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Abstract
Reanalysis datasets play an important role in meteorological and climate research,
offering a consistent and long-term record of atmospheric conditions by assimi-
lating past observations with modern forecast models. These datasets are of great
utility in various applications, including weather forecasting, climate change re-
search, renewable energy prediction, resource management, air quality risk as-
sessment, and the forecasting of rare climatic events. Among the most prominent
reanalysis datasets is the Copernicus Regional Reanalysis for Europe (CERRA),
which stands out due to its high-resolution coverage of the European domain.
CERRA has demonstrated significant utility across multiple climate-related tasks,
providing detailed insights that are essential for precise and localized studies. De-
spite its advantages, the availability of CERRA lags two years behind the current
date, primarily due to the intensive computational demands and the complexi-
ties involved in acquiring the necessary external data. To address this temporal
gap, this thesis proposes a novel method employing several deep neural models to
approximate CERRA downscaling in a data-driven manner without the need for
additional external information other than ERA5. By leveraging the lower reso-
lution ERA5 dataset, this research frames the problem as a super-resolution task.
The study focuses on downscaling wind speed data over Italy, utilising a model
trained on existing and freely available data. The results are encouraging, as the
model produces outputs closely resembling the original CERRA data, with valida-
tion against in-situ observations confirming its accuracy in approximating ground
measurements. This innovative approach not only demonstrates the potential of
deep neural models in overcoming the computational and data acquisition con-
straints associated with high-resolution reanalysis datasets but also offers a viable
solution to improve the timeliness and accessibility of such data.
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Chapter 1

Introduction

The field of meteorology is inherently complex, tasked with understanding and
predicting the intricate dynamics of the Earth’s atmosphere. A crucial aspect of
this endeavour lies in the ability to accurately model weather variables at various
spatial and temporal scales. High-resolution weather data offers the most detailed
representation of atmospheric conditions, but its computational demands and stor-
age requirements can be really prohibitive. This presents a significant challenge,
particularly for applications requiring real-time weather forecasts or long-term
climate simulations [52, 74].

Downscaling techniques serve to bridge this gap by transforming coarse-resolution
global climate models (GCMs) into high-resolution data that is suitable for re-
gional and local applications. Traditional downscaling methods, such as statistical
downscaling, have served as valuable tools for many years. However, with the re-
cent advancements in Artificial Intelligence, deep learning models have emerged
as a promising alternative for Downscaling weather variables.

Deep Learning, a subfield of Machine Learning, employs the power of artifi-
cial neural networks with intricate architectures to learn complex relationships
from large amounts of data. These models exhibit exceptional capabilities in
pattern recognition and feature extraction, rendering them well-suited for tasks
involving nonlinear and multivariate relationships, which are often prevalent in
weather data [11].

The relationship between downscaling models typically used for reanalysis
and Deep Learning models lies in the super-resolution task, with both approaches
aiming to bridge the gap between coarse and high-resolution data [66, 67]. Con-
ventional downscaling methodologies frequently depend on statistical relation-
ships or physical principles to infer the high-resolution information from the coarse
data. In contrast, Deep Learning models are capable of learning these relation-
ships directly from large datasets of historical observations, thereby potentially
capturing more complex and nuanced patterns. In essence, deep learning models
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can be viewed as a form of data-driven super-resolution for weather data. Super-
resolution, a technique commonly used in image processing, aims to reconstruct
a high-resolution image from a low-resolution version. Deep learning models can
be adapted to achieve a similar result, beginning with weather data in a gridded
image-like format and resulting in a reconstruction at a finer resolution [30, 75].

This thesis is dedicated to the application of several deep learning models
in the downscaling of meteorological variables (with application to wind speed),
with a direct comparison made with one of the most advanced reanalysis datasets
of recent years: the Copernicus European Regional Reanalysis (CERRA) [55].
To achieve this, a subset of the ERA5 [25] dataset was exploited, encompassing
hourly data of the wind speed variable for Western Europe over a period of 10
years, from 2010 to 2019, with a temporal resolution of 3 hours. Two years, 2009
and 2020, were selected as the test set. This choice is particularly advantageous
because CERRA is derived using ERA5 as a baseline, thereby establishing a ro-
bust connection between the two datasets and minimising their differences.

ERA5 CERRA

FIGURE 1.1: This image presents a comparison of the wind speed
over Italy between the ERA5 and CERRA datasets.

The proposed approaches were not only able to demonstrate that contempo-
rary deep learning models are capable of replicating the functionality of numerical
models that are still employed in downscaling, but some of them even managed
to emulate the accuracy of CERRA with a minimal amount of error on the ob-
served variable. The study is further enhanced by a validation of the reference
datasets and the results obtained through a comparison with the in-situ data from
the IGRA-V2 dataset [19]. This comparison allows for an estimation of the extent
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to which a reanalysis may deviate from the actual observations of meteorological
data.

This thesis is structured into six chapters, each addressing a distinct aspect of
the study and providing a comprehensive exploration of deep learning models for
the downscaling of meteorological variables:

• Chapter 1: Introduction - This chapter presents the background, motivation,
and objectives of the research, providing a foundation for understanding
the importance of downscaling in meteorology and the potential of deep
learning models.

• Chapter 2: Related Works - This chapter presents a review of existing lit-
erature and previous research related to downscaling methods through deep
learning models and the validation of reanalysis data. It identifies the gaps
and opportunities that this thesis aims to address.

• Chapter 3: Background - This chapter provides an overview of downscaling
techniques, including statistical and dynamical downscaling, as well as an
introduction to super-resolution and its connection to the task of downscal-
ing meteorological data. It concludes with a presentation of the dataset used
in this study.

• Chapter 4: Deep Learning Models for SR Downscaling - This chapter exam-
ines the various state-of-the-art deep learning models that can be employed
for super-resolution downscaling. These include dense neural networks,
convolutional neural networks, recurrent neural networks, generative ad-
versarial networks, diffusion models, and transformers.

• Chapter 5: Experiments - This chapter outlines the experimental setup, in-
cluding a description of the datasets, the preprocessing steps, and the evalu-
ation framework. It also presents and analyses the results of the experiments
conducted to assess the performance of the proposed models. Finally, it
presents a validation for both reanalysis (ERA5 and CERRA) and the re-
sults of the models, exploiting data from in-situ observations.

• Chapter 6: Conclusions - This chapter presents a summary of the key find-
ings of the research, discusses their implications, and suggests potential
directions for future work in the field of meteorological downscaling using
deep learning.
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By following this structure, the thesis aims to provide a comprehensive under-
standing of the potential and challenges of using deep neural models for downscal-
ing meteorological variables, contributing to the advancement of high-resolution
weather forecasting and climate modeling.

The results of this study have led to a paper [43] being published in the inter-
national journal Neural Computing & Applications.
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Chapter 2

Related Works

The necessity for high-resolution weather data at a regional and local scale has
driven the development of robust downscaling techniques. Statistical downscaling
represents a well-established methodology in this domain, effectively bridging the
resolution gap between global climate models (GCMs) and fine-grained weather
observations. Innovative efforts in statistical downscaling employed foundational
statistical methods such as linear regression and ridge regression [33, 71]. These
techniques enabled the identification of linear associations between large-scale
predictors (e.g., pressure, temperature fields) and local weather variables of inter-
est (e.g., precipitation, wind speed).

A number of machine learning techniques, such as k-nearest neighbours [22],
random forests [50, 24] and support vector machines (SVM) [51], have been ap-
plied in the context of downscaling to generate various surface variables, showing
that these techniques are particularly suited to the task.

More recently, deep learning approaches based on convolutional neural net-
works (CNNs) have emerged as a promising downscaling technique. CNNs have
the ability to automatically infer spatial features that encode predictive informa-
tion from the predictor fields. In particular, the most popular application of CNNs
and other deep learning architectures for downscaling follows the super-resolution
(SR) approach [67, 66, 5], inspired by the homonymous field of computer vision.
This approach learns to generate high-resolution fields from their low-resolution
counterparts. The advent of new deep learning models has led to an increased
focus on their use for downscaling. Indeed, the present study has identified imple-
mentations that exploit Long Short Term Memory (LSTM) [44], U-Net [57] and
Generative Adversarial Networks (GAN) [10].

In recent years, this area of research has become increasingly popular, with
a growing corpus of innovative implementations documented in the literature. In
[30] the authors investigated the application of three super-resolution deep learn-
ing frameworks for downscaling daily precipitation forecasts in Southeast China
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from a starting resolution of approximately 50 kilometers to 25 and 12.5 kilome-
ters. These frameworks included the Super-Resolution Convolutional Neural Net-
work (SRCNN), Super-Resolution Generative Adversarial Networks (SRGAN),
and Enhanced Deep Residual Networks for Super-Resolution (EDSR). For com-
parison, the study also performs Bias Correction Spatial Disaggregation (BCSD)
as a traditional SD method under the same framework. This traditional method
is used to refine the spatial resolution of daily precipitation forecasts, but it does
not employ deep learning techniques. The results show that the SR models out-
perform the traditional BCSD method in capturing local details and improving the
spatial resolution of precipitation forecasts.

In [46] the authors present ClimateLearn, a comprehensive machine learning
(ML) library designed to facilitate the application of ML to challenging weather
and climate modelling tasks. The library is comprised of four key components:
tasks, datasets, models, and evaluations, which collectively enable the benchmark-
ing of ML models for weather and climate forecasting, downscaling, and pro-
jection. The authors focus on those tasks utilising a range of datasets, including
ERA5 and CMIP6. They evaluate the performance of various deep learning meth-
ods, including ResNet, U-Net, and ViT, and compare them to simple baselines
such as climatology and persistence. With regard to downscaling, two different
settings were chosen. The first involved downscaling the 5.625◦ ERA5 to 2.8125◦

ERA5 with hourly intervals and at the global scale. The target variables were
Z500, T850 and T2m. In the second setting, the authors consider downscaling
from 2.8125◦ ERA5 to 0.75◦ PRISM over the continental United States at hourly
intervals for the variable daily maximum T2m.

In the study proposed by Zhang and Li [75], the authors focus on the downscal-
ing of wind speed via deep learning models, specifically utilising a novel method
based on Bidirectional Gated Recurrent Units (BiGRU). The primary objective of
this research is to develop a more accurate and efficient approach for predicting
local offshore wind energy resources in China using large-scale climate models
and the ERA-Interim reanalysis dataset as a reference. The authors apply the Bi-
GRU downscaling method to a dataset comprising daily 10-m wind speed, sea
level pressure, and 850 hPa WS from the ERA-Interim reanalysis dataset at a
1.5◦ lat/lon resolution. The daily 100-m WS from the ERA5 reanalysis dataset
at a 0.25◦ lat/lon resolution is used as the output layer vectors. The performance
of the BiGRU method was then compared to that of traditional methods such as
PCA-SMLR and BPNN and it outperformed both of them in terms of root mean
squared error (RMSE) and Pearson correlation coefficient (PCC).
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It is important to note that, in addition to downscaling, deep learning models,
such as those employed in this study, can be utilised for a variety of purposes and
tasks related to meteorological variables. For instance, in [3], the authors em-
ploy diffusion models, with a particular focus on Generative Ensemble Diffusion
(GED), for the purpose of precipitation nowcasting. This is the forecasting of rain
indicators on a short-term meteorological scale, typically between two and six
hours. Furthermore, the authors demonstrate that their results outperform those of
recent deep learning models in terms of overall performance.

The present thesis also addresses the issue of result validation, a topic that
frequently arises in the literature concerning reanalysis and downscaled data.

In [49] the authors evaluate the performance of the Copernicus European Re-
gional Reanalysis (CERRA) dataset as a proxy for ground-based agrometeoro-
logical data in assessing daily reference evapotranspiration (ETO) at the regional
scale. To achieve this goal, the authors employ a comprehensive methodology that
involves the use of 38 automatic weather stations (AWSs) in Sicily, Italy, which
provide ground-based weather data from 2003 to 2022. The authors initially com-
pute the daily reference evapotranspiration utilising the FAO Penman-Monteith
equation, which is a widely accepted and accurate formulation for ETO estima-
tion. This is then compared with the corresponding values obtained from the
CERRA dataset. The results of the study demonstrate that CERRA data exhibit
excellent performance in estimating the considered variables.

In the study conducted in [45], the authors perform a validation of various
modelling systems of global and regional reanalyses, including ERA5, ERA5-
Land, ERA5-Crocus, CERRA-Land, UERRA MESCAN-SURFEX and MTMSI.
The in-situ validation data included observational references (gridded observa-
tional datasets and satellite observations) across the European Alps from 1950
to 2020 for a set of weather variables, including snow cover, temperature, and
precipitation. The results of the study revealed that no single modelling strategy
outperforms all others within the experimental sample but reanalyses (and datasets
based upon observation sources) hold the potential to partially fulfill the gap of in
situ observations.

In [9], the authors conduct a comprehensive intercomparison and validation
of high-resolution surface air temperature reanalysis fields over Italy. The analy-
sis focuses on five reanalysis datasets: ERA5, ERA5-Land, MERIDA, CERRA,
and VHR-REA_IT. The authors employ a methodology that involves reconstruct-
ing climate normals and anomalies from a large network of homogenized sta-
tion records, which are then used to evaluate the performance of the reanalysis
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datasets. Once the monthly observation-derived gridded series have been recon-
structed and the daily values retrieved, they are then used to calculate the bias
and mean absolute error (MAE) of the reanalysis datasets in comparison to the
observed data. The results demonstrate that the reanalysis datasets exhibit vary-
ing degrees of bias and MAE, with some datasets performing better than others in
specific regions and seasons. For instance, ERA5 exhibits a bias of -0.5 to -1◦C
in the majority of regions, whereas ERA5-Land displays a more pronounced cold
bias, particularly in the Alpine region. MERIDA and CERRA exhibit more intri-
cate patterns, with cold biases concentrated in specific areas but very good results.
The study also reveals that the spatial distribution of the MAE is closely linked to
the degree of agreement between the observed and reanalysis anomalies.

It can be concluded that in the majority of validations presented in the liter-
ature, CERRA consistently demonstrated superior performance in the analysed
variables, with only a few exceptions. Therefore, the ability to reproduce its char-
acteristics would represent a valuable reanalysis and thus a precious resource.
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Chapter 3

Background

3.1 Downscaling

The field of climate change science is characterised by a high degree of com-
plexity, necessitating a comprehensive grasp of the knowledge and understanding
required to analyse and interpret the results produced by the models and methods
employed to simulate future climates. Despite these complexities, information
generated by research in this field is frequently used to assess potential impacts
on bio-physical systems, built environments, and people. Information on climate
change is available in a variety of formats, including maps, time series, and graph-
ical summaries, and is derived from a range of sources, including output from
different climate models simulating change to the global climate [20]. Being able
to make the most of these sources of data is crucial, as well as to be able to infer
additional information beyond that which is available through statistical methods
that exploit the patterns contained in past observations. To illustrate this with a
hypothetical example, consider a wind farm project. This harnesses the power of
wind to generate clean electricity. However, before construction can commence,
there is one crucial factor to consider: the wind itself. It is of the utmost im-
portance to ascertain the precise quantity of wind that passes through the area,
including the wind speed and direction. This information is vital for a number of
reasons, including optimising power production, strategic placement and ensuring
the financial viability of a project.

A significant proportion of applications have a local or regional focus, ne-
cessitating the use of fine spatial resolution in their climate information, in ad-
dition to information about the larger-scale climate signal. Therefore, if there
is any regional-scale predictability in the climate signal, this is highly relevant
and should be included in those applications. However, global climate models
(GCMs) typically operate on spatial resolutions of around 100 to 250 km. A num-
ber of techniques exist to bridge the scale gap between the output of GCMs and
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the scale of interest of most applications. These techniques vary considerably
in terms of complexity and sophistication, but are all collectively referred to as
downscaling methods. This term encapsulates the process of translating a coarse
scale GCM output to finer-scaled information on weather variables [20]. There
are two main approaches to downscaling climate model outputs: Statistical and
Dynamical downscaling.

3.1.1 Statistical Downscaling

Statistical downscaling establishes a statistical relationship between large-scale
atmospheric variables simulated by GCMs (predictors) and local-scale climate
variables of interest (predictands) using historical observations. The aforemen-
tioned relationship is then applied to project future local-scale climate changes
based on the projected changes in large-scale variables from the GCMs.

The core concept of statistical downscaling can be represented mathematically
as a function relating the large-scale predictors (X), observed local-scale predic-
tands (Y), and potentially some random error term (ε):

Y = f (X,ε) (3.1)

The goal of statistical downscaling is to estimate the function f using historical
observations of both X and Y. Once estimated, this function can be used to project
future local-scale climate changes (Y_future) based on the projected changes in
the large-scale variables (X_future) from the GCMs:

Y_future = f (X_future,ε_ f uture) (3.2)

It is essential to recognise that this is a simplified representation, and that more
complex formulations may be employed depending on the specific downscaling
method and the number of variables involved.

3.1.2 Dynamical Downscaling

In the context of dynamical downscaling, a higher-resolution climate model is
employed. These models are frequently referred to as regional climate models
(RCMs). RCMs utilise lower-resolution climate models (in the majority of cases,
GCMs) as boundary conditions and physical principles to reproduce local climate.
While offering a more physically-based approach, dynamical downscaling is as-
sociated with a significant computational cost compared to statistical methods.
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RCMs require substantially more processing power to simulate the complex dy-
namics of the atmosphere at high resolution. This translates to limitations in the
number of simulations that can be performed and the length of the simulated time
periods.

3.2 Super-Resolution

Although high-resolution (HR) digital cameras are available, many computer vi-
sion applications still require imagery with resolutions that surpass the capabilities
of these cameras. Fields such as satellite imaging, target detection, medical imag-
ing, and others demand higher resolution imagery to achieve precise and accurate
results. To meet this strong demand for superior imagery, these applications of-
ten employ advanced image-processing techniques. One of the most promising
techniques in digital imaging is Super-Resolution (SR) image reconstruction. The
objective of this method is to generate high-resolution (HR) images by combining
the partial information from several under-sampled low-resolution (LR) images
of the same scene. During the reconstruction process, super-resolution techniques
up-sample these low-resolution images and mitigate distortions such as noise and
blur, resulting in a higher quality final image [4].

In contrast to other image enhancement techniques, which may simply sharpen
or adjust the brightness and contrast of an image, super-resolution image recon-
struction fundamentally improves the spatial resolution of under-sampled images.
It not only enhances the overall quality by increasing resolution but also system-
atically filters out various distortions. This makes super-resolution an invaluable
tool for applications that rely on detailed and accurate imagery.

The super-resolution process can be defined as an ill-posed inverse problem,
where the objective is to invert an unknown degradation function applied to a
high-resolution image [43]. Given a low-resolution image denoted by y and the
corresponding high-resolution image denoted by x, the degradation process can
be described as follows:

y = Θ(x,ρn) (3.3)

The notation Θ represents the degradation function, while ρn denotes the
degradation parameters, which may include factors such as the scaling factor and
noise. In a real-world scenario, only y is available, while no information about
the degradation process or the degradation parameters ρ exists. Super-resolution
seeks to nullify the degradation effect and recovers an approximation x̂ of the
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ground-truth image x as:
x̂ = Θ

−1(y,ρr) (3.4)

where ρr are the parameters for the function Θ−1. The degradation process is
unknown and can be quite complex. It can be affected by several factors, such as
noise, compression, blur and other artefacts. Therefore, most research works [2,
39, 6] have opted for the following degradation model over that of Equation 3.3:

y = (x⊗ k) ↓s +n (3.5)

where k is the blurring kernel and (x⊗k) is the convolution operation between
the HR image and the blur kernel, ↓s is a downsampling operation with a scaling
factor s.

3.2.1 Super-Resolution for Downscaling

While super-resolution and statistical downscaling are distinct in their methodolo-
gies and objectives, they share a common goal of refining data resolution, partic-
ularly in the context of weather datasets. As previously outlined in the preced-
ing sections, this approach relies on establishing statistical relationships between
large-scale atmospheric variables (such as temperature, pressure, and wind) and
local-scale weather phenomena. This process is typically implemented via a so-
phisticated physical model, such as the HARMONIE-ALADIN model [7, 64].
These models require as input the low-resolution ground truth, in addition to
the additional information necessary to compute the downscaling result. Conse-
quently, if we represent the high-resolution image as x, the low-resolution images
as y, the statistical downscaling model as HA and the additional information as
ρHA, we can define the downscaling process as follows:

x = HA(y,ρHA) (3.6)

It can be observed that this equation is closely related to Equation 3.4, which es-
tablishes a relationship between high-resolution and low-resolution images. This
similarity effectively equates the task of super-resolution in image processing to
the problem of statistical downscaling in meteorological studies. A comparison of
the previous formulation with the one presented in section 3.1.1 also reveals this.

The primary distinction between the two problems lies in the inverse na-
ture of their low-resolution/high-resolution relationship. In contrast to the super-
resolution process described in Equation 3.5, where the low-resolution image is
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derived from an unknown high-resolution counterpart, in statistical downscaling,
the situation is reversed. Here, the high-resolution image is an enhanced version
of the low-resolution image.

We can thus define the new super-resolution task as the problem of approxi-
mating the behaviour of the HA model. Since our aim is to follow a data-driven
approach and not to use additional information for the downscaling process, we
define our approximate model without the use of ρHA.

x̂ = Φ(y) , x̂≈ x (3.7)

Where Φ is our super-resolution model and x̂ is the approximation of the ground
truth x generated by the statistical downscaling model.

3.2.2 Super-Resolution and Deep Learning

In recent years, deep learning has emerged as a revolutionary approach in the field
of super-resolution. By leveraging the power of neural networks, deep learning-
based methods have demonstrated remarkable improvements in generating high-
resolution images from low-resolution inputs. These methods utilize large datasets
to train deep neural networks to learn complex mappings between low and high-
resolution image pairs, capturing intricate details and textures that traditional tech-
niques may overlook.

Deep learning approaches to super-resolution encompass a variety of archi-
tectures, including convolutional neural networks (CNNs) [67, 66, 5], genera-
tive adversarial networks (GANs) [10], and recurrent neural networks (RNNs)
[44]. Each of these architectures offers unique advantages in image reconstruc-
tion tasks. For instance, CNNs are adept at identifying spatial hierarchies and
patterns within images, while GANs introduce a competitive learning process that
enhances image realism. In contrast, recurrent neural networks (RNNs) are well-
suited to the task of video super-resolution, as they are able to effectively handle
sequential dependencies.

Metrics

In order to evaluate the quality of super-resolution methodologies, numerous met-
rics are employed in the literature. Some of these were utilised during the study
conducted in this thesis, including the Mean Squared Error (MSE), Peak Signal-
to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM).
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The Mean Squared Error (MSE) is a metric that is widely used in a variety
of applications, including super-resolution. It is used to quantify the difference
between the predicted values and the actual values by averaging the squares of the
errors. In this context, the error is defined as the difference between each predicted
value and its corresponding true value.

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2 (3.8)

Peak Signal-to-Noise Ratio (PSNR) [28] is a prominent metric employed in
the field of image processing to assess the quality of reconstructed, compressed,
or denoised images in comparison to the original image. It is defined as the ratio
between the maximum possible power of a signal (represented by pixel values in
an image) and the power of corrupting noise that affects its fidelity.

PSNR = 20 · log10

(
1√

MSE

)
(3.9)

The Structural Similarity Index (SSIM) [28] is an advanced metric used for
measuring the similarity between two images. Developed to provide a more ac-
curate and perceptually relevant assessment of image quality, SSIM differs from
traditional metrics like MSE and PSNR by considering changes in structural infor-
mation, luminance, and contrast. In contrast to MSE and PSNR, which focus on
pixel-to-pixel differences, SSIM evaluates changes in structural patterns, thereby
aligning itself more closely with human visual perception. SSIM can be expressed
as:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(3.10)

where the metric is computed between two corresponding patches represented
by x and y, with µx and µy being the respective pixel average, σ2

x and σ2
y the vari-

ance and σxy the covariance. C1 and C2 are two custom parameters to o stabilize
the division with weak denominator. The aforementioned metrics have been em-
ployed in a multitude of recent studies with objectives analogous to those of the
present investigation [12, 34, 65].

The output data from a predictive model are typically normalised, necessi-
tating a denormalisation step prior to comparison with ground truth. Once this
has been completed, it is possible to employ other types of metrics to obtain a
clear representation of the difference between different data, while retaining any
meanings these data represent and obtaining a result that can be traced back to
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something tangible. The study presented in this thesis includes a data validation
step, which compares the results obtained from the models with real observations.
This allows for the calculation of a physics-coherent measure of error. To achieve
this, the MAE is employed. The MAE, or Mean Absolute Error, is another metric
commonly used to assess prediction accuracy. It calculates the average magnitude
of the errors between predicted and actual values, without considering their direc-
tion. In contrast to MSE, which squares the errors, MAE employs the absolute
values of the errors. This renders MAE less susceptible to outliers in comparison
to MSE, and it facilitates a more precise comprehension of the magnitude of the
error.

MAE =
1
n

n

∑
i=1
|yi− ŷi| (3.11)

3.3 Datasets

In order to ascertain the viability of developing models capable of utilising large
datasets containing meteorological data to facilitate the downscaling process, it is
first essential to gain an understanding of the fundamental characteristics of the
data.

In climatology, the term reanalysis refers to the process of re-estimating his-
torical weather and climate conditions using a combination of observations and
numerical weather prediction (NWP) models. This involves re-processing histor-
ical data using modern models and assimilation techniques to create a consistent
and coherent dataset that can be used for research, forecasting, and other appli-
cations. The resulting datasets produced through this process typically include
various atmospheric and surface variables such as temperature, humidity, wind
speed, and precipitation. They are often created by combining historical observa-
tions with model simulations, using techniques such as data assimilation, in order
to produce a consistent and coherent representation of the past climate.

Reanalysis data are of significant value for a number of reasons:

• they offer enhanced accuracy, providing more accurate and consistent rep-
resentations of historical climate conditions compared to individual obser-
vations or model simulations alone;

• they offer long-term consistency, allowing the creation of long-term, con-
sistent datasets that span multiple decades or even centuries, thus enabling
more comprehensive studies of climate trends and variability;
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• they can provide higher spatial and temporal resolution than individual ob-
servations, allowing for more detailed studies of local and regional climate
phenomena.

In addition, the reanalysis data is employed in a number of ways, including:

• Climate modelling and prediction: The reanalysis data is used to initialise
and validate climate models, which are essential for predicting future cli-
mate trends and variability;

• Climate change research: The reanalysis data is used to study past climate
trends and variability, helping to understand the causes and impacts of cli-
mate change;

• Weather forecasting: The reanalysis data is used to improve weather fore-
casts, providing more accurate and consistent representations of historical
weather patterns;

• Climate impact assessments: Reanalysis data are employed to evaluate the
impact of climate change on various sectors, including agriculture, water
resources, and ecosystems.

Another valuable source of information is the data collected by the monitor-
ing stations in the region, which will be incorporated into the in-situ observation
datasets. These datasets are fundamental to the study of climatology, providing
direct measurements of various atmospheric, oceanic, and terrestrial parameters.
In contrast to remote sensing techniques, which collect data from a distance (e.g.,
via satellites), in-situ observations are gathered directly at the location of interest
using instruments such as weather stations, buoys, and radiosondes.

3.3.1 ERA5

ERA5 [25], produced by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) under the Copernicus Climate Change Service (C3S), is a state-
of-the-art atmospheric reanalysis dataset. It represents a significant advancement
in the field of reanalysis, offering a comprehensive and high-resolution depic-
tion of the global climate system. As a result, it is an indispensable resource for
climate research, weather forecasting, and numerous scientific and practical ap-
plications. ERA5 is characterized by its high temporal and spatial resolution. The
dataset provides hourly data, enabling a comprehensive examination of diurnal cy-
cles and short-term weather phenomena. This high temporal resolution is vitally
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important for the study of events such as storms, heatwaves, and other transient
atmospheric occurrences. Furthermore, the ERA5 dataset offers a horizontal res-
olution of approximately 31 km (0.28 degrees) and 137 vertical levels extending
from the surface up to 0.01 hPa.

Another crucial aspect of the ERA5 dataset is its temporal scope, which ex-
tends from approximately 1940 to the present. This allows the dataset to be used
in applications that require large amounts of data spread over time. Furthermore,
since the collection of requisite data and their computation results in a production
latency of approximately five days, the dataset remains consistently up-to-date.

ERA5 is a state-of-the-art global atmospheric reanalysis tool that provides a
robust framework for understanding and analysing the Earth’s climate system. It
offers a comprehensive representation of atmospheric, land, and oceanic condi-
tions spanning several decades. Over the years, ERA5 has emerged as a crucial
asset for scientists from a variety of fields, with the dataset appearing in a vast
number of studies. Its applications span several key areas, including:

• Analysis of Precipitation trends: ERA5 data is extensively used for track-
ing precipitation changes, as evidenced in multiple recent works [73, 35,
13, 58]. These works demonstrate the value of this dataset in monitoring
and analysing alterations in precipitation patterns in the context of climate
change.

• Investigation of Temperature Trends: The dataset is of significant value in
the analysis of long-term temperature trends, with studies encompassing
global temperatures [72, 41] and urban heat [38].

• Wind Analysis: Recent works demonstrates its application in studying wind
patterns for renewable energy monitoring [48] and addressing climate changes
[8].

• Extreme Events Study: ERA5’s role is pivotal in advancing our understand-
ing of extreme climate events, exploring storm surge [18] and heatwaves [1]
and extreme precipitations [16, 70]:

• Additionally, ERA5 data finds important applications in other fields such as
agriculture [52], water resources management [74, 63], and urban planning
and infrastructure design [31].

In conclusion, ERA5 represents a significant contribution to the field of weather
and climate studies, serving as a crucial reference point for ongoing scientific
research.
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3.3.2 CERRA

The Copernicus European Regional Reanalysis (CERRA) [55] dataset, produced
under the Copernicus Climate Change Service (C3S), represents a significant ad-
vancement in the field of regional climate reanalysis. CERRA is designed to
provide high-resolution, detailed, and accurate climate data for Europe, offering
invaluable insights into the region’s atmospheric conditions. This dataset is par-
ticularly relevant for climate research, weather forecasting, and various scientific
and practical applications that require fine-scale climate information. CERRA, as
well as ERA5 provides hourly data, enabling detailed analysis of diurnal cycles
and short-term weather phenomena.

CERRA offers data at a fine 5.5 km horizontal resolution. This dataset achieves
its detailed resolution by utilizing the global ERA5 reanalysis dataset, which pro-
vides both initial and boundary conditions. In addition to inputs from ERA5,
CERRA’s regional reanalysis incorporates higher-resolution observational data
and physiographic datasets that describe surface characteristics. This reanalysis
process is described in figure 3.1 and comprises three distinct stages:

1. The Global Reanalysis ERA5 will serve as the boundary condition;

2. The CERRA Regional Reanalysis;

3. A CERRA 2D Reanalysis for the near surface.

The number of arrows in figure indicate that the quantity of observational data
incorporated into the reanalysis increases progressively from the global to the
regional reanalysis.

The output of CERRA includes both forecasts and reanalyses. In the context of
weather forecasting, the current state of the atmosphere and terrestrial and marine
surfaces is analysed. These forecasts are generated using mathematical and physi-
cal numerical models that are based on this analysis. During the reanalysis phase,
a weather forecasting model is initially used to estimate the atmospheric state at
a specific time. This ’first guess’ is then refined through a process known as ’data
assimilation’, which involves correcting the model based on observational data.
This process ensures that the reanalysis provides an accurate historical record of
weather conditions.

CERRA encompasses a comprehensive array of meteorological variables, in-
cluding temperature, humidity, wind speed and direction, precipitation, and cloud
cover. The data is available on a regular grid, while the temporal resolution dif-
fers from that of ERA5, with a distinction made between reanalysis and forecast
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FIGURE 3.1: The reanalysis process of CERRA. Source:
Copernicus-ECMWF CERRA Presentation, 2024. [15]

time. For each day, eight reanalyses are available, commencing at 00 UTC and
concluding at 21 UTC, with a temporal resolution of three hours. It is commonly
assumed that analysis data for these time periods exhibits superior quality com-
pared to forecasts for the same time frames, as it is inherently more aligned with
observations. The next six hours of each reanalysis data set are processed through
forecasting. Furthermore, for reanalyses commencing at 00 UTC and 12 UTC, the
subsequent 30 hours are processed, with a three-hour interval following the initial
six hours. In this manner, users are afforded the opportunity to select the forecast
they prefer, or, if available, the reanalysis result, for each hour. However, this
implies that even if CERRA provides data for each hour, only the eight present in
the reanalysis schedules guarantee a corrective step using observations, while the
others are forecast results. Figures 3.2 and 3.3 provides a somewhat clearer view
of this information, where the colour coding reflects analysis (red) and forecasts
(blue).

The CERRA dataset represents a valuable resource for a wide range of ap-
plications, including the study of climate trends, renewable energy forecasting,
water resource management, and risk assessment. In the context of climate re-
search, CERRA provides a historical reconstruction of meteorological variables,
which is essential for understanding long-term climate trends and the effects of
climate change in Europe.

• In [21] the authors demonstrated that CERRA outperforms the ERA5-Land
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FIGURE 3.2: This table illustrates how different forecasts overlap
and which options users have at a certain hour of the day. The
availability of data is illustrated for the example date 2009/12/09.

[15]

FIGURE 3.3: This table illustrates how different forecasts overlap
and which options users have at a certain hour of the day. The
availability of data is illustrated for the example date 2009/12/10.

[15]
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reanalysis in replicating temperature and other bio-meteorological variables,
rendering it particularly useful for the assessment of heat-related health
risks.

• In the field of renewable energy, CERRA’s accurate weather observations
are of great importance for the development of forecasting tools for wind
and solar power, which are essential for the integration of these renewable
sources into the power grid [47].

• The management of water resources also benefits from CERRA’s ability to
represent precipitation [69] and snow [42]. This also enables the assessment
of the risks of droughts and floods.

• It has been demonstrated [49] that CERRA is a viable substitute for ground-
based agro-meteorological measurements, capturing data on air tempera-
ture, actual vapor pressure, wind speed, and solar radiation.

Given the significance of CERRA in a multitude of applications, it would be
optimal to have a real-time production of this data, enabling the effective study of
recent events in a manner analogous to that of ERA5. Unfortunately, delays in the
production and data gathering have resulted in a delay of more than two years at
the time of writing, thus hindering the release of CERRA.

3.3.3 IGRA V2

The Integrated Global Radiosonde Archive version 2 (IGRA V2) [19], maintained
by the National Centers for Environmental Information (NCEI), is a comprehen-
sive dataset that plays a fundamental role in atmospheric research and climatology.
IGRA V2 provides a meticulously curated collection of radiosonde and pilot bal-
loon observations, offering invaluable vertical profiles of atmospheric parameters
from around the globe. This dataset is of great importance for the understanding
of atmospheric dynamics, the validation of climate models, and the support of a
wide range of meteorological and climatological applications.

IGRA V2 is distinguished by its extensive temporal and spatial coverage. In
fact, the dataset includes observations dating back to the early 20th century, pro-
viding a long-term record of atmospheric conditions. The spatial coverage of
IGRA V2 is global, encompassing data from over 1,500 stations worldwide. The
extensive geographical scope of the dataset ensures that it can be used to analyse
atmospheric processes on both regional and global scales.
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FIGURE 3.4: Map of the locations for all available IGRA v2.2
stations. [19]

The IGRA V2 undergoes a series of validation processes with the objective of
ensuring the quality and reliability of the data. The validation process includes the
quality control of radiosonde observations of temperature, humidity, and wind at
stations. The data must be accompanied by sufficient documentation of its digital
format, with only observed values included, while estimated values are excluded.
This dataset thus represents a valuable source of information for the validation of
results in the field of reanalysis and downscaling.
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Chapter 4

Deep Learning Models for
Downscaling

In the last decade, machine learning has received renewed attention in several
fields, boosted by major breakthroughs achieved with deep learning (DL) models.
The advantage of DL lies in its ability to extract high-level feature representations
in a hierarchical manner, due to its (deep) layered structure. In particular, for
spatio-temporal data, convolutional neural networks (CNNs) have gained much
attention due to their ability to learn spatial features [36]. DL models allow high-
dimensional problems to be handled automatically, thereby avoiding the use of
conventional feature extraction techniques (e.g. principal components, PCs) that
are commonly used in more classical approaches (e.g. linear models and tradi-
tional fully connected neural networks). In addition, new efficient learning meth-
ods (e.g. batch, stochastic and mini-batch gradient descent), regularisation options
and computational frameworks have popularised the use of DL techniques, allow-
ing neural networks to learn efficiently from data and avoid overfitting.

This chapter describes the basics of neural networks. We start by introduc-
ing the perceptron model in Section 4.1, followed by a brief explanation of the
multi-layer perceptron in Section 4.2. We then move on to explain the principles
underlying convolutional neural networks and other newer architectures, which
are essential to the models developed in this thesis.

4.1 Neuron Model

A neuron model in the context of deep learning is a mathematical abstraction
that mimics the behaviour of a biological neuron and serves as the fundamental
building block of neural networks. The primary function of a neural model is to
receive inputs, process those inputs through a set of weights, apply a non-linear
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transformation, and produce an output. This process allows neural networks to
learn and approximate complex functions from data.

In a typical neuron model, the following components and operations are in-
volved:

• Inputs (Features): A neuron receives multiple inputs, which can be features
from the data or outputs from other neurons. These inputs are represented
as a vector x =[ x1,x2, ...,xn ] where n is the number of inputs.

• Weights: Each input is associated with a weight ω =[ ω1,ω2, ...,ωn ], which
represents the strength and direction of the input’s influence on the neuron’s
output. These weights are initially set at random and are adjusted during the
training process to minimise the error in the network’s predictions.

• Bias: In addition to the weighted inputs, a bias term b is included. The bias
allows the neuron to shift the activation function, enabling the model to fit
the data better by providing additional flexibility.

• Weighted Sum: The neuron computes a weighted sum of the inputs plus the
bias, represented as:

z =
n

∑
i=1

ωi xi +b (4.1)

• Activation Function: The weighted sum z is passed through an activation
function φ(z). The activation function introduces non-linearity into the
model, allowing the network to capture complex patterns and relationships
in the data. Common activation functions include the sigmoid, hyperbolic
tangent (tanh), and rectified linear unit (ReLU).

• Output: The result of the activation function is the neuron’s output y= φ(z).
This output can either be the final prediction of the network (in the case of
an output layer neuron) or an intermediate value passed to other neurons (in
hidden layers).

Formally, the output of a neuron can be expressed as:

y = φ(
n

∑
i=1

ωi xi +b) (4.2)

The training of a neural network involves the adjustment of the weights and
biases in order to minimise a loss function, which quantifies the discrepancy be-
tween the network’s predictions and the actual target values. This training process
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FIGURE 4.1: Diagram showing a neuron model working on a rep-
resentative application.

comprises several steps. Initially, during forward propagation, the input data tra-
verses the network, layer by layer. Each neuron computes its output by applying
the weighted sum of its inputs, followed by an activation function, continuing this
process until the final output is produced.

Subsequently, the loss function calculates the discrepancy between the pre-
dicted output and the true target. Commonly employed loss functions include
mean squared error (MSE) for regression tasks and cross-entropy loss for classifi-
cation tasks. Backpropagation, a fundamental component of the training process,
entails computing the gradients of the loss function with respect to the weights and
biases. By applying the chain rule of calculus, the error propagates in a backward
direction through the network, from the output layer to the input layer. This back-
ward propagation enables the network to discern the contribution of each weight
to the overall error.

Utilising the gradients computed during backpropagation, the network up-
dates its weights and biases. Optimization algorithms such as gradient descent
or its variants (e.g., stochastic gradient descent, Adam) iteratively adjust these pa-
rameters to minimise the loss function. This iterative process continues until the
network achieves satisfactory performance on the training data.

4.2 Dense Neural Network

A single neuron provides limited functionality, but when neurons are organized
into layers, they form a neural network. This structured arrangement enables the
network to perform complex tasks by learning hierarchical representations of the
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input data. Neural networks comprise multiple layers, each serving a distinct
purpose in the data processing pipeline.

Dense neural networks comprise three or more layers of neurons, with each
neuron in a given layer activated by an affine transformation based on the neurons
in the previous layer. This architectural approach was developed as a natural
extension of the perceptron model and is commonly referred to as a Multi-Layer
Perceptron (MLP).

The width and depth of the network influence the degree of non-linearity that
can be achieved. The number of coefficients, parameters, or weights that must be
adjusted by the network increases exponentially with both width and depth.

FIGURE 4.2: Diagram showing a DNN working on a representa-
tive application.

4.3 Convolutional Neural Networks

Within the broader landscape of neural networks outlined in previous sections,
Convolutional Neural Networks (CNNs) [36] represent a highly specialised and
effective class of models, particularly suited to the processing of grid-like data
structures such as images. CNNs are designed to automatically and adaptively
learn spatial hierarchies of features, making them an extremely powerful tool for
visual recognition tasks.

The fundamental component of CNNs is the convolutional layer, which ap-
plies convolutional operations to the input data. In contrast to traditional neural
networks, where each neuron is connected to every input, convolutional layers
utilise a local connectivity pattern, whereby each neuron only processes data from
a small receptive field. This approach enables the efficient capture of local spatial
features.
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FIGURE 4.3: Diagram showing a CNN working on a representa-
tive application.

The convolution operation in a CNN applies a filter K to an input matrix X to
produce a feature map h. An example is described in figure 4.3. For a 2D input,
the convolution at a particular location can be described as:

h(i,j) =
M

∑
m=1

N

∑
n=1

X(i+m, j+n) ·K(m,n) (4.3)

Convolutional layers are composed of several filters (or kernels), which are
small, trainable matrices. These filters are slid over the input data, performing dot
products between the filter entries and the input patch it overlaps. This operation
produces a feature map, which highlights the presence of specific features such
as edges, textures, or colours at different spatial locations within the input. The
ability to learn multiple filters means that each convolutional layer can detect a
diverse range of features from the input data. The depth of these layers allows
the network to construct increasingly abstract and complex representations of the
input, layer by layer. The initial layers may detect simple edges and textures,
while the deeper layers can recognise parts of objects or entire object classes.

It should be noted that when the dimensions of the kernel are equal to the
dimensions of the input space, the CNN is equivalent to the dense layer described
in section 4.2.

4.3.1 U-Net

U-Nets [53] are a a specialised type of convolutional neural network architecture,
specifically designed to excel in tasks requiring precise localisation and contextual
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understanding, such as image segmentation.The distinctive symmetric encoder-
decoder structure, augmented by skip connections, enables U-Nets to retain de-
tailed spatial information while effectively processing high-resolution input data.
The architecture of U-nets consists of two main components: an encoder and a
decoder. These components work together to encode input data into a compressed
representation and then decode it back to a desired resolution. Let us look at them
in more detail:

• The encoder part of a U-Net is designed to capture the contextual informa-
tion of the input through a series of convolutional operations followed by a
pooling of layers. This process reduces the spatial dimensions of the input
while increasing the depth of the feature maps. Each layer in the encoder
typically includes two convolutional operations, followed by a rectified lin-
ear unit (ReLU) activation function, and then a max-pooling operation to
downsample the feature map;

• The decoder is responsible for reconstructing the spatial dimensions while
refining the details lost during the encoding phase. This is achieved through
up-convolution (transposed convolution) layers that up-sample the feature
maps. Skip connections link each layer in the encoder to its corresponding
layer in the decoder, allowing the model to use high-resolution features from
the encoder to improve the reconstruction process.

4.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [23] are a class of machine learning
frameworks developed in 2014. They consist of two neural networks, the gener-
ator and the discriminator, which are trained simultaneously through adversarial
processes. The generator tries to produce data that is indistinguishable from real
data, while the discriminator tries to distinguish between real and generated data.
The interaction between these two networks can be thought of as a game in which
the generator tries to fool the discriminator and the discriminator tries to catch the
generator producing false data. Here’s a more detailed description of these two
components:

• The generator network takes random noise as input and generates data that
mimics the real data distribution. It essentially maps a latent space (noise
vector) onto the data space, producing samples that resemble the real data.
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The objective functions for the generator can be formulated as follows:

LG =−Ex∼pdata [ logD(x)]−Ez∼pz[ log(1−D(G(z)))] (4.4)

• The discriminator network receives either real data or generated data as
input and outputs a probability indicating whether the input data is real or
generated. The discriminator is essentially a binary classifier. The objective
functions for the discriminator can be formulated as follows:

LD =−Ez∼pz[ logD(G(z))] (4.5)

where D(x) is the discriminator’s estimate of the probability that real data instance
x is real, G(z) is the generator’s output when given noise z, and D(G(z)) is the
discriminator’s estimate of the probability that a generated instance is real. The
training process alternates between updating the discriminator to maximize LD

and updating the generator to minimize LG.

4.4.1 SRGAN

Super-Resolution Generative Adversarial Networks (SRGANs) [37] extend the
GAN framework to the problem of image super-resolution. They aim to recon-
struct high-resolution images from low-resolution inputs by exploiting the ad-
versarial training mechanism of GANs to generate images with high perceptual
detail.

SRGANs extend the basic GAN framework by incorporating specific architec-
tural features tailored for super-resolution tasks in the generator and discriminator.

• The generator in SRGAN is typically a deep convolutional network de-
signed to upsample the LR input image to the HR output image. It uses
a series of residual blocks to capture high frequency detail, which is critical
for generating realistic textures and edges;

• The discriminator in SRGAN is a convolutional network that attempts to
distinguish between real HR images and generated HR images. It learns to
evaluate the perceptual quality of the images produced by the generator.

Further improvements are incorporated in the loss function: in addition to the
adversarial loss used in traditional GANs, SRGAN introduces a perceptual loss
that includes both content loss and adversarial loss. The content loss is usually
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defined as the pixel-wise mean squared error (MSE) between the generated HR
image and the ground truth HR image.

Lcontent = Ex,y[∥ φ(y)−φ(G(x))∥2] (4.6)

where φ represents the feature maps obtained from a pre-trained deep network
(e.g., VGG19), y is the ground truth HR image, and G(x) is the generated HR
image. The total loss for the generator combines the perceptual loss and the ad-
versarial loss:

LG = Lcontent +λEx[ log(1−D(G(x)))] (4.7)

where λ is a weighting factor that balances the two loss components.
Super-Resolution Generative Adversarial Networks represent a significant ad-

vance in image super-resolution, using the adversarial training mechanism of
GANs to produce high-quality, high-resolution images from low-resolution in-
puts. The combination of adversarial loss and perceptual loss enables SRGANs to
produce images that are not only accurate in terms of pixel values, but also visually
pleasing, capturing fine details and textures. This makes SRGANs a powerful tool
for applications requiring high fidelity image reconstruction and enhancement.

FIGURE 4.4: Diagram showing a SRGAN working on a represen-
tative application
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4.5 Recurrent Neural Networks

Recurrent neural networks (RNNs) [54, 32] represent a class of artificial neural
networks designed for processing sequences of data. In contrast to traditional
feedforward neural networks, RNNs feature connections that form directed cy-
cles, enabling the persistence of information. This renders them particularly well-
suited for tasks where the context or state across time is crucial, such as time series
forecasting, natural language processing, speech recognition, and, in our case, for
the prediction of weather variables.

In an RNN, the input sequence is fed into the network one element at a time,
and the output depends not only on the current input but also on the network’s
previous states. This is achieved through the hidden state, which acts as a memory
of past inputs. Mathematically, the hidden state ht at time step t is computed as:

ht = σ(Wh ·ht−1 +Wx · xt ·bh) (4.8)

The hidden state is then used to produce the output yt :

yt = φ(Wy ·ht +by) (4.9)

where:

• σ and φ are the activation functions (usually a tanh or ReLU function);

• Wh, Wx and Wy are the weight matrices for the hidden state the input and the
output respectively;

• xt is the input at time step t;

• bh and by are bias terms.

One of the primary challenges with standard RNNs is their difficulty in learn-
ing long-term dependencies due to issues like vanishing and exploding gradients.
These issues arise during the backpropagation process, where gradients can di-
minish or grow exponentially, making it hard for the network to learn and retain
information over long sequences.
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4.5.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks [27] are a type of RNN designed to
overcome the limitations of standard RNNs incorporating a more complex archi-
tecture with additional gates to control the flow of information. An LSTM cell
consists of three main gates:

• Forget Gate: Determines what information from the previous cell state
should be discarded;

• Input Gate: Decides which new information should be added to the cell
state;

• Output Gate: Controls what information from the cell state should be out-
putted.

A graphical representation of a LSTM cell is provided in Figure 4.5.
LSTM networks are particularly adept at capturing long-term dependencies

due to their capacity to regulate the flow of information through gating mecha-
nisms. This enables them to retain crucial information over extended sequences,
thereby circumventing the challenges associated with vanishing and exploding
gradients. Consequently, LSTMs have become a prevalent choice in a multitude
of applications.

FIGURE 4.5: Graphical representation of a long short-term mem-
ory (LSTM) cell, with the three gates highlighted for clarity.
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4.6 Diffusion Models

Diffusion models are a class of generative models that have recently garnered
significant attention for their effectiveness in producing high-quality images and
other types of data. This section will delve into diffusion models in greater de-
tail than the rest of the chapter, as they represent a crucial aspect of the study
undertaken in this thesis.

The fundamental concept underlying diffusion models is that of a diffusion
process, a stochastic process describing the continuous random movement of par-
ticles over time. This process models the spread or diffusion of some quantity in
space or time, with particles moving from regions of high concentration to regions
of low concentration, resulting in a gradual blending or mixing of the quantity.

In the context of machine learning, diffusion models leverage the principles
of diffusion processes to model the generation of data. They operate by gradu-
ally transforming a simple, often Gaussian, noise distribution into a complex data
distribution through a series of iterative (diffusion) steps. This transformation is
accomplished by incorporating Gaussian noise into the current data samples and
iteratively refining them.

The diffusion process is divided into two distinct categories: forward and re-
verse diffusion processes. The forward diffusion process begins with a real image
and gradually introduces Gaussian noise, resulting in a progressively noisier im-
age over time. In contrast, the reverse diffusion process employs a neural network
that learns to remove this noise in a step-by-step manner, thereby reconstructing
the original image from the noisy version. This iterative refinement enables diffu-
sion models to generate high-quality data samples from initial noise. Figure 4.6
illustrates an example of a forward and reverse diffusion process on an image.

FIGURE 4.6: Forward (from left to right) and reverse (from right
to left) diffusion process. [3]

From a mathematical perspective [43], considering a distribution q(x0) which
generates the data, generative models aim to find a parameter vector θ such that
the distribution pθ (x0) parameterized by a neural network approximates q(x0).
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Denoising Diffusion Probabilistic Models (DDPM)[26] assume the generative
distribution pθ (x0) to have the form

pθ (x0)) =
∫

pθ (x0:T )dx1:T (4.10)

given a time range horizon T > 0. where the Markov Chain formulation is :

pθ (x0:T ) = pθ (xT )
T

∏
t=1

pθ (xt−1|xt). (4.11)

Training in this context is traditionally based on a variational lower bound
of the negative log likelihood. It is important to note that the Kullback-Leibler
Divergence DKL = DKL(q(x1:T |x0)∥pθ (x1:T |x0)) is positive, and so we obtain:

− log pθ (x0)≤− log pθ (x0)+DKL (4.12)

We can thus expand the second term to derive the training loss Lθ :

=− log pθ (x0)+Eq

[
log

q(x1:T |x0)

pθ (x0:T )/pθ (x0)

]
=− log pθ (x0)+Eq

[
log

q(x1:T |x0)

pθ (x0:T )
+ log pθ (x0)

]
= Eq

[
logq(x1:T |x0)− pθ (x0:T )

]
= Lθ (4.13)

It is important to notice that in the case of diffusion models, the latent space has
typically the same dimension of the visible space, so latent encodings can be vi-
sually inspected and compared with real images.

In the case of Denoising Diffusion Implicit Models (DDIM) [61], which are
employed in this thesis, the diffusion process is non-Markovian and can be defined
as:

qσ (x1:T |x0) = qσ (xT |x0)
T

∏
t=2

qσ (xt−1|xt ,x0) (4.14)

where
qσ (xT |x0) = N (xT |

√
αT x0,(1−αT ) · I) (4.15)

and

qσ (xt−1|xt ,x0) = N
(

xt−1

∣∣∣µσt (x0,αt−1);σ
2
t · I

)
(4.16)
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with

µσt (x0,αt−1) =
√

αt−1x0 +

√
1−αt−1−σ2

t ·
xt−
√

αtx0√
1−αt

(4.17)

The definition of q(xt−1|xt ,x0) is cleverly chosen in order to ensure two important
aspects of the diffusion process of DDPM:

• the Gaussian nature of q(xt−1|xt ,x0);

• the fact that the marginal distribution qσ (xt |x0) =N (xt |
√

αtx0;(1−αt) · I)
is the same as in DDPM.

Thanks to the latter property, xt can be expressed as a linear combination of x0

and a noise variable εt ∼N (εt |0; I):

xt =
√

αtx0 +
√

1−αtεt (4.18)

The subsequent step is to define a trainable generative process pθ (x0:T ) where
pθ (xt−1|xt) leverages the structure of qσ (xt−1|xt ,x0). The idea is that given a
noisy observation xt , one begins to make a prediction of x0, and then use it to
obtain xt−1 according to equation 4.16.

In practice, the idea is to train a neural network ε
(t)
θ
(xt ,αt) to map a given xt

and a noise rate αt to an estimate of the noise εt added to x0 to construct xt . As a
consequence, pθ (xt−1|xt) becomes a δ

f (t)
θ

, where

f (t)
θ
(xt ,αt) =

xt−
√

1−αtεθ (xt ,αt)√
αt

. (4.19)

Using f (t)
θ
(xt ,αt) as an approximation of x0 at time step t, xt−1 is then obtained as

follows:

xt−1 =
√

αt−1 · f (t)
θ
(xt ,αt)+

√
1−αt−1−σ2

t · εθ (xt ,αt) (4.20)

.
As for the loss function, the term in Equation 4.13 can be further refined ex-

pressing Lθ as the sum of the following terms [60]:

Lθ = LT +Lt−1 + · · ·+L0 (4.21)
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where
LT = DKL(q(xT |x0) ∥ pθ (xT ))

Lt = DKL(q(xt |xt+1,x0)∥pθ (xt |xt+1))

for 1≤ t ≤ T −1
L0 =− log pθ (x0|x1)

All previous distributions are Gaussian and their KL divergences can be calculated
in closed form using, obtaining the following formulation:

Lt = Et∼[1,T ],x0,εt

[
γt∥εt− εθ (xt , t)∥2

]
(4.22)

This can be simply interpreted as the weighted Mean Squared Error between the
predicted and the actual noise a time t.

In order to gain a deeper insight into the preceding explanation and to provide
a more practical illustration of the functioning of diffusion models, pseudocodes
of the training and sampling algorithms are presented below:

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)

3: t ∼Uniform(1,..,T)
4: ε ∼N (0; I)

5: xt =
√

αtxb +
√

1−αtε

6: Backpropagate on ||ε− εθ (xt ,αt)||2

7: until converged

Sampling is an iterative process, starting from a purely noisy image
xT ∼N (0, I). The denoised version of the image at time step t is obtained using
equation 4.20.

Algorithm 2 Sampling

1: xT ∼N (0, I)
2: for t = T, ...,1 do
3: ε = εθ (xa,xt ,αt)

4: x̃0 =
1√
αt
(xt− 1−αt√

1−αt
ε)

5: xt−1 =
√

αt−1x̃0 +
√

1−αt−1ε

6: end for
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4.7 Transformers

The introduction of Transformers [68] in 2017 has led to a revolution in the field of
machine learning, particularly in the area of natural language processing (NLP).
The key innovation of the Transformer model is the self-attention mechanism,
which allows the model to weigh the importance of different words in a sentence
when encoding a particular word. This mechanism enables the efficient process-
ing of long-range dependencies, making Transformers highly effective for tasks
such as translation, text summarisation, and more.

4.7.1 Vision Transformers

Vision Transformers (ViTs) represent an extension of the Transformer architecture
to the domain of computer vision. Introduced in 2020 [17], ViTs have demon-
strated that pure Transformer architectures can achieve state-of-the-art perfor-
mance on image recognition tasks, which have historically been dominated by
convolutional neural networks (CNNs).

ViTs introduce a novel approach to image processing by treating images as
sequences of patches, analogous to how traditional transformers handle text as
sequences of words. This innovative method begins with the division of an im-
age into fixed-size patches. Each patch is then flattened and linearly embedded
into a higher-dimensional space, similar to the token embeddings used in natu-
ral language processing. Following the embedding step, the sequence of patch
embeddings is augmented with a learnable positional encoding. This encoding
provides information about the relative positions of the patches, compensating for
the lack of inherent order in the image patches, in a manner analogous to posi-
tional encodings in text processing, which provide information about the order of
words.

Once the patches are embedded and positionally encoded, they are passed
through a series of transformer layers. These layers comprise multi-head self-
attention mechanisms and feed-forward neural networks, which permit the model
to dynamically focus on various parts of the image and learn complex contextual
relationships between the patches. The self-attention mechanism enables each
patch to attend to every other patch, facilitating the capture of both local and
global dependencies within the image. This ability to model long-range inter-
actions represents a significant improvement from the localized receptive fields
characteristic of CNNs.
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The final step involves the reconstruction of the image from these processed
patches. This reconstruction structure ensures that the output image retains the
spatial coherence and high-level features learned during the attention and embed-
ding stages. The combination of patch-wise processing and the reconstruction
phase allows Vision Transformers to effectively manage and manipulate image
data, leveraging the strengths of the transformer architecture.

Shifted Windows Transformers

The traditional Vision Transformer framework treats an image as a sequence of
patches, utilising self-attention mechanisms to model the relationships between
these patches. While this methodology is effective at capturing global context,
it often comes at a high computational cost and struggles with modelling fine-
grained local details due to the absence of the localized inductive biases that are
naturally present in CNNs. Shifted Windows Transformers were developed to
address these challenges by introducing a structured approach to self-attention
that efficiently balances the processing of local and global features.

The architecture of Shifted Windows Transformers is founded on two principal
steps: window-based self-attention and shifted window-based self-attention.

• In window-based self-attention the image is divided into a series of non-
overlapping windows of fixed size and within each of them self-attention is
applied independently. This localized attention allows the model to concen-
trate on the intricate details within each window, facilitating a more granular
understanding of local features.

• The Shifted Window-Based Self-Attention mechanism is employed to guar-
antee that the model captures interactions between distinct windows. This
is achieved by shifting the windows by a fixed number of patches in sub-
sequent layers. This shifting creates overlap with neighbouring windows,
which enables the model to integrate information from adjacent windows
and thereby capture cross-window dependencies.

Subsequently, the outputs from the window-based and shifted window-based self-
attention layers are aggregated. This aggregation step enables the model to syn-
thesise both local and global features in an effective manner, utilising the comple-
mentary strengths of each attention mechanism.



39

Chapter 5

Experiments

This chapter outlines the experimental framework employed in the analysis con-
ducted for the elaboration of this thesis. The objective of this work is to downscale
the meteorological variable under consideration from the resolution of the ERA5
dataset to that of CERRA, treating it as an image super-resolution task. In order to
assess the efficacy of the proposed methodology, several state-of-the-art models
will be compared. The foundations of these models were introduced in Chapter 4.
Finally, the results will be validated against in-situ observations of the meteoro-
logical variable provided by the IGRA V2 dataset. This will enable an assessment
of the extent to which the CERRA dataset deviates from the reality.

5.1 Datasets description and Preprocessing

In order to conduct the experiments, a range of ten years, from 2010 to 2019,
has been selected for the training phase of the models. Two distinct years, 2009
and 2020, have been identified as testing periods. The choice of non-contiguous
test years is motivated by aiming to widen the evaluation range and to match
the availability of in-situ observations for validation. The lower resolution ERA5
dataset was employed as a conditioning factor in conjunction with the CERRA
dataset, which served as the high-resolution ground truth. It is important to note
that in order to align these datasets, only the ERA5 measurements corresponding
to 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00 and 21:00, which correspond
to CERRA time, were used.

5.1.1 Area Selection

The initial step was to select the area of interest on which to operate. It was
decided to limit the study to a predominantly Italian area, with the following co-
ordinates:
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FIGURE 5.1: Selected area for the study.

• North at 47.75°;

• South at 35°;

• East at 18.75°;

• West at 6°.

The area of interest can be seen in Figure 5.1.
This area was chosen for two reasons in particular: firstly, since the research

team is composed only of Italians and located in Italy, the choice fell on this coun-
try. Additionally, other countries are included, specifically Switzerland, Slovenia,
and Tunisia, Algeria, France, Austria, Croatia, Hungary, Bosnia & Herzegovina,
and Montenegro. The second reason is that selecting an area that is too small
would have made the study less interesting, and a larger area (e.g. the entire Eu-
ropean area covered by CERRA) would have made it unfeasible due to the com-
putational resources required. Furthermore, using these exact coordinates allows
for a target image of exactly 256x256 pixels, which we know is an excellent value
to work with, as it is a power of 2.
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5.1.2 Data availability

Both ERA5 and CERRA are freely available from the Copernicus Climate Change
Service (C3S) website, which is part of the European Union’s Copernicus Pro-
gramme [14] . The Copernicus Programme represents a comprehensive initiative
designed to provide accurate, timely, and easily accessible information to im-
prove the management of the environment, understand and mitigate the effects of
climate change, and ensure civil security. The Copernicus Data Store (CDS) pro-
vides a user-friendly interface and a wealth of climate data, tools, and applications,
facilitating the exploration and extraction of data for a wide range of scientific and
practical applications.

5.1.3 Variable selection

The focus of this study is on the meteorological variable of wind speed. Several
factors influenced this decision. Firstly, the aim is to simplify the experimental
framework by focusing on a single variable. Secondly, the selection of wind speed
is due to the fact that, compared to variables like rainfall, it is more physically
self-contained and thus easier to analyse in isolation. Furthermore, wind speed
is of significant societal relevance, particularly in the context of extreme weather
events and their implications for energy generation in wind farms.

In particular, the value of wind speed at 10 metres above the surface has been
utilised. In the case of CERRA, it is already included as a primary variable. In
contrast, for ERA5, it is possible to compute it from both the zonal u and the
meridional v wind components by the the formula ws =

√
u2 + v2. The utilized

values are instantaneous.

5.1.4 Area Projection

The two datasets employed utilise disparate projection mechanisms, with ERA5
employing a cylindrical projection and CERRA a Lambert Conformal Conic pro-
jection. Given that the selected study area is situated at mid-latitudes, where dis-
tortions in cylindrical projections are relatively minimal, it is recommended that
the two projections be equalised by re-projecting CERRA using a cylindrical pro-
jection consistent with ERA5.
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FIGURE 5.2: An example of a CERRA-Land GRIB file opened in
QGIS. To the left in the Lambert Conformal Conic projection, to

the right transformed to WGS 84. [15]

The projection can be implemented using the CDO library [56], in accordance
with the following steps:

• Download the CERRA dataset;

• Install CDO through the command "sudo apt-get install cdo" or by source.

• Prepare a configuration file, cyl.txt, with the following parameters:

– gridtype = lonlat

– xsize = 256

– ysize = 256

– xfirst = 6

– xinc = 0.05

– yfirst = 35

– yinc = 0.05

• Then is possible to convert directly the GRIB file of the dataset with the
comand "cdo remapbil,cyl.txt <inputfile.grib> <outputfile.grib>"

5.1.5 SR framework

The application of super-resolution (SR) to neural networks necessitates the util-
isation of some form of upsampling, which may be implemented in a variety of
ways and at different points within the network. In general, two frameworks for
SR can be delineated:

• pre-upsampling, where the upsampling is conducted in the initial section of
the network;
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• post-upsampling, where the upsampling component is integrated at the con-
clusion of the network.

If the upsampling is performed at the start, the spatial dimension of the features is
increased, which typically results in improved overall performance at the expense
of computational complexity.

The upsampling process can be executed using various methods. Some meth-
ods employ learnable parameters, such as transposed convolution, while others,
like 2D upsampling or bilinear and bicubic upsampling, do not use learnable pa-
rameters. In this study, we opted for pre-emptive bilinear upsampling, due to its
practicality. Additionally, the experiments with methods involving upsampling
with learnable parameters yielded similar results.

The preemptive bilinear upsampling can be computed in a straightforward
manner, directly within the data generator using the cv2 library. In particular,
the function cv2.resize() with interpolation cv2.INTER_LINEAR can be employed
for this purpose. This represents the transition of the data from ERA5, which has
a size of 52x52 pixels, to the size of the CERRA data, which instead is 256x256
pixels.

5.2 Models Definition

This section defines in detail all the models and methods used in the experiments
carried out in this study, from a baseline to the best performing model. In order
to optimise the performance of the models, it is necessary to condition them in
order to guide them towards a forecast defined by the known previous weather
conditions. In this study, conditioning is applied in a classifier-free manner, by
concatenating the conditioning frames to the noisy images alongside the channel
axis.

The input data fed into the models consists of four pre-emptively upsampled
ERA5 images, along with a single image representing the noisy input. Each model
then outputs a single super-resolved image. Given that the image size is set at
256×256 pixels, the input dimension is structured as (batch_size, 256, 256, 4),
while the output dimension is formulated as (batch_size, 256, 256). The only
exception is the diffusion model, which takes in input also the noise. In order
to predict the high-resolution image at time t0, the conditioning information in-
cludes the low-resolution images at times t−6, t−3, t0 and t+3. A more detailed
understanding of this workflow can be gained from analysing image 5.3.
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FIGURE 5.3: This image illustrates the selection of LR data for
the generation of a HR image at time t0. The images represent the

wind speed over the selected territory.[43]

5.2.1 Baseline

The baseline selected for this task is simply the result of the bilinear upsampling
used in the preprocessing phase. This operation ensures that the data reaches
the same size as the CERRA data, allowing for comparison using the available
metrics.

Bilinear interpolation is a widely used method in image processing for resiz-
ing images, particularly for scaling up or down. The fundamental principle behind
bilinear interpolation is to use the values of the four nearest pixels to estimate the
value of a new pixel. This method provides a balance between computational
simplicity and the quality of the resulting image, making it a popular choice for
many practical applications despite the existence of more advanced methods. The
procedure comprises a series of methodical steps that finally result in the interpo-
lation of pixel values, thus ensuring a smooth transition and continuity across the
image.:

1. Identification of Surrounding Pixels: to begin with, consider a point (x,y)
in the output image where interpolation is required. The first step involves
identifying the four nearest pixel values from the input image that surround
this point. These pixels are located at the integer coordinates (i, j), (i+1, j),
(i, j+ 1), (i+ 1, j+ 1). These coordinates correspond to the top-left, top-
right, bottom-left, and bottom-right pixels relative to the point (x,y).
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2. Calculation of Distance Fractions: compute the fractional distances from
the point (x,y) to the integer coordinates of the surrounding pixels. Let xd

denote the fractional part of x and dy denote the fractional part of y. These
distances are given by:

xd = x−⌊x⌋ and yd = y−⌊y⌋ (5.1)

where ⌊x⌋ and ⌊y⌋ represent the greatest integers less than or equal to x and
y respectively.

3. Weighted Averaging: the core of bilinear interpolation involves computing
a weighted average of the four surrounding pixel values. Let Q1,1, Q2,1, Q1,2

and Q2,2 denote the pixel values at coordinates (i, j), (i+1, j), (i, j+1) and
(i+1, j+1), respectively. The interpolated pixel value P(x,y) at the point
(x,y) is then determined by the following formula:

P(x,y) = Q1,1 · (1− xd) · (1− yd)+

Q2,1 · xd · (1− yd)+

Q1,2 · (1− xd) · yd+

Q2,2 · xd · yd

(5.2)

In this expression, each term represents the contribution of one of the four
surrounding pixels, weighted by the distances to the point (x,y). The weights
are proportional to the inverse distances, ensuring that closer pixels have a
greater influence on the interpolated value.

4. Finally, the computed interpolated value P(x,y) is assigned to the corre-
sponding location in the output image. This process is repeated for each
pixel in the output image, resulting in a resized image where the new pixel
values are smoothly interpolated from the original image.
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FIGURE 5.4: The image arepresenting the mathematical formula-
tion of bilinear interpolation for pixel intensities and positions.

FIGURE 5.5: Visual representation of bilinear interpolation ap-
plied to a 2D image grid.

5.2.2 ESPCNN Model

The Efficient Sub-Pixel Convolutional Neural Network (ESPCNN) represents a
significant advancement in the field of image super-resolution, having been in-
troduced in 2016 [59]. This model is renowned for its innovative approach to
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upscaling images, offering a more efficient and effective method compared to tra-
ditional super-resolution techniques. The fundamental concept of ESPCNN is
based on the sub-pixel convolution operation, which represents a compelling al-
ternative to conventional deconvolution or transposed convolution layers. One of
the primary advantages of ESPCNN is its computational efficiency. By deferring
the upscaling operation to the end of the network, ESPCNN processes lower-
resolution images throughout most of the layers. This reduces the computational
load and accelerates the training and inference processes. Furthermore, the archi-
tecture demonstrated the capacity to achieve high-quality super-resolution results.

FIGURE 5.6: ESPCNN original architecture, with two convolu-
tion layers for feature maps extraction, and a sub-pixel convolution
layer that aggregates the feature maps from LR space and builds

the SR image in a single step. [59]

Table 5.1 presents the hyperparameters employed to train the ESPCNN model
utilised in this study.

Hyper-parameter Value

Learning rate 1e-4
Epochs 200
Steps per epoch 500
Weight decay 1e-5
Optimizer AdamW
Batch size 32

TABLE 5.1: Hyper-parameters for model ESPCNN

5.2.3 EDSR Model

The introduction of Enhanced Deep Residual Networks for Single Image Super-
Resolution (EDSR) represents a significant advance in the field of image super-
resolution. Introduced in 2017 [40], EDSR builds upon the concept of residual
learning to deliver state-of-the-art performance in image enhancement tasks. The



48 Chapter 5. Experiments

model is designed to address the limitations of previous approaches, offering sub-
stantial improvements in both accuracy and computational efficiency. One of the
notable innovations in EDSR is the removal of batch normalization layers. While
batch normalization is commonly used to stabilize and accelerate training, the au-
thors found that it can adversely affect the performance of super-resolution mod-
els. This architecture introduces also the concept of scale-specific models to han-
dle different upscaling factors (e.g., 2x, 3x, 4x). Instead of using a single model
for all scales, EDSR trains separate models optimised for each specific upscal-
ing factor. This specialisation allows the model to better capture the nuances and
details required for different levels of image enhancement. EDSR has continued
to influence and inspire subsequent research and development in the domain of
image enhancement, thereby solidifying its position as a cornerstone in modern
super-resolution techniques.

FIGURE 5.7: The architecture of single-scale SR network (EDSR).
[40]

Table 5.2 presents the hyperparameters employed to train the ESPCNN model
utilised in this study.

5.2.4 SwinLSTM Model

The SwinLSTM model [62] represents a sophisticated hybrid approach in the
realm of image super-resolution, combining the strengths of Swin Transformers
and Long Short-Term Memory (LSTM) networks. This innovative model lever-
ages the powerful feature extraction capabilities of Swin Transformers with the
temporal dynamic modeling of LSTM, providing a robust framework for high-
quality image enhancement. The Swin Transformer introduced in section 4.7.1
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Hyper-parameter Value

Learning rate 1e-4
Epochs 200
Steps per epoch 500
Weight decay 1e-5
Optimizer AdamW
Batch size 32

Filters 128
Residual blocks 5

TABLE 5.2: Hyper-parameters for model EDSR

serves as the primary feature extractor in the SwinLSTM architecture, while the
LSTM component (explained in Section 4.5.1) is utilised to model temporal de-
pendencies and dynamic changes in image sequences. While traditional super-
resolution models primarily focus on spatial relationships, LSTM networks are
adept at capturing sequential information, rendering them suitable for handling
image sequences or video frames. This model is thus able to maximise the infor-
mation derived from the images passed as conditioning for the final result and to
utilise them for the improvement of the SR image in output.

The authors presented two possible versions of this architecture, a Base one
and a more sophisticated Deep one. In order to achieve the greatest possible per-
formance in this study, the Deep version of the model has been employed. A more
detailed description of the architecture is provided in Figure 5.8.
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FIGURE 5.8: The two SwinLSTM architectures: base model with
a single SwinLSTM cell (on the left). And the deep model with

multiple SwinLSTM cells (on the right). [62]

Table 5.3 presents the hyperparameters employed to train the SwinLSTM-D
model utilised in this study.

Hyper-parameter Value

Learning rate 1e-4
Epochs 20
Weight decay 1e-5
Optimizer AdamW
Batch size 32

Depths downsample [2, 2, 2, 2]
Depths upsample [2, 2, 2, 2]
Patch size 2
Heads [8, 8, 8, 8]
Window size 2

TABLE 5.3: Hyper-parameters for model SwinLSTM

5.2.5 SRGAN Model

The functioning of SRGAN models [37] has already been explained in Section
4.4.1, where the study of their architecture also detailed a broad spectrum of de-
cisions and the prevalence of use of the perceptual loss component into the gen-
erator’s loss function. However, our experiments indicated that utilising a mean
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squared error (MSE)-based non-perceptual loss, in conjunction with a Patch-GAN
[29] discriminator, proved to be more efficacious than its perceptual counterpart.
This approach yielded optimal performance outcomes.

Table 5.4 presents the hyperparameters employed to train the SRGAN model
utilised in this study.

Hyper-parameter Value

Learning rate 2e-4
Epochs 160
Steps per epoch 500
Optimizer Adam
Beta1 0.5
Batch size 2

TABLE 5.4: Hyper-parameters for model SRGAN

5.2.6 Residual U-Net Model

The residual U-net is a U-net implementation that is employed by the diffusion
model to perform the denoising component. The network utilises residual blocks
and implements downscaling via average pooling and upsampling via interpola-
tive resizing. The experiments conducted demonstrated that it also functions as a
standalone super-resolution model, with notable effectiveness in this setting, pro-
viding an effective benchmark against the diffusion model. This comparison is of
particular significance due to the architectural parallels and similarities in param-
eter count between the two models. The shared characteristics allow for a more
accurate understanding of their respective strengths and capabilities in the field of
super-resolution.

Table 5.5 presents the hyperparameters employed to train the Residual U-Net
model utilised in this study.
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Hyper-parameter Value

Learning rate 1e-4
Epochs 110
Steps per epoch 500
Weight decay 1e-5
Optimizer AdamW
Batch size 8

Widths [64, 128, 256, 384]
Block depth 3

TABLE 5.5: Hyper-parameters for model Residual U-net

5.2.7 ViT Model

Furthermore, the functioning of the Vision Transformer [17] models has already
been elucidated in the previous chapter (Section 4.7.1). The implementation in-
volved in this study is a tuned version of the base architecture of ViTs with the
reconstruction process implemented via transposed convolution upsampling alter-
nated with residual blocks.

Table 5.6 presents the hyperparameters employed to train the ViT model utilised
in this study.

Hyper-parameter Value

Learning rate 1e-4
Epochs 220
Steps per epoch 500
Weight decay 1e-5
Optimizer AdamW
Batch size 8

Patch size 8
Heads 12
Transformer layers 6

TABLE 5.6: Hyper-parameters for model ViT
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5.2.8 Diffusion Model

Diffusion models, previously introduced in Section 4.6, operate as iterative de-
noising algorithms. Their main trainable component is the denoising network.
The training of this underlying denoising network is conducted in accordance
with conventional procedures, and we have elected to employ the U-net architec-
ture described in Section 5.2.6.

Table 5.7 presents the hyperparameters employed to train the Diffusion model
utilised in this study.

FIGURE 5.9: Architectural design of the denoising U-Net em-
ployed in the Diffusion Model.

Generative Ensemble Diffusion

In a similar manner to a previous study [3], this investigation employs the en-
semble properties of diffusion models. The objective of diffusion models is to
approximate the distribution of the training data. Consequently, the generative
outcome is expected to be a probabilistic point within the data distribution. It is
common for diffusion processes with identical conditioning to yield disparate re-
sults across different executions and this behaviour of may impede the prediction
process, as a single generation may diverge considerably from the mean of the
distribution, resulting in a convincing yet highly unlikely outcome within the dis-
tribution. One potential solution to this issue is to compute the mean of a set of
diffusion generations, which would move the generated image closer to the mean
value of the distribution and therefore generate a more probable outcome.
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FIGURE 5.10: Diagram explaining how the Diffusion Model
works and how Generative Ensemble Diffusion is integrated. [43]

Differently from the approach used in [3], the methodology employed sim-
ply calculates the mean between the predicted instances, rather than utilising a
post-processing model. This more straightforward approach yielded comparable
results with a reduced computational load. In our experiments, we opted for an
ensemble comprising 15 executions of the single diffusion model, with each diffu-
sion comprising 5 steps. This combination proved to be the optimal configuration
with respect to our testing years.

Figure 5.10 provides a general overview of the ensemble architecture. Starting
from the left, it can be seen that the inputs are the noise and four low-resolution
conditioning images. Pre-emptive bilinear upsampling is performed on the low-
resolution images before their insertion into the model. The model then performs
five diffusion steps of sequential denoising, with a noise scheduler managing the
re-addition of the noise and the computation of noise rates. The noise scheduling
process requires the generation of a linear schedule, with denoising operations
alternating with the re-addition of noise at a lower rate. A pseudocode of the
algorithm is reported in Algorithm 3.

This operation is performed 15 times as part of the ensemble effort, using the
same conditioning information but different input noise. The cumulative outputs
are finally combined via a mean operation to produce the downscaled output. This
operation is effectively performed in a parallelised manner with a batch size of 32.
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Algorithm 3 Noise Scheduler
1: next_noisy_images ← initial_noise
2: for step in diffusion_steps do
3: noisy_images ← next_noisy_images
4: noisy_variance ← diffusion_schedule(step)
5: pred_noise, pred_image ← denoising_unet(noisy_images,

noisy_variance)
6: next_variance ← diffusion_schedule(next(step))
7: next_noisy_images ← pred_image + next_variance ∗

pred_noise
8: end for

Hyper-parameter Value

Learning rate 1e-4
Epochs 220
Steps per epoch 500
Weight decay 1e-5
Optimizer AdamW
Batch size 8

Widths [64, 128, 256, 384]
Block depth 3
Diffusion Steps 5

TABLE 5.7: Hyper-parameters for model Single Diffusion. It is
important to note that the model represented by these parameters
is the same model used to generate the ensemble diffusion results.
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5.3 Training and Evaluation

All training was conducted on an Nvidia RTX 4000 and all the models were
developed utilizing the TensorFlow/Keras and PyTorch frameworks, which are
renowned for their robustness and flexibility in deep learning applications. The
training dataset encompassed data from 2010 to 2019, while the testing dataset
included data from the years 2009 and 2020. This strategic partitioning was de-
signed to rigorously evaluate the models’ performance across temporal boundaries
that both precede and follow the training period, thereby ensuring a comprehen-
sive assessment of their generalization capabilities.

To manage the substantial volume of data efficiently, a custom data genera-
tor was employed. This generator played a crucial role in the dynamic creation of
data sequences and the efficient handling of training batches. Specifically, the gen-
erator utilized memory mapping techniques to load only the necessary data into
RAM, significantly optimizing the memory usage and computational efficiency.
Data batches were randomly selected across the ten-year training span, enhancing
the model’s ability to generalize by preventing overfitting to specific time periods.

The training process was conducted in mini-batches of 8 samples, iterating
over a large number of epochs to ensure thorough learning. The AdamW op-
timization algorithm, which combines the benefits of the Adam optimizer with
weight decay regularization, was utilized to update the model parameters. This
approach helps in mitigating overfitting by incorporating regularization directly
into the optimizer.

To further refine the training process, a sophisticated callback function was
implemented to adjust the learning rate and weight decay dynamically. Initially,
the learning rate was set at 1×10−4 and gradually reduced to 1×10−5 as training
progressed. Similarly, the weight decay parameter was initialized at 1×10−5 and
subsequently decreased to 1×10−6.

During the evaluation phase, a separate generator was employed to produce
continuous sequences tailored for each testing year. This generator was designed
to handle a batch size of 32, ensuring efficient processing of the test data. Given
the three-hour temporal resolution of the dataset, each batch represented a 96-hour
(four-day) period. This approach facilitated a detailed and continuous assessment
of the models’ performance over extended timeframes, providing insights into
their ability to maintain accuracy and robustness over varying temporal condi-
tions.
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5.3.1 Validation

The validation process employs in-situ observations from weather stations as the
ground truth against which the model predictions are evaluated. This step is cru-
cial not only for assessing the models’ performance but also for evaluating the
quality of the reanalysis datasets provided by ERA5 and CERRA. These in-situ
observations offer a reliable benchmark, enabling a thorough comparison between
observed and predicted values. The IGRA V2 dataset, which provides comprehen-
sive meteorological data, was selected as the primary source of validation data.
The dataset comprises wind speed measurements at various pressure levels, with
the maximum value corresponding to the altitude of the weather station. To en-
sure consistency with the ERA5 and CERRA datasets, only the observation with
the highest air pressure value was selected for each measurement. This criterion
aligns the in-situ observations with the structure of the reanalysis data, facilitating
a coherent validation process.

Given the temporal characteristics of the datasets from ERA5 and CERRA,
which report measurements at hourly intervals with specific data points recorded
every three hours, it was imperative to structure the in-situ data accordingly. The
IGRA data, characterized by an irregular distribution of timestamps with concen-
trations around midnight and midday, necessitated a preprocessing step to stan-
dardize the temporal resolution. Measurements not occurring at these key times
were excluded. Additionally, for instances where multiple measurements were
recorded by the same station within the hour preceding these slots, the values
were averaged, and the corresponding timestamp was rounded to the start of the
subsequent hour. This approach ensured temporal alignment across all datasets,
facilitating a direct and fair comparison.

To enable a spatially coherent comparison, we mapped all values to the spatial
grid of the in-situ data. This decision allowed us to include only those data points
that had corresponding values in the ERA5 and CERRA datasets, as well as in the
model predictions. By ensuring that each comparison involved data present in all
three sources, we significantly reduced the potential for spatial discrepancies, thus
enhancing the reliability of the validation process. This strategy also minimized
the storage requirements by focusing only on relevant data points, streamlining
the computational resources needed for validation.

The procedure for assembling the validation dataset is outlined in Figure 5.11.
This diagram provides a comprehensive overview of the steps involved in prepar-
ing the validation data, ensuring clarity and reproducibility of the process. The
resultant dataset is then curated to facilitate the calculation of differences between
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FIGURE 5.11: The image illustrates the construction process of
the dataset employed for the validation of ERA5, CERRA and the
generated data, which exploits the in-situ observations from IGRA

V2. [43]

the model predictions and the ground truth observations. This comparison is piv-
otal for assessing the accuracy and performance of the various models employed
to approximate CERRA.

Although the primary objective of this analysis is to evaluate the models’
predictive capabilities, this process also yields valuable insights into the perfor-
mance of the ERA5 and CERRA reanalysis datasets themselves. By comparing
the model outputs against the in-situ observations, we can discern the degree of
alignment between the reanalysis datasets and actual meteorological conditions.

5.4 Results and Discussion

This section details the experiments conducted using the models and data pre-
viously outlined, along with an analysis of the results obtained. The primary
objective of the experiment is to evaluate the effectiveness of a neural-network-
based super-resolution model in replacing a traditional downscaling model, such
as the physics-inspired HARMONIE model currently employed for the genera-
tion of CERRA. One key advantage of the neural model is its independence from
supplementary data requirements, along with significantly reduced computational
demands. The comparative analysis encompasses eight competing neural mod-
els: ESPCNN, EDSR, SwinLSTM, SRGAN, U-net, ViT, Single Diffusion, and
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Ensemble Diffusion. This general comparison includes a variety of models, rang-
ing from small, efficient networks to state-of-the-art, high-computational-demand
approaches. The assessment aims to determine the feasibility and relative perfor-
mance of these neural models in the context of super-resolution tasks for weather
variables. In order to facilitate the aforementioned analysis, it is also possible to
consider the table 5.8, which presents a comparative analysis of the tested models,
including the number of parameters and the execution time for the computation of
one year of data.

Parameters and execution times

Model Parameters Time

ESPCNN [59] 0.72 23
EDSR [40] 2.17 29
SRGAN [37] 4.31 63
ViT [17] 23.23 69
SwinLSTM [62] 3.41 134
U-net [53] 19.97 246
Single Diffusion 19.97 385
Ensemble Diffusion 19.97 7281

TABLE 5.8: The table above presents a comparative analysis of the
tested models, focusing on the number of parameters (in millions)
and the execution time (in seconds) for the computation of one year

of data.



60 Chapter 5. Experiments

FIGURE 5.12: This figure presents a visual evaluation of super-
resolution methods for ten selected samples from the years 2009
and 2020, showcasing different weather conditions, including a
Mediterranean cyclone. In this first image, the Baseline model
and the four least performant models in terms of SSIM metric are

reported, namely ESPCNN, EDSR, SwinLSTM and U-Net.

As previously indicated, the models are trained on a 10-year period with a
sequence-to-one approach, utilising four conditioning low-resolution time frames,
and they are then evaluated on the two different years. A summary of the obtained
results is presented in Table 5.9, where it can be observed that all neural models
exhibit considerably superior performance with respect to our traditional down-
scaling baseline of bilinear interpolation. The model that achieves the best result,
in terms of all three metrics, is Ensemble Diffusion. In comparison to bilinear in-
terpolation, Ensemble Diffusion improves the MSE value from 2.50e-03 to 1.02e-
03, and provides a 15% improvement in PSNR and a 20% improvement in SSIM.
A set of results for visual inspection is reported in Figures 5.12 and 5.13.
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FIGURE 5.13: This figure presents a visual evaluation of the four
most performant models in terms of the SSIM metric. These
are ViT, SRGAN, Single Diffusion and Ensemble Diffusion. The
ground truth represented by CERRA is also reported. The compar-

ison is made on the same data presented in Figure 5.12.
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Wind speed ERA5 to CERRA Downscaling

Model MSE ↓ PSNR ↑ SSIM ↑

2009

Bilinear 2.50e-03 26.36 0.708
ESPCNN [59] 1.31e-03 29.11 0.773
EDSR [40] 1.20e-03 29.48 0.796
SwinLSTM[62] 1.14e-03 29.70 0.802
SRGAN [37] 1.10e-03 29.85 0.813
U-net [53] 1.16e-03 29.65 0.819
ViT[17] 1.09e-03 29.94 0.822
Single Diffusion 1.18e-03 29.62 0.829
Ensemble Diffusion 1.06e-03 30.11 0.844

TABLE 5.9: A comparison of the results of all the tested models
across the year 2009

Wind speed ERA5 to CERRA Downscaling

Model MSE ↓ PSNR ↑ SSIM ↑

2020

Bilinear 2.38e-03 26.67 0.712
ESPCNN[59] 1.25e-03 29.31 0.775
EDSR[40] 1.14e-03 29.70 0.797
SwinLSTM[62] 1.10e-03 29.99 0.804
SRGAN[37] 1.05e-03 30.07 0.814
U-net [53] 1.10e-03 29.86 0.820
ViT[17] 1.05e-03 30.18 0.824
Single Diffusion 1.13e-03 29.84 0.831
Ensemble Diffusion 1.02e-03 30.32 0.845

TABLE 5.10: A comparison of the results of all the tested models
across the year 2020.

The data generated through our process was validated against in-situ measure-
ments, providing a crucial comparison to determine if the downscaled version
offered tangible improvements over real-world observations. As indicated in Ta-
ble 5.11, the validation confirmed that our downscaled data aligned more closely
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with the actual wind speed measurements in the area, demonstrating enhanced fi-
delity. In order to evaluate the performance of the models, we selected the Mean
Absolute Error (MAE) as our preferred metric for assessing errors. This was due
to the tangible physical interpretation of the metric, which is measured in meters
per second. This provides a clear indication of the magnitude of the error.

Our validation analysis revealed that CERRA outperforms ERA5 in terms of
real-world data correlation. This was achieved through a 8.82% improvement in
Mean Absolute Error (MAE). Among the downscaling models tested, the Ensem-
ble Diffusion, SRGAN, and ViT methods demonstrated the most effective perfor-
mance, with an improvement of 8.82% over ERA5, which is the same level of
performance demonstrated by CERRA.

Wind speed validation for the year 2009

Model MAE ↓

ERA5 2.04
CERRA 1.86

Bilinear 1.96
ESPCNN[59] 1.90
EDSR[40] 1.92
SwinLSTM[62] 1.90
SRGAN[37] 1.86
U-net [53] 1.88
ViT[17] 1.86
Single Diffusion 1.90
Ensemble Diffusion 1.86

TABLE 5.11: Validation of the results of all the tested models, in
addition to ERA5 and CERRA, for the year 2009.

These results demonstrate the efficacy of neural models in approximating the
inner mechanics of state-of-the-art physics-inspired models, offering both reduced
computational costs and the avoidance of the need for additional information,
which is often difficult to obtain, with common delays in the publication of current
data. Our validation was limited to the year 2009, as validation data was not
available for the year 2020.

Figure 5.14 presents a comparative analysis of SSIM metrics across the var-
ious downscaling methods for the year 2020. It can be observed that there is
a significant fluctuation in performance throughout the year. These variations,
which are consistently observed across all models, including bilinear interpola-
tion, suggest that temporal weather variations significantly influence the efficacy
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FIGURE 5.14: A graph comparison of the SSIM metric for the
different tested models is presented. SSIM is calculated for each
batch sequentially throughout the testing year of 2020, thereby
highlighting the variability of performance at different times of the

year.

of the downscaling models. This consistent trend across different models implies
that the performance changes are predominantly driven by weather-related factors
rather than the intrinsic characteristics of the models themselves.

An additional analysis is presented in Figure 5.15, which depicts the values
predicted by the models and those available in ERA5 and CERRA, along with
those expressed by the observations of a meteorological station over the course
of the year. This image illustrates two key points: firstly, that each line follows a
similar pattern, demonstrating that even when working with reanalysis data, it is
possible to capture real-world patterns in the variables under consideration. The
second observation is that, in general, the reanalysis appears to underestimate
the value of wind speed. It should be noted, however, that this second point may
depend on the specific meteorological stations used for the study or may be related
to the wind speed variable itself.
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FIGURE 5.15: The figure represents the value of wind speed as
given by all the models tested, the two reanalysis models ERA5
and CERRA, and a single meteorological station, over the entire

year 2009.
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In conclusion, a third analysis could be conducted: an in-depth geographical
analysis of SSIM performance could provide insights into which areas are harder
to effectively downscale. This is possible thanks to a characteristic of SSIM,
which is calculated over patches, and so it is feasible to compile a comprehensive
SSIM output. This output takes the form of a matrix, where each pixel value
denotes the SSIM computed over a window centred on that corresponding pixel
in the input images. Figure 5.16 presents mean images derived from averaging
the full SSIM matrices for the entire testing years of 2009 and 2020, respectively.
These images demonstrate that coastal regions exhibit higher error rates, with the
most pronounced discrepancies observed in the high Adriatic Sea, the Strait of
Messina, and the Ligurian Sea. The results also indicate that the geographical
errors are remarkably similar across the two testing years, suggesting that there
has been no significant change in the error distribution between these comparative
periods.

FIGURE 5.16: The image depicts the spatial SSIM error for both
the 2009 and 2020 testing years. It illustrates the downscaling per-
formance relative to different geographical areas. The similarity in
the results indicates that the errors made by the model are consis-

tent across the two years used for the test.

As a final experiment, given the unavailability of CERRA for the years rang-
ing from 2021 to 2024, we also make publicly available for further studies our
computed approximation of CERRA, computed via Ensemble Diffusion, includ-
ing the complete code used for the experiments.

https://github.com/fmerizzi/ERA5-to-CERRA-via-Diffusion-Models
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Chapter 6

Conclusions

This thesis has investigated the potential of advanced deep learning techniques
for the super-resolution (SR) downscaling of climate data. The implementation
and evaluation of several state-of-the-art models, including convolutional neural
networks (CNN), generative adversarial networks (GANs), diffusion models, and
vision transformers, has demonstrated the capacity of these methods to signifi-
cantly enhance the spatial resolution of reanalysis datasets.

The results of the experiments, conducted over two distinct testing years,
demonstrated that the downscaling computed by our method was in close align-
ment with the outcomes of traditional physics-based models. This alignment was
evident in both the similarity of the results and their concordance with measure-
ments from ground-based in-situ stations. Among the models tested, the Ensem-
ble Diffusion approach demonstrated the most accurate results. Nevertheless, it is
notable that even less complex super-resolution models consistently demonstrated
superior performance compared to basic methods such as bilinear interpolation.

The results of this study illustrate the effectiveness of employing super-resolution
deep neural networks in providing timely and informative downscaled data for
meteorological research. In light of the considerable delays frequently encoun-
tered in downscaled reanalyses, for instance, CERRA’s data lagging over two
years behind the current date at the time of this work, our findings are of partic-
ular relevance to the scientific community. These delays typically arise from the
unavailability of additional information needed by physics-based models, which
depend on various sources and are subject to time-consuming computational pro-
cesses. Our approach, which leverages a neural model trained on previously gen-
erated data, offers a timely alternative for accessing current downscaled results
with a method that not only reduces computational costs but also maintains a high
quality of output. It is of significant importance to note that the model in ques-
tion produces data that is more closely aligned with actual measurements than the
original low-resolution data, thereby demonstrating the practical potential of the
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model in enhancing real-time weather analysis.
A further significant contribution arises from the disparate temporal scales be-

tween the high-resolution dataset and the low-resolution dataset. In fact, ERA5
offers hourly temporal resolution, whereas CERRA provides data at a 3-hour res-
olution. As our model is capable of generating sequences conditioned solely on
ERA5 data, it can be employed to enhance the temporal resolution of the down-
scaled data, aligning it with that of ERA5.

It is important to note that this data-driven approach is limited by the neces-
sity of pre-existing downscaled data for training, which relies on already estab-
lished models. Furthermore, the experiments conducted in this study represent a
preliminary phase, focusing solely on a single weather variable and a relatively
limited geographical area. Future developments could encompass a broader range
of weather variables and potentially cover the entire region addressed by CERRA.
This more comprehensive understanding of the weather system could lead to im-
proved results, as the model would gain access to a wider range of meteorological
data. It is also important to note that the limited training dataset of "only" 10 years
is noteworthy given the high quality of the results, but in future research, it would
be beneficial to utilise a more extensive dataset, potentially spanning the full 40
years available from CERRA, to enhance the model’s accuracy and predictive ca-
pabilities.

In conclusion, this thesis contributes to the field of climate data downscaling
by demonstrating the potential of deep neural models, and in particular diffusion
models, to generate high-resolution datasets that approximate the processes of
traditional downscaling models. Furthermore, our findings suggest a promising
future for reanalysis models, potentially shifting towards neural network-based
approaches that leverage the advantages identified in this study. This shift could
represent a significant advancement in the field, offering more efficient and accu-
rate ways to handle meteorological data, ultimately contributing to better climate
monitoring and prediction.
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