϕ0 =
π
6
, A = 1, B = 0.5 and

ϵ = 0.2 · randn(1, N) ∼ N(0, σ2).

Figure 1.1: Leading 50 singular values of (1.7) the trajectory matrix and

their relative cumulative contribution to the overall variance of the signal.

Figure 1.1 shows the first 50 singular values of the time series (1.7) and

their contribution to the signal variance. The two evident eigentriples pairs

1-2, 3-4, whose singular values are close, correspond to the two harmonic

components of {xt}Nt=1, i.e. cosine function and sine function respectively.

The break in the singular values spectra at the 4th singular value allows the

first four singular values to be considered to reconstruct the signal.
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An analysis of the pairwise scatterplots of the left singular vectors, associ-

ated to close singular values, allows one to visually identify those eigentriples

that corresponds to the harmonic components of the series, provided these

components are separable from the residual component [23].

Each singular vector can be thought of as defining a direction in a high-

dimensional space. When you create scatterplots of pairs of left singular

vectors, you are projecting the high-dimensional data onto the 2D plane de-

fined by these two vectors. This projection helps to reveal how the data

varies along these two directions. Cyclic (or elliptical) patterns in scatter-

plot indicate that the corresponding singular vectors are capturing periodic

(harmonic) components of the original series. Random Scatter indicates that

the singular vectors are likely capturing noise or non-periodic components.

Consider the time series

xt =
t

2
+ A cos

(
2π

k

N
t− ϕ0

)
+ ϵ, (1.8)

where N = 500, t ∈ [1, N ], k = 15, ϕ0 = 0, A = 6 and ϵ = 2× randn(1, N) ∼

N(0, σ2)

Figure 2.2 reveals that the first pair 1-2 doesn’t capture the harmonic

component of (1.8), in fact this pair reconstructs the trend. On the contrary,

the second pair 3-4 corresponds to the harmonic component of the series.

We will discuss that a necessary condition for the (approximate) sepa-

rability of two series (i.e., successful decomposition) is the (approximate)

zero w-correlation 6 of the reconstructed components. On the other hand,

the eigentriples entering the same group can correspond to highly correlated

components of the series. Thus, a natural test to verify the correctness of

grouping is the matrix of the absolute vales of the w-correlations, correspond-

ing to the reconstructed components.
6We define w-correlation in Section 1.2.1.
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Figure 1.2: Scatterplots of the paired left singular vectors of (1.8).

Fig. 1.3 depicts the w-correlation matrix of the time series (1.7). Since the

two reconstructed components are weakly correlated, the theoretical results

tell us that such a separation can be indeed valid.

Grouping hint methods are included in ssaBasic class. plotSingularVal-

ues(obj,numVal) method makes two plots, one with the singular values and

another with their relative cumulative contribution to the overall signal vari-

ance. numV al indicate the number of singular values that the user want

to plot. scatterplotseigenvectors(obj,G) method makes scatter-plots of the

paired left singular vectors according to groups in G. wcorrelation(obj,G)

returns the w-correlation matrix of the series obtained in according to G.
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Figure 1.3: w-correlation matrix of the two reconstructed component of (1.7).

1.1.4 Diagonal averaging

If the components of the series are separable and the indices are being

split up accordingly, then all the matrices in the expansion (1.2) are Hankel

matrices. We thus immediately obtain the decomposition (1.3) of the original

series. By the structure of Hankel matrices fallows that ∀k ∈ [1,m] and

∀n ∈ [1, N ],

x(k)
n = x

(k)
i,j ∀(i, j) s. t. i+ j = n+ 1,

where x
(k)
i,j is the (i, j)-component of the k resultant matrix.

In practice, however, the resultant matrices aren’t Hankel matrices. We

thus need a formal procedure of transforming an arbitrary matrix into a

Hankel matrix and therefore into a series. In other words, denote by R̃L×K ⊂
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RL×K the linear subspace of Hankel matrices and given X ∈ RL×K our aim

is to find a Hankel matrix Z ∈ RL×K such that

Z = argminY∈R̃L×K∥X − Y∥F .

The optimal Z is HX where H the Hankelization operator (for more details,

see [17]).

Definition 1.1.2. Let X ∈ RL×K, L∗ = min(L,K), K∗ = max(L,K) and

N = L+K − 1.

x∗
i,j =

xi,j, for L < K

xj,i, otherwise,

and s = i+ j. Then the element ỹi,j of the matrix HX is defined by

ỹi,j =


1

s−1

∑s−1
l=1 x

∗
l,s−1, for 2 ≤ s ≤ L∗ − 1,

1
L∗

∑L∗

l=1 x
∗
l,s−l for L∗ ≤ s ≤ K∗ + 1,

1
N−s+2

∑L∗

l=s−K∗ x∗
l,s−l, for K∗ + 2 ≤ s ≤ N + 1.

The linear operator H : RL×K → R̃L×K is an orthogonal projection oper-

ator.

1.2 Separability

As mentioned above, the stability of the series plays a fundamental role in

the success of the decomposition. Separability of time series x(k), k = 1, ...,m

signifies the possibility of extracting x(p), p ∈ [1,m] from the observed series

xN =
∑m

k=1 x
(k). This means that there exist a group Ip, such that the series

resulting from XIp is equal to x(p). Let X̃Ip be the trajectory matrices of x(p)

and its SVD be

X̃Ip =

dp∑
i=1

√
λp,iUp,iV

T
p,i
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where dp = card(Ip)
7 and (λp,i, Up,iVp,i) the eingentriples belong to group Ip.

The column and row spaces of the trajectory matrices are called column and

row trajectory spaces correspondingly.

Definition 1.2.1. Let L ∈ ]1, N [ be fixed, x(p), p ∈ [1,m], be times series of

length N and K = N−L+1. The series x(p), p ∈ [1,m] are weakly separable,

if their column and row trajectory spaces are pairwise orthogonal, i.e.

XT
Ij
XIi = 0K,K and XIjX

T
Ii
= 0L,L ∀i, j ∈ [1,m].

Definition 1.2.2. Fixed L ∈ ]1, N [. The time series x(p), p ∈ [1,m], are

strongly separable, if they are weakly separable and λp,i ̸= λq,j ∀q ∈ [1,m] \ p

and for each i, j respectively in [1, card(Ip)] and [1, card(Iq)].

It is clear that if the series are weakly separable and all the singular

values of the trajectory matrix X are different (equivalently, each elementary

reconstructed series belongs to a different harmonic or trend) then strong

separability holds [17].

Close singular values in SSA can indicate both the presence of oscilla-

tory components and pose difficulties in component separation. It’s essential

to correctly interpret the nature of these singular values using appropriate

techniques to identify oscillations and manage ambiguities in separating the

components of the time series (see Subsection 1.1.3). In addition, the pres-

ence of close singular values is the reason why SSA often fails to decompose

harmonics with similar weights. Moreover, if these weights are small, then it

may be natural to consider such components as the noise components.

7card() denotes the cardinality.
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1.2.1 Separability measure

Very helpful information for detection of separability and group identifi-

cation is contained in the so-called w-correlation matrix. This matrix consists

of weighted cosines of angles between the reconstructed time series compo-

nents. The weights respect the number of entries of the time series terms

into its trajectory matrix [15].

Let L∗ = min(L,K) and K∗ = max(L,K). Introduce the weights

wi =


i for 1 ≤ i ≤ L∗,

L∗ for L∗ ≤ i ≤ K∗,

N − i+ 1 for K∗ ≤ i ≤ N.

(1.9)

Definition 1.2.3. Let x,y be two time series of length N and w as before.

The w-inner product between x and y is defined by

⟨x, y⟩w =
N∑
i=1

wixiyi,

and x,y are said w-orthogonal if

⟨x, y⟩w = 0.

Note that the weights (1.9) have a trapezoidal shape. Therefore, if L <<

N , then almost all weights are equal, but for L ∼ N/2 the influence of the

central terms of the series is much greater than those near the extremes of

the time interval.

The w-correlation is a natural measure of deviation of two series x and y

from w-orthononality.

Definition 1.2.4. Let x,y be two time series and w as before. The w-

correlation between x and y is defined by

ρ
(w)
12 =

⟨x, y⟩w
∥x∥w∥y∥w

,
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where ∥ · ∥w =
√
⟨·, ·⟩w.

Proposition 1.2.1. Let X and Y be respectively the L-trajectory matrices

of the series x and y. Then

⟨x, y⟩w = ⟨X,Y⟩F .

From Proposition 1.2.1 follows:

Corollary 1.2.1. If the series x and y are weakly L-separable, then they are

w-orthogonal.

The proof of this corollary can be found in [17].

Exact separability does not happen for real-life series and in practice we

can talk only about approximate separability.

Definition 1.2.5. Two time series x and y are approximately separable if all

the correlations between the rows and the columns of their trajectory matrix

X, Y are close to zero.

Therefore, an index of separability is the w-correlation. If the abso-

lute value of the w-correlation is small, then the two series are almost w-

orthogonal, but, if it is large, then the series are far from being w-orthogonal

and are thus badly separable.

1.3 Choice of SSA parameters

Hyperparameters are the parameters that must be set by the user before

running the analysis. They significantly affect the outcome of the analysis

and the quality of the decomposition and reconstruction of the time series.

The hyperparameters in SSA are: the window length L which defines the
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number of data points used to construct the trajectories in the state space;

the number of principal components r that determines how many singular

values are retained during the decomposition of the lag matrix. Their choice

depends on the structure of the data and the analysis we want to perform.

To simplify the hyperparameters selection, we implemented an automated

procedure based on the train test split model (see, Section 2.4).

We denote by SSA(L, r) the Singular spectrum analysis carried out with

window length L and using r leading eigentriples.

1.3.1 Choice of window length

Choosing the correct window length L depends on the problem at hand

and prior information about the time series. There are no general rules on

the selection of L, however there are some general principles for its selection

which have certain theoretical and practical foundations (see, [12], [14], [17],

[21]). Let us discuss these principles:

It is meaningless to choose L > N/2. The structural insights obtained

from the SVD of the trajectory matrix are identical (up to the symmetry

between left and right singular vectors) whether you use L or K = N−L+1.

Thus, to optimize the analysis and avoid redundancy, the window length

should be restricted to L ≤ N/2.

For a time series with a clear periodicity, we should take L = kT where

T is the series period and k ∈ N. This helps capture the entire cycle of

periodicity in the trajectory matrix.

The selection of L is both crucial and problematic, as when L is too

large, it could lead to some parts of the noise mixing up with the signal while

choosing L too small opens up the risk of losing some parts of the signal to

the noise [17]. Furthermore, these simple recommendations may not suffice
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for series with a complex structure and the choice of window length becomes

a tricky problem.

Finally, during the grouping phase, a check is carried out on the correct

choice of the length of the window. The possibility of successful grouping of

eigentriples means that the window length has been selected correctly.

1.3.2 Choice of number of leading eigentriples

The selection of the correct number of eigenvalues r is equally important

in the overall SSA process as it has a direct effect on the reconstruction

in SSA. As Hassani and Mahmoudvand (2013) notes, if r is chosen to be

greater than exactly what it should be, then we increase the noise in the

reconstructed series whereas choosing r to be smaller than the exact require-

ment results in ignoring some parts of the signal which ought to be included

in the reconstruction. Literature shows that there are various approaches to

select r. Hassani (2007) suggests analyzing the scree plot and pairwise scatter

plots. However, as Khan and Poskitt (2013b) points out there is no defined

statistical decision rules when using these approaches and so the modelling

procedure is left to be a highly subjective assessment.

1.4 SSA recurrent forecasting algorithm

An important advantage of SSA is that it allows, upon reconstruction of

the series under study, to produce forecasts for either the individual com-

ponents of the series and/or the reconstructed series itself. This is useful if

ones want to make predictions about, for example, the deterministic/trending

component of the series without taking into account the variability due to

other sources. Below we give a description of the M -step ahead predictor
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based on the SSA method. According to Sanei and Hassani (2015) the SSA

technique can be applied in forecasting any time series that approximately

satisfies the linear recurrent formula 8. Let’s now formally describe the algo-

rithm for the SSA forecasting method. For any vector U ∈ RL denoted by

U▽ ∈ RL−1 the vector consisting of the first L− 1 components of the vector

U , while U△ ∈ RL−1 is the vector consisting of the last L− 1 components of

U . The SSA forecasting algorithm, as proposed in [17], is as follows:

1. Consider a time series XN = [x1, ..., xN ] of length N .

2. Fix the window length L and the number M of points to forecast for.

3. Consider he linear space Lr ⊂ RL of dimension r < L. It is assumed

that eL /∈ Lr, where eL = (0, 0, ..., 1)T ∈ RL.

4. Construct the trajectory matrix X = [X1, ..., XK ] of the time series

XN .

5. EOF step: Construct vectors Ui(i = 1, ..., r) from the SVD of X. Note

that {U1, ..., Ur} is an orthonormal basis in Lr.

6. Orthogonal projection step: Estimate matrix X̂ = [X̂1; ...; X̂K ] =
∑r

i=1 UiU
T
i X.

The vector X̂i is the orthogonal projection of Xi onto the space Lr.

7. Hankellization step: Construct matrix X̃ = HX̂ = [X̃1; ...; X̃K ].

8. Set ν2 = π2
1 + ... + π2

d, where πi is the last component of the vector

Ui (i = 1, ..., r). Since πi =
⟨eL,Ui⟩

∥eL∥ ∥Ui∥ (i = 1, ..., r), fallows that ν2 is the

squared cosine of the angle between the vector eL and the linear space

Lr. ν2 is called the verticality coefficient of Lr. Moreover, assume that

eL /∈ Lr. This implies that Lr is not a vertical space. Therefore, ν2 < 1.
8It is defined in the following section.
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9. Determine vector A = (α1, ..., αL−1):

A =
1

1− ν2

r∑
i=1

πiU
▽
i .

The last component xL of any vector X = [x1, ..., xL]
T ∈ Lr is a linear

combination of the first xL−1 components, i.e.

xL = α1xL−1 + ...+ αL−1x1,

and this does not depend on the choice of a basis U1, ..., Ur in the linear

space Lr.

10. The M -step ahead forecasting procedure. In the above notations, define

the time series XN+M = [x1, ..., xN+M ] by the formula

xi =

x̃i, for i ∈ [1, N ]∑L−1
j=1 αjxi−j, for i ∈ [N + 1, N +M ]

(1.10)

where x̃i (i = 1, ..., N) are the reconstructed series. Thus xN+1, ..., xN+M

from the M terms of the SSA recurrent forecast.

Below, we investigate the linear recurrent formulae and continuation, the

time series of finite difference dimension and their trajectory spaces.

1.4.1 Time series of finite difference dimension and sig-

nal roots

Definition 1.4.1. An infinite time series X = {xn}n∈N is said to satisfy a

linear recurrent formula (LRF) of order t if there exist α0, ..., αt−1 ∈ R such

that the relation

xt+n =
t−1∑
k=0

αkxk+n (1.11)

holds for all n ∈ N. Note that in case t = 0 we have xn = 0 for all n ∈ N.
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Once a time series satisfies an LRF (1.11), its form can be described by

the roots of the characteristic polynomial of the LRF

A(z) = zt − αt−1z
t−1 − ...− α1z − α1. (1.12)

Theorem 1.4.1 ([19], Th. 3.1.1). Assume that an infinite time series X

satisfies an LRF (1.11) with α0 ̸= 0. Then it can be represented as

xn =
m∑
k=1

Pk(n)λ
n
k , (1.13)

where λk ∈ C \ {0} are distinct numbers, and Pk are nonzero polynomials.

All λk in the representation (1.13) are roots of the characteristic polynomial

A(z), with multiplicity not less than νk := degPk+1, where deg · is the degree

of a polynomial. The exact values of m, λk and νk are determined by the first

t values of the time series.

The coefficients of Pk are determined by the first r values of the time series,

where r is defined as

r = ν1 + ...+ νm ≤ t. (1.14)

Remark 1.4.1. If a time series admits a representation of type (1.13), then

this representation is unique. This follows from the linear independence of

the time series of type gn = nkλn for different λ ∈ C \ {0} and k ∈ N.

For a time series of type (1.13), by Remark 1.4.1, one can unambiguously

define the polynomial

P (z) := (z − λ1)
ν1 · ... · (z − λm)

νm = prz
r + ...+ p1z + p0, (1.15)

where pr = 1. This polynomial is called the characteristic polynomial of the

time series. The characteristic polynomial determines the set of all LRF that

are satisfied by the time series.
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Theorem 1.4.2. Let X be a time series of the form (1.13). Then any

polynomial

B(z) = brz
r + ...+ b1z + b0 (1.16)

of degree r (i.e. br ̸= 0) is a multiple of the characteristic polynomial (1.15),

i.e B(z) = P (z)Q(z), if and only if the time series satisfies the LRF

xn+r =
r−1∑
k=0

−bk
br
xn+k, n ∈ N. (1.17)

The proof can be found in [41].

Remark 1.4.2. Theorems 2.1 and 1.4.3 establish the one-to-one correspon-

dence between the time series of type (1.13) and the time series satisfying at

least one LRF (1.11) with non-zero last coefficient ( α0 ̸= 0).

Now assume that a time series X satisfies an LRF (1.11) with α0 ̸=

0. By Theorem 2.1 it has the representation (1.13) and the characteristic

polynomial (1.15) is uniquely determined. By Theorem 1.4.3, the relation

A(z) = P (z)V (z) (1.18)

holds. Moreover, the rime series satisfies all LRFs with characteristic poly-

nomials of form B(z) = P (z)Q(z), and hence the polynomial V (z) (1.18) (

and its roots) has no effect on the form of the time series. Thus, the t roots

of the characteristic polynomial A(z) can be divided into two groups:

1. the r signal roots (i.e. the roots of P (z)), which determine the structure

of the time series,

2. the t− r extraneous roots,

where r is defined in (1.14). We also say that the signal roots λk of A(z) are

the signal roots of the time series and νk are their multiplicities.
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Corollary 1.4.1. If a time series X satisfies an LRF (1.11) with α0 ̸= 0,

then the LRF corresponding to the characteristic polynomial (1.15) of X

xr+n = −
r−1∑
k=0

pkxk+n (1.19)

has the minimal order r among all LRFs satisfied by X.

Note that Corollary 1.4.1 is a characterization of P (z), and can be taken

as an alternative definition of the characteristic polynomial P (z). It also

validates the following notation.

Definition 1.4.2. We say that X is a time series of finite difference dimen-

sion (an f.d.d. time series) if it satisfies at least one LRF (1.11) with α0 ̸= 0.

The degree r of the characteristic polynomial, defined in (1.14), is called the

difference dimension of X.

1.4.2 Hankel matrices and trajectory spaces

Let

X = XN = [x1, ..., xN ]
T ∈ RN

be a (finite) time series. The Hankel matrix generated by the time series is

the matrix

X :=


x1 x2 · · · xK

x2 x3 · · · xK+1

...
... . . . ...

xL xL+1 · · · xN


where 1 < L < N and K = N − L+ 1.

Definition 1.4.3 ([17], Ch.2). If XN is a subseries of an infinite time series

of difference dimension r ≤ N/2, then XN is called a time series of (finite)

difference dimension r (with characteristic polynomial P (z)).



CHAPTER 1 39

In particular, the following theorem states that the time series of finite dif-

ference dimension are time series of finite rank (see also [17], Ch.5, Prop.5.4).

Proposition 1.4.1. Let XN be of difference dimension r. Then:

1. For the window length L such that r ≤ L ≤ N − r + 1 the trajectory

matrix is of rank r.

2. If L < r or L > N − r + 1 then X has maximal possible rank (L or

N − L+ 1, respectively).

Let us show how the structure of a time series is connected to LRFs

which are satisfied by the time series. The structure of a time series in SSA

is described by its trajectory space

LL = span{X1, ..., XK} ⊂ RL

where

Xi = [xi, ..., xi+L−1]
T , 1 ≤ i ≤ K,

are the columns of the matrix X. In what follows, the following subspace of

RL is very useful.

Definition 1.4.4. The relations space is defined as

R = LL
⊥.

The relations space consists of all linear relations on rows of X. Indeed,

the vector [α0, ..., αr, 0, ..., 0]
T , αr ̸= 0, belongs to R if and only if

xn+r = −
r−1∑
k=0

αk

αr

xn+k, 1 ≤ n ≤ N − L.

The following proposition shows that the relations space of a time series

of finite difference dimension is generated by all LRF of order less than L,

satisfied by its infinite time series.
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Proposition 1.4.2. Let XN be a time series of difference dimension r with

characteristic polynomial P (z) (1.15). For the window length L, r < L ≤

N − r + 1, we have the following.

1. The columns of the L× (L− r) matrix

P :=



p0 0 · · · 0
... p0

. . . ...

pr
... · · · 0

0 pr
. . . p0

... . . . . . . ...

0 · · · 0 pr


form a basis of the space R.

2. A vector B = [b0, ..., bL−1]
T belongs to R if and only if B(z) = bL−1z

L−1+

...+ b1z + b0 is a multiple of P (z).

1.4.3 LRFs and continuation

In this section we discuss the time series that can be continued within the

SSA framework. A finite time series XN admits the (forward) L-continuation

(is L-continuable) if there exists unique x̄ ∈ R such that [XN ; x̄] ∈ LL, see

[[17], Ch. 5] for details on continuation. First, we show a connection between

these time series and time series of finite difference dimension.

Proposition 1.4.3. If a time series XN satisfies some LRF

xn+r0 =

r0−1∑
k=0

αkxn+k, 1 ≤ n ≤ N − r0, (1.20)

with r0 ≤ min(L,K), then it is L-continuable and the continuation is achieved

by the same LRF.
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Remark 1.4.3. By Proposition 1.4.3 one can continue XN to an infinite

time series X, which satisfies (1.20) for all n. This fact is the base of SSA

forecasting.

Evidently, the infinite continuation of a finite subseries XN of an f.d.d.

time series X (with r ≤ N/2) coincides with the original time series X.

This observation removes the ambiguity from Definition 1.4.3: A finite time

series XN of finite difference dimension cannot be a subseries of more than

one infinite f.d.d. time series due to the uniqueness of continuation. The

following result, which is the converse to Proposition 1.4.3, can be found in

[[29], Ch. 5].

Proposition 1.4.4. If a time series XN is L-continuable, then there exists

r0 ≤ min(L,K) such that XN satisfies an LRF (1.20).

For convenience, we recall the well-known necessary and sufficient condi-

tions for XN to be L-continuable (for more details, see [17]).

Proposition 1.4.5. If XN is L-continuable, then eL /∈ L, where eL :=

(0, ..., 1)T ∈ RL.

Proposition 1.4.6. Let L ≤ N/2. If eL /∈ L, then XN is L-continuable.

1.4.4 SSA LRF and its basic properties

Let Lr be a subspace of RL such that eL /∈ Lr. Let {U1, ..., Ur} ⊂ RL be

the orthonormal basis of Lr and Uk = (U▽
k ; πk). Define A = [α0, ..., αL−1]

T as

A =
1

1− ν2

r∑
k=1

πkU
▽
k , (1.21)

where ν2 < 1 since eL /∈ Lr.
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Proposition 1.4.7. Let XN be a time series of difference dimension r, 1 ≤

r ≤ L. Then XN satisfies an LRF

xn+L =
L−1∑
k=0

αkxn+k, 1 ≤ n ≤ N − L, (1.22)

with the coefficients αk given by (1.21)

Proposition 1.4.7 provides the base of the SSA recurrent forecasting al-

gorithm.

Proposition 1.4.8. The vector

B = (−AT , 1)T = (−α0, ...,−αL−1, 1)
T , (1.23)

with A given by (1.21), can be expressed as

A = c ΠR eL, (1.24)

where ΠR is the orthogonal projector on the relations space R and c = (1 −

ν2)−1 = ⟨ΠR eL, eL⟩−1.

By Proposition 1.4.8, the SSA continuation vector (1.23) is equivalent to

the Min-Norm prediction vector [[29], [30]].

1.4.5 Bootstrap confidence interval

The bootstrap confidence interval for forecasts is used to estimate the

uncertainty of predictions without making specific assumptions about the

data distribution or the shape of the prediction distribution. It is widely

used in statistical analyses, especially when dealing with complex models or

non-standard data.

Fix a window length L and r leading eigentriples, the SSA(L, r) repre-

sent the time series X as X̃ = X̃1 + X̃2 where X̃1 is the reconstructed series
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and X̃2 is the residual series. The bootstrap replications are obtained by

resampling the residuals X̃2 from the original SSA data reconstruction, de-

noted by X̃∗
2 , and reconstructing replicated time series as X̃∗ = X̃1+X̃∗

2 . For

each bootstrap sample, we use the SSA(L, r) recurrent forecasting to make

a prediction. By repeating this process extensively, a sampled distribution

of predictions is obtained. We constructed a 95% confidence interval taking

the 2.5th and 97.5th percentiles of the bootstrap distributions of predictions

generated by the bootstrap samples.

The SSA recurrent forecasting and the confidence interval are imple-

mented in the forecast(obj,r,M,m,display) method of ssaBasic class. This

method use the private method forecastRecursive(obj,y,U,M) and the public

method bootstrap(obj,r,m) to forecast M times ahead the signal extracted

from the original series x using the recursive algorithm and to construct

the confidence interval. forecastRecursive(obj,y,U,M) forecasts y, M times

ahead. bootstrap(obj,r,m) given a time series x and the number of eigentriples

r used for reconstructing the signal z generates m copies of x sampling on

residuals of the linear regression of z over x (z\x).

The forecasting precision is assessed with Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

where n is the number of observations; yi is the actual value of the ith

observation; ŷi is the predicted value of the ith observation.



44 CHAPTER 1



Chapter 2

SSA applications and advantages

This chapter explores different situations in which the use of SSA is partic-

ularly advantageous, illustrating the main benefits that this technique offers

compared to other traditional methodologies such as Fourier analysis and

SARIMA models.

The choice of SSA, as the main tool of interest for this thesis, is motivated

by different aspects:

First and foremost, singular spectrum analysis is a model-free technique,

so it can be applied to arbitrary time series including non-stationary and

non-linear time series. As such, by using a method such as SSA one doesn’t

have the parameter identification problem which, for example, occurs in the

SARIMA models. Determining the parameters of the last technique requires

experience and involves several steps, including differencing the time series

to make it stationary, analyzing the autocorrelation function (ACF) and

partial autocorrelation function (PACF) plots, and selecting the orders p

(autoregressive), d (differencing), and q (moving average).

Secondly, unlike many other time series analysis techniques that require

preliminary data transformations (such as differencing, logarithms, or nor-

45
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malization), SSA works directly on raw data. This helps preserving all the

original characteristics of the time series without introducing biases or dis-

tortions.

Thirdly, classical econometrics methods consider modelling and forecast-

ing the time series XN . However, the SSA decomposition step allows this

technique to forecast time series components separately (for example, fore-

cast the trend or seasonal variation one at time), and obtain an accurate

overall forecast as the model considers filtering noise, which is effectively the

random, unexplained components in any given time series.

Lastly, unlike Fourier analysis SSA admits a forecasting procedure.

The SSA can be applied for solving the following problems: trend ex-

traction; smoothing; extraction of oscillatory components; noise reduction;

forecast.

Below we illustrate the main tasks and capabilities of SSA applying this

technique to computer generated time series.

2.1 Time series analysis

A time series X is a collection of observations indexed by the date of

each observation [20]. Conventionally, the data collected in the time series

beginning at some particular date (say, t = 1) and ending at another (say,

t = T ):

X = (x1, x2, ..., xT ).

The feature of time series analysis which distinguishes it from other statistical

analyses is the explicit recognition of the importance of the order in which the

observations are made. While in many problems the observations are statis-

tically independent, in time series successive observations may be dependent
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and the dependence may be related to the positions in the sequence. The

aim of time series analysis is to analyse the underlying structure of the time

series, i.e. the data generating process. On the basis of a limited amount of

information (a time series of finite length), we wish to make inferences about

the probabilistic mechanism that produced the series.

A fairly and essential model for the time series can be the additive model

[2]:

Xt = Tt + St + et

where: Xt is the observed time series at time t; Tt is the trend component at

time t; St is the seasonal component at time t; et is the noise process at time

t. Therefore, our toy time series are written using this model, assuming we

have white noise, and the sum of all the additive components, except for the

noise, is called signal.

2.1.1 Trend extraction

There isn’t commonly accepted definition of the concept "trend". Cer-

tainly, the main tendency of the series can be postulated with the help of

a parametric model, and subsequent estimation of the parameters wold al-

low us to talk about, linear, exponential, or logistic trends [2]. For us, this

meaning of notion "trend" is not suitable, because Basic SSA is a model-free,

and therefore non-parametric method. Under the assumption that the series

Xt = {X(w, t)}t∈N is a realization of a certain discrete-time stochastic pro-

cess X̂ = {X(w, t) : t ∈ N and w ∈ Ω }, trend is often defined as E[X̂] [8].

We can’t use this definition since we are working with only one trajectory.

In general, an appropriate definition of trend for SSA defines the trend as an

additive component of the series which isn’t stationary and "slowly varies"

throughout the observation period. The trend extraction occurs when we
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want to obtain more or less refined non-oscillatory tendency of the series.

The following toy series is characterized by the composition of an ex-

ponential trend and two sinusoidal components of different amplitude and

multiple frequency, in formula

xt = e
t
q + A · sin

(
2 · π · t · m

N

)
+B · sin

(
2 · π · t · n

N

)
+ ϵ (2.1)

where N = 400, t ∈ [1, N ], n = 10, m = 4 · n, A = 2, B = 1, q = 0.4 · N

and ϵ = 0.5 · randn(1, N) ∼ N(0, σ2). It shows the capabilities of SSA in

trend extraction. Taking the window length L = N/2, Figure 2.1 shows that

the component reconstructed from eigentraple 2-3 properly capture the time

series trend.

Figure 2.1: Extracted trend (yellow plot) of the time series (2.1) (blue plot)

and its comparison with the original trend (red plot).

In the language of frequencies, the trend generates large powers in the

low-frequency range of the periodogram as illustrated in Figure 2.2. To
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simplify the visualization of this phenomenon we have considered only a part

of the periodogram. Furthermore, SSA technique identifies the dominant

frequencies of a time series. In fact, it also shows two peaks in 10 and 40,

which are the multiple coefficients of the simple frequency 1/N chosen for our

harmonics. The height of the peaks is close to the amplitude of the harmonic

corresponding to the frequency. They do not coincide due to the ∼ 2.5% of

noise introduced.

Figure 2.2: Comparison between the periodogram of the time series (2.1) and

that of its reconstructed components.

2.1.2 Signal reconstruction

Main purpose of time series representations is to decrease data dimension

while keeping the important characteristics of the original time series. If Xt

is time series of dimension N , and X ′
t is its representation of dimension M ,
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M << N . This process, of course, includes some information loss, so the

main objective is to keep crucial information. As a consequence of reduced

dimension many real-world forecasting problems produce more efficient solu-

tions, and in some cases more accurate results.

One of the most important time series representation in frequency domain

is made by Discrete Fourier Transform (DFT) used in Fourier Analysis. DFT

is a transform that converts a finite collection of equally spaced samples

{xt}Nt=1 into a collection of coefficients Xk =
∑N

t=1 xte
− 2πi

N
kt, k = 1, ..., N

called Fourier coefficient. After applying DFT, number of samples stays

unchanged, so to reduce data dimension, we need to dismiss some Fourier

coefficients. It is observed that only the first few coefficients appear to be

dominant and therefore the rest can be omitted without great information

loss [37]. In that way data series dimension can be efficiently decreased.

On the other hand, SSA decomposes the trajectory matrix into a sum of

elementary matrices using SVD. After that step, the embedding dimension

remains unchanged, but we reduce it by choosing the leading r eigentriples.

To assess the accuracy of SSA and Fourier signal reconstruction we an-

alyze the residuals and compute Mean Squared Error (MSE) and Signal-to-

Noise Ratio (SNR).

The MSE is a measure of the average squared difference between the

original signal X and the reconstructed signal X̂:

MSE =
1

N

N∑
i=1

(xi − x̂i)
2.

The SNR is a relative measure between the power of the original signal and

the power of the noise (or error) introduced during the reconstruction process.

It’s often expressed in decibels (dB) and it is calculated as the ratio of the
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power of the original signal to the power of the noise:

SNR = 10 log10

(
Signal Power
Noise Power

)
.

The two performance measures are, however, conceptually distinct. The

signal-to-noise ratio measure provides an indication of the signal quality rel-

ative to the noise, while the mean squared error gives a direct measure of the

error between the original and reconstructed signals. A low MSE and a high

SNR indicate good reconstruction quality, as they designate a close match

between the original and reconstructed signals with minimal noise introduced

during the reconstruction process.

Consider the toy time series (1.7), which consists of two sinusoidal com-

ponents with different amplitudes and multiple frequencies, along with input

noise. Setting L = N/2, the scree plot in Figure 2.3 indicates that the leading

singular values are the first four. These four singular values account for ap-

proximately 95% of the total variance, underscoring their importance in the

dataset’s dimensionality reduction. The periodogram in Figure 2.4 reveals

two prominent peaks at frequency multiples 10 and 40 of the simple frequency

1/N . Therefore, we retain only the 10th and 40th Fourier coefficients.

Applying SSA(N/2, 4) and FOU with the Fourier coefficients chosen

above to (1.7), Figure 2.5 shows that both reconstructions effectively cap-

ture the data-generating process. This is supported by performance mea-

sures, with both the mean squared error of the Fourier reconstruction and

the singular spectrum analysis being approximately 0.03. Additionally, their

signal-to-noise ratios differ from the original series’ SNR 12.2116 by only

∼ 0.18.
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Figure 2.3: First 50 singular values of (1.7)’s trajectory matrix.

Figure 2.4: Periodogram of (1.7).
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Figure 2.5: Time series (1.7) reconstructed by SSA and Fourier.

Figure 2.6: Table lists the MSE and SNR of SSA and Fourier.

After evaluating the performance of Fourier and SSA on a detrended

series, we applied these methods to the time series (2.1), which exhibits an

exponential trend. Figure 2.7 shows the signal reconstructed by SSA(200, 6)

above and its reconstruction obtained by Fourier using frequency multipliers

corresponding to the r = 6 highest peaks in the periodogram below. We

selected the same number of singular values and frequency multipliers to

compare the two methods. The SSA reconstructed signal (blue line) almost

completely recovers the original time series, while the Fourier reconstruction
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does not fully capture the signal, particularly at the extremes of the range.

In addition to this initial visual analysis, Figure 2.8 shows that the shape of

the SSA residuals closely resembles that of the input noise, unlike the Fourier

residuals. Furthermore, the difficulties Fourier faces at the boundaries of the

interval are also evident from the residuals. Even if we include more Fourier

coefficients, the model will not accurately fit the data generating process at

the extremes of the interval due to the Gibbs phenomenon, which occurs

because the time series is not periodic.

Choosing 6 frequency multipliers in the periodogram corresponds to se-

lecting 6 harmonics, while considering 6 eigentriples for our grouping sets

(1-2, 3-4, 5-6) is equivalent to reconstructing 3 components. Therefore, we

also tested Fourier using frequency multipliers corresponding to the r = 3

highest peaks in the periodogram. This approach resulted in poorer model

performance compared to previous methods,as shown in Figure 2.9.

Figure 2.7: The time series (2.1)’s reconstructions.
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Figure 2.8: Residuals of Fourier, SSA and the input noise.

In conclusion, given that Fourier struggled to accurately model the data-

generating process, we explored using more Fourier coefficients. The table, in

Figure 2.10, presents the Mean Squared Error and Signal-to-Noise Ratio for

SSA(200, 6) and Fourier, considering the frequency multipliers correspond-

ing to the top 3, 6, 9, 12, and 100 peaks in the periodogram. The MSE for

SSA is the lowest 0.0983, and the SNR for SSA is the closest to the original

series SNR of 20.4265, compared to FOU 3, FOU 6, FOU 9, FOU 12. How-

ever, we observe that as the number of frequencies considered increases, the

Fourier MSE decreases, and the Fourier SNR increases. In fact, when consid-

ering the frequency multipliers corresponding to the 100 highest peaks, the

MSE of the reconstructed signal decreases by about 0.03 compared to that

of SSA, while the SNR is 0.3 higher than the original SNR and greater than

that of SSA. Thus, the signal is cleaner, but it likely has lost some informa-

tion. Nonetheless, the model aligns well with the data-generating process, as
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illustrated in Figure 2.9 .

Figure 2.9: Fourier reconstruction.

Figure 2.10: Table lists the MSE and SNR of SSA and Fourier.

2.1.3 Smoothing

Smoothing a series means representing the series as a sum of two series

where the first one is a "smooth approximation" of it. To see how singular

spectrum analysis works as a smoothing technique, we applied SSA(24,8)1

1Those parameters are chosen according to the automatic hyperparameters selection

procedure (see, Subsection 2.4).
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on N = 500 data generated from the autoregressive process

yt = 0.97yt−1 − 0.2yt−2 + ϵt

where ϵt = 0.5 · zt and zt ∼ N(0, 1). Obviously, the optimal model is the AR

model itself. We present this example only to highlight that SSA can also be

applied for this specific case.

The obtained smooth curve (red line) is shown in Figure 2.11. The residuals

(see Figure 2.12) appear to exhibit no discernible pattern, indicating that

the model is well-fitted.

Figure 2.11: Time series vs smooth approximation.
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Figure 2.12: SSA residuals.

The SSA residuals exhibit some autocorrelation. Figure 2.13 demon-

strates that the autocorrelation in the original series is more persistent com-

pared to the SSA residuals. However, autocorrelation is observed in the

residuals for the first 7 lags, with lag 6 showing marginal significance. Be-

yond these lags, the significance of the autocorrelation diminishes.
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Figure 2.13: Autocorrelation of the SSA residuals and original series.

The Jarque-Bera test is a statistical test used to check whether a sample

of data follows a normal distribution. It is based on measuring the skewness

and kurtosis of the data and comparing these values to those of the normal

distribution. The Jarque-Bera test statistic is calculated as follows:

JB = n

(
S2

6
+

(K − 3)2

24

)
,

where: n is the number of samples; S is the sample skewness; K is the sample

kurtosis. The null hypothesis (H0) of the test is that the data are normally

distributed, while the alternative hypothesis (H1) is that the data are not

normally distributed. The Jarque-Bera test function of Matlab (namely,

jbtest) returns two values: h a boolean indicating whether the null hypothesis

can be rejected; p the p-value test representing the probability that the data

are normally distributed.

Residuals’ time series passes the Jarque-Bera test with H0 : 0 and p-
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value: 0.2664, thus supporting the Gaussian behavior. The deviation from

zero for the auto-correlation function is mild. As a first approximation, the

time series behaves as a Gaussian white noise.

Furthermore, smoothing a time series involves removing its high-frequency

components. In line with this statement, Figure 2.14 shows that smoothing

reduces the power of frequencies greater than 32/N in the periodogram, while

accurately capturing the low frequencies.

Figure 2.14: Comparison between the periodogram of the time series and its

smooth approximation.

2.1.4 Extraction of seasonality components

The main problem here is identifying and separating the oscillatory com-

ponents of the series that do not constitute part of the trend.

As mentioned in Subsection 1.1.3, singular spectrum analysis extracts
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the oscillatory components by analyzing the eigenvalue spectrum of the time

series covariance matrix and utilizing grouping techniques. Let’s examine

the process in detail. Consider the toy series (1.7), composed of two sinu-

soidal components with different amplitudes and multiple frequencies. Set-

ting L = N/2, the scree plot indicates that the leading singular values are

the first four. By applying SSA(N/2, 4) to series (1.7), the two principal

components are perfectly separated, as shown by the w-correlation matrix in

Figure 2.15a. Additionally, the scatterplots in Figure 2.15b reveal that there

are two periodic components, with the frequency of the first being lower than

that of the second component.

(a) w-correlation matrix. (b) scatterplots.

Figure 2.15: Grouping hints.

In fact, the first reconstructed time series is represented by the red line

in Figure 2.16, while the second one is represented by the yellow line. Both

lines perfectly fit the original components of the series, as shown in Figure

2.17 .
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Figure 2.16: First harmonic component (red plot) and second harmonic com-

ponent (yellow plot) of the original series (blue plot).

Figure 2.17: Reconstructed component(blue plot) vs original component (red

plot).
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2.2 Forecasting

In this section, we compare the forecasts of a time series with a clear

structural break and noise using SSA, SSA + ARMA, and SARIMA methods.

For t ∈ [1, 500], the series is a periodic function with added noise, while for

t ∈ [501, 1000], it also includes a nonlinear trend. In formula:

xt =


A
2
cos

(
2π k

N
t

)
+ ϵ for t ∈ [1, N

2
];

e
q

(
2 t
N
−1

)
− 1 + A cos

(
2π k

N
t

)
+ ϵ for t ∈]N

2
, N ],

(2.2)

where N = 1000, A = 1, k = 10, q = 1.25 and ϵ = rand(N, 1) ∼ N(0, σ2).

After experimenting with the hyperparameters L and r, we selected L =

70 and r = 3 because this choice of embedding dimension provided a scree

plot where the three leading singular values were well-separated from each

other and from the subsequent values. Moreover, increasing the embedding

dimension L seemed to suggest the addition of another singular value. How-

ever, this only made the trend component more oscillatory, which in turn

worsened the forecasting performance of the SSA model. Therefore, we ap-

plied SSA(70, 3) to (2.2) and the obtained 120 points ahead forecast is shown

in Figure 2.18.
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Figure 2.18: SSA forecast.

In the above chart, the blue dot plot represents the last 300 points of (2.2)

reconstructed using SSA, accompanied by a range indicating the possible

values of future data (97.5% confidence interval). The historical data and

the potential future data are connected by a line that represents the central

estimate for future outcomes.

Since there is still some autocorrelation in the residuals of the SSA re-

construction, as shown in Figure 2.19a, the white noise effectively becomes

red noise. To capture the residual patterns, we fit the red noise to an ARMA

model

(1 + ϕ1L)xt = (1 + θ1L)ϵt

where L(xt) := xt−1 is the lag operator and ϵt := σtzt with zt ∼ N(0, 1) is

a white noise. Using maximum likelihood estimation, the parameters were

estimated as ϕ1 = 0.97343, θ1 = −0.91841 and σ2
t = 0.083879. This model

effectively captures the autocorrelation present, as evidenced in Figure 2.19b,
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where no significant lags remain.

To achieve better forecasting, we apply SSA to predict the trend and

periodic components, and use the ARMA model to forecast the underlying

red noise patterns. The estimated SSA + ARMA forecast is illustrated in

Figure 2.20.

Both forecasting approaches capture the periodicity and increasing trend.

Using only SSA, the predictions are more precise and reliable due to the

narrower confidence interval. However, incorporating ARMA allows us to

account for residual patterns that SSA alone might miss, resulting in a more

robust and reasonable forecast.

(a) Q-Q plot and ACF of SSA resid-

uals.

(b) Q-Q plot and ACF of ARMA

residuals.

Figure 2.19: Residual diagnostics.
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Figure 2.20: SSA + ARMA forecast.

Now, we model (2.2) by a SARIMA. After some tries, we conclude that

the model

(1− ϕ1L)(1− L100)yt = c+ (1 + θ1L)ϵt
2

best fits the data generating process. The parameter values, which are sum-

marized in the table above, were estimated by fitting this model to the ob-

served univariate time series xt using maximum likelihood estimation.

2Note that we had an advantage in finding a fitting model since we knew that (2.2) has

a seasonality of 100 due to its cosine component with frequency 1/100.
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The Q-Q plot indicates a good fit of the data to the theoretical distribu-

tion, showing no significant deviations or anomalous patterns. Additionally,

the autocorrelation function of the residuals reveals no significant correla-

tions at various lags, suggesting that the model effectively captures all the

systematic patterns in the data (see Figure 2.21).

Figure 2.21: Q-Q plot and autocorrelation function of SARIMA residuals.

We then simulated the estimated model to forecast 120 points ahead. The

resulting forecast is illustrated in Figure 2.22.
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Figure 2.22: SARIMA forecast.

The forecast generated by Singular Spectrum Analysis (SSA) is smoother

compared to that from SARIMA. This is because SSA decomposes the time

series into its principal components and constructs the forecast using only

these key components, thereby effectively isolating the noise.

The SSA decomposition step enables the technique to forecast individual

time series components separately. In Figure 2.23, we focus on the trend com-

ponent. After reconstructing the trend, we extended the forecast 200 points

ahead, which indicates that the series is expected to continue increasing.
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Figure 2.23: Forecast of the trend component.

2.3 Backtesting

In order to evaluate the SSA, SSA+ARIMA, SARIMA accuracy as time

series forecasting tool, backtesting is an essential step. We thoroughly assess

the three model’s performance through backtesting, which involves contrast-

ing their forecasts with known data from the toy time series (2.2) with respect

to RMSE. This methodology serves several crucial purpose. First of all, it

offers a way to assess how well the three techniques predict time series signal,

thereby validating its predictive ability. We may determine any biases in the

model’s predictions and learn about its strengths and flaws by contrasting

predicted data points with actual data. It serves as an essential realty check,

making sure that forecasts closely match actual outcomes.

In order to have a wider assessment of the forecast ability of the three

techniques, we repeat the test on the time series (2.2) using different per-
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centages of out-of-sample observations, namely 10 %, 15 %, 20 % and 25 %.

The table in Figure 2.24 summarizes the backtesting results for SSA, SSA +

ARMA, and SARIMA across previous out-of-sample percentages. The SSA

+ ARMA model achieves a lower RMSE compared to the other models for

each out-of-sample dataset. This is because combining SSA with ARMA

leverages the strengths of both methods: SSA effectively reduces noise, while

ARMA captures the residual dynamics.

Figure 2.24: Backtesting table.

To better visualize the test results presented in the table above, we plot-

ted the forecasts from the three models alongside the original series for the

considered out-of-sample percentages.
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Figure 2.25: Backtesting plots.

2.4 Automatic hyperparameters selection

A critical step in SSA is selecting the hyperparameters r and L. To find

the optimal parameters for the analysis, cross-validation is an essential tool.

We carefully determined the best number of eigentriples and window length

through this model validation procedure, using an out-of-sample percentage

of 30 %. This splits the time series into an in-sample set, which includes

the first 70 % of the data, and an out-of-sample set, which comprises the

remaining 30 %. Reconstruction accuracy is assessed using RMSE between

the in-sample series and its reconstruction, while forecast accuracy is evalu-

ated by comparing the out-of-sample series to the forecasts generated from

the in-sample series for the length of the out-of-sample period. Moreover,

cross-validation is performed across various combinations of selected window
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lengths and numbers of singular values to determine the parameters that

minimize the combined error of prediction and reconstruction inaccuracies.

The validation procedure is conducted on the time series (2.2) using a

range of window lengths L = [500, 350, 200, 150, 80] and numbers of singular

values r = [1, 3, 6, 12, 14, 18] in order to find the optimal combination of them.

The minimum error achieved is 0.7113, which corresponds to the parameter

combination of L = 80 and r = 183.

For how we implemented this procedure, it considers only a finite number

of hyperparameters combinations. To address this limitation, we fixed L = 80

and explored various numbers of eigentriples by performing a cross validation

with the same insample percentage as before. We tested r values that are

200 points evenly spaced between 2 and 80 · 0.7 · 0.5. The upper bound for

r is determined based on the construction of the in-sample series and the

empirical rule r = L · 0.5. The test results indicate that the optimal value

for r is 18, as confirmed by 2.26.

To further assess the optimality of r, we perform the cross-validation

with r = 18, varying L and using 70 % of the data for training. We test L

values spaced 50 points apart within the range from 2 · 18 + 1 to 500 · 0.7.

We reduced the number of tests to manage computational costs, as each

validation procedure requires constructing a new SSA model for each L. The

bounds for L are chosen to adhere to the empirical rule and to ensure L < N
2
.

The test results indicate that the optimal value for L is 80. This is further

confirmed by Figure 3.1, which takes into account the rescaling of L4.

3In Section 2.2 we applied SSA(70, 3) to (2.2) because we decided the hyperparameters

by playing with the steam graph and checking for a well separability via the w-correlation.

The parameters obtained are not the optimal ones but in any case the recognized principal

components are well separated and therefore the analysis is correct.
4We evaluate the reconstruction accuracy using 70% of the series and therefore the
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Figure 2.26: Cross-validation of r with L = 80.

Figure 2.27: Cross-validation of L with r = 18.

same percentage of L. Even if the result is divided by 0.7, and thus it is the optimal

window length for the original series.
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Chapter 3

SSA validation and evaluation

3.1 Data Set

The dataset utilized in this thesis is the Climatic Research Unit (CRU)

temperature dataset, sourced from the Copernicus Open Access Hub. This

dataset offers monthly values for maximum, minimum, and mean air tem-

peratures at a height of 2 meters above the Earth’s surface, averaged over

2◦ × 2◦ grid cells, spanning the period from 1901 to 2019 and encompass-

ing the entire globe. Additionally, the dataset includes geographic coor-

dinates in the WGS84 system, where latitude indicates the distance north

or south of the equator (ranging from −90◦ to +90◦), and longitude mea-

sures the distance east or west of the Prime Meridian (ranging from −180◦

to +180◦). The dataset meticulously combines in-situ data collected from

ground-based weather stations with satellite-derived observations. This inte-

gration is achieved through sophisticated data assimilation techniques that

leverage the strengths of both data sources. In-situ data offer high accuracy

and reliability at specific locations, while satellite data provide extensive spa-

tial coverage, ensuring that even remote areas with sparse ground stations

75
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are adequately represented.

The dataset was downloaded from Copernicus as a tar.gz file containing

climate observations in NetCDF format. After extracting the data, it was

saved in a cell array named fileList. To focus on temperature of Bologna,

we selected data for the geographic coordinates 44◦32′11.9′′N 11◦17′44.92′′E,

corresponding to the Borgo Panigale weather station, which is marked by

the blue dot on the map in Figure 3.1. We chose these coordinates over the

exact location of Bologna because weather stations are strategically placed

to minimize local influences (such as buildings, roads, etc.) that could po-

tentially distort temperature measurements. We collected the maximum,

average and minimum temperatures for the target coordinates in a timetable

called dataTs. Upon examining the NetCDF files, we found that them were

collected in an unordered manner, with no specific sequence for dates of ob-

servation or measurement types. Consequently, we had to process the entire

dataset to identify the type of measurement, whether maximum, minimum,

or average. Then, for each file, we located the recorded temperature whose

latitude and longitude are closest to the target coordinates and organized

the values of the TempMax, TempAvg and TempMin fields in the timetable

according to the measurement dates. In Figure 3.2, the values of the dataTs

fields are plotted.

Before starting the time series analysis, we centered the series by sub-

tracting the mean. This preprocessing step results in a clearer and more

precise representation of the intrinsic components of the time series. By

zero-centering the data, the analysis can focus on deviations and fluctua-

tions rather than being influenced by a constant offset. Moreover, our analy-

sis primarily targets the maximum temperature dataset, although the same

preprocessing and analytical steps were applied to the other two datasets.
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Figure 3.1: Visualization of the target coordinates on a map.

Figure 3.2: Temperature series.
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3.2 Hyperparameters selection

In this section, we focus on identifying the hyperparameters for the time

series of maximum temperatures. We first employ a manual hyperparame-

ter selection process guided by the grouping hints outlined in Section 1.1.3.

Subsequently, we utilize an automated hyperparameter selection approach as

described in Section 2.4.

3.2.1 Manual hyperparameters selection

The maximum temperature dataset consists of 1428 observations, derived

from 12 monthly records spanning 119 years.

To identify the optimal hyperparameter L, we initially set L to 714 and

examined how the scree plot evolved as L was decreased. As illustrated

in Figures 3.3 through 3.6, which display a subset of the scree plots, the

number of leading singular values remained consistently at 6, except when

L < 210, where the number decreased to 5. This decrease indicates that a

smaller L reduces the number of significant singular values, suggesting that

the embedding dimension may be insufficient and some information might

be lost. As a result, we fixed r = 6. Additionally, the leading singular values

appear to form pairs, specifically 1-2, 3-4, and 5-6. Consequently, we grouped

them accordingly, resulting in three principal components.

Finally, we use the w-correlation to assess how the separability of the

components changes with different values of L. The w-correlation matrix

for L = 179 reveals poor separability between the second and third com-

ponents, which aligns with the scree plot’s suggestion to ignore the sixth

singular value. Furthermore, the w-correlation index between the first and

second components for L = 714 is on the order of 10−5, while for embedding
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dimensions of 536 and 357, it is on the order of 10−6. This suggests that

the optimal hyperparameter is likely among the latter two values. Since the

w-correlation index between the second and third components for L = 536

is slightly smaller than for L = 357, we selected L = 536. We will designate

this hyperparameter selection process as Manual Hyperparameter Selection

(MHS).

Figure 3.3: Scree plot of L = 714. Figure 3.4: Scree plot of L = 536.

Figure 3.5: Scree plot of L = 357. Figure 3.6: Scree plot of L = 179.
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Figure 3.7: w-correlation matrix of

L = 714.

Figure 3.8: w-correlation matrix of

L = 536.

Figure 3.9: w-correlation matrix of

L = 357.

Figure 3.10: w-correlation matrix

of L = 179.

3.2.2 Automatic hyperparameters selection

For each combination of embedding dimension L from [714,445,536,414,

357,200,179,100] and number of singular values r from [160,141,138,100,80,60,30,

10,4], the singular spectrum analysis was validated using cross-validation on

the maximum temperature time series with a 30% of out-of-sample percent-

age. The optimal combination, which yielded the minimum total error of

2.3832, was L = 414 and r = 138. We will refer to this hyperparameter

selection method as Automatic Hyperparameter Selection (AHS).
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To validate the results, for the singular spectrum analysis with L = 414

and r chosen as described in Section 2.4 we performed cross validation with

30% out-of-sample split and analyzed the in-sample error, out-of-sample er-

ror, and total error. The plot, in Figure 3.11, reveals that as the number

of singular values increases, the in-sample error rapidly decreases, which is

expected since a higher number of singular values captures more detailed

information from the data. For example, with 144 singular values, the re-

construction error drops to 0.562502, compared to 0.5896 with 138 singular

values. However, the inclusion of the less predictable parts of the signal as

the number of eigentriples increases leads to a gradual increase in the out-

of-sample error. Notaby, from 129 to 138 singular values, the out-of-sample

error decreases, reaching a value of 1.7936 at the latter point. Consequently,

the combined in-sample and out-of-sample errors also decrease up to 138

singular values, where they reach a minimum.

Additionally, Figure 3.12 shows the in-sample error, out-of-sample error,

and total error focrv2r the singular spectrum analysis with r = 138 and L

chosen as described in Section 2.4, with the embedding dimensions rescaled

by 0.7. The in-sample error gradually increases as L increases, likely due

to the introduction of redundancy without a significant gain in useful infor-

mation for reconstruction. The out-of-sample error remains relatively stable

around 1.9, indicating that the primary forecasting power comes from the

leading eigentriples, which continue to capture the essential patterns even as

L increases. However, there are noticeable spikes in the out-of-sample error

at rescaled embedding dimensions of 299, 310, 315, and 348, which may be

due to unfavorable interactions between the selected number of eigentriples

and the values of L. The total error, being the sum of the in-sample and

out-of-sample errors, also shows a gradual increase with peaks and troughs
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at the same L values where the out-of-sample error exhibits similar behavior.

In fact, the total error reaches its minimum at L = 290, which coincides with

the minimum out-of-sample error.

Figure 3.11: Cross validation for

fixed L.

Figure 3.12: Cross validation for

fixed r.

3.3 Grouping

After identifying the hyperparameters, we proceed with analyzing the

maximum temperature time series. We will refer to the singular spectrum

analysis using MHS as SSA1, and the singular spectrum analysis using AHS

as SSA2.

As discussed in Subsection 3.2.1, the grouping suggested by the MHS

method is 1-2, 3-4, and 5-6. For AHS, the results yield r = 138, and the

w-correlation matrix in Figure 3.13 suggests grouping 1-2, 3-4, 5-6, and 7-

8. Moreover, beyond the eighth singular value, the increasing w-correlation

among the singular values complicates the task of clearly identifying and

grouping eigentriples to extract the most meaningful features. Consequently,

we chose not to include principal components derived from the eighth singular

value onward.
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Figure 3.13: w-correlation matrix.

For instance, the fifth component, derived from grouping singular values

9-12, accounts for only 0.13% of the total variation in the series, indicating

that this component has a very limited impact on the overall data. Moreover,

it exhibits a complex and inconsistent dynamic that lacks a coherent pattern,

as illustrated in Figure 3.14. Consequently, we focused our analysis on the

first four principal components.

Figure 3.14: Last two principal components identified via AHS.

Supporting the challenging interpretation of the fifth principal compo-

nent, its periodogram in Figure 3.16 reveals two prominent peaks at 39 and
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172, suggesting that this principal component represents a mixture of two

distinct signals that have not been adequately disentangled by the SSA.

Figure 3.15: Periodogram of

fourth principal component.

Figure 3.16: Periodogram of fifth

principal component.

The first three components derived from SSA2 closely resemble those ob-

tained using SSA1 (compare the left panel of Figure 3.17 for SSA1 with

the right panel for SSA2). In both cases, the first component captures low-

frequency oscillations, the second component reflects high-frequency oscilla-

tions, and the third component represents a trend. However, despite these

structural similarities, there are notable discrepancies in specific details, likely

due to the sensitivity of singular spectrum analysis to hyperparameter selec-

tion.

Both analyses reveal that the trend remains relatively stable until around

1910, increases until approximately 1951, and then declines until 1976 be-

fore rising again. The main difference lies in the magnitude of temperature

variations: in SSA1, the temperature starts at about -0.38°C, increases by

∼0.25°C, decreases by ∼0.20°C, and then rises by ∼1.00°C. In contrast, in

SSA2, the temperature begins at roughly -0.48°C, increases by ∼0.40°C, de-

creases by ∼0.35°C, and subsequently rises by ∼1.00°C.
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Figure 3.17: Principal components.

Additionally, the periodograms of the three principal components ob-

tained with both sets of parameters exhibit the same peaks, though with

varying amplitudes. This indicates that the primary frequencies are robust

and inherent to the signal. However, the differing peak heights reflect how

hyperparameter selection influences the distribution of energy among the

principal components.

Figure 3.18 illustrates the periodograms of the components from SSA1.

Specifically, the periodogram of the first component (shown in the top-left

panel) displays a peak at 119, corresponding to a periodicity of approximately

12 months. Similarly, the periodogram of the second component (shown in

the top-right panel) has a peak at 238, indicating a periodicity of around

6 months. These observations are consistent with the periodograms of the

principal components derived from SSA2.

Moreover, the fourth component derived from SSA2, depicted in Figure

3.14, exhibits a peak at 113 in its periodogram (see Figure 3.15), indicating

a periodicity of approximately 11 months.
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Figure 3.18: Periodograms.

Lastly, the dominant frequencies extracted from the periodograms of the

principal components are consistent with the primary frequencies observed

in the periodogram of the original time series, as shown in Figure 3.19. This

alignment demonstrates that the SSA analysis has successfully identified the

key periodic features of the time series. Furthermore, the observed annual

periodicity in the maximum temperature series is primarily attributed to the

Earth’s axial tilt, which causes seasonal variations in the length of day and

night throughout the year.
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Figure 3.19: Periodogram of maximum temperature series.

In conclusion, as shown by Figure 3.20, the trends extracted from the

maximum, minimum, and average temperature time series using SSA(414, 148),

SSA(268, 57), and SSA(194, 69), respectively, where the hyperparameters

for each time series were selected via AHS, reveal that, until the 1980s, tem-

peratures were below their respective sample means (∼18 for maximum, ∼9

for minimum and ∼14 for average). However, since then, we have observed a

significant upward trend of approximately 1.5°C. This analysis underscores a

clear and distinct warming trend in Bologna, consistent with broader global

warming patterns observed in recent decades.

In conclusion, Figure 3.20 presents the trends extracted from the cen-

tered time series of maximum, minimum, and average temperatures using

SSA(414, 148), SSA(268, 57), and SSA(194, 69), respectively, with hyper-

parameters selected via AHS. Our analysis shows that, up until the 1980s,

the trends were consistently below zero, indicating that temperatures were
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generally below their respective sample means (approximately 18°C for max-

imum temperatures, 9°C for minimum temperatures, and 14°C for average

temperatures) during this period. Since then, however, a notable upward

trend of approximately 1.5°C has emerged. This observation underscores

a clear warming trend in Bologna, consistent with broader global warming

patterns observed in recent decades.

Figure 3.20: Trends dynamics.

3.4 Reconstruction of the time series

After extracting and analyzing the principal components of the maxi-

mum temperature series, we aimed to model its data-generating process. As

illustrated in Figure 3.21, the plot comparing the original series to the fitted

model using parameters obtained from MHS (L = 714 and r = 6) shows a

greater number of data points deviating significantly from the model com-

pared to the plot obtained using AHS. This suggests that the parameter
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choice from MHS results in higher residual dispersion, indicating a potential

lack of model fit to the observed data. However, it is worth noting that

the increasing trend in the maximum temperature series is clearly visible in

the SSA1 reconstruction, but not in the SSA2 reconstruction. This lack of

visibility in SSA2 may be attributed to the trend being obscured by pat-

terns captured by SSA2 that are not present in SSA1, raising concerns about

potential overfitting of SSA2.

Figure 3.21: SSA reconstructions.

To assess the effectiveness of the two data-generating process models

obtained from SSA1 and SSA2, we also applied Fourier analysis. Cross-

validation, as shown in Figure 3.22, determined that the optimal number of

Fourier coefficients for capturing the dominant frequencies of the maximum

temperature series is 80. To further validate this result, we conducted a

visual analysis by varying the number of Fourier coefficients and assessing

their performance on the time series. Figure 3.23 illustrates the outcomes

using 6, 80, 138, and 200 coefficients. Similar to the SSA1 reconstruction,

the model with 6 coefficients poorly fits the data. On the other hand, the

models with 138 and 200 coefficients fit the data too closely, likely capturing

noise or anomalies, which could negatively impact their generalization abil-
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ity. In contrast, the model with 80 Fourier coefficients, as suggested by the

cross-validation tool, strikes a better balance. It captures more observations

than the model with 6 coefficients while avoiding the overfitting seen with

138 and 200 coefficients, thereby potentially offering better generalization.

Figure 3.22: Cross validation of Fourier.
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Figure 3.23: Fourier reconstructions.

Following these observations, the data points in Figure 3.24 that devi-

ate significantly from the estimates provided by the FOU 80 model can be

considered outliers, potentially due to inaccuracies or errors in data collec-

tion, or due to extreme weather events. For instance, the observations from

February 1956, as well as July 1904, 1945, and 2006, fall outside the ap-

proximations provided by the FOU 80 model and can thus be considered

anomalies. Moreover, the observations from July 1904 and 1945 are cap-

tured by SSA2, reinforcing our suspicion that the data-generating process

modeled by SSA2 may be overfitting the data.
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Figure 3.24: Outlier detection.

To initially compare the reconstructions obtained from SSA2, SSA1, and

FOU 80, we performed a graphical analysis. In Figure 3.25, the scatter plot

of reconstructions from SSA2 versus FOU 80 shows that the points are clus-

tered around the diagonal line with a deviation of ±0.5 degrees. This suggests

that the two reconstructions are quite similar. In contrast, the scatter plot

comparing SSA1 and FOU 80 reveals that while both reconstruction tech-

niques perform well for certain temperature values, they do not always align.

For instance, at 21°C, the scatter plot shows a lack of agreement, which is

consistent with Figure 3.24, where SSA1 consistently fails to reconstruct this

temperature.

Figure 3.25: Scatter plots.
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3.4.1 Results

The residual time series for FOU 80, SSA2, and SSA1, as shown in Fig-

ure 3.26, exhibit noticeable differences. The residuals from SSA2 fall within

a narrower range of [-2, 2], indicating smaller deviations compared to the

residuals from the other two methods. Notably, SSA1 displays the highest

residual, approximately -5.8, for the temperature in February 1956. This sug-

gests that SSA1’s model struggles with this particular temperature, leading

to larger discrepancies.

Figure 3.26: Residuals.

To further analyze the residuals, we examined their autocorrelation func-

tions. As shown in Figure 3.27, the autocorrelation function of the SSA1

residuals exhibits a periodic pattern, with the first six lags showing negative

ACF values followed by positive ACF values in the subsequent six lags. This

pattern suggests that the fourth principal component obtained from SSA2,

rather than SSA1, may better represent a genuine component of the time
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series. In contrast, the autocorrelation functions for SSA2 and FOU 80 do

not display a clear pattern. SSA2 shows significant ACF values at lags 1, 5,

and 14, while FOU 80 shows significant ACF values at lags 1, 2 and 4. The

presence of high ACF values at lag 1 in both techniques suggests that neither

method may have fully captured all short-term dynamics of the series.

Figure 3.27: ACF.

The poor quality of SSA1 reconstruction is further evidenced by its resid-

uals histogram in Figure 3.28, which is asymmetric, in contrast to the his-

tograms of the SSA2 and FOU 80 residuals, which resemble a normal dis-

tribution. However, the histogram of the FOU 80 residuals shows a slightly

pronounced peak around the bin edges [-0.6 -0.3]. Despite this, Jarque-Bera

test on the residuals from the three analyses indicate that the p-values for

SSA2 and FOU 80 are 0.2163 and 0.5000, respectively, both greater than
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0.05. This suggests that there is no significant evidence to reject the nor-

mality of the residuals for SSA2 and FOU 80. In contrast, the p-value for

SSA1 is 0.0010, which is less than 0.05, indicating that the residuals of SSA1

significantly deviate from a normal distribution.

Figure 3.28: Histograms.

Figure 3.29: Jarque-Bera test results.

To conclude, the table in Figure 3.30 summarizes the results of Singu-

lar Spectrum Analysis and Fourier Analysis, evaluated with different hyper-
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parameters and numbers of Fourier coefficients, using Mean Squared Error

and Signal-to-Noise Ratio. Although FOU 100 does not achieve a higher

SNR compared to SSA(N/2, 6), it demonstrates a significantly lower MSE

(approximately 0.8 lower), suggesting a better trade-off between accuracy

and signal quality. This indicates a potential preference for FOU 100 over

SSA(N/2, 6). Furthermore, the optimal Fourier model achieves an SNR

of approximately 13, suggesting that this value represents a good trade-off

between signal quality and generalization. Then, models with higher SNR

values tend to overfit the data, underscoring the importance of balancing

model complexity with generalization capability.

Figure 3.30: Performance metrics table.

Since the SNR of SSA(414, 138) is approximately 19 dB, it likely over-

fits the data. On the other hand, SSA(N/2, 6) deviates from the target

SNR value by about 2 dB. This led us to hypothesize that one of the three

components extracted by SSA1 might be introducing noise. Given that the

second component has the highest frequency, we decided to exclude it from

the reconstruction. As a result, the SNR decreased to 12.9145 dB, indicating
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a more balanced signal-to-noise ratio. We refer to this modified version of

SSA1 as SSA1α.

3.5 Forecast

After modeling the data-generating process of the maximum tempera-

ture series using SSA1 and SSA2, we proceeded with forecasting the series

using both techniques. The forecast results from SSA1 appear more plausi-

ble, particularly for long-term projections. Specifically, as shown in Figure

3.31, the forecast generated by SSA1 indicates a steady increase in maxi-

mum temperature of approximately 1°C from 2019 to 2025. In contrast, the

forecast from SSA2 predicts an initial increase of about 1°C followed by a

subsequent decline of approximately 2.5°C and given that global warming is

a well-documented phenomenon, this suggests that the long-term forecasts

produced by SSA2 may not be reliable.

Figure 3.31: SSA1 and SSA2 forecasts.

As described in Subsection 3.4.1, the residuals from the SSA1 analysis

exhibited a repeating pattern every 12 lags and showed significant autocor-

relation at the first lag. To address these patterns, we fitted the residuals
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with a SARIMA model specified as follows:

(1− ϕ1L)(1− Φ12L
12)yt = (1 + Θ12L

12)ϵt

with ϵt := σtzt with zt ∼ N(0, 1). Using maximum likelihood estimation, the

parameters were estimated as ϕ1 = 0.20918, Φ12 = 0.8327, Θ12 = −0.7615

and σ2
t = 1.7149. Subsequently, we observed significant autocorrelation in

the residuals, which led us to extend the SARIMA model by incorporating

an additional autoregressive term of order 24. The updated model’s pa-

rameters were estimated as ϕ1 = 0.2124, ϕ24 = 0.080675, Φ12 = 0.79573,

Θ12 = −0.7066 and σ2
t = 1.7066. Given that the AIC for the extended model

was 4.8923 · 103, which is lower than that of the previous model, we adopted

the extended model. Figure 3.32 illustrates how the autocorrelation function

of the SSA1 residuals loses its periodic pattern and the significant lags di-

minish or become less pronounced after applying the SARIMA model. This

indicates that the SARIMA model has effectively captured and accounted

for the periodic structure and autocorrelation present in the residuals.

Figure 3.32: SSA1 residuals’ ACF before and after SARIMA adjustment.

We also examined the residuals from the SSA2 model. The autocorre-

lation function indicated significant autocorrelation at lags 1 and 14. To
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address this, we initially fitted an ARMA model specified as:

(1− ϕ1L− ϕ14L
14)yt = ϵt

with ϵt := σtzt with zt ∼ N(0, 1). Subsequently, we attempted to enhance the

model by adding a moving average (MA) term of order 1. This modification

led to a reduction in the AIC, indicating an improvement in model fit. We

then evaluated the inclusion of an additional MA term of order 14, however,

both the AIC and Bayesian Information Criterion (BIC) values suggested

that the model with only the MA(1) term provided a more parsimonious

and better-fitting model. Therefore, we selected the model with AR terms

of order 1 and 14, and an MA term of order 1:

(1− ϕ1L− ϕ14L
14)yt = (1− θ1L)ϵt

with the estimated parameters ϕ1 = −0.14168, ϕ14 = 0.11559 and σ2 =

0.55901. Furthermore, Figure 3.33 demonstrates that the significance of

autocorrelations at the first fourteen lags significantly decreases after the

application of the ARMA model.

Figure 3.33: SSA2 residuals’ ACF before and after ARMA adjustment.

After incorporating the SARIMA model forecast into the SSA1 predic-

tions, we observe a significant increase in forecast uncertainty. This rise in
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uncertainty arises because the SARIMA model addresses temporal structures

and variables present in the SSA1 residuals that were not accounted for in

the initial SSA1 forecast. Moreover, the forecast presented in Figure 3.41

does not depict a gradual temperature increase as seen in the SSA1 forecast.

Instead, it shows an initial rise in temperature during the first year of the

forecast, followed by a decline in the second year, and then a gradual in-

crease again. This pattern is likely due to a cyclical behavior captured by

the SARIMA model.

In contrast, integrating the ARMA model forecast into SSA2 does not

significantly alter the SSA2 forecast. As discussed in Subsection 3.4.1, the

SSA2 model already effectively captures the underlying patterns in the max-

imum temperature series, so the ARMA model does not provide additional

significant information.

Figure 3.34: SSA1 + SARIMA and SSA2 + ARMA forecast.

As is well known, the maximum temperature series exhibits an annual

periodicity. Therefore, we fitted the original series to a SARIMA model with

an AR lag of order 1, a seasonal AR lag (SAR) of order 12, a seasonal MA
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lag (SMA) of order 12, and a constant term:

(1− ϕ1L)(1− Φ12L
12)yt = c+ (1 + Θ12L

12)ϵt.

The maximum likelihood estimated parameters are ϕ1 = 0.22139, Φ =

0.9925, Θ = −0.8902, c = 0.01345 and σ2 = 1.8231. Notably, we did not

include any non-seasonal moving average (MA) terms because models with

MA lags resulted in worse AIC and BIC values.

We selected this model because the autocorrelation function of its residu-

als does not exhibit any discernible pattern, suggesting the model adequately

captures the serial correlation in the data. Additionally, the points in the

Q-Q plot align closely with the reference line, as shown in Figure 3.35, sug-

gesting that the residuals follow a normal distribution. This result is further

supported by the residuals’ histogram and the Jarque-Bera test, which indi-

cates normality.
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Figure 3.35: SARIMA Residual diagnostics.

The forecast obtained from the SARIMA model significantly deviates

from those produced by the SSA1, SSA2, and SSA2 + ARMA models.

However, it aligns more closely with the forecast generated by the SSA1

+ SARIMA model, which initially was preferred only on the base of the

known upward trend in the temperature time series. Both the SARIMA and

SSA1 + SARIMA forecasts indicate that maximum temperatures are not ex-

pected to rise excessively over the period from 2019 to 2025. However, unlike

the SARIMA model, the SSA1 + SARIMA forecast anticipates higher max-

imum temperatures during future winters and a notable spike in maximum

temperatures in the summer of 2020, which is not reflected in the SARIMA

model’s projections. Additionally, the SARIMA model produces forecast

that is slightly more variable compared to those of the SSA1 + SARIMA
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model, as illustrated in Figure 3.36. This suggests that SARIMA is more

sensitive to fluctuations in the historical data.

Supporting this observation, the 97.5% confidence intervals of the SARIMA

model are notably wider compared to those of the SSA1 + SARIMA model,

as illustrated in Figure 3.37. Moreover, both models have asymmetric con-

fidence intervals, with a noticeable skew towards higher values. This in-

dicates that the uncertainty surrounding the point estimates is not evenly

distributed, with greater uncertainty associated with the potential for higher

maximum temperatures.

Figure 3.36: SSA1 + SARIMA and SARIMA forecasts.
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Figure 3.37: Confidence intervals.

3.6 Backtesting

In line with the previous discussion, backtesting results indicate that the

forecast produced using SSA2 or SSA2 combined with ARMA, both of which,

as noted, are nearly identical, performs worse than other forecasting tech-

niques across various out-of-sample periods, specifically ∼1 year, ∼3 years,

∼6 years, ∼9 years, ∼12 years and ∼18 years. Although SSA2 demonstrated

the best MSE and SNR during reconstruction, it was actually prone to over-

fitting. Furthermore, the RMSE values of 2.2524 and 2.0992, obtained from

SSA2 for the around 9-year and 18-year forecasts, respectively, are signifi-

cantly higher compared to forecasts for other out-of-sample periods. This

discrepancy could suggest the presence of cyclical or periodic components in

the data that SSA2 fails to capture effectively. Additionally, the RMSE of

SSA1 and SSA1 combined with SARIMA differ by approximately 0.06 for
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the nearly one-year forecast and by about 0.2 for longer forecasts, indicating

that SARIMA is more effective at correcting short-term errors.

The inclusion of SARIMA on SSA1 residuals never degrades the quality of

the SSA1 forecast. In contrast, applying ARIMA to SSA2 residuals slightly

worsens the forecast accuracy for the 3-year, 12-year, and 18-year horizons.

As a result, we prefer SSA1 + SARIMA over SSA1 alone.

Figure 3.38: Backtesting table.

To facilitate a better comparison between SSA1 + SARIMA and SARIMA

alone, we conducted backtesting with out-of-sample periods corresponding

to probabilities of 0.025, 0.075, 0.13, 0.176, and 0.226, which approximately

equate to 3, 9, 15, 21, and 27 years, respectively. The results presented

in Figure 3.39 show that the RMSE of SARIMA remains relatively stable

across these different out-of-sample periods. In contrast, the RMSE for SSA1

+ SARIMA increases from 1.4728 for the approximately 9-year forecast to

1.8680 for the approximately 21-year forecast. This reveals that SARIMA ex-

hibits greater robustness in maintaining consistent performance across vary-

ing time horizons.
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Figure 3.39: Backtesting table.

We also plotted the actual data against the forecasts produced by all

five forecasting techniques for each out-of-sample period considered in the

backtesting. The plots in Figure 3.40, though depicting only a subset of the

out-of-sample periods, reveal that the forecasts from the various techniques

generally follow similar patterns, often being consistently above or below the

observed data. However, some methods, like SSA2 + ARIMA, display more

pronounced deviations compared to others. Furthermore, the forecasts from

SSA2 are frequently overshadowed by those from SSA2 + ARMA, indicating

that the inclusion of the ARMA model does not significantly enhance the

predictive accuracy. Meanwhile, the forecasts from SSA1 are evident only at

shorter lags before being overtaken by those from SSA1 + SARIMA.
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Figure 3.40: Backtesting plots.

To conclude, we also conducted a forecast using the variation of SSA1,

where the high-frequency principal component was excluded from the recon-

struction. The backtesting results, shown in Figure 3.41, indicate that be-

cause this reconstruction omits a significant principal component, the RMSE

is higher compared to the standard SSA1 model. However, when the same

SARIMA model1 that was applied to the SSA1 residuals is fitted to the

residuals of this SSA1α variant, the RMSE improves and even falls below

the level obtained with the SSA1 + SARIMA combination. This suggests

that the SARIMA model may be effectively capturing the high-frequency dy-

namics omitted from the SSA1α reconstruction, while introducing less noise

1The SARIMA model was selected based on diagnostic tests that indicated its effec-

tiveness as an autoregressive filter for the SSA1α residuals.
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compared to the original SSA1 model. The forecasting performance of SSA1α

and the SSA1α + SARIMA combination is further detailed in Figure 3.42.

Figure 3.41: Backtesting table.

Figure 3.42: SSA1α + SARIMA and SSA1α forecasts.



Conclusions

Our comparative analysis demonstrates the effectiveness of SSA in signal

reconstruction and forecasting maximum temperatures in Bologna, while also

revealing challenges in parameter selection. The comparison between SSA

variants shows that SSA1, with manually selected parameters, despite having

a higher MSE and residuals that deviate from normality, better captures the

underlying data-generating process, as indicated by its SNR, which is closer

to that of Fourier analysis (FOU 80). This finding suggests that SSA1,

while less precise in terms of mean squared error, offers a more accurate

representation of the underlying structure of the time series, avoiding the

overfitting observed in SSA2, with automatically selected parameters.

The role of cross-validation in automatic parameter selection highlighted

the importance of balancing in-sample and out-of-sample error. Our study

suggests that when selecting the parameter r, stopping at the first decrease in

out-of-sample error may prevent overfitting while optimizing overall forecast

performance.

The analysis of the autoregressive filter applied to the residuals further

supports this observation. Although SSA2 showed minimal improvement,

the filter applied to SSA1 and SSA1α significantly enhanced backtesting

performance, confirming that the autoregressive component is more effective

when the initial model accurately captures the principal components of the

109
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signal.

The SARIMA excels in long-term forecasting, it tends to dampen the

trend in minimum temperatures. In contrast, SSA1 + SARIMA and SSA1α

+ SARIMA more clearly highlight this trend, which is crucial for climate

forecasting as it better reflects the reality of global warming observed in the

region.

Finally, the comparison between SSA1α + SARIMA and SSA1 + SARIMA

revealed that excluding the second principal component not only reduces

forecast error but also preserves the underlying trend. Then, the SSA1α

+ SARIMA represents the most balanced approach for analyzing maximum

temperatures in Bologna, as it combines accurate signal representation with

robust forecasting, minimizing the risk of overfitting and improving long-term

forecast reliability.



Appendix A : MATLAB Codes

This appendix includes the main MATLAB codes used to perform Sin-

gular Spectrum Analysis on both the toy series and the historical monthly

maximum temperature series for Bologna.

A.1 SSA class

classdef ssaBasic

%SSABASIC performs a basic version of Singula Spectrum Analysis

% This class implements the Singular Spectrum Analysis (SSA)

% according to the contents of the book "Analysis of Time Series

% Structure: SSA and Related Techniques", N. Golyandina,

% V. Nekrutkin, and A. Zhigljavsky, 2001.

% From the introduction: SSA is essentially a model-free technique;

% it is more an exploratory, modelbuilding tool than a confirmatory

% procedure. It aims at a decomposition of the original series into

% a sum of a small number of interpretable components such as a

% slowly varying trend, oscillatory components and a structureless

% noise. The main concept in studying the SSA properties is

% separability, which characterizes how well different components

% can be separated from each other.

% Basic SSA analysis consists of four steps:

111
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% 1) Embedding

% 2) Singular Value Decomposition (this and the previous step are

% performed within the class contructor)

% 3) Grouping (this step is performed by the grouping method)

% 4) Diagonal Averaging (this step is performed by the method

% hankelization)

% Eventually, forecast is performed by the forecast method

% Diagnostic methods included in this class are:

% wcorrelation: weighted correlation to assess how separate are

% groups

% crossval_r0 and crossval_L0: respectively, the cross validation of

% the number of eigen-triples needed for signal reconstruction and

% the number of lags necessary to single out the relevant signal

% components (eigen-triples).

properties

L % Number of lags considered in the analysis

N % sample (x) dimension

x % Signal array

U % left eignevectors

S % singular values

V % right eigenvectors

H % Hankel matrix

end

methods

function obj = ssaBasic(x,L0)
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%SSABASIC Constructs an instance of this class

% obj = ssaBasic(x,L0) requires an array x and a positive

% scalar L0, representing the Lags for the analysis

[n,m] = size(x);

% check x is an array; if not it raises an error

obj.mustBeArray(x);

% check L0 is a scalar

if not(isscalar(L0))

error(’L0 must be a scalar’)

end

% make sure L0 is positive

L0 = abs(L0);

% make sure x is a row vector

if n > m

x = transpose(x);

end

% 1.Embedding:

% make the Hankel matrix of x (trajectory matrix)

Hx = obj.embedding(x,L0);

% 2.SVD:

% perform the Singular Value Decomposition on Hx

[U, S, V] = svd(Hx,’econ’);

% assign properties

obj.L = L0;
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obj.N = length(x);

obj.x = x;

obj.U = U;

obj.S = S;

obj.V = V;

obj.H = Hx;

end % end constructor

function y = reconstruction(obj,r0)

%RECONSTRUCTION reconstruct the signal using a subset of

%singular values.

% y = reconstruction(obj,r0) if r0 is a scalar, reconstructs

% the signal x using the first r0 singular values. If r0 is

% an array (e.g. [1 2 5]) uses the singular values listed in

% r0 by position i.e. if r0 = [1 5] it takes the first and

% the fifth singular value.

if max(r0) > obj.L/2

error(’The number of singular values cannot exceed Lags/2’)

end

if isscalar(r0)

r = 1:r0;

else

r = r0;

end
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% associate the eigentriples to array r

Sr = diag(obj.S);

Sr = diag(Sr(r));

y = obj.U(:,r) * Sr * transpose(obj.V(:,r));

% do hankelization

y = obj.hankelization(y);

end % end reconstruction

function y = grouping(obj,G)

%GROUPING groups the eigentriples acconding to groups in G

% y = grouping(obj,G) groups eigen-triples acconrding to G

% where G is an array of numbers (e.g. G = [1 1 2 2 3]).

% Singular values with the same number in array G are

% collected in the same group (e.g. if G = [1 1 2] the first

% two eigen-triples are summed together and the third is

% considered in a separate group.

m = max(G);

if m > obj.L % test m <= obj.L

error(’Number of groups must not exceed the number of lags’)

end

n = length(obj.U(:,1)) + length(obj.V(:,1)) - 1;

y = zeros(m,n);

allPos = 1:obj.L;

for ii = 1:m

tmpPos = allPos(ii == G);
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if isempty(tmpPos)

error(’Group %i is empty\n’,ii)

end

tmpD = transpose(diag(obj.S));

tmpU = obj.U(:,tmpPos) .* repmat(tmpD(tmpPos),obj.L+1,1);

tmpY = tmpU * transpose(obj.V(:,tmpPos));

y(ii,:) = obj.hankelization(tmpY);

end

if nargout == 0

% plot components

figure

for ii = 1:m

subplot(m,1,ii)

plot(y(ii,:))

title(sprintf(’Component %i’,ii))

end % end for ii

end % end if nargout

end % end grouping

function [xM, xCi, xSamp] = forecast(obj,r0,M,numSamp,display)

%FORECAST forecasts the signal according to basic SSA

% xM = forecast(obj,r,M) forecasts the signal extracted from

% the original series x using the recursive algorithm, M

% times ahead. When r0 is a scalar it uses the first r0

% singular values for the forecast. When r0 is an array, it

% uses the singular values corresponding to the positions
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% listed in r0 (e.g. if r0 = [1 2 5] it uses the first, the

% second and the fifth singular value for the forecast).

if max(r0) > obj.L/2

error(’r must be less than L/2’)

end

if isscalar(r0)

r = 1:r0;

else

r = r0;

end

if nargin < 4

numSamp = 100;

display = ’off’;

end

if nargin < 5

display = ’off’;

end

% reconstruct signal using the U(:,1:r0) basis vectors

P = obj.U(:,r);

xM = obj.forecastRecursive(obj.x,P,M);

% do bootstrapping



118 APPENDIX A

if nargout > 1 || strcmp(display,’on’)

xSamp = zeros(numSamp,length(xM));

xR = obj.bootstrap(r,numSamp);

for ii = 1:numSamp

tmpZ = obj.embedding(xR(ii,:),obj.L);

[tmpP, ~, ~] = svd(tmpZ,’econ’);

xSamp(ii,:) = obj.forecastRecursive(xR(ii,:), ...

tmpP(:,r), M);

end % end for ii

xSamp = xSamp(:,end-M+1:end);

xCi = prctile(xSamp,[97.5;2.5]);

end % end if nargout > 1

% make fanplot

if strcmp(display,’on’)

inSamp = floor(0.1*length(obj.x));

Dy = 1:inSamp;

Dn = inSamp+(1:M);

yHist = transpose([Dy; obj.x(end-inSamp+1:end)]);

yFore = transpose([Dn; xSamp]);

fanplot(yHist,yFore)

title(’Forecast with SSA basic’)

end

end % end forecast method

function Rz = bootstrap(obj,r,m)

%BOOTSTRAP bootstraps m times SSA residuals
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% Rz = bootstrap(obj,r,m) given a time series x and the number

% of eigen-triples (r) used for reconstructing the signal z

% generates m copies of x sampling on residuals of linear

% regression of z over x (z\x)

z = obj.reconstruction(r);

zLen = length(z);

% compute residuals using OLS

zt = transpose(z);

xt = transpose(obj.x);

beta = zt\xt;

olsRes = transpose(xt-zt*beta);

% true bootstrapping

R = olsRes(randi(zLen,[m,zLen]));

Rz = R + repmat(z,m,1);

end % end bootstrap

function D = plotSingularValues(obj,numValues)

%PLOTSINGULARVALUES Plots ordered singular values

% plotSingularValues(obj) makes two plots, one with the

% singular values and another with the relative cumulative

% contribution of each singular value to the overall signal

% variance

if nargin < 2

numValues = obj.L;

end
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D = diag(obj.S);

Drel = cumsum(D) / sum(D);

% make plot

figure

% plot singular values

subplot(2,1,1)

stem(D(1:numValues),’filled’)

title(sprintf(’First %i Singular Values’,numValues))

xlabel(’Lags’)

ylabel(’singular values’)

%plot relative singular values

subplot(2,1,2)

bar(Drel(1:numValues))

xlabel(’Lags’)

ylabel(’relative contribution’)

title(sprintf(’Cumulated Singular Values:\n Relative contribution to signal variance’))

end % end plotsingularvalues

function C = wcorrelation(obj,G)

%WCORRELATION returns the w-correlation matrix of two series

% C = wcorrelation(obj,G) returns a symmetric matrix C of

% weighted correlation coefficients calculated from an input

% nvar-by-nobs matrix Y where columns are observations and

% rows are variables, and an input 1-by-nobs vector w of

% weights for the observations.
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Y = obj.grouping(G);

[~, nObs] = size(Y); % nobs: number of observations;

% ---------------- compute weights ---------------

w=zeros(1,nObs);

L0 = obj.L;

w(1, 1:L0) = 1:L0;

w( (L0+1):(nObs-L0+1) ) = L0 * ones(1, nObs-2*L0+1);

w( (nObs-L0+2):nObs ) = nObs*ones(1,L0-1) - ( (nObs-L0+2):nObs );

% ------------------------------------------------

wMean = (Y * w’)./sum(w); % weighted means of Y

temp = Y - repmat(wMean, 1, nObs); % center Y by remove weighted means

temp = temp * transpose(temp .* w); % weighted covariance matrix

temp = 0.5 * (temp + temp’); % Must be exactly symmetric

R = diag(temp);

C = temp ./ sqrt(R * R’);

% plot w-correlation matrix

figure

heatmap(abs(C));

title(’w-correlation matrix’)

end % end wcorrelation

function scatterplotseigenvectors(obj,G)

% SCATTERPLOTSEIGENVECTORS Scatter-plots of the paired

% eigenvectors according to groups in G

% scatterplotseigenvectors(obj,G) makes plots of paired

% eingevectors in order to underline the periodicity of their

% corresponding component



122 APPENDIX A

m = length(G);

p = floor(m / 2); % number of paired eigenvectors

allPos = 1:(2*p);

% draw figure

figure

for k=1:p

T = allPos(G==k);

tmpX = obj.U(:,T);

subplot(p,1,k)

line(tmpX(:,1),tmpX(:,2))

title(sprintf(’Scatterplots of the paired eigenvectors (%i,%i)’...

,T(1),T(2)))

box

end

end %end scatterplotseigenvectors

function best_r0= crossval_r0(obj,L,p,numTest)

% CROSSVAL_R0 does the cross-validation eigen-triples number r0

% best_r0 = crossval_r0(obj,p,numTest) takes as optional

% inputs p the proportion of sample used for cross-validation

% (out-of-sample) and the number of trials (numTest) and

% gives the number of eigen-triples which minimizes the total

% rmse (in-sample + out-of-sample).

if nargin < 2

p = 0.3;
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numTest = 200;

end

if nargin < 3

numTest = 200;

end

% set cross-val configuration

numInSamp = floor(length(obj.x)*(1-p));

max_L0 = floor(L*(1-p));

max_r0 = floor(max_L0*0.5);

inX = obj.x(1:numInSamp);

muX = mean(inX);

inX = inX - muX;

outX = obj.x(numInSamp+1:end);

array_test = fix(linspace(2,max_r0,numTest));

tmpSSA = ssaBasic(inX,max_L0);

% pre-allocate output of tests

inErr = zeros(numTest,1);

outErr = zeros(numTest,1);

for ii = 1:numTest

tmpX = tmpSSA.reconstruction(array_test(ii));

inErr(ii) = rmse(inX,tmpX);

tmpX = tmpSSA.forecast(array_test(ii),length(outX));

outErr(ii) = rmse(outX,tmpX(numInSamp+1:end)+muX);

end

[~, best_indx] = min(outErr+inErr);
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best_r0 = array_test(best_indx);

% do the figure

figure

plot(array_test,outErr,’LineStyle’,’none’,’Marker’,’diamond’)

hold on

plot(array_test,inErr,’LineStyle’,’none’,’Marker’,’square’)

plot(array_test,inErr + outErr,’LineStyle’,’-’,’LineWidth’,1.5)

title(sprintf(’Cross-validation of r with L = %i’,L))

xlabel(’r’)

ylabel(’RMSE’)

legend({’outError’,’inError’,’total’})

end % end crossval_r0

function best_L0 = crossval_L0(obj,r0,p,numTest)

% CROSSVAL_L0 does the cross-validation of number of lags L0

% best_L0 = crossval_r0(obj,r0,p,numTest) given the number of

% eigen-triples r0, tests the best number of lags L0.

% It takes as optional inputs p, the proportion of sample

% for cross-validation (out-of-sample) and the number of

% trials (numTest). best_L0 is the number of lags which

% minimizes the total rmse (in-sample + out-of-sample).

if nargin < 3

p = 0.3;

numTest = 50;

end
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if nargin < 4

numTest = 50;

end

% set cross-val configuration

numInSamp = floor(length(obj.x)*(1-p));

inX = obj.x(1:numInSamp);

muX = mean(inX);

inX = inX - muX;

outX = obj.x(numInSamp+1:end);

max_L0 = floor(obj.L*(1-p));

min_L0 = max(2*max(r0)+1,floor(max_L0*0.1));

array_test = floor(linspace(min_L0,max_L0,numTest));

% pre-allocate output of tests

inErr = zeros(numTest,1);

outErr = zeros(numTest,1);

for ii = 1:numTest

tmpSSA = ssaBasic(inX,array_test(ii));

tmpX = tmpSSA.reconstruction(r0);

inErr(ii) = rmse(inX’,tmpX’);

tmpX = tmpSSA.forecast(r0,length(outX));

outErr(ii) = rmse(outX’,transpose(tmpX(numInSamp+1:end)+muX));

end

[~, best_indx] = min(outErr+inErr);

best_L0 = array_test(best_indx);

best_L0 = floor(best_L0/(1-p));

% do the figure
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figure

plot(array_test,outErr,’LineStyle’,’none’,’Marker’,’diamond’)

hold on

plot(array_test,inErr,’LineStyle’,’none’,’Marker’,’square’)

plot(array_test,inErr + outErr,’LineStyle’,’-’,’LineWidth’,1.5)

title(sprintf(’Cross-validation of L with r = %i’,max(r0)))

xlabel(’L’)

ylabel(’RMSE’)

legend({’outError’,’inError’,’total’})

end % end crossval_L0

function [testRMSE, xF] = backtest(obj,x,qInSample,r0)

%BACKTEST does backtesting of SSA on a signal

% testRMSE = backtest(obj,x,qInSample,r0) given signal x

% the share of in-sample observations (qInSample), and the

% number of eigen-triples r0, computes the

% Root Mean Square Error (RMSE) of the forecast on the

% out-of-sample observations.

% [testRMSE, xF] = backtest(obj,x,qInSample,r0) also provides

% the forecast of x (xF) as output.

numObs = length(x);

inSampObs = floor(qInSample * numObs);

inX = x(1:inSampObs);

outX = x(inSampObs+1:end);

muX = mean(inX);

inX = inX - muX; % subtract to x its mean
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L0 = floor(obj.L*qInSample);

mySSA = ssaBasic(inX,L0);

xF = mySSA.forecast(r0,length(outX));

xF = transpose(xF + muX);

xF = xF(inSampObs+1:end);

testRMSE = rmse(outX,xF);

end % end backtest

function [testRMSE, xF] = backtestARIMA(obj,x,qInSample,r0,arMdl0)

%BACKTESTARIMA does backtesting of SSA + ARIMA on a signal

% testRMSE = backtestARIMA(obj,x,qInSample,r0,arMdl0) given signal

% x the share of in-sample observations (qInSample), the

% number of eigen-triples r0 and the ARIMA model (arMdl10),

% computes the Root Mean Square Error (RMSE) of the forecast on

% the out-of-sample observations.

% [testRMSE, xF] = backtestARIMA(obj,x,qInSample,r0,arMdl0) also

% provides the forecast of x (xF) as output.

numObs = length(x);

inSampObs = floor(qInSample * numObs);

inX = x(1:inSampObs);

outX = x(inSampObs+1:end);

muX = mean(inX);

inX = inX - muX; % subtract to x its mean

L0 = floor(obj.L*qInSample);

mySSA = ssaBasic(inX,L0);

xF = mySSA.forecast(r0,length(outX));
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xF = transpose(xF + muX);

xF = xF(inSampObs+1:end);

xHat = mySSA.reconstruction(r0);

xHat = xHat(1:inSampObs);

beta = inX\transpose(xHat);

olsRes = inX - beta * transpose(xHat);

% fit an ARIMA model on residuals

estMdl = estimate(arMdl0,olsRes,’Display’,’off’);

olsResF = forecast(estMdl,length(outX),olsRes);

xF_arma = xF + olsResF;

testRMSE = rmse(outX,xF_arma);

end % end backtestARIMA

end % end public methods

methods (Access = private)

function yNew = forecastRecursive(obj,y,P,M)

%FORECASTRECURSIVE recursively forecasts y, M

%periods ahead

% yNew = forecastRecursive(y,P,M) applies a

% recursive algorithm to project y on the r-space

% defined by the basis vectors in P, M periods ahead.

L1 = length(P(1:end-1,1));

yLen = length(y);

Hx = obj.embedding(y,L1);
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Xhat = P * P’ * Hx; % project H on basis vectors

Y = obj.hankelization(Xhat); % hankelization

% apply recursion

nu2 = sum(P(end,:).^2);

Pup = P(1:end-1,:) .* repmat(P(end,:),L1,1);

R = 1/(1-nu2) * sum(Pup,2);

yNew = zeros(1,yLen+M);

yNew(1,1:yLen) = Y;

for ii = 1:M

yNew(1,yLen+ii) = yNew(1,yLen-L1+ii:yLen+ii-1) * R;

end % end for ii

end % end forecastRecursive

end % end private methods

methods (Static)

function Hx = embedding(x,L0)

%EMBEDDING does embedding of array x

%according to lags L0

% Hx = embedding(x,L0) takes array x as input

% and makes an Hankel matrix Hx consisting of L0 + 1 rows and

% N - L0 columns, where N = length(x)

Hx = hankel(x);

Hx(:,(end-L0+1):end) = []; % delete last L0 columns

Hx = Hx(1:L0+1,:); % keep only the first L0 rows
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end % end embedding

function y = hankelization(Y)

%HANKELIZATION hakelization of matrix Y

% y = hankelization(Y) computes the averages of the

% anti-diagonals of matrix Y and stores the results in the

% array y.

[n,m] = size(Y);

N = n+m-1; % number of elements in the array y

y = zeros(1,N); % a row vector

Y = flip(Y,2); % in order to use diag

for ii = 1:N

kk = ii - n;

y(ii) = mean(diag(Y,kk));

end

y = flip(y,2);

end % end hankelization

function tf = mustBeArray(x)

%MUSTBEARRAY checks x is an array

[n,m] = size(x);

if min(n,m) > 1

error(’x must be an array’)

else
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tf = true;

end

end % end mustBeArray

end % end of static methods

end % end classdef

A.2 Periodogram

function PSD = basicPeriodogram(x,optArgs)

%BASICPERIODOGRAM computes Power Spectrum Density and plots signal’s

%periodogram

% PSD = basicPeriodogram(x,optArgs) computes the Power Spectrum Density

% of x using the Discrete Fast Fourier Transform (fft).

% basicPeriodogram(x,optArgs) plots the periodogram of x

%

% Optional arguments:

% bilateral = logical (default: false); plots the bilateral

% rappresentaion of periodogram.

% period = double (default: length(x)); scale x-axis frequency according

% to the user defined period.

arguments

x (:,1) double

optArgs.bilateral (1,1) logical = false

optArgs.period (1,1) double = nan
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end

N = length(x);

t = 0:(N - 1); % set time array

Fx = fft(x); % Discrete-Fast Fourier Transform of y(t)

PSD0 = Fx .* conj(Fx) / N; % compute Power Spectrum Density

N2 = floor(N / 2 + 1); % consider half of sample rate since PSD is symmetric

PSD = 2*PSD0(2:N2);

if nargout == 0

xt = t(2:N2);

if not(isnan(optArgs.period))

xt = xt / N * optArgs.period;

end

if optArgs.bilateral

plot([-1*flip(xt,2),xt],fftshift(PSD0)) % bilateral PSD plot

else

plot(xt,PSD) % PSD plot

end

xlabel(’Cycles’)

ylabel(’Power’)

title(’Power spectrum’)

end % end if nargout == 0
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end % end periodogram

A.3 Fourier cross-validation

function [minRMSE,bestRMSE_m,minRMSE2,bestRMSE2_m] = cross_valF(x,p,array_test)

% cross_valF Selects the best number of Fourier coefficients

% using cross-validation.

% x - Signal data

% p - Proportion of the data to use for testing (30% for out-of-sample)

% array_test - Array of numbers of coefficients to test

% minRMSE - Minimum RMSE error for training

% bestRMSE_m - Number of coefficients associated with the minimum training error

% minRMSE2 - Minimum RMSE error for testing

% bestRMSE2_m - Number of coefficients associated with the minimum testing error

% Set up the data partitioning

numInSamp = floor(length(x)*(1-p));

inX = x(1:numInSamp);

muX = mean(inX);

inX = inX - muX;

outX = x(numInSamp+1:end);

% Calculate the power spectrum of the data

PSD = basicPeriodogram(inX);

% Function to generate Fourier basis functions

myFou = @(t,f) [cos(2*pi*kron(f,t)) sin(2*pi*kron(f,t))];

t = transpose(0:length(inX)-1);
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t2 = transpose(0:length(outX)-1);

% Preallocate arrays to store errors

RMSE = zeros(length(array_test), 1);

RMSE2 = zeros(length(array_test), 1);

% Loop over the number of coefficients

for ii = 1:length(array_test)

i = array_test(ii);

% Select the main coefficients

[~, fP] = maxk(PSD, i);

f = transpose(fP) / length(inX);

xFou = myFou(t, f);

% Regression on the training data

olsFou = fitlm(xFou, inX);

betaFou = olsFou.Coefficients.Estimate(2:end);

xFou_rec = xFou * betaFou;

% Calculate the reconstruction error for training

RMSE(ii) = rmse(xFou_rec, inX);

% Select the main coefficients for the test data

xFou2 = myFou(t2, f);

% Regression on the test data
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olsFou2 = fitlm(xFou2, outX+muX);

betaFou2 = olsFou2.Coefficients.Estimate(2:end);

xFou2_rec = xFou2 * betaFou2;

% Calculate the reconstruction error for testing

RMSE2(ii) = rmse(xFou2_rec, outX);

end

% Find the optimal number of coefficients

[minRMSE, bestRMSE_m] = min(RMSE);

[minRMSE2, bestRMSE2_m] = min(RMSE2);

% Create the learning curve

figure;

plot(array_test, RMSE, ’-o’, ’DisplayName’, ’InSaple RMSE’);

hold on;

plot(array_test, RMSE2, ’-x’, ’DisplayName’, ’OutSample RMSE’);

xlabel(’Number of Fourier coefficients’);

ylabel(’RMSE’);

title(’Cross Validation of Fourier’);

legend;

grid on;

end
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