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Abstract

Traffic congestion can be explained as a percolation in a dynamical system on a network
structure because of the existence of a maximum flow rate, a finite transport capacity
at crossing points and finite road capacity. In this thesis a mesoscopic traffic model is
developed to study the congestion formation on a road network. The goal is to propose
a predictive observable for the rise of congestion based on the traffic load fluctuations
using the flow-density fundamental diagram of the network. The model simulates the
vehicle dynamics using an average optimal velocity model along the road and intro-
duces finite flow rates at the crossing points, also considering the traffic lights dynamics.
Simulations are performed on a Manhattan-like network where all junctions are traffic
lights or roundabouts. The main features of the congestion transition have been studied,
both in stationary and transient states. A statistical analysis of traffic flow and density
fluctuations was performed to highlight their predictive properties for congestion detec-
tion. From such simulations, flow fluctuations and normalized density fluctuations are
highlighted to predict the rise of congestion when the system is in a stationary state.
Furthermore, an optimization algorithm based on vehicle density is proposed and tested
on a network consisting in traffic lights only. This algorithm shows good results regarding
density fluctuations, which result lower with respect to unoptimized simulation for the
same load. Despite that, the algorithm performs poorly on traffic flow, reducing it for
the same load with respect to unoptimized simulations, mainly at high density. Thus, it
appears unsuitable to manage congested systems. Finally, a test using data following a
real trend is done on Via Stalingrado in Bologna, confirming the goodness of the model.
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Introduction

The word physics has Greek origins and means nature. The aim to understand the nature
of something implies a desire to comprehend the mechanisms governing the underlying
system. But that’s not the only way to interpret it. In modern age, the meaning of the
word physics is more related to the field of study or the knowledge area, including all
theoretical and experimental tools developed to understand any kind of phenomena. This
second interpretation appears more interdisciplinary, extending the role of physics also in
fields which are usually considered leaving in a “different world”. The main example of an
interdisciplinary field of physics is the physics of complex systems. Typically, complex
systems are natural, social or dynamical systems which consist of many nonlinearly
interacting elements [1]. These systems are constantly modifying their internal structure
and patterns of activity in self-organization processes. The most important property of
such systems is the existence of emergent phenomena which cannot be simply derived
or predicted solely from the knowledge of the systems’ structure and the interactions
among their individual elements.

One example of complex systems are urban phenomena that constitute the “Physics
of Cities”, a new discipline which aims to understand cities from the complexity science
perspective [2]. The study of cities as complex systems emerged in the second half of the
20th century [3]. In the last few years, the physics community has made a breakthrough
in understanding such events with the help of an increasing quantity and quality of
available data. Urban phenomena are indeed related to a wide class of studies, like
study of racial residential segregation, empirical distribution of population density or
income. Among all of them, there are also urban mobility phenomena. One example
of application on mobility analysis can be the study of certain social dynamics. In
principle social dynamics is not directly observable, but one can deduce some feature
and characteristics by observing the human mobility: for example, a study in Venice
highlighted some statistical correlation between bridges [4].

One of the most studied fields in city physics is road traffic. Traffic congestions are
one of the most common problems for city development, which can decrease the quality
of life, especially in urban areas, by increasing pollution [5]: in developing states of Asia,
air quality of 97% of the cities is unhealthy [6]. Moreover, they can negatively affect
the local regional economies [7]. With the rapid urbanization, socio-economic activities
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tend to centralize only in few major cities in a country: this increases the number of
the commuters daily traveling to the cities. But also, economy grows, leading to a
household and vehicle population increase. By 2014, 54% of the world’s population lived
in cities (against the 30% estimated in the 1950s), and the United Nations predicts the
urbanization level to grow up to 66% by 2050 [8]. Road traffic congestions also reduce
productivity levels, costing time and energy: e.g. a 2011 study in the USA estimated a
cost of $101 billion for American citizens.

A city can be seen as the overlap of many transport networks, i.e., cars, trains, buses,
pedestrians, airplanes, and so on can be divided. However, every transport network can
be stressed out, leading to many unwanted phenomena, e.g. traffic congestions. Everyday
millions of drivers all over the world are on their way to work, holiday, airports and each
of them knows for sure what a traffic jam is like. A traffic congestion usually occurs
when the traffic demand is higher than the available network capacity, but it can also
rise when the mobility demand is sustainable, in average. It is usually characterized
by lower vehicle speed, increased travel times and longer vehicular queues. What have
traffic congestions got to do with physics [9]? Over the years, many physical models were
created and applied to network transportation problems [10]. The Lighthill-Whitham
model (1955) [11], for example, was based on two premises: the conservation of the
number of cars, which is indeed a rational assumption, and the existence of an equation
of state describing a relationship between traffic flow and traffic density. The existence of
an equation of state was partially verified by measurements, with much scatter observed
in the data, particularly at high traffic densities. Nevertheless, this model provided a
good representation of basic traffic phenomena like shock waves [12]. Another model,
namely the Reuschel and Pipes model, described the movement of a car following another
one in front assuming that the speed of the following car was a linear function of the
distance between the lead car and the following car. During the 1970s, Herman and
Prigogine (1979) put forward a Two-fluid approach to town traffic [13], which adapts
the Boltzmann equation to vehicular traffic flows in a town, city or metropolitan area.
Notice that there are many model types besides Lighthill-Whitham and gas kinetic ones,
e.g. car following and cellular automata models [14].

Besides models for vehicular traffic, there are also models for bus-route systems, train
and plane networks and pedestrian flow. In large metropolitan areas, the integration
of different transport modes has become crucial to guarantee a fast and sustainable
flow of people [15]. Using a network science approach, multimodal transport systems
can be described as multilayer networks, where the networks associated to different
transport modes are not considered in isolation, but as a set of interconnected layers.
Moreover, many statistical physics tools were applied to traffic model, among which
phase diagrams, linear stability analysis and density waves. The aim of such models is
to unveil the nature of traffic flow and to optimize the transportation network itself to
have an efficient society. In the last few years, their development has increased due to
the diffusion of smart city concepts Digital Twins. A Digital Twin is a digital model
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which serves as a counterpart of a real physical system, which aims to simulate its whole
reality allowing to make better decisions. Cities are becoming smart not only in terms of
the way we can automate routine functions serving individuals, buildings, traffic systems
but in ways that enable monitoring, understanding, analyzing and planning the city to
improve the efficiency, equity and quality of life for its citizens in real time [16]. However,
most of those models are not used to prevent congestion because, to do it, many data
are required to apply some multisource data fusion [17]. Indeed, traffic flows were the
first data to be automatically sensed in cities and databases of various spatial data go
back centuries [16]. However, these data are not free: installation and maintenance of
the conventional detectors are expensive and induce serious disruption of traffic [18].
Moreover, collected data also need to be stored and analyzed: the analysis and mining
of city traffic data plays a significant role in the optimization of public transport systems
[8]. With some effort, large-scale experiments have shown how it is possible to find
answers to many challenging analytical questions about mobility behavior, such as: What
are the most popular itineraries followed by individual travels? What is the spatio-
temporal distribution of such travels? How do people behave when approaching a key
attractor, such as a stadium, station or airport? How can traffic jams and congestion be
characterized and predicted?

The aim of this thesis project is to try to answer the last of these questions, with
a focus on the congestion prediction. Considering the congestion as a collective effect
of a dynamical complex system, statistical mechanics suggests that fluctuations should
have a well-defined behavior near the critical point. Indeed, the intent of this work is to
find any observable whose fluctuations could be predictive of the congestion formation.
The work is divided in six chapters. The first chapter is a general overview of traffic
models, in which also the main macroscopic observables like speed, density and flow are
described. The second chapter contains a mathematical description of the framework
used, with a focus on fluctuations and stochastic processes. The third chapter describes
the model implementation, focusing on how every single component like a street, traffic
light, roundabout, etc. has been schematized, together with sensors like magnetic loops,
from a practical point of view. Then, two chapters are devoted to the analysis of data
coming from numerical simulations. Chapter four contains the analysis of the system
in a stationary state, where the number of agents in the network is slowly raised to
simulate an adiabatic charging. This type of analysis permits an accurate study of
fluctuations and the application of some algorithms, like peak-detection. Then, chapter
five analyzes the system under an input based of some data loops collected by Regione
Emilia-Romagna in the city of Bologna, including one simulation on Via Stalingrado.
This analysis aims to more qualitative results with respect to the stationary one, testing
the model behavior after some plausible inputs. Finally, the sixth chapter reviews the
obtained results, discussing future developments and research topics which could start
from this thesis.
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Chapter 1

Traffic models

Traffic flow involves a multidimensional dynamical system of strongly interacting vehi-
cles. For example, one can consider every car as an elementary particle constrained to
move along a one-dimensional trajectory. Moreover, every car could obey to some other
conditions: for example, it could have to go from a point A to a point B, without collid-
ing with other particles. Traffic jams are the typical signature of the complex behavior
of such system [10]. The aim is to use the concepts and the techniques of physics applied
to such complex systems as transportation ones, making interdisciplinary research.

The first studies for traffic problems were done by Greenshields in 1935. Then, in
1955, Lighthill and Whitham came out with the oldest and most popular macroscopic
dynamic model, based on the fluid-dynamic theory: they treated traffic as an effectively
one-dimensional compressible fluid. In 1960, Prigogine proposed a gas-kinetic model
based on the well-known Boltzmann equation. Newell, in 1961, developed the first opti-
mal velocity model, a microscopic model based on the assumption of a delayed adaptation
of velocity. During the ’70s, Musha and Higuchi have studied the noisy behavior of traffic
flow, conjecturing that the fluctuations of traffic current exhibit the so-called 1

f
noise.

Nowadays, the development of traffic models is mainly done using computers and con-
cepts of modern physics. It is now modelled as a system of interacting vehicles driven far
from equilibrium, which shows a rich variety of physical phenomena such as dynamical
jamming transitions, critical phenomena, metastability, self-organized criticality, nonlin-
ear waves. . . A usual global approach is to represent the mobility demand by using an
origin-destination matrix (possibly time dependent). The underlying assumption to the
OD matrix existence is that individuals can be grouped into different communities that
share the same spatial representation of the characterized city. These areas can be related
to time-dependent socio-economic and cultural activities, like universities, hospitals and
also commercial centers. Conversely, the origin areas are the residential or the suburbs
areas where commuters live. Indeed, traffic dynamics is determined by distributing the
individual mobility paths in the road network according to the individual OD demand.
Is it possible to simulate the traffic dynamics by a random walk on a graph? If yes, what
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Chapter 1. Traffic models 1.1. Relations among observables

is the error associated to such approximation?
Any model one wants to build must reproduce some common behaviors of traffic

system. For example, it is well-known that vehicles move freely at low densities, while
at high densities they are in a congested state. The phase transition between free and
congested traffics shows also important behaviors such hysteresis and metastability. E.g.,
if the system is in a stationary state, it is possible to measure the probability to move
from an area i to an area j. This probability is usually represented as the transition rate
πij. To avoid congestion, traffic flows must be balanced, i.e.∑

j

πij =
∑

j

πji = di

meaning that the incoming degree is equal to the outgoing one. This condition makes
the mobility evolve towards minimizing the congestion formation on the road network.
From here it is also possible to write the average continuity equation

ṅi =
∑

j

πijϕ (nj) − diϕ (ni)

where ni is the population in the i area and ϕ is the vehicle flow. In a stationary
situation, i.e. when ∑

i n⋆
i = N constant, a solution ϕ⋆

i is the null eigenvector of the
Laplacian matrix

Lij = diδij − πij

From a statistical point of view, if the network is balanced then population fluctuations
in a given area are well approximated by an exponential law

ρ (n) = 1
n̄

e− n
n̄

with n̄ = N/M and M the number of areas considered.
For what concerns traffic engineering area, many complex traffic models have been

proposed: those models include so many factors that it is almost impossible to discover
the essential factors affecting the traffic behavior. The goal of complex system physics
is to simplify reality, i.e. making a model capable to reproduce the characterizing phe-
nomena of a system using the smallest number of factors.

1.1 Relations among observables
The study of traffic phenomena mainly relies on few macroscopic observables: density,
speed, flow (current) and travel times.
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Chapter 1. Traffic models 1.1. Relations among observables

1.1.1 Density
In traffic theory, density is a key observable. It gives information about the number of
vehicles located on a street. Moreover, during congestion, the density can also be used
as indicator of the vehicle queue length at intersections. Let l be the length of a generic
street and n (t) be the number of vehicles on the street at time t. Then, the density
ρ (n, l, t) of a street can be defined as:

ρ (n, l, t) := n (t)
l

(1.1)

The density is usually expressed in vehicles per kilometer (veh/km) or kilometers to the
minus one (km−1).

1.1.2 Speed
Another important macroscopic observable is the speed of a vehicle, usually expressed in
km/h (or m/s in simulations). Notice that this speed could also be a random variable.
However, in a street network like a city one we have numerous vehicles, so usually the
mean speed on each street is considered.

Let Σv = {1, . . . , nv} be the collection of vehicles and let M be the total number of
streets. Let’s now take a natural number m ≤ M and let S = {s1, . . . , sm} be a partition
of the vehicle set Σv. It is trivial that ∑i |si| = nv. Notice that a street can also be seen
as an edge over a flat network. The mean speed over a street s ∈ S can be written as:

v̄s := Es [v] :=
∑
i∈s

vi

|s|

where vi is the speed of the ith vehicle. Finally, the mean speed over an empty street is
set to be v0.

1.1.3 Flow
The mean flow over a street is defined as:

ϕ := ρv (1.2)

Then, the flow is usually expressed in veh/h or h−1.
However, this definition of the flow is hardly appliable in a real-world situation. An

operative definition of the flow, used for data acquired by magnetic loop sensors, can be
given as

ϕ := # vehicles passing on street s in a time ∆t

∆t
(1.3)
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Chapter 1. Traffic models 1.1. Relations among observables

1.1.4 Travel time
Among all observables, the one that is most used from everyone is surely the travel time.
This is, in fact, the first information that many services like Google Maps [19] will return
when asked for the best path to a given destination. By interpreting travel time as a
disutility or burden, despite it is not easily reducible to an economic value, transport
policy has been driven by the goal of quicker journeys [20].

The definition of travel time is straightforward: given a road network, and selected
two nodes O (origin) and D (destination), the travel time ∆tOD is simply the time it
takes to reach D from O. Notice that this definition is very general and shows how travel
time does not depend on other observables.

1.1.5 Macroscopic Fundamental Diagrams
Macroscopic Fundamental Diagrams (MFDs) are graph relating average values of the
main observable in a transport network, like the previous seen speed, flow and density.
The most common diagram is the average flow - density one, used to evaluate traffic-
control strategies [21]. A large urban network may have multiple flows for a given density,
due to the presence of hysteresis loops.

However, if the traffic conditions are stationary, empirical data suggest that there
must exist a relationship between flow, speed and density [22]. The first study on these
relationships was done by Greenshields in 1935. A basic relation of traffic flow theory is
indeed the Fundamental Traffic Formula, which is the flow definition from Eq. (1.2) and
relates the three main observable of a traffic system. Usually, if traffic count data are
available, then the traffic flow ϕ can be assumed as given as Eq. (1.3) and one can derive
speed or density from the previous relation. Moreover, there are two special situations
for a traffic system:

• When there are no cars at all, the density is zero and so the flow. In this condition
the speed behaves much as a theoretical value, and it is standard to assume it as
the speed limit v0;

• When the density exceeds the so-called jam density threshold ρc, speed and flow
are both zero and all movement stop. For a simulation this is not an optimal
situation because it can lead to permanent locks, and this is why one usually set
the minimum possible value of speed to be non-zero.

Between these extreme points, while density increases the flow does the same, despite
the speed going down due to vehicle interactions. One can clearly see this effect in Fig.
1.1.
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Chapter 1. Traffic models 1.2. Queuing models

Figure 1.1: Macroscopic Fundamental Diagrams relating speed (v), density (k) and flow
(q) [22].

1.2 Queuing models
In the literature, it has been shown that queuing models can be used to adequately model
uninterrupted traffic flows [22]. Congestion depends on many factors, e.g. the number of
vehicles on the road, therefore it is necessary to build models which can capture any of
them. Notice that traffic flows are usually modelled empirically, starting from collected
speed and flow data: this approach is limited in terms of predictive power and sensitivity
analysis. One alternative to this can be analytical models based on queuing theory: here
vehicles are going to spend time in a network influenced by queues.

We can divide traffic flows in two main groups:

• uninterrupted flows, where flow is regulated through vehicle-vehicle and vehicle-
roadway interactions;

• interrupted flows, where flow is regulated by an external signal. Vehicle-vehicle
and vehicle-roadway interactions are also present but, in this case, they play a
secondary role.

8



Chapter 1. Traffic models 1.2. Queuing models

Once the type of flow is defined, the next step consists of model selection. In the next
subsections the three main macro areas in which all models can fall are described: mi-
croscopic, mesoscopic and macroscopic models. Notice that microscopic and mesoscopic
models are typically more complex and not analytically solvable, making them demand
a lot of computer time. Therefore, macroscopic models are better mathematical tools
due to their analytical description while other models are more like simulation tools.

Microscopic models

Microscopic models describe a traffic system with an elevated level of detail. Each
vehicle is typically represented separately and models are based on theories about vehicle
maneuvers through traffic. These models are thought for:

• car-following theories, in which each vehicle acts based on the vehicle in front of it;

• time-space diagrams, commonly used to solve transportation-related problems;

• microsimulations, such software solutions like SUMO [23].

Macroscopic models

On the other hand, macroscopic models describe a traffic system with low level of detail,
usually by aggregating all vehicles in flows. One can use this type of models for:

• capacity analysis, like level-of-service analysis for highways;

• MFDs, to study speed-flow-density relationships;

• shock wave analysis, because a shock wave exists whenever the traffic condition
changes.

Mesoscopic models

Lastly, one can have a mix between microscopic and macroscopic models, the so-called
mesoscopic models. In this model the traffic system is represented with high level of
detail, thus describing interaction with low detail level. These models can be categorized
into:

• headway distribution models, describing the distribution of headways, i.e. the pas-
sage times difference of two successive vehicles, while neither explicitly considering
each vehicle separately;

• cluster models, studying group of vehicles which shares a specific property and
treating them like a single entity over the system;

9



Chapter 1. Traffic models 1.3. Open Traffic Models

• gas-kinetic continuum models, describing velocity distributions and able to repro-
duce some non-linear dynamics.

In queuing models, traffic flow is usually assumed stationary (steady-state queuing
models) and all vehicles will always be moving with non-zero speed, no matter how slow.
Moreover, non-stationary traffic can be studied, e.g. stop’s ang go’s phenomena, using
so-called transient queuing models.

1.3 Open Traffic Models
The state of the art as traffic simulation platform is the Open Traffic Models (OTM)
framework [24]. OTM is a framework which allows any user to run a variety of mod-
els such as queuing ones but also car-following and fluid-based models. So, using this
framework one can simulate on all microscopic, mesoscopic and macroscopic models.
This approach works with two main components:

1. A network description which is a bridge between single pipe graphs typical of
macroscopic models and the lane-by-lane representation of microscopic models. All
lanes in each lane group are assumed to be synchronized in speed forming a sort of
“longitudinal dynamics”. This approach corresponds to a single lane of vehicles in
microscopic models, a queue pair in mesoscopic models and a differential equation
for a macroscopic model.

2. Since every link can be modeled with a different nature, a protocol has been im-
plemented to coordinate models, i.e. to manage the passage of flow packages from
one link to another. This protocol was inspired by the Godunov scheme for partial
differential equations.

Moreover, the framework also implements sensors and actuators to acquire data for
simulations. Finally, OTM is fully open-source and supports the implementation of
third-part models as plugins.
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Chapter 2

Stochastic traffic model on a road
network

The basis of a traffic flow simulation is certainly a road network. For the sake of the
analyses, a planar network is considered, i.e. a graph which can be drawn on two-
dimensional such that no edges cross each other. Let’s call N the number of nodes in
the graph and M the number of edges. The edge density is then defined as

C := M

N

From now on, the edges will be addressed as streets and the nodes will be addressed as
junctions.

2.1 Street dynamics
The state of a network road is given by its density, as defined in Eq. (1.1). To simplify
the model, the input velocity on a road will be assumed to be a function of such density:

v (ρ) = v0

(
1 − α

ρ

ρmax

)
(2.1)

where v0 represents the free velocity (i.e. the road speed limit), α ∈ ]0, 1] is a parameter
used to keep v ∈ [vmin ≥ 0, v0] and ρmax is the maximal road density. A plot for different
values of α and fixed v0 = 13.9 m/s (corresponding to 50 km/h) is reported in Fig. 2.1.
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Figure 2.1: Plot of the speed function of Eq. (2.1) for α ∈ {0.55, 0.65, 0.75, 0.85, 0.95}.
For the sake of simplicity, the density has been scaled as ρ → ρ/ρmax.

Consequently, using Eq. (1.2) the flow of the street becomes

ϕ (ρ) =
ρv0

(
1 − α ρ

ρmax

)
, ρ ≤ βρmax

βv0
(
1 − α β

ρmax

)
, otherwise

(2.2)

where β ∈
[

1
2α

, 1
]

defines the average traffic flow during congested states [25]. By doing
a simple derivative one can find the critical density ρc, i.e. the density for which flow
has a local maximum:

ρc = ρmax

2α
(2.3)

It is trivial that, normalizing ρmax = 1, ρc > 1
2 . In this case, ρc ≥ 1 for α ≤ 1

2 and the
parameter makes, in this case, the system loses some physical meaning. Therefore, one
should limit α ∈

]
1
2 , 1

]
. A plot for different values of α and β = 2α+1

4α
is reported in Fig

2.2.
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Figure 2.2: Plot of the flow function of Eq. (2.2) for α ∈ {0.55, 0.65, 0.75, 0.85, 0.95}.
Dashed lines are at the points of maximum. The parameter β is always considered to be
2α+1

4α
. For the sake of simplicity, the density has been scaled as ρ → ρ/ρmax.

At this point it is convenient to scale the density ρ → ρ/ρmax, the time t → tv0/l and
the flow ϕ → lϕ/v0. From now on, all symbols will refer to scaled variables.

The normalized density-flow relationship is then

ϕ (ρ) =
ρ (1 − αρ) , ρ ≤ β

β (1 − αβ) , otherwise

The maximal flow value at critical density can be written as

ϕmax = ρc (1 − αρc)

This means that it exists a stable solution ρeq to the equation

ρeq (1 − αρeq) = ϕin, ϕin ≤ ϕmax

Notice that the input flow depends on the output flow of incoming roads, so one can
write the road dynamics as

ρ̇ = −ϕ (ρ) + ϕin (t) (2.4)

13



Chapter 2. Stochastic traffic model on a road network 2.2. Junction dynamics

2.1.1 Density fluctuations effects
Before jumping into junction dynamics, let’s study the effect that density fluctuations
have on a road flow. Starting from Eq. (1.2), one can write:

ϕ (ρ + dρ) = (ρ + dρ) (1 − α (ρ + dρ))
= ρ (1 − αρ) − αρdρ + dρ (1 − α (ρ + dρ))
= ϕ (ρ) + dρ (1 − 2αρ) − αdρ2

thus,
∆ϕ = ϕ (ρ + dρ) − ϕ (ρ) = dρ (1 − 2α (ρ + dρ))

Notice that by decreasing fluctuations, i.e. dρ < 0, one has that the flow increases if and
only if ρ + dρ > 1

2α
≡ ρc.

2.2 Junction dynamics
To describe the dynamics over the whole network, Eq. (2.4) has to take into account
also the dynamics at crossing points. Let’s introduce a stochastic matrix πij (t) which
defines the probability that the outgoing flow from the ith street enters the jth one. The
time dependence of such matrix simulates the flow fluctuations at junctions. Moreover,
assume that it is symmetric and ∑

i

πij (t) = 1

To simplify the problem, the network will be assumed as homogeneous, to have the same
scaling variables. At this point one can write the network dynamics starting from the
road’s one

ρ̇i (t) = −
∑

i

πij (t) ρi (t) (1 − ρi (t))

+
∑

i

πji (t) ρj (t) (1 − ρj (t))
(2.5)

Notice that, in absence of external vehicle sources, Eq. (2.5) is conservative∑
i

ρ̇i (t) = 0

then there exists an integral of motion ∑i ρi (t) = C ≤ βM which expresses the conser-
vation of the total vehicle number.
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Chapter 2. Stochastic traffic model on a road network 2.2. Junction dynamics

2.2.1 Classic junction
As result of previous assumptions, one can split the stochastic matrix in an average and
a linearly independent fluctuating part

πij (t) = π0
ij + ξij (t)

with ξij (t) : E [ξ] = 0,
∑

j ξij (t) = 0. For physical reasons, one should also constrain the
fluctuations in such a way that 0 ≤ πij (t) ≤ 1. The covariance matrix can be written as

E [ξij (t) ξi′j′ (t′)] = cτc (|t − t′|) δii′σi,jj′

where τc is the correlation time, the factor δii′ expresses independence of different streets
and E

[
ξij
∑

j′ ξi′j′

]
= ∑

j σi,jj′ = 0.
At this point, the equilibrium states ρeq < ρc must satisfy the constraint∑

i

π0
ijϕ

eq
i −

∑
i

π0
jiϕ

eq
j = 0

where the equilibrium flow is defined as

ϕeq
i = ρeq

i (1 − αρeq
i )

Notice that one can simplify the previous relationship∑
i

(
π0

ij − δij

)
ϕeq

i = 0 (2.6)

thus, the equilibrium solution is given by aϕeq
i = ϕ

(
ρeq

j

)
with ∑i ρeq

i (ϕeq
i , a) = C where

a measures the total traffic flow on the whole network. The solution for non-congested
equilibrium of Eq. (2.6) is achieved for

aϕeq
i < ϕmax = 1

4α

The parameter C, which represents the average density, is a control parameter.
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Chapter 3

Model implementation

The actual implementation of the model follows the path set by a previous work [26].
Starting from an existing model, many features are added in order to make more detailed
simulations [27]. Due to computational necessities, this implementation is discrete-timed.
Thus, every execution of the evolution algorithm (described in Section 3.4) corresponds
to one time step which it was decided to match with a second.

3.1 Streets
The main rework for what concerns streets is the addition of queues. Streets are imple-
mented with two buffers: one buffer for the vehicles circulating in the street and one exit
queue which orders vehicles leaving the street. Each vehicle which enters the street goes
in the first buffer with a speed v = v (ρ) as set by Eq. (2.1): it will be assigned a penalty
time t = l/v, rounded to the closest integer greater than t, during which it has to stay
in the initial buffer. Once served the penalty, the vehicle will move on the exit queue,
and it is assigned a null speed. From here, one agent for time unit is free to leave the
exit queue and enter the next junction. Notice that queues are FIFO structures, which
stand for first in, first out. Thus, at each time step, the agent who will leave the queue
is the one who has been there the longest.

Finally, one can also set up the equivalent of magnetic loops on streets, to count the
vehicle passing in a given time. These loops can be placed in both input, counting every
agent as it is placed on the street, and output, counting every agent as it moves away
from the street.
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Chapter 3. Model implementation 3.2. Junctions

3.1.1 Mean speed optimization
Starting from Eq. (2.1) one can rewrite the input speed formula as

v (n) = v0

(
1 − α

n

nmax

)
where n is the number of vehicles on the street and nmax is the maximum number of
vehicles the street can hold. Assuming that the street queue is empty, i.e. there are no
vehicles waiting at a junction, meaning all vehicles are moving, it is possible to compute
the mean speed over the street without cycling through the agents

v̄ (n − 1) = 1
n

n∑
k=0

v0

(
1 − α

k

nmax

)
= v0

(
1 − α (n − 1)

2

)

thus obtaining better computational performances. Notice that this method is valid only
for moving vehicles and in a different case it is necessary to make a weighted average
between this formula and all waiting agents.

3.2 Junctions
Many types of junctions are actually implemented. All of them have a vehicle buffer,
which is managed differently accordingly to the junction type, and a pair of coordinates.
Notice that at every time step all junctions try to empty their buffer, regardless of their
type. Moreover, most junctions have a priority system to simulate real-life road junction.
To make an example on how this algorithm works, consider a simple junction like the
one represented in Fig. 3.2.

O

A B

CD

Figure 3.1: Simple road intersection with five nodes and four streets. Nodes have coordi-
nates O = (0, 0), A = (−1, 1), B = (1, 1), C = (1, −1) and D = (−1, −1).

Assuming to know the coordinates of each node one is able to compute the difference
in direction due to turns. Let’s define a score function which depends on the direction
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Chapter 3. Model implementation 3.2. Junctions

change ∆θ = θout − θin:
s (∆θ) := ∆θ

2π
− f (∆θ) + 1

2 (3.1)

with:

f (x) =
sign(x) , |x| > π

0 , otherwise
The vehicle with the highest priority is the one with the lowest value of the score in
Eq. (3.1). Moreover, as one can see in Fig. 3.2, the score function is normalized
s (∆θ) ∈ [0, 1] ∀∆θ ∈ [−2π, 2π].

So, suppose there are three vehicles, both going to C but coming from A, B and
D. Then, one has that ∆θAC = 0, ∆θBC = π/2 and ∆θDC = 3π/2 so s (∆θAC) = 0,
s (∆θBC) = π/2 and s (∆θDC) = −π/2. Finally, the vehicle coming from D will pass
first (right turn), then will pass the one coming from A (straight turn) and lastly will
pass the one coming from B (left turn). Notice that one can adapt this algorithm to
left-turn priority systems (like the Great Britain one) by transforming ∆θ → −∆θ.

−2π −3π/2 −π −π/2 0 π/2 π 3π/2 2π

∆θ (rad)

0.0

0.2

0.4

0.6

0.8

1.0

s
(∆

θ)
(a

.u
.)

Score function

Figure 3.2: Plot of the score function for ∆θ ∈ [−2π, 2π].

3.2.1 Traffic Lights
A traffic light is a type of node that accepts input vehicles only from part of the roads
connected to it and blocking it in the remaining ones. After a defined time period, the
blocked roads are unlocked and vice versa. Vehicles that are allowed to pass through are
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Chapter 3. Model implementation 3.3. Vehicles

still subject to the precedence rules of normal intersections. It has been implemented
with a pair of delays (g, r), namely containing the green and red light timings expressed
in discrete time units of the simulation. Suppose to have a junction like the previous
one seen in Fig. 3.2 and suppose to have a traffic light node as node O. Moreover, let’s
assume that this semaphore will prioritize straight connections (i.e. A-C and B-D) and
the green-red cycle is referred to the A-C link. At this point, the node will allow the
vehicles to flow between A and C for g time steps between B and D for r time steps.
Notice that the semaphore timings are not symmetrical a priori, i.e. one link could allow
vehicles to flow for a longer time with respect to the other link.

3.2.2 Roundabouts
Roundabouts junction are slightly different from nodes seen above. They implement the
vehicle buffer as a queue. Thus, the FIFO structure of queues introduces an intrinsic
precedence system and so roundabouts are not relying on Eq. (3.1). In addition, to keep
the implementation realistic, a decision was made to forbid U-turns in all non-roundabout
junctions.

3.3 Vehicles
The implementation of vehicles is meant to consider all of them equal. Therefore, this
model will not distinguish between a bus, an SUV, a truck, or a subcompact car as
they all will be treated as point-like particles. Physical space management is left to the
streets. The only parameter required to build a vehicle is its path. Then, the code will
manage by its own the vehicle’s position (node or street), the time penalty it has to wait,
its speed and travelled time and distance.

3.4 Dynamics
The dynamics of the system is given by the evolution algorithm, which consists of three
main parts: firstly, agents are moved from streets into junctions (if possible), then they
are moved from every junction to the next streets (if possible) and, lastly, every agent is
either updated or inserted for the first time in the system. It was decided to implement
the algorithm in this way since it does not require copying entire data structures, making
the execution lighter.

In detail, the three stages of the algorithm are:

1. Street evolution: for each street, the agent in front of the exit queue is taken (if
present). Then, if the destination node has at least one free spot for it, it is moved
from the street’s queue into the node buffer, otherwise it stays on the street. If the
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Chapter 3. Model implementation 3.4. Dynamics

destination node is the journey destination of the agent, it will be removed from
the system;

2. Junction evolution: for each node, a cycle over the agents on it is made in order to
pull out as many agents as possible. In particular, for each agent the next street is
computed (basing on Dijkstra’s algorithm [28]): if the street has at least one free
slot, the agent will be moved from the junction to the street, updating its speed
and delay time. If it cannot move, there are two possible cases: if the node is a
roundabout, other agents will be skipped, otherwise the algorithm will try to move
other agents;

3. Agent evolution: for each agent with an assigned node/street, the travel time and
the delay are respectively increased and decreased (this last if greater than zero)
by one unit. If the agent has no node nor street assigned, it will be put in the
system either randomly or precisely, depending on the user input.

At the end of all, also the simulation time is increased by one.
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Chapter 4

Simulation results in stationary
conditions

For research purposes, the first numerical simulations are done with the system in a
quasi-stationary state. Stationary systems are usually considered for correlation and
autocorrelation studies and because they could be required by some algorithms, like
peak detection ones. The aim of simulations in this chapter is indeed to approximate an
adiabatic charge of the dynamical system studied, in such a way to study the fluctuations
of the main observables. Adiabatic charge means that the network is constantly loaded
while trying to keep the mean density almost constant.

All the simulations are performed on a Manhattan-like road network, consisting in
120 nodes and 436 streets, as represented in Fig. 4. Every street is 2 km long and
has a maximum capacity of 225 vehicles. Consequently, the maximum vehicle density
corresponds to 112.5 veh/km. The speed limit is also common to all of them, and it’s
set to 50 km/h. To acquire the greatest amount of data, we associate a loop to each
road, which counts the transiting vehicles during a given timespan. In particular, a
street counter is increased by one whenever a vehicle leaves that street. Moreover, each
street has 1 as transport capacity, meaning that it is able to move at most one vehicle
per unit time, which in this case corresponds to 1 s. On the other hand, every node,
independently on its nature, has a transport capacity equal to the input degree, meaning
that in an ideal situation it is able to move every vehicle coming from its connected
streets.

For what concerns the control parameters of the model, α = 0.95 with an error
probability of 5%. Notice that the error probability represents the probability that in
a time step a vehicle would act like a random vehicle: it might still follow the shorter
path.

Moreover, every simulation has the following characteristics:

• All vehicles inserted spawn with an assigned random path on a random network
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Chapter 4. Simulation results in stationary conditions

street;

• All and only the border nodes are considered like exits.

For example, a vehicle could spawn on the street 33 → 45, having to go to node 96.
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Figure 4.1: 10x12 Manhattan-like network with 120 nodes and 436 edges.

In this case of steady simulations, vehicles are added once a minute but smoothly
over time. Every simulation starts adding 450 vehicles per minute uniformly over all
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Chapter 4. Simulation results in stationary conditions 4.1. Traffic Lights

the road network. Then, if the difference of the total number of vehicles over the net
is negative over forty minutes, the number of added agents is increased by one. This
process is repeated until the simulations stops, having the maximum number of agents
on every street. The simulation is interrupted once the maximum density is reached.

Finally, the flow that will be considered is the operative one defined in Eq. (1.3) and
retrieved by the loops put on the streets.

In this chapter, the predictive quality of both flow and density fluctuations emerges in
Sec. 4.1 for traffic lights and Sec. 4.2 for roundabouts. Then, an optimization algorithm
discussed in Sec. 4.1.1 shows reliable results in lowering densities fluctuations, cooling
the system, but poorly performs for what concerns traffic flow, decreasing it with respect
to the load compared with unoptimized simulations.

4.1 Traffic Lights
As first study case let’s consider the system when all the 120 junctions are traffic lights.
In this case, one has two more control parameters per node, for a total of 240. These
parameters are the green and red time of each traffic light, as previously described in
Sec. 3.2.1. To have a uniform dynamics over the system, they are set to be randomly
assigned by sampling from a normal distribution with mean µ = 60 s and standard
deviation σ = 10 s. Notice that is not required that all traffic light have the same cycle
duration, but they all have green time equal to red time. For all the analyses performed
in this section, data points are taken every five minutes. As before, let’s comment the
fundamental diagram first.

23



Chapter 4. Simulation results in stationary conditions 4.1. Traffic Lights

0 20 40 60 80 100 120
ρ (veh/km)

0

100

200

300

400

500

600

700

ϕ
(v

eh
/h

)

Fundamental ϕ − ρ diagram

Time (h)
10
20
30
40

ρ1 = (35.6 ± 1.4) veh/km

Figure 4.2: Fundamental flow/density diagram for a stationary simulation on a network
composed by traffic lights. ρ1 corresponds to the density at which the formation of the
Giant Component occurs, at time (40.8 ± 0.9) h. The plot is the resulting average of five
different simulations which have all the same parameters but the seed.

In Fig. 4.1 is drawn the fundamental flow/density diagram for a simulation containing
traffic lights only. Here one can see that at low densities, the flow/density relationship is
linear: this is expected as from the flow definition in Eq. (1.2). Then, as hypothesized in
Eq. (2.2), a plateau is reached around 20 veh/km density, and one has a nearly constant
flow for many density values. This is actually a problem from a practical point of view.
Let’s suppose to have a real road network and to put some magnetic loops on it in such a
way to gather the number of vehicle passages in a given timespan. With only this data,
it seems that one cannot tell exactly where the system is on the load curve. Thus, it
could be very hard to predict the congestion formation. Returning to the chart analysis,
after the plateau the congestion occurs, causing the flow to decrease while the density
increases. Finally, there is no sign of hysteresis cycles in the plot, due to the fat that the
network is constantly loaded, never letting it discharge.

The goal of this simulation is to find any observable which works as congestion fore-
caster. Firstly, one needs to define what a congestion is. Considering the whole network,
every street has a vehicle density which in this case is limited ρ ∈ [0, 112.5] veh/km.
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Chapter 4. Simulation results in stationary conditions 4.1. Traffic Lights

The congestion state of any street will be defined by the following threshold function

θρ := θ(ρ − ρc) (4.1)

where ρc is the critical density defined in Eq. (2.3) and θ is the Heaviside step-function.
At this point, the congestion time will be defined as the creation of the Giant Component
composed of congested streets. In other words, given the Giant Component size over
the density, the bigger step between consecutive points corresponds to the congestion
formation. In order to find this, an algorithm has been implemented to create a network
composed only by streets with θρ = 1 for each time step, computing every time the Giant
Component size.
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Figure 4.3: Number of components with θρ = 1 versus the first and second component
sizes. The Giant Component formation occurs when the bigger delta size of both first and
second component appears, meaning that they have joined one into the other. The plot
is the resulting average of five different simulations which have all the same parameters
but the seed.

In Fig. 4.1 one can see the trend of the Giant Component size over the mean density.
The bigger delta is located at ρ1 = (35.6 ± 1.4) veh/km.

To search for a congestion forecaster, and assuming to have only loops data available,
let’s look at the flow fluctuations compared with the mean network density. The flow
fluctuations are computed as follows: for every timespan, i.e. every five minutes, the
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mean flow over all streets is computed starting from the loops’ measurement. Then,
fluctuations of a variable x at a given time are computed using the following formula:

σϕ :=

√√√√∑M
i=0

(
ϕi − ϕ̄

)2

M − 1 (4.2)
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Figure 4.4: Time plot of mean network density vs mean flow fluctuations. The parameters
used for the peak detection algorithm are l = 500, t = 5 and i = 0. t1 corresponds to
the time at which the formation of the Giant Component occurs. tp corresponds to the
time at which the peak is detected. The plot is the resulting average of five different
simulations which have all the same parameters but the seed.

The flow fluctuations computed using Eq. (4.2) are compared with the mean density
in Fig. 4.1. Notice that density, as well as fluctuations, remains almost constant over
time, meaning that the system is in a stationary state. Due to the continuous charging,
there’s a time in which the network cannot hold the mobility demand, making also the
mean density explode. In fact, from this time on, mean density increases until it reaches
it maximum value, recalled being 112.5 veh/km. During this phase the traffic system
naturally passes through a phase transition from free to congested state. One can notice
this by looking at the flow fluctuations, which amplify as the density begin to increase.
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By using a peak detection algorithm [29] (more details in Appendix A) one can clearly
highlight the first peak of the fluctuations, in this case at a time of (42.4 ± 2.0) h. Notice
that this time is perfectly compatible with the formation time of the Giant Component,
which is (40.8 ± 0.9) h. Thus, flow fluctuations may be a good forecaster for traffic
congestions.

Let’s now have another look to Fig. 4.1: the critical density appears to be slightly
more than 20 veh/km. This fact is strange for at least two reasons. Firstly, the maximum
capacity of each street, as the parameters were set, is of 112.5 veh/km and this means
that the observed critical density is less than the 20% of the maximum one. Secondly, as
predicted by Eq. (2.3), the critical density should be ρc = 59 veh/km, thus the measured
one appears to be very low.

The system is loading uniformly and has all features set uniformly. Let’s try to
make the same simulation decreasing the mean output flow of a street from 1 veh/km
to 0.5 veh/km.
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Figure 4.5: Fundamental flow/density diagram for a stationary simulation on a network
composed by traffic lights. Here the maximum street output flow has been reduced from
1 veh/km to 0.5 veh/km. The plot is the resulting average of five different simulations
which have all the same parameters but the seed.

From Fig. 4.5 one can see how reducing the output flow of streets increases the
plateau length. The only explanation of such phenomenon has to be searched in the

27



Chapter 4. Simulation results in stationary conditions 4.1. Traffic Lights

network topology.

Figure 4.6: Plot of the network road densities form the non-optimized simulation after
20.08 hours of simulations. The color map is green for densities close to 0, yellow to 0.5
and red to 1. The plot is the resulting average of five different simulations which have
all the same parameters but the seed.

As shown by Fig. 4.6, the streets which seems to load faster are the ones at the
border. Thus, the Manhattan like network introduces a bias in the simulation, despite
its regularity. However, this makes sense: the exits are all borders’ nodes, so it is unlikely
for a vehicle to be in the road network center.

Let’s now try to repeat the previous analysis with the standard output flow and all
parameters as the first one but the error probability, which is going to be increased from
5% to 30%.
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Figure 4.7: Fundamental flow/density diagram for a stationary simulation on a network
composed by traffic lights. Here the error probability has been set to 30%. ρ1 corre-
sponds to the density at which the formation of the Giant Component occurs, at time
(93.5 ± 1.3) h. The plot is the resulting average of five different simulations which have
all the same parameters but the seed.

From Fig. 4.7 one is able to reduce topological effects just by increasing the error
probability up to 30%. In fact, now the flow has it maximum at a density of about
60 veh/km, as predicted by the reference model.
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Figure 4.8: Number of components with θρ = 1 versus the Giant Component size. Here
the error probability has been set to 30%. The bigger delta is located at ρ = 47.3 ±
1.5 veh/km. The plot is the resulting average of five different simulations which have all
the same parameters but the seed.

By looking at Fig. 4.8 one can see the Giant Component creation at ρ = 40.8 veh/km,
corresponding to 93.5 ± 1.3 h. However, also in this case the flow fluctuations are giving
92.8 ± 1.5 h as congestion time, as shown in Fig. 4.9.
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Figure 4.9: Time plot of mean network density vs mean flow fluctuations. Here the error
probability has been set to 30%. The parameters used for the peak detection algorithm are
l = 500, t = 3 and i = 0. t1 corresponds to the time at which the formation of the Giant
Component occurs. tp corresponds to the time at which the peak is detected. The plot is
the resulting average of five different simulations which have all the same parameters but
the seed.

Let’s try to look for another observable, e.g. assuming to have information only
about vehicle density, instead of flow. In this case, the idea is that the normalized
density fluctuations, i.e. the density fluctuations normalized by the mean, over the
density will have a maximum when the formation of small clusters of congested streets
occurs. This is expected to be slightly before the Giant Component creation, thus giving
information about congestion formation. In Fig. 4.10 one can see that the maximum of
density fluctuations, which occurs at time (85.3 ± 1.6) h against the Giant Component
formation at time (93.5 ± 1.3) h. It was expected that density fluctuation maximum
would appear before the signal given by flow fluctuations, due to the fact that at this
maximum one has many small congested cluster and not yet a Giant Component.
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Figure 4.10: Time plot of normalized density fluctuations vs mean density. Here the error
probability has been set to 30%. ρ1 corresponds to the density at which the formation of
the Giant Component occurs. (σρ/ρ)max occurs at time (85.3 ± 1.6) h. The black dashed
line corresponds to the Giant Component formation.

To validate this result, let’s see what happened in the low error probability case,
shown in Fig. 4.11. In this case, the maximum of (σρ/ρ)max occurs at time (39.6 ± 0.8) h.
Recalling that in this case the Giant Component formation time was (40.8 ± 0.9) h, the
estimation is perfectly coherent.
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Figure 4.11: Time plot of normalized density fluctuations vs mean density. ρ1 corre-
sponds to the density at which the formation of the Giant Component occurs. (σρ/ρ)max
occurs at time (39.6 ± 0.8) h. The black dashed line corresponds to the Giant Component
formation.

Finally, increasing the error probability seems to delay the formation of the Giant
Component. This can be explained by noticing that increasing error probability is equiv-
alent to increase the time of permanence in the network. Thus, vehicles stay in the center
for a longer time, allowing the external streets to enter congestion later.

4.1.1 Optimization algorithm
At this point of the research, which is to understand how and when traffic jams occur in
a Manhattan-like network with randomly regulated traffic lights, it is proposed to inves-
tigate the possibility of improving the resilience of the same network through traffic light
regulation. This would involve leveraging the overall traffic flow at the corresponding
density. In fact, the green and red times of a semaphore are being set arbitrarily, so one
could think about time optimization. The easiest algorithm one could think relies on
the queue length on the streets connected to the traffic light. At this point, there are
two main schools of thought: increasing the green time for the congested streets, to let
vehicles flow, or increasing the green time for non-congested streets, giving up on the
congested ones. Notice that in both cases some vehicles are going to “pay the delay tax”
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for others.
Having chosen a regular network, increasing red time for congested streets may not

be the best solution: all roads are virtually equal so blocking the flow on two of them may
trigger a chain reaction and collapse the entire network. Then, let’s choose to optimize
the congested streets. The implemented algorithm is going to take two parameters in
input, the time interval of application ∆t and a percentage threshold r ∈ [0, 1]. For each
traffic light, let’s sum up all vehicles of roads which are affected by the cycle in the same
way, which will give two sums S1 and S2. At this point, if |S1 − S2| > r min {S1, S2}, one
can choose to change the traffic light cycle increasing the green time for the streets with
more vehicles on them. The delta time is chosen by looking at the queues difference, i.e.
the difference of vehicles effectively waiting at the junction

∆τ = |Q1 − Q2| T

∆t

where T is the traffic light cycle duration. Both green and red times will change by ∆τ
depending on S1 and S2 length, meaning that the algorithm leaves the total cycle time
T unchanged.
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Figure 4.12: Fundamental flow/density diagram for a stationary simulation on a network
composed by traffic lights. Traffic lights are optimized every 420 s with a threshold of 15%.
ρ1 corresponds to the density at which the formation of the Giant Component occurs, at
time (41.3 ± 0.8) h. The plot is the resulting average of five different simulations which
have all the same parameters but the seed.

In Fig. 4.12 is drawn the fundamental diagram for the optimized simulation. One
can notice that the Giant Component in this case forms at a lower density with respect
to the non-optimized case and, as expected, the curve is like the one represented in
Fig. 4.1. This time the timescale is different, meaning that this simulation, with equal
settings, was able to resist more time until the complete collapse. To better compare
them, both are overlapped in Fig. 4.13. The previous plot at low error probability (5%)
is represented by blue dots squares while the optimized one is represented by orange
squares. In this case the algorithm seems not to be so effective, due to the complete
overlap of the two curves.
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Figure 4.13: Fundamental flow/density diagram for a stationary simulation on a network
composed by traffic lights. Traffic lights are optimized every 420 s with a threshold of 15%.
The error bars are the standard deviation of the five simulations done for both normal
and optimized cases.

To see if something is really changing let’s have a look at the density fluctuations
in Fig. 4.14. From a theoretical point of view, fluctuations should decrease but also
in this case the two curves overlap each other. Notice that the error bars are not the
fluctuations but the standard deviation of the mean computed for five simulations. At
higher density, error becomes larger because the end time of simulation varies basing on
random conditions, thus for longer times one has more divergence.
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Figure 4.14: Time plot of normalized density fluctuations vs mean density. Traffic lights
are optimized every 420 s with a threshold of 15%. The plot is the resulting average of
five different simulations which have all the same parameters but the seed.

In Fig. 4.15 is shown the plot of the flow fluctuations and in Fig. 4.16 the plot
of density fluctuations. In both cases, the forecasting property of fluctuations has not
changed.
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Figure 4.15: Time plot of mean network density vs mean flow fluctuations for an opti-
mized traffic light network. Traffic lights are optimized every 420 s with a threshold of
15%. The parameters used for the peak detection algorithm are l = 500, t = 5 and i = 0.
t1 corresponds to the time at which the formation of the Giant Component occurs. tp

corresponds to the time at which the peak is detected. The plot is the resulting average
of five different simulations which have all the same parameters but the seed.

By now, only the simulation with low error probability has been optimized, with-
out any success. . . What may happen by optimizing one simulation with higher error
probability?
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Figure 4.16: Time plot of normalized density fluctuations vs mean density. Traffic lights
are optimized every 420 s with a threshold of 15%. ρ1 corresponds to the density at which
the formation of the Giant Component occurs. (σρ/ρ)max occurs at time (40.6 ± 1.5) h.
The plot is the resulting average of five different simulations which have all the same
parameters but the seed.

In order to answer the previous question, let’s reconsider a simulation in which agents
have 30% error probability comparing it with the optimized one. As one can see in Fig.
4.17 and Fig. 4.18, fluctuations are slightly reduced in this case, but also the flow is
lower if compared with the system’s load. The reduction of fluctuations for the same
load indicates that the algorithm is working. However, being the flow at equal load
averagely lower, an algorithm of this type does not handle well congested states.
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Figure 4.17: Fundamental flow/density diagram for a stationary simulation on a network
composed by traffic lights. Here the error probability has been set to 30%. Traffic lights
are optimized every 420 s with a threshold of 15%. The error bars are the standard
deviation of the five simulations done for both normal and optimized cases.
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Figure 4.18: Time plot of normalized density fluctuations vs mean density. Here the
error probability has been set to 30%. Traffic lights are optimized every 420 s with a
threshold of 15%. The plot is the resulting average of five different simulations which
have all the same parameters but the seed.

4.2 Roundabouts
As final study, let’s take the road network in Fig. 4 setting every junction as a round-
about. Recall that, as seen in Sec. 3.2.2, roundabouts have a FIFO structure, so they
do not have a priority rule. Traffic lights allow, on average, a flow of 2 vehicles per time
step. However, as discussed in implementation (Sec. 3.2), a roundabout handles a flow
up to 4 vehicles per time step, which is double. In order to make traffic lights and round-
abouts results comparable, the streets’ output flow has been reduced as in the previous
section. Furthermore, due to the FIFO nature of roundabouts, to have an average flow
of 2 vehicles per time step for a single node one must find the probability to move (p)
which solves the equation

d∑
i=1

pi = 2

where d is the degree of the node. Making a weighted average based on the degree of the
nodes, one can find that the probability at which the desired flow is obtained corresponds
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to p = 77.07%. Firstly, let’s look at the fundamental diagram of the simulation shown
in Fig. 4.19.
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Figure 4.19: Fundamental flow/density diagram for a stationary simulation on a net-
work composed by roundabouts. The maximum street output flow has been reduced from
1 veh/km to 0.7707 veh/km. ρ1 corresponds to the density at which the formation of
the Giant Component occurs, at time (45.0 ± 2.2) h. The plot is the resulting average
of five different simulations which have all the same parameters but the seed.

As in the traffic lights analysis, one can see that at low densities, the flow/density
relationship is linear as predicted by Eq. (1.2). Then, as hypothesized in Eq. (2.2), a
plateau is reached and one has a nearly constant flow for many density values. As before,
after the plateau the congestion occurs causing the flow to decrease while the density
increases. Notice that after a density of 80 veh/km a quick drop appears: this is due to
the fact that roundabouts tend to congest at high density, unlike traffic lights.
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Figure 4.20: Time plot of mean network density vs mean flow fluctuations. The maximum
street output flow has been reduced from 1 veh/km to 0.7707 veh/km. The parameters
used for the peak detection algorithm are l = 500, t = 5 and i = 0. t1 corresponds
to the time at which the formation of the Giant Component occurs. tp corresponds to
the time at which the peak is detected. The plot is the resulting average of five different
simulations which have all the same parameters but the seed.

In Fig. 4.20 one can compare the plot of the mean density and the mean flow
fluctuations over time. The flow fluctuations have a lower average value and are more
stable with respect to traffic lights, which is an advantage of using roundabouts. In this
case, the peak detected by the algorithm is almost compatible with the Giant Component
formation, with a time of (41.4 ± 0.9) h against (45.0 ± 2.2) h. Moreover, the density
fluctuation maximum shown in Fig. 4.21 reports a compatible time of (41.1 ± 1.6) h.
In this case, the maximum is higher with respect to traffic lights because roundabout
junctions tends to congest as well as the streets at high densities. In fact, at the same
time one has a different density: this could be due to the gridlock formation which can
happen in the roundabout case. Indeed, traffic lights always permit the passage of some
vehicles while roundabouts are forced to move the first vehicle first. Thus, if such vehicle
cannot move the whole node is locked, and this effect propagates quickly through the
whole net. Finally, this effect is visible also at high densities in Fig. 4.20, where the
mean is highly fluctuating due to low data availability (only five simulations were done)
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and high gridlock dependence.
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Figure 4.21: Time plot of mean network density vs mean flow fluctuations. The maximum
street output flow has been reduced from 1 veh/km to 0.7707 veh/km. ρ1 corresponds to
the density at which the formation of the Giant Component occurs. (σρ/ρ)max occurs at
time (41.1 ± 1.6) h. The plot is the resulting average of five different simulations which
have all the same parameters but the seed.

One can conclude that, given a system in a stationary state, flow fluctuations could
be a predictor of a phase transition, i.e. a passage from a free to a congested state. In
particular, both flow and density fluctuations seem to give reliable results, thus for a real
application it would be ideal to have both data sources to analyze.
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Chapter 5

Simulation results in non-stationary
conditions

The aim of this chapter is to study how the traffic model developed in this work behaves
in non-stationary conditions. An application on a real road, namely Via Stalingrado
in Bologna, is discussed in Sec. 5.1. The result is a coherent response to an external
dynamical input by both traffic lights and roundabout. Then, results from a Manhattan-
like network composed by traffic lights (Sec. 5.2) or roundabouts (Sec. 5.3) are discussed,
both showing a reasonable response to a dynamical input.

5.1 The “strange” case of Via Stalingrado
One of the earliest studies done using the model from this work was done on Via Stal-
ingrado, which is a street in Bologna with some characteristics which makes it good to
simulate:

• It is a straight connection between the suburbs and the city center, connecting the
freeway of Bologna to the Viali;

• It has many traffic lights, thus it could be good for quantifying their effects on
traffic;

• It has many loops on it, even though many of them are not working properly
therefore it became necessary to make some workaround.

In Fig. 5.1 a cartography of Bologna is shown, highlighting Via Stalingrado with a
black line. Real data come from the loops highlighted with blue markers. In particular,
the marker over Via Stalingrado is a loop from Comune di Bologna measuring vehicle
passages from the suburb to the Viali. The further loop is instead from Regione Emilia-
Romagna and counts vehicle passages in the same direction. From now on, let’s denote
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with C the Comune’s loop and R the Regione’s loop. The necessity of doing a simulation
came from a strange behavior revealed by C data which seemed to show a cut with respect
to the input trend measured by R. Notice that, despite the high number of loops on Via
Stalingrado, C and R were the closest one correctly working. Moreover, in order to do a
simulation one needs data aggregated within a decent time window, which could be one
up to five minutes.

Figure 5.1: Cartography of Bologna. The black line is Via Stalingrado. The blue marker
is R, the loop from Regione Emilia-Romagna, located in Via Ferrarese. The red marker
in Via Stalingrado is C, the loop from Comune di Bologna.

Unfortunately, all data coming from C were aggregated to one hour, making them
useless, with except to the one measured on 8 January 2024 which are aggregated at
five minutes. However, the loop R was not working correctly on that specific day, so
the input data, aggregated at one minute, were measured on 24 May 2023. Due to
limitations imposed by data the following simulation and analysis are not going to be a
good representation of reality. One can still take it qualitatively, using it to show the
traffic light effect on the flow load shape.
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Figure 5.2: Cartography of a custom models of Via Stalingrado (black line). Green
markers are traffic lights. The blue marker is the virtual position of R. The red marker
is the virtual position of C. Notice that a traffic light coincides with C and that the road
considered in the simulations consists only of the straight line connecting R and C.

Let’s now build a model for the simulation, schematized in Fig. 5.2, taking into
account many approximations:

• The input flow will be the one measured by R, thus assuming that the flow shape
is defined and accounting that it could change amplitude while going to Via Stal-
ingrado;

• The output flow used for comparison will be the one measured by C;

• The simulation will ignore contributions coming from lateral roads, assuming a sort
of detailed balance;

• The model consists of four traffic lights and four street segments.

In particular, street segments ordered starting from the closest one to Via Ferrarese
have lengths of 2281, 118, 222 and 651, expressed in meters. In the same order, traffic
lights have the following green-red time pairs: (62, 70), (72, 69), (88, 50) and (81, 50),
expressed in seconds.
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5.1.1 Predicted vs Observed flow
Firstly, let’s have a look to the difference between the flow measured by C (ϕobs) and the
flow predicted by the model (ϕth) given the input of R.
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Figure 5.3: Comparison between the observed flow and the flow predicted by the model.
The input flow consists of data acquired on 24 May 2023 by R. The output reference
(orange) consists of data acquired on 8 January 2024 by C. In green, the output predicted
by the model.

From Fig. 5.3 one can see immediately the similarity between theoretical (predicted)
and observed flows. As expected, ϕth has a greater amplitude with respect to ϕobs due to
the assumption did at the beginning of this section. Moreover, the observed flow appears
slightly delayed with respect to the input one, due to the transit time required by the
road itself. To understand what is particular in this plot, let’s look at Fig. 5.4.
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Figure 5.4: Comparison between the input flow (orange), acquired on 24 May 2023 by R,
and the output flow (green), predicted by the model.

Here one can see how the input flow shape is cut by some effect due to Via Stalingrado.
As saw previously in From Fig. 5.3, traffic lights could be the cause of this phenomenon.

5.1.2 Traffic Lights vs Roundabouts
To validate the previous results, the next simulation will be an exact copy of the previous
one but for the junctions, which are all set to be roundabouts. As one can see from Fig.
5.5, the output coming from roundabouts has the same shape of the input despite being
measured at the same point in the simulation with respect to the one with traffic lights.
Notice also that its peak is much higher as the traffic lights’ one, meaning that a network
consisting of roundabouts is capable to manage loads smoothly. This is due to the fact
that, by ignoring lateral vehicle influences, roundabouts make the system act like a
unique street. On the other hand, traffic lights obey a green-red cycle, thus blocking
the road independently on the presence or absence of lateral incoming vehicles. This
justifies the flatter and more fluctuating trend of the traffic lights curve with respect to
the roundabouts one.
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Figure 5.5: Comparison between the flow produced by traffic lights (green) and the one
produced by roundabouts (orange). The input flow consists of data acquired on 24 May
2023 by R.

Finally, one can conclude that the model well represents the reality, thus not having
sufficient data to do a more accurate study. From the analysis, it becomes clear that
the observed cut at the end of Via Stalingrado is an effect of the traffic lights dynamics.
By replacing traffic lights with roundabouts, one can restore the original shape of the
input. Notice that the only aim of this paragraph is to show the effects of traffic lights
on a simple road network. It is not proposing a solution to a problem as many strong
assumptions were made at the beginning, thus it just works as toy model.

5.2 Traffic Lights
In the Sec. 5.1 the model has been tested on a real street using real data. However,
despite the results were realistic, it is still a single street. To test the model further, let’s
recall the Manhattan-like network previously shown in Fig. 4 and test it using the input
flow shape measured by the R loop. In particular, let’s take the same traffic light network
used in Sec. 4.1, setting the input to the flow measured by R multiplied by a factor of 31
to adapt to the network size. Due to the non-stationary nature of the simulation, some
previous analyses are not going to give nice results, like the peak detection as congestion
forecaster. Firstly, let’s have a look to the mean network density vs the input flow
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Figure 5.6: Comparison between mean network density and input flow over time. The
input flow consists of data acquired on 24 May 2023 by R multiplied by a factor of 31.

From Fig. 5.6 the choice of the amplification factor (31) is justified: there is a delay
from loading and unloading phases. Thus, the mean density remains high for some
time after the evening peak, highlighting a congestion. Notice that both morning and
evening peak overloads the system, but in the first case the system starts from an empty
condition and the loading time is not sufficient to create a congestion. In the second case,
instead, the systems starts already loaded from the morning, which allows the second
input peak to create a congestion. Moreover, in Fig. 5.7 the fundamental flow/density
diagram is shown. One can notice that the diagram presents two hysteresis cycles, one
corresponding to the morning peak (around 8) and one corresponding to the evening
peak (around 17). Notice also that the cycle does not complete, i.e. it does not return
to the initial state, due to the high load which stressed the system.
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Figure 5.7: Fundamental diagram with a dynamic network loading.

5.3 Roundabouts
As discussed before, let’s briefly see the previous result in the case of a network consisting
of only roundabout nodes. As one can see from both mean density plot (Fig. 5.8) and the
fundamental flow/density diagram (Fig. 5.9), the behavior of the system is remarkably
like the traffic lights’ one. Notice that also in this case the first peak is already overloading
but not sufficient to cause a congestion starting from an empty system. Furthermore,
the mean density in a non-congested state is slightly lower in the roundabout case: this
fact highlights how, a part of input flow, roundabouts seem more efficient in allowing
vehicles to exit the system when it is in a free state.
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Figure 5.8: Comparison between mean network density and input flow over time. The
input flow consists of data acquired on 24 May 2023 by R multiplied by a factor of 31.
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Figure 5.9: Fundamental diagram with a dynamic network loading.
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Chapter 6

Discussion

In this work, a mesoscopic traffic model has been developed in order to understand con-
gestion formation and to highlight predictive observables for such phenomenon. Traf-
fic congestion can be explained as a percolation in a dynamical system on a network
structure because of existence of finite transport rate at crossing points and finite road
capacity. In this case, congestion on a road network is related to the formation of a Giant
Component of streets with θρ = 1 as defined by Eq. (4.1). Once developed the model
from both a theoretical perspective and an implementation standpoint, many analyses
have been carried out on a Manhattan-like road network (Fig. 4). A set of analyses
aimed at studying some observables as traffic congestion forecasters has been performed
on a system in a quasi-stationary state, meaning that the networks has slowly and con-
stantly been loaded with vehicles trying to keep the mean density almost constant. From
such analyses, both flow fluctuations and normalized density fluctuations showed a good
forecasting behavior in both traffic lights only and roundabouts only simulations. More-
over, the prediction was not influenced by parameters like the existence of a random
dynamics for the vehicles. For what concerns traffic lights, an optimization algorithm
has been implemented to enhance the network performances by changing green and red
timings keeping all cycles durations constant. Such algorithm is based on the vehicle
density on streets and showed remarkable results in reducing density fluctuations, as one
would have expected. However, it showed poor performances with regard to vehicle flow
over load. In fact, while the algorithm was working the mean density of the network
tended to rise, resulting in a lower flow. Next, an analysis on Via Stalingrado has been
performed, using real input data to generate synthetic data to compare with magnetic
loops count. Despite not having availability of data for the same day, the model well
reproduced the behavior of the traffic lights series on that street. Finally, the same input
data were given to the Manhattan-like network, multiplied by a scaling factor, in order
to study the behavior of such net with the system in a non-stationary state. The results
were good in both traffic lights and roundabouts cases, with the roundabout being able
to keep the average density lower with respect to traffic lights.
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Chapter 6. Discussion

Starting from this work, many study paths can be followed. One of them could
be finding a better optimization algorithm for traffic lights, which is able to decrease
fluctuations while increasing flow for a given load, thus increasing transport capacity near
congested states. The previous analyses were performed assuming to have a magnetic
loop on each street, which is very unlikely (and costly) to have in a real setup. Thus, one
could study what is the minimum number of loops to be placed randomly to gain the same
forecasting properties of observable with respect to the full availability. Moreover, the
Manhattan-like network has been chosen for its generality to reduce potential geometrical
biases. Consequently, one may apply the model to any type of network in order to study
it, being also able to implement it into the Digital Twin of a city. Finally, the fluctuations
showed great forecasting capacity if the system is in a stationary state while giving no
information at all for a system in a non-stationary state. A method is also required
to make prediction for such systems, because they made up almost all real situations.
One possible step forward could be creating a forecasting analysis based on more than
one observable, taking advantage of artificial intelligence to manage multiple input peak
detection.
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Appendix A

Peak detection algorithm

The algorithm used for the peak detection is a robust peak detection algorithm based
on z-score [29]. In particular, the algorithm gives a signal (which corresponds to a one)
whenever a new data point is given at x standard deviations from the signal mean. It is
based on three parameters:

• Lag: the length of the moving window computing mean and standard deviation
of historical data. E.g. a lag of l means that the historical mean and standard
deviation are computed considering the last l data points;

• Threshold: the z-score used by the algorithm. Calling x a new data point and
µ, σ the moving mean and standard deviation of data, a signal is emitted when
|x − µ| > zσ, where z is the chosen threshold. So, z represents the number of
standard deviations a point is away from the mean.

• Influence: the influence i is a constrained parameter (i ∈ [0, 1]). It represents the
influence of the signal with respect to a new data point. Thus, an influence i = 0
assumes stationarity, giving the new data point the same influence of all other data.

Here it is the pseudocode
# Let y⃗ : |y⃗| ≥ l + 2 timeseries
# Let E the mean operator
# Let std() be the standard deviation function
# Let |x| be the absolute value function for x

# Settings
set l to . . .; # lag
set t to . . .; # threshold
set i to . . .; # influence
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Appendix A. Peak detection algorithm

# Initialize variables
set s⃗ = 0⃗ : |s⃗| = |y⃗| # Initialize signal results
set f⃗y = (y⃗1, . . . , y⃗l) # Initialize filtered series

set ⃗̄f to null; # Initialize average filter
set σ⃗f to null; # Initialize std. filter

set ⃗̄fl = E [y⃗]; # Initialize first value average
set σ⃗f l = std(y⃗); # Initialize first value std.

for j = l + 1, . . . , k do

if
∣∣∣∣y⃗j − ⃗̄fj−1

∣∣∣∣ > tσ⃗f j−1 then

set \vec{s}_{j} = 1; # Positive signal
end
set f⃗yj = iy⃗j + (1 − i) f⃗yj−1;

else
set f⃗yj = y⃗j ;

end

set ⃗̄fj = E
[
f⃗yj−l+1, . . . , f⃗yj

]
;

set σ⃗f j = std(f⃗yj−l+1, . . . , f⃗yj);
end
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