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Introduzione

I gruppi di Coxeter vennero definiti da H. S. Coxeter in un articolo pubblicato nel
1936 (si veda [2]) come gruppi astratti che generalizzano i gruppi di riflessioni finiti.
Come questi ultimi, essi ammettono una presentazione in termini di riflessioni, ma non
tutti i gruppi di Coxeter sono finiti e non sempre possono essere descritti in termini di
riflessioni in uno spazio euclideo. I gruppi di Coxeter finiti vennero classificati, sempre
da H. S. Coxeter (si veda [3]), nel 1935 e risultano essere tutti e soli i gruppi di riflessioni
finiti.

La definizione di questi gruppi è sufficientemente generale da incapsulare molti gruppi
che si incontrano naturalmente nello studio di altre strutture matematiche. Ad esempio,
i gruppi di simmetria di politopi regolari sono gruppi di Coxeter, lo sono anche i gruppi di
Weyl delle algebre di Lie semplici, oltreché i gruppi di Weyl delle algebre di Kac-Moody,
che tipicamente hanno dimensione infinita. Dedicheremo il primo capitolo di questa tesi
allo studio delle proprietà principali dei gruppi di Coxeter, come la Proprietà di Scambio
Forte, e lo concluderemo dimostrando la classifiazione dei gruppi di Coxeter finiti. Di
particolare importanza per i capitoli successivi sarà l’introduzione di un ordinamento
parziale su questi gruppi detto ordinamento di Bruhat.

Nel secondo capitolo, parleremo dell’algebra di Hecke di un gruppo di Coxeter, che
è costruita a partire dallo Z[q, q−1]-modulo libero su un gruppo di Coxeter, su cui suc-
cessivamente si definisce un prodotto che, in qualche modo, rispetta la struttura interna
del gruppo. A partire da questa algebra, in un lavoro pubbicato nel 1979 (si veda [12]),
David Kazhdan e George Lusztig definirono due classi di polinomi indicizzate da coppie
di elementi del gruppo di Coxeter, gli R-polinomi e i polinomi di Kazhdan-Lusztig, questi
ultimi vennero usati per costruire rappresentazioni dell’algebra di Hecke di un gruppo di
Coxeter. I polinomi di Kazhdan-Lusztig hanno successivamente trovato numerose appli-
cazioni inaspettate in vari ambiti della matematica, come la teoria delle rappresentazioni
dei gruppi algebrici semisemplici, la teoria dei moduli di Verma, e la geometria delle
varietà di Schubert. Ad esempio, proprio in [12], Kazhdan e Lusztig congetturarono che
i valori dei polinomi di Kazhdan-Lusztig in 1 fossero connessi con delle quantità impor-
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ii INTRODUZIONE

tanti della teoria dei moduli di Verma. Queste congetture furono dimostrate in maniera
indipendente da A. Beilinson e J. Bernstein in [1] e da J. L. Brylinski e M. Kashiwara
in [9] nel 1981. Inoltre, sempre grazie a un lavoro di Kazhdan e Lusztig (si veda [13]), si
trovarono delle interpretazioni dei coefficienti dei polinomi di Kazhdan-Lusztig in termini
di invarianti topologici delle varietà di Schubert, degli oggetti geometrici indicizzati da
elementi del gruppo simmetrico (che è un gruppo di riflessioni finito, e quindi un gruppo
di Coxeter).

Tutti questi collegamenti con altre parti della matematica rendono il calcolo di questi
polinomi un problema di grande interesse. Purtroppo, il calcolo di quest’ultimi risulta
essere complesso. Una delle più importanti congetture aperte su questi oggetti, la cui
risoluzione semplificherebbe notevolmente il problema del loro calcolo, è la congettura di
invarianza combinatorica, che afferma che questi polinomi dipendono solo dalla strut-
tura di insieme parzialmente ordinato del gruppo. Più precisamente, la congettura as-
serisce che se u, v sono due elementi di un gruppo di Coxeter ordinato con l’ordinamento
di Bruhat, il polinomio di Kazhdan-Lusztig Pu,v dipende solo dalla struttura di poset
dell’intervallo [u, v]. La congettura rimane aperta in generale, ma è stata dimostrata
in alcuni casi particolari. Ad esempio, in [8] F. Brenti ha dimostrato la congettura per
gli intervalli detti short edge e F. Brenti, F. Caselli e M. Marietti hanno dimsotrato la
congettura per lower intervals in [7], cioè intervalli della forma [1, w]. Nel terzo capitolo
di questa tesi, forniremo una dimostrazione della congettura di invarianza combinatorica
per lower intervals seguendo il lavoro di Brenti, Caselli e Marietti appena citato.
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Chapter 1

Coxeter groups

In the present chapter, we will introduce the main object of study: Coxeter groups.
The principal motivations for the definition of this special class of groups are finite
reflection groups and so called affine Weyl groups, which contain affine reflections as well
as reflections that fix the origin of some Euclidean space. After having dealt with the
basic properties and definitions, we will study the central results about such groups: the
Strong Exchange Condition and the Deletion Condition. Moreover, we will introduce
and study a special partial order on Coxeter groups called the Bruhat order, this is what
makes Coxeter systems interesting combinatorical objects. At the end on the chapter,
we will also state the classification of finite Coxeter groups. For the most part, we will
follow [11] and [5].

1.1 Coxeter groups and Coxeter systems

Definition. A Coxeter system is a pair (W,S) where W is a group and S ⊆ W is a
generating subset of W . To be a Coxeter system, we require that W has a presentation
of the following form:

W = ⟨S | (ss′)m(s,s′) = 1 ∀s, s′ ∈ S such that m(s, s′) ̸= ∞⟩.

The numbers m(s, s′) are positive integers or infinity, respecting the following conditions:

∀s ∈ S m(s, s) = 1

∀s ̸= s′ m(s, s′) = m(s′, s) ⩾ 2

If no relation occurs between two generators, we set m(s, s′) = ∞ by convention. We
define the rank of the Coxeter system (W,S) to be |S|. From now on we will assume
|S| < +∞. When the presentation is clear, we will simply refer to W as a Coxeter group.
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2 1. Coxeter groups

Remark 1.1.1. Formally, W is constructed by taking the free group over S, which we
will denote FS. Then we let N be the normal subgroup generated by all the elements
(ss′)m(s,s′), and take W to be the quotient FS/N .

Remark 1.1.2. It is not immediately clear from the definition that all the elements of S
are of order two, nor is it clear that the integers m(s, s′) are precisely the order of the
elements ss′. This will turn out ot be the case.

To define a Coxeter system it is sufficient to specify the generating set S, and to give
a symmetric matrix M whose entries are parametrized by pairs of elements of S and take
values in Z∪{∞}. These will need to respect the relations of the first definition. Another
way to represent in a compact way all the relations between generators is to draw a graph
with labelled vertices. The set S will be the vertex set and we will join two vertices s
and s′ when m(s, s′) ⩾ 2. The labels on the edges will just be the integers m(s, s′). In
order to prevent clutter on these graphs, the label is omitted when m(s, s′) = 3. We call
this a Coxeter graph.

Example 1. The group Zn
2 is a Coxeter group. Just take S := {1, . . . , n} and the graph

with n isolated vertices as Coxeter graph.

Example 2. The Universal Coxeter group of order n is the free group on n generators.
In the case n = 3 it has Coxeter graph

∞
∞∞

Example 3. The dihedral group Dn is a Coxeter group with Coxeter graph

n

Example 4. The symmetric group Sn is generated by the transpositions (1, 2), . . . , (n−
1, n). The product (i, i + 1)(j, j + 1) has order 2 if |i − j| ≠ 1, and 3 when |i − j| = 1.
It turns out that by choosing S = {(1, 2), . . . , (n − 1, n)}, (Sn, S) is a Coxeter system
whose Coxeter graph is:

Remark 1.1.3. It is important to notice that two different Coxeter systems can give rise
to the same Coxeter group. For example the group D6 is the Coxeter group of the
Coxeter system with graph

s s′
6



1.1 Coxeter groups and Coxeter systems 3

But we can present D6 in a different way. If S is the generating set of the previous
presentation, the set S ′ := {s, (s′s)2, s(s′s)2} also generates D6 and leads to a Coxeter
system with Coxeter graph

s s(s′s)2

(s′s)3

Proposition 1.1.1. There is a unique surjective homomorphism ε : W → {−1, 1}
sending each element of S to −1. As a consequence every element in S has order 2.

Proof. The propositions follows by observing that there is an homomorphism

FS → {−1, 1}

s 7→ −1

and that all elements of the form (ss′)m(s,s′) are in the kernel. Therefore this map factors
to a morphism W → {−1, 1} sending each generator to −1.

Definition. A Coxeter system (W,S) is said to be irreducible if its Coxeter graph is
connected. A Coxeter system which is not irreducible is said to be reducible

Since every element in S has order 2, we can write each w ∈ W as w = s1s2 . . . sr for
some si ∈ S.

Definition. Let (W,S) be a Coxeter system, we define the lenght function ℓ : W → N
as ℓ(w) := min{r ∈ N : ∃s1, . . . , sr ∈ S s.t. w = s1s2 . . . sr}. By convention ℓ(1) = 0.

Here are some of the main properties of the length function:

(L1) ℓ(w) = ℓ(w−1);

(L2) ℓ(w) = 1 ⇐⇒ w ∈ S;

(L3) ℓ(ww′) ⩽ ℓ(w) + ℓ(w′);

(L4) ℓ(ww′) ⩾ ℓ(w)− ℓ(w′);

(L5) If s ∈ S and w ∈ W we have ℓ(w)− 1 ⩽ ℓ(ws) ⩽ ℓ(w) + 1.

Proposition 1.1.2. The homomorphism ε defined in Proposition 1.1.1 can be expressed
as ε(w) = (−1)ℓ(w). As a consequence of this and property (L5), we have that for all
s ∈ S and all w ∈ W it holds that ℓ(ws) = ℓ(w)± 1.
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Proof. Let w be an element of the group W . By definition of the length function, w can
be written in the form w = s1s2 . . . sℓ(w) with each si ∈ S, since ε sends each element in
S to −1, the first part of the proposition is clear. The fact that ε(sw) = −ε(w) implies,
using the first part of the proposition, that ℓ(ws) ̸= ℓ(w). This and the property (L5)
prove the second part of the proposition.

1.2 The geometric representation of a Coxeter group

The length function introduced in the previous section is of vital importance because
many of the following results will be proved by induction on ℓ(w). Because of this, we
need to study in more depth the precise relation between ℓ(sw) and ℓ(w). In order to do
this we need to construct a representation ofW . In most of the examples given, the group
W admits a representation as a group of orthogonal reflections in some Euclidean space
V . Unfortunately, this cannot be done in general. What can be done in the general case
is to allow the bilinear form on the vector space to be degenerate, and replace orthogonal
reflections with endomorphisms which fix an hyperplane pointwise and send a vector to
its negative. Let V be a vector space with a basis {αs | s ∈ S} in bijection with S.
Generalizing what is seen in the case of dihedral groups, we define a symmetric bilinear
form B on V by

B(αs, αs′) = −cos
(

π

m(s, s′)

)
If m(s, s′) = ∞, this is interpreted to be −1.

Remark 1.2.1. Observe that each element αs is non-isotropic. Therefore, if Hs is the
orthogonal space of Rαs, we have V = Rαs ⊕Hs.

Proposition 1.2.1. There is a unique homomorphism σ : W → End(V ) sending s ∈ S

to
σs(v) = v − 2B(αs, v)αs.

This is called the geometric representation of W . Moreover, the form B is σ(W )-
invariant.

Proof. Firstly, we check that each σs preserves the form B. Let s ∈ S and v, w ∈ V ,
then:

B(σs(v), σs(w)) = B(v − 2B(v, αs)αs, w − 2B(w;αs)αs)

= B(v, w)− 2B(v, αs)B(w, αs)− 2B(v, αs)(B(αs, w)− 2B(w, αs))

= B(v, w)
(((((((((((
−4B(v, αs)B(w, αs)(((((((((((

+4B(v, αs)B(w, αs)

= B(v, w).
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and we are done.

To show the existence and uniqueness of σ we need to prove the following statement:

∀s, s′ ∈ S (σsσs′)
m(s,s′) = idV .

We first fix s, s′ ∈ S, set m := m(s, s′) and define Vs,s′ := Rαs ⊕ Rαs′ . We observe that
Vs,s′ is left stable by σs and σs′ , therefore their restrictions are endomorphisms of Vs,s′

that, with a little abuse of notation, we will denote again by σs and σs′ . Furthermore,
we observe that the restriction of B to Vs,s′ is positive semidefinite, and it is degenerate
precisely when m = ∞, this is made clear by the following calculation: let v = aαs+bαs′ ,
with a, b ∈ R, then

B(v, v) = a2 − 2 ab cos(π/m) + b2 = (a− b cos(π/m))2 + b2 sin2(π/m) ⩾ 0.

Moreover this quantity is always strictly positive if m <∞. We distinguish two cases:

1. m <∞. From what we said above, the form B restricted to Vs,s′ is positive definite.
Therefore V splits as the direct sum of Vs,s′ and its orthogonal complement, which
is fixed by σs and σs′ pointwise. Thus, we only need to calculate the order of
σsσs′ on Vs,s′ . By choosing the basis {αs, αs′} we obtain an isomorphism with the
Euclidean plane (R2, ⟨·, ·⟩st). The lines spanned by αs and αs′ form an angle of
π/m, therefore we observe that σsσs′ is just a rotation of 2π/m, hence it has order
m.

2. m = ∞. We have B(αs, αs′) = −1. We define v∗ = αs +αs′ , this vector is fixed by
both σs and σs′ . Moreover, σsσs′(αs) = 3αs + 2αs′ = 2v∗ + αs. Inductively we get
(σsσs′)

k = 2k v∗+αs, which is never equal to αs. Therefore σsσs′ has infinite order
on Vs,s′ and therefore as a map on V .

This concludes the proof by defining the map first on the free group on S, and then
letting the map descend to the quotient.

Corollary 1.2.1. For all s, s′ ∈ S, m(s, s′) is precisely the order of ss′.

Proof. In the proof we have showed that the order of σsσs′ is equal to m(s, s′), thus the
order of ss′ cannot be smaller than m(s, s′).

The geometric representation of a Coxeter group turns out to be always faithful, but
this will be proved only in the next section and requires more work.
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1.3 Root systems

In this section we obtain the main result needed to better understand the behaviour
of the length function. In order to do this, we need to study how W acts on V via the
geometric representation.

Definition. The root system Φ of (W,S) is the collection of vectors

Φ = {w(αs) | w ∈ W, s ∈ S }.

Its elements are called roots.

Remark 1.3.1. All roots are unit vectors since the geometric action of W preserves the
form B. Furthermore, if α is a root so is −α, since s(αs) = −αs.

Let α be a root, then we can write

α =
∑
s∈S

csαs.

We call α positive and write α > 0 if for all s ∈ S we have cs ⩾ 0, while we call the root
negative if for all s ∈ S we have cs ⩽ 0. We call Φ+ the set of all positive roots and Φ−

the set of all negative roots.
In order to prove the next theorem, we need to introduce a special class of subgroups of
W .

Definition. Let (W,S) be a Coxeter system. Let I ⊆ S, then we define WI as the
subgroup of W generated by the elements of I. A subgroup obtained in this way is
called a parabolic subgroup.

Remark 1.3.2. Let (W,S) be a reducible Coxeter system, let Γ1, . . .Γn be the connencted
components of the Coxeter graph of (W,S). Then if Ii is the subset of S consisting of
the vertices of Γi, W splits in the direct sum W = WI1 × · · · ×WIn .

Remark 1.3.3. Every w ∈ WI can be written as product of elements in I, therefore we
can define a length function ℓI that tells us the minimum length of any such expression.
Of course, it is true that if w ∈ WI , then ℓ(w) ⩽ ℓI(w). It will be proved in the next
section that these two functions take the same values.

The following theorem is a key element in the proofs of much of what follows in the
next sections. It gives us a way to use the geometric representation to study the length
function, and is also essential in the proof of the main properties of parabolic subgroups,
stated in Theorem 1.5.1.
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Theorem 1.3.1. Let w ∈ W and s ∈ S. If ℓ(ws) > ℓ(w) then w(αs) > 0. Similarly if
ℓ(ws) < ℓ(w) then w(αs) < 0.

Proof. First of all, we observe that the second statement follows from the first one. If
ℓ(ws) < ℓ(w), then ℓ((ws)s) = ℓ(w) > ℓ(ws). By the first statement ws(αs) = −w(αs) >

0, so w(αs) < 0. We prove the first statement by induction on ℓ(w). If ℓ(w) = 0, then
w = 1 and the claim is clear. If ℓ(w) > 0, let w = s1s2 . . . sr be a reduced word and let
us denote s′ := sr, then s′ is such that ℓ(ws′) < ℓ(w). This shows that s ̸= s′, therefore
we can define I := {s, s′} so that WI is dihedral (finite or infinite). We can now define
the following set

A := {v ∈ W | v−1w ∈ WI and ℓ(v) + ℓI(v
−1w) = ℓ(w)}.

This set is non-empty since w ∈ A. We take v ∈ A with minumum length among the
elements of A and denote vI := v−1w. By definition w = vvI and ℓ(w) = ℓ(v) + ℓI(vI).
The strategy is to use the induction hypothesis on the pair v, s, and then use the relation
w = vvI to prove the theorem for w. In order to do so, we first need to show the following
inequalities:

(a) ℓ(v) < ℓ(w), (b) ℓ(vs) > ℓ(v).

We recall that s′ is such that ℓ(ws′) = ℓ(w) − 1, therefore (ws′)−1w = s′ ∈ WI and
ℓ(w) = ℓ(ws′) + 1 = ℓ(ws′) + ℓ(s′), this shows that ws′ ∈ A. Because of how we chose v,
it holds that ℓ(v) ⩽ ℓ(ws′) = ℓ(w) − 1 and we have showed (a). The proof of (b) is by
contradiction, let us suppose that ℓ(vs) < ℓ(v), then we would have

ℓ(w) ⩽
(L3)

ℓ(vs) + ℓ((sv−1)w)

⩽ ℓ(vs) + ℓI(sv
−1w) [using sv−1w ∈ WI and ℓ ⩽ ℓI ]

= (ℓ(v)− 1) + ℓI(svI)

⩽
(L5)

ℓ(v)− 1 + ℓI(vI) + 1

= ℓ(v) + ℓI(vI)

= ℓ(w).

Thus, all these quantities are equal, giving us ℓ(w) = ℓ(vs) + ℓ((sv−1)w). Since
sv−1w ∈ WI as observed in the second line of the calculation, we can conclude that
vs ∈ A, which is absurd since we assumed ℓ(vs) < ℓ(v) and v ∈ A of minimal length.
Consequently ℓ(vs) > ℓ(v). Following the exact same steps made explicit for s, we also
obtain ℓ(vs′) > ℓ(v). By induction we can conclude that v(αs), v(αs′) > 0.
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The next step is to show that also w(αs) and w(αs′) are positive. Since w = vvI , it will be
enough to show that vI sends αs to a linear combination of αs and αs′ with non-negative
coefficients. Initially, we state that ℓI(vIs) ⩾ ℓI(vI), if this were not the case, we would
get

ℓ(ws) = ℓ(vv−1ws) ⩽ ℓ(v) + ℓ(v−1ws)

= ℓ(v) + ℓ(vIs) ⩽ ℓ(v) + ℓI(vIs)

< ℓ(v) + ℓI(vI) = ℓ(w).

Which is a contradiction since ℓ(ws) > ℓ(w). We observe that since WI is dihedral,
all reduced expressions are alternating products of s and s′, and therefore all reduced
expressions of vI end in s. Let m := m(s, s′), two cases are now possible:

1. m = ∞. In this situation we have that B(αs, αs′) = −1, and iteratively we get

s′(αs) = αs + 2αs′

ss′(αs) = 2αs′ + 3αs

s′ss′(αs) = 3αs + 4αs′

...

2. m <∞. In this situation WI is just the finite dihedral group Dm, and we can think
of s, s′ as reflections over two axis that form an angle of π/m. Clearly m is the
maximum of ℓI , but the only element of length m is the reflection . . . ss′︸ ︷︷ ︸

m

= . . . s′s︸ ︷︷ ︸
m

.

Therefore vI has a reduced expression vI = . . . s′s︸ ︷︷ ︸
<m

. We observe that ss′ is a rotation

through an angle of 2π/m. We remark that in a fixed reduced expression for vI
we have at most m/2 such reflection. If m = 2k + 1 is odd and ℓ(vI) = 2k, then
vI(αs) = αs′ . Otherwise the rotation part of vI moves αs towards αs′ through an
angle of at most π − 2π/m, still within the positive cone defined by αs and αs′ . If
the reduced expression for vI starts with s′, then the resulting vector is sent again
in the positive cone since the angle between the reflecting line and αs is π/2−π/m.

Remark 1.3.4. Clearly, the two statements of the theorem put together give us the con-
verse implications. By this we mean that both statements of the theorem are an “if and
only if”.
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Corollary 1.3.1. The geometric representation σ is faithful.

Proof. Suppose w ∈ Ker(σ) and w ̸= 1. Since w is not the identity element, it has
positive length and it is possible find s ∈ S such that ℓ(ws) < ℓ(w), then Theorem 1.3.1
says that w(αs) < 0, but since w acts as the identity, we have w(αs) = αs > 0, finding a
contradiction.

Corollary 1.3.2. If α ∈ Φ, and α =
∑

s∈S csαs, then one of the following holds:

(1) cs ⩾ 0 ∀s ∈ S;

(2) cs ⩽ 0 ∀s ∈ S.

Which means that Φ = Φ+ ⨿ Φ−.

Proof. By definition of a root, there exists w ∈ W and s ∈ S such that α = w(αs), but
we recall that as a consequence of Proposition 1.1.1, ℓ(ws) and ℓ(w) are never equal.
Therefore either ℓ(ws) > ℓ(w) or ℓ(ws) < ℓ(w). By Theorem 1.3.1 either α > 0 or
α < 0.

1.4 The geometric interpretation of the length func-

tion

The goal of the next section is to better understand how W permutes the roots. We
will obtain a result that connects the behaviour of the length function with the geometric
representation. This result will be used to prove the so called Exchange Condition and
Deletion Condition, which are the main combinatorial properties of words in a Coxeter
group. As expected, Theorem 1.3.1 will be a key ingredient in the proof of the main
proposition.

Proposition 1.4.1. 1. If s ∈ S, the only positive root sent to a negative root by s

is αs.

2. For all w ∈ W , ℓ(w) is the number of positive root sent to negative roots by w.

Proof. 1. Let α ∈ Φ+ \ {αs}. Since α is a unit vector it cannot be a multiple of αs,
and therefore it can be written in the form

α =
∑
t∈S

ctαt,
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where at least one ct > 0 for some t ̸= s. By definition, the action of s on a vector
only changes the αs component, hence the coefficient ct is left unchanged, and this
proves the root must be positive and also shows that it is different from αs. We
thus have s(Φ+ \{αs}) ⊆ Φ+ \{αs}. Applying s to both sides of the inclusion gives
us the opposite one, and we have proved 1.

2. Let us define

Π(w) := Φ+ ∩ w−1(−Φ+); n(w) := |Π(w)|.

In words, n(w) is the number of positive root sent to negative root by w. Note
that n(w) may be infinite. We proceed by induction on ℓ(w). The first part of
the proposition tells us that if s ∈ S we have n(w) = 1. We observe that, because
of part 1 of the proposition, if w(αs) > 0 then Π(ws) = s(Π(w)) ⨿ {αs}, whereas
if w(αs) < 0 we get Π(ws) = s(Π(w) \ {αs}). We omit the details but the result
follows using the main properties of the image set of a function. Theorem 1.3.1
tells us ℓ(ws) = ℓ(w) + 1 exactly when w(αs) > 0, and ℓ(ws) = ℓ(w) − 1 exactly
when w(αs) < 0, using the induction hypothesis we are done.

1.5 Parabolic subgroups

By using the results we have just obtained about the geometric representation and
using Theorem 1.3.1, we can get a lot of information about the subgroup structure of W .
Before anything else, we recall that if (W,S) is a Coxeter system and I ⊆ S, we defined
WI to be the subgroup generated by the elements of I.

Theorem 1.5.1. Let (W,S) be a Coxeter system with Coxeter graph Γ, let I ⊆ S, then
the following hold:

1. The pair (WI , I) is a Coxeter system whose Coxeter graph is the subgraph of Γ
induced by the set of vertices I.

2. If w ∈ WI and w = s1s2 . . . sr is a reduced expression, then every element of the
expression is in I. Therefore ℓ = ℓI on WI .

3. There is a lattice isomorphism between the subsets of S and parabolic subgroups
of W , the isomoprhism is given by

I 7→ WI .
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4. No subset of S generates W .

Proof. 1. Let Γ be the Coxeter graph of W , the set I and the subgraph ΓI generated
by I (considered as a subset of vertices) defines abstractly a Coxeter system (W I , I).
Let σ̄ be the geometric representation of (W I , I) and let VI := Span{ αs | s ∈ I}.
Since the action each element s ∈ I is determined purely by the values m(s, s′),
we can state that if s ∈ I, then σ̄(s) = σ(s)|VI . Lastly, we observe that there is a
natural surjective homomorphism

W I → WI

s1s2 . . . sr 7→ s1s2 . . . sr.

The observations made above let us claim that the following diagram commutes

W I WI

End(VI)

σ̄

Since σ̄ is injective as proved in Corollary 1.3.1, the upper arrow is an isomorphism.

2. The proof is by induction on ℓ(w), the case w = 1 is clear. Suppose w ̸= 1, let
w = s1s2 . . . sr be a reduced expression and denote s := sr. By Theorem 1.3.1, we
have w(αs) < 0. From the fact that w ∈ WI , we can say that w can be written as
w = t1t2 . . . tq (ti ∈ I). Thus

w(αs) = αs +

q∑
i=1

ciαti

for some ci ∈ R. Since w(αs) < 0, there must be an index i such that s =

ti, obtaining s ∈ I. By the fact that ws = s1 . . . sr−1 is reduced, we conclude
inductively.

3. Suppose I, J ⊆ S. If WI ⊆ WJ , then I = WI ∩ S ⊆ WJ ∩ S = J as a consequence
of 2. Trivially, WI∪J is the subgroup generated by WI and WJ . Thanks to 2 we
have the relation WI∩J = WI ∩WJ . This gives us the lattice isomorphism.

4. This is a direct consequence of 3.
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We end this section by presenting an important result about parabolic subgroups. For
further details, the reader may consult [11, §5.12]. This result will be used in Chapter 3.
Firstly, we define for every J ⊆ S the sets:

W I :={w ∈ W | ℓ(ws) > ℓ(w) for all s ∈ I}, IW :={w ∈ W | ℓ(sw) > ℓ(w) for all s ∈ I}.

Proposition 1.5.1. Let I ∈ J . Then:

(i) Every w ∈ W has a unique factorization w = wIwI with wI ∈ W I , wI ∈ WI and
ℓ(w) = ℓ(wI) + ℓ(wI).

(ii) Every w ∈ W has a unique factorization w = Iw
Iw, where Iw ∈ WI , Iw ∈ IW

and ℓ(w) = ℓ(Iw) + ℓ(Iw).

1.6 The Exchange and Deletion conditions

In this section we prove the most important properties of Coxeter groups, not only do
these result shed light on the combinatorial behaviour of expressions in a Coxeter group,
but also characterize Coxeter groups completely. We omit the proof of this result here,
the reader may consult [11, Chapter 1] or [5, Chapter 1]. The first step is to generalize
which elements act as reflections. Let α = w(αs) (s ∈ S,w ∈ W ) be a root. Then if
v ∈ V we get:

wsw−1(v) = w[w−1(v)− 2B(w−1(v), αs)αs]

= v − 2B(w−1, αs)w(αs)

= v − 2B(v, w(αs))w(αs)

= v − 2B(v, α)α.

Therefore the action of an element wsw−1 does not depend on the elements s, w them-
selves, but only on the root w(αs). Because of this, we can denote this map sα. This
endomorphism fixes the orthogonal complement of Rα and sends α to −α. Therefore,
we can define the set of all such reflections as

T :=
⋃
w∈W

wSw−1.

Lemma 1.6.1. The map Φ+ → T sending αs 7→ sα, where sα is the map defined above,
is a bijection.
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Proof. The map is surjective by definition. If sα = sβ, then

sα(β) = β − 2B(β, α)α = −β = sβ(β) =⇒ β = B(β, α)α.

Since both are unit vectors and positive roots, it must be that α = β.

Lemma 1.6.2. If α, β are roots and if there exists w ∈ W such that β = w(α), then
wsαw

−1 = sβ.

Proof. Let v ∈ V :

wsαw
−1(v) = w[w−1(v)− 2B(w−1(v), α)α]

= v − 2B(w−1(v), α)w(α)

= v − 2B(v, w(α))w(α)

= v − 2B(v, β)β = sβ(v).

There is an analogue of Theorem 1.3.1 that holds for arbitrary reflections.

Proposition 1.6.1. Let w ∈ W , α ∈ Π, then ℓ(wsα) > ℓ(w) if and only if w(α) > 0.

Proof. We prove the statement by induction on ℓ(w), if ℓ(w) = 0 then w = 1 and the
statement is evident. We can assume ℓ(w) > 0, therefore it is possible to find s ∈ S such
that ℓ(sw) < ℓ(w), and

ℓ((sw)sα) = ℓ(s(wsα)) ⩾
(L5)

ℓ(wsα)− 1 > ℓ(w)− 1 = ℓ(sw).

Because of the choice of s, we can use the inductive hypothesis and get sw(α) > 0. If it
were true that w(α) < 0, since the only negative root sent to a positive one by s is −αs,
thus we have w(α) = −αs and sw(α) = αs. Then by the lemma we just proved, we would
get (sw)sα(sw)

−1 = s, and obtain wsα = sw, which is absurd since ℓ(wsα) = ℓ(w) + 1

while ℓ(sw) = ℓ(w)− 1.

It is possible to generalize the notion of parabolic subgroups to arbitrary reflections.
A reflection subgroup of W is any subgroup of the form W ′ := ⟨A⟩ with A ⊆ T . It turns
out that these subgroups are Coxeter groups. Let w ∈ W and define N(w) := {t ∈ T |
ℓ(wt) < ℓ(w)}, then by setting S ′ := {t ∈ T | N(t) ∩W ′ = {t}} it is true that (W ′, S ′)

is a Coxeter system. We call elements of S ′ canonical generators of W ′ and say that W ′

is dihedral if |S ′| = 2. This result is presented, for example, in [11, Theorem 8.2].



14 1. Coxeter groups

Theorem 1.6.1 (Strong exchange condition). Let w = s1s2 . . . sr and let t ∈ T be
such that ℓ(wt) < ℓ(w). Then there exists i ∈ {1, . . . , r} such that wt = s1 . . . ŝi . . . sr.
Moreover, if w = s1s2 . . . sr is a reduced expression, then the index i is unique.

Proof. Let α ∈ Φ+ be such that t = sα. Since ℓ(wt) < ℓ(w), the last proposition
tells us that w(α) < 0. But α is positive, so there must be an index i such that
si+1 . . . sr(α) > 0 but si . . . sr(α) < 0. Using what we have proved in the last section, we
get si+1 . . . sr(α) = αsi . Using the previous lemma we obtain:

si = (si+1 . . . sr)sα(si+1 . . . sr)
−1.

Therefore wsα = wt = s1 . . . ŝi . . . sr. If w = s1s2 . . . sr is a reduced expression, then if
there were indices i < j such that

wt = s1 . . . ŝi . . . sj . . . sr = s1 . . . si . . . ŝj . . . sr.,

by cancelling and manipolating the expression, we would then be able to find w =

s1 . . . ŝi . . . ŝj . . . sr and the expression w = s1s2 . . . sr would not be reduced.

Corollary 1.6.1 (Deletion Condition). (1) Let w = s1s2 . . . sr. If the expression is
not reduced, then there are indices i < j such that w = s1 . . . ŝi . . . ŝj . . . sr.

(2) It is possible to obtain a reduced expression by an arbitrary one omitting an even
number of factors.

Proof. The second part of the statement is a direct consequence of the first one. The
hypothesis entails that there is an index j such that ℓ(s1 . . . sj−1sj) < ℓ(s1 . . . sj−1),
using the Exchange Condition we get s1 . . . sj = s1 . . . ŝi . . . sj−1, thus we can write w =

s1 . . . ŝi . . . ŝj . . . sr.

1.7 The Bruhat order

In this section we define a special partial order on a Coxeter groups W and study
its properties. The order is defined in such a way that the order relation reflect the
behaviour of the length function. One of the main reasons Coxeter groups are interesting
combinatorial objects is because of this particular poset structure. It is important to say
that the Bruhat order also arises in other branches of mathematics, such as the study of
Schubert varieties in algebraic geometry.
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Definition. Let (W,S) be a Coxeter system and T its set of reflections. Let u,w ∈ W

and t ∈ T , we write u t−→ w if w = vt and ℓ(u) < ℓ(w). We may write u→ w to say that
u

t−→ w holds for some t ∈ T .
We define w′ < w if there are elements w1, . . . , wm such that w′ = w0 → . . .→ wm = w.
We call this the Bruhat order of the group W . The Bruhat graph of (W,S) is the graph
whose vertices are the elemets of W , and there is an edge between u,w ∈ W if u→ w.

Remark 1.7.1. In the previous definition, if we restricted ourselves to the case t ∈ S, we
would have obtain an order called the weak ordering.

Remark 1.7.2. If u→ w, by definition ℓ(w) > ℓ(u), but we do not know what the length
difference is, since we are not working with just the generators anymore and property
(L5) does not hold anymore. We will prove more information about this length difference.

Remark 1.7.3. We omit the proof, but defining u −→ tw if w = tu and ℓ(w) > ℓ(u),
defines the same partial order.

Lemma 1.7.1. (1) u < w implies ℓ(u) < ℓ(w);

(2) ∀u ∈ W ∀t ∈ T u < ut ⇐⇒ ℓ(u) < ℓ(ut);

(3) 1 ∈ W is the smallest element.

Proof. All of these are direct consequences of the definition.

Example 5. Let us consider the group D4 with Coxeter graph

a b

4

Then the set of reflections is T = {a, b, aba, bab} and D4 has the Bruhat graph depicted
in Figure 1.1 . Some edges are dashed to make the picture clearer.

Lemma 1.7.2. Let u,w ∈ W be distinct, w = s1s2 . . . sr be a reduced expression and
let u be such that u has a reduced expression which is a subword of s1s2 . . . sr. Then
there is an element v ∈ W such that

(1) u < v;

(2) ℓ(v) = ℓ(u) + 1;

(3) v has a reduced expression that is a subword of s1s2 . . . sr.
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1

a b

ab ba

aba bab

abab = baba

(a) Bruhat graph.

1

a b

ab ba

aba bab

abab = baba

(b) Bruhat ordering.

Figure 1.1: The poset structure of D4.

Proof. Out of all the reduced expression for u which are subwords of rw, choose one in
which the last omitted index ik is minimal. Then consider the reflection t = srsr−1 . . . sik . . . sr−1sr.
So we obtain the following:

u = s1 . . . ŝi1 . . . ŝik . . . sr, ut = s1 . . . ŝi1 . . . ŝir−1 . . . sik . . . sr.

Thus ℓ(ut) < ℓ(u) + 1. Suppose ut < u, then the Strong Exchange Condition gives us a
reduced expression for ut by omitting a reflection. By equating the terms and cancelling
we get that either

t = srsr−1 . . . sp . . . sr−1sr, for p > ik

or

t = sr . . . ŝik . . . ŝid . . . sq . . . ŝid . . . ŝik . . . sr, for some r < ik, r ̸= ij.



1.7 The Bruhat order 17

In the first case:

w = wt2

= (s1s2 . . . sr)(sr . . . sik . . . sr)(sr . . . sp . . . sr)

= s1 . . . ŝik . . . ŝp . . . sr.

This is impossible since w = s1s2 . . . sr was assumed to be reduced. In the second case:

u = ut2

= (s1 . . . ŝi1 . . . ŝik . . . sr)(sr . . . ŝik . . . sq . . . ŝik . . . sr)(sq . . . sik . . . sq)

= s1 . . . ŝi1 . . . ŝq . . . sik . . . sr.

Which is impossible since ik was assumed to be minimal. We now define v := ut and we
are done.

Theorem 1.7.1 (Subword property). Let w ∈ W and w = s1s2 . . . sr be a reduced
expression. Then w′ ⩽ w if and only if there are indices 1 ⩽ i1 < · · · < ik ⩽ r such that
w′ = si1si2 . . . sik .

Proof. By definition we have w′ = w0 → . . . → wm = w, the statement is proved by
induction on m. If m = 0 the statement is trivial. If w′ → w, by definition there is t ∈ T

such that w = w′t and ℓ(w) > ℓ(w′). Thus, we can use the Strong Exchange Condition
and obtain w′ = s1 . . . ŝi . . . sr. Since wm−1 → w, the element wm−1 is obtained as a
subword of w = s1s2 . . . sr, which is necessarily reduced. By the fact that w′ = w0 →
. . . → wm−1, inductively we can conclude that w′ can be obtained as a subword of the
reduced expression obtained for wm−1 and we are done. For the converse implication,
the proof is by induction on ℓ(w) − ℓ(u), the case ℓ(w) − ℓ(u) = 0 being clear. Let
u = si1si2 . . . sik be a subword of s1s2 . . . sr, then by the previous lemma we have an
element v ∈ W that has a reduced expression which is a subword of s1s2 . . . sr, it is
strictly greater that u and ℓ(w) − ℓ(v) = ℓ(w) − ℓ(u) − 1. By using the induction
hypothesis, we can conclude that u < v ⩽ w.

Theorem 1.7.2 (Chain property). If u < w, there exists a chain u = x0 < x1 < · · · <
xk = w such that ℓ(xi) = ℓ(u) + i for 1 ⩽ i ⩽ k.

Proof. We prove the result by induction on ℓ(w) − ℓ(u), with the case ℓ(w) − ℓ(u) = 0

being trivial. Let w = s1s2 . . . sr be a reduced expression for w. If u < w, by the
Subword Property there are indices 1 ⩽ i1 < · · · < ik ⩽ r such that u = si1 . . . sik and
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the expression is reduced. Using the last lemma, we have an element v > u with all the
properties proved in the lemma. Therefore by induction we have a chain

v = x1 < · · · < xk = w

since ℓ(v) = ℓ(u) + 1, therefore the chain

u = x0 < x1 = v < · · · < xk = w

has the desired properties.

Notation. We write u ◁ w if u < w and ℓ(w) = ℓ(u) + 1.

Proposition 1.7.1 (Lifting Property). Let u < w, let s ∈ S be such that ℓ(sw) < ℓ(w)

but ℓ(su) > ℓ(u). Then u ⩽ sw and su ⩽ w.

u

susw

w

Proof. We denote α ≺ β the relation given by “being a subword of”. Let sw = s1s2 . . . sr

be a reduced expression, then write w = ss1s2 . . . sr (note that this expression is reduced).
Therefore we have a reduced subword

u = si1 . . . sik ≺ ss1s2 . . . sr.

Since we have assumed su > u, s and si1 must be distinct. Thus we conclude that
si1 . . . sik ≺ s1s2 . . . sr, meaning u ⩽ sw and ssi1 . . . sik ≺ ss1s2 . . . sr. Thus, by the
subword property su ⩽ w.

1.8 Fundamental domain for σ

In this section we further study the geometric action of a Coxeter group, these results
are a key step in the classification of all finite Coxeter groups which we will study in
the next section. Firstly, we recall that if ρ : G → End(V ) is a finite dimensional
representation of a group G, then its dual action ρ∗ : G → End(V ∗) is defined as
ρ(g)(φ) := φ ◦ ρ(g−1)(v). From now on we will omit ρ and ρ∗ from the notation in order
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to make the exposition clearer, as done in the past sections when using the geometric
representation. The dual action has the following property:

∀φ ∈ V ∗ ∀g ∈ G ∀v ∈ V g(φ)(g(v)) = φ(v).

Let (W,S) be a Coxeter system, σ : W → V be its geometric representation and σ∗

its dual representation. We define the hyperplanes Zs := { φ ∈ V ∗ | φ(αs) = 0 }, and
the relative half-spaces As := { φ ∈ V ∗ | φ(αs) > 0 }, A′

s := { φ ∈ V ∗ | φ(αs) < 0 }. We
can then define

C :=
⋂
s∈S

As.

Remark 1.8.1. The action of s fixes Zs pointwise since the action of s only changes the
αs coordinate, which is sent to zero by any element of Zs.

We can fix a basis consisting of the vectors αs, obtaining an identification of V and
V ∗ with Rn (with n = |S|). The identification of V ∗ with Rn is given by the dual basis
of the basis chosen for V . Clearly Zs is a closed set, while As, A′

s and C are open.
Moreover, all elements of W act as continuous functions both on V and V ∗.

Remark 1.8.2. Note that if s ∈ S it is true that As = As ∪ Zs, and D := C =
⋂

s∈S As,
then D turns out to be a convex cone.

We define the following partition of D: if I ⊆ S, we call

CI :=

(⋂
s∈I

Zs

)
∩

(⋂
s̸∈I

As

)
.

We have observed that s fixes Zs pointwise, therefore WI fixes CI pointwise. Conversely,
if s ∈ S fixes a point φ ∈ CI , then we have:

φ(αs) = s(φ)(s(αs)) = −φ(αs) =⇒ φ ∈ Zs.

Since CI intersects Zs only if s ∈ I, it must be that s ∈ I. This argument is not enough
to show that WI is precisely the stabilizer of CI , this will turn out to be true and we will
prove this in one of the next results. We define

U :=
⋃
w∈W

w(D).

Since D is a cone, so is U , which is called the Tits cone. We will now proceed and study
the action of W on the Tits cone.

Lemma 1.8.1. Let s ∈ S and w ∈ W . Then ℓ(sw) > ℓ(w) if and only if w(C) ⊆ As,
whereas ℓ(sw) < ℓ(w) if and only if w(C) ⊆ A′

s.
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Proof. If ℓ(sw) > ℓ(w) then ℓ(w−1s) > ℓ(w) and by Theorem 1.3.1 we get w−1 > 0. If
φ ∈ C, then w(φ)(αs) = φ(w−1)(αs) > 0, which is equivalent to w−1 > 0 by how C is
defined. So w(C) ∈ As if and only if ℓ(sw) > ℓ(w).

Theorem 1.8.1. (1) Let w ∈ W and I, J ⊆ S. If w(CI) ∩ CJ ̸= ∅, then I = J and
w ∈ WI , so w(CI) = CI . In particular WI is the stabilizer of each point of CI , and
the family C = { w(CI) | I ⊆ S, w ∈ W} is a partition of U .

(2) D is a fundamental domain of the action of W on U , meaning the orbit of each
point of U has exactly one element in D.

(3) The Tits cone U is convex. Furthermore, every closed segment in U meets finitely
many elements of the partition C.

Proof. (1) We proceed by induction on ℓ(w), the case ℓ(w) = 0 being trivial. If
ℓ(w) > 0, there exists s ∈ S such that ℓ(sw) < ℓ(w), writing w = s(sw) and
applying the previous lemma to this situation we get w(C) ⊆ s(As) = A′

s.
Since the action of each element of W is continuous, we get w(D) ⊆ A′

s. Since
D ⊆ As, we have D ∩ w(D) ⊆ Zs. This means that s fixes pointwise the set
w(CI) ∩ CJ ̸= ∅. We can therefore deduce the following:

• The reflection s fixes an element in CJ , applying the reasoning followed
after the definition of CI , we can deduce that s ∈ J . Thus s fixes CJ

pointwise.

• CJ ∩ sw(CI) = s(CJ ∩ w(CI)) is nonempty.

Since ℓ(sw) < ℓ(w), we can use the induction hypothesis and get I = J and
sw ∈ WI , but since s ∈ J = I, we have w ∈ WI . The rest of the claim is a
direct consequence of what we have just showed.

(2) We only need to prove the uniqueness of the element in D in each orbit. Let
φ, ψ ∈ D be in the same orbit, meaning there is an element w ∈ W such
that w(φ) = ψ. There are I, J ⊆ S such that φ ∈ CI and ψ ∈ CJ , thus
w(CI) ∩ CJ ̸= ∅, by part (1) we obtain I = J and w ∈ WI and therefore
φ = ψ.

(3) It is sufficient to prove that if φ, ψ ∈ U , the segment [φ, ψ] can be covered
by finitely many sets in the family C. Firstly, we observe that the action of
an element w permutes the elements of the family C, meaning that the claim
holds for a segment [φ, ψ] if and only if it also holds for [w(φ), w(ψ)]. This
means that we can assume φ ∈ D and ψ ∈ w(D). We proceed by induction
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on ℓ(w), the case w = 1 being part (1). Let ℓ(w) > 0, since D is a convex
cone, the intersection of the segment [φ, ψ] with D is a closed segment [φ, η]

which by part (1) is covered by finitely many elements of the family C. It
remains to show that we can cover [φ, η]. We can assume ψ ̸∈ D since we
have already covered this case. This means that for some s ∈ I and s ̸∈ I,
we have ψ ∈ A′

s ∩ As′ . Let us assume that η ∈ As for all s ∈ I, then this
would have to be true for all points in a neighbourhood of η, thus the whole
neighbourhood would lie in D which is a contradiction. This means that for
some s ∈ I we have η ∈ Zs. Furthermore, because of the fact that ψ ∈ A′

s

it must be that w(D) ⊆ A′
s thus w(C) ⊆ A′

s. Using the previous lemma we
obtain ℓ(sw) < ℓ(w) and using the induction hypothesis to the pair η ∈ D

and s(ψ) ∈ sw(D) we can cover [η, s(ψ)], taking the image set via s lets us
conclude the proof.

1.9 Classification of finite Coxeter groups

In this section we state the classification of finite Coxeter groups, which turn out
to be all the finite reflection groups. These in turn are classified, and we will state the
classification by giving the list of all the possible Coxeter graphs of these groups, without
giving the detailed proof. The interest reader can look at [11, Chapter 2]. Firstly, we
need to better study the properties of the geometric representation σ : W → End(V ).
As before, we fix a basis for V , and therefore we identify V and V ∗ with Rn. Moreover,
we identify End(V ) and End(V ∗) with GL(n,R).

Proposition 1.9.1. With the topologies definied above, σ(W ) is a discrete subgroup of
End(v).

Proof. We keep the notation of the previous section for all the important subsets of
V ∗. Firstly, we observe that for all φ ∈ V ∗, the valuation map vφ : End(V ∗) → V ∗ is
continuous. This tells us that the set C0 := v−1

φ (C) is an open set containing the identity.
By choosing φ ∈ C, part (1) of Theorem 1.8.1 lets us conclude that σ∗(W ) ∩ C0 = {1}.
In turn, an arbitrary element g = σ∗(w) has an open neighbourhood gC0 intersecting
σ∗(W ) in {g}. This means that σ∗(W ) is a discrete subset of GL(V ∗). By trasport of
structure we obtain the desired claim.

Lemma 1.9.1. Every discrete subgroup of a compact Hausdorff topological group is
closed and therefore finite.
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Proof. Omitted.

Corollary 1.9.1. If the form B induced by the Coxeter system (W,S) is positive definite,
then W is finite.

Proof. If B is positive definite, we get an identification of V and V ∗ with Rn endowed
with the Euclidean scalar product. Because of how the geometric action is defined, σ(W )

contains only isometries. Since the group of isometries O(n,R) is compact. By the
previous theorem σ(W ) is discrete and we can therefore conclude using the lemma.

Proposition 1.9.2. Let (W,S) be an irreducible Coxeter system, then the following
hold:

(1) Every subrepresentation of the geometric representation of W is a subset of V ⊥ =

rad(B) =
⋂

s∈S Hs.

(2) If B is degenerate, meaning rad(B) ̸= ∅, then V is not completely reducible.

(3) If B is non-degenerate then the geometric representation is irreducible.

(4) The only W -module homomorphisms are multiples of the identity.

Proof. (1) Let V ′ be a proper submodule of V . Let us assume that V ′ does not
contain any roots. The maps σs is diagonizable with eigenvalues 1 and −1. Since
the eigenspace of eigenvalue −1 is generated by αs, which we assumed to be outside
V ′, σs fixes V ′ pointwise. This is true for all s ∈ S, meaning V ′ ⊆

⋂
s∈S Hs = V ⊥.

If αs is in V ′ for some s ∈ S, then we can choose an element t ∈ S adjancent to s
in the Coxeter graph of (W,S), therefore σt(αs) = αs + cαt, but V ′ is W -invariant,
forcing αt to be in V ′. Since (W,S) is connected, we can iterate the argument and
say that αs ∈ V ′ for all s ∈ S, thus V = V ′.

(2) Using part (1) of the proposition, any submodule of V is inside the radical, hence
it cannot have a direct complement that is also a submodule.

(3) This is a direct consequence of part (1).

(4) Let f ∈ End(V ) commute with all elements of σ(W ). If s is in S, then f commutes
with σs and therefore the subspace Rαs is fixed by f and f(αs) = cαs for some
c ∈ R. Let g be the linear map defined by g(v) = f(v) − cv, since f commutes
with all elements in σ(W ), the map g is a W -module homomorphism and therefore
Ker(g) is a subrepresentation that contains αs. By part (1) of the proposition
Ker(g) = V .
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In order to obtain the main result, the next fact about group representations is needed.
We state the result without proof, the interested reader can consult [11]. Statement (b)
of the lemma is also known as Maschke’s theorem.

Lemma 1.9.2. Let ρ : G → End(E) be a group representation, with E a finite dimen-
sional vector space over R.

(a) If G is finite, then there exists a positive definite G-invariant bilinear form on E.

(b) If G is finite, then ρ is completely reducible.

(c) Suppose the only endomorphisms of E commuting with ρ(G) are the scalars. If β
and β′ are non-degenerate symmetric bilinear forms on E, both G-invariant, then
β′ is a scalar multiple of β.

Theorem 1.9.1. The following conditions on a Coxeter group W are equivalent:

(1) W is finite.

(2) The bilinear form B is positive definite.

(3) W is a finite reflection group, meaning a group isomorphic to a finite group of
orthogonal transformations in Euclidean space generated by reflections.

Proof. Without loss of generality we assume that (W,S) is irreducible.

(a) =⇒ (b) As a consequence of Maschke’s theorem, the geometric representation is completely
reducible. Thus, using the previous proposition we get the following results: the
form B must be non-degenerate, σ is irreducible and the only W -module homo-
morphisms are multiples of the identity. Moreover, by using part (c) of the lemma
stated above, we can conclude that all non-degenerate symmetric bilinear forms
that are W -invariant are multiples of B. By part (1) of the lemma one of these
forms is positive definite, let us call it B′. Then B′ = cB for some c ∈ R∗. By
evaluating at αs we obtain

c = c · 1 = cB(αs, αs) = B′(αs, αs) > 0.

Thus B is positive definite.

(b) =⇒ (c) This is Corollary 1.9.1.

(c) =⇒ (a) This statement is trivial.
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To conclude the chapter, we list all of the Coxeter graphs which give rise to a positive
definite bilinear form B. The result will not be proven here. As advised at the beginning
of the section, we suggest the interest reader to consult [11, Chapter 2].

An(n ⩾ 1)

Bn(n ⩾ 2)
4

Dn(n ⩾ 4)

E6

E7

E7

F4
4

H3
5

H4
5

I2(m)
m

Figure 1.2: Coxeter graphs of finite Coxeter groups.



Chapter 2

Hecke algebras and Kazhdan–Lusztig

polynomials

In this chapter we start by giving a definition of the Hecke algebra of a Coxeter group.
This object is constructed by giving an algebra structure to the free Z[q, q−1]-module on
W , whose product is defined on the free basis in a way that reflects the behaviour
of the length function of the Coxeter group. Afterwards, we go on defining the R-
polynomials and the Kazhdan-Lusztig polynomials. These polynomials were defined by
David Kazhdan and George Lusztig in [12] in order to construct representations of the
associated Hecke algebra. Roughly speaking, the R-polynomials are related to how the
inverse of an element in the free basis is written with respect to the same basis. These are
used to define the Kazhdan–Lusztig polynomials. The Hecke algebra of a Coxeter group
has another natural basis other than the free basis indexed by W . The Kazhdan–Lusztig
polynomials essentially are the coefficients of the basis change matrix between these two
bases.

The importance of Kazhdan–Lusztig polynomials goes further than the construction
of representations of the Hecke algebra. Since they first appeared in [12], unanticipated
applications of these polynomials have been found: they appear in the representation
theory of semisimple algebraic groups, the theory of Verma modules and in the study of
Schubert varieties in algebraic geometry. The work that connects Schubert varieties and
Kazhdan–Lusztig polynomials was done by Kazhdan and Lusztig in [13].

2.1 Hecke algebras

We begin this chapter with the construction of the Hecke algebra of a Coxeter group.
Let (W,S) be a Coxeter system, we call H the free Z[q, q−1]-module on W . Let { Tw |

25
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w ∈ W } be the free basis indexed by elements of W .

Theorem 2.1.1. There is a unique associative algebra structure on the free module H,
having T1 as identity element, such that the product operation behaves as follows:{

(1) TsTw = Tsw if ℓ(sw) > ℓ(w)

(2) TsTw = (q − 1)Tw + qTsw if ℓ(sw) < ℓ(w).

Proof. The uniqueness part is clear, since once the product is defined on a basis, the
product between any to elements is uniquely determined since we are asking for a product
that is bilinear (we are asking for the distributive property). We simply write a reduced
expression w = s1s2 . . . sr, and use the first relation to obtain Tw = Ts1 . . . Tsr . We give
only the idea of the existence of the structure and omit the details. The strategy is to
use the already existing associative algebra structure on End(H). Observe that if H
did in fact have such a structure, the left multiplication maps on H would generate a
subalgebra of End(H) isomorphic to H as an algebra. Therefore, we just need to find
the right subalgebra of End(H). We proceed by defining the following operators. We
define λs (s ∈ S) (which correspond to the left multiplication operators) by

λs(Tw) = Tsw if ℓ(sw) > ℓ(w),

λs(Tw) = (q − 1)Tw + qTsw if ℓ(sw) < ℓ(w).

And we define the operators corresponding to right multiplication as follows (t ∈ S)

ρs(Tw) = Twt if ℓ(wt) > ℓ(w),

ρs(Tw) = (q − 1)Tw + qTwt if ℓ(wt) < ℓ(w).

The proof consists in showing that every λs commutes with every ρt. Then define L to
be the subalgebra of End(H) generated by the maps λs. To finish, we define the map
φ : L → H to be the valuation map at T1. The map turns out to be bijective, and the
fact that the operators commute is used to show this. We have therefore transferred
an algebra structure on H, and the last step of the proof is to show that the relations
required actually hold.

Remark 2.1.1. The relations that appear in the theorem are actually equivalent to the
following {

(3) TsTw = Tsw if ℓ(sw) > ℓ(w)

(4) T 2
s = (q − 1)Ts + qT1.

These two relations clearly follow from the previous one, (1) is unchanged and (4) is just
a special case of the one that appears in the theorem. To prove the converse, we have
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to show (2). If w ∈ S we have (4). Assume ℓ(sw) < ℓ(w), then ℓ(s(sw)) > ℓ(sw). Thus
relation (3) gives us TsTsw = Tw. Using the relation (4) we get

TsTw = T 2
s Tsw =

(4)
((q − 1)Ts + qT1)Tsw = (q − 1)Tw + qTsw.

Notation. To avoid excessive use of parentheses, making the notation cumbersome, we
introduce the notation εw = (−1)ℓ(w) and qw = qℓ(w).

2.2 R-polynomials and the ι involution

In this section we give the main theorem-definition of R-polynomials, these polyno-
mials occur when studying the invertibility of the elements of the free basis of H, whose
coordinates are essentially given by the R-polynomials. Moreover, we state and prove
the main properties of such objects.

Lemma 2.2.1. Suppose s ∈ S and w ∈ W were such that sw < w. Suppose x ∈ W was
such that x < w. Then the following hold:

(a) If sx < x, then sx < sw.

(b) If sx > x, then sx ⩽ w and x ⩽ sw.

In either case, we obtain sx ⩽ w.

Proof. Both statements are, essentialy, a consequence of the Subword Property of the
Bruhat ordering. Using the Exchange Condition, the fact that sw < w garantees us that
w has a reduced expression w = s1s2 . . . sr ending in s, meaning s1 = s. Let sx < x,
the Subword Property tells us that x has a reduced expression that is a subword of
s1s2 . . . sr. The fact that sx < x forces the last term of this expression to be s. Thus
sx ≺ s2 . . . sr = sw, and we conclude using the Subword Property again, noting that
sx ̸= sw since x < w. In case (b) the same reasoning lets us conclude that x has a
reduced expression x = ss2 . . . ŝi . . . ŝj . . . sr, while in case (a) there must have been one
element omitted, this is not the case here since this term could be s alone. We are done
by applying the Subword Property.

Theorem 2.2.1. For all x,w ∈ W , there exists polynomials Rx,w(q) ∈ Z[q] of degree
ℓ(w)− ℓ(x) such that

(Tw−1)−1 = εwq
−1
w

∑
x⩽w

εxRx,w(q)Tx.

Furthermore, for all w ∈ W , we have that Rw,w(q) = 1.
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Proof. We proceed by induction on w. The proof will also provide an algorithm for the
computation of these polynomials. If ℓ(w) = 1, then w ∈ S. By a small manipulation of
relation (4), we get

T−1
s = q−1Ts − (1− q−1)T1 = −q−1(−Ts + (q − 1)T1).

And we are done by setting R1,s(q) = q − 1. For convenience, in what follows we set
Rx,w = 0 when x ̸⩽ w. Let w be of positive length, then we can find s ∈ S and v ∈ W

such that w = sv and ℓ(v) < ℓ(w). We observe that this means that εw = −εv and
qw = qvq. Using the induction hypothesis we get:

(Tw−1)
−1 = (Tv−1Ts)

−1

= (Ts)
−1(Tv−1)−1

= q−1(Ts − (q − 1)T1)(εvq
−1
v

∑
y⩽v

εyRy,vTy)

= εwq
−1
w

[
(q − 1)

∑
y⩽v

εyRy,vTy −
∑
y⩽v

εyRy,vTsTy

]
. (5)

The second sum that appears in the last right term involves two types of possible terms.
If sy > y, we get εyRy,vTsy. But if sy < y, we get a term of the following form:

(q − 1)εyRy,vTy + qεyRy,vTs,y.

The first term of this is equal and opposite of a term in the first sum of (5). Therefore
we can divide all the summing terms in (5) in three categories:

y ⩽ v, y < sy, (q − 1)εyRy,vTy; (6)

y ⩽ v, y < sy, −εyRy,vTsy; (7)

y ⩽ v, y > sy, qεyRy,vTsy. (8)

In each case we have y < w, and using the previous lemma we also have sy ⩽ w. Notice
that, thinking about elements as subexpression, that every x ⩽ w occurs either as y ⩽ v

or as sy with y ⩽ v. So the only thing left to do is check that the coefficient in (5)
satisfies the required properties.

Let us consider the case x ⩽ w and x > sx. In this situation Tx can appear only
in case (8), with x = sy (with y ⩽ v), and our coefficient is −εyRy,v = εxRsx,sw, whose
degree is ℓ(sw)− ℓ(sx) = ℓ(w)− ℓ(x). In the boundary case x = w, we have y = v and
Rv,v = 1. We finish by defining Rx,w := Rsx,sw.

We go on taking into exam the case x < w and x < sx. We consider two possible
situations:
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1. If sx < v, Tx occurs both in a term of type (6), with x = y, and in a term of type
(8) with x = sy, so that y = sx ⩽ v. Adding the two terms together, we get a
coefficient equal to

(q − 1)εxRx,v − qεsxRsx,v.

We can thus define Rx,w := (q−1)Rx,sw+qRsx,sw, this has the right degree since by
induction deg(qRsx,v) = ℓ(v)−ℓ(sx)+1 = (ℓ(w)−1)+(ℓ(x)+1)+1 = ℓ(w)−ℓ(x)−1

while deg((q − 1)Rx,v) = ℓ(v) − ℓ(x) + 1 = (ℓ(w) − 1) − ℓ(x) + 1 = ℓ(w) − ℓ(x),
thus no cancellation can occur in the leading term and the polynomial Rx,w has
the right degree.

2. If sx ̸⩽ v, then Tx occurs in a term of type (6) with coefficient εx(q− 1)Rx,c. Using
the convention Rsx,v = 0 introduced earlier, we can conclude exactly as we did in
1.

We now introduce an involution ι : H → H, defined as follows

∑
w∈W

pw(q)Tw
ι7−→
∑
w∈W

pw(q
−1)(Tw−1)−1.

The fact that ι2(Ts) = Ts is a consequence of relation (4), which we used to prove the
inversion formula for Ts, explicitly:

ι2(Ts) = ι(q−1Ts − (1− q−1)T1) = q · ι(Ts)− (1− q)T1

= q(q−1Ts − (1− q−1)T1)− (1− q)T1 = Ts − (q − 1)T1 + (q − 1)T1

= Ts.

Therefore, it is enough to show that ι is a ring homomorphism to show that it is an invo-
lution, remembering that if w = s1s2 . . . sr is a reduced expression then Tw = Ts1 . . . Tsr .
To begin, we show that of s ∈ S and w ∈ W , then ι(TsTw) = ι(Ts)ι(Tw). If ℓ(sw) > ℓ(w),
then

ι(TsTw) = ι(Tsw) = (Tw−1s)
−1 = (Tw−1Ts) = T−1

s (Tw−1)−1 = ι(Ts)ι(Tw).

If ℓ(sw) < ℓ(w), we define v = (sw)−1, so that w−1 = vs, then we can calculate

ι(TsTw) = ι(qTsw + (q − 1)Tw) = q−1T−1
v + (q−1 − 1)(Tw−1)−1.

We remark that the following facts hold:

1. q−1 − 1 = −q−1(q − 1);
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2. (Tw−1)−1 = (Tvs)
−1 = T−1

s T−1
v ;

3. T−1
s = q−1(Ts − (q − 1)T1).

Substituting in the previous expression we obtain:

ι(TsTw) = q−1T−1
v − q−1(q − 1)(T−1

s T−1
v )

= q−1T−1
v − q−1(q − 1)[(Ts − (q − 1)T1)q

−1T−1
v ]

= [q−1 + q−2(q − 1)2]T−1
v − q−2(q − 1)TsT

−1
v

= q−2(q2 − q + 1)T−1
v − (q − 1)q−2TsT

−1
v .

On the other hand we calculate directly ι(Ts)ι(Tw), using relation (4) and the already
used expression for T−1

s and obtain:

ι(Ts)ι(Tw) = T−1
s (T−1

w )−1 = (Ts)
−2T−1

v

= [q−1(Ts − (q − 1)T1)]
2T−1

v

= q−2[T 2
s − 2(q − 1)Ts + (q − 1)2T1]T

−1
v

= q−2[(q − 1)Ts + qT1 − 2(q − 1)Ts + (q2 − 2q + 1)T1]T
−1
v

= q−2[(q2 − q + 1)T1 − (q − 1)Ts]T
−1
v .

And these two quantities are equal as desired. We can prove that ι(Tw′Tw) = ι(Tw′)ι(Tw)

using induction on ℓ(w′) (the case ℓ(w′) = 1 being already dealt with). Let s ∈ S be
such that ℓ(w′s) < ℓ(w′). Then using induction we get:

ι(Tw′Tw) = ι(Tw′sTsTw)

= ι(Tw′s)ι(TsTw)

= ι(Tw′s)ι(Ts)ι(Tw)

= ι(Tw′sTs)ι(Tw)

= ι(T ′
w)ι(Tw).

And we are done.
The involution we have just defined will be crucial later on, when defining Kazhdan-

Lusztig polynomials. It is used to define another natural basis of the Hecke algebra,
whose change of base matrix is given by these important polynomials. To end this
section, we prove some of the main results about the behaviour of the R-polynomials
with this involution.

To continue we prove some of the main properties of these polynomials, both for the
sake of completeness and to get used to working with these objects. In what follows, in
order to avoid cumbersome notation, we introduce the following notation: if p ∈ Z[q] is
a polynomial, we write p for p(q−1).
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Proposition 2.2.1. If x,w ∈ W , then the following hold:

(a) R̄x,w = εxεwqxq
−1
w Rx,w;

(b) (Tw−1)−1 =
∑

x⩽w q
−1
x R̄x,wTx;

(c)
∑

x⩽y⩽w εxεyRx,yRy,w = δx,w.

Proof. (a) To prove this result we will use much of the inductive definition of R-
polynomials made explicit in the proof of existence of these polynomials. We will
therefore divide our proof into cases. Let s ∈ S be such that sw < w, we divide
our argument into cases. If x < w, sx < x and sw < w, by how the R-polynomials
were constructed we have Rx,w = Rsx,sw; thus by induction we get

R̄sx,sw = εsxεsw qsxq
−1
sw Rsx,sw = (−εx)(−εw) qxq−1q−1

w q Rx,w = εxεw qxq
−1
w Rx,w.

If x < w, x < sx and sw < w, the existence proof of the previous theorem tells us
that Rx,w = (q − 1)Rx,sw + qRsx,sw. Applying ι and using induction we get:

R̄x,w = −q−1(q − 1)R̄x,sw + q−1R̄sx,sw

= q−1(q − 1) εxεsw qxq
−1
sw Rx,sw + q−1εsxεsw qsxq

−1
sw Rsx,sw

= −q−1(q − 1) εx(−εw) qxq−1
w q Rx,sw + q−1 (−εx)(−εw) (qxq)(q−1

w q) Rsx,sw

= εxεw qxq
−1
w ((q − 1)Rx,sw + qRsx,sw)

= εxεwqxq
−1
w Rx,w.

As required.

(b) By the definition of the R-polynomials we have

(Tw−1)−1 =
∑
x⩽w

εwεx q
−1
w Rx,wTx =

(a)

∑
x⩽w

q−1
x R̄x,wTx.

(c) Applying ι to the equation written in part (b) and substituting the expression that
characterizes R-polynomials we get:

Tw =
∑
y⩽w

qyRy,w(Ty−1)−1 =
∑
y⩽w

qyRy,w εyq
−1
y

∑
x⩽y

εxRx,yTx.

Comparing the coefficients of each term we get the desired result.
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2.3 Kazhdan-Lusztig polynomials

In this section we construct the Kazhdan-Lusztig polynomials. These polynomials are
much less predictable in their behaviour than R-polynomials (for example their degree
is not easily predictable) and understanding their properties is still a topic of active
research. The first definition of these polynomials was given by David Kazhdan and
George Lusztig in [12]. In the same paper, they conjectured a relationship between
values of these polynomials at 1 and certain numbers important for the study of certain
algebraic objects called Verma modules.

The first step in the definition is the construction of another basis for H, whose
elements are left invariant by ι. First of all, we enlarge the ring Z[q, q−1] and work with
H considered as a Z[q1/2, q−1/2]-module. The previous results and calculations are left
unchanged by this operation. We observe that, for example, the following elements are
fixed by ι:

Cs := q−1/2(Ts − qT1).

This will be our first step in the definition of the desired basis.

Theorem 2.3.1. For each w ∈ W there is a unique element Cw ∈ H satisfying the
following:

(1) ι(Cw) = Cw;

(2) There exist a unique set of polynomials Px,w ∈ Z[q] called Kazhdan-Lusztig poly-
nomials that satisty the following :

(a) Pw,w = 1 ∀w ∈ W ;

(b) deg(Px,w) ⩽ 1
2
(ℓ(w)− ℓ(x)− 1) when x < w;

(c) Cw = εwq
1/2
w

∑
x⩽w εxq

−1
x P̄x,wTx.

Proof. We begin with proving uniqueness. For notational ease, we define a(x,w) =

εwεxq
1/2
w q−1

x . We fix w ∈ W and proceed by induction on ℓ(w) − ℓ(x), and start by
requiring that Pw,w = 1. We start by observing that this equality holds:

Cw = ι(Cw) =
∑
y⩽w

a(y, w)Px,w(Ty−1)−1

=
∑
y⩽w

a(y, w)Px,wεyq
−1
w

∑
x⩽y

εxRx,y(q)Tx

= εwq
−1/2
w

∑
x⩽y⩽w

εxRx,yPy,wTx.
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By equating this quantity to the original expression given in (c) for Cw, and by equating
the coefficient of Tx in both expressions we get that these implications are true:

εwq
1/2
w εxq

−1
x P̄x,w = εwq

−1/2
w

∑
x⩽y⩽w

εxRx,yPy,w

=⇒ q1/2w q−1/2
x P̄x,w = q−1/2

w q1/2x

∑
x⩽y⩽w

Rx,yPy,w

=⇒ q1/2w q−1/2
x P̄x,w − q−1/2

w q1/2x Px,w = q−1/2
w q1/2x

∑
x<y⩽w

Rx,yPy,w. (6)

We can now assume that all Py,w with x < y ⩽ w are uniquely determined by induction.
Since x < w, we can assume that the degree assumption stated in (b) holds, meaning
that the first term on the left side is a polynomial in q1/2 that has no constant term,
because of the multiplication with q

1/2
w q

−1/2
x . The second term, on the other hand, is

a polynomial in q−1/2 without constant term (for the same reason). Thus, there is no
cancellation between the terms and the relation we just found forces the choice of all the
coefficients.

We continue by proving the existence of the basis Cw and of the polynomials. We start
by defining a relation. We write x ≺ w (not to be confused with the “being a subword
of” relation, which is a relation on expressions and not on elements of the group) when
Px,w has degree 1/2(ℓ(w) − ℓ(x) − 1), the maximum possible one. This is possible only
if εw = −εx. When x ≺ w we define µ(x,w) to be the leading coefficient of Px,w. We
proceed by induction on ℓ(w). If s ∈ S, then we define Cs := q−1/2(Ts−qT1). Find s ∈ S

such that ℓ(sw) < ℓ(w) and define v = sw, thus Cv is assumed to be known. Note that
a(x,w) = −q1/2a(x, v). We define

Cw := CsCv −
∑
z≺v
sz<z

µ(z, v)Cz.

The fact that this element is invariant under ι is a direct consequence of the induction
hypothesis. By induction, Cz is combination of Tx with x ⩽ z < w, the same holds for
Cv, by how Cs is defined, it is clear that Cw is a linear combination of Tx with x ⩽ w.
Therefore by convention, we set Px,w = 0 if x ̸⩽ w.

We now have to analyse the coefficients of each Tx, define the polynomials in each
case and prove the degree inequality. Firstly, we study the coefficients appearing in the
product CsCv, the ones appearing in the summation will be considered later.

If x = w, the only place in which Tw can occur is in the product CsCv, its coefficient
is q−1/2a(v, v)P̄v,v = q−1/2q

1/2
v q−1

v = q
−1/2
w , as required.

Let x < w then Tx can occur either in Cv already, and it stays in the expression
when multiplied by T1, or in the product TsCv, where a product TsTsx appears if sx ⩽ v.
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If x < sx, then TsTsx = qTx + (q − 1)Tsx, and q−1/2TsCv involves Tx with coefficient
(remember q−1/2 from the definition of Cs):

q−1/2q a(sx, v)P̄sx,v = q−1/2(−1−1)a(x, v)P̄sx,v = q−1a(x,w)P̄sx,v.

While the other term in the product CsCv, which is −q−1/2T1Tv involves Tx with coeffi-
cient:

q−1/2a(x, v)P̄x,v = a(x, v)P̄x,v.

Thus, the combined coefficient of Tx in the product CsCv is

q−1a(x,w)P̄x,v + a(x,w)P̄x,v.

Suppose now sx < x, so TsTsx = Tx and TsTx = qTsx + (q − 1)Tx. Then, reasoning as
done before, in the term q−1/2TsCv we get coefficients of Tx equal to

q−1/2a(sx, v)P̄sx,v = q−1/2(−q)a(x, v)P̄sx,v = a(x,w)P̄sx,v,

(q − 1)q−1/2 a(x, v)P̄x,v.

On the other hand, the term −q−1/2T1Cv involves Tx with coefficient

−q1/2a(x, v)P̄x,v = a(x,w)P̄x,v.

Combining these, the coefficient of Tx is equal to

a(x,w)P̄sx,v + q−1a(x,w)P̄x,v.

To conclude, we have to check the coefficients that appear in the sum −
∑

z µ(z, v)Cz.
Recalling the fact that since all z in the sum are such that z ≺ v = sw, then necessarily
εzεw = 1, and we can start by making explicit the terms in the sum:

−
∑
z≺v
sz<z

µ(z, v)a(x, v)P̄x,z = −
∑
z≺v
sz<z

µ(z, v)q1/2z q−1/2
w a(x,w)P̄x,z.

By defining c to be 0 if x < sx and 1 if sx < x, we can state these results together as

Px,w := q1−cPsx,v + qcPx,v −
∑
z≺v
sz<z

µ(z, v)q−1/2
z q1/2w Px,z.

We now have to prove the upper bound on the degree of these polynomials. We omit
the explicit calculation in the cases when c = 0 or sx > x. In the only left case, the
calculation is less direct, since the term qPx,v could have degree 1/2(ℓ(w)− ℓ(x)). But in
this case, by definition, x ≺ v and since sx < x, there is a term in the sum correspondig
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to z = x which is equal to −µ(x, v)q−1/2
x q

1/2
w Px,x = −µ(x, v)q1/2(ℓ(w)−ℓ(x)), which is exactly

the term we wanted to be cancelled. Moreover we observe that this is the only case in
which Px,x appears in the sum, thus we can inductively apply the bound in all the other
situations.

This concludes the proof.

Remark 2.3.1. It is important to note that equation (6) can be written as

q−1
u qwP̄x,w =

∑
x⩽y⩽w

Rx,yPy,w.

This gives us a way to construct inductively Kazhdan-Lusztig polynomials if we already
know all R-polynomials. This will be crucial in the next chapter, as we will prove an
important result about R-polynomials and, because of this remark, we will be able to
extend the claim to Kazhdan-Lusztig polynomials.
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Chapter 3

Special matchings and the

combinatorial invariance conjecture

Having defined the R-polynomials and the Kazhdan-Lusztig polynomials in Chap-
ter 2, the present chapter is dedicated in exposing a partial result of one of the main
open problems regarding these polynomials, the so called combinatorial invariance con-
jecture. Because of the surprising connections with algebra and geometry that these
polynomials have, it has become of interest understanding how to ease the hard task
of carrying out their calculation explicitly. To state the conjecture we introduce the
following notations: if (P,⩽) is a partially ordered set and x, y ∈ P , we denote [x, y] the
set {z ∈ P : x ⩽ z ⩽ y} and call this an interval of P . In what follows, we assume that
every Coxeter group and its subsets are partially ordered by the Bruhat order. A poset
isomorphism is an order preserving bijection whose inverse is order preserving.

The conjecture states the following:

Conjecture (Combinatorial invariance conjecture). Suppose that (W,S), (W ′, S ′) are
two Coxeter systems and that the elements u, v ∈ W and u′, v′ ∈ W ′ are such that [u, v]
and [u′, v′] are isomorphic as posets. Then Pu,v = Pu′,v′ .

This conjecture has been proved in several special cases. For example it has been
verified for small rank finite Coxeter groups, for so called short edge intevals (see [8]) and
for lower intervals (as in [7]). An interval [u, v] in a Coxeter group is a short edge interval
if all edges y → y′ in the Bruhat graph restricted to [u, v] are such that ℓ(y′)− ℓ(y) = 1.
Lower intervals are intervals in the Bruhat order of the type [1, w]. In this chapter,
we will define and study the main tools used for the proof of the conjecture for lower
intervals, following [7].

37
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3.1 Special matchings

Firstly, we establish some notations and terminology for partially ordered sets. Let
(P,⩽) be a partially ordered set (poset for short) and x, y ∈ P . We say that x and
y are comparable if either x ⩽ y or y ⩽ x and incomparable otherwise. If x ⩽ y and
|[x, y]| = 2 we say that y covers x and write x ◁ y. If z ∈ [x, y], we say that z is an atom
(respectively coatom) of [x, y] if x ◁ z (respectively z ◁ y). A poset P has a minimum
(respectively a maximum) if there is an element 0̂ (respectevely 1̂) such that for all x ∈ P

0̂ ⩽ x (respectively x ⩽ 1̂). A graded poset is a poset P that has a minimum and has
a rank function on it. A rank function is a function ρ : P → N such that ρ(0̂) = 0 and
whenever x ◁ y, we have ρ(y) = ρ(x) + 1.

Remark 3.1.1. Let (W,S) be a Coxeter system, then from the results we got in Chapter 1,
we can conclude that W with the Bruhat ordering is a graded poset whose rank function
is the length function ℓ.

If G = (V,E) is a graph, a matching of G is an involution M : V → V such that
for all vertices v ∈ V , we have {v,M(v)} ∈ E. The Hasse diagram of P is the graph
H(P ) = (P,E) having defined E = {{x, y} | x, y ∈ P and either x ◁ y or y ◁ x}. Now
we have the necessary terminology to define a special matching

Definition. Let P be a poset, a matching M of the Hasse diagram of P is said to be a
special matching if for all x, y ∈ P such that x ◁ y andM(x) ̸= y, we haveM(x) ⩽M(y).

(a) A special matching (b) Not a special matching

Figure 3.1: Examples.

Remark 3.1.2. By the definition of a special matching we can see that if x, y ∈ P are
such that x ◁ y and x ◁ M(x), then M(x) ◁ M(y). This will be extensively used in
what follows.

Let v be an element of a Coxeter group W and let s be such that ℓ(vs) < ℓ(v)

(respectively ℓ(sv) < ℓ(v)), we can define the matching ρs (respectively λs) of [1, v] by
ρs(u) = us (respectively λs(u) = su). A matching of this form is called a multiplication
matching. The lifting property of the Bruhat ordering tells us that these matchings are
special matchings of [1, v].
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3.2 Some additional facts about the Bruhat order

We will gather here some preliminary results about the Bruhat order that were not
proved in previous chapters. We will prove just the most important result that will be
used repeatedly in future proofs.

Lemma 3.2.1. Let (W,S) be a Coxeter system and and let t1, . . . t2n ∈ T (n ∈ N) be
such that t1t2 = t3t4 = · · · = t2n−1t2n ̸= 1. Then W ′ = ⟨{t1, . . . , t2n}⟩ is a dihedral
reflection subgroup.

Proof. See [4, Lemma 3.1].

Theorem 3.2.1. Suppose that (W,S) is a Coxeter system and that a, b ∈ W are such
that either |{w ∈ W | w ◁ a, w ◁ b}| ⩾ 3 or |{w ∈ W | a ◁ w, b ◁ w}| ⩾ 3. Then
a = b.

Figure 3.2: This configuration is forbidden in a Coxeter
group by Theorem 3.2.1.

Proof. We prove the first case, the second is proved using the same argument. Suppose
that a ̸= b and let x, y, z ∈ {w ∈ W | w ◁ a, w ◁ b}. By definition of the Bruhat order,
there are t1, . . . , t6 ∈ T such that at1 = x, at3 = y, at5 = z, bt2 = x, bt4 = y, bt5 = z.
Then the following implication is true:

at1t2 = xt2 = at3t4 = at5t6 = b =⇒ t1t2 = t3t4 = t5t6 = a−1b ̸= 1.

Using the above lemma, we can conclude that W ′ := ⟨{t1, . . . , t6}⟩ is a dihedral reflection
subgroup, and clearly a, b, x, y, z are in the coset aW ′. Using Theorem 1.4 of [4], we
know that the subgraph of the Bruhat graph of W generated by the set of vertices aW ′

is isomorphic to the Bruhat graph of W ′. But this is a contradiction since W ′ is dihedral,
and x, y, z are incomparable. Thus a = b.

This result motivates the following definition.

Definition. Let P be a graded poset, we say that P avoids K3,2 if there does not exist
distict elements a1, a2, a3, b1, b2 ∈ P such that ai ◁ bj for all i = 1, 2, 3, j = 1, 2 or bj ◁ ai

for all i = 1, 2, 3, j = 1, 2.
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So the theorem we just proved says that a Coxeter group with the Bruhat order
always avoids K3,2. We also give here the definition of a dihedral interval.

Definition. Let P be a poset and let u, v ∈ P , we call the interval [u, v] dihedral if it is
isomorphic to a finite Coxeter system of rank r ⩽ 2 ordered with the Bruhat ordering.

Corollary 3.2.1. Let (W,S) be a Coxeter system, and u, v ∈ W . If [u, v] has two
coatoms, then it is dihedral.

Proof. It is true that if x, y ∈ W are such that y ⩽ x and ℓ(x) − ℓ(y) = 2 then [y, x] is
a Boolean poset of rank 2 (see [5, Lemma 2.7.3]). Using this fact and Theorem 3.2.1 it
is possible to prove by induction that for all i ∈ {1, . . . , ℓ(v) − ℓ(u) − 1} it holds that
|{w ∈ [u, v] | ℓ(v)− ℓ(u) = i}| = 2.

We now introduce the following notation, if I ⊆ S and w ∈ W , we denote WI ∩ [1, w]

as WI(w). It is known that there exists a unique maximal element in WI(w), denoted
w[I], such that WI(w) = [1, w[I]]. For a proof of this result, see [10, Lemma 7].

3.3 Pairs of special matchings

In this section we move away from the setting of a Coxeter group and prove some
general results about special matchings. Firstly, we remark that since a matching is an
function, two matching can be composed. Given two matchings M,N of a poset P , we
can study the orbits of the group ⟨M,N⟩ ⊆ Sym(P ). If x ∈ P , we denote the orbit of x
by ⟨M,N⟩(x).

Lemma 3.3.1. If P is a finite poset, M,N are two special matchings of P and u ∈ P ,
then ⟨M,N⟩(u) is a dihedral interval.

Proof. Since P is finite, every orbit has to be finite. Thus, there exist an element x such
that M(x), N(x) ◁ x. If M(x) = N(x) we have that ⟨M,N⟩(x) = {x,M(x)} and we are
done. Otherwise, using Remark 3.1.2, we can see that the relation below hold:

NM(x) ◁M(x), NM(x) ◁ N(x), MN(x) ◁ N(x), MN(x) ◁M(x).

If MN(x) = NM(x), then ⟨M,N⟩(u) = {x,M(x), N(x),MN(x)} and we are done.
Otherwise we iterate the previous argument, the iteration must terminate since the orbit
is finite.
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x

M(x) N(x)

NM(x) MN(x)

MNM(x) NMN(x)

Figure 3.3: Proof of Lemma 3.3.1

Proposition 3.3.1. Let P be a finite graded poset that avoids K3,2, and let v ∈ P , and
M,N be two special matchings of P such that M(v) ̸= N(v). If v′ ∈ P is distinct from
M(v) and N(v), and it is such that one of the two following conditions hold:

(i) M(v) ◁ v, N(v) ◁ v and v′ ◁ v,

(ii) v ◁M(v), v ◁ N(v) and v ◁ v′;

then |⟨M,N⟩(v)| = |⟨M,N⟩(v′)|.

Proof. We write the proof with hypothesis (i), the case (ii) is similar. Let |⟨M,N⟩(v)| =
2n and |⟨M,N⟩(v′)| = 2m. If v′ was in the same orbit of v, because of their length
difference it would have to be either M(v) or N(v), which we supposed to be false.
Thus, the two orbits have to be disjoint, so we have no matchings between ⟨M,N⟩(v)
and ⟨M,N⟩(v′). Starting from the hypotheses and using repeatedly Remark 3.1.2, we
get the following relations, which hold for all k ⩽ n:

MNM . . .︸ ︷︷ ︸
k

(v′) ◁MNM . . .︸ ︷︷ ︸
k

(v), MNM . . .︸ ︷︷ ︸
k

(v′) ◁ NMN . . .︸ ︷︷ ︸
k−1

(v′),

NMN . . .︸ ︷︷ ︸
k

(v′) ◁ NMN . . .︸ ︷︷ ︸
k

(v), NMN . . .︸ ︷︷ ︸
k

(v′) ◁MNM . . .︸ ︷︷ ︸
k−1

(v′).

So it must be thatm ⩾ n. Ifm ̸= n, the we would get thatMNM . . .︸ ︷︷ ︸
n

(v′) ̸= NMN . . .︸ ︷︷ ︸
n

(v′)

but MNM . . .︸ ︷︷ ︸
n

(v) = NMN . . .︸ ︷︷ ︸
n

, and this contradicts the fact that P avoids K3,2. The

following figure, drawn in the case n = 3 should make the argument clear.

Lemma 3.3.2. Let P be a graded poset, M a special matching of P , and u, v ∈ P be
such that M(v) ◁ v and M(u) ◁ u. Then M restricts to a special matching of [u, v].

Proof. Omitted.
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MNM(v′) NMN(v′)

NM(v′) MN(v′)

M(v′) N(v′)

v′

NMN(v)

NM(v)

M(v)

N(v)

v

Figure 3.4: Proof of Proposition 3.3.1 in the case n = 3.

We now return to the setting of a Coxeter group W ordered with the Bruhat order.
We consider the poset P to be an interval of the form [1, v] with v ∈ W . To simplify the
terminology we will refer to a special matching of [1, v] as a special matching of v.

Lemma 3.3.3. Let u, v ∈ W , u ⩽ v and let M,N be two special matchings of v. If
|⟨M,N⟩(u)| = 2m > 2, then there exists an element u′ ∈ W and a dihedral interval
I ⊆ W such that 1, N(1),M(1) ∈ I, ⟨M,N⟩(u′) ⊆ I. In particular, if M(1) ̸= N(1) then
W{M(1),N(1)} contains an orbit of cardinality 2m.

Proof. We have shown that every orbit of ⟨M,N⟩ has the form shown in figure 3.3,
therefore we can assume thatM(u), N(u) ◁ u. To prove the result we will find a sequence
u = u1 ▷ u2 ▷ · · · ▷ uk with the following properties holding for all i = 1, . . . , k:

M(ui), N(ui) ◁ ui, |⟨M,N⟩(ui)| = 2m, [1, uk] is dihedral.

In fact, if [1, u] only has the coatoms M(u) and N(u), by Corollary 3.2.1 we are done.
Otherwise we choose u2 two be one of the coatoms different from M(u) and N(u), by
Proposition 3.3.1 we have that |⟨M,N⟩(u2)| = 2m and M(u2), N(u2) ◁ u2 (see the figure
above). If M(u2) and N(u2) are the only coatoms of u2 we are done, otherwise we iterate
the argument.

3.4 Algebraic properties of special matchings

We gather here some results about special matchings of lower intervals. All the results
here are preliminaries for the proof of the main result.



3.4 Algebraic properties of special matchings 43

Lemma 3.4.1. Let u, v ∈ W , u ⩽ v andM a special matching of w. If u ̸∈
⋃

t∈S W{t,M(1)}

and u ◁M(u), then

|{x ∈ [1, u] | x ◁ u and x ◁M(x)}| ⩾ 2.

Proof. By Lemma 3.3.2, if we have an element v ∈ W satisfying M(v) ◁ v, then M

restricts to a special matching of v, and in particular it must be that M(1) ⩽ v. Thus,
if M(1) ̸⩽ u, then x ◁ M(x) must hold for all x ∈ [1, u] and we are done. If M(1) ⩽ u,
then our hypotheses tell us that u is not in any parabolic subgroup of W , thus [1, u]

cannot be dihedral, hence [1,M(u)] has at least two distinct coatoms, say x1 and x2.
Using Remark 3.1.2, we conclude that M(xi) ◁ xi and M(xi) ◁ u for i = 1, 2, and we
are done.

The following lemma is used in the proof of many of the results of the next sections.

Lemma 3.4.2. Let u,w ∈ W , u ⩽ w, M a special matching of w and s :=M(1). If for
all x ∈

⋃
t∈S W{s,t}(u) we have that M(x) = xs, then M(u) = us.

Proof. The proof is made by induction on ℓ(u). The case u = 0 is clear. If M(u) ◁ u

by induction u = MM(u) = M(u)s, multiplying both side by s to the right gives us
M(u) = us. Therefore, we can assume u ◁ M(u), and similarly we obtain that u ◁ us.
Clearly, we can assume that u ̸∈

⋃
t∈S W{s,t}, otherwise the claim would be immediate.

Thus, using the previous lemma, there are two distinct elements u1, u2 such that ui ◁ u,
M(ui) ▷ ui. Using induction, we can assume that M(ui) = uis. So we have that
us ▷ u,M(u1),M(u2), but using Remark 3.1.2, we can conclude that the same holds for
M(u). Using Theorem 3.2.1, we obtain the desired claim.

The next two results tell us respectively how special matchings behave with respect
to parabolic subgroups, and what condition they must satisfy in order to be different
from a multiplication matching. The following “invariance” property will be used in what
follows.

Proposition 3.4.1. If w ∈ W and M is a special matching of w, then, for all I ⊆ S

such that M(1) ∈ I, M stabilizes WI(w).

Proof. Let u ∈ WI(w), we proceed by induction on ℓ(u). The case ℓ(u) = 0 is trivial. We
recall that there exists a unique element w[I] such that WI(w) = [1, w[I]]. If M(u) ◁ u,
then 1 ⩽ M(u) ◁ u ⩽ w[I], and we are done. If u ◁ M(u), let x ◁ M(u), x ̸= u.
Then M(x) ◁ u and by induction x ∈ WI(w). Hence, all the coatoms of [1,M(u)] are in
WI(w), so M(u) ∈ WI(w).



44 3. Special matchings and the combinatorial invariance conjecture

Corollary 3.4.1. If M,N are two special matchings of w, and M = N on
⋃

t∈S W{s,t}(u)

(with s =M(1)), then M(u) = N(u).

Lemma 3.4.3. Let w ∈ W , M a special matching of w, s := M(1) and r, t ∈ S. If
M(t) = ts ̸= st and M(r) = sr ̸= rs, then rst ̸⩽ w. Moreover, if rt ̸= tr, then rt ̸⩽ w.

Proof. Suppose that rt ⩽ w. Using Remark 3.1.2 we obtain that rt ◁M(rt), ts ◁M(rt)

and sr ◁ M(rt). If rt ̸= tr then there are no such elements and this proves the second
claim. If rt = tr, then it must be that M(rt) = tsr. If we had that rst ⩽ w then M(rst)

would cover both tsr and rst and there are no such elements.

3.5 Coxeter systems of rank 3

In this section we will study the behaviour of special matchings in Coxeter groups
of rank 3. Most importantly, we state results that give information about the action of
special matchings on lower intervals. These results will be fundamental for the study
of the general case, since they will be applyed to rank 3 parabolic subgroups of general
Coxeter groups.

Firstly, we will fix some notation that will be used through all this section. The
Coxeter system (W,S) will always be of rank 3 and we will name r, s, t the elements of
S. We let w ∈ W be fixed but arbitrary, M a special matching of w and we assume that
s = M(1). For x, y ∈ S we denote by . . . xyx (respectively xyx . . . ) be a word given by
an alternating product of x and y that ends (respectively begins) with x. All expressions
considered for elements of a Coxeter groups are assumed to be reduced unless specified
otherwise.

Lemma 3.5.1. If rs, st ⩽ w, rs ̸= sr, st ̸= ts, M(t) = ts and M(r) = rs, then we have
that M(st) = sts and M(sr) = srs.

Proof. By symmetry of the hypotheses made, it is enough to show that M(st) = sts.
Using Remark 3.1.2 we have that st, ts ◁M(st), thus it must be that M(st) ∈ {sts, tst}.
Using the same argument we can also conclude that M(sr) ∈ {srs, rsr}. By contradic-
tion, suppose it were true that M(st) = tst. If str ⩽ w, then we could apply M and
by Remark 3.1.2 we could conclude that tst ◁ M(str) and M(sr) ◁ M(str). But there
cannot exist elements that cover both tst and M(sr) (because of the Subword Prop-
erty), thus srt ̸⩽ w. By an analogous argument we conclude that srt ̸⩽ w. Considering
a reduced expression for w, what we have just proved tells us that tst and either srs
or rsr are subwords of this expression. This forces either str or srt to be a subword,
contradicting the fact that str ̸⩽ w and srt ̸⩽ w.
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1

sr t

rs sr st ts

srs sts

w

Figure 3.5: Proof of the Lemma 3.5.1.

Lemma 3.5.2. Suppose M(t) = ts and M(r) = rs, but M ̸= ρs on W{s,t}(w). If x0 is a
minimal element of W{s,t}(w) such that M(x0) ̸= x0s, then

{u ⩽ w | x0 ◁ u, u ̸∈ W{s,t}} ⊆

{
{x0r, rx0} if sr = rs,

{rx0} if sr ̸= rs.

Proof. Because of the minimality of x0, we have that ℓ(x0s) > ℓ(x0), otherwise we would
have that M(x0s) = x0ss = x0, thus M(x0) = x0s, contrary to our assumption. With a
similar argument we can conclude that x0 ◁ M(x0). Let x0 = αβα . . . tst︸ ︷︷ ︸

k

be a reduced

expression, with {α, β} = {s, t}. Since we have assumed M ̸= ρs on W{s,t}(w), it must
be that st ⩽ w and st ̸= ts, otherwise W{s,t}(w) would be too small in all cases to allow
a matching to be different from ρs. Let u be such that u ⩽ w, x0 ◁ u, u ̸∈ W{s,t} and
assume u ̸∈ {x0r, rx0} if sr = rs and u ̸= rx0 if sr ̸= rs. Thus, by the Subword Property,
u is obtained by inserting an r in the unique reduced expression of x0.

We define y := αu, by what we have just remarked y ◁ u, therefore all the elements
in W{s,t}(y) are strictly smaller that x0 (this is evident thinking about the Subword
Property). Moreover, the elements in W{s,r}(y) are all smaller than srs if sr ̸= rs or
smaller than sr if sr = rs. Hence, using Lemma 3.4.2 and Lemma 3.5.2, we conclude that
M(y) = ys. Because of the fact that x0 and y are both covered by u, using the properties
of special matching we obtain u ◁ M(u), M(u) ▷ M(x0) = βαβ . . . tst︸ ︷︷ ︸

k+1

̸= αβα . . . sts︸ ︷︷ ︸
k+1

and M(y) ◁M(u). From these conditions, it is not hard to see that M(u) = yst, which
is a contradiction since, as one can verify, yst ̸> u.

From now on, a set of three kinds of hypotheses will be frequently used, for the sake
of brevity, we will list them here.



46 3. Special matchings and the combinatorial invariance conjecture
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Figure 3.6: Proof of Lemma 3.5.2.

(1) M(t) = ts ̸= st, M(r) = rs ̸= sr and M ̸= ρs on W{s,t}(w).

(2) M(t) = ts ̸= st, M(r) = rs = sr and M ̸= ρs on W{s,t}(w).

(3) M(t) = ts ̸= st, M(r) = sr ̸= rs.

In cases (1) and (2), we let x0 be the unique minimal element of W{s,t}(w) such that
M(x0) ̸= x0s and αβα . . . tst be its unique reduced expression. As observed in the proof
of Lemma 3.5.2, x0 ◁ x0s.

Proposition 3.5.1. Under hypothesss (1) any element u ⩽ w has a reduced expression
of the form (. . . rβr)η(αβα . . . ), where η ∈ {1, β}.

Under hypothesis (2) any element u ⩽ w has a reduced expression of the form
(. . . rβr)η(αβα . . . )δ, where η ∈ {1, β} and δ ∈ {1, r}.

Under hypothesis (3) any element u ⩽ w has a reduced expression of the form
(. . . tst)ε(rsr . . . ), where ε ∈ {1, s}.

Proof. The proof is omitted here. The interested reader may consult [7, §6].

Definition. Let w ∈ W , we say that w is dihedral if the interval [1, w] is a dihedral
inteval.
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Theorem 3.5.1. If (W,S) is a Coxeter system of rank 3, w ∈ W , M a special matching
of w and s := M(e), then there exists x ∈ S \ {s} such that either M = λs or M = ρs

on W{s,x}(w).

Proof. We may assume that w is not dihedral, that M is not a multiplication match-
ing and, as a consequence of Proposition 3.4.1, we have that neither of W{r,s}(w) and
W{t,s}(w) have cardinality equal to 4. In particular, rs ̸= sr and ts ̸= st.

Before going on with the proof, we remark that the result is true for a special matching
M of w if and only if it is true for the special matching M̃ of w−1 defined as M̃(x) :=

(M(x−1))−1 for x ⩽ w−1. If M(r) = rs and M(t) = ts then, using Lemma 3.4.2, we
conclude that M ̸= ρs on W{s,t}(w) ∪W{s,r}(w) so M satisfies hypothesis (1) (possibly
renaming the canonical generators). If M(r) = sr and M(t) = st then M̃ satisfies
hypotheses (1). If M(r) = sr and M(t) = ts, then M satisfies hypotheses (3). If
M(r) = rs and M(t) = st then M̃ satisfies (3). Thus, we only need to consider two
cases.

If M is in case (1) we have β = s, otherwise, as a consequence of the last proposition,
W{r,s}(w) = {1, s, r, rs}, which is impossible since W{r,s}(w) cannot have this cardinality.
By contradicion, assume that M ̸= ρs on W{r,s}(w), let us denote y0 ∈ W{r,s}(w) a
minimal element such that M(y0) ̸= y0s. Since w is not dihedral, any of its reduced
expressions must include the letter t, thus as a consequence of the last proposition y0t ⩽
w. This, and Lemma 3.5.2 implies y0t = ty0, which is a contradiction since ts ̸= st.

If M is in case (3) we will prove that either M = ρs on W{t,s}(w) or M = λs

on W{r,s}(w). We will proceed by induction on ℓ(w). By the last proposition we can
write a reduced expression w = (. . . tst︸ ︷︷ ︸

k

)ε(rsr . . .︸ ︷︷ ︸
h

) with ε ∈ {1, s}. Since W{r,s}(w) and

W{t,s}(w) cannot have cardinality equal to 4, we have that h, k ⩾ 2. Let w1 and w2 be
two coatoms of [1, w] obtained by omitting respectively the first and last letter of this
reduced expression for w. Since w is matched with only one element, either w1 or w2 is
matched with an element of lower length. Without loss of generality, we assume it to be
w1. By Lemma 3.3.2, M restricts to a special matching of [1, w1]. By induction, either
M = ρs on W{t,s}(w1) or M = λs on W{r,s}(w1). In the second case k is odd and we are
done since W{r,s}(w1) = W{r,s}(w). If M = ρs on W{t,s}(w1), then W{t,s}(w)\W{t,s}(w1) =

{. . . tst︸ ︷︷ ︸
k

, . . . sts︸ ︷︷ ︸
k+1

} and since M stabilizes W{t,s}(w) by Proposition 3.4.1, it must be that

M(. . . tst︸ ︷︷ ︸
k

) = . . . sts︸ ︷︷ ︸
k+1

and hence M = ρs on W{t,s}(w).

The next two proposition tell us how special matchings act and behave on a lower
interval under the sets of hypotheses (1), (2) and (3). In order to make the claims clearer
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to read, we introduce the following sets:

DR(w) := {s ∈ S | ℓ(ws) < ℓ(w)}, DL(w) := {s ∈ S | ℓ(sw) < ℓ(w)}.

Proposition 3.5.2. Under hypotheses (1) if u ⩽ w, u = (. . . rβr)η(αβα . . . ) where
η ∈ {1, β} and β ̸∈ DR(. . . rβr), then M(u) = (. . . rβr)M(ηαβα . . . ).

Under hypotheses (2) if u ⩽ w, u = (. . . rβr)η(αβα . . . )δ where η ∈ {1, β}, δ ∈ {1, r}
and β ̸∈ DR(. . . rβr), then M(u) = (. . . rβr)M(ηαβα . . . )δ.

Under hypotheses (3) if u ⩽ w, u = (. . . tst)ε(rsr . . . ) where ε ∈ {1, s} and s ̸∈
DL(rsr . . . ), then M(u) =M(. . . tst)ε(rsr . . . ).

Proof. See [7, Proposition 6.5].

Proposition 3.5.3. Under hypotheses (1) write w = (. . . rβr︸ ︷︷ ︸
h

)η(αβα . . . ), with η ∈

{1, r} and β ̸∈ DR(. . . rβr). If h ⩾ 2 and β ∈ DL(w), then Mλβ = λβM .
Under hypotheses (2) write w = (. . . rβr︸ ︷︷ ︸

h

)η(αβα . . . )δ, with η ∈ {1, β}, δ ∈ {1, r}

and β ̸∈ DR(. . . rβr). If h ⩾ 2 and β ∈ DL(w), then Mλβ = λβM .
Under hypotheses (3) write w = (. . . tst)ε(rsr . . .︸ ︷︷ ︸

h

), with ε ∈ {1, s} and s ̸∈ DL(rsr . . . ).

If h ⩾ 2 and s ∈ DR(w), then Mρs = ρsM .

Proof. See [7, Proposition 6.6].

3.6 The combinatorial invariance conjecture for lower

intervals

As we have remarked at the end of Chapter 2, if we know the R-polynomials, we can
inductively construct the Kazhdan-Lusztig polynomials. As a consequence of this, the
R-polynomials only depend on the poset structure of intervals if and only if the Kazhdan-
Lusztig polynomials only depend on the poset structure of intervals. In this chapter, we
will show the proof of one of the main theorems in [7], which tells us how to build the
R-polynomials of a lower interval using special matchings. Since this procedure only uses
the poset structure of the intervals, it proves the combinatorial invariance conjecture in
this special case.

Before proving this result, we also prove a result which describes all special matchings
of any element of a Coxeter group. From now on (W,S) is an arbitrary Coxeter system.

Lemma 3.6.1. If w ∈ W , M is a special matching of w and s := M(1), then there
exists at most one x ∈ S such that M ̸= λs and M ̸= ρs on W{s,x}(w).
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Proof. If there were two such elements r and t. Using Proposition 3.4.1, M would restrict
to a special matching of [1, w[{s, t, r}]], contradicting Theorem 3.5.1.

The next result is functional only to the proof of the next proposition.

Lemma 3.6.2. Let w ∈ W , M a special matching of w and s = M(1). Let t, r ∈ S be
such that M(t) = ts ̸= st and M(r) = sr ̸= r and let k1, . . . , kp ∈ S \{s} (p ∈ N\{0}) be
such that for all j = 1, . . . , p we have kjs = skj. If rk1 . . . kpt ⩽ w and ℓ(rk1 . . . kpt) = p+

2, then there exist h1, . . . , hp ∈ S and i ∈ N such that rk1 . . . kpt = h1 . . . hitrhi+1 . . . hp.

Proof. See [7, Lemma 7.2].

We now define some important subsets of W for the next results. Let w ∈ W , M a
special matching of w and s :=M(1), we let:

S ′ := S ∩ [1, w], J := {r ∈ S ′ |M(r) = sr}, J ′ := {r ∈ J | rs ̸= sr}.

Thus S ′ \ J ′ := {r ∈ S |M(r) = rs}. We recall here that for every subset I ⊆ S, we can
factorize uniquely every w ∈ W as w = wIw

I with wI ∈ WI and wI ∈ W I . There is an
analogous unique factorization w = Iw

Iw with Iw ∈ WI and Iw ∈ IW . These results
can be found in [11].

Proposition 3.6.1. If u ⩽ w, then uJ ∈ WS\J ′ .

Proof. Consider a reduced expression for uJ . By contradiction, suppose that at least
one of the letters in this expression is in J ′, consider the one that is further left, let us
denote this as r. Now, consider the first letter after r that is not in J , call it t. Because
of Lemma 3.4.3, rst ̸⩽ uJ so there is no s between r and t, and by the same lemma
there can be only letters that commute with s. Using iteratively Lemma 3.6.2, we find
a reduced expression for uJ that ends with a letter in J which is a contradiction.

Proposition 3.6.2. Let t ∈ S be such that M is not a multiplication matching on
W{s,t}(w) and x0 = αβα . . . be a minimal element in W{s,t}(w) such that M(x0) ̸= x0s.
If M(t) = ts, then α ̸⩽ (uJ){s,t} for all u ⩽ w.

Proof. It is sufficient to prove the claim in the case u = w, since it turns out, and is not
hard to see, that if u ⩽ w then (uJ){s,t} ⩽ (wJ){s,t}. As previously proved in Section 3.5,
s ̸∈ DR(x0), thus we can write x0 = αβα . . . tst and x0 = xJ0 ⩽ wJ . Consider a reduced
expression for wJ and a subword of this expression of the form αβα . . . tst, choosing the
leftmost α and the rightmost t. Now consider the first letter different from s and t, let
us call it r. Then, using Lemma 3.5.2, it is possible to see that either this letter can be



50 3. Special matchings and the combinatorial invariance conjecture

“pushed” to the left of the first α, or it is located to the right of t. Thus, we may assume
that the first such letter r appears after the last t. Using again Lemma 3.5.2, it turns
out that all the letters after the last t are in J . Hence, wJ has a reduced expression in
which all the letters after the first α are either s or t and this implies our claim.

Lemma 3.6.3. If t ∈ S is such that M(t) ∈ ts but M ̸= ρs on W{t,s}(w), and u ⩽ w,
then

(uJ){s,t}(. . . tst︸ ︷︷ ︸
k

) ∈ W J

for all 1 < k < m(s, t).

Proof. Let r ∈ J , remembering that W J := {w ∈ W | ℓ(ws) > ℓ(w) for alls ∈ J},
we wish to show that ℓ((uJ){s,t} . . . tstr) > ℓ((uJ){s,t} . . . tst). If r = s or r ∈ J ′, then
Proposition 3.6.1 lets us conclude. Thus, we can assume r ∈ J \ (J ′ ∪ {s}). Recalling
Theorem 1.3.1, we will show that (uJ){s,t}(. . . tst)(αr) is a positive root. Since r ∈
J \ (J ′ ∪ {s}), r must be different from both s and t, and (by definition of J ′) rs = sr.
We consider the two possibilities: rt = tr or rt ̸= tr. If rt = tr then B(r, s) = B(r, t) = 0,
thus (uJ){s,t}(. . . tst)(αr) = (uJ){s,t}(αr) is positive since r ∈ J . If rt ̸= tr, then recalling
the definition of the geometric representation, one obtains after a quick induction that,
for all 1 < k < m(s, t),

. . . tst︸ ︷︷ ︸
k

(αr) = α + bαs + cαt

for some b, c ∈ R>0. As a consequence of Proposition 3.6.2, either s ̸⩽ (uJ){s,t} or
t ̸⩽ (uJ){s,t}. If s ̸⩽ (uJ){s,t} , then the coefficient of αs in (uJ){s,t}(αr + bαs + cαt) is b,
since a root can either be positive or negative, the root has to be positive, as desired. if
t ̸⩽ (uJ){s,t}, the proof is similar.

The next result will describe the action of any special matching on any lower interval.
Note that it is possible to factorize any u ∈ W as

u = uJuJ = (uJ){s,t}(uJ){s,t} {s}(uJ)
{s}(uJ).

Theorem 3.6.1. Let (W,S) be a Coxeter system, w ∈ W , M a special matching of w
and s =M(1).

(i) If there exists a (necessarily unique) t ∈ S such that M(t) = ts but M ̸= ρs on
W{s,t}(w), then

M(u) = (uJ){s,t}M
(
(uJ){s,t} {s}(uJ)

)
{s}(uJ)

for all u ⩽ w.
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(ii) If M is a multiplication matching on W{x,s}(w) for all x ∈ S, then

M(u) = uJsuJ

for all u ⩽ w.

Proof. (i) We proceed by induction on ℓ(u) the result being clear if ℓ(u) = 0. Note
that, by Proposition 3.4.1, M((uJ){s,t} {s}(uJ)) ∈ W{s,t}(w) and so, if we set

v := (uJ){s,t}M
(
(uJ){s,t} {s}(uJ)

)
{s}(uJ)

then, by Lemma 3.6.3, (vJ){s,t} {s}(vJ) =M
(
(uJ){s,t} {s}(uJ)

)
.

If v :=M(u) ◁ u then by induction u =M(v) = (vJ){s,t}M
(
(vJ){s,t} {s}(vJ)

){s}
(vJ)

and so by what we just remarked we obtain

(uJ){s,t} = (vJ){s,t},

(uJ){s,t} {s}(uJ) =M
(
(vJ){s,t} {s}(vJ)

)
,

{s}(uJ) =
{s}(vJ).

Hence,

M(u) = (vJ)
{s,t}(vJ){s,t} {s}(vJ)

{s}vJ = (uJ){s,t} M
(
(uJ){s,t} {s}(uJ)

)
{s}(uJ)

as desired. We may therefore assume that u ◁ M(u). Similarly we may assume
that M

(
(uJ){s,t} {s}(uJ)

)
▷ (uJ){s,t} {s}(uJ).

If u = (uJ){s,t} then, by Proposition 3.6.2, either s ̸⩽ u or t ̸⩽ u. Therefore, if
a ∈

⋃
x∈S W{x,s}(u), then either a ∈ {s, t} or, by Proposition 3.6.1, a ∈ W{r,s}(u)

for some r ∈ S \ J ′, with r ̸= t. Hence, by Lemma 3.6.1, M(a) = as so M(u) = us

by Lemma 3.4.2 and the result holds in this case. Similarly, the result holds if
u = {s}(uJ), while it is trivial if u = (uJ){s,t} {s}(uJ).

Now consider the following three definitions:

1. If (uJ){s,t} ̸= 1 let x1 ∈ DL((u
J){s,t}) and u1 := x1u.

2. If (uJ){s,t} {s}(uJ) ̸= 1 let v ◁ (uJ){s,t} {s}(uJ) be such that v ◁ M(v) and let
u2 := (uJ){s,t}v{s}(uJ).

3. If {s}(uJ) ̸= 1 let x3 ∈ DR(
{s}(uJ) and u3 := ux3.



52 3. Special matchings and the combinatorial invariance conjecture

By our last remark we may assume that there exist i, j ∈ {1, 2, 3} with i ̸= j, such
that ui and uj can be defined as above. Applying our induction hypothesis to ui and
uj we have that ui ◁M(ui), uj ◁M(uj), and (uJ){s,t}M

(
(uJ){s,t} {s}(uJ)

)
{s}(uJ)

covers M(ui) and M(uj). On the other hand, by definition of a special match-
ing, M(u) ▷ M(ui),M(uj). Since (uJ){s,t}M

(
(uJ){s,t} {s}(uJ)

)
{s}(uJ) ▷ u and

M(u) ▷ u we conclude using Theorem 3.2.1 that

M(u) = (uJ){s,t}M((uJ){s,t} {s}(uJ))
{s}(uJ),

as desired.

(ii) This is similar and simpler than case (i) and is left to the reader.

The next theorem gives us the main link between special matchings and Kazhdan-
Lusztig polynomials.

Theorem 3.6.2. If (W,S) is a Coxeter system, w ∈ W \ {1} is not dihedral, and M is
a special matching of w, then there exist a multiplication matching N of w such that
NM(u) =MN(u) for all u ⩽ w, and N(w) ̸=M(w).

Proof. Note first that the result is true for a special matching M if and only if it is true
for the special matching M̃ defined as in Theorem 3.5.1. Hence we may assume that M
is in one of the cases of the last theorem.

Suppose that M is in case (i). Then, by Lemma 3.6.1, M = ρs on W{s,y}(w) for all
y ∈ S \ J ′, with y ̸= t and M = λs on W{s,y}(w) for all s ∈ J ′.

If (wJ){s,t} ̸= 1 let x ∈ DL((w
J){s,t}). If x ̸∈ {s, t} then M = ρs on W{s,t}(w) so

Mλx = λxM on W{s,x}(w) and we are done by Lemma 3.3.3. If x ∈ {s, t} then, by
Proposition 3.6.2, x = β and there exists r ∈ S with r < (wJ){s,t} such that βr ̸= rβ.
Furthermore, by Proposition 3.6.1, r ∈ S \ J ′ so M(r) = rs. Let K := {s, t, r}, then
by Proposition 3.4.1 M and λβ restrict to special matchings of [1, w[K]] = WK(w) and
M satisfies either hypotheses (1) or (2) (those of Section 3.5). Therefore, by Proposi-
tion 3.5.3, Mλβ = λβM on [1, w[K]] and hence on W{s,t}(w) and the claim follows by
Lemma 3.3.3. Note that M(w) ̸= λx(w) by what we have proved in the last theorem.

If (wJ){s,t} = 1 then necessarily {s}(wJ) ̸= 1 (otherwise w would be dihedral) and we
proceed in a similar way considering a right descend x of {s}(uJ). In this case M will
satisfy hypotheses (3) in Section 3.5 and one concludes that Mρx = ρxM . If M is in
case (ii) the proof is similar and simpler and is left to the reader.
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We remark that the above result does not hold if w is dihedral.
The following result will be the conclusion of this work, and it shows thatR-polynomials,

and thus Kazhdan-Lusztig polynomials as a consequence of Remark 2.3.1, can be com-
puted from the poset structure of a lower interval.

Theorem 3.6.3. If (W,S) is a Coxeter system, w ∈ W and M is a special matching of
w, then

Ru,w(q) = qcRM(u),M(w)(q) + (qc − 1)Ru,M(w)(q)

for all u ⩽ w, where c := 1 if M(u) ▷ u and c := 0 otherwise.

Proof. We proceed by induction on ℓ(w), the result being clearly true if ℓ(w) ⩽ 2. So
let ℓ(w) ⩾ 3. If w is dihedral then the result is easy to check, so suppose that w is not
dihedral. Then, by Theorem 3.6.2, there exists a multiplication matching N of w such
that NM(u) =MN(u) for all u ⩽ w, and N(w) ̸=M(w).

Fix u ⩽ w. There are four cases to distinguish. We consider only two of them, the
other two being exactly similar. Since M(w) ̸= N(w), we have that M(w) ▷ NM(w) =

MN(w) ◁ N(w) so M restricts to a special matching of [1, N(w)].

1. N(u) ▷ u, M(u) ◁ u.

Then, since MN(u) = NM(w), M(u) ◁ MN(u) ◁ N(u). Therefore, by the
properties of R-polynomials and our induction hypothesis,

Ru,w = qRN(u),N(w) + (q − 1)Ru,N(w)

= qRMN(u),MN(w) + (q − 1)RM(u),MN(w)

= qRNM(u),NM(w) + (q − 1)RM(u),NM(w)

= RM(u),M(w),

as desired

2. N(u) ▷ u, M(u) ▷ u.

If M(u) ̸= N(u) then MN(u) ▷ N(u) and MN(u) ▷ M(u) so, by the properties
of R-polynomials and our induction hypothesis we have:

Ru,w = qRN(u),N(w) + (q − 1)Ru,N(w)

= q(qRMN(u),MN(w) + (q − 1)RN(u),MN(w))

+ (q − 1)(qRM(u),MN(w) + (q − 1)Ru,MN(w))

= q2RNM(u),NM(w) + q(q − 1)RN(u),NM(w)

+ q(q − 1)RM(u),NM(w) + (q − 1)2Ru,NM(w)

= qRM(u),M(w) + (q − 1)Ru,M(w),
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as desired. If M(u) = N(u) then we have similarly that

Ru,w = qRN(u),N(w) + (q − 1)Ru,N(w)

= qRMN(u),MN(w) + (q − 1)(qRM(u),MN(w) + (q − 1)Ru,MN(w))

= qRM(u),M(w) + (q − 1)Ru,M(w)

and the result again follows.
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