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1 Introduction

Constructing intelligent machines has been a driving beacon of information science
since its birth. In modern days, we possess machines capable of surpassing human
performance in solving a wide range of specialized tasks: classical board games like
chess [1] and go [2], complex real-time environments like StarCraft II [3], image
recognition [4] and segmentation [5], protein folding [6], are some non-exhaustive
yet remarkable examples where machine learning models were able to learn and
perform these superbly.
However, the long-sought ability to generalize and adapt to diverse environments
has not yet been reached [7].
In this work, we focus on a specific aspect of general intelligence: Theory of Mind
(ToM). Inspired by World Models [8], we develop a system which we call Discrete
World Models (DWM), which explicitly builds and maintains interpretable world
states. We query a Large Language Model (LLM) to give a description of the state
of the world given a partial description of a given task. We then use this enhanced
problem description to get a solution. We discover this simple prompting technique
is effective in improving LLMs’ reasoning abilities in a broad range of ToM tasks,
spanning from classical false belief, to commonsense and social reasoning.
We show this technique across 5 different datasets and report a 9.9% increase in
accuracy over baseline methods, such as Chain of Thought and Tree of Thought in
LLama-3-8B.
Alongside this contribution, we develop a formal framework to evaluate the hardness
of a specific ToM problem. Recently, many benchmarks have been proposed [9–11],
but the tasks are diverse and do not uniquely define abilities that LLMs can
solve. Our framework uniquely defines a measure of complexity and shows that it
correlates with the performance of CoT of the LLMs.
In summary, we propose and analyze a theoretical framework that analyzes the
complexity of a ToM problem, and inspired by this work, we create a prompting
method that enhances LLMs’ reasoning.

Why Theory of Mind? Theory of Mind, a field born among developmental
psychologists, has gained considerable traction in recent years. Humans develop
this ability naturally and employ it in every situation where communication among
members of the group happens, sometimes also cross-racially [12] e.g. human to
dogs and vice versa. Then, imbuing this ability into machines could easily enhance
human-computer-assistant interactions, as the model could understand the needs
of the human user.
Computer scientists’ surge of interest in this field has been driven by the objective
of building artificial intelligence that is capable of understanding states of mind,
such as beliefs, desires and intentions.
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This problem has been historically tied to the problem of imbuing computers with
commonsense capabilities.
Traditionally, logical systems were the typical approach [13]. However, these models
frequently struggle to generalize beyond simplified toy scenarios, making them
impractical for real-world applications.
Recently, thanks to the advances in the field of Natural Language Processing with
GPTs [14–16], a broad area of research that actually makes this problem seem
feasible has flourished.

Why Large Language Models? The abundance of data, advancements in deep
learning, and rapid developments in recent years have given rise to new techniques
aimed at addressing this problem.
Large language models began to display emergent capabilities [17]. These models
were unexpectedly able to deal with complex problems with which they were
not initially trained. Planning [18, 19], text summarization, text understanding,
arithmetic abilities [17], and Theory of Mind [7,20] are some not comprehensive
examples of claimed emergent properties.
Although it is unclear how these capabilities arise, it is important to understand
first the limits of these emergent properties.
Normally, in scientific inquiries, one would try to create theories and models to
explain the observed behaviour. This would require starting from a few general
laws and working from the ground until everything, or most of it, is explained.
This approach has been quite successful in physics and allows to create systems
that work by design, and not just with long trial and errors.
Even with the analysis of the behaviour of language models, this method is not
employable due to the model’s enormous size of parameters and the difficulty of
analyzing the effects of a single input or weight change. In principle, a general
learning theory that explains the current behaviour of those systems is possible, but
more than the current apparatus is required. Therefore, current approaches operate
from a different level of abstraction, not from first principles but from assessing the
models’ behaviour. In the case of large language models, one approach could be to
analyze the algorithmic behaviour (see mechanistic interpretability) which entails
analyzing output logits, or internal attention weights; the main drawback is the
challenge in interpretability of these values. Another approach could be assessing
the linguistic behaviour which analyzes the output in natural language produced
by conditioning on the prompt given by the examiner.

Following this thought, I will keep this line of analysis and try to develop insights
based on the observation of the model’s behaviour. In this work, the performance
of Large Language Models (LLM) will be assessed through prompting techniques.
Most of the content of this thesis is published as a paper submitted to EMNLP 2024

https://www.lesswrong.com/posts/tEPHGZAb63dfq2v8n/how-useful-is-mechanistic-interpretability
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in [21]. The submitted paper should be the main source of reference regarding ideas
about the complexity measure and the prompting method. This thesis reproposes
those ideas and broadens the view on history (see 2) and benchmarking methods
discussed in section 5.
Code and data are available here.

Structure of the work. This work concerns an exploration of the Theory of
Mind (ToM) as applied to language models.
In the first section, we develop psychological 2.1.1 and computational 2.1.2
backgrounds concerning the development of ToM, Sally-Anne tests 2.1.1, and
approaches of commonsense in computer science 2.1.2.
Afterwards, I introduce a theoretical framework of analysis of ToM problems and
discuss how it correlates with performance. Then, I discuss the creation and
analysis of the prompting method developed for this study 3 and analyze the
experimental results 4.
We conclude with discussions about different methods to evaluate ToM abilities in
LLMs in 5.

2 Background

2.1 Theory of Mind

This section attempts to give an overview of the original ideas born among psy-
chologists and philosophers (see 2.1.3) about Theory of Mind, and shows how early
contributors in artificial intelligence and robotics already have considered the social
aspect to be a fundamental property in intelligent systems.

2.1.1 The Roots in Cognitive Psychology

The Origins. While ideas regarding ToM abilities in humans have long been
present in human culture, for example, in Intentional Systems [22], this term has
been popularized by [23] in the study of Chimpanzees. In his seminal article in
1978, Premack describes the theory of mind as the ability of individuals to ascribe
mental states of themselves and other individuals, such as sensory perceptions,
beliefs, and desires, and the ability to use this knowledge about other individuals
to predict their behaviour. Initially, this idea was explored in the study of the
cognitive abilities of primates, suggesting their ability to use information to model
knowledge of other group members in competitive situations [24].

https://github.com/flecart/complexity-tom-dwm
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Some Conceptual Frameworks for ToM. Later, the concept was exploited
to study human beings’ cognitive abilities in their early years of life. This path of
exploration gave rise to frameworks for studying Theory of Mind.
For example, one approach is “Theory-Theory” [25], which presupposes the existence
of an individual’s implicit theory regarding phenomena around their environment.
This initial theory is then refined over time based on the individual’s observations
and experiences.
Another approach presupposes the existence of innate thought modules in which
ToM develops [26], justifying how this ability seems to develop similarly regardless
of the culture in which the individual grows up.

Sally-Anne False Belief Tests. The tests studied by [27] are of particular
interest for understanding deception in children and [28] in the analysis of autistic
children. Disabilities such as autism or deafness usually delay the acquisition of
theory of mind skills as defined above. In Baron-Cohen’s work, a series of tests,
the Sally Anne Tests, were created and used to probe children’s abilities. These
tests subsequently inspired well-known benchmarks in the literature for evaluating
language models, such as [29].

The Sally Anne false belief test is a commonly used experimental paradigm
involving two individuals. Typically, it follows a narrative structured as follows:

1. Sally and Anne are situated in a room.
2. Sally places an object, such as an apple, in a basket within the room and

then exits.
3. During Sally’s absence, Anne relocates the apple to a box.
4. Sally returns and seeks the apple.

The question posed to participants is: given these events, where will Sally search
for the apple?
Typically, three-year-old children with typical cognitive development correctly infer
that Sally will search for the apple in the basket.

2.1.2 Influences in Computer Science

Given the success of the conceptual framework derived from developing ToM in
psychology, its influences have extended to external fields, influencing philosophy
and neuroscience.
In this section, I will report mainly historical notes about ideas that have a similar
meaning to those developed in psychology.
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Figure 1: Sally Anne False Belief Test from (Baron-Cohen 1985). 1) Sally and
Anne are both in the room, and Sally knows that the marble is in the basket. 2)
Sally exits the room, leaving Anne alone. 3) Anne moves the object, unbeknownst
to Sally, who is away. 4) Sally goes back into the room, and the observer needs to
infer where is Sally going to look.
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McCarthy’s work on “Mental Qualities”. John McCarthy, a founder of
the field since its inception in 1956 [30], displayed an early interest in modelling
common sense and understanding “Mental Qualities,” akin to ToM. In [31] he
writes:

To ascribe certain beliefs, knowledge, free will, intentions, consciousness,
abilities or wants to a machine or computer program is legitimate when
such an ascription expresses the same information about the machine
that it expresses about a person.

McCarthy defined the usefulness of ascribing mental qualities to the information
extractable from this presupposition. He already knew that ToM, as defined above,
is a fundamental ability that needs to be investigated and implemented in machines
in order to instil general intelligence, even before the birth of the field in psychology.

Most importantly, McCarthy highlighted that supposing a program possessed
mental states was:
1. Beneficial in understanding the program’s behaviour when internal states are
inaccessible and reason about the belief and goal structures of the program imagined
by the designer.
2. Helpful in the ability to generalize despite the limited knowledge of the world,
similar to Common Sense.
3. A necessary ability to obtain information and cooperate with other machines
and humans.

Clearly, the main difference with the modern direction of analysis of ToM
was the first point, the focus on program analysis, alongside the distancing from
logic-based models.
Nonetheless, the other two points are still relevant in recent years’ research.

The MIT Cog Project. As early as 2002, ToM was identified as a major
component in the construction of robots that could effectively interact with and
understand humans [32]. This work was part of the Cog project [33] at the
Massachusetts Institute of Technology, which attempted to build and analyze
embodied intelligence. Central to this endeavour was the philosophical argument
that general intelligence necessitated embodiment to develop higher-order thought
processes, commonly known as the “situated approach”, pioneered by Rodney
Brooks.

Why has ToM risen in interest today? ToM has not garnered significant
interest until recent years in Computer Science.
Today, the presence of enormous amounts of raw text data, the progress in the
deep learning approach to intelligence, and the fast-paced developments of recent
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years have enabled a paradigm shift, allowing for an empirical analysis of these
abilities [34].

This led to works that tried to assess the abilities of Language Models in typical
theory of mind tasks. In February of 2023, an article by Kosinsky [20] garnered
lots of attention following the claim that language models have developed ToM
as an emergent property. Further research [9, 35–38] indicated that the claim was
probably false, and often driven by spurious correlations the models have learned
during training.
Furthermore, Shapira in [37] highlights the need for better benchmarks to help test
various ToM aspects directly on LLMs. Clinical tests designed for humans do not
assure their validity for machines as the subject of examination changed.

2.1.3 Some Ideas from Philosophy

One of the theories proposed by Daniel C. Dennett has been quite influential in
developing ToM. In [22], he explores three conceptual frameworks to interpret and
explain complex systems. These are called “stances”. They are methods observers
could adopt to give explanations about a given system. As we will see, they give
rise to very different explanations.

Physical Stance. The explanation of systems following the physical stance
develops an explanation that follows the laws of physics. For example, if the subject
of our study is human behaviour, the physical stance would try to reduce it to
the brain and then the physical properties of the brain, coming to biology and
eventually to chemistry. In this specific case, the explanations are less valuable
than a higher-level explanation because observing the physical action potential of
the brain is directly transferable to explanations of behaviour.
Nonetheless, the physical stance is useful for explaining many natural phenomena,
such as lightning, levitation, electromagnetic radiation, etc.

Design Stance. The design stance follows a functionalist point of view. It
assumes that a system was designed by some intelligent agent, e.g. a human, to
have a certain function or complete a certain task. Therefore, the system is usually
assumed to have a clear design structure that has a goal to accomplish, often
similar to what the creator desired to instil. For example, in computer science
many systems are modular by design. It is often more useful to understand the
behaviour of a system given a specific level of abstraction than trying to observe the
electric pulses at the physical level and infer the operation from this information.
An electronic circuit is a simple example: all we need to know is the logical function
it was designed to compute, not how exactly the current flows in it.
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Intentional Stance. This stance is most similar to ToM. It is a precursor of the
idea developed in [23] and has influenced McCarthy’s system in [31].
With Intentional Stance, we assume that a system has certain beliefs, intentions
and desires and then try to assess how well this explains its behaviour. The
programs’ behaviour in artificial systems often aligns with the creator’s intentions.
For example, if a system is built to play Go, we can safely assume that its “desire”
is to win the game, and its “intention” on every move is to gain the advantage of
the other player during the game. There is no need to delve down into the physical
layer or the system’s design to explain the system’s general behaviour.
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2.2 Computer Science

Although recurrent neural networks for language modelling are regaining popular-
ity [39,40], this thesis will primarily use language models based on Transformers [16].
Recent systems based on transformers like GPT have shown surprising abilities [15],
which are difficult to understand given their pretraining procedure (which can be
reduced to just next-word prediction). This has given rise to analysis of emergent
properties, discussed in 2.2.1, and prompting techniques 2.2.2.
Finally, we end the section with some formal definitions and properties of Language
Models in section 2.2.3.

2.2.1 Emergence

What is emergence? Emergence is informally defined as qualitative changes in
a system’s behaviour arising from quantitative changes [17, 41]. This phenomenon
often arises naturally in complex systems studied in physics. The two qualitatively
different layers seem to be separated by a layer of abstraction governed by a different
set of rules. It is similar to the example provided by Hofstadter in [42]. He imagines
a frictionless pool populated by myriads of small and slow balls that bounce off
the walls, hit each other and clump together due to magnetic properties. He calls
the pool “Careenium”, and the ball clumps “simmballs”, a joyful word-play for
“cranium” and “symbols”.

This system reacts to external stimuli, such as a person hitting the pool’s
border, which influences the movements of the balls. These balls then react to
these stimuli and “encode” the information through their interactions, becoming
effectively symbols. The interesting part of the thought experiment is the series of
patterns that could arise when we zoom out and speed up the pool so that single
balls are not visible anymore, but only the clumps. We now can observe symbols
and general patterns that did not exist at the lower level of single balls.

Language Models, like our brain and every giant neural network, seem to be
similar to this pool of balls. The movement of the activation signal at a single
neuron influences each other and creates novel patterns not present at the level
of the single computational entity. Yet, by observing the general behaviour of the
system, one can observe new complex patterns.

Probing Emergence in Large Language Models. Large Language Models
seem to possess emergent capabilities as their model size grows [17]. In this work,
the authors train many different models of different sizes evaluated on different
problems through few-shot prompting (linguistic behaviour) and observe there is a
sharp increase in performance after the model uses about 1024 FLOPs of training.
Surprisingly, as the model size grows and given enough compute time and data,
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the model seems able to solve tasks that smaller models cannot, even though loss,
data, and compute are kept constant.

The emergent capabilities are, probably, precisely what enabled LLMs to attain
widespread acceptance rapidly. If a language model could only complete a sentence
or solve a limited set of classification tasks, its scope would be limited and not be
the helpful assistant that attracted the media coverage. The internet, the corpus
the model was trained on, is not designed to aid helpful conversational assistants.
Conceptually, if the training stage stopped to fine-tune over text completion, it
would not be used as today’s general problem solver [15], an advanced retrieval
engine, akin to search engines [43].
These abilities are quite remarkable. It is difficult to grasp their inner working
mechanism.
Further research tried to oppose the view of emergence by asserting that emergence
is just In-Context Learning [44] or that it is caused by choice of the metrics [45].
However, it still displays emergence on a narrower set of tasks.

2.2.2 Prompting methods

Prompting methods can be generally viewed as cheaper methods compared to
fine-tuning to achieve high performances on downstream tasks [46].
A prompting function is a function f : V ∗ → V ∗ where V is the token vocabulary.
It often takes the input string and uses templates to create a final prompt that is
then given to a language model.
An example from [47]:

fprompt(X) = [X] Overall, it was a [Z] movie

In this example, the prompting function maps the input text to a template with a
Z still to be filled.
We expect X to be a preamble, a set of instructions followed by a task.

Other similar methods have been developed. For instance, soft prompting, also
known as prompt-tuning, operates at the embedding layer, the model-dependent
continuous representation of the token, by training some special, usually prefixed,
token embedding specific to a task [48,49]. A similar method, prefix-tuning [50],
trains all prefixes across all attention blocks. It can be seen as an extension of soft
prompting.
In this work, we will only focus on hard prompting methods, which do not need to
access to underlying weights and are simpler to implement.

Chain of Thought. Chain of Thought attempts to allow large language models
more time to reason before answering [51]. Empirically, we observe that chain of
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Thought prompting produced more tokens compared to standard prompting.
Tokens have different information densities: some are more difficult to predict than
others.
For example, in the sentence “I am a student that works on Large Language ”,
it is easy to predict that “Models” follows, but it is not the same for the sentence
“My favourite Italian meal is ”, which, for instance, is “pizza”.

The informal idea that justifies why Chain of Thought works is the following
way: by asking step-by-step reasoning on the task, the model has more computing,
which in turn helps for more complex tasks.
This idea aligns with the intuitive notion that complex problems require more
computation than easy problems. But we acknowledge this claim is just a not-tested
hypothesis.

Figure 2: Example of Chain-of-Thought prompting from [51]

Later, it was discovered that adding the simple line “Let’s think step by step”
was enough to trigger the chain of thought behaviour [52].

Tree of Thought. Tree of Thought is a recent method of prompting proposed
almost at the same time in [53] and in [54].
With this technique, the language model proposes possible lines of reasoning at
each step and automatically evaluates and discards the unfavourable paths while
retaining and exploring promising ones.
While Chain of Thought prompting can explore only a single reasoning path, this
technique can explore more paths, using itself as a heuristic to decide which path
looks favourable.

Other methods. Many prompting methods have been proposed in the last
few years [55–57]. The above two are just some famous examples of prompting
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Figure 3: Example of Tree-of-Thought from [53], the model proposes ”thoughts”
and evaluates each thought by prompting itself to output a textual judgement,
which is then converted to an ad-hoc numerical value.

techniques developed. Even though these methods provide compelling empirical
evidence of superior performance over standard prompting, their theoretical under-
pinning are still not clearly understood [46].
The methods above can be catalogued in a relatively new field, prompt engineering,
which tries to study how large language models behave when conditioned on differ-
ent prompting styles. This resource collects many common prompting techniques
and concise and short explanations of the methods.

2.2.3 Language models

Motivation. A fundamental observation in natural language processing is the
following: the occurrence of a specific word in a sentence depends on the context,
defined as the words that precede and succeed it [58].
This idea motivates models that define a probability distribution over a set of pos-
sible tokens Σ∗ conditioned over the previous set of tokens, using this distribution
to sample more tokens.
It makes sense to define the probability of a sentence as

P (w1w2 . . . wi) = P (w1) · P (w2|w1) . . . P (wi|w1:i−1) =
n∏

k=1

P (wk|w1:k−1)

Following Jurafsky’s development.

Bi-gram models. The model above is usually approximated using only part of
the preceding sequence. In this specific case, we care only about the preceding token.

P (wn | w1:n−1) ≈ P (wn | wn−1)

This helps to simplify the model but requires assumptions that are often not true,

https://www.promptingguide.ai/
https://web.stanford.edu/~jurafsky/slp3/3.pdf
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such as the Markov assumption (when a sequence of random variables depends
only on the preceding one: P (Xn | X1, . . . , Xn−1) = P (Xn | Xn−1)).
While not applicable in practical applications, this model can be viewed as a toy
model for understanding n-gram language models.

The notion of approximating the context could be easily extended to n preceding
tokens, creating the n-gram models in this way:

P (wn | w1:n−1) = P (wn | wn−N−1:n−1)

This probabilistic model takes into account only the N preceding tokens

Language Models. Following a similar approach in [59], we say that a Language
Model is a probability distribution, namely pLM , over Σ∗ the set of all finite-length
sequence of tokens.
This is useful if we can generate sequences that have a finite generation (referred
to as locally normalized, in the reference), so we introduce a new token EOS that
symbolizes the end of the string and we define a probability of a sequence of tokens
w1, w2, . . . , wn, EOS as

pLM(w1w2, . . . , wn) = p(EOS | w1w2 . . . wn)
T∏
t=1

p(wt | w<t)

where p is a conditional probability distribution of a single token conditioned on
the context.

In practice, most common language models in recent years like GPT-3 [15] are
causal language models, meaning they learn to predict only the next token in the
vocabulary Σ. We define a language model to be a function φ : Σ∗ → X where Σ
is the vocabulary, and X is the uniform distribution over tokens with the same

Training Large Language Models. Training language models like GPT-3 [15],
usually involves 3 phases: pre-training, fine-tuning, and reinforcement learning
with human feedback.

During the first phase, the model is trained on a large corpus of text, usually
created through web scraping [14, 60, 61]. The model thus created is optimized
for text-completion. Although remarkable, this ability is not very useful for
creating helpful artificial assistants. Interacting with a computer assistant needs a
conversational style, which LLMs often don’t possess at this stage.
In order to solve this problem, the model is further trained on other datasets that
allow conversational use of the model. This stage is sometimes called instruction-
tuning because the model is fine-tuned to follow the instructions of the user.
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Finally, responses are ranked according to human preferences. Different answers
are proposed to the user, who chooses the answers he/she prefers. Then, through
reinforcement learning algorithms like PPO [62], or more recent methods [63], the
model is further tuned to produce content more likeable by a standard human.
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3 Methods

In this section we first describe the proposed complexity framework and then delve
into the prompting method.

3.1 A Notion of Complexity

This section mainly presents ideas and methods developed in [21].
Entity tracking concerns about correct representations of objects through time.

It is considered a prerequisite for long-context understanding [64] and central in
ToM false-belief tasks. In this work, we characterise the complexity of a ToM
problem in terms of sufficient elements to track to output the correct result
(See section 3 of [21]).
We define an environment object obj to be a query about some available information
about the state of the environment at a precise timestamp, which could be the
position of the apple as well as the kth-order belief of an agent about the apple
position.
We assume this object has T unique configurations during the development of the
text to be represented by a prompt p expressed in natural language. We define
these T unique configurations to be expressed as Eobj = {e1, .., eT}
As specified in [21], to correctly solve a ToM task where p is complemented by a
query about obj, a model should distinguish between the interactions that modify
the configuration of obj, i.e., the stateful states, from those that modify any other
stateless object Obj \ obj, i.e., those one does not need to track.

We define here, following my work in [21], the cost of tracking a task’s stateful
states, which we complement with that of the stateless. Both definitions concur in
defining the complexity of a ToM task.

3.1.1 Stateful and Stateless Complexity

Consider a ToM task expressed as p, describing an environment’s evolution where
an unknown number of atomic interactions T modify obj or its perception. Each
environment state et ∈ Eobj can be coupled with the prompt prefix p≤t s.t. p≤t ⊕
p>t = p, describing that configuration. We denote (et, p≤t) as a generic state
description.

Definition 3.1 (State event) A state event for an object obj is an event that
links adjacent state descriptions that involve, for both the environment state et and
the sub-prompt p≤t, a state change of obj. Formally, we define a relation, Fobj, to
specify which pairs of state descriptions form a state event:
Fobj((et, p≤t), (et+1, p≤t+1)) ≡ et ̸= et+1 ∧ p≤t+1 = p≤t ⊕ pt+1 where 1 ≤ t ≤ |p|.
(|p| denotes the number of atomic prompts.)
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Figure 4: For obj1, an optimal split to track the apple merges the first two
states and chunks of the input prompt. For obj2, which involves the 1st-order belief
of Bob, the statefulness is higher, with e2 that cannot be merged with e3 as it
introduces partial observability. The complexity of the task (bottom) is computed
as per Eq. 3.1.2, with the complexity of stateless objects that is discounted as not
directly relevant to the question/answer. Image and caption from my work in [21]

.

A state event Fobj identifies those state descriptions (et, p≤t) which have a
successor (et+1, p≤t+1) where obj has changed its configuration.

In the context of ToM tasks, a state event could involve a person moving an
object, exiting (introducing partial observability), or witnessing an environmental
change. Our prompting technique, namely DWM (see 3.2), aims to make implicit
observations about objects explicit.

3.1.2 The Complexity of a ToM Task

We define the statefulness of a ToM task specified as a prompt p as the size of
the , namely Tobj = |Eobj|. Fig. 4 illustrates computing an object’s statefulness or
the belief associated about it.

For a ToM task where the question to solve relates to an object obj, one must
ensure that changes to any other object, namely Obj \ obj, do not affect obj.
Tracking the evolution of irrelevant objects is unnecessary, but a computational
model must assess if a particular environmental change affects obj.
We thus introduce the notion of statelessness, i.e., the cost of discerning whether
a change in the environment affects obj.

The complexity of a ToM task regarding an object obj is the complexity of the
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stateful states plus the (discounted) sum of the stateless states, mathematically
formalized as:

Tobj + τ
∑

obj∈Obj\obj

Tobj

The process of computing the complexity of a ToM task is illustrated in Figure 4.

3.2 An elicited discrete world model

Language models are empirically able to rephrase sentences while retaining the
semantic information, a similar ability to summarization [65].
The main idea of this prompting method is to guide the model in describing how
the environment evolves sentence by sentence and using this additional information
to answer the final question. We claim this prompting method allows the language
model to build a discrete world model about the task he is trying to solve. Having
world models allows us to predict the next states of the current task the agent is
engaged with.
When splitting the problem into multiple sub-parts, the language model is explicitly
asked to make a description of each state. This is similar to explicitly describing a
hidden state of the world or environment. Then, with multiple iterations, the state
is updated by the model itself. In this way, the model produces a series of states
(description of the environment), state-updates (the new information given by the
text), and new-states (new description of the environment), in a self-supervised
way allowing itself learn how to make these transitions.

3.2.1 DWM prompting

For the reason above, we prompt the model with partial information about the
task, asking for a description.
Given a task s we divide it into n equal parts, referred as x1, . . . , xn such that their
concatenation is the original task s = x1x2 . . . xn. Then we apply the Discrete World
Model (DWM) to produce the description tokens zi+1 ∼ pDWM

θ (zi+1|x1z1x2z2 . . . xizi)
sampling from the language model conditioned on each description of every context.
The final string x1z1 . . . xnzn is then given to the model to produce an answer,
usually formatted as <answer>YOUR ANSWER</answer>.

Instead of describing the evolution of the environment sentence per sentence,
we split the whole sample case into n parts with n ∈ {1, 2, 3, 4, 5}, this value
will be referred to as the splitted-context variable from now on. The splitted-
context variable allowed us to explore how the performance varied by adding more
descriptions than a few.
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Figure 5: Left: illustration of DWM prompting. We interactively prompt an LLM
with a ToM problem, asking to provide a succinct representation of each agent’s
beliefs. Right: schematic presentation of the DWM method. We first break the
input string into T state descriptions. Then, for each part, we ask the LLM to
provide the state event of the environment and how it changes. In the last step,
every part of the input and description is fed to the LLM with another prompt to
get the answer for the task. Image and caption from my work in [21]

Another consideration for the splitting context variable concerns the budget.
Assuming that each description had k tokens and that the original text is divided
in n contexts with length l, then the number of tokens requested will be

l + (2l + k) + (3l + 2k) + · · ·+ (nl + (n− 1)k) =
n(n+ 1)

2
l +

n(n− 1)

2
k = O(n2)

Adding a quadratic increase of the cost per single case.

3.2.2 Limitation for single sentence cases

In classical Sally-Anne Tests, the environment changes due to the intervention
of some agents unbeknownst to others. This asymmetry in information renders
possible all the interesting mind-games possible.
The prompting method tries to solve this problem explicitly by describing the
change in the environment.
Nonetheless, some tasks like socialIQa [66] do not have a stateful description of
how an environment is, but just rely on some absolute common sense knowledge
natural for humans.
With these tasks, we limited the splitted-context variable to 1 because there was
no state change to be tracked.
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Figure 6: This image schematically presents how DWM works. We use Mixtral
8x7B and the ToMi dataset [29] in this short demo. We begin with a set of
instructions, then the Language Model gives the descriptions. This will continue
back and forth until the problem is fully described. At that point, we ask the
question. We observe in this specific problem the model was able to give his best
guess on the question, resolving the dubious setting of the task inherent to some
questions of the ToMi datasets.
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3.2.3 Structured prompting with YAML and JSON

Language Models displayed great sensitivity to the structure of the query [67],
the order of the question [68]. Recent work argues that providing a structured
representation of the problem aids the model in reasoning effectively [19,69].

Following this idea, we develop a structured prompting approach. in this
method, we prompt the model to generate a structured representation of the most
important information in the text and chain this information with the question
that follows.

A short introduction to the formats. We ask the language model to produce
a representation in YAML and JSON formats. JSON [70] (JavaScript Object
Notation) is a common format used in web-based interchanges. It stores the data in
key-value pairs which make the file human-readable, in stark contrast with a binary
file format like BSON. YAML [71] (yet another markup language) is a superset of
JSON that adheres to the Python philosophy to use spaces instead of curly braces
to define the key-value relations.

Why this format should be better? Normal text has lots of redundancies. A
structured format should be able to abstract important information and present it
in a clear manner.
We expected the YAML format to perform better than the JSON format as the
number of tokens required by the GPT tokenizers is fewer compared to the JSON
format. Usually, when facing many spaces, those are compacted into a single token.
This allows, in principle, for the same representation of information using a minor
quantity of tokens.
But in practice, we observe that JSON has the best performance, as noted in 4.

Relation with DWM. We can view this prompting method as a special regular-
ized case of DWM presented before 3.2.1. By setting the splitting-context variable
to 1 and imposing a specific format for the descriptions, this method is the same
as the first prompting method.
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Dataset Inspired by Theo-
ry/Test

Test
Size

Construc
-tion

Example

SocialIQa
based
on [66]

Reasoning about moti-
vations, what happens
next and emotional re-
action

400
random
sample
out
of
37,588

Crowd-
sourcing

In the school play, Robin played a hero in the struggle to the death with the
angry villain.
How would others feel afterwards?
(a) sorry for the villain
(b) hopeful that Robin will succeed
(c) like Robin should lose

ToMi [29] Unexpected transfer
task, first and second
order false belief; [28]

1000
random
samples

Synthetic Jackson entered the hall. Chloe entered the hall. The boots is in the bathtub.
Jackson exited the hall. Jackson entered the dining room. Chloe moved the
boots to the pantry.
(Memory) Where was the boots at the beginning? (bathtub)
(Reality) Where is the boots really? (pantry)
(First order) Where will Chloe look for the boots? (pantry)
(Second order) 7 Where does Chloe think that Jackson searches for the boots?
(bathtub)

Adv-
Csfb
based
on [20]

Unexpected content or
transfer task, integrate
commonsense reason-
ing, first-order false be-
lief; [28]

183
questions
40
stories

Experts On the shelf, there is a bottle. It is full of beer and the label on this bottle
says “beer”. Mark walks into the room looking for beer and notices the bottle.
He has never seen it before. He reads the label.
(a) He opens the bottle and looks inside, He can clearly see that it is full of
(beer)
(b) He believes that it is full of (beer)
(c) He calls his friend to tell them that he has just found a bottle full of (beer)

Mind-
Games
based
on [10]

Generated stories de-
scribing epistemic men-
tal states; Mostly infer-
ence reasoning with dy-
namic epistemic logic.
[?, 27]

3730
sam-
ples

Synthetic There are two persons. Everyone is visible to others. It is publicly announced
that someone’s forehead is muddy. It is publicly announced that Alice does not
know whether or not everyone’s forehead is muddy. It is publicly announced
that Alice’s forehead is muddy.
Alice can now know whether Christine’s forehead is muddy. Entailment=1

FanToM
based
on [9]

Generated stories in
conversation; Accessi-
bility, first and second
order false beliefs; [28]

870
con-
versa-
tions
2
belief
ques-
tions
each

GPT
genera-
tion and
Crowd-
sourced
valida-
tion

... Sabrina: So, what was the most challenging workout experience you ever
had? Anna: Definitely when I decided to try out CrossFit. I’m not going
to lie, it kicked my butt! Sabrina: Wow, that sounds intense. What kind of
exercises did you do? Anna: We did a lot of different things like high intensity
interval training and Olympic lifting with barbells and dumbbells. Sabrina:
That definitely takes dedication! How did you stay motivated during it? Anna:
It was tough but I kept reminding myself why I wanted to get fit in the first
place and that helped me stay focused on my goals. Gina: Hey, I’m back!
What were you guys talking about? Sabrina: We were just discussing our most
challenging workout experiences. What do you think about when it comes to
making a good workout playlist? Anna: Music is really important when it
comes to getting in the zone while working out. For me, I like upbeat and
energetic songs that get me going. Gina: Yeah, something with a high tempo
can really help push you during those tough workouts! I also like adding in
some of my favorite classic songs that give me extra motivation to keep going.
...
(Belief) What does Gina believe are the ways in which Anna motivated herself
when faced with difficult workouts?

Table 1: Theory of Mind (ToM) datasets used in this work, adapted from [37]

4 Experiments

4.1 Experimental setup

4.1.1 Tasks and datasets

In this section, we will briefly present every dataset used in this study, describe
how they were created, the main design principles and how we used them in our
benchmarks.
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Then, we summarily present the main model families used in this study and the
prompting parameters used in the experiments.

ToMi, introduced in [29], is one of the earliest datasets in Neural Theory of Mind
inspired by false-belief question and answering (QA) [28], created by adapting other
previous QA datasets [72] and alleviating biases in datasets like ToM-bAbi [73].
Its test set comprises 999 machine-generated stories with 6 questions each. In our
tests, we randomly sample 1000 story-question pairs and evaluate the LLMs on
these test-set representatives.

SocialIQa, introduced in [66], is a multi-choice QA dataset build upon com-
monsense knowledge graphs [74, 75]. It comprises 2,224 test questions, from which
we randomly sample 1000 test representatives in our prompting methods. Each
sample is a statement with a question with a given stateless context about wants,
reactions, motivations, needs and effects of actions based on inferential reasoning.
We use this dataset to probe how our method works on stateless tasks. For further
information on state, see 5.4.

Adv-Csfb is an expert-written dataset consisting of adversarial examples similar
to [35]. It has been developed in [37] to test the ability of LLMs to reason over
adversarial cases. It consists of 110 total test cases examining different ToM abilities.
We use the whole dataset in a multi-choice fashion for our experiments.

FANToM introduces conversation-based evaluation of ToM abilities [9]. FAN-
ToM comprises casual dialogues among multiple characters, centered on topics like
pets, risk-taking, or personal growth.
Of the total 870 conversations we test only short-context interactions involving the
belief subset of the questions. We sample 1000 randomly from this set and query
in an open-ended fashion evaluating with the same system as the original paper.

Mindgames [10] involves composing logical terms to solve puzzles resembling
the classic muddy children problem [76,77]. It approaches the generation of belief
tasks classic in ToM analysis [27] from a dynamic epistemic logic perspective. This
results in over 3.730 stories followed by a logical statement. We prompted this in a
close-ended manner, asking for entailment or not entailment with 1000 randomly
sampled test cases.

4.1.2 Language models

We use different language models to test the validity of our methods.
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OpenAI Models. We employ the Gpt 3.5 model [15], a language model developed
by OpenAI and released to the public in November 2022. Leveraging the transformer
architecture [16], it produces coherent and contextually relevant responses to a
wide array of prompts, spanning from casual conversation to specialized domains.

Mixstral Models. We test with the Mixstral 8x7B model [78] provided by
Huggingface. Mixstral is a mixture of expert model that, as the name suggests,
leverages 8 different Mixstral 7B models working in parallel. This model has a
router as one of the first layers that chooses which couple of experts to choose in a
given inference.

Llama 3 Models. Llama 3 is one of the most capable open-weight models [79]
released in recent times. We employ the inference offered by the groq platform.

4.1.3 Prompting parameters

Most of the language models used in this work follow the Language Models as a
Service (LMaaS) paradigm [80]. This model of service does not help with repro-
ducibility. Because of the classic CI/CD pipeline in software development, the
underlying model and weights could change at any time while retaining the same
name in the interface.
Therefore, to offer the highest possible grade of reproducibility, we set the temper-
ature to 0.0 or enable greedy decoding. In prompting methods where the creativity
of the in response is exploited for better performance, e.g., Tree of Thoughts [53].
We set the temperature to 0.7, the value proposed in the paper.

4.1.4 Baselines

We compare our prompting techniques with CoT [51] and ToT [53].
In each experiment, we evaluate 1000 randomly sampled examples of the dataset
and run a series of queries to the language models using similar instructions in
each dataset. See 4.1.1 for a description of every single dataset.
We keep the wording of the same prompting technique across each dataset as
similar as possible to better compare them and limit the influence of single wording
matters.

4.1.5 Design of the prompts

We took great care not to guide excessively the model in a given task and thus
invalidating the result, and to ensure fair comparison between the prompting
methods.

https://groq.com/
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Same pattern for every dataset. We kept the description as similar as possible
across every single prompt approach in order to have a fair comparison between
the prompt methods.
For this reason, we used the same <answer>FORMAT</answer> string across
every prompt. We gave the same description of the dataset among every prompting
method. For example, FanToM comprises of dialogues between agents, and we told
the model that there was a dialogue, in mindgames we specified that the answer
was always entailment or ‘not entailment.

Not guiding the model. We did not specify anything related to solving the
specific dataset in every prompt method. For example, in ToMi, it is known in the
original research [29] that only two are the possible answers. In our design, we did
not specify this and let the model infer this by itself. The relative comparison of the
prompting methods is coherent, so even if the reported accuracy could differ from
other papers testing the same ability, our experiments’ relative gain in accuracy
should be consistent.

4.2 Analysis of the results

The main difference from our method is as follow: while CoT and ToT attempt to
describe steps of reasoning steps useful to reach to the conclusion, DWM splits the
input and attempts to describe different states of the environment with information
relevant to the question.
This might seem like a small change, but in practice, it makes a noticeable difference
in zero-shot prompting examples.

4.2.1 Is problem splitting helpful?

From the above results we can assert that in some cases providing a description
of the state of the world of a part of the problems provides boosts in the model’s
performance as much as 10%.
In the case of the ToMi dataset, we claim that the drop in performance of our
model is caused by the contamination of the dataset during training phase. More
on this problem in the section 4.3.
In the case of stateless datasets like socialIQa, where there is no dialogue or change
in the environment, nor sub-states where it could be useful to split, our prompting
technique falls back on a special type of Chain-of-Thought prompting, as it just
gives a description (a reasoning path) of the final state.

From an empirical point of view, most of the observations made during the
description of a sub-state are correct. The main ability required is to rephrase
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Figure 7: Benchmarks of GPT-3.5-Turbo (top) and Mixtral 8x7B (bottom) models
on different ToM tasks for DWM (one to five splits), CoT, ToT and structured
prompts (JSON and YAML). Results from [21].
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Figure 8: Benchmarks of LLaMA3-7B (top), LLaMA3-70B (middle) and GPT-4
(bottom) models on different ToM tasks for DWM (one to five splits), CoT, ToT
and structured prompts (JSON and Yaml). For GPT-4 and ToT, we tested 50
samples (instead of 1000). Results from [21].
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known information into a different, almost standardized format chosen by the
model.

4.3 The contamination problem

Data contamination and memorization are a major problem in benchmarking
modern LLMs [80]. These models have been trained on internet-wide data. The
origin of the datasets is not tracked clearly and openly. Therefore, leaks of test splits
of datasets used to benchmark the models are possible to have been incorporated
in the training data of the language models.
Using benchmarks during the evaluation of methods that depend on contaminated
LLMs could severely overestimate the performance and, as a consequence, produce
biased and deceptive results [81].
Although some methods were proposed to diminish this problem [82], they mostly
rely on the honour code: dataset creators shall not upload the test set of their
benchmarks, and model builders shouldn’t include benchmarks into their models’
training data.

In our setting, we focus on the effects of data contamination in explaining some
of the results we observe in the ToMi [29] dataset. We conduct an experiment
following the method from [83]and conclude that ToMi has been contaminated in
the training data of GPT-3.5. See 4.3 for further details.

We hypothesize that our self-prompting method is worse than the CoT [51]
as the produced description of the state breaks the learned pattern during the
pre-training phase.

In order to verify this claim, we run an ablation test, described in the next
section 4.3.

On the contamination of ToMi. We prompt the gpt−3−5−instruct model
with a prefix of the database, splitted by line. As the model should be trained to
complete the text, if we observe a complete match between a long enough section
of the original and generated text, it can be safely assumed that there has been a
leak in the training data. The inverse is false.
We observe that gpt−3.5−instruct completes the input text verbatim for the ToMi
dataset [29].
We split the dataset into 761 prompts with 70 lines from the dataset, and check if
the produced tokens match exactly the continuation of the prompts. We report
that 484 promps, that is 63% of the dataset, does. We report this as hard evidence
of the contamination.

Example prompt.

1 Hannah entered the patio.
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2 Noah entered the patio.
... (Omitted for clarity)
1 Carter entered the cellar.
2 Jacob entered the workshop.

Example output from the model.

3 Mia is in the cellar.
4 The gloves is in the envelope.
5 Mia moved the gloves to the container.
6 Jacob hates the pumpkin

Correct continuation from the dataset.

3 Mia is in the cellar.
4 The gloves is in the envelope.
5 Mia moved the gloves to the container.
6 Jacob hates the pumpkin

Ablation tests for memorization. We claim that the small percentages in
different performances are caused by memorizing the ToMi dataset during training.
To empirically verify this claim, we set up two experiments in the following way:

We insert random strings, like “ignore me” or just straight up “AAAAA” after
some sentences in ToMi dataset. And run CoT prompting. We observe a loss of
about “4%” when running GPT3.5 over these new samples.

We run a second experiment using ToT. With this prompting method, after
the thoughts are chosen, the final question is posed. We ran two cases, in one the
question was just after the input sample, as if it was in the ToMi dataset, in the
other case, we moved the question to the end. In this way, we claim the dataset
pattern is broken by the observations that are chosen during the breath-first-search
in the tree of thought algorithm.
We observe a drop in performance of 2.7% with this simple change, given other
things equal, which is significant compared to the best performance of the other
prompting methods.

This is the example of the given template:

Given this dialogue and possible observations, answer the question with one
word and provide the answer between <answer></answer> tags.

{problem}
{question}
{observations}

For example, reply with <answer>vase</answer>.
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Example of the first case, using the pattern {problem}{question} directly
recreates the pattern stored in the dataset.

Given this dialogue and possible observations, answer the question with one
word and provide the answer between <answer></answer> tags.

{problem}
{observations}
{question}

For example, reply with <answer>vase</answer>.

A single change, moving the question down, has a decrease in performance
comparable to our prompting methods.

4.4 Analysis of the Complexity

In this section, we propose the analysis present in my work in [21], as the experiments
for the paper share some of the same insights on this topic.

We used the complexity framework introduced in Section 3.1 to characterise the
statefulness and statelessness of the five ToM benchmarks used for the experimental
evaluation.
We randomly sampled 50 problems from each dataset, identified the objects, and
manually labelled stateful and stateless state events. We release the split samples
alongside a web application that facilitates manual labelling, available here in the
code repository associated to this work.
As illustrated in Figure 10 (left), the statefulness of each problem, i.e., that of
the object a model must track to answer correctly, strongly correlates with the
best-performing DWM split.
The statelessness complexity, reported in Figure 10 (middle), i.e., that of objects
that a model does not need to track, grows larger for problems such as FANToM,
only partially influencing the models’ performance. We hypothesize that the most
potent models developed some competency in discerning the relevant part of a
prompt from the confounding ones, suggesting an ability of discerning between
stateful and stateless.
We finally report, in Figure 10 (right), the complexity of each problem computed
as per Eq. 3.1.2, with τ set in a range between 0.05 and 0.2 (i.e., the relative weight
of stateless compared to stateful events). Results suggest that FANToM is the
most difficult ToM task for humans and LLMs (see Figure 7), followed by ToMi
(the second most difficult for LLMs as well) and Adv-CSFB (which seems easier
than the others); in contrast, Mindgames and SocialIQa tend to be easier.
Finally, in Figure 9}, we compare the accuracy of GPT-3.5-Turbo, GPT-4, Mixtral
8x7B and LLaMA3-70B when prompted with CoT (i.e., without split) on the five

https://github.com/Flecart/complexity-tom-dwm


4 EXPERIMENTS 34

Figure 9: Each boxplot summarizes the complexity analysis of the five ToM
benchmarks in ascending order. We report the average error rate (i.e., 1-accuracy)
of GPT-3.5-Turbo, GPT-4, Mixtral 8x7B and LLaMA3-70B on the task when
prompted with CoT. Results from [21]

ToM benchmarks with the complexity of the task as per Def. 3.1.2}. We observe
a strong correlation between the error-rate and the complexity of a task, i.e.,
our framework correctly identifies the tasks that are harder both for humans and
current state-of-the-art LLMs.
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Figure 10: Each boxplot summarizes the statefulness (left), statelessness (middle,
y-axis in log-scale) and complexity analysis (right) of the five ToM benchmarks.
We report mean, standard deviation and outliers alongside the best DWM method
(by the number of prompt splits) and observe a strong correlation between the
number of splits and the statefulness. Results from [21]

5 Discussion

5.1 Are prompting methods a good approach to test ToM?

Human’s theory of mind is, roughly speaking, assessed by the correctness of their
answer after a given question, specifically designed to test some mental property.
Currently, models are tested in the same way. Even though the underlying princi-
ples that enable ToM abilities to emerge could be different, if the model behaves
similarly to humans in test regarding ToM, we argue they have similar degrees of
ToM ability.
In [37], Shapira states that tests specifically designed to test humans are not
automatically transferable to test models. This observation is generally true only
if the test was designed to detect latent abilities different between humans and
machines.
On the other hand, if the model manifestly behaves in the same way compared to
humans, such that they fail when a human fails, and are correct when a human
is correct, the model is functionally equivalent to the role of the human in that
context. There is no clear distinction between the two. Even if the inner mechanism
of the two entities are different, we have complete interchangeability between the
two.
We argue for the concept of functional similarity: a comparison grounded to
human capability, reminiscent of the Turing-Test [84]. We say that two objects are
functionally similar if given the same context, task or problem, they will behave
in the same manner.
In this framework, prompting methods are effective approaches to test ToM abilities
inside language models as the test method assesses for the same linguistic behaviour
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in humans and machines. Nevertheless, the unbounded nature of possible human
manifest behaviours complicates an operational application of functional simi-
larity. Yet, most behaviours can be categorized within similar buckets of interest.
A possible direction of research would be to explicitly present what are the sets of
most general interactions in humans and develop datasets for each category. This
dataset should be operational, meaning they should test for effective competence
using ToM-related skills rather than latent variables correlated to these skills. To
the best of my knowledge, such general categorization has not been attempted and
is probably quite expensive. On the other hand, it would provide a fair comparison
between humans and machines.

5.2 Performance gap in prompting methods

From a purely empirical point of view, we have observed that prompting methods
have an enormous gap of performance in a wide number of tasks. Surprisingly,
similar behaviour has been seen in humans. In the remarkable “Copy Machine”
study [85], some researchers were in line for a printer. The experimenter asked to
use the machine first to copy 5 pages in the following ways:

1. “Excuse me, I have 5 pages. May I use the xerox machine?”
2. “Excuse me, I have 5 pages. May I use the xerox machine, because I have to

make copies?”
3. “Excuse me, I have 5 pages. May I use the xerox machine, because I’m in a

rush?”

The surprising datum is that the percentage of success across 120 people were 60,
93, 94, respectively. It seems that just rephrasing the question, in the context of two
strangers asking for permission, is sufficient to uncover a wide gap in “performance”.

Communication is often multi-channel in humans. Often, the same information
can be conveyed through voice-tone, gestures, or facial expressions. In contrast,
the language models we tested in this work, operate only with the language
channel. We envision two possible paths in exploring prompting methods, given
these observations from human communication. (1) Designing an experiment
that explores techniques similar to prompting in humans by isolating a single
channel of communication. (2) Trying to extend the analysis of current prompting
methods to multi-modal models. [86] provides compelling evidence that multi-modal
transformer-based models are able to recognize human emotions in complex movie
settings. This indicates the need for more general multi-modal benchmarks for
ToM.
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5.3 On the spontaneous Theory of Mind

Spontaneous thoughts are mental processes that arise without any conscious act.
Classical ToM tests as the Sally-Anne [28] require a conscious effort in understanding
and answering the question.
Gurney and Pynadah [87] argue that a spontaneous approach to ToM could have
better results. This nudges toward experimenting with a computational entity able
to draw from spontaneous channels as social cues and use them to predict the
behaviour of the entity they are communicating with and plan accordingly [88].
This observation was largely drawn from work on human ToM. Gurney and Pynadah
argued that prompting tests, which explicitly question for ToM abilities as the
famous Sally-Anne test does, are fragile. Humans could be easily persuaded into
believing something, even if it never happened before [89], or could be influenced
just by the wording of the request [85]. For this reason, they advocate more from
an operational point of view. For example, in humans, the ability to form correct
true or false beliefs assumptions could be derived from eye fixation times [90]. Is it
even possible to test for spontaneity in machines?

Even if, in theory, the spontaneous approach may be sound, in practice, there
is no clear definition of what is spontaneous for machines. The above definition
of spontaneous thought is linked to consciousness, which is currently out of scope
and has no meaning when applied to machines. Chat-bots like ChatGPT have no
body and can’t interact without being prompted first. Furthermore, they don’t
have other channels of communication, such as facial expression, from which states
could be inferred, as in humans. Nonetheless, if it is possible to design a task
that requires a certain degree of ToM, but doesn’t directly test for it, we can
abductively infer that it is more probable that the model has ToM. This is closer
to that spontaneous use of ToM. Therefore, a possible approach in testing ToM
is to design tasks and benchmarks that directly need ToM abilities and compare
them to the human baseline. If the models can generalize on those tasks with just
a few examples, asserting they have human-level ToM could be possible.

5.4 Limitations

Higher order belief tracking. As specified in the limitation section of [21],
our theoretical framework reduces the problem of solving a belief ToM problem
to finding the correct descriptions that need to be tracked. It extends seamlessly
to tasks with much higher complexity, however, we have not had the opportunity
to test this theory in those settings. We noticed that most theory of mind tasks
available in the community only require one to five states to be correctly answered.
A possible extension would be testing the theory upon tasks with higher state
complexity, e.g. kth-order belief tracking tasks. However, it is unclear whether this
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could be useful in real applications as most human belief tracking is limited to 5 or
6 orders [91,92]

Where is the best location to place a split? Intuitively, a good place where
to put a split is after a change of state interesting for answering the question. We
expect the new description at this place of the text to be helpful in giving valuable
information to answer the question. But a few technical problems arise: how do you
decide if a change of state is of interest? How can we choose from many possible
split points to stay within budget constraints? In this work, we just set the number
of wanted splits k and created k equal-sized portions of text. A possible path is
creating a heuristic or prompting a LLM to decide a better place to allocate for
the split. But we leave this to future research.

On the performance over stateless problems. We described a method that
shows improved performance over tasks where a description of the change of the
environment provides useful notions. For some problems, however, the answer is
stateless: the answer does not depend on any past interaction, it doesn’t benefit from
any retrieved knowledge, and does not require the state to be tracked. Examples
as socialIQa seem to be easy to answer, but only if the model possesses some
parametric knowledge about the task, which is often difficult to quantify.
Our prompting method is usually not useful on this type of tasks as the implicit
knowledge is not explained just by describing the state.

Memorization analysis. Training and evaluating on the same dataset produces
positively biased data on the model’s performance. While running our benchmarks
on ToMi, we discovered that the GPT-3.5 model had completely memorized parts
of the dataset. This motivated us to extend the memorization test to the other
tasks. We urge the research community to include a memorization section on every
benchmark study with public datasets used in their works. This data is crucial to
conduct fair and unbiased research on evaluating LLMs’ abilities [82].
Future works will include an analysis of the memorisation rate of other ToM tasks
alongside tests to quantify their impact on different models.
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6 Conclusion

This thesis introduces a complexity framework to measure the difficulty of Theory
of Mind (ToM) problems, currently published as a preprint on the archive [21].
It quantifies the difficulty by tracking necessary states (stateful) and unnecessary
states (stateless), with the latter discounted in the complexity computation. The
framework evidences a strong correlation between complexity and model perfor-
mance.
Inspired by this work, we propose a new prompting method which attempts to
extract a structure from a given task, interpretable as a local world model built by
the LLM itself. Along with this method, we propose a structured version where we
ask for a YAML or JSON format of the state. We test the ability of these prompting
methods in enhancing ToM reasoning in common ToM and commonsense datasets
and discover in the best case, we reach a 9.99% increase in performance when
compared to the baselines. We provide compelling evidence on the contamination
of the training data in some datasets tested in this work.

6.1 Final notes

6.1.1 Usage of Language Models as Writing tools

I declare that all the paragraphs in this work are written by a human. ChatGPT
and other language models have been helpful in activities like

• Finding synonyms
• Rewording sentences
• Correct grammar errors

No entire paragraph in this work has been written by Language Models.

6.1.2 Acknowledgements

My heartfelt thanks go to my supervisor Emanuele La Malfa, whose support, both
intellectually and personally, was invaluable to this project. I am grateful to my
professor, Andrea Asperti, for giving me the opportunity to pursue this work.
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