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Abstract

We study diffusion models and causal transformers under the same lens by treating both

architectures as discrete approximations of continuous stochastic processes. To do so,

we introduce Continuous Causal Transformers (CCTs), a time- and space-continuous

generalization of causal transformers, and provide qualitative evidence showing that

vanilla causal transformers implicitly approximate CCTs. We then introduce Structured

Autoregressivity, a collection of five properties that are shared by diffusion models and

causal transformers, and show how they emerge naturally from our analysis. Finally,

we describe the implications of our framework, identifying research directions for the

design of both generative and non-generative models.
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Chapter 1

Introduction

Diffusion models [14, 23] have quickly established themselves as the de facto standard

for image generation. At the same time, the development of transformers [29] has en-

abled the rise of Large Language Models (LLMs), with several architectures achieving

state-of-the-art performances in a wide range of language and cognitive tasks [1, 2, 4, 26,

27]. However, the specific reasons for why both of these architectures outperform older

approaches in their respective tasks are still unclear. In this (mostly) theoretical thesis,

we propose an unorthodox approach: we study both causal transformers and diffusion

models under the lens of continuous stochastic processes. Specifically, we show that

both diffusion models and causal transformers can be seen as discretizations of continu-

ous stochastic processes, which are trained in settings with five key properties (namely

Task Subdivision, Weight Sharing, Teacher Forcing, Frequent Supervision, and Com-

plete Supervision). We name the collection of these properties Structured Autoregres-

sivity and show through a preliminary analysis how they arise naturally from considera-

tions on stochastic process approximation. While the relation between diffusion models

and continuous stochastic processes is known in the literature [24], as part of our anal-

ysis we complement this result by introducing Continuous Causal Transformers (CCTs)

a continuous-state and continuous-time extension of causal transformers for language
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modelling. Our qualitative analyses show that not only pretrained causal transformers

can be effortlessly treated as CCTs, but that doing so leads to behaviors consistent with

human intuition about language. Overall, while our results are preliminary, they pave

the way for several research directions, such as adapting diffusion sampling strategies

to language modeling (and vice-versa), improving language model performance through

synthetic autoregressivity, and even applying lessons learned from generative modeling

to discriminative tasks.

Our work is structured as follows. First, we provide a brief background on diffusion

models and causal transformers (Chapter 2) and introduce a continuous extension of the

latter (Chapter 3). Then, we detail the properties that constitute Structured Autoregres-

sivity (Chapter 4). Finally, we outline future research directions that emerge as the result

of our analysis (Chapter 5) and offer our closing thoughts (Chapter 6).



Chapter 2

Background

2.1 Diffusion Models

Diffusion models are autoregressive image generation models that operate through a

process of progressive denoising.

Specifically, consider a data distribution q(x0). Training a diffusion model involves

optimizing a parameter vector θ such that the distribution pθ(x0) approximates q(x0)

as closely as possible. In Denoising Diffusion Probabilistic Models (DDPMs) [14], the

generative distribution is modeled as

pθ(x0) =
∫

pθ(x0:T )dx1:T , (2.1)

where T is a hyperparameter and pθ(x0:T ) is defined as

pθ(x0:T ) = pθ(xT )
T∏

t=1
pθ(xt−1|xt), (2.2)

with pθ(xT ) = N (xT |0; I) and pθ(xt−1|xt) = N (xt−1|µθ(xt, αt); σ2
t I).

We optimize θ such that pθ(x0:T ) approximates qθ(x0:T ), which is a Markov chain
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of the form

q(xt|xt−1) = N
(

xt

∣∣∣∣∣
√

αt

αt−1
xt−1;

(
1 − αt

αt−1

)
I

)
, (2.3)

where {αt}t∈[0,T ] is a decreasing sequence in the interval [0, 1] that denotes a diffusion

schedule. We use as loss function the Evidence Lower BOund (ELBO) loss, i.e.

L(θ) = −Eq(x0:T ) [log pθ(x0:T ) − log q(x1:T )] , (2.4)

which can be rewritten as

L(θ) =
T∑

t=1
γtEq(xt|x0) ∥µθ(xt, αt) − µ̃(xt, x0)∥2

2 . (2.5)

In other words, the model needs to minimize the weightedmean square error between the

reconstructed image at the t-th step and the ground truth image obtained by the process

denoted by q.

In practice, this approximation is often learned using a U-Net [22], a Convolutional

Neural Network that uses a series of downsampling and upsampling steps to learn map-

pings at various scales.

2.1.1 Denosing Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIMs) are a variant of DDPMs that uses a non-

Markovian diffusion process defined as

qσ(x1:T |x0) = qσ(xT |x0)
T∏

t=2
qσ(xt−1|xt, x0), (2.6)

where

qσ(xT |x0) = N (xT |
√

αT x0, (1 − αT )I ) , (2.7)

qσ(xt−1|xt, x0) = N
(
xt−1

∣∣∣µσt(x0, αt−1); σ2
t I
)

, (2.8)
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and with µσt(x0, αt−1) defined as

µσt(x0, αt−1) = √
αt−1x0 +

√
1 − αt−1 − σ2

t ·
xt − √

αtx0√
1 − αt

. (2.9)

As a consequence of our choice of qσ(x1:T |x0), we have

xt =
√

αtx0 +
√

1 − αtϵt, (2.10)

with ϵt ∼ N (ϵt|0; I). Note that by setting σt = 0 in Equation (2.8) the process becomes

deterministic.

From a practical point of view, the parameters of pθ(xt−1|xt) can be optimized by

training a neural network ϵθ,t(xt, αt) to estimate the noise ϵt that was added to x0 to

obtain xt.

2.1.2 Diffusion Models as Discretizations of Score-Based SDEs

A particularly relevant result for our analysis is that of [17, 24], who found that the

stochastic mapping from xT to x0 follows a score-based continuous Stochastic Differ-

ential Equation (SDE) whose dynamic is determined by terms related to the gradient of

the ground-truth probability distribution of the data. The sampling procedure for DDIMs

can thus be obtained by discretizing the deterministic probabilistic flow associated with

this dynamic. As a consequence, the training process of a DDIM leads to an approxima-

tion of the score function of the ground-truth distribution.

We will complement this result by showing that causal transformers can be treated

as discretizations of continuous stochastic processes as well (Chapter 3).
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2.2 Transformers and Causal Language Modeling

Transformers are a class of generative models designed to model sequences. Unlike

previous architectures, transformers take the entire sequence as input, which improves

their capacity to learn long-term dependencies. In particular, causal transformers model

sequences in an incremental fashion, predicting the (t + 1)-th element xt+1 given all

the previous elements x1, . . . , xt. For the sake of simplicity, we focus exclusively on

decoder-only transformers.

Self-Attention The core of a transformer is the self-attention mechanism, a module

that takes as input the entire sequence at once and learns to identify its “important”

parts. Given a sequence of vectors X ∈ Rn×din and a hyperparameter dmodel, the output

Y ∈ Rn×dmodel of the transformer is defined as follows:

Y = softmax
(

QK⊤
√

din

)
V. (2.11)

Q, K, V ∈ Rn×dmodel are defined as

Q = XW Q⊤

K = XW K⊤

V = XW V ⊤
,

(2.12)

with W Q, W K , W V ∈ Rdmodel×din . A variant of self-attention, named multihead self-

attention, involves using different sets of W Q, W K and W V in order to extract different

features from the input sequence.

Causal AttentionMask The causal attentionmask is a mask applied to the input of the

softmax such that, for a given element xt, the self-attention only considers the sequence

x1, . . . , xt. This prevents the transformer from “looking at the future” (i.e. considering
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inputs with time steps greater than t), which would lead to incorrect behavior at inference

time (since future time steps are not available when generating a new sequence). Note

that there are two main ways to implement the causal mask: as a multiplicative mask

(with values in {0, 1}) that is multiplied with the exponentiated logits in the softmax, or

as an additive mask (with values in {−∞, 0}) that is added directly to the logits before

applying the softmax.

Transformer Block The transformer block is defined as the concatenation of the fol-

lowing modules:

• Multihead self-attention with an additive skip connection;

• Some form of normalization, usually LayerNormalization [4] or RootMean Square

Normalization [31];

• A feedforward layer with an additive skip connection;

• Normalization again.

Tokenization and Input Embedding When using transformers for language data, the

text is subdivided into tokens, where each token is part of a set (named vocabulary).

Since these tokens are categorical, they are mapped onto a continuous spaceRemb by the

input embedding, which is often learned as part of the training process.

Positional Encoding Since transformers do not preserve positional information, it is

necessary to add it in the form of positional encoding. The positional encoding, as de-

fined in [29], is a matrix PE ∈ RT ×demb such that

PEpos,2i = sin
(

pos

100002i/dmodel

)
PEpos,2i+1 = cos

(
pos

100002i/dmodel

)
.

(2.13)
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which is then summed with the input embedding. However, there exist other forms of

positional encoding as well, such as Rotary Positional Embedding (RoPE) [25].

Casual Language Modeling Head The causal language modeling head is a module

that takes the tth output of a sequence and applies a feedforward layer having as output

a vector of logits (one for each token in the vocabulary).

Causal Transformer A causal transformer is thus defined as the concatenation of the

following modules:

• Input embedding;

• Positional encoding;

• One or more transformer blocks with a causal attention mask;

• Causal language modeling head.

Given the sequence x1, . . . , xt, the model is thus trained to predict xt+1. At inference

time, the sequence can be generated by fixing the first element (which is usually a spe-

cial token, named beginning-of-string or BOS token) and generating for each step t the

element xt+1 given the sequence x1, . . . , xt.



Chapter 3

Transformers Are Implicitly

Continuous

Before studying causal transformers and diffusion models under the same lens, we first

need to address an evident problem.

Diffusion models are defined as approximations of continuous-time processes over

a continuous space: for each time step t ∈ [0, T ] ⊊ R, the state of the process is

known, and in particular it is defined as the linear combination of an image and Gaussian

noise, making it inherently continuous. Therefore, while in practice diffusion models

are trained by employing a discretization of this process (using a finite number of time

steps and discretizing the state as a vector of floating-point values), they can be naturally

studied as continuous processes.

On the other hand, languagemodels are discrete-time processes over a discrete space:

whichever fundamental unit of language is chosen (word, subword or character), there

are only a finite number of them, and each unit follows the other in a discrete fashion

(e.g. with character-level models, in the word hello there are no intermediate characters

between h and e).

However, we will show that causal transformers can be treated as a discretization of
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a continuous-time continuous-space model, which we non-creatively name Continuous

Causal Transformer (CCT). CCTs are a very simple extension of vanilla causal trans-

formers: the biggest change involves replacing the sums across the sequence length

with integrals. They are also not the first example of continuous transformers (see for

instance [9, 7, 19]), and in fact they can be seen as a variant of ContiFormers [7].

Instead, CCTs are designed to study the implicit dynamic of existing language mod-

els through a continuous lens. In fact, as we will show empirically, when treating pre-

trained causal transformers as CCTs they follow a behavior that is consistent with human

intuition of language (Section 3.3).

3.1 Preliminaries

We provide in this section a quick overview of some definitions that will be useful for

our analysis.

3.1.1 Notation

Real-Valued Function We use [s(t)]t∈[Tstart,Tend] to denote a real-valued function s(t)

with domain [Tstart, Tend]. We say that Tend − Tstart is the length of [s(t)]t∈[Tstart,Tend].

Ordered Finite Set We use {s(t)}t∈X , with X ⊆ R finite, to denote an ordered finite

set where each element has a corresponding time step t.

Composition We use [f(s(t), t)]t∈[Tstart,Tend] to denote the function such that

[
f
(
s(t)

)](τ)

t∈[Tstart,Tend]
= f

(
s(τ), τ

)
. (3.1)
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Similarly, we use {f(s(t), t)}t∈X to denote the ordered finite set such that

{
f
(
s(t)

)}(τ)

t∈X
= f

(
s(τ), τ

)
. (3.2)

3.1.2 Continuous Softmax

For a vector x ∈ Rn, the vanilla softmax function is defined as

softmax(x)i = exi/
n∑

j=1
exj . (3.3)

The softmax function can also be rewritten as a function that accepts an ordered finite

set

softmax
({

x(t)
}

t∈X

)(t)
= ex(t)

/
∑
j∈X

ex(j)
. (3.4)

Given a real-valued function [x(t)]t∈[0,T ] with x(t) ∈ R, we provide a continuous exten-

sion of the softmax function, defined as

csoftmax
([

x(t)
]

t∈[0,T ]

)(t)
= ex(t)

/
∫ T

0
ex(τ)

dτ. (3.5)

Note that discretizing the integral using the rectangle method with ∆t = 1 allows us to

recover the original softmax function for X = {1, . . . , T}.

3.2 Continuous Causal Transformers

We now provide an overview on how Continuous Causal Transformers meaningfully

generalize vanilla transformers to continuous time and space.

We begin by defining a sentence as a real-valued function [s(t)]t∈[0,T ], where T is the

sentence length and s(t) ∈ Rdemb is the sentence unit at time t, represented as a point in

the embedding space.



3.2 Continuous Causal Transformers 12

We then detail, for each component of a transformer, the differences between the

discrete and continuous variants.

3.2.1 Continuous Embedding

Transformers are by default capable of accepting continuous inputs in the form of em-

beddings (which are real-valued vectors). The only discretization that concerns the input

space is the fact that vanilla transformers restrict the range of possible inputs to a dis-

crete, potentially learnable subset of the embedding space (i.e. the vocabulary): relaxing

this constraint undoes this discretization step.

3.2.2 Continuous Positional Encoding

Similarly to embeddings, the majority of commonly used positional encodings (e.g. si-

nusoidal encoding [29] and rotary embeddings [25]) are by default capable of accepting

non-integer inputs. For this reason, the positional encoding of CCTs is the same as that

of vanilla transformers.

3.2.3 Continuous Self-Attention

Let W Q, W K , W V ∈ Rdmodel×din be respectively the query, key and value projections.

Let x(t), t ∈ [0, T ] (with x(t) ∈ Rdin be an input sentence. We define the output

[y(t)]t∈[0,T ] of the continuous self-attention as

y(t) =
∫ T

0
csoftmax

[q(φ) · k(τ)
√

din

]
φ∈[0,T ]

(τ)

v(τ) dτ, (3.6)

where q(t) = W Qx(t), k(τ) = W Kx(τ), v(τ) = W V x(τ).

Note that replacing the integral in Equation (3.6) with its approximation using the

rectangle method with∆t = 1 leads to a form that is equivalent to the self-attention used
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in vanilla transformers:

y(t) =
T∑

j=1
softmax

{q(t) · k(i)
√

din

}
i∈{1,...,T }

(j)

v(j). (3.7)

3.2.4 Continuous Causal Self-Attention

The continuous causal self-attention is a variant of the continuous self-attention where,

instead of integrating from 0 to T , we integrate from 0 to t. Specifically,

y(t) =
∫ t

0
csoftmax

[q(φ) · k(τ)
√

dmodel

]
φ∈[0,t]

(τ)

v(τ) dτ. (3.8)

Again, the numerical integration of the integral in Equation (3.8) using the rectangle

method with ∆t = 1 is equivalent to the causal self-attention used in vanilla transform-

ers, i.e.

y(t) =
t∑

j=1
softmax

{q(t) · k(i)
√

dmodel

}
i∈{1,...,t}

(j)

v(j). (3.9)

3.2.5 Continuous Transformer Block

The continuous transformer block is defined in the same way as the vanilla one, but with

continuous self-attention instead of the vanilla one. In particular, let [h(t)]t∈[0,T ] be the

output of the continuous self-attention. Then the output of the first step of the continuous

transformer block (i.e. add + normalization) is [l(t)]t∈[0,T ], defined as

l(t) = norm(s(t) + h(t)), (3.10)

where norm is the normalization function (e.g. Layer Normalization). The overall output

of the continuous transformer block (i.e. after applying the second step, which involves

a feedforward layer, an add step and a normalization) is the sentence [y(t)]t∈[0,T ], defined

as
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y(t) = norm
(
ReLU(W l(t) + b) + l(t)

)
, (3.11)

where W and b are respectively the weight and bias of the feedforward layer and ReLU

is the Rectified Linear Unit function.

3.2.6 Continuous Causal Language Modeling Head

We define a continuous causal language modeling head as a function that takes a pro-

cessed sentence unit r(t) and outputs a continuous distribution over Rdemb . The vanilla

causal language modeling head can thus be seen as a discretization of the continuous

causal language modeling head. Specifically, let X = {x1, . . . , xn} ⊊ Rdemb be a finite

set of embeddings (corresponding to the vocabulary). Then the output y of the vanilla

causal language modeling head is a vector (with n elements) that denotes a discrete dis-

tribution over X , where p(xi) = yi.

3.2.7 Continuous Causal Language Modeling

Putting it all together, we say that the CCT for a given t approximates the probability

distribution of s(t).

The training process of vanilla transformers can be seen as a discrete version of this

process where the model, given the elements of the sequence with time steps less than

or equal to t, is trained to predict s(t+1). This is similar to how both Neural Ordinary

Differential Equations (ODEs) [6] and Universal Differential Equations (UDEs) [20]

are in principle capable of approximating time-continuous dynamical systems, but are

trained in practice with respect to a specific time discretization. As a result, both Neural

ODEs andUDEs are only capable ofmaking predictionswith respect to the discretization

level used at training time.

Analogously, while we will show in Section 3.3 that it is possible to use a pretrained
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vanilla causal transformer tomeaningfully handle continuous input (by treating the trans-

former as a CCT), how such models might be coaxed into making predictions for time

steps that are not one time-unit away from the last state is unclear. This matter, while

not fundamental for the purposes of our analysis, nevertheless represents an important

research direction, one that is deeply intertwined with determining the nature of the im-

plicit dynamic learned by vanilla causal transformers (Section 3.4.1).

3.2.8 Duration

Reasoning about CCTs requires significant shifts in intuition, the most evident of which

concerns the role of what we call duration. From the point of view of CCTs, a vanilla

transformer (which is defined as a rectangle-based approximation of the CCT) is equiv-

alent to integrating assuming that, for each time step τ ∈ (t − 1, t], s(τ) = tokent,

where tokent is the t-th token of the original, integer-time sequence (1-indexed). In

other words, vanilla transformers assume that s(t) is constant (and equal to tokent) for

an interval (t−1, t], then that it is constant (and equal to tokent+1) for an interval (t, t+1],

and so on. Intuitively speaking, vanilla transformers thus assign to each token a duration

of 1.

When we feed non-integer-time sequences to CCTs, all practical implementations

require some degree of discretization of the integral: in practice, this involves treating

the input sequence as a set of samples X = {z(1), . . . , z(k)} of tokens1, each with its

own corresponding time step {t1, . . . , tk}, and using them as samples for the rectangle

method. In other words, we are still using a finite set of samples, but their “durations”

are not necessarily 1.
1Throughout the rest of the document, we use z to denote finite samples used to approximate the input

of a CCT.
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Formally speaking, we define the duration di of a sample x(i) as

di =


ti − α i = 1

ti − ti−1 otherwise,
(3.12)

where α is the lower limit of the integral (usually 0).

As we will show in the next section, duration is not a mere quirk of rectangle-based

approximations, but actually carries a semantic meaning.

Note that while we defined duration through the lens of the rectangle method, we

believe that it is possible to find equivalent formulations for other approximations such

as the trapezoidal rule. We leave a formalization of duration in these contexts and the

implications of these alternate formulations to future work.

3.3 Qualitative Evidence

We now provide evidence for the fact that CCTs represent a meaningful generalization of

vanilla transformers. To do so, we take a pretrained transformer (specifically Llama v1

7B [26]) and conduct four experiments meant to answer different facets of two questions:

• When treated as CCTs, do pretrained vanilla transformers behave in a continuous

manner?

• Does the behavior of CCTs for non-discrete inputs (i.e. inputs with either contin-

uous embeddings or continuous time) match human intuition?

3.3.1 Experimental Setup

We consider sentences of the form:

The sum of 24 and 13 is
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Since 24 + 13 = 37, the causal language modeling head will predict with a high prob-

ability that the next token is 3. As detailed in Section 3.2.8, from the point of view of

CCTs we can see a sequence of tokens2 for a vanilla transformer as a list of samples{
z(t)

}
t∈{1,...,T }

where z(t) = tokent. By modifying this sequence so that it corresponds

to inputs that cannot be represented by vanilla transformers (e.g. using intermediate em-

beddings or assigning non-integer time steps to tokens), we can study the behavior of the

transformer outside of its intended domain. If the training process of vanilla transform-

ers made such models inherently discrete (which would imply that pretrained vanilla

transformers cannot be meaningfully extended to CCTs), then we would expect the out-

put of the transformer on nonstandard inputs to be completely nonsensical. Instead, we

will show that these outputs are both reasonable and compatible with human intuition.

For all experiments, we conduct some form of interpolation between two extremes,

mediated by an interpolation factorφ. We then treat the result of the interpolation (which

is represented by a sequence of embeddings, each having its own corresponding time

step) as a list of samples and use it to compute an approximation of the output of the CCT

having the same weights as the vanilla causal transformer. For the sake of comparison,

we always use variations of the same sum (i.e. 24 + 13). We report the results of using

other pairs of numbers in Appendix A.

CCTs in Practice From an implementation perspective, extending a vanilla trans-

former to a CCT requires only three modifications:

• Accepting directly input embeddings, instead of taking input tokens and then com-

puting their embedding;

• Accepting a vector of time steps, instead of computing them using

torch.arange(num_tokens) or equivalent formulations;
2Throughout this section, we use the words “tokens” and “embeddings” interchangeably.
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• Replacing the multiplicative causal mask with the multiplicative causal duration-

based mask (as described in Section 3.2.8). If the model uses an additive mask

for logits, then instead of using the multiplicative causal duration-based mask we

use its elementwise natural logarithm.

Therefore, adapting an existing transformer to accept continuous inputs requires sur-

prisingly little effort. The source code of our experiments, adapted from pyllama3 is

available at https://github.com/samuelemarro/cct-early-experiments.

3.3.2 Experiments

We now describe the specific experiments we conducted. We stress that these experi-

ments do not provide information on the actual values of s(t), but rather represent a way

to qualitatively understand how transformers reason about inputs.

TransformersReasonContinuouslyAbout Embeddings Webegin by studying how,

assuming integer-valued tokens, transformers respond to interpolations of discrete em-

beddings. In particular, we interpolate linearly between the provided sentence and the

following alternate sentence:

The sum of 24 and 31 is

Since this alternate sentence has the same tokenized length as the original sentence, it is

possible to define straightforwardly the interpolation as

z
(i)
int = interpolate

(
z

(i)
orig, z

(i)
alt, φ

)
(3.13)

ti,int = ti,orig = ti,alt, (3.14)
3https://github.com/juncongmoo/pyllama

https://github.com/samuelemarro/cct-early-experiments
https://github.com/juncongmoo/pyllama
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where interpolate is an interpolation function and φ ∈ [0, 1]. For the sake of simplicity,

we use linear interpolation, fully aware that it does not match semantic interpolation (i.e.

it is known that the linear interpolation of two embeddings is not the embedding of the

semantic interpolation):

interpolate
(
z

(i)
orig, z

(i)
alt, φ

)
= (1 − φ)z(i)

orig + φz
(i)
alt. (3.15)

The reason behind this choice is that introducing further complexity (e.g. by training

a model to identify potentially meaningful interpolations) would risk undermining the

validity of our results, since we aim to study the behavior of pretrained vanilla transform-

ers with the fewest possible confounding factors. Nevertheless, as shown in Figure 3.1,

even a simple linear interpolation carries semantic meaning for transformers: interpo-

lating between the original and the alternate sentence leads to a smooth transition in the

top probability from 3 (which is the corresponding output of the original sentence) to

5 (which is the corresponding output of the alternate sentence). Even when the prob-

abilities of both 3 and 5 are low, the cumulative probability of all other digits greatly

overshadows that of other tokens, suggesting that even if the model is uncertain about

the correct output (since no token has a very high probability), it still knows that the out-

put should be a digit. In other words, even simple interpolations in the embedding space

carry semantic meaning, supporting the hypothesis that transformers inherently assign

semantic meaning to the discrete embedding space outside of the subset corresponding

to the vocabulary.

Transformers ReasonContinuously About Duration We then study how transform-

ers interpret the duration of a token. To do so, we progressively reduce the duration of

the tokens corresponding to 1 and 3 with the following interpolation:

z
(i)
int = z

(i)
orig (3.16)
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Figure 3.1: Impact of embedding interpolation on the predicted output probability. Dig-
its that never reach a probability of at least 0.05 are merged into the category “Other
Digits”. All non-digit tokens are merged into “Other Tokens”.

ti,int =



ti,orig i < im

ti,orig − 1
2φ i = im

ti,orig − φ i > im.

(3.17)

where im is the position of the token corresponding to 1. As a consequence, the duration

of each token will be:

• 1 for each token before 1;

• 1 − 1
2φ for 1 and 3;

• 1 for each token after 3.

In other words, the length of both 1 and 3 decreases (by up to 50%) as φ increases,

which means that the overall duration of the number 13 goes from 2 when φ = 0 to 1
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when φ = 1 (Figure 3.2). As we can see in Figure 3.3, as φ increases, the transformer

indeed begins to treat 13 as a single-digit number: in fact, the sum of 24 and a single-

digit number between 1 and 3 begins with 2, which is consistent with the fact that the

probability of 2 increases. This result shows that transformers assign a semanticmeaning

to duration: a 13 with duration 2 is fundamentally different from a 13 with duration 1.

Figure 3.2: Visualization of the duration reduction experiment. Tokenization is simpli-
fied for illustrative purposes.

Transformers Are Translation-Invariant, But Not Scale-Invariant For this exper-

iment we consider two tests (depicted in Figures 3.4 and 3.5). In the first one, we shift

the time steps to the right by an amount equal to the interpolation factor, i.e. we set

z
(i)
int = z

(i)
orig (3.18)

ti,int = ti,orig + φ, (3.19)
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Figure 3.3: Impact of reducing the duration of selected tokens on the predicted output
probability. Digits that never reach a probability of at least 0.05 are merged into the
category “Other Digits”. All non-digit tokens are merged into “Other Tokens”.

with φ ∈ [0, 1]; we also integrate starting from φ, instead of 0, to avoid assigning an

oversized duration to the first token. In the second one, we scale the time steps by a

factor equal to the interpolation factor:

z
(i)
int = z

(i)
orig (3.20)

ti,int = φti,orig, (3.21)

with φ ∈ [0.05, 1]. While the impact of translation is minimal (Figure 3.6), scaling

causes wild swings in predicted probabilities: with a small φ, all tokens are “smushed

together”, which leads to significant uncertainty over the correct output (Figure 3.7). As

the duration of each token approaches that of a regular token seen during training (i.e. 1),

the predictions grow closer to the correct one. This suggests that transformers inherently



3.3 Qualitative Evidence 23

learn the “duration” of a token, which when modified leads to changes in meaning.

Figure 3.4: Visualization of the translation invariance experiment. Tokenization is sim-
plified for illustrative purposes.

TransformersAre (Approximately) Density-Invariant For our final experiment, we

simply augment the original list of samples by replacing each sample z(i,orig) with φ

new samples z(i,1)
new , z(i,2)

new , . . . , z(i,φ)
new , with φ ∈ {1, . . . , 10}. These samples are defined

as follows:

z(i,j)
new = z

(i)
orig (3.22)

ti,j,new = ti,orig + j

φ
. (3.23)

In other words, we are sampling with higher density from the implicit dynamic denoted

by assuming that each original token has a duration of 1. If our intuition about duration

is correct, φ samples with duration 1/φ should be treated the same as 1 sample with

duration 1, provided that the new samples all have the same value as the original one
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Figure 3.5: Visualization of the scale invariance experiment. Tokenization is simplified
for illustrative purposes.

(Figure 3.8). Indeed, as shown in Figure 3.9 the effect of increasing the sampling den-

sity is present, but moderate: this suggests that duration is a reasonable framework to

interpret the behavior of a CCT and, by extension, a vanilla transformer.

3.4 Implications and Potential Extensions

While we introduced CCTs as a tool to draw more accurate comparisons between causal

transformers and diffusion models, our extension can both shed insight into the nature

of transformers and suggest potential new architectures. We therefore provide a brief

overview of future research directions and how they connect to CCTs.
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Figure 3.6: Effect of translation on the predicted output probability. Digits that never
reach a probability of at least 0.05 are merged into the category “Other Digits”. All non-
digit tokens are merged into “Other Tokens”.

3.4.1 The Implicit Dynamic

Our analysis does not, for a given vanilla transformer, determine the distribution of s(t)

for t ̸∈ {1, . . . , T}. However, the fact that feeding sequences with non-integer time

steps gives results that are consistent with human intuition rules out the possibility that

continuous extensions of vanilla transformers are meaningless. In other words, we know

that transformers reason about time in a continuous manner (and we have a testable way

to determine if a process matches empirical findings), but we do not know the exact

nature of s(t). This opens up an interesting research direction: what are the properties of

the continuous process learned implicitly by transformers? We stress that this process

is not necessarily equivalent to that of natural language (assuming that natural language

can even be modeled as a continuous process): instead, it can be seen as the process

induced by the structural priors of transformers. If such properties were determined, it
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Figure 3.7: Effect of scaling on the predicted output probability. Digits that never reach
a probability of at least 0.05 are merged into the category “Other Digits”. All non-digit
tokens are merged into “Other Tokens”.

might be possible to study alternative training setups based on these findings, with the

goal of learning a better approximation of the target dynamic.

3.4.2 Beyond Decoder-Only Causal Modeling

CCTs are, by definition, decoder-only causal models, but they can be easily adapted

to other types of transformers. For instance, it might be possible to adapt CCTs to

encoder-decoder or masked language modeling tasks by making minor changes to the

architecture. This opens up new directions for the study of continuity in sequence-to-

sequence tasks, with two main goals. First, a unified theoretical framework for continu-

ous transformers might improve our understanding of the advantages and disadvantages

of masked language modeling compared to causal language modeling. Second, extend-

ing CCTs beyond decoder-only modeling might both shed insight into their relation with
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Figure 3.8: Visualization of the density invariance experiment. Tokenization is simpli-
fied for illustrative purposes.

encoder-decoder models and suggest new language model architectures.

3.4.3 Integrating Over the Embedding Space

CCTs rely on the assumption that a sentence is a sequence (either finite or continuous)

of embeddings: in other words, for each time step t, there is exactly one corresponding

embedding element s(t) ∈ Remb, even if that embedding does not necessarily correspond

to a discrete token. However, it might be interesting to study how transformers respond

to sentences with multiple embeddings at the same time: intuitively, the presence of

multiple embeddings in the same time step is fundamentally different from the presence

of a single embedding obtained by interpolating multiple embeddings. This study would

require extending CCTs so that they integrate both across time and across the embedding

space. We leave the details of this extension, as well as the potential interpretations of

experimental results obtained from this model, to future work.
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Figure 3.9: Impact of sampling density on the predicted output probability. Digits that
never reach a probability of at least 0.05 are merged into the category “Other Digits”.
All non-digit tokens are merged into “Other Tokens”.



Chapter 4

Structured Autoregressivity

In the previous section, we showed that vanilla causal transformers can be seen as dis-

crete approximations of Continuous Causal Transformers, similarly to how diffusion

models can be seen as discrete approximations of their corresponding score-based con-

tinuous process. However, the similarities between causal transformers and diffusion

models, as trained in practice, extend beyond this fact alone. In particular, we identify

five properties that diffusion models and causal transformers share (even in their discrete

form):

• Task Subdivision;

• Weight Sharing;

• Teacher Forcing;

• Frequent Supervision;

• Total Supervision.

We name the collection of these properties Structured Autoregressivity. These proper-

ties might seem purely coincidental, but as we will show, they emerge naturally when
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studying diffusion models and transformers under the lens of approximating continuous

stochastic processes.

4.1 Task Subdivision and Weight Sharing

Autoregressive generative models are characterized by the fact that they a) split the gen-

eration process into a certain number of steps, which are b) all computed by the same

model. Both of these properties are usually treated as facets of being autoregressive, but

they are not necessarily co-occurring: for instance, a task can be solved using a pipeline,

where the task is divided into sub-tasks, but each sub-task is solved by a different model.

Additionally, the quantitative metrics related to these properties can be tuned indepen-

dently: a model may have a high number of steps and a low degree of weight sharing

across steps, and vice-versa. We therefore treat them as separate properties, naming

them respectively Task Subdivision and Weight Sharing.

Intuition From the point of view of approximating a continuous process, Task Subdi-

vision reduces the step size of a discrete approximation, which improves the first-order

approximation error: in other words, when using small step sizes the model’s prediction

of the next intermediate step is less likely to diverge from the actual intermediate state,

which is why a high degree of task subdivision tends to lead to performance improve-

ments.

Weight sharing, on the other hand, introduces an architectural prior such that the

nature of the process is assumed to be consistent throughout its entire length. While

using different models for various parts of the process would lead to a better overall

approximation quality, weight sharing improves data efficiency, since the data on the

process at a given time step also provides information on the behavior in other time

steps. Therefore, as long as there are no major differences in behavior throughout the
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process, weight sharing brings significant benefits.

Overall, both of these phenomena provide an intuition for why continuous processes

are often approximated using autoregressive models, and why they can be potentially

useful for diffusion and language models.

Comparison with the Literature In the context of image generation, autoregressiv-

ity is a major distinguishing factor for diffusion models, since most of the other state-

of-art models, such as Variational AutoEncoders (VAEs) [18], Generative Adversarial

Networks [10] and Normalizing Flows [21], are non-autoregressive, with the notable

exception of PixelCNN [28].

Instead, language models have long used autoregressivity to better model the target

sequence, such as in Long-Short Term Networks (LSTMs) [15] and Gated Recurrent

Units (GRUs) [8]. However, as we will show in the next few sections, there are also

other properties that affect performance.

4.2 Teacher Forcing

Another highlight of both causal transformers and diffusion models is that they are

trained following teacher forcing, as opposed to free running. The former trains a model

by feeding a state x(0) and asking it to predict the next state x(1); regardless of how

accurate the prediction is, the prediction is replaced with the ground truth x(1), and the

model is trained to predict x(2) given x(1). This process is repeated for the entirety of

the sequence. With free running, on the other hand, the predicted output is used as input:

the model is trained to predict x(1) given x(0), x(2) given f(x(0)), x(3) given f(f(x(0))),

and so on.

While free running has the advantage of training the model in an end-to-end fashion,

with the model learning to account for its own approximation inaccuracies, it comes with
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a significant downside: training with free running is significantly less stable. This is due

to the fact that the model rarely receives as input the correct intermediate states: with

each step, the approximation errors accumulate, which means that while the model is

trained to approximate the ground truth, it needs to do so taking as input an intermediate

state that is very far from the ground truth, especially after several free running steps.

On the other hand, while teacher forcing can lead to reductions in performance (since

at inference time the model will receive as inputs its own imperfect predictions instead of

the ground truth states, leading to a training-testing domain shift), at least in the context

of language modeling there are results showing that the benefits tend to outweigh the

drawbacks [13].

4.3 Frequent Supervision

Another major aspect of diffusion models and casual transformers is that there is suffi-

ciently frequent information on what the intermediate states should be: in other words,

when training a diffusion model or a causal transformer, not only there are enough inter-

mediate states such that predicting the next state given the current one is feasible, but we

also have ground truths for each intermediate state. Since the dynamics of both trans-

formers and diffusion models are inherently synthetic (i.e. they have been constructed

such that it is by design possible to know what each intermediate state should be), we

always have Frequent Supervision. Intuitively, frequent supervision is equivalent to

teaching a student both the solution to a problem and the steps required to solve the

problem, which leads to better performance compared to providing the solution alone.

Compare this with Neural Turing Machines (NTMs) [11] and Differentiable Neural

Computers (DNCs) [12], which have several intermediate states, but no supervision on

what these intermediate states should look like. It is thus no surprise that both NTMs

and DNCs struggle with learning complex tasks [11, 12].
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From the point of view of approximating dynamical systems, without sufficiently

frequent supervision there are only two options for the model designer: either the model

is trained to predict larger steps, skipping entirely the unknown intermediate states (which

is only feasible if the larger step size does not come with an excessive increase in com-

plexity), or the model needs to be trained using free running without intermediate su-

pervision, which leads to the problems described in Section 4.2, but with the additional

drawback of not having guidance on the unsupervised states.

Overall, we hypothesize that the synthetic nature of the intermediate states of dif-

fusion models and causal transformers, which enables frequent supervision even with

long sequences, is a major reason for the better performance of these models. This ob-

servation suggests some potential research direction for model design, which we outline

in Sections 5.2.2 and 5.2.3.

4.4 Complete Supervision

Finally, a potentially undervalued aspect of diffusion models and causal transformers is

the fact that, when training these models, the state of a sequence at any given step is com-

pletely known, without any uncertainty. In the context of approximating a dynamical

system, partial observability has long been known to be a complicating factor: consider

for instance the difficulties of learning a Partially Observable Markov Decision Process

(POMDP) [3] compared to its fully observable counterpart. It is thus reasonable to as-

sume that having complete information on the target output improves the performance

of both diffusion models and causal transformers.

This observation might seem trivial, but several classes of models do not share this

property, the most noteworthy of which are models with memory. For instance, the state

of an LSTM is described by its input vector, the previous output vector (also known as

the hidden vector), and the cell vector (which can be seen as the memory storage of the
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LSTM). While the first two are known, in typical training setups there is no information

on what a “good” cell vector should look like. Therefore, the model needs to figure out

how to properly store information on its own, slowing down training and introducing

complexity. Diffusion models and transformers, on the other hand, have complete in-

formation on the intermediate states, which might lead to faster and more stable training.
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Next Steps

We conclude this work by outlining some future research directions inspired by our find-

ings. Specifically, we provide an overview of our ongoing ablation study (Section 5.1)

and describe some specific examples of how our results can inform model design (Sec-

tion 5.2).

5.1 Ablation Study

While both diffusion models and transformers share the five Structured Autoregressiv-

ity properties, how relevant they are for model performance is unclear. We therefore

discuss in this section some potential ablations of these properties in order to determine

their actual impact. Since we are still in the early stages of data collection, we do not

have conclusive evidence, which is why we limit ourselves to reporting the experimen-

tal design, leaving the actual results to future work. However, we have found that even

studying how to properly ablate a given property provides significant intuition into their

nature: as a matter of fact, several theoretical insights emerged from trying to approach

ablations in a rigorous manner.

Additionally, note that no matter the results of the experiments, we have a win-win
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situation: either a certain property has a significant impact onmodel performance, which

means that future architectures should take into account how to maximize it, or it does

not, which means that future architectures can trade these properties for potentially more

useful ones.

5.1.1 Task Subdivision

In order to ablate Task Subdivision, we need to subdivide the task into fewer steps. For

vanilla language models, the number of steps is the number of tokens in the sentence.

This means that we have three main ablation options:

• Reducing the length of the sentence (e.g. through summarization): while this ap-

proach requires the fewest changes to the architecture, summarization can signifi-

cantly alter the meaning of the sentence, which might have an unexpected impact

on the performance (e.g. a transformer learning only to model short sentences

with few details). Additionally, there are limits to how much a sentence can be

summarized before it loses its meaning;

• Using longer tokens (e.g. switching from character tokens to subword tokens or

from subword tokens to word tokens): this approach can have unexpected side

effects too, since the nature of the tokens affects how transformers learn the rela-

tionship between their embeddings. For instance, the relationship between words

(e.g. how “house” and “housing” are more semantically similar than “house” and

“cloud”) is more informative than that between characters (e.g. “c” and “d” do

not necessarily have more in common than “c” and “m”), which might have an

impact on performance;

• Predicting k > 1 tokens at once: this approach allows us to maintain both the

content of the original sentence and the relationship between the tokens, while

still reducing the number of steps in the sequence by a factor of k.
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We thus follow the third approach, specifically using an implementation inspired by

Semi-Autoregressive Transformers [30]. These architectures have k output heads, each

corresponding to a different subsequent token: given n input tokens, the first head pre-

dicts the (n + 1)-th token, the second head predicts the (n + 2)-th, and so on.

For diffusion models, on the other hand, reducing the sequence length simply in-

volves using fewer diffusion steps, which leads to a straightforward experimental setup.

5.1.2 Weight Sharing

Ablating Weight Sharing involves reducing the level of parameter sharing of the model

throughout different steps of the sequence. A simple way to do so is to use k different

models for different steps of the sequence: doing so splits the training task into multiple

ones, where each model needs to accurately approximate its part of the sequence. Two

potential splitting strategies are interval-based splitting (i.e. the first model is trained on

[0, T/k], the second on (T/k, 2T/k], the third on (2T/k, 3T/k], and so on) and module-

based splitting (i.e. the first model is trained on the steps {km | m ∈ {0, . . . , T/k}}, the

second on {km+1 | m ∈ {0, . . . , T/k}}, the third on {km+2 | m ∈ {0, . . . , T/k}}, and

so on). However, a notable advantage of the former approach is that it is independent

of the discretization precision (i.e. the 1 over the number of steps) of the continuous

process, while the latter requires considering such a value carefully. Nevertheless, we

plan to study and compare the effect of both techniques.

5.1.3 Teacher Forcing

In order to ablate Teacher Forcing, we apply free running for k subsequent steps, before

applying a teacher forcing step. Specifically. let f be the model to be trained and let

x(t) be the sequence to be learned. We compute the predicted output x̃(t) (which will be
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compared with the ground truth) as follows:

x̃(t+1) =


f(x(t)) t ≡ 0 mod k

f(x̃(t)) otherwise.
(5.1)

In other words, throughout the sequence we use free running, but every k steps we re-

place the predicted state with the ground truth. Note it is possible to trivially achieve

complete free running by setting k to a value greater than or equal to the sequence length.

While this approach can be implemented without major obstacles for diffusion mod-

els, vanilla causal transformers have an additional complication: the output of a trans-

former is a vector of logits where each element corresponds to an embedding, but trans-

formers accept as input only one embedding per time step. We therefore outline some

possible strategies:

• Discretizing the output, either by taking the highest-probability embedding or by

sampling from the output distribution. This approach, while straightforward, in-

volves modifying the output, since all the information on the other potential em-

beddings is discarded;

• Branching: by sampling more embeddings and expanding the sequence based on

the various possible choices (thus creating a sort of tree), it is possible to avoid

discarding part of the information, but this benefit comes at the cost of a higher

computational requirement;

• Training an extension of a transformer that accepts multiple embeddings as input

(e.g. similar to those described in Section 3.4.3): aside from the implementation

obstacles that one such transformer would need to overcome, it is unclear how

relevant the results of training such extensions would be for the purposes of un-

derstanding vanilla transformers.
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Since all three approaches present some significant downsides, we leave further inves-

tigation over which course of action is preferable to future work.

5.1.4 Frequent Supervision

Ablating Frequent Supervision involves removing target information from a dataset, for

example by taking a dataset sample and removing the target information of a given se-

quence element with uniform probability ρ. When dealing with missing targets, there

are three possible strategies:

• Avoiding computing the loss for outputs that do not have a corresponding target,

essentially ignoring part of the sequence for each sample from the dataset;

• Using free running to compute the unknown intermediate states. Note that this

experiment is different from the one described in Section 5.1.3 since the latter

computes the loss for each intermediate state (which inherently requires knowing

the target for each step);

• Using larger step sizes to skip over the missing targets entirely: since this experi-

ment is equivalent to the one described in Section 5.1.1, we do not re-implement

it.

Therefore, the two main experimental approaches for ablating Frequent Supervision are

ignoring unknown parts of the sequence and using free running, although we are yet to

determine if one solution is clearly superior to the other.

Note that the removed information needs to be consistent throughout the training in

order for the ablation to be successful. In other words, removing a different subset of the

target information every epoch is ineffective, since the model would still be seeing the

data point ρ% of the time and would eventually learn from it (although it would happen

over the course of more epochs).
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5.1.5 Complete Supervision

Finally, the most straightforward way to ablate Complete Supervision is to only provide

partial information on the target output.

For diffusion models, we propose to mask a certain proportion of the image’s pixels

(with each image in the dataset having a different mask).

Transformers, on the other hand, require a slightly different approach, since the target

of a vanilla causal transformer is a single, discrete output. Therefore, we proceed as

follows. First, we pick for a given state a subset of the output vector that does not

contain the logit for the target label. We name this subset the masked subset. We then

take the complementary of this subset and use it to compute the softmax, completely

ignoring the non-masked logits. Finally, we compute the loss (usually the cross-entropy

loss) between the softmax output and the target label. Overall, this approach sidesteps

the problem of the single-target output, but it still achieves the intended result: from

the point of view of the loss, any value for a logit contained in the masked subset is

equivalent, which means that the model lacks complete information on the “full” output

distribution.

5.2 Implications for Model Design

Finally, we provide an overview of how our unified analysis of causal transformers and

diffusion models can inform the development of new architectures.

5.2.1 Sampling Strategies

Both diffusion models and causal transformers, being stochastic models, require some

form of sampling at inference time. For diffusion models, these are commonly DDPM

and DDIM sampling (with various diffusion schedules), while for causal transformers

the most common ones include greedy sampling, beam search, and top-p sampling [16].
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These sampling strategies have been developed independently, but if we treat diffusion

models and causal transformers as fundamentally similar, the insight into one model

might suggest improvements for the other.

For instance, it might be possible to apply beam search to diffusion models by sam-

pling multiple predictions in a DDPM fashion and picking the most promising beams.

Conversely, the diffusion schedules of diffusion models could be applied to causal lan-

guagemodeling: instead of generating a sentencewith linear time steps, we could use an-

other schedule, such as cosine scheduling. Doing so might potentially improve the gen-

eration quality of causal transformers by strategically making the model “talk slower” in

certain parts of the generation process. Another possibility would be to use a dynamic

step size based on how “complex” a certain part of the process is.

5.2.2 Synthetic Autoregressivity

An interesting aspect of diffusion models is that the denoising-based generative process

is, all things considered, pretty arbitrary: progressively removing Gaussian noise until

we obtain an image is a very different way to approach image generation compared to

how a human would create a piece of art. And yet, since by design determining the target

intermediate states is simple, it is possible to train a model in a manner that follows the

principles of Structured Autoregressivity.

On the other hand, for languagemodels, the subdivision of the task in word tokens (or

subword tokens) is more consistent with human intuition, but it suffers from a significant

limitation: the sentence generation process can only be split into as many intermediate

states as the number of tokens in the sentence. This puts a constraint on how simple

predicting the next state can be: a model must be powerful enough to predict the next

token in a single pass.

If, however, we were to introduce new intermediate states (which we name synthetic

states) between existing ones, we might be able to remove this constraint as long as three
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conditions are satisfied:

• The synthetic states are reasonable intermediate steps towards predicting a real

state;

• The synthetic states do not hamper the model’s ability to be trained following

Structured Autoregressivity;

• The synthetic states can be computed easily.

For instance, we could add synthetic tokens between each “real” one, thus increasing

the length of the sequence and reducing the effort required to predict each one. These

synthetic tokens do not necessarily need to have a semantic meaning: even something

as simple as an interpolation of the surrounding real tokens could be sufficient.

This extension could not only improve the performance of large language models,

but also enable the creation of smaller languagemodels: since each individual stepwould

be smaller, computing the next step would require a smaller model, although of course

the smaller size would come at the cost of having to perform more steps to generate the

sequence. In other words, we would be trading speed for a reduced memory footprint.

5.2.3 Beyond Generation

While the purpose of this work is to study the properties of diffusion models and causal

transformers, our insights into Structured Autoregressivity can be applied to a large class

of models, including non-generative ones. For this reason, applying our findings to other

ML tasks represents a potentially beneficial research direction.

For the sake of example, consider an image classifier f : X → Y , where X ⊆ Rin

is the input space and Y = ∆N−1 is the space of distributions over N possible classes.

Usually, a classifier directly predicts the class of the image in a non-autoregressive fash-

ion. However, we could extend this process by introducing synthetic intermediate states
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(as described in Section 5.2.2) and thus splitting the classification task into multiple

sub-steps, which are then modeled by an autoregressive architecture. Compared to just

building a deeper model, this approach has the advantage of Weight Sharing, leading to

better parameter efficiency.

An example of intermediate states h(t) might be to use ever more accurate estimates

of the correct label, i.e.

h(t) =
(

1 − t

T

)
u + t

T
1c, (5.2)

where u is a uniform vector, 1c is the one-hot encoding of the target class c and T is a

hyperparameter representing the number of steps. The model would then take as input

h(t) and x and compute an approximation of the next intermediate state conditioned on

x:

f(h(t), x) ≈ h(t+1). (5.3)

This approach, while certainly unorthodox, could potentially provide performance gains,

since having an initial estimate of the correct class might influence how low-level feature

extractors operate (similarly to top-down attention in biological brains [5]).



Chapter 6

Conclusion

In this thesis, we studied causal transformers and diffusion models under the lens of con-

tinuous stochastic processes. By doing so, we showed not only that diffusion models and

causal transformers can be treated as discretizations of continuous stochastic processes,

but also that they feature several common properties which, when viewing the models

as approximations of such processes, emerge as natural design decisions. As part of

this analysis, we introduced Continuous Causal Transformers, a generalization of causal

transformers which, even on its own, has the potential to shed insight into the structural

priors of transformers, as evidenced by our qualitative results. We also discussed how

both Continuous Causal Transformers and our common framework can suggest novel

directions for model design and training.

We believe that the strength of this work lies, rather than in specific results, in how

it provides an alternative view of state-of-the-art generative models. Treating diffusion

models and causal transformers as different variants of the same mechanism can both

provide a more holistic insight into generative modeling and inform future developments

in the field. While we do not claim to have provided conclusive empirical evidence of

the practical relevance of this intuition, the directions we outlined in this work certainly

warrant further exploration.
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Overall, there are still many open questions in the field of generative modeling, both

in the context of understanding why some architectures perform better than others and in

determining the fundamental limits of neural network-based approximations. We hope

that our findings will contribute to this ongoing exploration and help develop a more

complete view of generative modeling.
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Appendix A

Additional Qualitative Results

We report the qualitative results for eight pairs of numbers (including the pair studied in

Section 3.3.2) in Figures A.1 to A.5. The pairs of numbers were chosen randomly from

the set of pairs that satisfy the following conditions:

• The numbers are two-digit numbers;

• Their sum is less than 100;

• The sum of the second digit of the first number and the second digit of the second

number must be less than 10 (i.e. there is no carry step when adding the numbers);

• All digits are distinct;

• 0 cannot appear in any position;

• In the standard setting (i.e. without any modifications), the predicted probability

of the correct output is at least 80%.

The chosen pairs are:

• 24 + 13;



• 32 + 56;

• 13 + 74;

• 52 + 31;

• 14 + 23;

• 16 + 42;

• 82 + 14;

• 38 + 51.

Some highlights include:

• For 38 + 51, reducing the duration of 51 does not lead to an increase in the proba-

bility of 5, but rather an increase in the probability of 4 (which is compatible with

the model treating the sum as 38 + 5);

• For 16 + 42, interpolating the embeddings with φ = 1 (i.e. computing 16 +

24) leads to an uncertain output, even if in such a situation all embeddings have a

corresponding token. In other words, the vanilla transformer did not learn properly

how to compute 16 + 24. This phenomenon may explain the unusual results in

other experiments, particularly duration interpolation and density interpolation.



(a) 24 + 13 (b) 32 + 56

(c) 13 + 74 (d) 52 + 31

(e) 14 + 23 (f) 16 + 42

(g) 82 + 14 (h) 38 + 51

Figure A.1: Impact of embedding interpolation on the predicted output probability for
eight pairs of numbers. Digits that never reach a probability of at least 0.05 are merged
into the category “Other Digits”. All non-digit tokens are merged into “Other Tokens”.



(a) 24 + 13 (b) 32 + 56

(c) 13 + 74 (d) 52 + 31

(e) 14 + 23 (f) 16 + 42

(g) 82 + 14 (h) 38 + 51

Figure A.2: Impact of reducing the duration of selected tokens on the predicted output
probability for eight pairs of numbers. Digits that never reach a probability of at least
0.05 are merged into the category “Other Digits”. All non-digit tokens are merged into
“Other Tokens”.



(a) 24 + 13 (b) 32 + 56

(c) 13 + 74 (d) 52 + 31

(e) 14 + 23 (f) 16 + 42

(g) 82 + 14 (h) 38 + 51

Figure A.3: Impact of translation on the predicted output probability for eight pairs
of numbers. Digits that never reach a probability of at least 0.05 are merged into the
category “Other Digits”. All non-digit tokens are merged into “Other Tokens”.



(a) 24 + 13 (b) 32 + 56

(c) 13 + 74 (d) 52 + 31

(e) 14 + 23 (f) 16 + 42

(g) 82 + 14 (h) 38 + 51

Figure A.4: Impact of scaling on the predicted output probability for eight pairs of num-
bers. Digits that never reach a probability of at least 0.05 are merged into the category
“Other Digits”. All non-digit tokens are merged into “Other Tokens”.



(a) 24 + 13 (b) 32 + 56

(c) 13 + 74 (d) 52 + 31

(e) 14 + 23 (f) 16 + 42

(g) 82 + 14 (h) 38 + 51

Figure A.5: Impact of sampling density on the predicted output probability for eight
pairs of numbers. Digits that never reach a probability of at least 0.05 are merged into
the category “Other Digits”. All non-digit tokens are merged into “Other Tokens”.
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