
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

Actively Ontology Learning
from Large Language Models

Tesi di laurea in:
Intelligent Systems Engineering

Relatore
Prof. Andrea Omicini

Correlatori
Dott. Matteo Magnini
Prof. Ana Ozaki

Candidato
Riccardo Squarcialupi

I Sessione di Laurea

Anno Accademico 2023-2024



ii



Abstract

Active learning is a framework where a learner attempts to learn some kind of
knowledge by posing questions to a teacher. In computational learning theory,
classically, the questions made by the learner are calledmembership queries and are
answered with ‘yes’ or ‘no’ (or equivalently, with ‘true’ or ‘false’). Here we consider
that the teacher is a language model and study the case in which the knowledge
is expressed as an ontology. To evaluate the approach, we present results showing
the performance of GPT and other language models when answering whether valid
expressions on existing EL are “true” or “false”.

iii



iv



Fortes fortuna adiuvat. (Publio Terenzio Afro)
Tu ne cede malis, sed contra audentior ito. (Virgilio)

v



vi



Contents

Abstract iii

1 Introduction 1

2 Large Language Models 3
2.1 Evolution of Large Language Models . . . . . . . . . . . . . . . . . 3
2.2 Architecture of Large Language Models . . . . . . . . . . . . . . . . 4

2.2.1 Variants of the transformer architectures . . . . . . . . . . . 7
2.3 Attention in LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Layer Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6.1 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.4 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.5 Stemming and Lemmatization . . . . . . . . . . . . . . . . . 13

2.7 Training Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Utilization of Large Language Models . . . . . . . . . . . . . . . . . 15
2.9 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Introduction to Description Logic 17
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.5 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Reasoning in Description Logic . . . . . . . . . . . . . . . . . . . . 20
3.4 Applications of Description Logic . . . . . . . . . . . . . . . . . . . 22

CONTENTS vii



CONTENTS

4 Ontologies 25

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Understanding Ontologies . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Methodologies for Ontology Development . . . . . . . . . . . . . . . 26

4.4 Types of Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Ontology Languages and Tools . . . . . . . . . . . . . . . . . . . . . 27

4.6 Applications of Ontologies . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Integration with Other Technologies . . . . . . . . . . . . . . . . . . 28

4.8 Challenges and Future Directions . . . . . . . . . . . . . . . . . . . 28

5 Ontology Learning 31

5.1 The ExactLearner Paradigm . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Exact Learning Framework . . . . . . . . . . . . . . . . . . . 33

5.2 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Right O-essential Counterexamples . . . . . . . . . . . . . . 35

5.2.3 Left O-essential Counterexamples . . . . . . . . . . . . . . . 35

5.3 Key Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Probably Approximately Correct Learning Algorithm 37

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Foundations of PAC Learning . . . . . . . . . . . . . . . . . . . . . 37

6.3 The PAC Learning Algorithm . . . . . . . . . . . . . . . . . . . . . 38

6.4 Properties of PAC Learning . . . . . . . . . . . . . . . . . . . . . . 39

6.5 Applications and Extensions . . . . . . . . . . . . . . . . . . . . . . 40

7 Methodology 41

7.1 First Phase of Experiments . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Second Phase of Experiments . . . . . . . . . . . . . . . . . . . . . 43

7.2.1 PAC for equivalence queries . . . . . . . . . . . . . . . . . . 45

7.2.2 From Manchester OWL Syntax to Natural Language . . . . 46

7.3 OWL API Framework . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.4 Problems with LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.5 Caching LLMs’ Answer . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.5.1 Advantages of Caching . . . . . . . . . . . . . . . . . . . . . 49

7.6 Probing Language Models . . . . . . . . . . . . . . . . . . . . . . . 49

7.6.1 Input Format and Unexpected Responses . . . . . . . . . . . 50

7.6.2 Correctness and Logical Consistency . . . . . . . . . . . . . 51

viii CONTENTS



CONTENTS

8 Results 53
8.1 First Phase of Experiments . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Second Phase of Experiments . . . . . . . . . . . . . . . . . . . . . 54

9 Conclusion 57
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Acknowledgements 73

Tables 75

CONTENTS ix



CONTENTS

x CONTENTS



List of Figures

2.1 The encoder-decoder structure of the Transformer architecture. Taken
from [88]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 An example of attention patterns in language models, image is taken
from [59] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

LIST OF FIGURES xi



LIST OF FIGURES

xii LIST OF FIGURES



List of Tables

3.1 Syntax and Semantics of Description Logic . . . . . . . . . . . . . . 20
3.2 Notation of Axioms in Description Logic . . . . . . . . . . . . . . . 20

7.1 Minimum number of axioms needed to PAC learn an ontology. . . . 45

8.1 Results for the experiments testing correctness w.r.t. axioms in the
ontologies. Labels T, F and U mean ‘true’, ‘false’ and ‘unknown’
responses count. We indicate the number of parameters in each
model in parenthesis (e.g. Mistral has 7 billion). It is not known
the number of parameters of GPT 3.5. . . . . . . . . . . . . . . . . 53

8.2 Results for the experiment testing logical consistency. The number
of parameters of each model and the meaning of T, F, U are as in
Table 8.1. L stands for logical inconsistencies (an axiom answered
as ‘false’ or ‘unknown’ which can be inferred from the set of the
axioms answered as True, see 7.6.2). Models’ names omitted for
better readability (they are the same of Table 8.1). . . . . . . . . . 54

8.3 Results for the experiments testing negative examples. Labels A,
P and R mean ‘Accuracy’, ‘Precision’ and ‘Recall’ respectively [32].
Models’ names omitted for better readability (they are the same of
Table 8.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.4 Average Metrics by Ontology . . . . . . . . . . . . . . . . . . . . . 55
8.5 Average Metrics by Model . . . . . . . . . . . . . . . . . . . . . . . 55
8.6 Average Metrics by Metric Type . . . . . . . . . . . . . . . . . . . . 55

1 Metrics for Animals ontology . . . . . . . . . . . . . . . . . . . . . 75
2 Metrics for Bio-primitive ontology . . . . . . . . . . . . . . . . . . . 76
3 Metrics for Biosphere ontology . . . . . . . . . . . . . . . . . . . . . 76
4 Metrics for Cell ontology . . . . . . . . . . . . . . . . . . . . . . . . 77
5 Metrics for Football ontology . . . . . . . . . . . . . . . . . . . . . 77
6 Metrics for Generations ontology . . . . . . . . . . . . . . . . . . . 78
7 Metrics for University ontology . . . . . . . . . . . . . . . . . . . . 78

LIST OF TABLES xiii



LIST OF TABLES

xiv LIST OF TABLES



Chapter 1

Introduction

The appliement of Large Language Models (LLMs) to the ontologies field marks

a pioneering advancement in the realm of artificial intelligence (AI), starting a

new era of precision and utility in automated reasoning and knowledge extraction.

These models, renowned for their exceptional ability to generate human-like text,

are now being challenged to extend beyond mere text processing to structuring

knowledge. Ontologies delineate and categorize relationships between concepts

within a domain, significantly enhancing the semantic interpretation of data. De-

spite their proficiency in generating and understanding texts, LLMs remain uncer-

tain for ontology learning abilities.

LLMs have now amassed so much information and improved their question-

answering abilities that we are willing to interact and learn from them. These

prompts range from general knowledge queries, such as basic definitions and his-

torical events, to more domain-specific questions, like scientific facts related to

health and medicine. Recently, initial efforts have been made to automate knowl-

edge extraction from LLMs [73], where the knowledge is extracted in the form of

an ontology [29]. In the field of knowledge representation and reasoning, ontologies

are a common method for representing the relevant conceptual knowledge of a do-

main. The most popular formalism for specifying ontologies is given by description

logic (DL) [7]. Ontologies have been extensively used to represent hierarchies and

support data integration, information retrieval, and automated reasoning in life

sciences [60].

CHAPTER 1. INTRODUCTION 1



This thesis investigates the feasibility of learning description logic ontologies

from LLMs using an active learning approach based on Angluin’s exact learning

[2] framework from computational learning theory.

The methodology employed in this research involves a multi-phase experimental

approach to evaluate the performance of LLMs in ontology learning.

In the first phase, various LLMs, including GPT, are probed with a set of

predefined queries. These queries are designed to test the models’ understanding

of basic description logic constructs and their ability to provide accurate concept

inclusions. The responses are then analyzed for correctness and logical consistency.

Building on the initial findings, in the second phase we provide a novel non-

trivial adaptation of the implementation for EL ontologies from the literature [24]

that poses questions to LLMs, instead of using their synthetic teacher, to me-

thodically extract and organize knowledge so to actively re-construct ontologies.

To evaluate our approach, we present results showing the performance of LLMs

in determining whether concept inclusions created by an ontology engineer on

prototypical EL ontologies are “true” or “false”. This phase uses membership

and equivalence queries to iteratively refine the hypothesis ontology. The LLM is

queried with specific concept inclusions, and based on the responses, the hypothesis

ontology is updated.

The performance are evaluated based on their ability to correctly determine

whether the concept inclusions created by an ontology engineer on prototypical

EL ontologies are “true” or “false”. Metrics such as precision, recall, and F1-score

are used to measure the accuracy of the learned ontologies.

Additionally, the logical consistency of the responses and the efficiency of the

learning process are assessed.

2 CHAPTER 1. INTRODUCTION



Chapter 2

Large Language Models

In recent years, the field of natural language processing (NLP) [56] has witnessed

unprecedented progress, largely fueled by the development of LLMs. These models

have demonstrated the ability to understand, generate, and manipulate human-

like text with remarkable fluency and coherence. The emergence of LLMs has

transformed various NLP tasks, including but not limited to language translation,

text summarization, sentiment analysis, and question answering.

This introduction serves as a comprehensive overview of LLMs, aiming to pro-

vide insights into their architecture, training methodologies and real-world appli-

cations.

2.1 Evolution of Large Language Models

The concept of LLMs originated in the 1960s with the creation of Eliza [91]. Eliza’s

introduction initiated the exploration of NLP, laying the groundwork for more

sophisticated LLMs in the future. Nearly three decades later, in 1997, Long Short-

Term Memory (LSTM) [37] networks were developed. These networks enabled the

creation of deeper and more intricate neural networks capable of processing larger

volumes of data. Initial models showcased the potential for text comprehension

and generation, but significant advancements were made with the development of

architectures that could handle extensive datasets and parameters. In particular,

the advent of the transformer architecture revolutionized the field of NLP.

CHAPTER 2. LARGE LANGUAGE MODELS 3



2.2. ARCHITECTURE OF LARGE LANGUAGE MODELS

The introduction of the Transformer architecture [88] represented a notable

departure from conventional recurrent and convolutional neural network designs.

Transformers leverage self-attention mechanisms, enabling them to dynamically

assess the importance of various input tokens. This capability empowers trans-

formers to efficiently capture extensive dependencies within text sequences, ren-

dering them highly proficient in tasks such as language modeling.

An influential model built upon the transformer architecture is the Generative

Pre-trained Transformer (GPT) series, pioneered by OpenAI [70]. Spanning from

GPT-1 to the formidable GPT-4 [62], this series has established unprecedented

standards in model scale, data utilization, and performance across various NLP

benchmarks [95, 35, 18, 49, 19].

Moreover, the progression of LLMs has been defined by incremental enhance-

ments in architecture, training methodologies, and the magnitude of data and

computational resources employed during training. These developments have re-

sulted in exponential advancements in the capabilities of LLMs and their suitability

for addressing a wide array of real-world challenges.

In this chapter, we delve into the main crucial aspects for understanding LLMs,

offering insights into essential components and methodologies. We direct interested

readers to the original literature for in-depth exploration.

2.2 Architecture of Large Language Models

At the core of Large Language Models rests the transformer architecture, which

has become widely accepted as the standard approach for handling sequential data,

especially within the realm of comprehending and generating natural language.

This architectural framework encompasses the following fundamental compo-

nents:

• Input Embeddings: the input to a Transformer model typically comprises

a sequence of tokens, such as words or subwords, represented as embeddings.

Each token undergoes a mapping process to a high-dimensional vector space

through an embedding layer, encoding semantic information associated with

the token.

4 CHAPTER 2. LARGE LANGUAGE MODELS



2.2. ARCHITECTURE OF LARGE LANGUAGE MODELS

Figure 2.1: The encoder-decoder structure of the Transformer architecture. Taken
from [88].

CHAPTER 2. LARGE LANGUAGE MODELS 5



2.2. ARCHITECTURE OF LARGE LANGUAGE MODELS

• Positional Encodings: unlike recurrent neural networks, Transformers do

not inherently retain the sequential order of tokens in the input sequence.

To overcome this, positional encodings augment token embeddings with posi-

tional embedding vectors. These encodings convey positional data, enabling

the model to retain the sequential order within the sequence. Variants such

as absolute, relative, or learned positional encodings, including Alibi [67] and

RoPE [79], address this limitation.

• Transformer Encoder and Decoder: [88] the original Transformer model

consists of an encoder and a decoder. The encoder processes input tokens

to produce vectors of equal length. Meanwhile, the decoder predicts the tar-

get sequence token by token, utilizing the encoder’s output. It incorporates

cross-attention layers to consider both input and output sequences. Addi-

tionally, the decoder’s self-attention layers use causal masking to prevent

attending to future tokens during prediction. This architecture is commonly

known as the encoder-decoder (ED). Prominent models like BART [48] and

T5 [71] employ this architecture. T5, upon which T0 [75] is based, achieved

impressive zero-shot generalization through extensive multitask fine-tuning,

outperforming larger decoder-only models.

• Self-Attention Mechanism: central to the Transformer architecture is the

self-attention mechanism, which enables the model to discern the significance

of various input tokens based on their interrelationships. Each input token

is associated with query, key, and value vectors, which are utilized to com-

pute attention scores between token pairs. These scores are subsequently

employed to calculate weighted sums of the corresponding values, allowing

the model to focus on pertinent segments of the input sequence during token

processing.

• Multi-Head Attention: transformers employ multi-head attention mecha-

nisms to capture diverse aspects of the input sequence. This entails applying

the self-attention mechanism across multiple parallel instances, each featur-

ing distinct sets of query, key, and value vectors. The outputs from these

attention heads are consolidated and subjected to linear transformations to

6 CHAPTER 2. LARGE LANGUAGE MODELS



2.2. ARCHITECTURE OF LARGE LANGUAGE MODELS

generate the final output.

• Feed-Forward Neural Networks: in addition to self-attention layers,

Transformers incorporate feed-forward neural networks (FFNNs) at each po-

sition within the encoder and decoder. These FFNNs consist of two linear

transformations separated by a non-linear activation function, such as the

Rectified Linear Unit (ReLU) [57]. They facilitate the model’s ability to

capture intricate interactions among tokens and capture higher-order depen-

dencies within the input sequence.

• Layer Normalization and Residual Connections: transformers inte-

grate layer normalization and residual connections within each layer to en-

hance training stability and gradient flow. Layer normalization normalizes

layer activations across the feature dimension, while residual connections

enable gradients to propagate more efficiently by circumventing individual

layers during training.

2.2.1 Variants of the transformer architectures

Variants of transformer architectures are:

• Encoder-only: an encoder-only transformer architecture, in contrast to

the traditional Transformer model, excludes the decoder component. This

setup focuses solely on processing input sequences without generating out-

put sequences. The model’s task is to understand and encode the input

data, capturing its features and representations. Encoder-only transformers

are suitable for tasks such as feature extraction, sentence embedding, and

classification, where understanding input data is paramount, and output gen-

eration is not necessary. By concentrating solely on encoding, these models

excel at extracting meaningful information from input sequences, facilitat-

ing downstream tasks such as classification or retrieval. Google’s language

representation model BERT [23] is based on this architecture.

• Decoder-only: a decoder-only transformer design, also referred to as an

auto-regressive transformer, is a deviation from the traditional Transformer

CHAPTER 2. LARGE LANGUAGE MODELS 7



2.2. ARCHITECTURE OF LARGE LANGUAGE MODELS

model by removing the encoder part. It operates by producing output se-

quences relying exclusively on tokens it has previously generated, without

any input sequence input. This setup proves highly effective for language

generation, text completion, and sequence-to-sequence tasks. It excels at

predicting subsequent tokens in a sequence, leveraging the context provided

by preceding tokens. This narrow focus on decoding enables the model to

grasp intricate relationships over long spans, resulting in the creation of co-

herent and contextually appropriate output. OpenAI GPTs series [70, 78,

16, 62] and many other recent high-performing LLMs [96, 43, 77] are based

on this architecture.

• Non-Casual Decoder: the architecture proposes adjusting the attention

mask of decoder-only models to create more detailed representations of in-

put/conditioning text. Unlike traditional causal masking, this approach al-

lows attention to the entire input sequence, similar to the original proposed

encoder. Known as a prefix language model, this concept was initially in-

troduced by Liu et al. [50] and later explored by Raffel et al. [71] and Wu

et al. [93]. Despite demonstrating similar single-task finetuning performance

to encoder-decoder models, it has seen limited adoption in the literature.

Figure 2.2: An example of attention patterns in language models, image is taken
from [59]

8 CHAPTER 2. LARGE LANGUAGE MODELS



2.3. ATTENTION IN LLMS

2.3 Attention in LLMs

Attention mechanisms allocate weights to input tokens based on their significance,

enabling prioritization of relevant tokens. In transformer-based LLMs, attention

computes query, key, and value mappings for input sequences, facilitating attention

score derivation. Various strategies like self-attention [88] and cross-attention [10],

with enhancements like sparse [17] and flash attention [21], improve computational

efficiency.

2.4 Activation Functions

Activation functions are crucial in LLMs and neural networks for several reasons.

Firstly, they introduce non-linearity into the model, allowing it to learn and repre-

sent more complex patterns in the data. Without non-linear activation functions,

a neural network would essentially become a linear model, no matter how many

layers it has, limiting its ability to capture intricate patterns and dependencies.

Secondly, activation functions affect how gradients are propagated through the

network during training. Proper gradient flow is essential for effective learning.

Activation functions like the ReLU help in mitigating the vanishing gradient prob-

lem [36], where gradients become too small for effective learning in deep networks.

Activation functions enable the construction of deep networks that can learn

hierarchical representations of data. Each layer can learn to extract increasingly

complex features, crucial for tasks such as language modeling, where understanding

context and nuances is essential.

Some activation functions, like ReLU, induce sparsity in the network by setting

negative values to zero. This sparsity can act as a form of regularization, reducing

the risk of overfitting and improving generalization to new data.

Activation functions like Gaussian Error Linear Unit (GELU) [34], and Swish [25]

provide smooth and differentiable approximations, aiding in better convergence

during training. This smoothness helps in maintaining stable gradients and avoid-

ing issues like exploding gradients.

The choice of activation function can significantly impact the empirical per-

formance of LLMs. For example in models like GPT-3 and GPT-4, activation

CHAPTER 2. LARGE LANGUAGE MODELS 9



2.5. LAYER NORMALIZATION

functions like GELU are used to ensure smooth gradient flow and efficient learn-

ing, which are essential for handling the vast amounts of data and the complexity

of language tasks these models are trained on.

Here a summary of those three:

ReLU: f(x) = max(0, x)

• Advantages: reduces the vanishing gradient problem; computationally effi-

cient.

• Disadvantages: can suffer from the dying ReLU problem [51].

GELU: f(x) = x · Φ(x)

• Advantages: combines properties of dropout and ReLU; often improves per-

formance on NLP tasks.

• Disadvantages: more computationally intensive than ReLU.

Swish: f(x) = x · sigmoid(x)

• Advantages: often outperforms ReLU in deeper networks [72]; self-gated and

flexible.

• Disadvantages: slightly slower to compute due to complexity.

2.5 Layer Normalization

Layer normalization stabilizes training dynamics, fostering faster convergence.

Techniques like LayerNorm [5], RMSNorm [97], and pre-layer normalization [8],

address training stability issues in LLMs.

2.6 Data Preprocessing

Data Preprocessing techniques are crucial for LLMs training, prepairing the raw

text data by standardizing the input, thus reducing complexity for the model. Key

techniques include: Data Cleaning, Parsing, Normalization, Tokenization [90] and

Stemming or Lemmatization.

10 CHAPTER 2. LARGE LANGUAGE MODELS



2.6. DATA PREPROCESSING

2.6.1 Data Cleaning

It is an essential step in pre-processing data for training LLMs. It involves iden-

tifying and correcting inaccuracies, inconsistencies, and extraneous components

in raw text data. Typical data cleansing actions include eliminating duplicates,

addressing missing or faulty values, and rectifying format discrepancies.

Further, specific text-related cleaning tasks like removing special characters,

punctuation, and stop words are undertaken to refine the input text. Through ex-

tensive data cleansing practices, the quality and reliability of the training data are

greatly enhanced, setting a strong foundation for further phases of LLMs training.

Key Methods:

• Handling Missing Values: when some observations or features in a dataset

lack data, potentially leading to skewed predictions or a biased model. Tech-

niques to address missing values include impuatation, where missing values

are filled in based on other data points, and deletion, where rows or columns

with missing values are removed. The choice of method depends on the na-

ture of the data and the extent of the missing values. The choice of technique

depends on the data’s characteristics and the missing data’s extent.

• Noise Reduction: irrelevant or random data that can obscure the actual

patterns, causing inaccurate predictions. Sources of noise might be human

error, malfunctioning devices, or irrelevant attributes. Noise reduction meth-

ods include binning, which involves sorting data into groups and smoothing

it, and regression, which fits data to a curve or line, both aiding in reducing

data variability and enhancing the model’s predictive performance.

• Consistency Checks: vital to ensure that data throughout a dataset fol-

lows consistent formats, rules, or conventions. Inconsistencies can arise from

data entry mistakes, differing data sources, or system errors, which can dis-

tort training results. Techniques such as cross-field validation, which checks

the consistency of combined fields, and checks for duplicate records are used

to identify and rectify these discrepancies.

• Deduplication: duplicates in data can arise from various sources such as

data entry mistakes, dataset mergers, or system errors, skewing data distribu-

CHAPTER 2. LARGE LANGUAGE MODELS 11



2.6. DATA PREPROCESSING

tion and affecting model training. Techniques like record linkage, which asso-

ciates similar records, and exact matching, which identifies identical records,

are employed. Removing duplicates makes the dataset more precise and

representative, thereby improving the LLMs performance.

2.6.2 Parsing

It involves analyzing data syntax to extract meaningful information. This ex-

tracted information serves as input for the LLM. Parsing deals with structured

data sources like XML, JSON, or HTML. In the context of NLP parsing refers to

identifying the grammatical structure of a sentence or phrase. This can be helpful

for tasks like machine translation, text summarization, and sentiment analysis.

Parsing also extracts information from semi-structured or unstructured data

sources like email messages, social media posts, or web pages that can be used for

tasks like topic modeling, entity recognition, and relation extraction.

2.6.3 Normalization

It is a crucial pre-processing technique for standardizing textual data to ensure

uniformity and consistency in language usage and minimize complexity for NLP

models. This process involves converting text to a common case, typically lower-

case, to eliminate variations arising from capitalization.

Normalization also includes standardizing numerical data, dates, and other

non-textual elements to render the entire dataset into a coherent and homogeneous

format, facilitating more effective training and improved generalization capabilities

for LLMs. Normalization helps reduce the vocabulary size and model complexity,

which can improve overall performance and accuracy.

2.6.4 Tokenization

It involves breaking down text into smaller units, called tokens, which can be

words, subwords, or characters. Tokenization creates a structured and manageable

input for the model. By breaking down the text into tokens, the model gains a

12 CHAPTER 2. LARGE LANGUAGE MODELS



2.6. DATA PREPROCESSING

granular understanding of language usage and syntax that enables it to analyze

and generate coherent sequences of words.

Tokenization also facilitates the creation of vocabulary and word embeddings

pivotal for the model’s language comprehension and generation capabilities. This

process forms the basis for text processing for LLMs, laying the groundwork for

effective language modeling and natural language understanding.

2.6.5 Stemming and Lemmatization

They are two text preprocessing techniques used in NLP to reduce words to their

base or root form. While both techniques aim to simplify text analysis and improve

performance in tasks like search and data retrieval, they do so in slightly different

ways.

Stemming

Stemming involves chopping off the ends of words in the hope of achieving this

goal correctly most of the time. It typically removes prefixes and suffixes from

words, leaving what is often called the “stem.” For example, the stem of the

word “running” is “run,” and the stemming process removes the ending “ning.”

Charateristics:

• It is a crude heuristic that chops off word endings based on common patterns.

• It can be faster than lemmatization because it uses simple rules and doesn’t

require a detailed dictionary.

• The result might not be an actual word but just a root form.

• Common algorithms include the Porter, Snowball, and Lancaster stemmers,

each with its own set of rules and intended language coverage.

Lemmatization

Lemmatization involves a more sophisticated analysis of a word to remove inflec-

tional endings only and to return the base or dictionary form of a word, known as

CHAPTER 2. LARGE LANGUAGE MODELS 13



2.7. TRAINING TECHNIQUES

the “lemma.” For example, the lemma of “was” is “be,” and the lemma of “mice”

is “mouse.” Characteristics:

• It uses vocabulary and morphological analysis of words, which makes it slower

than stemming.

• Requires understanding of the part of speech (POS) as the same word can

have multiple lemmas based on how it is used.

• Generally returns a real word which is always a correct lexical item in the

language.

2.7 Training Techniques

Training LLMs comprises two main phases: pre-training and fine-tuning. In the

pre-training stage, the model learns from a vast amount of text data through un-

supervised learning methods [89] like masked language modeling or next-sentence

prediction. The primary goal here is to equip the model with deep insights into

language patterns and semantics directly from raw text. Throughout pre-training,

the model encounters diverse linguistic contexts and structures, fostering a thor-

ough grasp of language intricacies. This phase typically entails optimizing complex

neural network architectures via parallelized computations on hardware accelera-

tors such as GPUs or TPUs. Once pre-training is completed, the model proceeds

to fine-tuning for specific downstream tasks using annotated datasets. Fine-tuning

entails further training the pre-trained model with supervised learning objectives

tailored to the target tasks. This process facilitates the model in adjusting its pa-

rameters to suit the specifics of the given task, thereby enhancing its performance

and adaptability. Fine-tuning encompasses various methodologies, including trans-

fer learning [16], where insights gained during pre-training are leveraged for the

target task, and only task-specific parameters are adjusted. Through fine-tuning,

LLMs can attain cutting-edge performance across a broad spectrum of NLP tasks

such as text classification, named entity recognition, and machine translation.

14 CHAPTER 2. LARGE LANGUAGE MODELS



2.8. UTILIZATION OF LARGE LANGUAGE MODELS

2.8 Utilization of Large Language Models

Multiple applications across various domains and NLP tasks showcase LLMs ver-

satility and efficacy in addressing real-world challenges. Notable applications are:

• Text Generation: LLMs possess the capability to produce coherent and

contextually relevant text for endeavors such as story generation, dialogue

systems, and creative writing. These models exhibit proficiency in gener-

ating high-quality text spanning diverse genres and styles, rendering them

invaluable tools for content creation and enhancement.

• Language Translation: LLMs demonstrate remarkable prowess in lan-

guage translation endeavors, facilitating the seamless conversion between

multiple languages with high accuracy and fluency. Through the utiliza-

tion of extensive pre-training and fine-tuning methodologies, LLMs adeptly

capture cross-lingual semantics and syntactic structures, thereby enabling

precise translation between languages characterized by substantial linguistic

disparities.

• Sentiment Analysis: LLMs are extensively employed in sentiment analysis

tasks, aimed at discerning the sentiment or emotional disposition conveyed

within textual content. Sentiment analysis holds relevance across diverse

domains, including social media monitoring, customer feedback analysis, and

market research. Leveraging their capabilities, LLMs accurately categorize

text into positive, negative, or neutral sentiments, empowering businesses to

glean insights into customer sentiments and preferences.

• Question Answering: LLMs excel in question answering endeavors, which

entail furnishing precise and contextually pertinent responses to user in-

quiries based on provided passages or documents. Question answering con-

stitutes a foundational NLP task with applications spanning information

retrieval, virtual assistants, and customer support. Leveraging their exten-

sive pre-trained representations, LLMs adeptly comprehend intricate ques-

tions and furnish accurate responses, thereby attaining state-of-the-art per-

formance on benchmark datasets.

CHAPTER 2. LARGE LANGUAGE MODELS 15



2.9. LIBRARIES

2.9 Libraries

Commonly used libraries for LLMs training include Transformers [84], DeepSpeed [22],

Megatron-LM [52], JAX [40], Colossal-AI [20] and FastMoE [26]. Frameworks such

as MindSpore [54], PyTorch [69], Tensorflow [80], and MXNet [55] help LLMs de-

velopment.

16 CHAPTER 2. LARGE LANGUAGE MODELS



Chapter 3

Introduction to Description Logic

3.1 Overview

DL [28, 58] is a formal knowledge representation language used to describe and

reason about the conceptualization of a domain. DL provides a set of constructs

to represent knowledge in a structured and logical manner, allowing for precise

and expressive modeling of concepts and their relationships. In this chapter, we

will explore the fundamental concepts of DL, its syntax and semantics, reasoning

mechanisms, and its applications in various domains.

3.2 Theory

3.2.1 Concepts

In DL, concepts represent sets of individuals that share common characteristics

or properties. Concepts are used to describe the types or classes of objects in a

domain. For example, in a medical ontology, concepts like Person, Patient, and

Doctor can be defined to represent different types of individuals.

3.2.2 Roles

Roles (also known as properties or relations) define binary relationships between

individuals or concepts. Roles are used to specify how individuals are related

CHAPTER 3. INTRODUCTION TO DESCRIPTION LOGIC 17



3.2. THEORY

to each other. For instance, in a family ontology, roles such as hasParent and

hasChild can be defined to represent parent-child relationships.

3.2.3 Axioms

Axioms are logical statements that define the relationships between concepts and

roles in a domain. Axioms are used to specify constraints and rules that govern the

domain. Common types of axioms include concept inclusion axioms (e.g., A ⊑ B),

role inclusion axioms (e.g., R ⊑ S), and equality axioms (e.g., A ≡ B).

3.2.4 Syntax

The syntax is defined by a set of symbols and rules for constructing valid expres-

sions. The syntax includes symbols for concepts, roles and individuals.

Concepts and roles can be combined using various constructors to form more

complex expressions:

• Atomic concepts and roles: basic building blocks, e.g., Human, parentOf.

• Conjunction (⊓): C ⊓D (intersection of C and D).

• Disjunction (⊔): C ⊔D (union of C and D).

• Negation (¬): ¬C (complement of C).

• Existential quantification (∃): ∃R.C (individuals related by R to some

individual in C).

• Universal quantification (∀): ∀R.C (individuals related by R only to

individuals in C).

• Number restrictions: ≥ n R.C and ≤ n R.C (number constraints on

relations).

18 CHAPTER 3. INTRODUCTION TO DESCRIPTION LOGIC



3.2. THEORY

3.2.5 Semantics

The semantics specify the meaning of DL expressions in terms of interpretations

and models. An interpretation assigns meanings to the symbols used in a DL on-

tology, while a model satisfies the axioms and constraints specified in the ontology.

The semantics of DL are based on set theory and model theory.

Interpretation: consists of a non-empty domain of individuals and an interpre-

tation function.

Interpretation Function: maps every concept to a subset of the domain and

every role to a subset of the domain’s Cartesian product (pairs of individu-

als).

The semantic rules determine whether a particular interpretation satisfies (or mod-

els) a description logic statement:

Satisfaction: an interpretation satisfies a concept expression if it correctly maps

individuals to the subsets defined by the concept expression.

Model: an interpretation is a model of a knowledge base if it satisfies all the

statements (axioms) in the knowledge base.

CHAPTER 3. INTRODUCTION TO DESCRIPTION LOGIC 19



3.3. REASONING IN DESCRIPTION LOGIC

Constructor Syntax Semantics
Top concept ⊤ ∆I (the entire domain)

Bottom concept ⊥ ∅ (the empty set)
Atomic concept A AI ⊆ ∆I

Atomic role R RI ⊆ ∆I ×∆I

Individual a aI ∈ ∆I

Negation ¬C ∆I \ CI

Conjunction C ⊓D CI ∩DI

Disjunction C ⊔D CI ∪DI

Existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I((x, y) ∈ RI ∧ y ∈ CI)}
Universal restriction ∀R.C {x ∈ ∆I | ∀y ∈ ∆I((x, y) ∈ RI → y ∈ CI)}

Nominal {a} {aI}
Role inverse R− {(y, x) | (x, y) ∈ RI}

Value restriction ∀R.C {x ∈ ∆I | ∀y((x, y) ∈ RI → y ∈ CI)}

Table 3.1: Syntax and Semantics of Description Logic

Axiom Type Syntax Meaning
Concept Inclusion C ⊑ D CI ⊆ DI

Concept Equality C ≡ D CI = DI

Role Inclusion R ⊑ S RI ⊆ SI

Role Equality R ≡ S RI = SI

Individual Assertion a : C aI ∈ CI

Role Assertion (a, b) : R (aI , bI) ∈ RI

Negated Concept Assertion a : ¬C aI /∈ CI

Negated Role Assertion (a, b) : ¬R (aI , bI) /∈ RI

Table 3.2: Notation of Axioms in Description Logic

3.3 Reasoning in Description Logic

In the realm of DL, reasoning involves various computational procedures to ana-

lyze the structure and content of a knowledge base. It is a key feature of DL that

allows one to derive implicit knowledge from the explicitly stated information.

Several key reasoning processes are integral to the effective management and uti-

lization of ontological knowledge. These processes are crucial for the organization,

consistency verification, and inferential capabilities of DL systems, particularly

20 CHAPTER 3. INTRODUCTION TO DESCRIPTION LOGIC



3.3. REASONING IN DESCRIPTION LOGIC

in complex domains like biomedical informatics, semantic web technologies, and

artificial intelligence planning.

1. Subsumption: this process involves determining whether all instances of

one concept (denoted as A) necessarily belong to another concept (denoted

as B). Formally, this relationship is expressed as A ⊑ B. Subsumption is

fundamental to understanding and establishing the hierarchical structure of

knowledge bases, enabling inferential reasoning such as transitivity, where if

A ⊑ B and B ⊑ C, then it logically follows that A ⊑ C.

2. Consistency Checking: this procedure ascertains that there are no con-

tradictions within the assertions and axioms of a DL ontology. An ontology

is deemed consistent if there exists at least one model that satisfies all its

stipulated axioms. For example, an ontology that includes the axiom stating

”no person can be both a child and a parent simultaneously” must verify,

through consistency checking, that no individual is assigned both roles.

3. Instance Checking: this is the verification process to determine whether

a specific individual (denoted as x) qualifies as an instance of a particular

concept (denoted as C). Instance checking involves evaluating whether the

properties and relations of x satisfy all criteria defined for C. If x adheres

to all conditions of C, then x is confirmed as an instance of C.

4. Classification: this process involves the systematic categorization of all

known individuals into concepts based on their respective properties and

relationships. It also includes identifying and delineating the interrelations

among concepts themselves. Classification is pivotal for the construction

and refinement of an ontology’s taxonomy, facilitating an organized structure

where new or modified concepts are appropriately integrated.

5. Query Answering: this function exploits the structured knowledge within

an ontology to respond to sophisticated queries. A DL reasoner can provide

information on the satisfiability of concepts (i.e., whether they can possibly

possess instances), verify the consistency of the entire ontology, and identify

individuals that meet specified criteria. For instance, a query may seek to

CHAPTER 3. INTRODUCTION TO DESCRIPTION LOGIC 21



3.4. APPLICATIONS OF DESCRIPTION LOGIC

determine the existence of individuals who fulfill the roles of both ”teacher”

and ”researcher” and to elucidate additional properties they might share.

3.4 Applications of Description Logic

DL are applied across a wide array of fields including ontology engineering, knowl-

edge representation, semantic web technologies, biomedical informatics, and NLP.

These logical frameworks facilitate the modeling, reasoning, data integration, and

interoperability across complex domains, while also bolstering automated reason-

ing and decision-making systems.

In ontology engineering, DL transcends the role of merely constructing on-

tological structures. It is instrumental in the maintenance and evolution of these

structures, ensuring their robustness and relevance over time. This aspect is partic-

ularly crucial in areas like the semantic web, which continuously adapt to evolving

standards and technologies. DL provides the flexibility needed for ontologies to

evolve and accommodate new web functionalities, making it a foundational com-

ponent in developing adaptive ontological frameworks.

For semantic web technologies, DL-based ontologies play a pivotal role in se-

mantic annotation. This involves enriching web content with semantic metadata

to make the information machine-readable, thereby enhancing search and retrieval

capabilities. Such annotations are critical for refining the user experience on the

web by enabling more precise and context-aware search results, which are tailored

to the semantic content of user queries.

In biomedical informatics, DL proves essential in harmonizing the integration

of varied biomedical databases that often feature incompatible data formats and

terminologies. By establishing a common ontological framework, DL ensures seam-

less data integration, which is vital for advancing research in areas like genomics,

proteomics, and personalized medicine. For instance, using DL to synchronize dif-

ferent genetic databases can significantly enhance the accuracy of genetic linkage

analysis, a key factor in understanding complex genetic disorders.

NLP benefits markedly from DL through enhanced semantic parsing capabil-

ities. DL helps in disambiguating language constructs, thus enabling machines

to process human languages with higher accuracy. This improvement is crucial

22 CHAPTER 3. INTRODUCTION TO DESCRIPTION LOGIC



3.4. APPLICATIONS OF DESCRIPTION LOGIC

for developing sophisticated applications such as automated dialogue systems and

advanced language models, which rely on DL to facilitate more effective commu-

nication between humans and machines. These applications exemplify how DL

can extend its utility beyond traditional data-oriented tasks to involve complex

language interactions, bridging the gap between human linguistic nuances and

machine processing capabilities.

CHAPTER 3. INTRODUCTION TO DESCRIPTION LOGIC 23



3.4. APPLICATIONS OF DESCRIPTION LOGIC

24 CHAPTER 3. INTRODUCTION TO DESCRIPTION LOGIC



Chapter 4

Ontologies

4.1 Introduction

In the realm of knowledge representation, ontologies [86] serve for organizing in-

formation. They play a crucial role in facilitating understanding, sharing, and

reuse across various domains. This chapter explores the significance of ontologies

in knowledge representation, delving into their structure, uses, and applications.

By providing a common vocabulary and a structured representation of knowledge,

ontologies enable diverse systems and organizations to communicate information

efficiently and effectively.

4.2 Understanding Ontologies

An ontology is a conceptual model that captures the essential entities, attributes,

and relationships within a specific domain. It defines a common vocabulary for

researchers and practitioners to describe and interact with the domain, specifying

the semantics of the concepts and their interrelations. Ontologies are composed

of classes (concepts), properties (attributes), and relationships (associations) that

are typically organized hierarchically to facilitate complex information retrieval,

inference, and data integration tasks.

CHAPTER 4. ONTOLOGIES 25



4.3. METHODOLOGIES FOR ONTOLOGY DEVELOPMENT

4.3 Methodologies for Ontology Development

Ontology development methodologies [27] are crucial frameworks guiding the sys-

tematic construction of ontologies. These methodologies ensure that the resulting

ontologies are robust, relevant, and capable of supporting user and application-

specific needs. Common methodologies include:

• Top-Down Approach: this method begins at the general level and refines

into more specific detail. It is suitable when the domain is well-understood

and a clear hierarchy of concepts exists.

• Bottom-Up Approach: starts with specific concepts and aggregates them

into general categories, used when specific data or existing systems are in

place.

• Middle-Out Approach: combines elements of both top-down and bottom-

up, starting from a well-understood middle layer of abstraction.

• Methontology: includes phases like feasibility study, specification, concep-

tualization, formalization, implementation, and maintenance.

• Ontology Learning: involves automatically generating elements of the on-

tology from existing data sources using machine learning and natural lan-

guage processing techniques.

4.4 Types of Ontologies

Ontologies are classified based on their scope, expressiveness, and purpose into

several types, each serving different aspects of knowledge representation:

1. Domain Ontologies: focus on a specific domain, such as medicine, finance,

or biology, capturing domain-specific knowledge and concepts. Examples in-

clude the Gene Ontology [4] which provides a framework for the representa-

tion of genetics information across species.

26 CHAPTER 4. ONTOLOGIES



4.5. ONTOLOGY LANGUAGES AND TOOLS

2. Upper-level Ontologies: offer general concepts that are not specific to a

particular domain but are reusable across multiple domains. These include

DOLCE [13], BFO [63], and SUMO [66], which provide abstract categories

like time, space, and event.

3. Task-specific Ontologies: designed to support specific tasks, such as med-

ical diagnosis or natural language processing, these ontologies are tailored to

enhance the performance of task-specific algorithms and applications.

4.5 Ontology Languages and Tools

To create, edit, and manage ontologies, several formal languages and software tools

have been developed. These include:

• RDF (Resource Description Framework) [45]: a standard model for

data interchange on the Web.

• OWL (Web Ontology Language) [11]: a comprehensive ontology lan-

guage designed for creating and sharing ontologies on the Internet.

• RDFS (RDF Schema) [15]: provides basic constructs for defining ontolo-

gies.

Tools such as Protégé [68], OntoStudio [61], and TopBraid Composer [82]

offer user-friendly graphical interfaces and utilities for ontology development, en-

abling both experts and novices to construct and modify ontological models.

4.6 Applications of Ontologies

Ontologies are instrumental in several key areas:

• Semantic Web: they enhance web content with rich, structured knowledge,

making it possible for machines to understand and respond to complex user

queries [60].

CHAPTER 4. ONTOLOGIES 27



4.7. INTEGRATION WITH OTHER TECHNOLOGIES

• Data Integration: ontologies facilitate the integration and interoperability

among heterogeneous data sources, improving data quality and consistency

across different systems [81].

• Knowledge Management: they play a critical role in organizing and man-

aging domain-specific knowledge, making it accessible and reusable.

• NLP: ontologies enhance semantic analysis in NLP tasks like information

retrieval, question answering, and knowledge extraction [56].

4.7 Integration with Other Technologies

Ontologies are increasingly integrated with various technologies to enhance func-

tionality and effectiveness:

• Machine Learning: provide a structured knowledge base for training ma-

chine learning models [30].

• Blockchain: facilitate standardization of terms across different stakehold-

ers, enhancing transparency and interoperability [44].

• Internet of Things (IoT): help in managing and semantically processing

the vast amount of data generated by IoT devices [9].

4.8 Challenges and Future Directions

While ontologies offer numerous benefits, they also pose significant challenges:

• Ontology Maintenance: updating ontologies to reflect new knowledge and

changes in the domain remains a complex and resource-intensive task.

• Scalability: developing methods to efficiently handle large-scale ontologies

is crucial as the volume of information grows.

• Interoperability: ensuring that different ontologies can work together seam-

lessly across various applications and domains is critical.

28 CHAPTER 4. ONTOLOGIES



4.8. CHALLENGES AND FUTURE DIRECTIONS

• Ontology Alignment: aligning and integrating ontologies from different

domains to avoid redundancy and conflicts is an ongoing issue.

Future research will need to address these challenges, focusing on automated on-

tology learning, dynamic ontology updates, and the development of standards for

semantic interoperability to enhance the utility and scalability of ontological sys-

tems.

CHAPTER 4. ONTOLOGIES 29



4.8. CHALLENGES AND FUTURE DIRECTIONS

30 CHAPTER 4. ONTOLOGIES



Chapter 5

Ontology Learning

Ontology learning is aiming to automate the process of ontology development.

As ontologies play a critical role in knowledge representation, their construction

has traditionally required extensive manual effort, involving domain experts and

knowledge engineers. However, the vast and ever-growing amount of information

available today, particularly on the web, calls for automated systems that can learn

and update ontologies dynamically.

Ontology learning leverages techniques from machine learning, natural lan-

guage processing, and data mining to extract conceptual knowledge structures

from diverse data sources. These sources include structured databases, unstruc-

tured text, and semi-structured documents. The primary goal of ontology learning

is to simplify and scale the ontology construction process by automatically identi-

fying relevant concepts, attributes, and relationships inherent in the data.

The process of ontology learning typically involves several key phases:

• Text Processing and Extraction: this phase deals with extracting useful

information from raw data, which often involves tasks such as tokenization,

part-of-speech tagging, and named entity recognition.

• Concept Identification: using algorithms to detect and define the key

concepts within the data. This often involves clustering similar terms or

phrases that refer to the same underlying idea.

• Hierarchy Building: structuring the identified concepts into a hierarchi-

CHAPTER 5. ONTOLOGY LEARNING 31



5.1. THE EXACTLEARNER PARADIGM

cal framework that reflects their relationships, often using techniques like

hierarchical clustering.

• Relationship and Attribute Extraction: identifying how concepts are

related to each other and what attributes they possess, which often involves

pattern recognition and statistical inference.

• Ontology Evaluation: the final ontology is evaluated to ensure its accu-

racy and relevance, using measures like precision, recall, and domain expert

validation.

5.1 The ExactLearner Paradigm

Central to ontology learning is a robust communication model that orchestrates

the collaboration between ontology engineers and domain experts. While ontology

engineers possess the technical acumen to formalize ontologies, domain experts

harbor profound domain knowledge but may lack expertise in formal ontology

construction. To formalize this interaction, ExactLearner adopt a communication

model grounded in several fundamental assumptions:

• Perfect Domain Knowledge: domain experts possess comprehensive do-

main knowledge but lack the ability to directly formalize ontologies.

• Shared Vocabulary: domain experts can communicate the ontology’s vo-

cabulary, encompassing concept and role names, to ontology engineers.

• Membership Queries: ontology engineers can pose queries to domain ex-

perts to ascertain if specific concept inclusions are entailed by the ontology.

• Equivalence Queries: ontology engineers can verify if a constructed ontol-

ogy is complete by asking domain experts for counterexamples.

This model sets the stage for exploring the feasibility of constructing target

ontologies using polynomial queries or, ideally, within polynomial time, relative to

the ontology’s size and the provided counterexamples.

32 CHAPTER 5. ONTOLOGY LEARNING



5.1. THE EXACTLEARNER PARADIGM

5.1.1 Exact Learning Framework

Aligned with Angluin’s learning algorithm [2], the exact learner paradigm employs

membership and equivalence queries to systematically construct ontologies. The

framework transcends assumptions about the articulation clarity of domain ex-

perts, ensuring robustness across varied levels of expertise. Building upon prior

research, an algorithm for learning EL (Description Logic Expressive) terminologies

is proposed, demonstrating exponential time complexity in concept expression and

vocabulary size. Despite its computational demands, ExactLearner, implement-

ing this algorithm, showcases success in terminating for small and medium-sized

ontologies, thereby validating its efficacy in ontology construction.

Given a class of ontologies L (e.g., all ontologies in a specific DL, such as EL ter-

minologies), the goal is to precisely identify a target ontology O ∈ L by making

queries to an oracle. It is assumed that the learner knows the vocabulary of the

target ontology ΣO.

• Membership Query: this involves asking the oracle any type of valid axiom

e.g. whether an inclusion C ⊑ D is entailed by O (O |= C ⊑ D) where C

and D are any type of expression (see Section 3.2) in the DL’s vocabulary

ΣO. If O |= C ⊑ D, the inclusion is a positive example with respect to the

target ontology O; otherwise, it is a negative example.

• Equivalence Query: this involves asking the oracle whether a hypothesis

ontology H is equivalent to the target ontology O. If they are equivalent, the

oracle answers “yes”. If not, the oracle provides either a positive example

C ⊑ D where H ̸|= C ⊑ D or a negative example E ⊑ F where H |= E ⊑ F .

These examples are referred to as positive and negative counterexamples,

respectively.

A class of ontologies L is considered exactly learnable if there exists an algo-

rithm that, for any target ontology O ∈ L, halts and computes a hypothesis H ∈ L

using membership and equivalence queries, such that H ≡ O. If this algorithm

operates in polynomial time, the class is deemed exactly learnable in polynomial

time. Specifically, at each computational step, the time taken is bounded by a

CHAPTER 5. ONTOLOGY LEARNING 33



5.2. LEARNING ALGORITHM

polynomial p(|O|, |C ⊑ D|), where O represents the target ontology and C ⊑ D is

the largest counterexample encountered.

The subsumption learning framework aims to precisely identify target ontolo-

gies within a specified class of ontologies. By utilizing membership and equiva-

lence queries, learners navigate through the ontology space, striving to accurately

pinpoint the target ontology. While classes such as ELlhs and ELrhs demonstrate

polynomial time learnability, the broader class of EL ontologies presents challenges

for polynomial time learning, reflecting the intricate nature of ontology space ex-

ploration. Research by Konev et al. [47] confirms that ELlhs and ELrhs are indeed

exactly learnable in polynomial time, while the entire class of EL ontologies does

not lend itself to polynomial time learning.

5.2 Learning Algorithm

Designed for the exact learning of EL terminologies, the learning process exhibits

exponential time complexity in the size of the largest concept expression in the

ontology, denoted as |CO|, and the size of the ontology vocabulary, |ΣO|. However,
it does not depend on the size of the entire ontology.

• The learner consistently engages with an oracle by posing equivalence queries.

• A positive response from the oracle, indicating “yes,” means that the hypoth-

esis H aligns with the ontology O, leading to the conclusion of the algorithm

and the return of H.

• If the oracle returns a counterexample, represented as C ⊑ D, the algorithm

adapts its hypothesis H accordingly.

5.2.1 Process

• If C ′ is a concept name, the algorithm integrates D′ into the right-hand side

of all inclusions in H that have C ′ on the left, thereby computing a right

O-essential counterexample.

34 CHAPTER 5. ONTOLOGY LEARNING



5.3. KEY OBSERVATIONS

• Conversely, if D′ is a concept name, a left O-essential counterexample is

computed.

5.2.2 Right O-essential Counterexamples

• Concept Saturation for O: if O |= A ⊑ C ′, where C ′ results from C

by including a concept name A′ at some node, then A ⊑ C is replaced by

A ⊑ C ′.

• Sibling Merging for O: if O |= A ⊑ C ′, with C ′ emerging from merging

two r-successors in C, then update A ⊑ C to A ⊑ C ′.

• Decomposition on the Right for O: consider d′ an r-successor of d in

C, with A′ in d’s node label, and O |= A′ ⊑ ∃r.Cd′ , then modify A ⊑ C as

follows:

– A′ ⊑ ∃r.Cd′

– A ⊑ C| − d if H ̸|= A′ ⊑ ∃r.Cd′ ;

– Decompose further as d′ ↓, defining Cd as the subtree rooted at d and

C| − d ↓ as the subtree resulting from d’s removal.

5.2.3 Left O-essential Counterexamples

• Concept Saturation for H: if H |= C ⊑ C ′ and C ′ arises by adding a

concept name A′ to some node in C, then replace C ⊑ A with C ′ ⊑ A.

• Decomposition on the Left for O: for a non-root node d such that

O |= C| − d ↓⊑ A′ and H ̸|= C| − d ↓⊑ A′, modify C ⊑ A as:

– C| − d ↓⊑ A′

– Cd ⊑ A′ if O |= Cd ⊑ A′ and H ̸|= Cd ⊑ A′.

5.3 Key Observations

• Throughout the process, the maintained hypothesis H always satisfies O |=
H. Therefore, the counterexamples provided are invariably positive.

CHAPTER 5. ONTOLOGY LEARNING 35



5.4. EXPLANATION

• Considering that O represents a terminology, complex expressions C and

D in counterexamples are constrained to relationships expressible through

concept names, discernible via membership queries.

5.4 Explanation

• Upon receiving a positive counterexample C ⊑ D, the algorithm simplifies

it into a form C ′ ⊑ D′ where either C ′ or D′ is a concept name.

• This transformation leverages membership queries and the efficiency of this

operation is bounded by polynomial time based on the sizes of the hypothesis

H, the concept C, and the vocabulary ΣO.

Algorithm 1 The Learning Algorithm for EL

Require: An EL terminology O given to the oracle; ΣO given to the learner.
Ensure: An EL terminology H computed by the learner such that O ≡ H.
Initialization:
Set H = {A ⊑ B | O |= A ⊑ B,A,B ∈ ΣO}.
while H ̸≡ O do
While H ̸≡ O:
Get Counterexample:
Let C ⊑ D be the returned positive counterexample for O relative to H.
Compute C ′ ⊑ D′:
Compute C ′ ⊑ D′ with C ′ or D′ in ΣO ∩NC (where NC is the set of concept
names).
Determine O-essential Concept:
if C ′ ∈ ΣO ∩NC then
Compute a right O-essential α from C ′ ⊑ D′.

else
if C ′ ⊑ F ′ ∈ H then
Compute a left O-essential α from C ′ ⊑ D′.

end if
end if
Update Hypothesis:
Add α to H.

end while
return Hypothesis: H

36 CHAPTER 5. ONTOLOGY LEARNING



Chapter 6

Probably Approximately Correct

Learning Algorithm

6.1 Introduction

In the field of machine learning, Probably Approximately Correct (PAC) [87, 33,

92] learning framework lays down theoretical foundations for understanding how

learning happens from data. Developed by Leslie Valiant in the late 1980s, PAC

learning provides insights into the feasibility and constraints of learning algorithms.

This chapter aims to explain the principles, mechanisms, and outcomes of PAC

learning algorithms.

6.2 Foundations of PAC Learning

PAC learning revolves around the concept of sample complexity and computational

efficiency. Essentially, it addresses the question: given a hypothesis class H, a

target concept c, and a probability distribution D over the instance space, what

is the minimum number of samples needed for a learning algorithm to produce a

hypothesis h that closely matches the target concept with high confidence?

∀ϵ > 0, δ > 0, ∃A | p (errorD(h) ≤ ϵ) ≥ 1− δ (6.1)

Where:

CHAPTER 6. PROBABLY APPROXIMATELY CORRECT LEARNING
ALGORITHM

37



6.3. THE PAC LEARNING ALGORITHM

• ϵ is the error tolerance parameter, representing the maximum acceptable

error of the hypothesis h;

• δ is the confidence parameter, representing the probability that the algo-

rithm’s output hypothesis h has an error within ϵ;

• p(errorD(h) ≤ ϵ) denotes the probability that the error of hypothesis h with

respect to the distribution D is less than or equal to ϵ;

• errorD(h) represents the error of hypothesis h measured concerning the dis-

tribution D;

• A is the learning algorithm.

Explained, a concept class C is considered PAC-learnable if, for any ϵ > 0

and δ > 0, there exists a learning algorithm that, with a probability of at least

1 − δ, outputs a hypothesis h such that the error of h (measured concerning the

distribution D) is no more than ϵ.

The critical parameters in PAC learning are sample complexity (the required

number of samples for learning) and computational complexity (the time and space

demands of the learning algorithm).

6.3 The PAC Learning Algorithm

The PAC learning algorithm operates by iteratively refining a hypothesis based on

observed data. The general procedure involves these steps:

1. Initialization: start with initializing the hypothesis space H and setting

the error tolerance parameters ϵ and δ.

2. Sample Collection: collect a sufficient number of labeled examples from

the distribution D.

3. Hypothesis Selection: choose a hypothesis h from the hypothesis space

H that best fits the observed data. This step often entails optimization

methods such as gradient descent [74] or convex optimization [14].

38 CHAPTER 6. PROBABLY APPROXIMATELY CORRECT LEARNING
ALGORITHM



6.4. PROPERTIES OF PAC LEARNING

4. Error Estimation: estimate the error of the selected hypothesis h using

techniques such as cross-validation or holdout validation.

5. Convergence Check: verify whether the error of the hypothesis h meets

the desired accuracy threshold ϵ. If not, repeat steps 2-4 with additional

samples or a refined hypothesis space.

6. Output: finally, output the hypothesis h that fulfills the PAC criteria with

high confidence.

6.4 Properties of PAC Learning

PAC learning algorithms possess several distinguishing properties:

1. Sample Complexity: PAC learning provides bounds on the minimum num-

ber of samples required for learning. These bounds rely on factors like the

complexity of the hypothesis class, the desired accuracy level ϵ, and the

confidence parameter δ.

2. Computational Efficiency: PAC learning algorithms aim for learning

with polynomial time and space complexity. However, the computational

efficiency often depends on the complexity of the hypothesis class and the

optimization techniques used.

3. Generalization Guarantees: PAC learning offers theoretical assurances

on the generalization performance of learned hypotheses. A hypothesis

learned via a PAC algorithm is expected to generalize well to unseen data

sampled from the same distribution D.

4. Model Complexity: the complexity of the hypothesis class H influences

the sample complexity and generalization performance of PAC learning al-

gorithms. A more complex hypothesis class may necessitate more samples

for learning but could potentially capture intricate data patterns.

CHAPTER 6. PROBABLY APPROXIMATELY CORRECT LEARNING
ALGORITHM

39



6.5. APPLICATIONS AND EXTENSIONS

6.5 Applications and Extensions

PAC learning finds applications across diverse domains, including classification,

regression, and reinforcement learning. Its theoretical underpinnings have spurred

various extensions and variations, such as online learning, active learning, and

learning with partial feedback. Additionally, PAC learning principles have influ-

enced the development of advanced machine learning techniques, including deep

learning and ensemble methods.

40 CHAPTER 6. PROBABLY APPROXIMATELY CORRECT LEARNING
ALGORITHM



Chapter 7

Methodology

This chapter outlines the procedures and techniques employed in actively learning

ontologies from LLMs using an active learning approach. The primary goal is to

evaluate the performance of various LLMs when tasked with determining the truth

value of concept inclusions within predefined ontologies. This section describes the

experimental setup, the ontologies used, the LLMs evaluated, and the metrics for

assessing performance.

7.1 First Phase of Experiments

The experiments consist in performing a number of membership queries with mul-

tiple LLMs on prototypical ontologies. These are small ontologies taken from

ontology repositories and used for experiments in the ExactLearner project [24]1

2, which focuses on EL ontologies. In all ontologies considered, the logical closure

is finite. We consider the following ontologies:

1. Animals: contains knowledge related to the animal realm, including actual

animals, subphyla, classes, orders, etc. The ontology has 12 (explicit) logical

1https://github.com/bkonev/ExactLearner/
2Generations, University, and Cell were also part of the Protégé Ontology Library. Not main-

tained anymore at https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

but still accessible via web archive at https://web.archive.org/web/20210226123540/https:
//protegewiki.stanford.edu/wiki/Protege_Ontology_Library

CHAPTER 7. METHODOLOGY 41

https://github.com/bkonev/ExactLearner/
https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
https://web.archive.org/web/20210226123540/https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
https://web.archive.org/web/20210226123540/https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library


7.1. FIRST PHASE OF EXPERIMENTS

axioms in EL and 20 logical axioms in the logical closure (that is, taking

into account inferred axioms).

2. Cell: provides information about different cells based on their type, devel-

opment stage and organism. The ontology has 24 logical axioms in EL and

24 in the logical closure.

3. Football: is a minimal ontology that describes the relations between football

game, teams, players and managers. It has 9 logical axioms in EL and 12 in

the logical closure.

4. Generations: describes the members and relations within a family. This

ontology has 18 (explicit) logical axioms in EL and 42 in the logical closure.

5. University: is a small ontology, focusing on the professor role, with 4 logical

axioms in the logical axioms in EL and 8 in the logical closure.

We use a total of 5 LLMs: Open AI’s GPT 3.5 Turbo [16], Mistral [1], Mixtral [41]

and two Llama 2 [83] models (we use Ollama’s API3). Both Mistral and Mixtral are

open models. Llama 2 is free of charge for research while GPT can be expensive

as it charges for each query4. For each logical axiom in an ontology, we generated

a membership query to an LLM using the Manchester OWL syntax. The goal was

to assess how accurately an LLM could answer membership queries in different

domains without fine-tuning. Accuracy was defined as answering ’true’ for axioms

present in the ontology.

Next, we generated all inferred axioms using the HermiT [31] reasoner and

repeated the experiments with the new ontologies. Probing the LLMs on ontologies

with inferred axioms tested their logical consistency. While it was possible that the

LLMs had encountered these ontologies during their training, it was unlikely for

the inferred axioms, as they were not explicitly present in the original ontologies.

In a third experiment, we employed a naive learning algorithm to actively

learn ontologies. We asked membership queries for all concept inclusions of the

3https://github.com/ollama/ollama
4The source code of the experiments is publicly available https://github.com/

MatteoMagnini/ExactLearner

42 CHAPTER 7. METHODOLOGY

https://github.com/ollama/ollama
https://github.com/MatteoMagnini/ExactLearner
https://github.com/MatteoMagnini/ExactLearner


7.2. SECOND PHASE OF EXPERIMENTS

form A ⊑ B with A and B as concept names within a given signature. The results

of these experiments are presented in 8.3.

7.2 Second Phase of Experiments

What can we learn from LLMs? And, given that they can provide false informa-

tion, is there an automated way to discover whether responses are incorrect or

at least inconsistent? To explore these questions, this work investigates an active

learning approach to learn description logic ontologies from LLMs. Our approach

is based on Angluin’s exact learning framework [3], where a learner attempts to

learn target knowledge from a teacher by posing questions. In this method we con-

sider different LLMs to be the teacher and studies the case in which the knowledge

to be learned is expressed as an ontology in the classical EL description logic [6].

EL ontologies allow for expressions involving conjunctions and existential quan-

tification. The following example illustrates a concept inclusion in EL and its

translation into controlled natural language.

Conifer ⊑ Gymnosperm ⊓ ∃bears.Cone

Conifers can be considered a subcategory of Gymnosperms that bear cones.

Exact learning of lightweight description logic ontologies has been studied for

theoretical purposes [47, 46, 64]. The only known implementation for exact learn-

ing involves a synthetic teacher [24] and assume the ontology submitted must be

exclusively of type EL , created for testing using ontologies from the Oxford On-

tology Repository 5. With the advancement of LLMs, we can now investigate

the extraction of description logic ontologies from LLMs within Angluin’s active

learning framework [2].

The following ontologies are considered:

1. Animals, Cell, Football, Generations and University as showed before in

Section 7.1

5https://www.cs.ox.ac.uk/isg/ontologies/

CHAPTER 7. METHODOLOGY 43

https://www.cs.ox.ac.uk/isg/ontologies/


7.2. SECOND PHASE OF EXPERIMENTS

2. Bio-primitive: has information about different kinds of measures in the bio-

logical domain such as weight measure, blood pressure and specific metrics

(e.g., Hamilton anxiety score). The ontology has 122 logical axioms (no new

axioms are inferred by the engine).

3. Biosphere: is a rich ontology providing information about animals and plants.

The ontology has 86 logical axioms (no new axioms are inferred by the en-

gine).

We use 5 open LLMs: Mistral with 7 billion parameters, Mixtral with 47 billion

parameters, Llama2 with 7 and 13 billion parameters and the very recent LLama3

with 8 billion parameters [53] (we use again Ollama’s API). We try two different

formalism for the queries: the Manchester OWL syntax and the natural language.

Finally, we use two different system prompts to provide contextual information to

LLMs.

Answer with only True or False.

This first prompt is minimal and it simply suggests the LLM to answer with a

single word, i.e., “True” or “False”.

You need to classify the following statements as True or False.

The statement will be provided in either Manchester OWL syntax or

natural language. Follow strictly these guidelines:

1. answer with only True or False;

2. entities from different categories are not in a subclass

relationship;

3. statements or question containing numerous entities are most

probably False;

4. take a deep breath before answering;

5. if you are unsure about the classification, answer with False.

The second prompt instead provides much more context information and tells the

LLM to follow some guidelines. Point 1 is the same sentence used in the first

prompt. Point 2 is a remark for the LLM to stress out that there could be concept

names that refer to different categories and cannot be put in a subclass relation.

44 CHAPTER 7. METHODOLOGY



7.2. SECOND PHASE OF EXPERIMENTS

Animals Bio-primitive Biosphere Cell Football Generation University

1, 082 17, 629 11, 508 2, 242 655 1, 669 274

Table 7.1: Minimum number of axioms needed to PAC learn an ontology.

For instance, “Fish” (animal) lives in “Water” (environment) and the two concept

names should not be in a subclass relationship like “Fish” ⊑ “Water”. Point 3

has the purpose to prevent the LLM to answer “True” to long queries (i.e., queries

involving several concept and role names). Long queries may appear when the

learner tries to apply the rules in 5.2. Point 4 is an expedient that has been found

to be effective to improve LLM performance [94]. The last point is a final remark

to be conservative in the replies.

Concerning the simulation of equivalence query using the PAC framework, we

set to 0.1 the value of ϵ and we set to 0.2 the value of γ. We report in 7.1 the

minimum number of axioms needed to PAC learn the chosen ontologies.

7.2.1 PAC for equivalence queries

Equivalence queries are problematic, it is not feasible, nor reasonable, to ask an

LLM if the hypothesis ontology is equivalent to the target ontology. First, because

the teacher does not directly have the target ontology at its disposal, and second,

because the LLM could struggle to handle a really long input. For these reasons

we simulate equivalence queries with the PAC framework.

As mentioned in Chapter 6, PAC utilizes a labeled set of examples drawn from

the instance space X using an unknown probability distribution D and attempts

to find a hypothesis h ∈ H where H is a set of possible hypotheses that a learning

algorithm considers when trying to approximate the target concept.

The size or complexity of H directly impacts the sample complexity m, which

is the number of training examples required to ensure that the learning algorithm

can – with high probability – find a hypothesis that is approximately correct. The

minimum number of samples needed to PAC learn:

m ≥ log (|H|/γ)
ϵ

(7.1)

For a given target ontology, we estimate the instance space X by considering

CHAPTER 7. METHODOLOGY 45



7.2. SECOND PHASE OF EXPERIMENTS

all possible combinations of the following statements: A ∩B ⊑ C, B ⊑ ∃r.A, and
∃r.A ⊑ B. We limit the instance space to these three statements because they

are sufficient to cover non-trivial ontologies, in particular the ones used for the

experiments.

Of course, one can choose different and additional statements (e.g., use not

only statements with chains of length one) but in doing so they should keep into

account the size of the input space since it heavily affects the computation.

We then consider the upper bound to the size of the hypothesis class H to be

equal to the size of the instance space to the power of the size of the number of

axioms in the target ontology:

|H| = |X||A| (7.2)

where |X| is the size of the instance space, and |A| is the number of axioms.

An equivalence query can then be simulated by probing random samples from

X. If a statement is not entailed by the hypothesis ontology and it is labeled

as ‘true’ by the LLM, then there is no equivalence and the sample is used as a

counterexample. Instead, if none counterexample can be found within m samples,

we say that the equivalence query is ‘true’.

7.2.2 From Manchester OWL Syntax to Natural Language

The Manchester OWL syntax is a formal language for describing ontologies and

it is quite close to the natural language. However, because is it most likely that

LLMs have been trained more on data in natural language rather than in other

formalisms, they could perform better if the query is also presented in natural

language. We now describe the translation from the Manchester OWL syntax to

natural language that we used in our experiments. All queries in the Manchester

OWL syntax are of the form “[A] SubClassOf [B]”. We substitute it with “Can

[A] be considered a subcategory of [B]? Answer only with yes or no.”, where [A]

and [B] are placeholders for the concept expressions on the left and right hand

side of the concept inclusion. This corresponds to the third formulation by Funk

et al. [29], chosen in this work as it is closer to our setting. The translation of

OWL concept expressions into natural language is then recursively applied to [A]

46 CHAPTER 7. METHODOLOGY



7.3. OWL API FRAMEWORK

and [B].

1. If the query is of the form “[A] and [B]” then it is substituted with “[A]

that is also [B]”. The mapping is then recursively applied to [A] and

[B].

2. If the query is of the form “[r] some [A]”, where [r] is a role name (or object

property in OWL terminology), then it is substituted with “something that

[r] [A]” and the substitution is recursively applied to [A].

We provide examples for the procedure described above.

• If the input message is “Person SubClassOf Human”, the function will return:

“Can Person be considered a subcategory of Human?”

• If the input message is “Carnivore SubClassOf Animal and eats some Meat”

The function will return: “Can Carnivore be considered a subcategory of

Animal that is also something that eats Meat?”

• If the input message is “(Bird and Fish) SubClassOf Animal”: The function

will return: “Can Bird that is also Fish be considered a subcategory of

Animal?”

7.3 OWL API Framework

OWL API [38] 6 was the running core of our experiments and is a framework de-

signed for creating, parsing, manipulating, and serializing OWL Ontologies. Sim-

ple to use and versatile, the OWL API supports the creation and manipulation of

OWL ontologies in various ways. Since version 3.1, it has been specifically tailored

to support OWL 2, offering robust functionality to work with ontologies across

different applications. Key Features:

• Provides a high-level API for handling OWL 2 ontologies.

• Includes an efficient in-memory implementation for managing ontologies.

6https://github.com/owlcs/owlapi

CHAPTER 7. METHODOLOGY 47

https://github.com/owlcs/owlapi


7.4. PROBLEMS WITH LLMS

• Supports a variety of syntaxes including RDF/XML, OWL/XML, OWL

Functional Syntax, Manchester OWL Syntax, Turtle, KRSS, and OBO Flat

file formats.

• Facilitates integration with external reasoners like FaCT++ [85]+, HermiT,

Pellet[76], ELK [42].

7.4 Problems with LLMs

When using GPT-3.5 Turbo we found some limitations from our paid version(Tier

1, $5 paid, up to $100/month)

• Rate Limits: the API imposes rate limits on the number of requests that

can be made within a certain timeframe. This partially hind ourself in the

course of the first experiments. The specific limits can be found in the

OpenAI documentation 7.

• Cost: extensive use of GPT-3.5 Turbo can become expensive, especially for

high-frequency tasks or large datasets. For this reason we didn’t consider it

as suitable for the second phase.

Similarly for open LLMs, limitations were found in the overloading of the server

hosting our Ollama services, specific precautions are taken:

• Sleep Intervals: the system must wait (we found 100 milliseconds to be

the sweet spot) between requests. This pause helps prevent overwhelming

the server, ensuring stable and reliable performance.

• Retry Mechanism: requests are retried up to a maximum of three times if

they fail. This ensures that transient issues do not cause permanent failures

but also requires careful handling to avoid unnecessary delays.

7https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=

tier-one

48 CHAPTER 7. METHODOLOGY

https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-one
https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-one


7.5. CACHING LLMS’ ANSWER

7.5 Caching LLMs’ Answer

Caching responses from LLMs is a crucial optimization strategy. It offers several

benefits that enhance the efficiency and reliability of experimental workflows.

By caching responses, experiments can be resumed from the last saved state

rather than restarting from scratch. This drastically reduces the time required

to conduct experiments, especially those involving long-running processes, such as

learning medium-sized ontologies. Efficient caching helps in better resource uti-

lization, ensuring that computational power and time are not wasted on redundant

calculations or data processing.

7.5.1 Advantages of Caching

• Time Efficiency: reduces the need to recompute responses for previously

encountered inputs, saving significant time in iterative processes.

• Resource Utilization: helps in better management of computational re-

sources, avoiding redundant usage and reducing operational costs.

• Resilience: in scenarios where experiments are interrupted due to unfore-

seen circumstances (e.g., system crashes or power failures), caching allows

for seamless continuation without loss of progress.

• Data Integrity: mechanisms to validate the integrity of cached files are

implemented, ensuring that only complete and correct data is retained. This

reduces the likelihood of using corrupted or incomplete data in subsequent

experiment runs.

• Scalability: facilitates scaling of experiments by allowing reuse of previ-

ously computed results, thereby enabling more extensive and comprehensive

testing.

7.6 Probing Language Models

In this section we describe the main challenges encountered when probing LLMs

with ontology axioms and how we handled them.

CHAPTER 7. METHODOLOGY 49



7.6. PROBING LANGUAGE MODELS

7.6.1 Input Format and Unexpected Responses

One important factor is the format of the query.

To systematically query an LLM with the goal of learning an ontology, it is

useful to standardise the questions, so as to improve the transparency of the whole

process and increase the level of reproducibility.

For the membership queries task, we investigate the use of the Manchester

OWL syntax [39], as this is an ontology syntax designed to be closer to natural

language. Another aspect to consider is that, in principle, there are no constraints

in the answers returned by the language model. An LLM may answer with an

arbitrary and unexpected response, even if the expected answer is just a single

word like in the case of membership queries in the exact learning model. To

mitigate this issue, one can explicitly tell the LLM to answer with ‘true’ or ‘false’.

This particular request can be done in the question itself (e.g., appending “Answer

with ‘true’ or ‘false’.” after the query) or by exploiting some hyper-parameters of

the API of the LLM. In the second case, one can use a system prompt – a.k.a.,

integrated text into each query within the chat session – to enrich the model with

additional information and useful to harness the response. We highlight that there

are also other hyper-parameters that could help driving the LLM’s response into

the desired format (e.g., maximum number of tokens, temperature, etc.). Even

with all these precautions the model may return an unexpected response. For

example:

1. the answer can have more text than just ‘true’ or ‘false’;

2. both ‘true’ and ‘false’ can appear in the answer;

3. the answer does not have ‘true’ nor ‘false’.

While in the first scenario a trivial parsing would determine the correct classifica-

tion, in the remaining cases, since there is some ambiguity, we considered a third

value, which we called ‘unknown’.

50 CHAPTER 7. METHODOLOGY



7.6. PROBING LANGUAGE MODELS

7.6.2 Correctness and Logical Consistency

We also need to deal with challenges regarding the correctness of the responses

(assuming the format of the responses returned by the language model are as

expected, see Section 7.6.1). Actively learning ontologies has been investigated for

various fragments of EL [47, 64, 24], though, without using LLMs as teachers.

If an LLM is playing the role of the teacher then there is no guarantee that the

responses are correct [29] (in the sense of reflecting the ‘truth’ about the real world)

and, moreover, that they are logically consistent with any EL ontology. Indeed,

it is known that LLMs can learn statistical features instead of performing logical

reasoning [98]. So, we need to consider the following kinds of errors:

1. C ⊑ D should be ‘false’ (cf. the real world) but the LLM answers ‘true’;

2. C ⊑ D should be ‘true’ (cf. the real world) but the LLM answers ‘false’;

3. all concept inclusions in = {C1 ⊑ D1, . . . , Cn ⊑ Dn} are answered with

‘true’, |= C ⊑ D but C ⊑ D is classified as ‘false’.

The last case is a logical inconsistency. One strategy to handle this issue is to

consider the closure under logical consequence [12]. That is, in Point 3, one could

consider C ⊑ D as ‘true’.

CHAPTER 7. METHODOLOGY 51



7.6. PROBING LANGUAGE MODELS

52 CHAPTER 7. METHODOLOGY



Chapter 8

Results

8.1 First Phase of Experiments

The results for the membership queries on the original logical axioms are shown

in Table 8.1. For the inferred axioms, the results are in Table 8.2. For the third

experiment, where we tested active learning of ontologies by querying concept

inclusions, the results are detailed in Table 8.3.

Models
Animals University Generations Football Cell
T F U T F U T F U T F U T F U

Mistral (7b) 9 1 2 2 0 2 5 10 3 7 2 0 17 1 6
Mixtral (47b) 11 1 0 4 0 0 3 6 9 9 0 0 15 9 0
Llama2 (7b) 11 1 0 4 0 0 16 1 1 9 0 0 24 0 0
Llama2 (13b) 11 1 0 4 0 0 16 1 1 9 0 0 23 1 0
Gpt3.5 10 2 0 4 0 0 13 4 1 9 0 0 21 3 0

Table 8.1: Results for the experiments testing correctness w.r.t. axioms in the
ontologies. Labels T, F and U mean ‘true’, ‘false’ and ‘unknown’ responses count.
We indicate the number of parameters in each model in parenthesis (e.g. Mistral
has 7 billion). It is not known the number of parameters of GPT 3.5.

To determine the statistical significance of the results, we applied the Chi-

squared [65] test to evaluate the relationship between the answers of the LLMs

and the ontologies. The null hypothesis was that there is no correlation between

the answers and the ontologies. We rejected the null hypothesis in every case

(p-value lower than 0.05) except those highlighted in yellow (see Table 8.3).

CHAPTER 8. RESULTS 53



8.2. SECOND PHASE OF EXPERIMENTS

Animals University Generations Football Cell
T F U L T F U L T F U L T F U L T F U L
14 2 4 2 5 1 2 0 10 27 5 2 9 3 0 0 18 1 5 0
18 2 0 0 8 0 0 0 19 13 10 0 12 0 0 0 17 7 0 0
20 0 0 0 8 0 0 0 40 1 1 1 12 0 0 0 24 0 0 0
18 2 0 1 7 1 0 0 35 6 1 4 11 1 0 1 21 3 0 0
20 0 0 0 7 1 0 0 36 5 1 0 12 0 0 0 18 6 0 0

Table 8.2: Results for the experiment testing logical consistency. The number of
parameters of each model and the meaning of T, F, U are as in Table 8.1. L stands
for logical inconsistencies (an axiom answered as ‘false’ or ‘unknown’ which can be
inferred from the set of the axioms answered as True, see 7.6.2). Models’ names
omitted for better readability (they are the same of Table 8.1).

Animals University Generations Football Cell
A P R A P R A P R A P R A P R
0.87 0.52 0.72 0.57 0.67 0.5 0.84 0.71 0.23 0.74 0.44 0.65 0.65 0.48 0.81
0.89 0.57 0.69 0.57 0.48 0.92 0.82 0.64 0.66 0.72 0.43 0.76 0.7 0.32 0.64
0.51 0.2 1 0.24 0.24 1 0.4 0.22 0.88 0.21 0.21 1 0.27 0.18 1
0.73 0.31 0.94 0.45 0.3 0.92 0.63 0.32 0.74 0.44 0.26 0.88 0.44 0.21 0.91
0.71 0.3 1 0.69 0.44 1 0.74 0.41 1 0.68 0.4 1 0.61 0.28 0.91

Table 8.3: Results for the experiments testing negative examples. Labels A, P
and R mean ‘Accuracy’, ‘Precision’ and ‘Recall’ respectively [32]. Models’ names
omitted for better readability (they are the same of Table 8.1).

8.2 Second Phase of Experiments

We evaluate the results of experiments by computing the following metrics: ac-

curacy, precision, recall, and F1-score. The metrics are computed considering the

total number of axioms is the size of the instance space |X|. Therefore, every pos-

sible depth-one axiom in the form of A ∩ B ⊑ C, B ⊑ ∃r.A, and ∃r.A ⊑ B. The

axioms that are both (resp. not) entailed by the original ontology and the learned

ontology are labeled as true positive (resp. true negative). Axioms entailed by

the original ontology but not by the learned ontology are labeled as false negative,

vice-versa they are labeled as false positive. Below the average table by Ontology

8.4, LLM Model 8.5 and Metric type 8.6, in the appendix 9.1 the whole results are

displayed.

54 CHAPTER 8. RESULTS



8.2. SECOND PHASE OF EXPERIMENTS

Ontology Accuracy Recall Precision F1-Score
Animals 0.499 0.396 0.993 0.5
Bio-primitive 0.438 0.292 1.0 0.358
Biosphere 0.443 0.235 1.0 0.302
Cell 0.444 0.399 1.0 0.526
Football 0.425 0.396 0.989 0.511
Generations 0.518 0.47 0.959 0.566
University 0.571 0.516 0.977 0.615

Table 8.4: Average Metrics by Ontology

Model Accuracy Recall Precision F1-Score
Llama2:13b 0.455 0.401 0.989 0.485
Llama2 0.17 0.17 1.0 0.282
Llama3 0.354 0.273 0.994 0.385
Mistral 0.68 0.476 0.977 0.58
Mixtral 0.724 0.613 0.981 0.681

Table 8.5: Average Metrics by Model

Metric Type Accuracy Recall Precision F1-Score
M. OWL Syntax 0.248 0.186 0.998 0.304
Natural Language 0.439 0.275 0.991 0.403
E. M. OWL Syntax 0.442 0.373 0.987 0.466
E. Natural Language 0.779 0.711 0.977 0.758

Table 8.6: Average Metrics by Metric Type

CHAPTER 8. RESULTS 55



8.2. SECOND PHASE OF EXPERIMENTS

56 CHAPTER 8. RESULTS



Chapter 9

Conclusion

This research presents an extensive evaluation of actively learning ontologies us-

ing various LLMs within Angluin’s exact learning model, combined with the PAC

learning framework. Our objective was to assess the ability of LLMs to determine

the truth value of concept inclusions within predefined ontologies, using both struc-

tured syntax and natural language queries.

Key findings from our experiments include:

1. Superior Performance of Mixtral: mixtral model outperformed other

models, likely due to its higher parameter count. This indicates that larger

models may better understand complex relationships within ontologies.

2. Natural Language Queries: models achieved higher accuracy with natural

language queries compared to Manchester OWL Syntax. This highlights the

effectiveness of leveraging LLMs’ natural language training.

3. Impact of System Prompts: using custom system prompts significantly

improved performance, with gains ranging from 70% to 230%. Tailored

prompts are crucial for guiding model behavior effectively.

4. Challenges with Complex Ontologies: ontologies with numerous object

properties or specialized knowledge were more challenging to learn. Simpler

ontologies, primarily consisting of concept names, were learned with higher

accuracy, suggesting that complexity directly impacts learning feasibility.

CHAPTER 9. CONCLUSION 57



9.1. FUTURE WORK

5. Logical Consistency: ensuring logical consistency remains a challenge, as

LLMs sometimes provided contradictory responses. Our approach to miti-

gating inconsistencies by considering logical closure proved partially effective.

These findings illuminate the nuanced dynamics of LLM performance across

different contexts, showcasing both strengths and areas for improvement. Re-

markably, these results were obtained without specific fine-tuning, demonstrating

impressive zero-shot learning capabilities. Models like Mistral and Mixtral were

competitive with GPT 3.5 Turbo and outperformed Llama 2 in many instances,

especially on ontologies containing general knowledge such as Animals and Gen-

erations.

9.1 Future Work

Building on these promising results, future research should focus on several key

areas:

1. Model Fine-Tuning: fine-tuning LLMs on domain-specific corpora and on-

tology data could enhance their performance and consistency. Future work

should explore the impact of targeted fine-tuning on handling complex on-

tologies.

2. Expanded Ontology Set: extending experiments to include larger and

more complex ontologies will help evaluate the scalability and robustness

of the models. Incorporating a broader range of ontologies, including those

with specialized domains, will provide a more comprehensive evaluation.

3. Advanced Query Formulation: investigating sophisticated methods for

translating ontology axioms into natural language queries may improve model

performance. Exploring alternative query formats and linguistic structures

could better align with the models’ training data.

4. Enhanced System Prompts: developing more refined and adaptive sys-

tem prompts that adjust dynamically based on query context and model re-

sponses could further improve performance. Research into optimal prompt

design is warranted.

58 CHAPTER 9. CONCLUSION



9.1. FUTURE WORK

5. Addressing Logical Inconsistencies: future work should focus on ad-

vanced techniques for handling logical inconsistencies in LLM responses.

This could involve developing algorithms to detect and correct contradic-

tions in real-time, ensuring greater reliability.

6. Cross-Model Analysis: comparative analyses across different LLM archi-

tectures and parameter sizes will provide deeper insights into performance

factors. This can guide the development of more efficient models tailored for

ontology learning tasks.

7. Human-in-the-Loop Approaches: integrating human expertise in the

active learning process, where human annotators validate and refine mod-

els’ responses, could enhance the accuracy and trustworthiness of learned

ontologies.

By addressing these areas, future research can advance the application of LLMs

in ontology learning, contributing to the development of more intelligent and au-

tonomous systems for knowledge representation and management.

CHAPTER 9. CONCLUSION 59



9.1. FUTURE WORK

60 CHAPTER 9. CONCLUSION



Bibliography

[1] Albert Q. Jiang et al. “Mistral 7B”. In: CoRR abs/2310.06825 (2023). doi:

10.48550/ARXIV.2310.06825. arXiv: 2310.06825.

[2] Dana Angluin. “Learning regular sets from queries and counterexamples”. In:

Information and Computation 75.2 (1987), pp. 87–106. issn: 0890-5401. doi:

10.1016/0890-5401(87)90052-6. url: https://www.sciencedirect.

com/science/article/pii/0890540187900526.

[3] Dana Angluin. “Queries and Concept Learning”. In:Mach. Learn. 2.4 (1987),

pp. 319–342. doi: 10.1007/BF00116828.

[4] Michael Ashburner et al. “Gene Ontology: tool for the unification of biology”.

In: Nature Genetics 25.1 (May 2000), pp. 25–29. issn: 1546-1718. doi: 10.

1038/75556. url: https://doi.org/10.1038/75556.

[5] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normal-

ization”. In: CoRR abs/1607.06450 (2016). arXiv: 1607.06450. url: http:

//arxiv.org/abs/1607.06450.

[6] Franz Baader, Sebastian Brandt, and Carsten Lutz. “Pushing the EL Enve-

lope”. In: IJCAI-05, Proceedings of the Nineteenth International Joint Con-

ference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August

5, 2005. Ed. by Leslie Pack Kaelbling and Alessandro Saffiotti. Professional

Book Center, 2005, pp. 364–369. url: http://ijcai.org/Proceedings/

05/Papers/0372.pdf.

[7] Franz Baader et al. An Introduction to Description Logic. Cambridge Uni-

versity Press, 2017. isbn: 978-0-521-69542-8. url: http://www.cambridge.

org/de/academic/subjects/computer-science/knowledge-management-

BIBLIOGRAPHY 61

https://doi.org/10.48550/ARXIV.2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.1016/0890-5401(87)90052-6
https://www.sciencedirect.com/science/article/pii/0890540187900526
https://www.sciencedirect.com/science/article/pii/0890540187900526
https://doi.org/10.1007/BF00116828
https://doi.org/10.1038/75556
https://doi.org/10.1038/75556
https://doi.org/10.1038/75556
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97


BIBLIOGRAPHY

databases-and-data-mining/introduction-description-logic?format=

PB#17zVGeWD2TZUeu6s.97.

[8] Alexei Baevski and Michael Auli. “Adaptive Input Representations for Neu-

ral Language Modeling”. In: 7th International Conference on Learning Rep-

resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-

view.net, 2019. url: https://openreview.net/forum?id=ByxZX20qFQ.

[9] Garvita Bajaj et al. “A study of existing Ontologies in the IoT-domain”.

In: CoRR abs/1707.00112 (2017). arXiv: 1707.00112. url: http://arxiv.

org/abs/1707.00112.

[10] Folco Bertini Baldassini et al. “Cross-Attention Watermarking of Large Lan-

guage Models”. In: vol. abs/2401.06829. 2024. doi: 10.48550/ARXIV.2401.

06829. arXiv: 2401.06829. url: https://doi.org/10.48550/arXiv.

2401.06829.

[11] Sean Bechhofer. “OWL:Web Ontology Language”. In: Encyclopedia of Database

Systems, Second Edition. Ed. by Ling Liu and M. Tamer Özsu. Springer,

2018. doi: 10.1007/978-1-4614-8265-9\_1073. url: https://doi.org/

10.1007/978-1-4614-8265-9%5C_1073.

[12] Sophie Blum et al. “Learning Horn envelopes via queries from language mod-

els”. In: International Journal of Approximate Reasoning (2023), p. 109026.

issn: 0888-613X. doi: 10.1016/j.ijar.2023.109026.

[13] Stefano Borgo et al. DOLCE: A Descriptive Ontology for Linguistic and

Cognitive Engineering. 2023. doi: 10.48550/ARXIV.2308.01597. arXiv:

2308.01597. url: https://doi.org/10.48550/arXiv.2308.01597.

[14] Stephen Boyd and Lieven Vandenberghe. “Gradient and Optimization”. In:

Convex Optimization. Cambridge University Press, 2004, pp. 83–127.

[15] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0:

RDF Schema. W3C Recommendation. World Wide Web Consortium, Feb.

2004. url: http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

62 BIBLIOGRAPHY

http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
https://openreview.net/forum?id=ByxZX20qFQ
https://arxiv.org/abs/1707.00112
http://arxiv.org/abs/1707.00112
http://arxiv.org/abs/1707.00112
https://doi.org/10.48550/ARXIV.2401.06829
https://doi.org/10.48550/ARXIV.2401.06829
https://arxiv.org/abs/2401.06829
https://doi.org/10.48550/arXiv.2401.06829
https://doi.org/10.48550/arXiv.2401.06829
https://doi.org/10.1007/978-1-4614-8265-9\_1073
https://doi.org/10.1007/978-1-4614-8265-9%5C_1073
https://doi.org/10.1007/978-1-4614-8265-9%5C_1073
https://doi.org/10.1016/j.ijar.2023.109026
https://doi.org/10.48550/ARXIV.2308.01597
https://arxiv.org/abs/2308.01597
https://doi.org/10.48550/arXiv.2308.01597
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/


BIBLIOGRAPHY

[16] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in

Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33.

Curran Associates, Inc., 2020, pp. 1877–1901. url: https://proceedings.

neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-

Paper.pdf.

[17] Rewon Child et al. Generating Long Sequences with Sparse Transformers.

2019. arXiv: 1904.10509. url: http://arxiv.org/abs/1904.10509.

[18] François Chollet. “On the Measure of Intelligence”. In: CoRR abs/1911.01547

(2019). arXiv: 1911.01547. url: http://arxiv.org/abs/1911.01547.

[19] Karl Cobbe et al. “Training Verifiers to Solve Math Word Problems”. In:

CoRR abs/2110.14168 (2021). arXiv: 2110.14168. url: https://arxiv.

org/abs/2110.14168.

[20] Colossal-AI. https://github.com/fai-ia/ColossalAI.

[21] Tri Dao et al. FlashAttention: Fast and Memory-Efficient Exact Attention

with IO-Awareness. Ed. by Sanmi Koyejo et al. 2022. url: http://papers.

nips.cc/paper%5C_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-

Abstract-Conference.html.

[22] DeepSpeed. https://github.com/microsoft/DeepSpeed.

[23] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transform-

ers for Language Understanding”. In: Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,

MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers). Ed. by Jill

Burstein, Christy Doran, and Thamar Solorio. Association for Computa-

tional Linguistics, 2019, pp. 4171–4186. doi: 10.18653/V1/N19-1423. url:

https://doi.org/10.18653/v1/n19-1423.

[24] Mario Ricardo Cruz Duarte, Boris Konev, and Ana Ozaki. “ExactLearner:

A Tool for Exact Learning of EL Ontologies”. In: KR. Ed. by Michael

Thielscher, Francesca Toni, and Frank Wolter. AAAI Press, 2018, pp. 409–

414. url: https://aaai.org/ocs/index.php/KR/KR18/paper/view/

18006.

BIBLIOGRAPHY 63

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1911.01547
http://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://github.com/fai-ia/ColossalAI
http://papers.nips.cc/paper%5C_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://github.com/microsoft/DeepSpeed
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/v1/n19-1423
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18006
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18006


BIBLIOGRAPHY

[25] Steffen Eger, Paul Youssef, and Iryna Gurevych. “Is it Time to Swish? Com-

paring Deep Learning Activation Functions Across NLP tasks”. In: Pro-

ceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, Brussels, Belgium, October 31 - November 4, 2018. Ed. by Ellen

Riloff et al. Association for Computational Linguistics, 2018, pp. 4415–4424.

doi: 10.18653/V1/D18-1472. url: https://doi.org/10.18653/v1/d18-

1472.

[26] FastMoE. https://github.com/deepmind/fast-moe.

[27] Mariano Fernández-López and Asunción Gómez-Pérez. “Overview and anal-

ysis of methodologies for building ontologies”. In: Knowl. Eng. Rev. 17.2

(2002), pp. 129–156. doi: 10.1017/S0269888902000462. url: https://

doi.org/10.1017/S0269888902000462.

[28] Baade Franz. The description logic handbook: Theory, implementation and

applications. Cambridge university press, 2003. url: https://redirect.

cs.umbc.edu/courses/graduate/691/fall17/01/papers/DescriptionLogicHandbook.

pdf.

[29] Maurice Funk et al. “Towards Ontology Construction with Language Mod-

els”. In: Joint proceedings of the 1st workshop on Knowledge Base Con-

struction from Pre-Trained Language Models (KBC-LM) and the 2nd chal-

lenge on Language Models for Knowledge Base Construction (LM-KBC) co-

located with the 22nd International Semantic Web Conference (ISWC 2023),

Athens, Greece, November 6, 2023. Ed. by Simon Razniewski et al. Vol. 3577.

CEUR Workshop Proceedings. CEUR-WS.org, 2023. url: https://ceur-

ws.org/Vol-3577/paper16.pdf.

[30] Sarah Ghidalia et al. “Combining Machine Learning and Ontology: A Sys-

tematic Literature Review”. In: CoRR abs/2401.07744 (2024). doi: 10 .

48550/ARXIV.2401.07744. arXiv: 2401.07744. url: https://doi.org/

10.48550/arXiv.2401.07744.

[31] Birte Glimm et al. “HermiT: An OWL 2 Reasoner”. In: J. Autom. Reason.

53.3 (2014), pp. 245–269. doi: 10.1007/S10817-014-9305-1. url: https:

//doi.org/10.1007/s10817-014-9305-1.

64 BIBLIOGRAPHY

https://doi.org/10.18653/V1/D18-1472
https://doi.org/10.18653/v1/d18-1472
https://doi.org/10.18653/v1/d18-1472
https://github.com/deepmind/fast-moe
https://doi.org/10.1017/S0269888902000462
https://doi.org/10.1017/S0269888902000462
https://doi.org/10.1017/S0269888902000462
https://redirect.cs.umbc.edu/courses/graduate/691/fall17/01/papers/DescriptionLogicHandbook.pdf
https://redirect.cs.umbc.edu/courses/graduate/691/fall17/01/papers/DescriptionLogicHandbook.pdf
https://redirect.cs.umbc.edu/courses/graduate/691/fall17/01/papers/DescriptionLogicHandbook.pdf
https://ceur-ws.org/Vol-3577/paper16.pdf
https://ceur-ws.org/Vol-3577/paper16.pdf
https://doi.org/10.48550/ARXIV.2401.07744
https://doi.org/10.48550/ARXIV.2401.07744
https://arxiv.org/abs/2401.07744
https://doi.org/10.48550/arXiv.2401.07744
https://doi.org/10.48550/arXiv.2401.07744
https://doi.org/10.1007/S10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1


BIBLIOGRAPHY

[32] Margherita Grandini, Enrico Bagli, and Giorgio Visani. “Metrics for Multi-

Class Classification: an Overview”. In: CoRR abs/2008.05756 (2020). arXiv:

2008.05756. url: https://arxiv.org/abs/2008.05756.

[33] David Haussler. “Overview of the probably approximately correct (PAC)

learning framework”. In: Information and Computation 100.1 (1992), pp. 78–

150.

[34] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs).

2023. doi: 10.48550/arXiv.1606.08415.

[35] Dan Hendrycks et al. “Measuring Mathematical Problem Solving With the

MATH Dataset”. In: Proceedings of the Neural Information Processing Sys-

tems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Bench-

marks 2021, December 2021, virtual. Ed. by Joaquin Vanschoren and Sai-

Kit Yeung. 2021. url: https://datasets- benchmarks- proceedings.

neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-

Abstract-round2.html.

[36] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning Recur-

rent Neural Nets and Problem Solutions”. In: Int. J. Uncertain. Fuzziness

Knowl. Based Syst. 6.2 (1998). doi: 10.1142/S0218488598000094. url:

https://doi.org/10.1142/S0218488598000094.

[37] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:

Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi:

10.1162/neco.1997.9.8.1735. eprint: https://direct.mit.edu/neco/

article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf.

[38] Matthew Horridge and Sean Bechhofer. “The OWL API: A Java API for

OWL ontologies”. In: Semantic Web 2.1 (2011), pp. 11–21. doi: 10.3233/

SW-2011-0025. url: https://doi.org/10.3233/SW-2011-0025.

[39] Matthew Horridge et al. “The Manchester OWL Syntax”. In: Proceedings

of the OWLED*06 Workshop on OWL: Experiences and Directions, Athens,

Georgia, USA, November 10-11, 2006. Ed. by Bernardo Cuenca Grau et al.

Vol. 216. CEUR Workshop Proceedings. CEUR-WS.org, 2006. url: https:

//ceur-ws.org/Vol-216/submission_9.pdf.

BIBLIOGRAPHY 65

https://arxiv.org/abs/2008.05756
https://arxiv.org/abs/2008.05756
https://doi.org/10.48550/arXiv.1606.08415
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.3233/SW-2011-0025
https://ceur-ws.org/Vol-216/submission_9.pdf
https://ceur-ws.org/Vol-216/submission_9.pdf


BIBLIOGRAPHY

[40] JAX. https://github.com/google/jax.

[41] Albert Q. Jiang et al. “Mixtral of Experts”. In: CoRR abs/2401.04088 (2024).

doi: 10.48550/ARXIV.2401.04088. arXiv: 2401.04088.

[42] Yevgeny Kazakov, Markus Krötzsch, and Frantisek Simancik. “ELK Rea-

soner: Architecture and Evaluation”. In: Proceedings of the 1st Interna-

tional Workshop on OWL Reasoner Evaluation (ORE-2012), Manchester,

UK, July 1st, 2012. Ed. by Ian Horrocks, Mikalai Yatskevich, and Ernesto

Jiménez-Ruiz. Vol. 858. CEURWorkshop Proceedings. CEUR-WS.org, 2012.

url: https://ceur-ws.org/Vol-858/ore2012%5C_paper10.pdf.

[43] Boseop Kim et al. “What Changes Can Large-scale Language Models Bring?

Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pre-

trained Transformers”. In: (2021). Ed. by Marie-Francine Moens et al., pp. 3405–

3424. doi: 10.18653/V1/2021.EMNLP-MAIN.274. url: https://doi.org/

10.18653/v1/2021.emnlp-main.274.

[44] Henry M. Kim, Marek Laskowski, and Ning Nan. “A First Step in the Co-

Evolution of Blockchain and Ontologies: Towards Engineering an Ontology

of Governance at the Blockchain Protocol Level”. In: CoRR abs/1801.02027

(2018). arXiv: 1801.02027. url: http://arxiv.org/abs/1801.02027.

[45] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):

Concepts and Abstract Syntax. W3C. 2004. url: http://www.w3.org/TR/

2004/REC-rdf-concepts-20040210/ (visited on 03/15/2015).

[46] Boris Konev, Ana Ozaki, and Frank Wolter. “A Model for Learning Descrip-

tion Logic Ontologies Based on Exact Learning”. In: AAAI. Ed. by Dale

Schuurmans and Michael P. Wellman. AAAI Press, 2016, pp. 1008–1015.

doi: 10.1609/AAAI.V30I1.10087.

[47] Boris Konev et al. “Exact Learning of Lightweight Description Logic On-

tologies”. In: J. Mach. Learn. Res. 18 (2017), 201:1–201:63. url: http:

//jmlr.org/papers/v18/16-256.html.

66 BIBLIOGRAPHY

https://github.com/google/jax
https://doi.org/10.48550/ARXIV.2401.04088
https://arxiv.org/abs/2401.04088
https://ceur-ws.org/Vol-858/ore2012%5C_paper10.pdf
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.274
https://doi.org/10.18653/v1/2021.emnlp-main.274
https://doi.org/10.18653/v1/2021.emnlp-main.274
https://arxiv.org/abs/1801.02027
http://arxiv.org/abs/1801.02027
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://doi.org/10.1609/AAAI.V30I1.10087
http://jmlr.org/papers/v18/16-256.html
http://jmlr.org/papers/v18/16-256.html


BIBLIOGRAPHY

[48] Mike Lewis et al. “BART: Denoising Sequence-to-Sequence Pre-training for

Natural Language Generation, Translation, and Comprehension”. In: (2020).

Ed. by Dan Jurafsky et al., pp. 7871–7880. doi: 10.18653/V1/2020.ACL-

MAIN.703. url: https://doi.org/10.18653/v1/2020.acl-main.703.

[49] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring

How Models Mimic Human Falsehoods. Ed. by Smaranda Muresan, Preslav

Nakov, and Aline Villavicencio. Association for Computational Linguistics,

2022, pp. 3214–3252. doi: 10.18653/V1/2022.ACL-LONG.229. url: https:

//doi.org/10.18653/v1/2022.acl-long.229.

[50] Peter J. Liu et al. Generating Wikipedia by Summarizing Long Sequences.

2018. url: https://openreview.net/forum?id=Hyg0vbWC-.

[51] Lu Lu et al. “Dying ReLU and Initialization: Theory and Numerical Ex-

amples”. In: CoRR abs/1903.06733 (2019). arXiv: 1903.06733. url: http:

//arxiv.org/abs/1903.06733.

[52] Megatron-LM. https://github.com/NVIDIA/Megatron-LM.

[53] Meta. LLaMA-3. https://llama.meta.com/llama3/. 2023.

[54] MindSpore. https://www.mindspore.cn/.

[55] MXNet. https://mxnet.apache.org/.

[56] Prakash M. Nadkarni, Lucila Ohno-Machado, and Wendy Webber Chap-

man. “Natural language processing: an introduction”. In: J. Am. Medical

Informatics Assoc. 18.5 (2011), pp. 544–551. doi: 10.1136/AMIAJNL-2011-

000464. url: https://doi.org/10.1136/amiajnl-2011-000464.

[57] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Re-

stricted Boltzmann Machines”. In: Proceedings of the 27th International

Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Is-

rael. Ed. by Johannes Fürnkranz and Thorsten Joachims. Omnipress, 2010,

pp. 807–814. url: https://icml.cc/Conferences/2010/papers/432.pdf.

BIBLIOGRAPHY 67

https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/V1/2022.ACL-LONG.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://openreview.net/forum?id=Hyg0vbWC-
https://arxiv.org/abs/1903.06733
http://arxiv.org/abs/1903.06733
http://arxiv.org/abs/1903.06733
https://github.com/NVIDIA/Megatron-LM
https://llama.meta.com/llama3/
https://www.mindspore.cn/
https://mxnet.apache.org/
https://doi.org/10.1136/AMIAJNL-2011-000464
https://doi.org/10.1136/AMIAJNL-2011-000464
https://doi.org/10.1136/amiajnl-2011-000464
https://icml.cc/Conferences/2010/papers/432.pdf


BIBLIOGRAPHY

[58] Daniele Nardi and Ronald J. Brachman. “An Introduction to Description

Logics”. In: The Description Logic Handbook: Theory, Implementation, and

Applications. Ed. by Franz Baader et al. Cambridge University Press, 2003,

pp. 1–40.

[59] Humza Naveed et al. “A Comprehensive Overview of Large Language Mod-

els”. In: CoRR abs/2307.06435 (2023). doi: 10.48550/ARXIV.2307.06435.

arXiv: 2307.06435. url: https://doi.org/10.48550/arXiv.2307.06435.

[60] Natalya Fridman Noy et al. “BioPortal: A Web Repository for Biomedical

Ontologies and Data Resources”. In: ISWC. Ed. by Christian Bizer and Anu-

pam Joshi. Vol. 401. CEUR Workshop Proceedings. CEUR-WS.org, 2008.

url: https://ceur-ws.org/Vol-401/iswc2008pd_submission_25.pdf.

[61] OntoStudio. https://www.ontoprise.de/en/home/products/ontostudio/.

[62] OpenAI. “GPT-4 Technical Report”. In: CoRR abs/2303.08774 (2023). doi:

10.48550/ARXIV.2303.08774. arXiv: 2303.08774. url: https://doi.

org/10.48550/arXiv.2303.08774.

[63] J. Neil Otte, John Beverley, and Alan Ruttenberg. “BFO: Basic Formal

Ontology”. In: Appl. Ontology 17.1 (2022), pp. 17–43. doi: 10.3233/AO-

220262. url: https://doi.org/10.3233/AO-220262.

[64] Ana Ozaki, Cosimo Persia, and Andrea Mazzullo. “Learning Query Insep-

arable ELH Ontologies”. In: The Thirty-Fourth AAAI Conference on Arti-

ficial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications

of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-

sium on Educational Advances in Artificial Intelligence, EAAI 2020, New

York, NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 2959–2966.

doi: 10.1609/AAAI.V34I03.5688.

[65] Karl Pearson. “X. On the criterion that a given system of deviations from

the probable in the case of a correlated system of variables is such that

it can be reasonably supposed to have arisen from random sampling”. In:

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science 50.302 (1900), pp. 157–175. doi: 10.1080/14786440009463897.

68 BIBLIOGRAPHY

https://doi.org/10.48550/ARXIV.2307.06435
https://arxiv.org/abs/2307.06435
https://doi.org/10.48550/arXiv.2307.06435
https://ceur-ws.org/Vol-401/iswc2008pd_submission_25.pdf
https://www.ontoprise.de/en/home/products/ontostudio/
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.3233/AO-220262
https://doi.org/10.3233/AO-220262
https://doi.org/10.3233/AO-220262
https://doi.org/10.1609/AAAI.V34I03.5688
https://doi.org/10.1080/14786440009463897


BIBLIOGRAPHY

[66] Adam Pease, Ian Niles, and John Li. “The suggested upper merged ontology:

A large ontology for the semantic web and its applications”. In: 28 (2002),

pp. 7–10. url: https://cdn.aaai.org/Workshops/2002/WS-02-11/WS02-

11-011.pdf.

[67] Ofir Press, Noah A. Smith, and Mike Lewis. “Train Short, Test Long: At-

tention with Linear Biases Enables Input Length Extrapolation”. In: The

Tenth International Conference on Learning Representations, ICLR 2022,

Virtual Event, April 25-29, 2022. OpenReview.net, 2022. url: https://

openreview.net/forum?id=R8sQPpGCv0.

[68] Protégé. https://protege.stanford.edu/.

[69] PyTorch. https://pytorch.org/.

[70] Alec Radford et al. “Improving Language Understanding by Generative Pre-

Training”. In: (2018). url: https://cdn.openai.com/research-covers/

language-unsupervised/language_understanding_paper.pdf.

[71] Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Unified

Text-to-Text Transformer”. In: J. Mach. Learn. Res. 21 (2020), 140:1–140:67.

url: http://jmlr.org/papers/v21/20-074.html.

[72] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. “Searching for Activa-

tion Functions”. In: 6th International Conference on Learning Representa-

tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Work-

shop Track Proceedings. OpenReview.net, 2018. url: https://openreview.

net/forum?id=Hkuq2EkPf.

[73] Simon Razniewski et al., eds. Joint proceedings of the 1st workshop on Knowl-

edge Base Construction from Pre-Trained Language Models (KBC-LM) and

the 2nd challenge on Language Models for Knowledge Base Construction

(LM-KBC) co-located with the 22nd International Semantic Web Conference

(ISWC 2023), Athens, Greece, November 6, 2023. Vol. 3577. CEUR Work-

shop Proceedings. CEUR-WS.org, 2023. url: https://ceur-ws.org/Vol-

3577.

BIBLIOGRAPHY 69

https://cdn.aaai.org/Workshops/2002/WS-02-11/WS02-11-011.pdf
https://cdn.aaai.org/Workshops/2002/WS-02-11/WS02-11-011.pdf
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://protege.stanford.edu/
https://pytorch.org/
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=Hkuq2EkPf
https://openreview.net/forum?id=Hkuq2EkPf
https://ceur-ws.org/Vol-3577
https://ceur-ws.org/Vol-3577


BIBLIOGRAPHY

[74] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.

In: Insight Centre for Data Analytics, NUI Galway Aylien Ltd., Dublin

(2016). url: http://sebastianruder.com/optimizing-gradient-descent/

index.html.

[75] Victor Sanh et al. “Multitask Prompted Training Enables Zero-Shot Task

Generalization”. In: The Tenth International Conference on Learning Repre-

sentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,

2022. url: https://openreview.net/forum?id=9Vrb9D0WI4.

[76] Evren Sirin and Bijan Parsia. “Pellet: An OWL DL Reasoner”. In: Proceed-

ings of the 2004 International Workshop on Description Logics (DL2004),

Whistler, British Columbia, Canada, June 6-8, 2004. Ed. by Volker Haarslev

and Ralf Möller. Vol. 104. CEUR Workshop Proceedings. CEUR-WS.org,

2004. url: https://ceur-ws.org/Vol-104/30Sirin-Parsia.pdf.

[77] Shaden Smith et al. “Using DeepSpeed and Megatron to Train Megatron-

Turing NLG 530B, A Large-Scale Generative Language Model”. In: CoRR

abs/2201.11990 (2022). arXiv: 2201.11990. url: https://arxiv.org/abs/

2201.11990.

[78] Irene Solaiman et al. “Release Strategies and the Social Impacts of Language

Models”. In: CoRR abs/1908.09203 (2019). arXiv: 1908.09203. url: http:

//arxiv.org/abs/1908.09203.

[79] Jianlin Su et al. RoFormer: Enhanced transformer with Rotary Position Em-

bedding. 2024. doi: 10.1016/J.NEUCOM.2023.127063. url: https://doi.

org/10.1016/j.neucom.2023.127063.

[80] TensorFlow. https://www.tensorflow.org/.

[81] R. Thirumahal and G. Sudha Sadasivam. “Semantic integration of hetero-

geneous healthcare data based on hybrid root linked health record ontol-

ogy”. In: Earth Sci. Informatics 16.3 (2023), pp. 2661–2674. doi: 10.1007/

S12145-023-01055-Y. url: https://doi.org/10.1007/s12145-023-

01055-y.

[82] TopBraid Composer. https://www.topquadrant.com/tools/topbraid-

composer/.

70 BIBLIOGRAPHY

http://sebastianruder.com/optimizing-gradient-descent/index.html
http://sebastianruder.com/optimizing-gradient-descent/index.html
https://openreview.net/forum?id=9Vrb9D0WI4
https://ceur-ws.org/Vol-104/30Sirin-Parsia.pdf
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/1908.09203
http://arxiv.org/abs/1908.09203
http://arxiv.org/abs/1908.09203
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://www.tensorflow.org/
https://doi.org/10.1007/S12145-023-01055-Y
https://doi.org/10.1007/S12145-023-01055-Y
https://doi.org/10.1007/s12145-023-01055-y
https://doi.org/10.1007/s12145-023-01055-y
https://www.topquadrant.com/tools/topbraid-composer/
https://www.topquadrant.com/tools/topbraid-composer/


BIBLIOGRAPHY

[83] Hugo Touvron et al. “Llama 2: Open Foundation and Fine-Tuned Chat Mod-

els”. In: CoRR abs/2307.09288 (2023). doi: 10.48550/ARXIV.2307.09288.

arXiv: 2307.09288.

[84] Transformers. https://huggingface.co/transformers/.

[85] Dmitry Tsarkov and Ian Horrocks. “FaCT++ Description Logic Reasoner:

System Description”. In: Automated Reasoning, Third International Joint

Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceed-

ings. Ed. by Ulrich Furbach and Natarajan Shankar. Vol. 4130. Lecture Notes

in Computer Science. Springer, 2006, pp. 292–297. doi: 10.1007/11814771\

_26. url: https://doi.org/10.1007/11814771%5C_26.

[86] Mike Uschold and Michael Gruninger. “Ontologies: principles, methods and

applications”. In: Knowl. Eng. Rev. 11.2 (1996), pp. 93–136. doi: 10.1017/

S0269888900007797. url: https://doi.org/10.1017/S0269888900007797.

[87] Leslie Valiant. Probably Approximately Correct: Nature’s Algorithms for Learn-

ing and Prospering in a Complex World. Basic Books, 2013.

[88] Ashish Vaswani et al. Attention Is All You Need. 2023. doi: 10.48550/

arXiv.1706.03762.

[89] Thomas Wang et al. “What Language Model Architecture and Pretrain-

ing Objective Works Best for Zero-Shot Generalization?” In: Proceedings

of the 39th International Conference on Machine Learning. Ed. by Kama-

lika Chaudhuri et al. Vol. 162. Proceedings of Machine Learning Research.

PMLR, 17–23 Jul 2022, pp. 22964–22984. url: https://proceedings.mlr.

press/v162/wang22u.html.

[90] Jonathan J. Webster and Chunyu Kit. “Tokenization As The Initial Phase

In NLP”. In: 14th International Conference on Computational Linguistics,

COLING 1992, Nantes, France, August 23-28, 1992. 1992, pp. 1106–1110.

url: https://aclanthology.org/C92-4173/.

[91] Joseph Weizenbaum. “ELIZA—a computer program for the study of natural

language communication between man and machine”. In: Commun. ACM

9.1 (Jan. 1966), pp. 36–45. issn: 0001-0782. doi: 10.1145/365153.365168.

BIBLIOGRAPHY 71

https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2307.09288
https://huggingface.co/transformers/
https://doi.org/10.1007/11814771\_26
https://doi.org/10.1007/11814771\_26
https://doi.org/10.1007/11814771%5C_26
https://doi.org/10.1017/S0269888900007797
https://doi.org/10.1017/S0269888900007797
https://doi.org/10.1017/S0269888900007797
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://proceedings.mlr.press/v162/wang22u.html
https://proceedings.mlr.press/v162/wang22u.html
https://aclanthology.org/C92-4173/
https://doi.org/10.1145/365153.365168


BIBLIOGRAPHY

[92] Wikipedia contributors. Probably approximately correct learning —Wikipedia,

The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=

Probably_approximately_correct_learning&oldid=1201095733. 2024.

[93] Shaohua Wu et al. “Yuan 1.0: Large-Scale Pre-trained Language Model in

Zero-Shot and Few-Shot Learning”. In: CoRR abs/2110.04725 (2021). arXiv:

2110.04725. url: https://arxiv.org/abs/2110.04725.

[94] Chengrun Yang et al. “Large Language Models as Optimizers”. In: The

Twelfth International Conference on Learning Representations. 2024. url:

https://openreview.net/forum?id=Bb4VGOWELI.

[95] Rowan Zellers et al. HellaSwag: Can a Machine Really Finish Your Sentence?

Ed. by Anna Korhonen, David R. Traum, and Llúıs Màrquez. Association for

Computational Linguistics, 2019, pp. 4791–4800. doi: 10.18653/V1/P19-

1472. url: https://doi.org/10.18653/v1/p19-1472.

[96] Wei Zeng et al. “PanGu-α: Large-scale Autoregressive Pretrained Chinese

Language Models with Auto-parallel Computation”. In: CoRR abs/2104.12369

(2021). arXiv: 2104.12369. url: https://arxiv.org/abs/2104.12369.

[97] Biao Zhang and Rico Sennrich. “Root Mean Square Layer Normalization”.

In: (2019). Ed. by Hanna M. Wallach et al., pp. 12360–12371. url: https://

proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-

Abstract.html.

[98] Honghua Zhang et al. “On the Paradox of Learning to Reason from Data”.

In: Proceedings of the Thirty-Second International Joint Conference on Arti-

ficial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China.

ijcai.org, 2023, pp. 3365–3373. doi: 10.24963/ijcai.2023/375.

72 BIBLIOGRAPHY

https://en.wikipedia.org/w/index.php?title=Probably_approximately_correct_learning&oldid=1201095733
https://en.wikipedia.org/w/index.php?title=Probably_approximately_correct_learning&oldid=1201095733
https://arxiv.org/abs/2110.04725
https://arxiv.org/abs/2110.04725
https://openreview.net/forum?id=Bb4VGOWELI
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/v1/p19-1472
https://arxiv.org/abs/2104.12369
https://arxiv.org/abs/2104.12369
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://doi.org/10.24963/ijcai.2023/375


Acknowledgements

I would like to convey my deepest and sincerest gratitude to Professor Omicini for

providing me the opportunity to pursue my master’s thesis at the University of

Oslo. Your support and availability have been crucial.

I am immensely thankful to Matteo Magnini and Professor Ana Ozaki for their

exceptional support during my three months in Oslo. Your expertise, encourage-

ment, and constant readiness to assist have significantly impacted my journey. I

learned a lot during my time with both of you, and I am truly grateful for your

mentorship and presence.

A heartfelt thank you to my family, whose unwavering love and support have

laid the foundation for me to chase my dreams. Your belief in me and the sacrifices

you have made are the cornerstone of my achievements, and I am forever indebted

to you for enabling me to study and grow.

To my friends, thank you for being an essential part of this remarkable journey.

Your companionship, laughter, and encouragement have enriched this experience

profoundly. I treasure the moments we have shared, and I am saddened that this

chapter is coming to an end; you will always hold a special place in my heart.

Lastly, I would like to extend my deepest appreciation to my girlfriend Sofia for

her love, patience, understanding, and kindness during my time abroad. Despite

our distance, your unwavering support has been a source of strength and comfort,

helping me navigate through the challenges and triumphs of this journey.

Thank you all for your contributions to this achievement. Your support and

love have made this possible, and I am eternally grateful.

CHAPTER 9. ACKNOWLEDGEMENTS 73



74 CHAPTER 9. ACKNOWLEDGEMENTS



Tables

Model Prompt & Query Accuracy Recall Precision F1-Score

Llama2 (13b)

M. OWL Syntax 0.148 0.148 1.0 0.258
Natural Language 0.394 0.196 0.999 0.328
E. M. OWL Syntax 0.2 0.156 1.0 0.27
E. Natural Language 0.995 0.981 0.987 0.984

Llama2 (7b)

M. OWL Syntax 0.148 0.148 1.0 0.258
Natural Language 0.148 0.148 1.0 0.258
E. M. OWL Syntax 0.148 0.148 1.0 0.258
E. Natural Language 0.148 0.148 1.0 0.258

Llama3 (8b)

M. OWL Syntax 0.148 0.148 1.0 0.258
Natural Language 0.264 0.167 0.999 0.287
E. M. OWL Syntax 0.306 0.176 0.998 0.299
E. Natural Language 0.956 0.775 0.993 0.87

Mistral (7b)

M. OWL Syntax 0.222 0.16 0.999 0.276
Natural Language 0.867 0.528 0.952 0.68
E. M. OWL Syntax 0.883 0.56 0.987 0.714
E. Natural Language 0.95 0.752 0.987 0.853

Mixtral (47b)

M. OWL Syntax 0.202 0.156 0.999 0.271
Natural Language 0.87 0.533 0.993 0.694
E. M. OWL Syntax 0.979 0.888 0.985 0.934
E. Natural Language 0.998 1.0 0.985 0.992

Table 1: Metrics for Animals ontology

APPENDIX . TABLES 75



Model Prompt & Query Accuracy Recall Precision F1-Score

Llama2 (13b)

M. OWL Syntax 0.055 0.055 1.0 0.104
Natural Language 0.103 0.058 1.0 0.109
E. M. OWL Syntax 0.262 0.069 1.0 0.13
E. Natural Language 1.0 1.0 1.0 1.0

Llama2 (7b)

M. OWL Syntax 0.055 0.055 1.0 0.104
Natural Language 0.055 0.055 1.0 0.104
E. M. OWL Syntax 0.055 0.055 1.0 0.104
E. Natural Language 0.055 0.055 1.0 0.104

Llama3 (8b)

M. OWL Syntax 0.055 0.055 1.0 0.104
Natural Language 0.063 0.055 1.0 0.105
E. M. OWL Syntax 0.159 0.061 1.0 0.115
E. Natural Language 0.979 0.72 1.0 0.837

Mistral (7b)

M. OWL Syntax 0.65 0.136 1.0 0.239
Natural Language 0.93 0.44 1.0 0.611
E. M. OWL Syntax 0.215 0.065 1.0 0.123
E. Natural Language 1.0 1.0 1.0 1.0

Mixtral (47b)

M. OWL Syntax 0.286 0.071 1.0 0.133
Natural Language 0.814 0.228 1.0 0.371
E. M. OWL Syntax 0.971 0.652 1.0 0.789
E. Natural Language 0.998 0.96 1.0 0.98

Table 2: Metrics for Bio-primitive ontology

Model Prompt & Query Accuracy Recall Precision F1-Score

Llama2 (13b)

M. OWL Syntax 0.055 0.054 1.0 0.102
Natural Language 0.506 0.098 0.999 0.179
E. M. OWL Syntax 0.133 0.059 1.0 0.111
E. Natural Language 0.997 0.946 1.0 0.972

Llama2 (7b)

M. OWL Syntax 0.054 0.054 1.0 0.102
Natural Language 0.054 0.054 1.0 0.102
E. M. OWL Syntax 0.054 0.054 1.0 0.102
E. Natural Language 0.054 0.054 1.0 0.102

Llama3 (8b)

M. OWL Syntax 0.054 0.054 1.0 0.102
Natural Language 0.51 0.099 1.0 0.18
E. M. OWL Syntax 0.146 0.059 1.0 0.112
E. Natural Language 0.726 0.164 1.0 0.282

Mistral (7b)

M. OWL Syntax 0.627 0.126 1.0 0.224
Natural Language 0.691 0.148 1.0 0.258
E. M. OWL Syntax 0.247 0.067 1.0 0.125
E. Natural Language 0.915 0.387 1.0 0.558

Mixtral (47b)

M. OWL Syntax 0.283 0.07 1.0 0.131
Natural Language 0.764 0.186 1.0 0.314
E. M. OWL Syntax 0.998 0.964 1.0 0.982
E. Natural Language 1.0 0.997 1.0 0.998

Table 3: Metrics for Biosphere ontology

76 APPENDIX . TABLES



Model Prompt & Query Accuracy Recall Precision F1-Score

Llama2 (13b)

M. OWL Syntax 0.239 0.239 1.0 0.386
Natural Language 0.239 0.239 1.0 0.386
E. M. OWL Syntax 0.239 0.239 1.0 0.386
E. Natural Language 1.0 1.0 1.0 1.0

Llama2 (7b)

M. OWL Syntax 0.239 0.239 1.0 0.386
Natural Language 0.239 0.239 1.0 0.386
E. M. OWL Syntax 0.239 0.239 1.0 0.386
E. Natural Language 0.247 0.241 1.0 0.388

Llama3 (8b)

M. OWL Syntax 0.239 0.239 1.0 0.386
Natural Language 0.239 0.239 1.0 0.386
E. M. OWL Syntax 0.239 0.239 1.0 0.386
E. Natural Language 0.446 0.302 1.0 0.464

Mistral (7b)

M. OWL Syntax 0.36 0.272 1.0 0.428
Natural Language 0.594 0.371 1.0 0.541
E. M. OWL Syntax 0.281 0.25 1.0 0.399
E. Natural Language 0.986 0.944 1.0 0.971

Mixtral (47b)

M. OWL Syntax 0.239 0.239 1.0 0.386
Natural Language 0.632 0.394 1.0 0.565
E. M. OWL Syntax 0.945 0.813 1.0 0.897
E. Natural Language 1.0 1.0 1.0 1.0

Table 4: Metrics for Cell ontology

Model Prompt & Query Accuracy Recall Precision F1-Score

Llama2 (13b)

M. OWL Syntax 0.229 0.229 1.0 0.372
Natural Language 0.319 0.251 1.0 0.402
E. M. OWL Syntax 0.229 0.229 1.0 0.372
E. Natural Language 0.97 0.903 0.971 0.936

Llama2 (7b)

M. OWL Syntax 0.229 0.229 1.0 0.372
Natural Language 0.229 0.229 1.0 0.372
E. M. OWL Syntax 0.229 0.229 1.0 0.372
E. Natural Language 0.229 0.229 1.0 0.372

Llama3 (8b)

M. OWL Syntax 0.229 0.229 1.0 0.372
Natural Language 0.229 0.229 1.0 0.372
E. M. OWL Syntax 0.229 0.229 1.0 0.372
E. Natural Language 0.422 0.282 0.989 0.439

Mistral (7b)

M. OWL Syntax 0.229 0.229 1.0 0.372
Natural Language 0.229 0.229 1.0 0.372
E. M. OWL Syntax 0.768 0.496 0.953 0.653
E. Natural Language 0.989 1.0 0.953 0.976

Mixtral (47b)

M. OWL Syntax 0.229 0.229 1.0 0.372
Natural Language 0.311 0.249 1.0 0.399
E. M. OWL Syntax 0.989 1.0 0.953 0.976
E. Natural Language 0.989 1.0 0.953 0.976

Table 5: Metrics for Football ontology

APPENDIX . TABLES 77



Model Prompt & Query Accuracy Recall Precision F1-Score

Llama2 (13b)

M. OWL Syntax 0.234 0.234 1.0 0.379
Natural Language 0.476 0.305 0.968 0.464
E. M. OWL Syntax 0.279 0.244 0.991 0.391
E. Natural Language 0.973 1.0 0.883 0.938

Llama2 (7b)

M. OWL Syntax 0.234 0.234 1.0 0.379
Natural Language 0.234 0.234 1.0 0.379
E. M. OWL Syntax 0.234 0.234 1.0 0.379
E. Natural Language 0.234 0.234 1.0 0.379

Llama3 (8b)

M. OWL Syntax 0.234 0.234 1.0 0.379
Natural Language 0.234 0.234 1.0 0.379
E. M. OWL Syntax 0.234 0.234 1.0 0.379
E. Natural Language 0.903 0.735 0.913 0.815

Mistral (7b)

M. OWL Syntax 0.714 0.447 0.939 0.605
Natural Language 0.549 0.337 0.957 0.498
E. M. OWL Syntax 0.964 0.953 0.89 0.921
E. Natural Language 0.974 0.979 0.907 0.941

Mixtral (47b)

M. OWL Syntax 0.234 0.234 1.0 0.379
Natural Language 0.472 0.303 0.968 0.462
E. M. OWL Syntax 0.973 1.0 0.883 0.938
E. Natural Language 0.973 1.0 0.883 0.938

Table 6: Metrics for Generations ontology

Model Prompt & Query Accuracy Recall Precision F1-Score

Llama2 (13b)

M. OWL Syntax 0.231 0.231 1.0 0.375
Natural Language 0.936 0.805 0.952 0.872
E. M. OWL Syntax 0.301 0.247 0.986 0.395
E. Natural Language 0.989 1.0 0.952 0.976

Llama2 (7b)

M. OWL Syntax 0.231 0.231 1.0 0.375
Natural Language 0.231 0.231 1.0 0.375
E. M. OWL Syntax 0.231 0.231 1.0 0.375
E. Natural Language 0.231 0.231 1.0 0.375

Llama3 (8b)

M. OWL Syntax 0.231 0.231 1.0 0.375
Natural Language 0.231 0.231 1.0 0.375
E. M. OWL Syntax 0.231 0.231 1.0 0.375
E. Natural Language 0.986 0.986 0.952 0.969

Mistral (7b)

M. OWL Syntax 0.587 0.357 0.986 0.524
Natural Language 0.783 0.517 0.952 0.67
E. M. OWL Syntax 0.89 0.69 0.952 0.8
E. Natural Language 0.958 0.875 0.952 0.912

Mixtral (47b)

M. OWL Syntax 0.231 0.231 1.0 0.375
Natural Language 0.925 0.773 0.952 0.854
E. M. OWL Syntax 0.989 1.0 0.952 0.976
E. Natural Language 0.989 1.0 0.952 0.976

Table 7: Metrics for University ontology

78 APPENDIX . TABLES


	Abstract
	Introduction
	Large Language Models
	Evolution of Large Language Models
	Architecture of Large Language Models
	Variants of the transformer architectures

	Attention in LLMs
	Activation Functions
	Layer Normalization
	Data Preprocessing
	Data Cleaning
	Parsing
	Normalization
	Tokenization
	Stemming and Lemmatization

	Training Techniques
	Utilization of Large Language Models
	Libraries

	Introduction to Description Logic
	Overview
	Theory
	Concepts
	Roles
	Axioms
	Syntax
	Semantics

	Reasoning in Description Logic
	Applications of Description Logic

	Ontologies
	Introduction
	Understanding Ontologies
	Methodologies for Ontology Development
	Types of Ontologies
	Ontology Languages and Tools
	Applications of Ontologies
	Integration with Other Technologies
	Challenges and Future Directions

	Ontology Learning
	The ExactLearner Paradigm
	Exact Learning Framework

	Learning Algorithm
	Process
	Right O-essential Counterexamples
	Left O-essential Counterexamples

	Key Observations
	Explanation

	Probably Approximately Correct Learning Algorithm
	Introduction
	Foundations of PAC Learning
	The PAC Learning Algorithm
	Properties of PAC Learning
	Applications and Extensions

	Methodology
	First Phase of Experiments
	Second Phase of Experiments
	PAC for equivalence queries
	From Manchester OWL Syntax to Natural Language

	OWL API Framework
	Problems with LLMs
	Caching LLMs' Answer
	Advantages of Caching

	Probing Language Models
	Input Format and Unexpected Responses
	Correctness and Logical Consistency


	Results
	First Phase of Experiments
	Second Phase of Experiments

	Conclusion
	Future Work

	Acknowledgements
	Tables

