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Abstract

The study of heavy vector bosons has been fundamental both for the understanding and
testing the prediction of the Standard Model and for exploring the potential existence of
new physics. In recent years, a new approach to study particle physics is quickly develop-
ing using quantum information principle and inspired observables to investigate relations
between particles created at colliders. In this thesis, it has been analyzed the bipartite
qutrit system resulting from the process pp → W±Z, where the produced bosons decay
into leptonic final states. The spin density matrix of the process has been derived by
applying a quantum tomography approach to the simulated final state. This procedure
allows to derive information on the heavy bosons’ spin by exploiting the angular distri-
bution of the decay products. The key measurement in this thesis is the lower bound of
the concurrence, which is a quantum observable sensitive to the entanglement between
the WZ spin. During the analysis, realistic selections and reconstruction procedures
have been included to estimate the realistic effects that will affect such measurement
performed in collider experiments. Moreover, a dedicated statistical analysis is em-
ployed to recover the observable of interest and estimate the corresponding statistical
uncertainties expected to be achievable at the LHC. The analysis results indicate that
measuring entanglement between the W and Z bosons is feasible, though it would be
highly challenging with the current Run 3 dataset.
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Introduction

The W and Z bosons are fundamental particles that mediate the weak force, one of the
four fundamental forces in nature, as described by the Standard Model (SM) of particle
physics. The study of these heavy vector bosons performed at the Large Hadron Collider
(LHC) is fundamental for testing SM predictions at high energy scales and providing a
window into potential new physics beyond the current framework. In recent years, a new
approach to studying particle physics has emerged using quantum information principles
and inspired observables to investigate the fundamental properties of particles created at
colliders. The spin density matrix, in particular, is a fundamental tool for describing the
spin state of a quantum system. This thesis presents a study of the process pp→ W±Z,
where the resulting bosons decay into leptonic final states. The focus is on analyzing
the entanglement of the bipartite quantum state formed by the spin of the two heavy
vector bosons. This is the first feasibility study of the entanglement for W±Z bosons
including realistic selections and reconstruction effects. The analysis is conducted using
quantum state tomography, which allows for determining the spin density matrix of
the diboson system from an ensemble of measurements. In particular, the spin density
matrix is reconstructed by analyzing the direction of the decay products of the WZ
system. The primary quantum observable examined in this work is the concurrence,
which is used to determine whether the state is entangled. However, for a pair of qutrits,
the concurrence cannot be measured directly. Instead, this analysis measures a lower
bound on the concurrence, which can be used to confirm entanglement in the state.
Moreover, the lower bound depends on all the coefficients of the spin density matrix
of the WZ system, making its measurement very challenging. The reconstruction of
this quantity and the estimate of the statistical uncertainty are conducted to evaluate
whether this type of measurement is feasible within the ATLAS and CMS collaborations,
while also identifying the primary limitations of such an approach. In addition, various
phase space selections are studied to enhance the entanglement between the two bosons,
and consequently the possibility to observe it using real data collected at LHC.

Chapter 1 presents the theoretical foundation of the Standard Model of particle
physics, providing a description of electroweak theory, spontaneous symmetry break-
ing, and the Higgs mechanism. Finally, it gives an overview of the phenomenology of
proton-proton collisions at LHC, focusing on the production of W±Z diboson.
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Chapter 2 introduces quantum mechanics and quantum information theory, starting
with the postulates of quantum mechanics followed by a description of the qubit and
density matrix operator. The chapter concludes by exploring the concept of entangle-
ment, including an overview of two key quantum observables: concurrence and the Bell
inequality.

Chapter 3 outlines the method used in this thesis to determine the spin density matrix
for the WZ system, represented by a pair of qutrits. It also details the calculations
required to compute the primary observable in this analysis, the lower bound of the
concurrence.

Chapter 4 presents the detailed analysis performed on the W±Z systems using a
Monte Carlo simulation. It begins by detailing the event generation and selection pro-
cesses, followed by the measurement of the spin density matrix and concurrence. The
chapter also presents the results and explores these measurements across various regions
of phase space and under different selection criteria.

The Conclusions contains a discussion and consideration of the results obtained with
a future outlook of the measurement.



Chapter 1

The Standard Model

The Standard Model of particle physics is a comprehensive theory that describes the
fundamental particles and their interactions, excluding gravity. The Standard Model,
developed in the latter half of the twentieth century by numerous physicists, has proved
very successful in explaining a wide range of phenomena and has withstood rigorous
experimental tests. This chapter presents an overview of the Standard Model, including
its key components and the theoretical framework that supports it.

1.1 Classification of fundamental particles

Fundamental particles, also known as elementary particles, are crucial for understanding
the structure and behaviour of matter and the universe. They constitute the basis of the
Standard Model, which successfully describes the vast majority of known phenomena
and experimental discoveries in particle physics.

In the SM, fundamental particles are categorized as either fermions or bosons, as
illustrated in Figure 1.1. Fermions, which are the particles that constitute matter, have
half-integer spin (s = 1

2
) and obey Fermi-Dirac statistics. Moreover, they follow the

Pauli exclusion principle, which states that two fermions can not simultaneously occupy
the same quantum state. Fermions are further classified as three families of leptons and
three families of quarks. In the Standard Model, leptons are grouped in doublets as
follows (

νe
e

) (
νµ
µ

) (
ντ
τ

)
.

Each lepton family consists of a negatively charged lepton—namely, the electron
(e), muon (µ), and tau (τ)—paired with a corresponding neutral lepton, known as a
neutrino, specific to each family: νe, νµ, and ντ . The charged leptons are colourless and
interact through both the electromagnetic and weak forces, whereas neutrinos interact
only through the weak force, making them extremely difficult to detect.

8



CHAPTER 1. THE STANDARD MODEL 9

Figure 1.1: The Standard Model fundamental particles reported with some properties.

In the same way, quarks are divided into three doublets as follows:(
u
d

) (
c
s

) (
t
b

)
where the up-like quarks (u, c, t) have a positive electric charge of 2

3
, while the down-like

quarks have a negative charge of −1
3
. Furthermore, quarks have three different colour

charges, which are connected to their ability to interact through strong force. In the
Standard Model, each particle has a corresponding antiparticle with the same mass but
opposite physical charges, such as electric charge.
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Bosons Symbols Spin Mass (GeV/c2)

Photon (1) γ 1 0

Gluons (8) g 1 0

W’s and Z (3) W±, Z 1
80.3692 ± 0.0133

91.1876 ± 0.0021

Higgs (1) H 0 125.25± 0.17

Table 1.1: Summary of the Standard Model bosons [29].

The SM also includes several bosons, as illustrated in Table 1.1. These are the
fundamental particles that mediate the interactions included in the SM: electroweak,
strong and the Higgs interaction. Unlike fermions, bosons follow Bose-Einstein statistics,
which allows multiple bosons to occupy the same quantum state. This property is crucial
for their role in force mediation. Bosons can be classified into two types based on their
spin: vector bosons and scalar bosons. Vector bosons have a spin s = 1, while scalar
bosons have a spin s = 0. The only scalar boson known within the Standard Model
is the Higgs boson, which plays a crucial role in the mechanism of mass generation for
other particles through the Higgs mechanism.

The vector bosons are gauge bosons linked with the Standard Model’s three funda-
mental interactions: the strong, electromagnetic, and weak forces. Specifically, the eight
gluons are responsible for mediating the strong force, which operates between quarks
and binds them together to form protons, neutrons, and other hadrons. Gluons are
massless bosons that carry a colour charge, which is analogous to the electric charge
in electromagnetism but comes in three types (red, green, blue) and their correspond-
ing anticolours. These particles can interact with each other because they carry colour
charges. This leads to the property of confinement, where quarks and gluons are always
bound together in colour-neutral combinations, preventing them from being observed as
free particles. The photon is the electromagnetic force’s gauge boson, it is charge-less
and mediates interactions between charged particles. Finally, the W± and Z bosons are
the weak interaction mediators. These bosons are massive, with the W bosons carrying
an electric charge and the Z boson being electrically neutral.
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1.2 Gauge invariance in the Electroweak theory

Formally, the Standard Model theory is based on a gauge principle of local invariance
and is described mathematically by three different gauge symmetry groups, nominally

SU(3)C ⊗ SU(2)L ⊗ U(1)Y

where each term of the product represents respectively:

• The non-Abelian group SU(3)C is responsible for the strong interaction, also known
as quantum chromodynamics (QCD) between quarks and gluons. This group has
8 generators, known as the Gell-Mann matrices representing the number of the
gauge vector bosons of QCD. The SU(3)C group is characterized by its own type
of charge, known as the colour charge, which comes in three varieties.

• The non-Abelian group SU(2)L is the gauge group associated with the weak inter-
action, where the subscript stands for the ”left-handed”, indicating that it acts on
left-handed fermions.

• The Abelian group U(1)Y is the group responsible for electrodynamics (QED)
and its quantum number is the hypercharge, related to electric charge and weak
interaction.

The theory that unifies electromagnetism and weak interaction is the Electroweak (EW)
theory, formulated by Glashow, Salam and Weinberg in the 1960s [27]. It based on the
symmetry subgroup SU(2)L ⊗ U(1)Y, where SU(2)L can be represented with the three
generators of weak isospin Ii =

τi
2
, where τi are Pauli matrices, and the group U(1)Y is

associated with the hypercharge Y , defined through the Gell-Mann–Nishijima relation:

Q = I3 +
Y

2
(1.1)

To construct the theory, the SU(2)L ⊗ U(1)Y group must satisfy local gauge invariance,
for this reason, four gauge bosons are introduced

b1µ, b
2
µ, b

3
µ for SU(2)L,

Aµ for U(1)Y
(1.2)

associated with weak isospin and hypercharge groups. Inside the electroweak theory,
fermions are in doublets of left-handed particles and right-handed singlets as follows

Lq =

(
u
d

)
L

, Ru = uR, Rd = dR

Ll =

(
νl
l

)
L

, Rl = lR

(1.3)
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where u and d are the up− like and down− like quark component of each family, while
νl and l represent the neutrino and lepton for each family. In the Standard Model,
the right-handed neutrino is not included, since it hasn’t been observed yet in nature.
This classification of fermions is fundamental in understanding the behaviour of particles
under the electroweak interaction and it is linked to the concept of chirality and helicity.
In particular, helicity refers to the projection of a particle’s spin along its direction of
motion. The helicity operator is defined as

h =
S⃗ · p⃗
|p⃗|

, (1.4)

where S⃗ is the spin operator and p⃗ is the momentum of the particle. For example, if
a particle with spin-1 moves exactly in the same direction as its spin points then the
helicity is h = +1, while if it moves in the exact opposite direction, the helicity is h = −1.
This property, since is related to the momentum of the particle, depends on the reference
frame. Chirality instead is a more abstract concept related to the intrinsic handedness
of particles. It is a property of the particle’s field rather than its physical spin direction.
Chirality is described by the projection operators:

PL =
1− γ5

2
and PR =

1 + γ5

2
(1.5)

where γ5 is the Dirac matrix. States with left-handed chirality have a non-zero PL

projection, whereas right-handed chirality states have a PR projection. For massless
particles, chirality is the same as helicity. For massive particles, it is important to
differentiate between chirality and helicity. For these particles, an observer can change
to a reference frame moving faster than the spinning particle, in which case the particle
will then appear to move backwards, and its helicity will be reversed. This means that
helicity is conserved within a given reference frame but is not Lorentz invariant, whereas
chirality is Lorentz invariant but not a constant of motion. Therefore, chirality is a
fundamental concept for the Standard Model since the electroweak interaction, which is
described by the symmetry group SU(2)L⊗U(1)Y, where SU(2)L acts only on left-handed
doublets.

The Lagrangian for the electroweak theory associated with one generation of quarks
and leptons can be written as:

LEW = Lgauge + Lfermions (1.6)

where Lgauge describes the four gauge bosons and Lfermions describes fermions and their
interaction with bosons. In particular, the kinetic term of the gauge bosons can be
formulated as

Lgauge = −1

4
F i
µνF

iµν − 1

4
fµνf

µν (1.7)
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in which, F i
µν is the field-strength tensor for the SU(2)L gauge bosons, defined as

F i
µν = ∂νb

i
µ − ∂µb

i
ν + gεijkb

j
µb

k
ν (1.8)

with εijk the Levi-Civita symbol denoting the structure constant of SU(2)L group and
g the coupling constant of the this group. Meanwhile, the field-strength tensor fµν is
related to the Abelian group U(1)Y and can be written as follows

fµν = ∂νAµ − ∂µAν . (1.9)

The Lagrangian of the fermions is defined as

Lfermions = R̄liγ
µDµRl + L̄liγ

µDµLl + R̄uiγ
µDµRu + R̄diγ

µDµRd + L̄qiγ
µDµLq, (1.10)

where the covariant derivative Dµ for singlets is

Dµ = ∂µ +
ig′

2
AµY (1.11)

with g′ the coupling constant of the group U(1)Y and Y the hypercharge of the cor-
responding particle. In the case of doublets, the covariant derivative can be written
as

Dµ = ∂µ +
ig′

2
AµY +

ig

2
τ ibiµ, (1.12)

where τ i are the generators of the SU(2) group, i.e. the Pauli matrices. Using the defini-
tion of Lagrangians just described, Eq.(1.6) can be reformulated to make the interaction
terms between fermions and gauge bosons of the EW theory explicit. Moreover, it can
be noticed that the Lagrangian of the electroweak lacks mass terms for both fermions
and gauge bosons, while it is known that fermions are massive and there is only one
massless boson in EW theory: the photon.

1.3 The Spontaneous Symmetry Breaking of EW

theory and Higgs Mechanism

As explained in the previous section, a mechanism is needed to give mass to these fun-
damental particles without introducing an explicit mass term. Adding a mass term for,
e.g., the fermions would break the SU(2)L ⊗U(1)Y gauge invariance of the theory. This
purpose can be achieved within the Standard Model via the Brout-Englert-Higgs mech-
anism as a consequence of the electroweak spontaneous symmetry breaking.[28]
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In particular, SU(2)L ⊗ U(1)Y is broken by the vacuum expectation value (vev) of a
complex doublet of scalar field with hypercharge Y = +1 called Higgs multiplet

ϕ ≡
(
ϕ†

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
(1.13)

The Lagrangian (1.6) can now be extended by introducing a new term associated with
the complex scalar field ϕ and a term describing the interaction between fermions and
the scalar field. The first term added to the electroweak Lagrangian is

Lscalar = (Dµϕ)†(Dµϕ)− V (ϕ†ϕ) (1.14)

where Dµ is the gauge covariant derivative described in Eq.(1.12) and the potential
V (ϕ†ϕ) can be written as

V (ϕ†ϕ) = µ2(ϕ†ϕ) + |λ|(ϕ†ϕ)2 with λ > 0 (1.15)

The interaction term, which involves Yukawa couplings of the scalars to fermions, is
described by

LY ukawa = −ζlR̄l(ϕ
†Ll)− ζdL̄qϕRd − ζuL̄qϕ̃Ru + h.c. (1.16)

where ϕ̃ = iτ2ϕ∗, with τ2 the second Pauli matrix, is the complex conjugate of Higgs
doublet and ζl, ζu, ζd are the Yukawa coupling constant for leptons and up-like and down-
like quarks. Let’s now recall the Higgs potential to study how it changes depending on
the sign of the parameter µ2. It is possible to distinguish two different cases:

• if µ2 > 0, the potential function has a unique minimum at ϕ = 0, corresponding to
the vacuum. In this case, the symmetry would be manifest.

• if µ2 < 0, the potential takes the typical form of a ”Mexican hat” and the minima
are described by a circle of radius v =

√
µ2/λ known as vacuum expectation value.

This leads to the spontaneous symmetry breaking of the SU(2)L ⊗U(1)Y into the
U(1)EM gauge group.

Thus the Lagrangian can be expanded around one of the possible ground states, consid-
ering for simplicity the ground state ϕ0 defined as

ϕ0 = ⟨0|ϕ |0⟩ = 1√
2

(
0
v

)
. (1.17)

and rewriting the potential minimum in a more general way as

ϕ = exp

(
iπaτa

2v

)(
0

(v + h)/
√
2

)
(1.18)
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where τa are the SU(2) generators, πa represent an arbitrary phase and h the scalar
Higgs boson. The Lagrangian can now be rewritten in terms of the unitary gauge, in
particular, the kinetic term becomes:

Lkin = (Dµϕ)†(Dµϕ) =
(v + h)2

8

[
g2|b1µ − ib2µ|2 + (g′Aµ − gb3µ)

2
]
+

1

2
(∂µh)(∂µh) (1.19)

with v = 246.22 GeV the vacuum expectation value of the EW theory. The gauge bosons
can be redefined through a linear combination obtaining the physical W±, Z and photon
bosons as follows:

W±
µ ≡

b1µ ∓ ib2µ√
2

, (1.20)

Zµ ≡
−g′Aµ + gb3µ√

g2 + g′2
= −Aµ sin θw + b3µ cos θw, (1.21)

Aµ ≡
gAµ + g′b3µ√
g2 + g′2

= Aµ cos θw + b3µ sin θw. (1.22)

where θw is the electroweak mixing angle, known as the Weinberg angle, which relates
the coupling g and g′ through the following definition

g′ ≡ g tan θw. (1.23)

Using Eqs. (1.20) and (1.21) within the Lagrangian (1.19), additional terms are obtained
as shown below

Lkin =
g2v2

4
W+

µ W
−µ +

(g2 + g′2)v2

8
ZµZ

µ + . . . (1.24)

From these quadratic terms, the masses of the W,Z electroweak gauge bosons can ulti-
mately be expressed as

mZ =
v
√
g2 + g′2

2
, mW = mZ cos θw =

gv

2
. (1.25)

The potential of the scalar Lagrangian (1.14) can be rewritten now in function of the
field h as

V (h) =
1

2
(2λv2)h2 + λvh3 +

λ

4
h4 (1.26)

where it can be noticed that the Higgs field has acquired a mass defined as

mH =
√
−2µ2 =

√
2λv (1.27)

The BEH mechanism is not only able to give mass to gauge bosons but is also respon-
sible for giving mass to fermions, which otherwise would be massless due to the gauge
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invariance of the theory. Thus, the Yukawa term (1.16) added to the Lagrangian of EW
theory becomes

Lyukawa =− v√
2
(ζl l̄LlR + d̄LζddR + ūLζuuR) + h.c.

+ interaction terms
(1.28)

where the mass of fermions can be written in general as

mi =
ζiv√
2

(1.29)

with ζi Yukawa coupling of the respective fermion.
Let’s consider the fermion Lagrangian (1.10) and expand it using the redefinition of the
gauge bosons (1.20-1.22). The term between fermions and gauge field can be written as
follows

Lfermions =g(W
+
µ J

µ+
W +W−

µ J
µ−
W + ZµJ

µ
Z) +AµJ

µ
EM

+ kinetic terms
(1.30)

where Jµ
i are the current for the different interaction of processes and e is the electric

charge of the electron defined as

e =
gg′√
g2 + g′2

= g sin θW (1.31)

Each current can be expressed as

Jµ+
W =

1

2
√
2

∑
i

(
ν̄iγµ(1− γ5)ei + ūiγµ(1− γ5)di

)
,

Jµ−
W =

1

2
√
2

∑
i

(
ēiγµ(1− γ5)νi + d̄iγµ(1− γ5)ui

)
,

Jµ
Z =

1

4 cos θW

∑
i

[
Ψ̄iγµ(Vf − Afγ

5)Ψi
]
,

Jµ
EM =

∑
i

QiΨ̄
iγµΨi,

(1.32)

where in the first two currents, νi, ei, ui, di are neutrinos, electron and up-like and down-
type quarks. In the third equation, the angle θW is the Weinberg angle, Vf and Af are
the vector and axial-vector coupling constants and Ψi are generic charged fermions with
charge Qi. Figure 1.2 displays how the W and Z bosons interact with fermions.

In particular, the Z boson is the mediator of the neutral current (NC) interactions
1.2a where the electric charge of the particles involved does not change in the interaction



CHAPTER 1. THE STANDARD MODEL 17

(a) NC interaction vertex (b) CC interaction vertex

Figure 1.2: Feynman diagrams of the neutral and charged current interaction in the
electroweak theory for the Z and W bosons.

and it is described by Jµ
Z in Eq.(1.32). An important characteristic of the Z boson as a

mediator in the Standard Model is that it does not allow a change in particle flavour in
the interaction. The W± boson is the mediator of charged current (CC) interactions, in
which the electric charge of the particles involved changes as a result of the interaction,
as shown in Fig.1.2b. The interaction is described by Jµ−

W and Jµ+
W in Eq.(1.32). In

particular, interactions mediated by the W boson occur with higher probability within
the same family of quarks or leptons, although interactions between different families are
possible but highly suppressed. This suppression is linked to the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, which governs the strength of flavour-changing processes in the
SM .

1.4 Diboson Production at the LHC

As described in the previous section, the electroweak interactions in the SM are governed
by the non-Abelian SU(2)L ⊗ U(1)Y gauge group. Investigating diboson production at
LHC provides a fundamental test of the electroweak theory at the TeV scale. One par-
ticular example is the precise measurement of the triple gauge boson couplings, which
could provide sensitive probes of new physics. Moreover, diboson production measure-
ments are crucial, as these processes and their decay products constitute an irreducible
background for Higgs and new physics searches.
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1.4.1 pp collision at LHC

The Large Hadron Collider (LHC) is primarily a proton-proton (pp) collider, where
particles are accelerated to very high energies. The proton is a hadron, a subatomic
particle composed of three valence quarks bound together by gluons: two up quarks and
one down quark, carrying an electric charge of +1 and a total colour charge equal to zero.
Gluons continuously interact inside the proton, giving rise to pairs of quark-antiquark,
known as ”sea” quarks. Protons undergo head-on collisions with a center-of-mass energy
of up to 13.6 TeV. Figure 1.3 sketches a simplification of pp interaction showing the
outgoing products.

Figure 1.3: Representation of a pp collision showing a hard scattering process between
partons

In proton collisions, there can be two types of events depending on the energy in
which protons interact. At low energies, elastic scattering takes place, where the protons
collide but their internal structure remains intact. At high energies, inelastic scattering
dominates, allowing the quarks and gluons inside the protons to interact. At this energy,
’hard-scattering’ processes, which are extensively studied, can instead be described by
perturbative QCD (pQCD) due to the asymptotic freedom of the theory [18].

The total cross-section of hard interactions can be computed using the factorization
theorem, which accounts for both soft and hard scattering collisions. Considering a hard-
scattering event of the type AB → X depicted in Figure 1.4, the total cross-section, using
factorization theorems [15], can be written as

σAB→X =
∑
a,b

∫
dxadxbfa/A(xa, Q

2)fb/B(xb, Q
2)σ̂ab→X (1.33)
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where xa,b represents the momentum fractions of the two interacting partons and fn/N(xn, Q
2)

are the Parton Distribution Functions (PDFs) for the two partons a, b generated from
hadrons A,B with Q2 being the momentum scale that characterizes the scattering. Fig-
ure 1.5 shows the gluon and valence PDFs obtained by measurements performed at
different colliders. The valence quarks (up and down) carry the majority of the proton’s
momentum, with a significant probability peak around x = 1

3
. The distribution of up

quarks is roughly double that of down quarks. However, at very small x values, the sea
quarks and gluons dominate, surpassing the contribution of the valence quarks.

Figure 1.4: Schematic structure of a generic hard-scattering process.

Figure 1.5: The gluon and valence PDFs obtained by the NNPDF collaboration including
measurements performed at several collider experiments (D0, LHCb, ATLAS, CMS) [10]



CHAPTER 1. THE STANDARD MODEL 20

1.4.2 WZ Diboson Production

At the LHC various studies are conducted on diboson events, including WW , WZ, ZZ,
Wγ, Zγ and γγ [9]. This thesis will focus on measurements of heavy vector bosons, with
a particular focus on the WZ diboson system. Figure 1.6 represents the leading order
(LO) Feynman diagrams of diboson production from quark-antiquark interaction.

Figure 1.6: Leading order Feynman diagrams for diboson production at the LHC. The
red dot indicates the triple gauge coupling vertex.

The diboson production cross-sections were measured in proton-proton collisions at a
centre of mass energy of 13 TeV at LHC by ATLAS during Run 2, obtaining the results
shown in Table 1.2.

Cross Section Predicted LHC
(pp, 13TeV, [pb]) (pp, 13TeV, [pb])

WW 128± 3.5 142± 5(stat)± 13(syst)± 3(lumi)
WZ 49.1± 1.0 51.0± 0.8(stat)± 1.8(exp. syst)± 1.1(lum.)
ZZ 15.7± 0.7 17.8± 1.0(stat)± 0.7(syst)± 0.4(lumi)

Table 1.2: Summary of cross-sections for WW , WZ and ZZ at ATLAS at
√
s = 13 TeV

and their theoretical predictions [13] [12] [14].

The WZ diboson, as illustrated in Figure 1.6 can be produced by pp collisions in
pairs through three channels: the t-channel (a), the u-channel (b) and s-channel (c). In
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the s-channel, an off-shellW boson is created from the annihilation of a quark-antiquark
pair, which decays into an on-shell W and Z boson through an interaction vertex.

At the LHC, there is a disparity in the production rates of W+Z and W−Z dibosons.
This difference arises because the probability of finding a valence u-quark, compared to
a d-quark is doubled in the proton, as shown in Figure 1.5. As a result, the production
rate for W+Z is higher compared to W−Z as shown in Figure 1.8a.

(a) (b)

Figure 1.7: (a) Measured ratios of W+Z and W−Z integrated cross-sections in the
fiducial phase space for all four channels. (b) Ratio of the measured W±Z integrated
cross sections in the fiducial phase space to the NLO SM prediction in each of the four
channels and for their combination [12].

These particles have a very short lifetime, thus they decay before the interaction
with the detector can happen. There are three possible decay channels for the WZ state:
the pure hadronic channel, the one with the highest branching ratio, where both W
and Z bosons decay into quarks, which then hadronize to produce jets; the semileptonic
channel where a boson decay in hadrons and the other in leptons and neutrino; the pure
leptonic decay channel in which bosons decay fully into four leptons. In this thesis, the
focus will be on pure leptonic decay channels, in particular, the process considered will
be W±Z → l

′±νl+l−, in which the only leptons considered are electrons (e) and muons
(µ). This channel has the smallest branching ratio, but it is also easy to identify and
distinguish from other background processes at LHC. Indeed, this is the channel selected
for the precision diboson measurements at ATLAS and CMS. Figure 1.8 presents the
measured distributions of the transverse momentum and the invariant mass of the Z
candidate studied by ATLAS Collaboration in the measurement of the W±Z production
cross-section [12]. These distributions indicate that the background of other processes
is minimal compared to the signal when analyzing the fully leptonic decay of the WZ
system.
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(a) (b)

Figure 1.8: The distributions, for the sum of all channels, of the transverse momentum
and the invariant mass of the Z boson. The points correspond to the data with the
error bars representing the statistical uncertainties, and the histograms correspond to
the predictions of the various SM processes.[12]

The fiducial cross-section of W±Z and decay into pure leptonic channel considering
all the four possible processes is

σfid.
W±Z→l′±νl+l−

= 63.7±1.0 (stat)±2.3 (exp. sys)±0.3 (mod. sys)±1.4(lumi) fb (1.34)

which, in Figure 1.8b is compared to the theoretical cross-section of the Standard Model
computed at next-to-leading order (NLO).



Chapter 2

Quantum Information

Quantum mechanics is a fundamental physics theory that outlines nature’s behaviour
at atomic and subatomic scales. While classical physics successfully describes many
macroscopic phenomena, it fails to accurately explain systems at the microscopic scales
of atoms and subatomic particles. In contrast, quantum mechanics offers a comprehen-
sive framework for comprehending these systems. Quantum information refers to the
information held in the state of a quantum system, extending the concept of classical
information. This chapter will outline the main characteristics of quantum mechanics
with an introduction to quantum information concepts.

2.1 Postulates of Quantum Mechanics

Postulate 1: State of a quantum system

Every isolated physical system is associated with a complex vector space with an inner
product, known as a Hilbert space, which serves as the state space of the system. The
system is completely described by its state vector (ray), which is a unit vector in the
system’s state space. The Hilbert space is a vector space over the complex numbers C
with an inner product ⟨ψ|ϕ⟩, with |ψ⟩ and |ϕ⟩ vectors in the inner product space. The
product has the following properties [26]:

• Positivity: ⟨ψ|ψ⟩ > 0 for |ψ⟩ ≠ 0.

• Linearity: ⟨ψ|(a |ψ1⟩+ b |ψ2⟩)⟩ = a ⟨ψ|ψ1⟩+ b ⟨ψ|ψ2⟩.

• Skew symmetry: ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗.

Given two states, |ψ1⟩ and |ψ2⟩, another state can be constructed as the linear super-
position of the two, |ψ⟩ = a |ψ1⟩ + b |ψ2⟩, which is also an admissible description of the
quantum state under consideration.

23
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Postulate 2: Observables

An observable is a property of a physical system that can, in principle, be measured. In
quantum mechanics, an observable is represented by a self-adjoint operator. An operator
is a linear map that takes vector to vector, defined as

A : |ψ⟩ → A |ψ⟩ , A(a |ψ1⟩+ b |ψ2⟩) → aA |ψ1⟩+ bA |ψ2⟩ . (2.1)

The operator A is self-adjoint if A = A†, which means that ⟨ϕ|A|ψ⟩ = ⟨ψ|A|ϕ⟩∗. In a
Hilbert space H, a self-adjoint operator can be written in a spectral representation as
follows

A =
∑
n

anEn with an ∈ R, (2.2)

where each an is an eigenvalue of A and En is the corresponding orthogonal projection
onto the space of eigenvectors with eigenvalue an. The orthogonal projections satisfy the
following properties

EnEm = δn,mEn,

E†
n = En

(2.3)

The orthogonal projector onto the one-dimensional space spanned by the vector |ψ⟩ can
be expressed as |ψ⟩ ⟨ψ|. An alternative notation for the spectral representation of A is
defined as

A =
∑
n

an |n⟩ ⟨n| (2.4)

in which |n⟩ is the orthonormal basis of the eigenstates os A, with A |n⟩ = an |n⟩.

Postulate 3: Quantum Measurement

A measurement is a process in which an observer acquires information about the state
of a physical system. Quantum measurements are described by a set of measurement
operators denoted asMm [25]. These are operators acting on the state space of the system
being measured. The index m corresponds to the possible outcomes of the measurement.
If the quantum system is in the state |ψ⟩ just before the measurement, the probability
of obtaining the outcome m is given by

p(m) = ⟨ψ|M †
mMm|ψ⟩ . (2.5)

After the measurement, the quantum state will be in the form:

|ψPM⟩ = Mmψ√
⟨ψ|M †

mMm|ψ⟩
(2.6)
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The measurement operator satisfies the completeness equation written as∑
m

=M †
mMm = I. (2.7)

This equation is linked to the fact that the probabilities of the possible results sum up
to one

1 =
∑
m

p(m) =
∑
m

⟨ψ|M †
mMm|ψ⟩ . (2.8)

A specific type of measurement, known as a projective measurement, is a special
case of the general measurement process. A projective measurement is defined by an
observable M , which is a Hermitian operator acting on the state space of the system
being measured. The observable M can be expressed through its spectral decomposition
as follows:

M =
∑
m

mPm, (2.9)

where Pm is the projector onto the eigenspace of M with eigenvalue m. The possible
outcomes of the measurement correspond to the eigenvalues m of the observables. The
probability of obtaining the result m when measuring the state |psi⟩ is given by

p(m) = ⟨ψ|Pm|ψ⟩ . (2.10)

The quantum state immediately after the measurement with outcome m, will take the
form

|ψPM⟩ = Pmψ√
p(m)

. (2.11)

One property of the projective measurement is related to the calculation of the expec-
tation value of the outcomes. In particular, consider many identically prepared systems
that have been measured, each described by the quantum state |ψ⟩, the expectation
value of the outcomes is defined as

⟨M⟩ ≡
∑
n

mp(m) =
∑
n

m ⟨ψ|Pm|ψ⟩ = ⟨ψ|M |ψ⟩ . (2.12)

Postulate 4: Evolution

The evolution of a quantum state is described by a unitary transformation, which means
that the state |ψ(t)⟩ of the system at time t is related to the state |ψ(t′)⟩ of the system at
the time t′ by a unitary operator U which depends only on the times t′ and t as follows

|ψ(t′)⟩ = U(t′, t) |ψ(t)⟩ (2.13)
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where U(t′, t) is the unitary time evolution operator. The time evolution of a quantum
state of a closed state is described by by the Schrödinger equation

iℏ
d

dt
|ψ⟩ = H |ψ⟩ (2.14)

where H is a fixed Hermitian operator also known as the Hamiltonian of the closed
system. If the Hamiltonian H is time independent, the evolution operator U(t′, t) may
be written as

U(t′, t) = exp

[
−iH(t′ − t)

ℏ

]
(2.15)

Postulate 5: Composite Systems

The state space of a composite physical system is the tensor product of the state spaces
of the component physical systems. In particular, given the Hilbert space of the system
A is HA and the Hilbert space of the system B is HB, the Hilbert space of the composite
system AB will be HA ⊗HB. Let’s consider |i⟩A as the orthonormal basis for the space
HA and |µ⟩B a basis for HB, then the states |i, µ⟩AB ≡ |i⟩A ⊗ |µ⟩B constitute a basis for
the space HA ⊗HB, where the inner product can be defined as follows

AB⟨i, µ|j, ν⟩AB = δijδµν (2.16)

An operator that acts only on one subsystem can be extended to the composite system
by taking the tensor product with the identity operator on the other subsystem. For
example, suppose OA is an operator defined on the space HA. In that case, the cor-
responding operator on the composite system is defined as OA ⊗ IB, where IB is the
identity operator on HB, and it acts as follows:

(OA ⊗ IB)(|i⟩A ⊗ |µ⟩B) = OA |i⟩A ⊗ |µ⟩B . (2.17)

2.2 The Qubit

The fundamental concept of classical computation and classical information is the bit,
which can take one of the two possible values 0,1. In quantum computing and quantum
information, the corresponding unit is called ”quantum bit”, or qubit and describes a
state in the simplest possible quantum system. As a classical bit has a state, i.e. 0 or 1,
the two possible states for a qubit are the states |0⟩ and |1⟩. Let’s consider the smallest
nontrivial Hilbert space which has two dimensions, then the most general normalized
state can be written as

|ψ⟩ = a |0⟩+ b |1⟩ (2.18)

where a and b are complex numbers that satisfy the property |a|2 + |b|2 = 1. Thus,
a qubit is a quantum state described by a two-dimensional Hilbert space as shown in
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Eq.(2.18). The primary distinction between qubits and classical bits is that a qubit can
be written as a linear combination of the states |0⟩ and |1⟩. If a measurement is performed
projecting the qubit onto the basis |0⟩ , |1⟩, then the outcome |0⟩ will be obtained with
a probability |a|2 while the outcome |1⟩ with a probability |b|2. Another key difference
between classical and quantum bits involves the measurement of the state. Measuring a
qubit alters its initial state, causing it to collapse from its superposition, as illustrated
in Eq.(2.18), to a specific state.
A more intuitive way to represent the simple qubit is through the Bloch sphere, which
can be used since |a|2 + |b|2 = 1 holds for a qubit. Therefore, a qubit can be represented
as the surface of a sphere with radius one, as described in Figure 2.1.

Figure 2.1: Bloch sphere representation of a qubit.

The qubit can then be written as follows

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (2.19)

where θ and ϕ are real numbers and define a point on the unit three-dimensional sphere.
A qubit is a mathematical object that can be represented physically in various forms,
some of which are utilized in quantum computers and other different fields of interest,
such as quantum cryptography [2]. Another possible representation involves particles
with spin s = 1/2. Since the spin projection for these particles has two possible states,
they can be effectively treated as qubits. Let’s consider the case in which there are two
qubits. In the classical case of two bits, there would be four possible states, 00, 01, 10 and
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11. Similarly, a pair of qubits has four computational states, i.e. |00⟩ , |01⟩ , |10⟩ and |11⟩.
Thus, the state vector describing the two qubits can be written as

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ (2.20)

where the normalization condition is given by
∑

x,y∈{0,1} |axy|2 = 1. The probabil-

ity of observing the quantum state in one of the possible states, for example, |00⟩, is
given by |a00|2. Suppose now measuring the first qubit alone which gives |0⟩, the post-
measurement state will be

|ψ′⟩ = α00 |00⟩+ α01 |01⟩√
|a00|2 + |a01|2

(2.21)

A specific set of two-qubit states obtained for particular values of αxy is known as the
Bell state or EPR pair, defined as:

|ψ⟩ = |00⟩+ |11⟩√
2

|ψ⟩ = |01⟩+ |10⟩√
2

|ψ⟩ = |00⟩ − |11⟩√
2

|ψ⟩ = |01⟩ − |10⟩√
2

(2.22)

These states exhibit a characteristic where measuring the first qubit one obtains two
possible results: 0 with probability 1/2, leaving the post-measurement state |ϕ′⟩ = |00⟩,
and 1 with the same probability, leading to the state |ϕ′⟩ = |11⟩. Therefore, a measure-
ment of the second qubit will always give the same result as the measurement of the first
qubit, meaning that the outcomes are correlated. This property defines the two qubits
as maximally entangled (a concept that will be explained later in this chapter).

2.3 The Density operator

The density matrix is an important mathematical tool in quantum mechanics, partic-
ularly for describing mixed states and statistical ensembles. Let’s consider a quantum
state is in one of a number of states |ψi⟩, where i is an index, with respective probabilities
pi and {pi, |ψi⟩} is defined as the ensemble of pure states. Then, the density operator
for the system is defined as

ρ ≡
∑
i

pi |ψi⟩ ⟨ψi| (2.23)

which is also usually called the density matrix of a system. The density operators are
characterized by the following properties:
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• ρ = ρ†, which means the density operator is Hermitian,

• The trace of the density operator is equal to one, tr(ρ) = 1,

• ρ is a positive operator, meaning that for any |ψi⟩ in the space ⟨ψ|ρ|ψ⟩ ≥ 0

Suppose the evolution of a closed state is described by a unitary operator U , then the
system evolves to U |ψi⟩, where |ψi⟩ is the initial state with probability pi. Therefore,
the evolution operator can be described by the equation

ρ =
∑
i

pi |ψi⟩ ⟨ψi|
U−→

∑
i

piU |ψi⟩ ⟨ψi|U † = UρU †. (2.24)

Consider performing a measurement described by the operator Mm, then it is possible
to use the density operator to describe it. If the initial state considered is |ψi⟩, the
probability of obtaining the result m is

p(m) =
∑
i

p(m|i)pi, (2.25)

where the term p(m|i) can be written as

p(m|i) = ⟨ψi|M †
mMm|ψi⟩ = tr(M †

mMm |ψi⟩ ⟨ψi|). (2.26)

Thus, the probability of getting result m can be written using Eq.(2.26) as

p(m) =
∑
i

pitr(M
†
mMm |ψi⟩ ⟨ψi|) = tr(M †

mMmρ) (2.27)

After performing the measurement, the initial state |ψi⟩ becomes

|ψm
i ⟩ =

Mm |ψi⟩√
⟨ψi|M †

mMm|ψi⟩
(2.28)

The corresponding density operator ρm post-measurement is described by

ρm =
∑
i

p(i|m) |ψm
i ⟩ ⟨ψm

i | =
∑
i

pi
Mm |ψm

i ⟩ ⟨ψm
i |M †

m

⟨ψi|M †
mMm|ψi⟩

=
MmρM

†
m

tr(M †
mMmρ)

(2.29)

in which it has been used the probability theory, p(i|m) = p(m|i)pi/p(m) and the
Eqs.(2.26-2.27) have been substituted. Let’s now introduce a feature of quantum states
related to the density operator. It is possible to distinguish between two types of quan-
tum state as follows
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• Pure state: a state |ψ⟩ in a quantum state is considered pure if it is known exactly.
For a pure state, the density operator is simply ρ = |ψ⟩ ⟨ψ| and it must be satisfied
the condition tr(ρ2) = 1.

• Mixed state: a state |ψ⟩ is said to be mixed if it is a mixture of different pure states
in the ensemble of ρ. In this case, the mixed state satisfies the condition tr(ρ2) < 1.

One of the density operator’s more interesting applications is describing subsystems of a
composite quantum system. Suppose to consider two physical systems A and B, whose
state is represented by a density operator ρAB. The partial system A can be described
by the reduced density operator defined as follows

ρA ≡ trB(ρ
AB), (2.30)

where trB is a map of operators known as the partial trace over the system B and it is
defined as

trB(|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|) ≡ |a1⟩ ⟨a2| tr(|b1⟩ ⟨b2|), (2.31)

in which |ai⟩ are two vectors in state A, and |bi⟩ belong to space state B. It may not be
immediately clear that the reduced density operator for system A accurately describes
its state. The physical explanation for this identification is that the reduced density
operator provides the correct measurement statistics for observations made on system
A. Consider a quantum system in the state ρAB = ρ⊗ σ, where ρ is the density for the
system A and σ is the density operator for system B. Thus, the reduced density operator
for state A can be written as

ρA = trB(ρ⊗ σ) = ρtr(σ) = ρ. (2.32)

For the state B, the result obtained is ρB = σ. The density operator in the case of Bell
state (|00⟩+ |11⟩)/

√
2 can be defined as

ρ =

(
|00⟩+ |11⟩√

2

)(
⟨00|+ ⟨11|√

2

)
. (2.33)

By tracing out the second qubit, the reduced density matrix of the first qubit becomes

ρ1 = tr2(ρ) =
|0⟩ ⟨0|+ |1⟩ ⟨1|

2
=
I

2
. (2.34)

An important consideration can be extrapolated from this result: the state in Eq.(2.34)
is a mixed state, as evidenced by tr((I/2)2) = 1/2 < 1. The state of the joint system
of two qubits is a pure state, meaning it is known exactly. However, the first qubit is
a mixed state, indicating incomplete knowledge about it. This peculiar property, where
the joint state of a system is completely known while a subsystem is in a mixed state, is
a defining feature of entanglement.
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2.4 Entanglement

The density operator in a bipartite system can be expressed in a particularly useful form
known as the Schmidt decomposition. Let’s consider a pure state |ψ⟩ of a composite
system AB. Then, there exist orthonormal states |iA⟩ for system A and orthonormal
states |iB⟩ of system B such that

|ψ⟩ =
∑
i

λi |iA⟩ |iB⟩ , (2.35)

where the coefficients λi are real non-negative numbers known as Schmidt coefficients,
which satisfies the property

∑
i λ

2
i = 1. From Eq.(2.35), the reduced density operator

for the substates can be written as

ρA =
∑
i

λ2i |iA⟩ ⟨iA| ρB =
∑
i

λ2i |iB⟩ ⟨iB| (2.36)

where it can be seen that the eigenvalues of ρA and ρB are identical for both density oper-
ators. These eigenvalues are fundamental in describing important properties of quantum
systems, for example, for a pure state of a composite system such features will be the
same for both subsystems. The states |iA⟩ and |iB⟩ in Eq.(2.35) are referred to as the
Schmidt bases for subsystems A and B respectively. The number of non-zero values
coefficients λi is known as the Schmidt number for the state |ψ⟩, which is crucial because
they quantify the ”degree” of entanglement between the states A and B. Specifically,
a bipartite pure state |ψ⟩ of a system AB is entangled if its Schmidt number is greater
than one, otherwise it’s said to be separable. In this case, a separable bipartite pure
system can be expressed as a direct product of states in A and B subsystems,

|ψ⟩ = |u⟩A ⊗ |v⟩B . (2.37)

For such separable states, the reduced density matrices for the subsystems are ρA =
|u⟩ ⟨u| and ρB = |v⟩ ⟨v|, indicating that both subsystems are in pure states. Thus, any
state that cannot be expressed as a direct product is entangled. In such cases, the
reduced density matrices for subsystems A and B are mixed states. In addition, if the
state |ψ⟩ of the composite system AB is entangled, then the subsystem A and B are
quantum correlated. This means that the quantum states of A and B are linked in such
a way that the state of one subsystem cannot be fully described independently of the
state of the other.

The entanglement is a fundamental property of a quantum system, however, the
necessary and sufficient conditions to determine the entanglement of a mixed state are
generally difficult to calculate. One condition for the observation of entanglement is
the quantum observables called concurrence [23], in particular, a state can have non-
zero concurrence only if it is entangled. For a mixed state, the concurrence c(ρ) can
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be defined using the convex roof extension method. This approach involves determining
a limit in terms of the different ensembles of states (pi, |ψ⟩) that could have led to the
mixed state ρ. Therefore, the concurrence can be written as

c(ρ) = inf
∑
i

pic(|ψ⟩), with
∑
i

pi = 1, pi ≥ 0, (2.38)

in which the infimum is taken over all the ensembles {pi, |ψi⟩} for which is valid ρ =∑
i |ψi⟩ ⟨ψi|. In the case of a bipartite system of a pair of qubits, the concurrence can be

calculated analytically, while for systems with dimensions greater than d = 2× 3 only a
lower bound can be computed as will be shown in Chapter 3.

The entanglement is also fundamental in describing the difference between classical
and quantum physics. Let’s consider the concept of measurement: in classical physics, a
measurement is simply the observation of a property that an object possesses, regardless
of how the measurement is obtained. In quantum mechanics, however, an unobserved
object, such as a particle, does not possess physical properties that exist independently
of observation. Instead, these physical properties emerge from measurements made on
the system. For instance, a qubit does not have defined properties of spin along the
z-direction and the x-direction, but given the state vector, quantum mechanics specifies
the probabilities of the possible measurement outcomes for these observables. This coun-
terintuitive behaviour of quantum mechanics generated several doubts among physicists
of that time. One of the greatest objectors of this theory was Albert Einstein. In 1935,
along with Nathan Rosen and Boris Podolsky, he published a famous paper describing
a thought experiment known as the EPR paradox [21]. Their main argument was that
quantum mechanics is not a complete theory of Nature, because it is possible to identify
elements of reality that were not included in quantum mechanics.

To explain the EPR paradox, consider a pair of two particles A and B with spin
s = 1/2 emitted by a particle with spin zero, which is equivalent to considering an
entangled pair of qubits. The particles are then separated and given to two observers,
namely Alice and Bob who are at a distance such that Alice cannot modify the outcome
of the experiments performed by Bob and vice versa. In this setup, if Alice measures σz,
then by quantum mechanics the value of σz for Bob’s measurement is known with cer-
tainty. The same reasoning can be made for the measurement of σx, thus both physical
properties must correspond to an element of reality following the EPR criterion. How-
ever, this conclusion is in contrast to what has been described earlier, since quantum
mechanics only explains how to calculate the probabilities of respective measurement
outcomes if the observable is measured. Thus, the three authors concluded that quan-
tum mechanics cannot be a complete theory and to solve this problem they suggested the
existence of some other degrees of freedom, known as hidden variables which account for
the behavior of entangled particles. In a hidden-variable theory, measurement is funda-
mentally deterministic but appears to be probabilistic because some degrees of freedom
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are not precisely known. Let’s consider a particle with a spin of one-half quantized along
n-direction. The state which describes the particle with spin s = 1/2 along z-direction
can be written as

|↑z⟩ = cos
θ

2
|↑n⟩+ sin

θ

2
|↓n⟩ (2.39)

Using hidden variables theory, there is an additional variable λ that nobody can control,
thus it can take any value between zero and one. Now suppose the spin is measured
along the axis n, the outcome can be described by

|↑n⟩ , for 0 ≤ λ ≤ cos2
θ

2

|↓n⟩ , for cos2
θ

2
≤ λ ≤ 1

(2.40)

It is obvious that if λ is known, the outcome is completely deterministic, while if λ
is unknown, the probability distribution governing the measurement will align with the
predictions of quantum theory. Let’s now consider an experiment that recalls the theorem
proposed by John Bell in 1964, which assumes the hidden variables theory. Suppose
Charlie, an observer, prepares two particles and gives one particle to Alice and the
other to Bob. Alice can perform two distinct experiments on the particle she receives,
designed to measure two different properties Q and R. The outcomes of each experiment
are denoted as q and r, and these values are restricted to +1 or -1. Similarly, Bob can
measure the two properties S and T , with outcomes s and t, with values still limited to
+1 or -1. The experiment is schematically represented in Figure 2.2. Now define the

Figure 2.2: Schematic representation of the experiment for Bell inequalities

combination of measurements QS +RS +RT −QT , it can be rewritten as

QS +RS +RT −QT = (Q+R)S + (R−Q)T (2.41)

Because both Q and R take values ±1, then either Q = R or Q = −R. In the first case
(R−Q)T = 0 , while in the second (Q+R)S = 0. Therefore in both situations, it can be
noticed that QS+RS+RT −QT = ±2. The probability that, before the measurements
by Alice and Bob are performed, the system is in the state where Q = q, R = r, S = s
and T = t can be defined as p(q, r, s, t).
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Now the expectation value of combinations of experiments is

B = E(QS) + E(RS) + E(RT )− E(QT )

= E(QS +RS +RT −QT )

=
∑
qrst

p(q, r, s, t)(qs+ rs+ rt− qt)

≤ 2

(2.42)

where in the last part the property defined above has been used. This formula is called
CHSH inequality and belongs to a class of inequalities known as Bell inequalities. Now
the experiment is repeated considering that the two particles have spin s = 1/2 prepared
in a Bell state, and the expectation values of measurements are computed using quantum
mechanics formulation. Therefore, Alice and Bob measure the following observables:

Q = σz S = −σz + σx√
2

R = σx T =
σz − σx√

2
.

(2.43)

where σx and σz are two of the Pauli matrices. As before, the outcome of all four exper-
iments can be +1 or -1. Thus, the value of B using quantum mechanics formalism can
be written as

B = ⟨QS⟩+ ⟨RS⟩+ ⟨RT ⟩ − ⟨QT ⟩

=
1√
2
+

1√
2
+

1√
2
−

(
− 1√

2

)
= 2

√
2.

(2.44)

This result is in contradiction with Eq.(2.42) where it was obtained that the average of all
possible combinations of experiments could not exceed 2. This provides a mathematical
framework for a setup that can be used to test how Nature behaves. Over the years,
numerous experiments have been carried out to test Bell’s inequality across various
systems. One such experiment, which demonstrated that Nature violates Bell’s inequality
following quantum mechanics, was recognized with the Nobel Prize in 2022. In Eq.(2.42),
there must be some assumptions that are not fully correct. In particular, two hypotheses
are questionable:

• The assumption that the physical properties Q, R, S, and T have definite values
which exist independently of observation. This concept is known as realism.

• The supposition that, for example, Alice performing the measurement does not
influence the result obtained by Bob and vice versa.
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These two assumptions together are known as local realism. As previously mentioned,
Bell inequality experiments demonstrate that at least one of these assumptions is incor-
rect. It’s important to note that not every quantum state leads to a violation of Bell’s
inequalities. For instance, in the case of a separable pure state, the Bell inequality is
respected. Therefore, while a system must be in an entangled state to violate Bell’s
inequalities, entanglement alone is not sufficient for such a violation. Additionally, in
experiments like those of Alice and Bob, the violation of Bell’s inequality depends on
the choice of measurement axes and the fact that the observables measured must not
commute. The entanglement therefore is a new fundamental resource with deep impli-
cations both in fundamental physics and practical application, for example in quantum
computing. In this thesis, an application of entanglement will be presented to study
fundamental Standard Model particles, in particular, bosons, which can be considered
as qutrits, which will be discussed in the next chapter.



Chapter 3

Quantum State Tomography and
Qutrit Formalism

The density matrix is fundamental in quantum mechanics, as it provides a complete de-
scription of the quantum system under consideration. The determination of the density
matrix from an ensemble of measurements is known as ”Quantum State Tomography”
(QST). This chapter will describe how to obtain the spin density matrix for a multipar-
ticle system, in particular for a bipartite system of particles with spin s = 1 and how the
spin state of these particles can be described using the qutrit formalism. In this thesis,
the focus will be mainly on systems of two heavy vector bosons, with a detailed study of
WZ diboson states. Additionally, the concept of concurrence will be introduced, along
with its role in determining the entanglement of a bipartite system of particles.

3.1 Generalized Gell-Mann parameterizations

As explained in the previous chapter, the density matrix of a system describes the state
of a quantum system, in particular, it is useful for dealing with mixed states, where
the system may be in a probabilistic combination of different pure states. The density
matrix is defined as

ρ =
∑
i

pi |ψi⟩ ⟨ψi| (3.1)

where pi can be interpreted as a set of probabilities for the states |ψ⟩ within an ensemble.
Let’s now consider a particle with a spin s and write its spin density matrix ρ. The density
operator will be Hermitian defined on the Hilbert space state with a dimension d = 2s+1
and with d2 − 1 real parameters, due to its properties. In the case of a multiparticle
system, the Hilbert space where the density matrix is defined can be written as

H = H1 ⊗H2 ⊗ · · · ⊗ Hn (3.2)

36
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that has a dimension d = (2s1+1)(2s2+1) . . . (2sn+1), where si is the spin of each single
particle. The parameters of the spin density matrix can be determined using quantum
state tomography, a technique that involves reconstructing the density matrix from a
series of measurements on an ensemble of identically prepared states. This approach is
necessary because it is not possible to directly determine the spin of a particle during
collisions at the LHC from the measurement of a single instance of the state. The key
concept of quantum tomography is the relation between the spin of the particle and its
direction, therefore studying the decay products is fundamental to reconstructing the
spin of the original particle. The first step is finding a way to write the density matrix
through a parameterization that can be determined experimentally. In this thesis, it has
been used a parameterization based on the generalised d-dimensional Gell-Mann (GGM)
operators λ(d) [6]. These d2 − 1 matrices for a Hilbert space represent the generators for
the group SU(d) and have the following properties:

[λ
(d)
i , λ

(d)
j ] = 2ifijkλ

(d)
k ,

{λ(d)i , λ
(d)
j } =

4

d
δijId + 2gijkλ

(d)
k

(3.3)

where fijk and gijk are the commutator and anticommutator structure constants and Id
is the d-dimensional identity matrix. The GGM matrices can be obtained by writing the
generators in the standard basis:

• d(d−1)
2

symmetric matrices

λ
(d),S
jk = |j⟩ ⟨k|+ |k⟩ ⟨j| , 1 ≤ j < k ≤ d; (3.4)

• d(d−1)
2

antisymmetric matrices

λ
(d),A
jk = −i |j⟩ ⟨k|+ i |k⟩ ⟨j| , 1 ≤ j < k ≤ d; (3.5)

• (d− 1) diagonal matrices

λ
(d),D
l =

√
2

l(l + 1)

( l∑
j=1

|j⟩ ⟨j| − l |l + 1⟩ ⟨l + 1|
)
, 1 ≤ l ≤ d− 1. (3.6)

Therefore, from this definition, the GGM matrices are Hermitian, traceless and orthog-
onal and satisfy the following relations:

tr(λ
(d)
j λ

(d)
k ) = 2δjk,

tr(λ
(d)
j ) = 0,

(3.7)
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These properties make them an ideal basis for representing the density matrix. Now the
operator ρ for a single particle with spin s can be expressed as

ρ(d) =
1

d
Id +

d2−1∑
i=1

aiλ
(d)
i (3.8)

where d is the dimension of the Hilbert state and ai are the real parameters that form
the Bloch vector a⃗ = ({aSjk}, {aAjk}, {aDl }) with dimension d2 − 1.

The case with spin s = 1 is used in this thesis to describe W and Z bosons, where
the Hilbert space of each particle has dimension d = 3 and thus has 8 different real
parameters [5]. For spin-1 particles the GGM matrices are

λ
(3)
1 = λ

(3),S
12 =

0 1 0
1 0 0
0 0 0

 , λ
(3)
2 = λ

(3).A
12 =

0 −i 0
i 0 0
0 0 0

 , λ
(3)
3 = λ

(3),D
1 =

1 0 0
0 −1 0
0 0 0

 ,

λ
(3)
4 = λ

(3),S
13 =

0 0 1
0 0 0
1 0 0

 , λ
(3)
5 = λ

(3),A
13 =

0 0 −i
0 0 0
i 0 0

 , λ
(3)
6 = λ

(3),S
23 =

0 0 0
0 0 1
0 1 0

 ,

λ
(3)
7 = λ

(3),A
23 =

0 0 0
0 0 −i
0 i 0

 , λ
(3)
8 = λ

(3),D
2 =

1√
3

1 0 0
0 1 0
0 0 −2

 .

(3.9)
which are the generators of the group SU(3). The corresponding spin density matrix for
a qutrit can be written as

ρ(3) =
1

3
I3 +

8∑
i=1

aiλ
(3)
i

=


1
3
+ a3 +

1√
3
a8 a1 − ia2 a4 − ia5

a1 + ia2
1
3
− a3 +

1√
3
a8 a6 − ia7

a4 + ia5 a6 + ia7
1
3
− 2√

3
a8

 .

(3.10)

The coefficients ai of the density operator can be determined by computing the expec-
tation values of the corresponding operators. This follows from the relations involving
the Gell-Mann matrices in Eq.(3.7). Therefore, the expectation values of the operators
corresponding to the Gell-Mann matrices are obtained as follows

⟨λ(d)i ⟩ = tr(ρλ
(d)
i ) = 2ai. (3.11)

Using the parameterization (3.8), a generalization can be made for a multi-particle sys-
tem. In particular for a two-particle state of particles with spin s1 and s2, the bipartite
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density matrix can be defined as

ρ(d) =
1

d
Id +

d21−1∑
i=1

aiλ
(d1)
i ⊗ 1

d2
Id2 +

d22−1∑
j=1

1

d1
Id1 ⊗ bjλ

(d2)
j +

d21−1∑
i=1

d22−1∑
j=1

cijλ
(d1)
i ⊗ λ

(d2)
j (3.12)

where di = (2si + 1) is the dimension of the Hilbert space of each particle and d = d1d2
is the full Hilbert space. The parameters ai and bj are the Bloch vectors for the single
particle, while the cij are the correlation parameters of the two particles. For the specific
case that will be studied in this thesis of a diboson system, the spin density matrix of
the state is defined as follows

ρ =
1

9
I9 +

1

3

8∑
i=1

aiλi ⊗ I3 +
1

3

8∑
j=1

bjI3 ⊗ λj +
8∑

i=1

8∑
j=1

cijλi ⊗ λj (3.13)

where the complete Hilbert space, which has a dimension of d = 9, is characterized by
80 parameters.

3.2 Weyl-Wigner formalism for spin-1 particle

As introduced in the previous section, the core idea behind quantum tomography lies in
the relation between the spin of a particle and its direction. In particular, when studying
spin-1 particles, such as W and Z bosons, the chiral nature of electroweak interaction
plays a fundamental role. For example, the interaction between W boson and emitted
leptons ensures that the direction of the charged lepton is correlated with its spin. This
correlation makes the charged decay lepton a useful tool for reconstructing the spin of the
original boson. Thus, analyzing the decay products is crucial for accurately reconstruct-
ing the spin of the original particle. From the theoretical perspective, the process where
particles with a specific spin density matrix decay according to angular distributions
can be described using analytical calculations or Monte Carlo simulations. However, the
inverse process—using the angular distributions of decay products to determine the spin
density matrix of the original particle—can be accomplished through the Weyl-Wigner
transformation, which maps functions between the quantum space of angular distribu-
tions and the Hilbert space. The Wigner Q symbols are used to forward mapping from
bounded operators A : H → H in the Hilbert space H of the spin states onto the space
of functions on the sphere S2. The Wigner Q symbols are defined as follows

ΦQ
A(n̂) = ⟨n̂|A|n̂⟩ , (3.14)

with n̂ as a unit vector in R3. The inverse mapping is obtained through the Wigner P
symbols which connect the space of functions on S2 to the operators A : H → H using
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the following definition

A =
2j + 1

4π

∫
dΩn̂ |n̂⟩ΦP

A(n̂) ⟨n̂| , (3.15)

where the angular integral is over directions of unit vector n̂.
Let’s now consider the specific case of theWZ diboson system decaying into the fully

leptonic channel to determine the coefficients of the spin density matrix in Eq.(3.13). The
W vector boson decays by coupling only to left-chiral spin-half fermions and right-chiral
spin-half antifermions, resulting in maximal parity violation. Under the approximation
ml ≪ mW , the decay W+ → l+ν produces a l+ with positive helicity and a ν with
negative helicity. Consequently, the spin of the W+ is effectively +1 in the direction of
the l+ momentum. The scenario is reversed for the W− boson, with its spin being −1
along the momentum direction of l−. Therefore, measuring the decay direction of the
outgoing leptons in the W± boson rest frame is equivalent to projectively measuring the
heavy vector-boson spin in that frame. In particular, the probability density function
for a W± boson is given (3.10) to emit a charged lepton l± into infinitesimal solid angle
dΩ along the direction n̂(θ, ϕ) is given by

p(l±n̂ ; ρ) =
d

4π
tr(ρΠ±,n̂), (3.16)

where d = 3 for the W± bosons and the probability density function is defined such that∫
dΩn̂p(l

±
n̂ ; ρ) = 1. (3.17)

The spin-1 projection operator Π+,n̂ ≡ |+⟩n̂⟨+|n̂ selects a positive helicity l+ in the
direction n̂ with a negative helicity ν in the direction −n̂. Similarly for Π−,n̂ ≡ |−⟩n̂⟨−|n̂,
a negative helicity l− is selected in the direction n̂ accompanied by a positive helicity
ν̄ in the direction −n̂ for the W− case. The full expression for the angular probability
density function can be written in terms of the parameters of the Gell-Mann basis as

p(l±n̂ ; ρ) =
3

4π

(
1

3
+

8∑
i=1

ΦQ±

i ai

)
. (3.18)

The eight functions ΦQ±

i are the Wigner Q symbols for the Gell-Mann operators for the
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W± bosons and each function, shown in Figure 3.1, is defined as

ΦQ±

1 =
1√
2
sin θ(cos θ ± 1) cosϕ ΦQ±

5 =
1

2
sin2 sin 2ϕ

ΦQ±

2 =
1√
2
sin θ(cos θ ± 1) sinϕ ΦQ±

6 =
1√
2
sin θ(− cos θ ± 1) cosϕ

ΦQ±

3 =
1

8
(±4 cos θ + 3 cos 2θ + 1) ΦQ±

7 =
1√
2
sin θ(− cos θ ± 1) sinϕ

ΦQ±

4 =
1

2
sin2 θ cos 2ϕ ΦQ±

8 =
1

8
√
3
(±12 cos θ − 3 cos 2θ − 1).

(3.19)

where θ and ϕ are the polar and azimuthal angles which define the direction n̂. These
functions can be written as

ΦQ±

i = ⟨±n̂|λ(3)i | ± n̂⟩ = tr(λ
(3)
i Π±,n̂) (3.20)

which satisfy the conditions of the Wigner Q symbol in Eq.(3.14). Therefore, it is now
possible to map in the forward direction from the spin density matrix to the angular
distributions.

Figure 3.1: Plots show the shape of the Wigner Q symbols ΦQ+

i corresponding to each
Gell-Mann operators. In particular, the plots display how the angular probability density
function varies in function of the angles.

The next step is to determine the set of Wigner P symbols to complement the Q
symbols already found to reconstruct the density matrix from the experimental data.
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Using the definition (3.15), the product of two generalised Gell-Mann operators for a
generic dimension d is given by

λ
(d)
i λ

(d)
j = λ

(d)
i

(
d

4π

∫
dΩn̂Φ

P+

j (n̂) |n̂⟩ ⟨n̂|
)
. (3.21)

By taking the trace over these operators, it can be shown that the Wigner Q and P
symbols are orthogonal. The eight Wigner P symbols for the d = 3 dimension can be
constructed using the respective Q symbols as follows

ΦP±

i (n̂) = [M−1]ijΦ
Q±

j (n̂) (3.22)

where the symmetric matrixM is composed of real elements defined by the inner product

Mij =
3

2

〈
ΦQ±

i ΦQ±

j

〉
=

3

2

1

4π

∫
dΩn̂Φ

Q±

i (n̂)ΦQ±

j (n̂) (3.23)

of the Q symbols. Therefore, the ΦP±
symbols for the W± are

ΦP±

1 =
√
2(5 cos θ ± 1) sin θ cosϕ ΦP±

5 = 5 sin2 θ sin 2θ

ΦP±

2 =
√
2(5 cos θ ± 1) sin θ sinϕ ΦP±

6 =
√
2(±1− 5 cos θ) sin θ cosϕ

ΦP±

3 =
1

4
(±4 cos θ + 15 cos 2θ + 5) ΦP±

7 =
√
2(±1− 5 cos θ) sin θ sinϕ

ΦP±

4 = 5 sin2 θ cos 2θ ΦP±

8 =
1

4
√
3
(±12 cos θ − 15 cos 2θ − 5).

(3.24)

It can be observed that the Wigner Q and P symbols for a given λi are not generally
proportional to each other. The functions ΦP+

i are illustrated graphically in Figure 3.2.
The spin density matrix parameters ai for any W± boson can be determined from

charged lepton emission angles using Wigner P symbols as follows

ai =
1

2

∫
dΩn̂p(l

±
n̂ ; ρ)Φ

P±

i . (3.25)

The experimental measurement âi of the spin density matrix parameter ai is derived
through an angular average over the ensemble of decays as

âi =
1

2

〈
ΦP±

i

〉
av

(3.26)

In the case of the Z boson, the angular information aligns with multiple spin hypothe-
ses along that direction. Therefore it is equivalent to a non-projective measurement along
n̂ and the coefficients of the matrix will undergo variations due to changes in Wigner Q
and P symbols. In particular, Z boson will couple to fermions following the relation in
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Figure 3.2: Plots show the shape of the Wigner P symbols ΦP+

i corresponding to each
Gell-Mann operators.

Eq.(1.30) where θW is the weak mixing angle and Vf and Af are the vector and axial
coupling constants. In the Z → l+l− decays, these couplings can be represented by the
right- and left-chiral coefficients cR and cL as follows:

Vl = cL + cR Al = cL − cR. (3.27)

Given Vl = −0.0398 and Al = −0.5064 [29], the coefficients are determined to be cL =
−0.273 and cR = 0.233. The generalised Q symbols for the Z boson can be written as a
linear combination of projective Q symbols as follows

Φ̃Q
Z,i =

1

|cR|2 + |cL|2
(
|cR|2ΦQ+

i + |cL|2ΦQ−

i

)
(3.28)

Since |cR| ̸= |cL|, the matrix in equation (3.23) written using generalized Wigner Q
symbols is invertible. Therefore, it is possible to compute the generalized P symbols as
follows:

Φ̃P
Z,i = AijΦ

P+

j (3.29)
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where the matrix Aij is defined as

Aij =
1

|cR|2 − |cL|2



|cR|2 0 0 0 0 |cL|2 0
0 |cR|2 0 0 0 0 |cL|2

0 0 |cR|2 − 1
2
|cL|2 0 0

√
3
2
|cL|2 0

0 0 0 |cR|2 − |cL|2 0 0 0
0 0 0 0 |cL|2 0 0

|cL|2 0
√
3
2
|cL|2 0 0 1

2
|cL|2 + |cR|2 0

0 |cL|2 0 0 0 0 |cR|2


When |cR| = and |cL| = 0, the matrix A becomes the identity matrix. Consequently, the
generalised P symbols reduce to the Wigner P symbols, as previously derived in equation
(3.24) for the W+ boson decay in the limit of massless fermion daughters. Therefore,
the experimental value of the coefficients bj for the Z boson in the spin density matrix
(3.13) can be computed as

b̂j =
1

2

〈
Φ̃P

Z,j

〉
av

(3.30)

Consider now the fullWZ diboson system and extrapolate the correlation parameters
cij of the spin density matrix. The cij coefficients of a general bipartite system of two
parents A and B, can be computed by performing the double integral over the pair of
daughter emission directions as

cij =

(
1

2

)2 ∫∫
dΩn̂1dΩn̂2 p(l

+
n̂1
, l−n̂2

, ρ) Φ̃P
A,i(n̂1) Φ̃

P
B,j(n̂2), (3.31)

where n̂1 and n̂2 are respectively the daughter directions from parents A and B. In the
case of the WZ diboson system, the previous equation can be rewritten as

cij =

(
1

2

)2 ∫∫
dΩn̂1dΩn̂2 p(l

+
n̂1
, l±n̂2

, ρ) Φ̃P
Z,i(n̂1) Φ

P±

W,j(n̂2), (3.32)

where the generalised Wigner P symbols defined in Eq.(3.29) are used for the Z boson,
while the Wigner P functions from equations (3.24) are applied to W± boson. In figure
3.3 are shown the value of cij coefficients for WW , WZ and ZZ diboson systems. The
angular integrals are performed in the rest frame of the respective parent particle, which
will described with details in Chapter 4.
The cij coefficients for theWZ system can be experimentally measured from the angular
average as

ĉij =

(
1

2

)2 〈
Φ̃P

Z,i(n̂1)Φ
P±

W,j(n̂2)
〉
av
. (3.33)

For two or more indistinguishable parents, as in the case of the ZZ diboson system, the
density matrix must be built to have symmetry under the exchange of parent particles’
labels.
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Figure 3.3: Gell-Mann parameters obtained from quantum state tomography for WW ,
ZZ, and WZ systems. The bottom row of each plot contains the ai parameters, the
leftmost column the bi parameters and the rows and columns 1-8 represent the cij coef-
ficients. For the ZZ plot, ai = bj since they are indistinguishable particles.

3.3 Concurrence

As explained in the previous chapter, entanglement is a fundamental property belonging
to quantum systems. In particular, a quantum mixed state ρ of n systems is considered
entangled if it cannot be described as a convex combination of product states, such as

ρ =
n∑
i

piρ
i
1 ⊗ · · · ⊗ ρn1 0 < pi ≤ 1. (3.34)

Concurrence [23] is a quantum observable used to determine the entanglement of a state;
if its value is greater than zero, the state is entangled [24]. The concurrence for a mixed
state is defined using the convex roof extension method, which involves finding an upper
bound for various ensembles of states (pi, |ψ⟩) that could result in the specific mixed
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state ρ. Therefore, it can be expressed as

c(ρ) = inf
∑
i

pic(|ψ⟩),
∑
i

pi = 1, pi ≥ 0, (3.35)

where the infimum is computed over all the ensembles {pi, |ψ⟩} such that ρ =
∑

i pi |ψi⟩ ⟨ψi|.
The concurrence can be obtained analytically for a bipartite system of a pair of qubits,
reaching a maximum value of one for maximally entangled states. However, the concur-
rence cannot be determined analytically for bipartite systems with dimensions greater
than 2 × 3. Nonetheless, it is still possible to compute a lower bound [5] for a mixed
state as (

c(ρ)
)2 ≥ 2tr(ρ2)− tr(ρ2A)− tr(ρ2B) ≡ c2MB (3.36)

where ρA and ρB are the reduced density matrix for subsystems A and B defined as in
Eq.(2.30). For diboson systems such as WW , ZZ and WZ, the spin density matrix is
described by Eq.(3.13). Consequently, the terms in Eq. (3.36) can be written as

tr(ρ2) =
1

9
+

2

3

8∑
i=1

a2i +
2

3

8∑
j=1

b2j + 4
8∑

i,j=1

c2ij,

tr(ρ2A) =
1

3
+ 2

8∑
i=1

a2i ,

tr(ρ2B) =
1

3
+ 2

8∑
j=1

b2j .

(3.37)

Therefore, the bound (3.36) can be computed as

c2MB = −4

9
− 2

3

8∑
i=1

a2i −
2

3

8∑
j=1

b2j + 8
8∑

i,j=1

c2ij (3.38)

where ai, bj and cij are the 80 GGM coefficients of the 3× 3 spin density matrix. This
lower bound has an important property: if c2MB > 0, then c(ρ) > 0 which implies the
state considered is entangled. Otherwise, if c2MB ≤ 0, this measure cannot be used to
determine whether the state is entangled. In the case of a qutrit pair, the maximum
concurrence is achieved in a completely symmetric and entangled pure state, where it

equals
(
c(ρ)

)2
= 4

3
.

A detailed analysis of bipartite systems of qutrits of heavy vector bosons has been
performed by Alan Barr et al. [5] using Monte Carlo simulations of proton-proton colli-
sion at the centre-of-mass energy of 13 TeV without any selection or reconstruction on
the leptons. In the analysis, the coefficients of the spin density matrix have been calcu-
lated forWW , ZZ andWZ diboson systems, which can be used to show the consistency
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Process c2MB

pp→ W+W− → ℓ+νℓℓ
−ν̄ℓ -0.147

pp→ H(125) → WW (∗) → ℓ+νℓℓ
−ν̄ℓ 0.973

pp→ H(200) → WW → ℓ+νℓτ
−(30)ν̄τ 0.946

pp→ ZZ → e+e−µ+µ− -0.21

pp→ H(125) → ZZ(∗) → e+e−µ+µ− 0.53

pp→ W+Z → e+νeµ
+µ− 0.10

Table 3.1: Lower bound of the concurrence for different diboson systems obtained with
quantum state tomography [5].

of the results obtained for the Gell-Mann parameters in Figure 3.3. Table 3.1 reports the
physical events considered in the study and the respective concurrence computed using
Eq.(3.36) in the inclusive region of phase space. Quantum spin observables, especially
concurrence, have been shown [4] to serve as valuable probes and constraints in study-
ing new physics, particularly as described by higher-dimensional operators within the
Standard Model effective field theory. This thesis focuses on the WZ system because
it has the highest concurrence among diboson final states when considered inclusively.
Additionally, theWZ system presents a promising opportunity for exploring new physics
models that are not yet constrained by existing data.



Chapter 4

Data analysis

This chapter presents the analysis conducted for this thesis. It begins with an introduc-
tion to the data and Monte Carlo samples, including a description of the studied object.
Next, it details the selection criteria and methods used for particle-level analysis. Then,
it continues with the measurement of the coefficients of the spin density matrix and the
introduction of the bootstrap method and the unfolding technique. Finally, the results
of the lower bound of the concurrence are presented including studies in different regions
of the phase space, targeted to enhance the entanglement between the two bosons

4.1 Monte Carlo Simulation

The dataset used for the analysis in this thesis has been generated through Monte Carlo
simulation using the software MG5 aMC@NLO [3], which is a framework designed to provide
all the essential components for simulating hard-scattering processes in both Standard
Model (SM) and Beyond Standard Model (BSM) phenomenology. Hard scattering is
the interaction between the partons belonging to the colliding protons and the outgoing
particles in the interactions. The sample has then been interfaced with Pythia [7] for
the parton shower and hadronization process of the events. During parton showering, an
initial high-energy parton (a quark or gluon) undergoes a series of emissions, producing
a cascade of lower-energy partons by emitting gluons and splitting gluons into quark-
antiquark pairs. All coloured particles involved in the hard scattering undergo this
process, including the initial partons belonging to the proton. Pythia also accounts
for electroweak showering, where all charged particles can emit photons, leading to the
production of additional quarks or leptons. The hadronization instead is the process by
which the free quarks and gluons produced at the end of the parton showering stage
combine to form hadrons. In Monte Carlo simulations, these processes are fundamental
for creating realistic and accurate simulations that match what is observed in actual
experiments. Pythia also simulates the evolution of the remaining partons in the proton

48
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that are not involved in the hard scattering.
The events generated for this study simulate the collision of pp beams at LHC with

a centre of mass energy of
√
s = 13 TeV, which create, at leading order (LO) in αs, a

pair of WZ bosons decaying into fully leptonic mode as follows

pp→ W±Z → lνll. (4.1)

where the l are the leptons, which can be either electrons e or muons µ, while ν is the
respective neutrino.

The cross-section used for the generation for pp→ W±Z is computed at NNLO with
MATRIX [22] and is equal to

σ = 49.1+1.1
−1.0 pb (4.2)

Therefore, the cross-section for the channel under study can be computed as

σ(pp→ WZ)×BR(W±Z → lνll) = 0.7179 pb (4.3)

where the branching ratio for the events can be obtained from

BR (W→ lν) 10.86%

BR (Z→ l+l−) 3.3658%
BR(WZ → lνll) 1.4621 %

Table 4.1: The branching ratio for the process studied during the analysis[29].

The number of events for the analysis has been calculated using the cross-section
described before and the luminosity that is expected to be collected by ATLAS combining
the data-taking at

√
s = 13 TeV and

√
s = 13.6 TeV, corresponding to L = 450 fb−1. In

the analysis that will be performed from LHC experiments the data-taking at different
energies will have to be considered separately, but the significance of the measurement
or any interpretation performed on the result can be combined across the data-taking
periods.

4.2 Event selections

In this thesis, the analyses were conducted at various stages using the Rivet toolkit [8],
a framework designed to read and implement event selection and reconstruction of the
HEPMC format, commonly used by all MC generators for particle physics. In partic-
ular, there are two distinct levels at which the observables of interest are defined, the
parton-level corresponds to the ”truth” generated through the Monte Carlo simulation,
without considering any showering effects on the lepton and any selection. Here, the W



CHAPTER 4. DATA ANALYSIS 50

and Z bosons considered during the analysis are taken just before their weak decay and
the four-vectors of the decay products, including the neutrino, are taken directly from
the MC record and consequently correctly associated with the parent boson. The other
level where the observables are defined is the particle level, which considers effects due to
the selection and reconstruction, similar to what an analysis conducted on data collected
at an LHC experiment would do. Effects due to the limited resolution of the detector
are not considered. This approximation is valid for the feasibility study conducted in
this thesis because the main distortion effects in lepton reconstruction are due to the
detector acceptance, considered in the selection cuts applied, while the leptons in the
detector acceptance are reconstructed with high efficiency (> 90%) and high resolution
[11]. At this stage, a realistic analysis is performed, taking into account several factors:
the minimum transverse momentum required for leptons to be efficiently reconstructed,
the detector acceptance, and the criteria necessary for an event to meet the trigger re-
quirements at ATLAS and CMS. Triggers are systems or algorithms that rapidly evaluate
the basic characteristics of each collision event in real-time. When an event meets certain
predefined criteria, it ”passes the trigger” and is subsequently saved for more detailed
analysis. The particle level selections used to replicate detector effects and define the
physical objects are

• The leptons are merged (dressed) with all photons in a clustering cone of ∆R = 0.1.

• The momentum of each lepton should be pT > 7 GeV,

• Pseudorapidity of the leptons: |η| < 2.5,

where ∆R represents the angular separation between two particles in the detector, used
to define a clustering cone around the particle of interest and it is defined as ∆R =√
∆η2 +∆ϕ2, with ∆η and ∆ϕ the difference of pseudorapidity and azimuthal angle

between of two particles. Instead, the selection of |η| < 2.5 reflects the pseudorapidity
range of precision tracking of the Inner Detector of the ATLAS experiment. Experiments
located at colliders cannot reconstruct neutrinos, and the only experimental signature of
the presence of these particles is the missing transverse energy. The missing transverse
energy Emiss

T is defined as the imbalance in the total transverse energy observed in the
detector. It is calculated by summing the transverse momenta of all detected particles
and then taking the vector sum:

Emiss
T = −

∑
i

pT,i (4.4)

where pT,i is the transverse momentum of the i-th detected particle. Missing transverse
energy is fundamental in high-energy physics analysis for identifying and studying events
involving neutrinos, such as W decay, as they do not interact with the detector directly.
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The same quantity is used in this thesis for the particle level analysis, which consequently
does not use any truth information on the longitudinal coordinate of the neutrino.

The events at the particle level selected for contributing to the pp → W±Z → lνll
signal process must satisfy the following requirements:

• The transverse momentum of the leading lepton must be greater than 27 GeV,

• Number of final leptons nl = 3,

• Total charge of the event qtot = ±1.

The requirement that the leading lepton’s transverse momentum exceeds 27 GeV is the
criterion needed for the trigger selection. After applying the previous event selection
criteria, figure 4.1 displays the distributions of various kinematic variables for the fun-
damental particles used in the analysis at both the particle and parton levels. Here, the
difference in the number of events passing the two selections is clear, as is the variation
in the shape of their distributions. These discrepancies will affect the reconstruction of
the variables of interest, as demonstrated in the next chapters. The accurate reconstruc-
tion of full events is a highly complex analysis, particularly when it comes to identifying
which charged leptons originate from the decay of the W or Z bosons. This challenge
becomes even greater when all the leptons in the final state belong to the same family,
such as when WZ → eee and WZ → µµµ. To address this issue, the Z boson is re-
constructed using an algorithm that relies on the invariant mass of the decay products.
Specifically, the Z boson is initially reconstructed for the two possible pairs of leptons
that could have decayed from the boson, and then the configuration with a mass closer
to the true Z boson mass, listed in Table 1.1, is selected. Plot (d) in Fig.4.1d illustrates
the reconstructed Z boson mass for events where all charged leptons belong to the same
family and for those where they do not, demonstrating the algorithm’s effectiveness.
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(a) (b)

(c) (d)

Figure 4.1: Distribution of kinetic variables of particles in the analyzed process. Plot
(a) shows the difference in transverse momentum between particle and parton levels for
the leading charged leptons. Figure (b) presents the transverse momentum (pT ) of all
the charged leptons involved in the WZ decay. Plot (c) reports the pT of the W boson
at the particle level, where it is reconstructed, and the parton level obtained from MC
simulation. Finally, plot (d) shows the reconstruction of the Z mass at the particle level,
distinguishing between cases where the final charged leptons are all from the same family
and where they are not.

4.2.1 Reconstruction of the pz component of the neutrino mo-
mentum

The selectedWZ final state has three charged leptons, that are well reconstructed in mul-
tipurpose detectors such as ATLAS or CMS. As previously illustrated, the reconstruction
of charged leptons is based on their flavour and charge, with additional information on
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the Z mass included in cases involving three leptons of the same flavour. The remain-
ing particle to reconstruct is the W boson, obtained by summing the four-momentum
of the remaining charged lepton and the neutrino. Given the aim of this work, which
is to simulate the same reconstruction and selection of an analysis performed in a real
detector, this study faced the same limitation presented in a multipurpose detector for
the neutrino reconstruction which arises from the fact that the neutrino (ν) produced
in the W boson decay does not interact with the detector. In this analysis, the experi-
mental signature of the neutrino corresponds to the missing transverse energy Emiss

T of
the event. However, to determine the completeW boson four-momentum, it is necessary
to reconstruct the pz component of the neutrino’s momentum. To address this issue,
the mass of the W boson given in Table 1.1, can be used as a constraint to obtain the
missing momentum component of the neutrino. Using the four-momentum conservation
of the process W → lν, the following expression can be obtained

m2
W = (p2l + p2ν)

= m2
l +m2

ν + 2(ElEν − p⃗lp⃗ν)
(4.5)

where the mass of the neutrino can be neglected. This equation can be rewritten and
solved as a quadratic equation in terms of the pν,z of neutrino. The equation has the
form

ap2ν,z + bpν,z + c = 0. (4.6)

with the coefficients b and c defined as

a = E2
l − p2l,z,

b = −2kpl,z,

c = E2
l pν,T − k2

(4.7)

where the parameter k is written as

k =
m2

W −m2
l

2
+ pl,xpν,x + pl,ypν,y. (4.8)

In previous equations, El represents the energy of lepton, pl,x, pl,y, pl,z are the momentum
component of the lepton and pν,T =

√
p2ν,x + p2ν,y is the missing transverse energy of the

event. When the equation yields two solutions, indicated by a positive discriminant, the
chosen pν,z for the neutrino is the one with the smallest magnitude. If the discriminant
is negative, the solution is imaginary and as pν,z component is taken the real part of
the solution. In this analysis, this occurred in only 9% of the reconstructed events at
the particle level. Figure 4.2 shows the transverse momentum pT of the neutrino at the
parton and particle level, along with the pz values reconstructed using Eq. (4.5) and
those obtained directly from the momentum provided by the Monte Carlo simulation.
The plot shows that the shape of the pν,z component reconstructed at the particle level is
more peaked compared to the truth level, highlighting the effect of using the previously
described algorithm for neutrino reconstruction.



CHAPTER 4. DATA ANALYSIS 54

(a) (b)

Figure 4.2: Distribution of transverse momentum distribution of the neutrino (a) at
parton and particle level and the comparison (b) between neutrino pz reconstructed
using the missing transverse energy (MET) and the longitudinal momentum given at the
truth level.

4.3 Basis choice

As introduced in Chapter 3, studying the decay products of theWZ boson bipartite sys-
tem is fundamental for retrieving the spin density matrix of the ensemble, in particular
the coefficients ai, bj and cij need to be determined. To achieve this, a quantum state
tomography approach, described in detail in Chapter 3, is performed on the leptons of
the simulated final state. The coefficients of the spin density matrix (3.13) can then
be obtained using the Weyl-Wigner formalism described in Section 3.2, where the pa-
rameters depend on the angular distributions of the decay products. However, a proper
basis choice is required for this analysis. The polar and azimuthal angles θ and ϕ of the
leptons must be considered in the centre of mass frame of the parent heavy vector boson.
During the analysis, the fundamental particles considered for the reconstruction of spin
density matrix parameters are the decayed charged lepton from the W± bosons for the
coefficients ai and the positive lepton from Z bosons for the bj. The parameters cij are
computed using Eq.(3.35) with the same leptons employed for the other coefficients.

In the WZ system, the relevant reference frames are obtained in two steps: a first ẑ
boost from the laboratory to the WZ diboson centre-of-mass frame, then followed by a
k̂ boost from WZ frame to the rest frame of each single boson. Figure 4.3 illustrates an
example of the W+ centre-of-mass frame with the newly chosen axes.
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Figure 4.3: Sketch of the new axes in the rest frame of theW+ boson. A similar procedure
is applied for the centre-of-mass frame of Z boson. The n̂ axis is pointing out of the
page. The angle θ in the figure is the polar angle used to compute spin density matrix
parameters.

The new basis shown in Figure 4.3, also called helicity basis, is defined as follows

k̂ = direction of the boson

r̂ =
1

r
(p̂− yk̂)

n̂ =
1

r
(p̂× k̂)

(4.9)

where p̂ is the direction of one of the proton beams, while the parameters r and y are
defined as

y = p̂ · k̂ r =
√

1− y2. (4.10)

In the case of W− boson, the procedure to determine the new basis is identical, but the
direction of the k̂ axis is inverted. This analysis marks the first time that the W− boson
is considered for this type of measurement.
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4.4 Measurement of spin density matrix coefficients

Using the new basis (4.9) defined in the previous section and the definition of the spin
density matrix coefficients given in Eqs. (3.26),(3.30) and (3.33), it is now possible to
compute the charged lepton decay angles in the rest frame of the boson and utilize them
to determine the parameters of the matrix. In particular, the spin density matrix cannot
be obtained for measurements of a single instance of the state and, for the analysis, the
ensemble of the decays has to be considered. Each coefficient of the matrix, such as the âi
parameter in Eq.(3.26), is determined by plotting the Wigner P symbols for each event
using azimuthal ϕ and polar θ angles, and then taking the mean value of the histograms.
Figure 4.4 presents the results of some of the ai coefficients for the W± boson of the
W±Z system at the particle level. The error for these values is the error of the mean
obtained from the histograms.

(a) (b)

(c) (d)

Figure 4.4: Representation of four ai coefficients of the spin density matrix related to W
boson spin.
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Similarly, the bj coefficients have been measured for the Z boson, where the positively
charged lepton is chosen for determining the generalized Wigner P symbols in Eq.(3.29).
The results obtained for the b̂j parameters are reported in Figure 4.5, which shows plots
of several coefficients.

(a) (b)

(c) (d)

Figure 4.5: Representation of four bj coefficients of the spin density matrix related to Z
boson spin.

Finally, the cij coefficients, responsible for the correlations between the two heavy
vector bosons, have been computed using Eq. (3.33). The Wigner P symbols used in
this calculation are the same as those used for determining the ai and bj parameters.
Figure 4.6 displays some of the 64 cij coefficients of the WZ diboson system.

The number of bins for each coefficient varies significantly in all the figures presented
in this section. The choice of the binning is a crucial aspect of the analysis process,
as overly broad binning could introduce bias into the value of the extracted parameter.
Therefore to minimize the bias in the histogram mean, the binning has been selected to
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Representation of various cij coefficients of the spin density matrix that
parametrise the correlations between W and Z bosons.
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have a difference below 5% between the binned and unbinned mean at the truth level.
Using this reference frame, most of these coefficients, which are the parameters of the

spin density matrix of the WZ diboson systems defined in Chapter 3, are compatible
with zero at the LHC, with small deviations in some directions.

4.4.1 Differences between Parton and Particle level

As explained in Section 4.2, the primary difference between parton and particle levels
lies in the selection applied to events at the particle level and the reconstruction needed
to extract the neutrino pz. Specifically, there are two effects at the particle level: the
selection criteria for objects, which include requirements on the pT and η of each lepton,
and the event selection that simulates the trigger, where the pT of the leading lepton
exceeds 27 GeV. Additional differences can be generated by the radiation of additional
particles, such as photons, that modify the directions of the particle level leptons com-
pared to parton level. These selections are necessary to replicate the detector effects,
which can smear the density distribution of the observed physical variable due to limited
acceptance and reconstruction effects.

Now let’s examine how these cuts applied to the leptons affect the spin density matrix
coefficients at different levels. Figure 4.7 shows the plots of two matrix parameters for
the WZ diboson system.

(a) (b)

Figure 4.7: Comparison between b3 (a) and c33 (b) coefficients of the spin density matrix
at particle and parton level.

One noticeable difference from the previous plots is the number of events at the
parton and particle levels. Due to selection effects and the limitations of the measuring
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device, some events cannot be detected by the detector. In particular, the number of
events per level is reported in Table 4.2.

Level Events

Parton 329967

Particle 160067

Table 4.2: Number of the events obtained in the analysis at particle and parton level.

From this table, it is possible to determine the detector efficiency of the analysis at
the particle level for the process WZ → lνll as the ratio of the particle events and the
parton one. Therefore, the efficiency ε can be calculated as

ε =
Nparticle

Nparton

= 0.458. (4.11)

All 80 coefficients of the density matrix are presented in Figure 4.8, in particular, the
left plot shows the parameters computed at the parton level, while in the right plot, the
coefficients are obtained at the particle level with all the selections defined in Section
4.2.

(a) Parton Level (b) Particle Level

Figure 4.8: Visual comparison of the spin density matrix coefficients at the parton level
(a) and the particle level reveals significant changes in some values from one level to the
other.

It is evident that various values of the parameters in the two plots are significantly
different, indicating that the reconstructed values deviate from the theoretical predictions
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at the parton level. This deviation arises from the effects introduced at the particle
level described in Section 4.2. Consequently, these effects have distorted the shape of
the distribution of certain coefficients, and this distortion cannot be corrected merely
by accounting for the efficiency differences between the particle and parton levels. To
address this issue, the effects induced by the detector on the reconstructed quantities
must be removed using unfolding techniques. This procedure, which is explained in detail
in the following chapters, is fundamental to retrieving the true distribution of measured
values.

4.4.2 Studies with different analysis limitations

In the previous section, we highlighted the key differences in the coefficients of the spin
density matrix between the two types of analysis levels. Now, let’s examine the particle
level to understand the implications on the parameters when analysis limitations are
altered or removed. In particular, three scenarios will be considered in this section as
shown in Table 4.3, where the two main limitations of the realistic analysis are the cut
on the transverse momentum pT of the leading lepton, which simulates the trigger, and
the reconstruction of the four-momentum of the neutrino.

Different scenarios

Scenario 1 No lepton pT > 27 GeV cut

Scenario 2 Truth neutrino

Scenario 3 No lepton cut and truth neutrino

Table 4.3: Description of the 3 different scenarios considered in the analysis at particle
level. In the first scenario, the analysis has been performed without applying the re-
quirement of the transverse momentum on the leading lepton, while in the second, it has
been used the four-momentum of the truth neutrino for the analysis. The last scenario
considered both these cases simultaneously.

Figure 4.9 displays some coefficients of the spin density matrix for the WZ diboson
system computed at the truth level, at the particle level and at the particle level with
the different scenarios explained in Table 4.3, making a comparison between the results
obtained in the different cases. In each histogram of Figure 4.9, the distributions have
been normalized to emphasize the impact on shape. In particular, the most significant
effect which spoils the particle level from the theoretical prediction is the reconstruction
of the pz momentum of the neutrino, in fact when considering Scenario 2 and 3 where
it is used the four-momentum of the neutrino at parton level, the difference between
coefficients at parton and particle level is reduced. However, it has been studied that
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this is not true for all the coefficients of the spin density matrix, where Scenario 3 was
not improving the agreement with the parton level. This discrepancy could be attributed
to other effects differentiating the truth and particle level, such as additional radiation
of photons or other selection criteria applied on the lepton, like cuts on the η and pT
described in Section 4.2. Additionally, it can be noticed that the condition on the
lower bound of leading leptons’ transverse momentum (Scenario 1) does not significantly
affect the original particle level results. Overall, the analysis highlights that a good
reconstruction of the longitudinal momentum pz of the neutrino is an essential aspect
for the reconstruction of the spin density matrix of the WZ system.

(a) (b)

(c) (d)

Figure 4.9: Comparison of the coefficients a8 (a), b8 (b), c66 (c) and c67(d) at the truth
and particle level and when different scenarios are applied at the particle level.
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4.5 Unfolding

Unfolding [16] refers to the process of estimating a probability distribution in the ab-
sence of a known parametric form, especially when data are affected by additional random
fluctuations due to limited resolution, limited geometric acceptance of the detector, and
reconstruction efficiency effects. This process is essential when comparing measurements
with results from other experiments and theoretical predictions of the true distribution,
as it corrects distortions caused by specific experimental conditions. In this work, un-
folding is used to correct the distortions of the realistic analysis since the entanglement
condition is defined on the un-distorted level.

Let’s consider a random variable y and one wants to determine its probability density
function (PDF) f(y). Due to the distortions introduced by the detector effects, the
measured value x of each observation will be different from the truth one of y, with a
distribution g(x). The two pdfs can be related as follows through a convolution

g(x) =

∫
R(x|y)f(y)dy (4.12)

where R(x|y) is known as response function. In particle physics, distribution functions
are usually histograms obtained by measuring the desired quantity for multiple events.
Now assuming an histogram has n = (n1, . . . , nN) entries per bin subjected to statistical
fluctuations, it is possible to define the vectors µ = (µ1, . . . , µM), which corresponds to
the expectation values for the true histogram of y, and ν = (ν1, . . . , νN) which is the
vector of the expected number of events in bins of the variable x. The relation which
links these two new variables can be obtained by Eq.(4.12) as

νi =
M∑
j=1

Rijµj, i = 1, . . . , N (4.13)

Rij is called the response matrix and it can be interpreted as the conditional probability

Rij = P (observed in bin i | true value in bin j) (4.14)

Therefore, the true distribution is folded with the response function and the goal of the
unfolding is to provide an estimate of the true distribution f(y). In general, the response
matrix is not diagonal and the effect of off-diagonal is to smear out any fine structure
leading to bin migration of events. An event generated in a bin j may be reconstructed
in a different bin i with i ̸= j.

In addition, it must be considered that possible background events β can occur in bin
i. In this analysis, the background effects have been neglected since they are expected
to be < 15%, using a selection similar to the one described in other analysis [12]. Thus,
the equation (4.13) can be rewritten as

ν = Rµ+ β (4.15)
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This procedure aims to find an estimator µ̂ for the true histograms. In this thesis, the
method applied for the unfolding is the Iterative Bayesian Unfolding [17], which, as the
name suggests, is based on Bayes’ theorem. In particular, it is written in terms of inde-
pendent causes Ci, corresponding to ni events found in the truth bin i and the subsequent
effects Ej, which can be considered the case where the nj events are reconstructed in bin
j. The theorem can be thus written as

P (Ci | Ej) =
P (Ej | Ci) · P0(Ci)∑
i=1 P (Ej | Ci) · P0(Ci)

(4.16)

where P0(Ci) is the prior of the i-th cause. For the analysis conducted in this thesis,
the RooUnfold framework [1] was utilized. This framework implements the Iterative
Bayesian Unfolding method discussed earlier. To summarize, in this thesis, the general
formula used for the unfolding of the spin density matrix coefficients of the WZ system
is defined as follows:

Nj

dXj

=
1

∆Xj

· 1

f eff
j

∑
i

M−1
ij f

i
accD

i, (4.17)

where Nj is the number of events of the truth level in the bin j, X represents a generic
variable, in this case, the parameters of the density matrix, Rij is the migration matrix
for the unfolding, ∆Xj is the width of the bin j and Di represents the number of events
observed at the particle level in the i-th bin. The terms f eff

j and f i
acc are the efficiency

and acceptance factor. The efficiency factor is defined as

f eff
j =

N j
truth & particle

N j
truth

(4.18)

the ratio between the generated events that are observed at the particle level over the
total generated events at the truth level, while the acceptance factor is

f i
acc =

N i
truth & particle

N i
particle

(4.19)

is the ratio between the events generated that would pass both parton and particle
level criteria divided by the number of events at the particle level. In this analysis, the
acceptance is expected to be equal to one since there are no requirements at parton level.
This is not the case for some studies in dedicated regions of the phase space, where the
parton level selection is included. In addition, the Iterative Bayesian Unfolding algorithm
requires a regularisation parameter to prevent the statistical fluctuations from being
interpreted as structure in the true distribution. The degree of regularization applied in
this method is controlled by the number of iterations, which has been set to 2 for this
analysis.
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Figure 4.10 displays the example of the response matrix for a1 and b5 spin density
matrix coefficients used for the unfolding at the particle level and the efficiency of the
same coefficients for each bin. This is obtained only by including events passing the
particle-level requirements, so only the effects due to the mis-reconstruction are included.
The non-flat efficiency will correct for the distortions caused by events not passing the
selection.

(a) (b)

(c) (d)

Figure 4.10: Response matrix for the coefficients a1 (a) and b5 (b) of the spin density
matrix and the efficiency corrections for the parameter a1 and b5 used for the unfolding.
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4.6 Boostrap method

One of the hardest aspects when performing measurements in particle physics is the
evaluation of the statistical uncertainties. This task becomes particularly complex when
intricate methodologies are necessary due to potential correlations between events in
related measurements or the migration of events across different data bins. In these
cases, the formulas used to calculate statistical uncertainties may become unreliable or
excessively complicated to evaluate or propagate. An example of this challenging issue is
the determination of uncertainties when employing unfolding techniques like the Iterative
Bayesian Unfolding introduced in the previous section.

In this thesis, the key quantity, that will be discussed in the next section, is the lower
bound of the concurrence which is crucial to understand the level of entanglement of the
WZ diboson system. The c2MB, as defined in Eq.(3.38), depends on the 80 coefficients
of the spin density matrix for a WZ diboson system of Eq.(3.13). Each coefficient is
calculated employing the simulated dataset, as a consequence non-trivial correlations
exist among the various coefficients. In addition, when considering the realistic analysis,
unfolding needs to be applied leading to an increase in correlation among the bins of
the distributions and making also the estimate of the uncertainty for a single coefficient
complicated. Therefore the method employed to estimate the expected uncertainty on
c2MB must take into account both the correlations among the coefficients and the effects
induced by the unfolding.

A powerful technique used to evaluate measurement uncertainties is the well-known
Bootstrap Method [19, 20]. Let’s consider an analysis where events from a statistical
process are collected in a dataset that is analyzed to obtain a measurement of a cer-
tain physical quantity. The bootstrap method involves generating multiple ”resampled”
datasets by randomly drawing with replacements from the original dataset as shown in
Figure 4.11. Each resampled dataset, or replica, maintains the same size as the original
dataset but may include duplicate entries because of the replacement. This process sim-
ulates conducting multiple experiments to determine the distribution of the quantity of
interest. By calculating the desired measurement for each resampled dataset, a distri-
bution of the statistic is obtained. Therefore, this bootstrap distribution can be used to
estimate the statistical uncertainty of the studied physical quantity.

Specifically in this analysis, a variation of the bootstrap method has been used where
the resampling of the dataset is performed using a Poisson distribution with a mean
equal to one defined as follows

P (w;λ = 1) =
λwe−λ

w!
=
e−1

w!
(4.20)

where λ = 1 is the mean of the distribution and w is the number of occurrence. This
choice of distribution for the bootstrap method has been applied since in collider ex-
periments like ATLAS and CMS, the size of the dataset is itself a Poisson variable. In
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Figure 4.11: Schematic representation of the bootstrap method.

particular, each event in the nominal dataset is assigned a Poisson weight, with possible
weights of w = 0, 1, 2, 3, and their probabilities of occurrence are provided in Table 4.4.

Weight P(w)
0 0.368
1 0.368
2 0.184
3 0.061
4 0.015

Table 4.4: Probabilities of Poisson distribution for different weights.

From the table can be seen that a weight of 0, which occurs with a probability of
36.8%, removes an event from the bootstrap replicas, while in the case of w = 3, the
events would be selected 3 times. As a result, the size of the resulting bootstrap samples
follows a Poisson distribution, with the mean corresponding to the number of events
in the original dataset. This is because the sum of independent Poisson variables also
follows a Poisson distribution, with its mean equal to the sum of the individual means. In
this analysis, the number of copies of the original dataset has been set to Nsample = 100.
The exact way bootstrap replicas are employed in determining the uncertainty on the
parton level and unfolded concurrence will be explained in the next section.
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4.7 Measurement of the Concurrence

The coefficients of the spin density matrix computed in the previous section will now be
used to measure the lower bound of the concurrence, a key quantum observable in this
analysis for determining whether theWZ diboson system is entangled. The lower bound
of the concurrence for the matrix 3.13 obtained by quantum state tomography can be
measured using the following equation:

c2MB = −4

9
− 2

3

8∑
i=1

a2i −
2

3

8∑
j=1

b2j + 8
8∑

i,j=1

c2ij. (4.21)

Firstly, the lower bound was calculated at the parton level using events generated through
Monte Carlo simulation without any selection criteria. Figure 4.8a shows the coefficients
used for this measurement. The result of the theoretical predictions obtained using the
parton level dataset is

c2MB = 0.0361± 0.0175. (4.22)

This value was obtained using the bootstrap method outlined in Section 4.6. In par-
ticular, the number of samples (or replicas) in this analysis was set to Nsample = 100.
For each bootstrap sample, c2MB was calculated using Eq.(4.21), and the final result was
determined by averaging the concurrence values across all replicas, as shown in Figure
4.12. The statistical error in the lower bound was determined by calculating the stan-
dard deviation of the concurrence distribution across the bootstrap replicas. The actual
uncertainty on the concurrence is determined by the number of simulated events, not by
the number of replicas, which are only used to estimate the uncertainty. In this case,
around 300,000 events were simulated, roughly corresponding to the number expected
at the LHC with a luminosity of 450 fb−1.

Let’s note that the lower bound value of the concurrence is positive. As described
in Chapter 3, this indicates that on average the WZ diboson system is generated as
entangled. Another point to be noticed is that the value of the concurrence is quite
close to zero and at less than 3σ to zero, considering the parton level uncertainty, which
represents the statistical uncertainty expected for a perfect measurement. This suggests
that measuring a c2MB different from zero across the entire WZ phase space will be
challenging. However, this finding is consistent with the last row of Table 3.1, where
a Monte Carlo simulation was used to study the theoretical prediction of the specific
decay pp→ W+Z → e+νe µ

+µ−, confirming the potential for an inclusive measurement
of entanglement of WZ system in pp collisions.
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Figure 4.12: Distribution of the concurrence at parton level obtained through the boot-
strap method with Nsample = 100.

The next step in the analysis involves measuring the c2MB at LHC. This is a key result
in this thesis, marking the first feasibility study of the entanglement of the WZ system,
that accounts for realistic selection and reconstruction effects. In fact, at the particle
level, selections are applied to simulate detector effects, such as limited acceptance of the
reconstructed quantities. Therefore, this measurement can be used to determine if this
type of entanglement study is feasible for detectors like ATLAS and CMS and identify
the primary limitations involved. The lower bound of the concurrence obtained including
detector effects as described in Section 4.2 is

c2MB = 0.0459± 0.0305. (4.23)

This result has been obtained through three fundamental steps. First, the lower bound
was calculated at the particle level using a bootstrap method, similar to the approach
used at the parton level. In this step, the number of samples was fixed at Nsample =
100 to determine the mean value and its standard deviation. However, the value of
the concurrence obtained from this computation would present the same issue of the
spin density matrix coefficients described in Section 4.4. Specifically, the parameters of
the density matrix need to be unfolded to reduce the effects induced by the imperfect
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measuring devices. The second step, therefore, consists of applying the Iterative Bayesian
Unfolding technique depicted in Section 4.5 through RooUnfold framework to the 80
coefficients in all the bootstrap copies. In the final step, the unfolded bootstrap samples
are then utilized to determine the distribution of c2MB, from which an estimate of the
mean and its associated uncertainty can be derived. In particular, each bootstrap replica
was unfolded using the original dataset at the particle level as the true distribution
for constructing the response matrix, as used in calculating the spin density matrix
coefficients in Section 4.4. From this process, the newly unfolded parameters of each
bootstrap sample were used to compute the unfolded c2MB for each replica. The results
are shown in Figure 4.13.

Figure 4.13: Distribution of the concurrence at particle level after the unfolding obtained
through the bootstrap method with Nsample = 100.

Therefore the result presented in Eq.(4.23) represents the mean value of the distribu-
tion 4.13, which depicts the lower bound of the concurrence across all bootstrap copies.
The statistical error, which takes into account the effects due to selections, reconstruction
and unfolding is given by the standard deviation of the concurrence distribution.

The concurrence results obtained at both the parton and particle levels in Eq.(4.22-
4.23) are inclusive measurements, accounting for the entire phase space region. The two
values obtained at different levels are compatible but not identical, which is attributed to
the statistical independence of the measurements. The results obtained at both levels are
very small and considering their uncertainties the values obtained have a low significance
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with a number of sigmas from the entanglement limit smaller than three. In particle
physics, a phenomenon is considered evidence when it reaches a significance level of 3σ,
while a significance of 5σ is required to claim the discovery of a new phenomenon. In
particular, this suggests that detecting the entanglement of the WZ system at LHC
inclusively using data from Run 2 and 3 would be very challenging.

4.7.1 Concurrence in different phase space regions

As discussed in the previous section, the observation of the entanglement of the WZ
diboson system would be difficult based on the result of the concurrence obtained pre-
viously in the inclusive region. Therefore, an additional study has been conducted to
investigate the W±Z → lνll process across different phase space regions with specific
selections to observe how the lower bound of the concurrence varies. In particular, in
this part of the analysis, the focus was moved to the W and Z bosons by applying cuts
mainly on two specific physical quantities: the invariant mass of the diboson system and
the emission angle θCM of the W± boson relative to the proton beam in the centre-of-
mass frame. The choice of these regions has been made following the analysis performed
in [5]. Figure 4.14 shows the distributions of these two quantities at parton level. These
plots show that most of the events generated at the truth level are concentrated in the
region where the W± boson is emitted near the proton beam, with | cos θCM | close to
one. Additionally, the majority of events occur in a region where the invariant mass of
the diboson system is between 200 and 400 GeV.

(a) (b)

Figure 4.14: Distribution at the parton level of the invariant mass of the WZ system
(a) and the emission angle θCM (b) of the W± boson relative to the proton beam in the
WZ centre-of-mass.
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For this study, the theoretical prediction of the concurrence was computed in four
different regions as a function of the emission angle θCM and the invariant mass of the
WZ system. This computation has been performed first at the truth level obtaining the
histogram shown in Figure 4.15.

Figure 4.15: Measurement of the concurrence at parton level in different regions as
function of the emission angle θCM and the invariant mass of theWZ system. Specifically,
for each bin, the x-axis represents the cosine of θCM , while the value on the y-axis is a
lower bound m(WZ) on the invariant mass of the diboson pair.

The plot shows that the concurrence for events emitted at a small θCM angle rela-
tive to the proton beam is higher than that of the inclusive measurement, with greater
statistical significance. This region of the θCM angle also contains the majority of simu-
lated events, as can be inferred from Figure 4.14b. In the region of small | cos θCM |, the
concurrence is consistent with zero in the inclusive region of the invariant mass, while in
the region with events with a m(WZ) > 350 GeV, the lower bound of the concurrence
approaches one, though with high statistical uncertainty due to the limited statistics, as
illustrated in Figures 4.14.

Encouraged by the result obtained by the analysis in different phase space regions at
parton level, the study was extended to the particle level, which accounts for detector
effects, to determine whether the entanglement of the WZ system can be detected by
ATLAS and CMS using data from the Run 3. Following the application of the unfolding
technique described in Section 4.5 to remove effects due to the selection and reconstruc-
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tion, the lower bound of the concurrence c2MB at particle level is presented in Figure
4.16.

Figure 4.16: Measurement of the concurrence at particle level in different regions as
function of the emission angle θCM and the invariant mass of theWZ system. Specifically,
for each bin, the x-axis represents the cosine of θCM , while the value on the y-axis is a
lower bound m(WZ) on the invariant mass of the diboson pair.

The plot at particle level shows similarities to the parton level case. In particular,
in the region where | cos θCM | > 0.5, the concurrence value increases compared to the
lower bound of Eq.(4.23). However, it can be noticed that the statistical error in these
results is larger than at the parton level, as it also accounts for the detector’s limited
acceptance and the resolution of the reconstructed quantities. In this region, evidence of
the entanglement of the WZ system could be obtained at LHC with a significance of 3σ,
in particular in the region with a lower bound on the m(WZ) of 350 GeV. Similar to the
parton level, the lower bound of the concurrence can reach a negative value in regions
of small | cos θCM | when considering events with an arbitrary invariant mass. However,
for events with m(WZ) > 350 GeV, the concurrence calculated in this analysis would
exceed the theoretical maximum value of 4

3
. Nevertheless, this outcome can be attributed

to the limited statistics of events in this particular region.
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4.7.2 Transverse momentum selection

The observation of the entanglement of the WZ system at the LHC, as it has been pre-
sented previously, can be very challenging as inclusive measurement and even in different
phase space regions, as shown in Figure (4.15-4.16), only evidence of the entanglement
can be measured with a significance around 3σ. Therefore, the same analysis presented
in the previous sections has been refined introducing an additional selection on the total
transverse momentum of the WZ system. In particular, the total pWZ

T of the diboson
system has been calculated in the laboratory frame. Theoretically, from the conservation
of momenta, the value of this physical quantity should be zero because the protons in
the beam collide head-on. However, the total transverse momentum of the WZ system
both at the parton and particle level follows the distribution displayed in Figure 4.17.

Figure 4.17: Distribution of the total transverse momentum pT of the WZ system ob-
tained in the laboratory frame.

This effect can be caused by the emission of hard photons from the W and Z bosons
during their propagation before the decay into leptons, causing a loss of energy of the
boson which results in a total transverse momentum of the system different from zero.
Additionally, a similar effect can arise from the radiation of gluons from the initial
state during the propagation of heavy vector bosons, although this does not impact the
entanglement.

As a consequence, this process could spoil the measurement of the entanglement
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in the WZ system by modifying the correlation between the two heavy vector bosons.
Therefore, based on the distribution of Figure 4.17, an addition cut was applied to the
analysis requiring a pWZ

T < 40 GeV, where pWZ
T is the total transverse momentum of

the WZ system calculated in the laboratory frame. Firstly, the selection was applied
at parton level to determine if the theoretical prediction on the concurrence could be
improved compared to the inclusive measurement obtained in Eq.(4.22). The following
analysis has been performed using the same procedure displayed for the measurement in
the inclusive region, employing the bootstrap method to compute the result. The lower
bound of the concurrence at the truth level with a selection of pWZ

T < 40 GeV is

c2MB = 0.0811± 0.0219 (4.24)

When compared to the lower bound of the concurrence in the inclusive region, c2MB =
0.0361±0.0175, this result shows several differences. Notably, the mean value of the con-
currence has increased, approaching 0.1. Additionally, while the uncertainty—calculated
as the statistical error of the distribution—has slightly increased, the significance of the
result has improved, reaching nearly 4σ. In contrast, the significance was approximately
2σ in the inclusive measurement at the truth level.

Let’s now consider the analysis of the lower bound of the concurrence at the particle
level. The result presented in Eq.(4.23), has a very low significance in the inclusive
region, which implies that measuring the entanglement of the WZ system at LHC with
the current dataset would be difficult. Therefore, to improve this feasibility study, the
condition of pWZ

T < 40 GeV was imposed on the events of the available dataset from MC
simulation and the result obtained for the concurrence is the following

c2MB = 0.0994± 0.0365 (4.25)

The lower bound calculation has been performed using the unfolding technique and
bootstrap method explained in Section 4.7 at the particle level. By excluding from the
analysis events in which the W or Z boson emitted high energy photons, it was observed
that the value of the concurrence, which distribution is illustrated in Figure 4.18, has
increased. Consequently, the significance has risen to nearly 3σ, close to the threshold
required to claim evidence of the result.
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Figure 4.18: Distribution of the concurrence at particle level after the unfolding obtained
through the bootstrap method with Nsample = 100 with the selection of pWZ

T < 40 on the
total transverse momentum of the WZ system.

The analysis conducted at both parton and particle levels, using the total transverse
momentum selection, reveals a promising lower bound for the concurrence. Therefore,
different regions of the phase space have been investigated for the WZ decay process
with this specific cut. In particular, the study continued focusing on examining the
behaviour of the lower bound of the concurrence at different emission angles θCM of
the charged vector boson and invariant mass of the WZ diboson system, similar to the
approach taken in the previous section. The results of the concurrence as a function
of the emission angle of the W boson and the invariant mass of the WZ system are
presented in Figure 4.19.

From the plot in Figure 4.18 some consideration of the selection of the transverse
momentum can be made. As for the analysis presented in Section 4.7.1, in the region
where W bosons have an emission angle such that the | cos θCM | > 0.5, the lower bound
of the concurrence has increased reaching a significance around 3.5σ, indicating the evi-
dence of the entanglement in WZ system can be measured using Run 3 events with this
selection in specific region of the phase space. This study currently does not account
for the systematic uncertainties associated with the objects used in the analysis. How-
ever, considering the high precision achieved at the LHC in measuring charged leptons,
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Figure 4.19: Measurement of the concurrence with a selection on the total transverse
momentum of the WZ system of pWZ

T < 40 GeV at particle level in different regions of
phase space. This is analyzed as function of the emission angle θCM and the invariant
mass of the WZ system.

these systematic uncertainties are expected to be smaller compared to the statistical
uncertainties. In the top-left region of Figure 4.19, the value of the lower bound is not
available due to the limited statistics of events in that region, which, as can be pointed
out from Figure 4.14, do not contain the majority of the processes.



Conclusions

This thesis presents the first feasibility study for the measurement of the quantum cor-
relation of the W±Z system produced in a proton-proton collision at the Large Hadron
Collider. In particular, this work provides the first realistic study of the entanglement of
this specific diboson system, which takes into account effects due to limited acceptance
of the detector, distortions caused by the reconstruction and the effects on the uncer-
tainties and the distortions caused by the reconstruction. The analysis is performed at
the truth level and particle level by studying the following events

pp→ W±Z → l
′±νl+l−, (4.26)

which are generated through Monte Carlo simulation with a number of events equivalent
to the luminosity L = 450 fb−1 of Run 2 and Run 3 of the LHC at a centre of mass
energy

√
s = 13 TeV. The key quantum observable calculated in this analysis is the lower

bound of the concurrence, which is used to determine the entanglement of the quantum
state composed by the W and the Z bosons. The lower bound is defined mathematically
in Eq.(3.38) and depends on the 80 coefficients of the spin density matrix of the diboson
system in Eq.(3.13). The calculation was first performed at the parton level to be able
to validate the theoretical predictions, and then including selections and reconstruction
effects to evaluate the feasibility of this measurement for the ATLAS and CMS detectors.
In this case, an unfolding technique was applied to all the distributions used to derive
c2MB to recover the parton level value. The lower bounds of the concurrence obtained as
inclusive measurements are the following

Parton Level : c2MB = 0.0361± 0.0175 (stat.),

Unfolded Level : c2MB = 0.0459± 0.0305 (stat.).
(4.27)

The results are consistent, demonstrating the capability of the method to reconstruct
this complex observable. However, the significance is low even at the parton level, which
ideally represents a perfect detector. The situation deteriorates further when considering
the lower bound of the concurrence at the unfolded level, where uncertainties increase
due to detector effects. This suggests that observing entanglement in the inclusive region
using data from Run 3 would be challenging. To address this, additional studies were
performed to explore entanglement under different selections and in various regions,

78
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examining their impact on concurrence. When selecting events with a total transverse
momentum of the diboson system of pWZ

T < 40 GeV, the concurrence calculated at both
the parton and unfolded levels is:

Parton Level : c2MB = 0.0811± 0.0219 (stat.),

Unfolded Level : c2MB = 0.0994± 0.0365 (stat.).
(4.28)

With this new selection, the lower bound of the concurrence has increased, approach-
ing a significance of 3σ, which is close to the threshold for claiming evidence of the
result.

Additionally, the concurrence has been analyzed in different phase space regions, as
detailed in Sections 4.7.1 and 4.7.2. In particular, it has been shown that the concurrence
increases when considering events with an invariant mass m(WZ) > 350 GeV and a
| cos θCM | of the emission angle of the W± boson close to one. In particular, when
considering events with a cut on the total transverse momentum of the diboson system
of pWZ

T < 40 GeV, the unfolded cMB reached a value of:

c2MB = 0.641± 0.181 (4.29)

which has a significance exceeding 3.5σ.
In conclusion, this type of analysis on theWZ system is highly complex as it involves

the measurements of 80 different coefficients to determine the spin density matrix. Even
with the fully leptonic decay channel used in this thesis, significant discrepancies are
observed between the coefficients derived including detector effects and their theoretical
values. This can be attributed to the presence of the neutrino which introduces addi-
tional challenges due to its reconstruction and the limited acceptance of the detector.
Therefore, a specialized method is needed to correct and refine the measurements of these
observables. The results obtained give hints about the effective possibility of measuring
entanglement between the W and Z boson, however with the current dataset of Run 3
it would be very challenging due to the low level of entanglement expected in this final
state, compared to the statistical uncertainty. The analysis also reveals that in specific
regions of phase space, there may be stronger correlations between the two heavy vector
bosons, as indicated in Eq.(4.29).

The c2MB for theWZ system, which has never been measured before, even if it doesn’t
result in the observation of entanglement between the two heavy vector bosons could still
be used as a new powerful tool in the search for new physics [4].
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