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Abstract

This thesis presents an application of Machine Learning (ML) techniques to search for Heavy
Neutral Leptons (HNL) in Ds meson decays in the CMS experiment. The specific decay under
study is D+

s → N (→ µ±π∓)µ+, where N is the HNL and final state muons can have the same
charge, allowing for lepton number violation. The signal signature comes from the displaced
N → µπ vertex while the background comes from accidental combination of muons and a track
into a common vertex.

This work is carried out in the context of an ongoing analysis, that relies on a cut-based
event selection, and its aim is to explore different ML approaches to improve the event selection.
The training of the ML models relies on Monte Carlo generated samples for background and
different signal mass hypotheses. These samples reproduce the data-taking condition of the
CMS experiment during 2018 Run 2 with

√
s = 13 TeV. Several ML models have been trained

with three different algorithms: boosted decision trees (BDT), gradient boosted decision trees
(XGB) and artificial neural networks (ANN) and their performances have been evaluated. The
best performance is obtained by the XGB algorithm.

The improvement in the event selection achieved with this ML approach translates into
higher significances, in a range from 14 to 20%, over the cut-based approach. The results of
this work show that the developed ML-based strategy is an effective contribution to the ongoing
CMS analysis.
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Introduction

The Standard Model’s assumptions on massless neutrinos have been challenged by the observa-
tion of neutrino oscillations [1, 2], that show that active neutrinos are massive. The question of
how active neutrinos obtain their mass is still open [3].

One of the extensions of the Standard Model that tries to explain neutrino masses consists in
adding right-handed neutrino fields to the Lagrangian [4]. These are also called sterile neutrinos
or Heavy Neutral Leptons (HNLs), because they are singlets under Standard Model gauge
symmetries. The only possible way to observe such neutrinos is through their mixing with the
active neutrinos.

A wide range of different experiments have looked for signature of HNL with masses that
range from eV to TeV energy scales. No conclusive observation has been made yet, but each
experiment has set upper limits on the mixing parameter with active neutrinos [5].

This thesis work focuses on the search for Heavy Neutral Leptons from decays of the Ds

meson in the CMS experiment. The decay channel we target is D+
s → N (→ µ±π∓)µ+, where

N is a HNL. The final state muons can have same sign, allowing for lepton number violation.
Among all charmed meson decays into Heavy Neutral Leptons, this has the largest branching
ratio, and it allows probing the existence of HNLs with a mass below the Ds mass (≲ 2 GeV).
Currently, there are no published results on HNL searches from charmed meson decays at LHC.
This represents a clean experimental signature in the CMS experiment for HNL decaying within
the tracker system (< 1 m). The whole decay chain is fully reconstructed, and it can profit from
excellent track and muon reconstruction performances.

The selected final state consists of one muon emerging from the Ds meson decay vertex, and
a reconstructed displaced vertex formed by the N decay products (muon and pion). The main
background comes from accidental combinations of muons and a track into a common vertex.
This analysis is possible thanks to a large dataset that was collected by triggering on single
low-pT non-prompt muons: the B-Parking dataset [6]. The B-Parking dataset was recorded at
the CMS experiment in proton-proton collisions with

√
s = 13 TeV during the 2018 data-taking

period.
This work has been carried out in the context of an ongoing analysis, where the event selection

is based on a cut-based approach [7]. The optimization process of this event selection relies on
Monte Carlo samples.

The purpose of this thesis work is to explore the usage of Machine Learning (ML) techniques
in the event selection. This includes the implementation of a common framework to be able to
make meaningful comparisons between different ML algorithms. The training of the ML models
uses the same MC datasets used in the cut-based approach, and the signal datasets include
different HNL mass hypotheses. These models are trained to discriminate the different HNL
signatures against the background. After the training process, we assess the performance of the
different ML algorithms and compare the one providing the best performance with the cut-based
approach. This allows evaluating the impact of the implementation of these techniques in the
analysis.

The thesis is organized as follows:
in chapter 1 we introduce the theoretical framework of the Standard Model and the Heavy
Neutral Leptons. In chapter 2 we describe the CMS detector, CMS event reconstruction and
the B-Parking dataset. In chapter 3 we present the analysis strategy and its cut-based selection.
In chapter 4 we present our new selection implementation based on ML models and their results.
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Chapter 1

Standard Model neutrinos and
Heavy Neutral Leptons

Sterile neutrinos or Heavy neutral leptons (HNLs) are a class of neutrinos that do not interact
via any of the Standard Model (SM) forces. They are part of many extensions of the SM because
they have the potential to explain some fundamental issues that cannot be dealt with in the SM
such as neutrino masses, the baryon asymmetry of the universe and the nature of dark matter
[4, 8].

Several experiments have attempted to search for HNLs, however, as of now, there is no
accepted evidence for their existence. These experiments have set exclusion limits on the pa-
rameter space of HNL masses and mixing angles [5].

This chapter is structured as follows: in section 1.1 we begin by providing an overview of
the properties of Dirac-type fermions and neutrinos of the SM; then in section 1.2 we introduce
the concept of Majorana neutrinos and a minimal extension of the SM that adds right-handed
neutrino fields to the Lagrangian; in section 1.3 we overview the main channels of interest for
HNL production with a particular focus on meson decays; section 1.4 analyzes the main exclusion
regions in the parameter space of HNL masses and mixing angles, and the kinds of experiments
that can probe them. Finally, section 1.5 contains the key theoretical parameters and formulas
that are required for the computations of HNL production from Ds decays and decay rates,
which are key to the analysis presented in this thesis.

1.1 Leptons of the Standard Model
Fermions are spin 1/2 particles that can be described through a Dirac spinor field ψ. The
Lagrangian describing a free fermion is known as the Dirac Lagrangian:

L = ψ̄(iγµ∂µ −m)ψ , (1.1)

and the corresponding equation of motion is the Dirac equation

(iγµ∂µ −m)ψ = 0 . (1.2)

γµ are the Dirac matrices, m is the mass of the fermion and ψ̄ is defined as

ψ̄ = ψ†γ0 , (1.3)

where ψ† is the Hermitian conjugate of ψ. Explicit forms of γµ depend on a choice of basis. In
the Weyl basis or chiral basis the Dirac matrices are

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
, (1.4)

where σµ = (1, σi) and σ̄µ = (1,−σi), with σi the Pauli matrices. In this basis the spinor can
be written as:

ψ =

(
χL

χR

)
, (1.5)

9



CHAPTER 1. STANDARD MODEL NEUTRINOS AND HEAVY NEUTRAL LEPTONS

where χL and χR are respectively a left-handed and a right-handed Weyl spinor [9].
We also use the notation

ψL =

(
χL

0

)
, ψR =

(
0
χR

)
, (1.6)

that lets us write
ψ = ψL + ψR . (1.7)

Projector operators can be defined to extract the left-handed and right-handed components of
the spinor

PL =
1

2
(1− γ5), PR =

1

2
(1+ γ5) , (1.8)

so that
PL ψ = ψL, PR ψ = ψR . (1.9)

ψL and ψR are eigenstates of the chirality operator γ5

γ5ψL = −ψL , γ5ψR = ψR . (1.10)

The handedness of a spinor is also referred to as chirality.
The mass term of the Dirac Lagrangian

Lmass = −mψ̄ψ = m (χ̄LχR + χ̄RχL) , (1.11)

couples the left and right-handed components of the spinor. We can also see this more explicitly
by looking at the Dirac equation

iσµ∂µχR −mχL = 0

iσ̄µ∂µχL −mχR = 0
, (1.12)

or equivalently
iγµ∂µψR −mψL = 0

iγµ∂µψL −mψR = 0
, (1.13)

which implies that even if we start with a purely left or right-handed spinor, the two components
will mix with time evolution. Only a massless fermion can be purely left-handed or right-handed
without mixing.

1.1.1 Electroweak theory

The electroweak theory is an SU(2)L ⊗ U(1)Y gauge theory. We will only focus the leptonic
sector. We have the left-handed weak-isospin doublets:

Lα =

(
να
ℓα

)
L

=

{(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

}
, (1.14)

and the right-handed weak-isospin singlets:

Rα = ℓαR = {eR, µR, τR} . (1.15)

Neutrinos are assumed to be massless and have no right-handed component1. Weak hypercharge
Y is defined according to the Gell-Mann-Nishijima relation:

Q = I3 +
1

2
Y , (1.16)

where Q is the usual electric charge and I3 is the third component of weak isospin, which is
+1/2 for the upper component of the doublet, −1/2 for the lower component and 0 for the
right-handed singlets.

1We talk about the reasoning behind this assumption in section 1.1.2.
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CHAPTER 1. STANDARD MODEL NEUTRINOS AND HEAVY NEUTRAL LEPTONS

To keep the notation less cluttered we will avoid the index α from now on, and it should be
understood that the following Lagrangian terms are summed over the three lepton generations.
The Lagrangian terms that describes leptons and their interactions is [10]:

Lleptons = R̄iγµ
(
∂µ +

ig′

2
aµY

)
R+ L̄iγµ

(
∂µ +

ig′

2
aµY +

ig

2
σ⃗ · b⃗µ

)
L , (1.17)

with aµ being the massless boson field for U(1)Y , b⃗µ = (b1µ, b
2
µ, b

3
µ) the massless boson fields for

SU(2)L and σ⃗ = {σ1, σ2, σ3} the Pauli matrices.
A mass term for the charged leptons would look like:

Lmass = −mℓ

(
ℓ̄LℓR + ℓ̄RℓL

)
, (1.18)

but it cannot be added directly to the Lagrangian because it mixes left-handed and right-handed
components and is thus not gauge invariant. The SM way of introducing mass terms for the
charged leptons is through their Yukawa coupling to the Higgs field.

Higgs and spontaneous symmetry breaking

To give mass to the gauge bosons and to the massive fermions in the SM, we need to introduce
the Higgs field2. The Higgs field is a complex scalar field that transforms as a weak-isospin
doublet under SU(2)L and has weak hypercharge Y = 1

ϕ =

(
ϕ+

ϕ0

)
. (1.19)

The related Lagrangian term is

LHiggs = (Dµϕ)†(Dµϕ)− V (ϕ†ϕ) , (1.20)

with Dµ the covariant derivative and V the Higgs potential:

Dµ =

(
∂µ +

ig′

2
aµY +

ig

2
σ⃗ · b⃗µ

)
, V (ϕ†ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 . (1.21)

We also add the so-called Yukawa Lagrangian term that couples the Higgs field to the leptons

LYukawa = − yℓ
(
L̄ϕR+ R̄ϕ†L

)
, (1.22)

where yℓ are the Yukawa couplings.
What we are interested in is the fact that the Higgs field acquires a vacuum expectation

value

⟨ϕ⟩0 =

(
0

v/
√
2

)
, (1.23)

and when we consider the physics around this vacuum state, we have a spontaneous symmetry
breaking (SSB) of the SU(2)L ⊗U(1)Y symmetry, but we preserve the U(1)EM symmetry. The
bosons acquire mass:

massless aµ, b⃗µ massless Aµ , massive W±
µ , Zµ

after SSB−−−−−−→

massless ϕ =

(
ϕ+

ϕ0

)
massive H0

Lepton interactions

It can be shown that after SSB the Lagrangian terms for the leptons (eq. (1.17)) becomes:

Lleptons = LW + L0 , (1.24)

2See refs. [9, 10] for a more complete discussion on the Higgs mechanism.
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where LW is the Lagrangian term for the charged interactions mediated by the W boson

LW = − g√
2

[
ν̄Lγ

µℓLW
+
µ + ℓ̄Lγ

µνLW
−
µ

]
= − g

2
√
2

[
ν̄γµ(1− γ5)ℓW+

µ + ℓ̄γµ(1− γ5)νW−
µ

] , (1.25)

and L0 is the Lagrangian term for the neutral interactions mediated by the neutral bosons Z and
A, usually expressed in terms of the Weinberg angle θW = arctan(g′/g) and the electromagnetic
coupling constant e = g sin θW = g′ cos θW :

L0 = eℓ̄γµℓAµ − g

2 cos θW
νLγ

µνLZµ

− g

2 cos θW

[
2 sin2 θW ℓ̄Rγ

µℓR +
(
2 sin2 θW − 1

)
ℓ̄Lγ

µℓL
]
Zµ

= eℓ̄γµℓAµ − g

4 cos θW
ℓ̄γµ

(
1− γ5

)
ℓZµ

− g

4 cos θW

[
2 sin2 θW ℓ̄γµ(1 + γ5)ℓ+

(
2 sin2 θW − 1

)
ℓ̄γµ(1− γ5)ℓ

]
Zµ

. (1.26)

These kinds of interactions can be described by the Feynman diagrams in fig. 1.1.

(a) (b) (c) (d)

Figure 1.1: Feynman diagrams for the interactions of leptons. (a) is the charged current inter-
action mediated by the W boson. (b), (c), (d) are the neutral current interactions mediated by
the Z boson.

Charged lepton mass

It can be shown that after SSB the Yukawa Lagrangian term for the leptons (eq. (1.22)) becomes:

LYukawa = − yℓ
v +H√

2

(
ℓ̄RℓL + ℓ̄LℓR

)
= − yℓ√

2
Hℓ̄ℓ− yℓv√

2
ℓ̄ℓ

. (1.27)

The first term gives rise to the interaction between the Higgs boson and the leptons. The second
term is the mass term for the charged leptons

mℓ =
yℓv√
2
. (1.28)

Lepton number

Lepton number is a quantum number that is conserved in the SM. It is actually an accidental
symmetry of the SM, since it is not imposed by the gauge symmetry.

This number comes from the fact that the Lagrangian is invariant under the transformation

ℓαL → eiφαℓαL ℓαR → eiφαℓαR ναL → eiφαναL

ℓ̄αL → e−iφα ℓ̄αL ℓ̄αR → e−iφα ℓ̄αR ν̄αL → e−iφα ν̄αL
. (1.29)

This holds for each generation α = e, µ, τ , with φα arbitrary phases. Because of Noether’s
theorem, this symmetry implies the conservation of the lepton number Lα = {Le, Lµ, Lτ} and
consequently, also of the total lepton number L = Le + Lµ + Lτ . We assign the lepton number
to be +1 for leptons and −1 for antileptons.

12



CHAPTER 1. STANDARD MODEL NEUTRINOS AND HEAVY NEUTRAL LEPTONS

1.1.2 Neutrinos
Neutrinos are neutral leptons that only interact through the weak force. They are quite unique
in the SM because they are the only fermions that are assumed to be massless and to have
no right-handed component. With the evidence of neutrino oscillations, we know that these
assumptions are wrong, and we need to find a way to include massive neutrinos in the SM.

Helicity and chirality

Helicity of a particle can be defined as the normalized component of its spin along its direction
of motion:

h =
S⃗ · p⃗

| S⃗ || p⃗ |
. (1.30)

For a spin 1/2 particle we can write the spin operator as

S⃗ =
1

2
Σ⃗ , (1.31)

where Σ⃗ is simply a four-component version of the Pauli matrices:

Σ⃗ =

(
σ⃗ 0
0 σ⃗

)
. (1.32)

Thus,

h =
Σ⃗ · p⃗
| p⃗ |

. (1.33)

If we look at the Dirac equation (eq. (1.13)) in Fourier space for a chiral spinor ψ =

(
χL

χR

)
we

get:
iσµ∂µχR −mχL = 0

iσ̄µ∂µχL −mχR = 0
=⇒

(E − σ⃗ · p⃗)χR = mχL

(E + σ⃗ · p⃗)χL = mχR

, (1.34)

which in the massless case becomes

(σ⃗ · p⃗)χR = EχR

(σ⃗ · p⃗)χL = −EχL

. (1.35)

If we want to express this same equations for the four-component Dirac spinors ψL =

(
χL

0

)
and ψR =

(
0
χR

)
we can use the Σ⃗ matrix and write

Σ⃗ · p⃗
E

ψL = −ψL ,
Σ⃗ · p⃗
E

ψR = ψR , (1.36)

which is exactly the same as eq. (1.10): chirality and helicity are only the same for massless
particles [11]. In the massive case helicity is not Lorentz invariant: it is always possible to boost
past the particle and ’change’ its direction of motion.

In the case of neutrinos helicity and chirality are approximately equivalent because in all
practical cases neutrinos are ultrarelativistic and thus |p⃗| ≫ m. According to experimental
evidence, the helicity of neutrinos is always negative i.e. they are always left-handed. The first
experimental measurement of the helicity of neutrinos was performed by Goldhaber et al. in
1958 [12].

Neutrinos assumptions in the standard model

In the SM, neutrinos are massless. This is because experimental evidence at the time of the
formulation of the SM suggested that neutrinos mass was very small and compatible with zero
Also, it is assumed that they have no right-handed component. This is because there is no
experimental evidence of neutrinos with right-handed helicity; also, such a particle would not be
charged under the weak force and be practically impossible to detect. So a massless left-handed
neutrino was the simplest solution that made the least amount of extra assumptions and could
explain all experimental evidence.
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Neutrino oscillations

However, in the last decades experimental evidence has emerged that indicates that neutrinos
are not massless: neutrino oscillations. The key ideas behind neutrino oscillations are [11]:

• neutrinos are produced in weak interactions as flavor eigenstates

να = {νe, νµ, ντ} , (1.37)

but these are not the same as the mass eigenstates νi;

• for instance we produce a neutrino state νβ which can be written as a linear combination
of the mass eigenstates:

|νβ⟩ =
∑
i

ki |νi⟩ , (1.38)

• since they have a different mass, the time evolution of the mass eigenstates is different:

|νi(t)⟩ = exp [−i (Eit− p⃗i · x⃗i)] |νi(0)⟩ , (1.39)

where Ei is the energy of the mass eigenstate νi, p⃗i is its momentum and x⃗i is the travelled
distance;

• because of this, if we observe the neutrino after a time t and a distance L from the
production point, there is a probability of observing a flavor eigenstate να ̸= νβ

This behavior has been observed in several experiments. The first two experiments that won
the Nobel Prize for this observation are the Super-Kamiokande [1] experiment and the Subdury
Neutrino Observatory experiment [2].

If we call the mass eigenvalues m1, m2 and m3, the current experimental measurements have
been able to measure the mass differences [13]:

∆21m
2 = m2

2 −m2
1 ≡ ∆m2

sol ≈ 7.5× 10−5eV2

∆31m
2 = m2

3 −m2
1 ≡ ∆m2

atm ≈ 2.5× 10−3eV2
, (1.40)

where the naming solar (sol) and atmospheric (atm) comes from the fact that the first one
can be measured in solar neutrino experiments and the second one in atmospheric neutrino
experiments.

Dirac neutrinos

The simplest way to introduce massive neutrinos in the SM is to assume they are Dirac fermions
like all other fundamental fermions of the SM, and add right-handed neutrino fields to the
Lagrangian. Then we can write a Dirac mass term for neutrinos through the Higgs mechanism
just like we did for the charged leptons (eq. (1.27)). We use Greek letters (e.g. να) to denote
flavor eigenstates, Latin letters (e.g. νi) to denote mass eigenstates. Summation over repeated
indices is implied.

In the ‘flavor basis’ the charged current interaction Lagrangian is

LW = − g√
2
ℓαLγ

µναLW
−
µ + h.c. , (1.41)

but the mass term will be:
Lν
m = −1

2
ν̄αLMαβν

β
R + h.c. , (1.42)

and the mass matrix Mαβ is not diagonal. This spoils the accidental symmetry of lepton number
that we had in the massless case (see section 1.1.1) because now it can only hold for the total
lepton number L = Le + Lµ + Lτ , with a transformation using a single phase for all fields:

ℓαL → eiφℓαL ℓαR → eiφℓαR ναL → eiφναL ναR → eiφναR

ℓ̄αL → e−iφℓ̄αL ℓ̄αR → e−iφℓ̄αR ν̄αL → e−iφν̄αL ν̄αR → e−iφν̄αR
for all α = e, µ, τ . (1.43)
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The flavor and mass eigenstates are related by a unitary matrix V known as the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix:νeνµ

ντ

 = V

ν1ν2
ν3

 =

Ve1 Ve2 Ve3
Vµ1 Vµ2 Vµ3
Vτ1 Vτ2 Vτ3

ν1ν2
ν3

 . (1.44)

Thus, in the ‘mass basis’ the charged current interaction Lagrangian is

LW = − g√
2
ℓαLγ

µVαkν
k
LW

−
µ + h.c. , (1.45)

and the mass term will be:
Lν
m = −1

2
ν̄kLmkν

k
R + h.c. , (1.46)

where mk are the masses of the mass eigenstates νk. The mass terms will come from the Yukawa
couplings of the Higgs just like for the other fermions mk = yνkv/

√
2. The very small masses of

neutrinos imply that the Yukawa couplings yνk are extremely small. The SM does not provide
any prediction for the Yukawa couplings of fermions, but this result is thought to be ‘unnatural’
and a hint to new physics beyond the SM [11].

1.2 Majorana neutrinos
A possible alternative to Dirac neutrinos is the Majorana neutrino.

First let us introduce the charge-conjugate field ψc of a spinor field. If we have a charged
spinor field ψ that follows the Dirac equation

(iγµ∂µ − qγµAµ −m)ψ = 0 , (1.47)

we want the charge conjugate field to follow the same equation but with opposite charge:

(iγµ∂µ + qγµAµ −m)ψc = 0 . (1.48)

It can be shown [11] that this requirement is fulfilled by the spinor field:

ψc = Cψ̄T , (1.49)

with C being a unitary matrix that must satisfy

CγµC−1 = −γµT . (1.50)

We know that Weyl spinors are massless and have two components. It is reasonable to ask
if there is a way to have a two-component spinor which is also massive. A spinor with this
property is called a Majorana spinor. Let us look again at the Dirac equation for a fermion
ψ = ψL + ψR (eq. (1.13)):

iγµ∂µψR = mψL

iγµ∂µψL = mψR

. (1.51)

The two equations are the same if
ψR = Cψ̄T

L = ψc
L . (1.52)

Equation (1.52) is called the Majorana condition. It’s easy to see that since we can write

ψ = ψL + Cψ̄T
L , (1.53)

ψ is the same as its charge conjugate ψc:

ψc = Cψ̄T
L + ψL = ψ , (1.54)

which is the defining property of Majorana fermions: they are their own antiparticles.
It is also interesting to note that this condition only makes sense for completely neutral

particles. For instance, eqs. (1.55) and (1.56):

(iγµ∂µ − qγµAµ −m)ψ = 0 , (1.55)

(iγµ∂µ + qγµAµ −m)ψ = 0 , (1.56)

can both hold for the same field only if q = 0.
So neutrinos are unique because they are the only know fundamental fermions that could be

Majorana fermions instead of Dirac.
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1.2.1 Majorana Lagrangian

Consider a massive neutrino ν = νL + νR. It should follow the Dirac Lagrangian and have a
mass term:

Lmass = −mν̄ν = −m (ν̄LνR + ν̄RνL) , (1.57)

If we impose the Majorana condition (eq. (1.52)) we get

Lmass = −m
2

(
νLν

c
L + νcLνL

)
, (1.58)

which is a mass term for a Majorana neutrino. The 1/2 avoids double-counting because νCL and
ν̄L are not independent.

We can also put this in a more convenient form

νcL =
(
Cν̄TL

)†
γ0 = νTL (γ

0)TC†γ0 = −νTLC† , (1.59)

thus the full Lagrangian for a Majorana neutrino is [11]:

LMajorana = ν̄Liγ
µ∂µνL − m

2
(−νTLC†νL + ν̄LCν̄

T
L ) . (1.60)

Lepton number for Majorana neutrinos

If we test the mass term for a Majorana neutrino under a global phase transformation

νL → eiφνL ν̄L → e−iφν̄L (1.61)

we get:

Lmass = −m
2

(
−νTLC†νL + ν̄LCν̄

T
L

)
→ −m

2

(
−ei2φνTLC†νL + e−i2φν̄LCν̄

T
L

)
, (1.62)

which clearly shows that in this case there is no lepton number conservation. If we still use the
conventional SM definition of lepton number, a Majorana neutrino can violate lepton number
by 2 units. The most famous example of this is neutrinoless double beta decay, which is a
hypothetical process that violates lepton number by 2 units and is only possible if neutrinos are
Majorana particles [14].

Intuitively, if we compare the Feynman diagrams of fig. 1.2 we can see that a Majorana
neutrino can be exchanged in the internal line of the neutrinoless double beta decay diagram,
while a Dirac neutrino cannot.

(a) Conventional double beta decay (b) Neutrinoless double beta decay

Figure 1.2: Feynman diagrams for SM double beta decay and neutrinoless double beta decay.
νm is a Majorana neutrino.
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Majorana mass for SM neutrinos

If we want to give SM neutrinos a Majorana mass term, without adding any new fields, we need
to use higher-dimensional operators. Consider the Dirac mass term of charged leptons:

mℓ̄ℓ = mℓ̄LℓR + h.c. , (1.63)

ℓ̄LℓR has weak-isospin I = 1/2 and hypercharge Y = −1, so we are able to introduce a term like
this through its interaction with the Higgs doublet that has I = 1/2 and Y = +1 in the Yukawa
term (eq. (1.22)). However, a Majorana mass for SM neutrinos would have the form:

Lmass = −m
2
νLν

c
Lh.c. , (1.64)

νLν
c
L are both left-handed, making them have a total weak-isospin I = 1 and hypercharge

Y = 2: there is no Higgs-like scalar field in the SM that has these quantum numbers. If we want
to build a Majorana mass term for left-handed neutrinos we need to use a higher-dimensional
operator [11]:

L5 =
g

M
(
LT
Lσ2ϕ

)
C† (ϕTσ2LL

)
+ h.c. , (1.65)

where M is an energy scale required to make the total energy dimension 4. This is appropriately
called L5 because it is a dimension 5 operator (recall that fields are operators in a quantum field
theory, with energy dimension ψ ∼ [E]3/2 and ϕ ∼ [E]). But we know that operators with
dimension larger than 4 are not renormalizable [15]. This would make the SM an effective field
theory that only approximates a more fundamental theory at low energies below the scale M.

An interesting thing to remark however is that a Majorana mass term is allowed for a ‘sterile’
right-handed neutrino νR which also has no weak hypercharge. This is because such neutrino is
a singlet under the SM gauge group and thus a Majorana mass term is naturally gauge invariant.

1.2.2 Sterile neutrinos

With the term ‘sterile’ neutrinos we refer to neutrinos that are not charged under any of the
SM interactions. The interest in sterile neutrinos comes from the fact that they could be the
explanation for some open questions of physics that are not explained by the SM (e.g. [4,
8]). For this reason they have been extensively studied in the last decades and a wide variety
of experiments and theoretical models have been developed to constrain their existence and
properties.

Minimal sterile neutrino model

A minimal and generic way to introduce sterile neutrinos in the SM [4], is to modify the La-
grangian by adding N right-handed neutrinos NI with I = 1, . . . ,N :

δL = NI iγ
µ∂µNI − Y ν

αILαϕ̃NI −
MI

2
N c

INI + h.c. , (1.66)

where ϕ is the Higgs doublet, Lα are the left-handed lepton doublets (α = e, µ, τ), Y ν
αI are the

Yukawa couplings that generate a Dirac mass MD
αI = Y ν

αI⟨ϕ⟩0, ϕ̃ is the conjugate of the Higgs
doublet ϕ̃ = iσ2ϕ

∗ and MI are the Majorana masses of the right-handed neutrinos. These terms
are all allowed within the SM, because the right-handed neutrinos are SU(2)L⊗U(1)Y singlets.

One generation extended model

To understand the implications of the minimally extended model, we go more in depth with
a simplified version of it3. Our simplification is assuming that there is only one conventional

left-handed active neutrino νL in the doublet L =

(
νL
ℓL

)
and one right-handed sterile neutrino

N . The Lagrangian terms that we can add to account for the sterile neutrino are

δL = N̄iγµ∂µN −mDν̄LN − mR

2
N̄ cN + h.c. . (1.67)

3A full derivation can be found in ref. [11]
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Now we introduce the vector of neutrino fields:

χL =

(
νL
N c

)
. (1.68)

The previous Lagrangian terms for mass can now be written as

Lmass = −1

2
χc
LMχL + h.c. , (1.69)

where M is the mass matrix
M =

(
0 mD

mD mR

)
. (1.70)

Now we can diagonalize the mass matrix M with a unitary matrix V :

V †MV =

(
m1 0
0 m2

)
, (1.71)

where m1 < m2 are the masses of the two neutrino mass eigenstates. The neutrino mass

eigenstates n =

(
n1
n2

)
will be related to the flavor eigenstates χL =

(
νL
N c

)
through the unitary

matrix V (also called mixing matrix):

χL = V nL =⇒ nL = V †χL . (1.72)

For simplicity, we assume that V is real4, and thus we can write it as:

V =

(
cos θ sin θ
− sin θ cos θ

)
. (1.73)

If we assume N to be ‘heavy’, i.e. mR ≫ mD we can write the mass eigenstates as

n1 ≈ νL − mD

mR
N c , n2 ≈ N c +

mD

mR
νL , (1.74)

and the mixing angle as
tan θ ≈ mD

mR
. (1.75)

This means that in the end we get:

1. a light neutrino n1 with mass m1 which is almost the same as the active neutrino νL;

2. a heavy neutrino n2 with mass m2 which is almost the same as the sterile neutrino N .

Thus, this simplified model that adds a heavy neutrino N lets us give a small mass to the active
neutrino νL.

If we substitute νL ≃ n1 +
mD

mR
N c in the Lagrangian of interaction for leptons (eq. (1.25)

and eq. (1.26)) we can see how N interacts:

Lint =
g

2
√
2
N c

mD

mR
γµ(1− γ5)ℓW+

µ +
g

4 cos θW
N c

mD

mR
γµ(1− γ5)νLZµ + h.c. . (1.76)

It’s clear that the interactions of the heavy neutrino N are strongly suppressed because of the
ratio mD/mR ≪ 1.

Heavy neutral leptons interactions with the SM

If we go through analogous steps of the previous section for the full model of eq. (1.66), assuming
that the eigenvalues of MI are much larger than the elements of MD, we reach analogous
conclusions:

1. we have three light neutrinos which are almost the same as the active neutrinos;

2. we have N heavy neutrinos which are almost the same as the sterile neutrinos.
4The full matrix should also have some complex phases, but for our heuristic discussion they are not important.
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Note that from now on for simplicity we will refer to the heavy neutrino states as HNLs. The
interactions of these HNLs are similar to the ones of active neutrinos (eqs. (1.25) and (1.26)):

Lint =
g

2
√
2
N c

I

∑
α

V ∗
α γ

µ(1− γ5)ℓαW
+
µ +

g

4 cos θW
N c

I

∑
α

V ∗
α γ

µ(1− γ5)ναZµ , (1.77)

but with a suppression factor Vα =MD
αIM

−1
I ≪ 1.

It can be shown that when HNLs are not degenerate in mass, they are produced and decay
independently and do not oscillate between themselves. So to describe the phenomenology of
HNLs, it is sufficient to use 1 HNL, which only requires 4 parameters: its mass, which we refer
to as mN , and its 3 couplings, which we refer to as Vα(α = e, µ, τ) [16].

1.3 Heavy Neutral Leptons in hadronic machines
In hadronic machines, where we typically have a proton-nucleus collision or a proton-proton
collision, there are three main processes that can produce HNLs:

1. HNL from decays of hadrons;

2. HNL from deep inelastic scattering of protons on nucleons;

3. HNL from coherent proton-nucleus scattering;

Ref. [16] reviews how significant each of these processes is for HNL mass 0.5 GeV ≲ mN ≲ 5 GeV.
Here we will briefly summarize some main results.

1.3.1 Production from hadron decays
The first thing that we must consider is that the main channels of production must be the ones
from the lightest hadrons of each flavor. This is because:

• they decay only through the weak interaction;

• they have a small decay width, that makes sterile production more efficient;

other hadrons will be dominated by strong interactions.

Baryon vs meson production

Production from baryons is usually less relevant than from mesons because:

• because of baryon number conservation, a baryon decay must always include in the final
state a proton or neutron (or heavier baryon) which will inevitably reduce the kinematical
window for a HNL by at least ∼ 1GeV;

• since baryons are fermions, they must decay to three or more particles to be able to produce
a HNL (while mesons can have purely leptonic 2-body decays).

For instance, if we consider the lightest baryon of a given flavor decaying into a final state with
a HNL, the HNL with the highest mass that can be produced is lighter than the one produced
by the lightest meson of the same flavor [17].

HNLs can be produced in meson decays via a 2-body leptonic decays (fig. 1.3 left) or a
semileptonic decay (fig. 1.3 right).

Light unflavored and strange mesons

The relevant mesons are:

π+(ud̄ 140 MeV) , K+(us̄ 494 MeV) , K0
S(ds̄ 498 MeV) , K0

L(ds̄ 498 MeV) .

(the neutral pion decays almost exclusively to photons). The pion is the lightest meson and
thus can only decay to a HNL through a 2-body leptonic decay π+ → ℓ+N . The kaon can also
decay through a 3-body decay K+ → π0ℓ+N and K0

L/S → π−ℓ+N . The resulting branching
fractions are shown in fig. 1.4.

These channels are relevant if the HNL mass is mN ≲ 400 MeV. An interesting thing to note
is that the branching fractions in fig. 1.4 can reach values higher than 1. This is because with a
massive neutrino, there is an enhancement effect compared to a massless neutrino (it’s ‘easier’
to produce a particle with helicity opposite to its chirality if it is very massive).
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Figure 1.3: Meson decays that can produce HNLs. Left: 2-body leptonic decay. Right: semilep-
tonic decay.

Figure 1.4: Decay width of light mesons into HNL related to the total measured decay width.
This is built by taking Ve = 1 and Vµ = Vτ = 0. Taken from Ref. [16].

Charmed mesons

The relevant mesons are:

D0(cū 1865 MeV) , D+(cd̄ 1870 MeV) , Ds(cs̄ 1968 MeV) .

D0 is neutral and cannot decay with a 2-body purely leptonic decay. Because of the CKM matrix,
the most favored decay is to kaons (|Vcd| ≃ 0.22|Vcs|). This means that for these channels the
sterile mass is limited to mN < mD − mK ≈ 1.4 GeV. On the other hand, the D+ and Ds

mesons can decay through a 2-body leptonic decay and thus can produce a sterile neutrino with
mass almost equal to their own. The resulting branching fractions are shown in fig. 1.5.

The plot shows that the branching fractions for the Ds 2-body decay are the highest: this
makes it a promising channel for the search of HNLs. The decay channel D+

s → µ+N is precisely
the decay channel that is studied in this thesis work (see chapter 3).

Figure 1.5: Branching ratio of charmed mesons into HNL. This is built by taking Ve = 1 and
Vµ = Vτ = 0. Taken from Ref. [16].

Bottom mesons

The relevant mesons are:

B−(bū 5279 MeV) , B0(bd̄ 5280 MeV) , Bs(bs̄ 5367 MeV) , Bc(bc̄ 6276 MeV) .
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Just like we have said for the D0, B0 and Bs decay with a 3-body decay with a final state meson.
The decay favored by the CKM matrix is the one to D mesons (|Vub| ≃ 0.1|Vcb|). This means
that for these channels the sterile mass is limited to mN < mB −mD ≈ 3.4 GeV. The charged
mesons B− and Bc can decay through a 2-body leptonic decay and thus can produce a HNL
with mass almost equal to their own. The resulting branching fractions are shown in fig. 1.6.

Figure 1.6: Branching ratio of bottom mesons into HNL. This is built by taking Ve = 1 and
Vµ = Vτ = 0. Taken from Ref. [16].

1.3.2 Other production channels
Deep inelastic scattering

Figure 1.7: Production channels for HNLs. a) Drell-Yan process, b) gluon fusion, c) quark-gluon
fusion.

The possible Feynman diagrams involved in this process are shown in fig. 1.7. These chan-
nels turn out to be strongly suppressed compared to production from meson decay [16]. To
understand this intuitively, consider the center of mass energy in the parton-parton frame:

sq̄q′ = sx1x2 , (1.78)

where x1 and x2 are the momentum fractions of the partons and s is the center of mass energy of
the proton-proton collision. The parton distribution function (PDF) is defined as the probability
of finding a parton with momentum fraction x in a proton. At high energies, the PDF is strongly
peaked at small x and decreases rapidly for larger x. This means that the center of mass energy
in the parton-parton frame is small and thus the production of a HNL is suppressed.

Coherent proton-nucleus scattering

These processes may be enhanced by using heavy nuclei with large Z and by the fact that
there is a large center of mass energy. However, they turn out to be subdominant compared to
production from meson decay [16].

Tau lepton decays

A promising channel is the τ decay of τ → NX and if X hadronizes into charged pions or
kaons, mass and energy reconstruction can be very precise [5]. It is very important because the
constraints on |Vτ | are much weaker than the ones on |Ve| and |Vµ| (see section 1.4).
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1.3.3 Sterile neutrino decays

As we can understand by looking at the interaction terms of the HNL (eq. (1.77)), the Feynman
diagrams involved in the HNL decay are those in fig. 1.8. This means that we can have purely
leptonic decay or semileptonic decays. In the case of quarks in the final state their hadronization
process must be taken into account.

Figure 1.8: Feynman diagrams for the decay of a HNL; a) is charged-current decay,
b) is neutral-current decay. U and D refers to any up-like or down-like fermion (quark or lep-
ton), while f refers to any fermion.

Figure 1.9 shows the branching ratios of HNL decays into neutrinos, leptons and hadrons.
An important thing we can notice is that semileptonic decays quickly become prevalent when
mN ≳ mπ.

Figure 1.9: Branching ratios of HNL decays, assuming Ve : Vµ : Vτ = 1 : 1 : 1. Left is
mN < 1 GeV and right is 1 GeV < mN < 5 GeV [16].

Another aspect to be considered is that quarks could hadronize into a single meson or
multi-hadron states. Figure 1.10 shows that multi-hadron states are more than 50% when
mN ≳ 2 GeV.

Figure 1.10: HNL decay widths into single meson channels, divided by the total decay width
into quarks with QCD corrections [16].
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1.4 Search for Heavy Neutral Leptons
Experimental searches have been performed in several experiments, but no evidence of HNLs
has been found so far. Ref. [5] contains a review of the experimental searches and limits on
HNLs. Different kinds of experiments can deal with different ranges of masses and mixing
parameters. We mainly focus on the mass range 0.1 GeV ≲ mN ≲ 500 GeV and briefly mention
other searches. Figure 1.11 shows the current constraints on the mixing angle |Ve| as a function
of the HNL mass mN from different experiments, fig. 1.12 shows the same for |Vµ| and fig. 1.13
for |Vτ |.

Neutrino oscillation experiments
Neutrino oscillation experiments, both on solar or atmospheric neutrinos and on neutrinos from
reactors and beams, combined with cosmological data, virtually exclude the existence of sterile
neutrinos with masses below ∼ 1 eV (see for instance refs. [18, 19]).

Neutrino-less double beta decay
Strong constraints on the mN−|Ve| plane can be obtained from the current limits on lifetime
of neutrino-less double beta decay of experiments like KamLAND-Zen and GERDA (see for
instance ref. [20, 21]).

1.4.1 Peak searches
Peak searches in the decays of mesons are very powerful probes. Figures 1.11 and 1.12 show that
very stringent constraint can be obtained in the mass range 0.1 GeV ≲ mN ≲ 0.5 GeV. These
constraints come from the 2-body decays of pions and kaons mentioned in section 1.3.1. For a
decay X → ℓN , in the rest frame of the decaying particle X, we have, due to energy-momentum
conservation:

Eℓ =
M2

X +m2
ℓ −m2

N

2MX
, (1.79)

so there should be a peak in the energy spectrum of ℓ, other than the one already present for
the known active neutrino. These limits are shown in the pictures with labels X → ℓν.

Less stringent limits that are based on peak searches are the ones of the Belle experiment.
These are based on the decay B → XℓN where the Bs are produced by the Υ(4S) resonance
[22]. Figure 1.13 also shows projected limits based on using large datasets of τ decays from
B-factories [23].

All these bounds have minimal assumptions and are based almost exclusively on kinematical
constraints, which makes them very robust [5].

1.4.2 Beam dump experiments
Figures 1.11 to 1.13 show limits coming from beam dump experiments: PS191, CHARM, IHEP-
JINR, BEBC, FMMF, NuTeV and NOMAD with the corresponding labels. These searches are
based on searching for HNLs produced by mesons that subsequently decay into some kind of
visible final state. The products are searched by placing the detector at relatively large distances
away from the target, to allow the HNL to decay before reaching the detector [5]. The limits
labelled as ‘LBNE’ refer to projected limits calculated for the future DUNE experiment [24].
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Figure 1.11: Constraints on the mixing angle |Ve| as a function of the HNL mass mN from
different experiments. Taken from Ref. [5].

Figure 1.12: Constraints on the mixing angle |Vµ| as a function of the HNL mass mN from
different experiments. Taken from Ref. [5].

Figure 1.13: Constraints on the mixing angle |Vτ | as a function of the HNL mass mN from
different experiments. Taken from Ref. [5].
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1.4.3 Electroweak based searches
Direct search in Z decays

Direct search for sterile neutrinos in Z decays consists in looking for the decay Z → νN where
N is a HNL (this is only possible if mN < mZ). N will then decay either in a neutral current
or in a charged current process:

N → Z∗ν Z∗ → ℓℓ, νν, qq (NC)
N →W ∗ℓ W ∗ → ℓν, qq′ (CC)

. (1.80)

Figures 1.11 to 1.13 show the limits based on this process that have been calculated for the LEP
experiments DELPHI and L3 [25, 26] with labels ‘DELPHI’ and ‘L3’. The future experiment
FCC-ee [27] could provide new very strong constraints, that are shown in the figures with the
label ‘FCC-ee’.

Electroweak precision tests

Figures 1.11 to 1.13 under the label ‘EWPD’ show limits based on precision measurements on
various EW observables, such as Z invisible decay width, unitarity of leptonic mixing matrix,
lepton universality [5].

1.4.4 Collider direct searches
Direct searches at LHC experiments ATLAS and CMS are shown in Figures 1.11 and 1.12 under
the label ‘ATLAS’ and ‘CMS’. The limits shown are based on a set of data from a

√
s = 8 T eV

run [28, 29]. The final states under consideration are dilepton plus jets, that can come from:

pp→W ∗ → Nℓ± → ℓ±ℓ±jj . (1.81)

This channel is very significant because of the possibility of same sign leptons in the final state
which would be a strong evidence of the existence of HNLs, because of the violation of lepton
number conservation [5]. A compilation of experimental limits on the mixing angles |Vα| is
provided by the Particle Data Group (PDG) [30]. Several more recent results by the CMS are
also available (see for instance [31, 32, 33, 34, 35]) that are not present in the aforementioned
review.

1.5 Theoretical inputs for the HNL search from Dsdecays
This thesis work is focused on the search for HNLs from the decay of D+

s mesons. In particular,
the decay channel under consideration is D+

s → µ+N followed by N → µπ, where N is a
HNL. As discussed in section 1.3.1, the D+

s → µ+N has the highest branching ratios among
the charmed mesons. The theoretical predictions on the branching ratios of the decay channel
under consideration is necessary for the signal yield estimation, discussed in section 3.1.1. In
this study, we make no assumption about the Majorana or Dirac nature of such neutrino and
look for both same sign and opposite sign signatures.

The branching fraction of the D+
s → Nµ+ decay can be obtained by dividing the width

of this channel by the total decay width of the D+
s meson. The width of this channel can be

computed using the following equation for a generic meson h [16]:

Γ (h→ ℓαN) =
G2

F f
2
hm

3
h

8π
|VUD|2|Vα|2

[
y2N + y2ℓ − (y2N − y2ℓ )

]√
λ (1, y2N , y

2
ℓ ) , (1.82)

where GF is the Fermi constant, fh is the meson form factor, VUD is the Cabiaboo-Kobayashi-
Maskawa matrix element associated to the valence quarks of the meson, Vα is the mixing between
the HNL and the active neutrino, yℓ = mℓ/mh, yN = mN/mh are defined from the masses of
the lepton (mℓ), the meson (mh), and the HNL (mN ). λ is the Källén function defined as:

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc . (1.83)

The total decay width of the D+
s is obtained from its lifetime as

Γ(D+
s ) =

ℏ
τ(D+

s )
. (1.84)
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The branching fraction of the N → µπ decay can be obtained by dividing the width of this
channel by the total decay width of the HNL. The width of this channel can be computed using
the following equation [16]:

Γ (N → ℓαh) =
G2

F f
2
h |VUD|2|Vα|2m3

N

16π

[
1− x2ℓ − x2h

(
1 + x2ℓ

)]√
λ (1, x2ℓ , x

2
h) , (1.85)

where fh is the final state meson form factor, xℓ = mℓ/mN , xh = mh/mN .
The total width of the HNL is computed from the equation [15]:

ΓN =
G2

Fm
5
N

96π3
|Vµ|2 × (10.95) . (1.86)

In all computations above, the required constants are taken from their values reported on
the PDG review of particle physics [13].
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Chapter 2

The Large Hadron Collider and
CMS experiment

2.1 The Large Hadron Collider at CERN

The Large Hadron Collider (LHC) is the largest and highest-energy particle accelerator in the
world. It is installed in an underground tunnel of 27 km circumference, located at the CERN
laboratory in Geneva, Switzerland. Two beam pipes run through the tunnel in opposite direc-
tions, carrying two beams of protons or heavy ions. The particles inside the beam pipes are
accelerated by radio-frequency cavities and guided by superconducting magnets. The beams are
made to collide at four points along the ring, where the main experiments are located:

• ALICE: A Large Ion Collider Experiment focused on the study of heavy-ion collisions;

• ATLAS: A Toroidal LHC ApparatuS a general-purpose detector;

• CMS: Compact Muon Solenoid a general-purpose detector;

• LHCb: Large Hadron Collider beauty focused on heavy flavor physics.

In order to accelerate the particles, the LHC uses a chain of smaller accelerators, which
progressively increase the energy of the beams before injecting them into the main LHC ring.
Figure 2.1 shows the CERN accelerator complex and some other experiments at CERN that use
the same accelerator chain. The different stages for a beam of protons are:

• extraction from hydrogen gas;
• LINAC4 linear accelerator;
• Proton Synchrotron Booster (PSB);
• Proton Synchrotron (PS);
• Super Proton Synchrotron (SPS);
• injection into the LHC.

For a beam of lead ions,

• vaporization of lead;
• LINAC3 linear accelerator;
• Low Energy Ion Ring (LEIR);
• injection into the PS;

and then the same stages as the protons.
The most important figures for a particle accelerator are the luminosity and the center of

mass energy. The instantaneous luminosity Linst(t) is proportional to the rate of events dN/dt
through the cross-section σ:

dN

dt
= σLinst(t) , (2.1)
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Figure 2.1: The CERN accelerator complex, from Ref. [36].

and the number of events Ntot is the integration of this relation over a specific time interval

Ntot = σ

∫ t2

t1

L (t)dt = σLint (2.2)

where Lint is called integrated luminosity.
In the assumption of a perfectly head-on collision, the center of mass energy

√
s is related

to the energy of the colliding particles E1 and E2 by
√
s = 2

√
E1E2 , (2.3)

and it is a measure of the maximum energy available for the production of new particles in the
collision. In its Run-1, from 2010 to 2013, the LHC has reached peak values of instant luminosity
of Linst = 7×1033 cm2s−1 with a center of mass energy of

√
s = 8 TeV [37]. In its Run-2, from

2015 to 2018, it has reached peak values of instant luminosity of Linst = 2×1034 cm2s−1 with a
center of mass energy of

√
s = 13 TeV [38]. The center of mass energy of the LHC is limited by

the maximum magnetic field that can be produced by the superconducting magnets that guide
the particles along their trajectory. The relation between the momentum p of a proton and the
radius R of its trajectory is:

p[GeV/c] ≃ 0.3×B[T]R[m] , (2.4)

thus with a radius of R = 2804 m fixed by the geometry of the tunnel and a maximum magnetic
field of B = 8.33 T the maximum momentum that can be theoretically achieved by a proton is
p ∼ 7 TeV/c. Producing such a high magnetic field requires the use of superconducting NbTi
dipole magnets cooled down to ∼ 2 K [39].

2.2 The CMS detector
The Compact Muon Solenoid (CMS) detector is a general-purpose detector located at one of
the collision points of the LHC. Its goal is studying a wide range of physics processes, from the
Higgs boson to the search for new physics beyond the SM. Its design is based on a cylindrical
geometry, centered around the interaction point, with several layers of sub-detectors that allow
to reconstruct the properties of the particles produced in the collisions [40]. Figure 2.2 shows a
general view of the CMS detector and its sub-detectors. The main components, from innermost
to outermost, are:

28



CHAPTER 2. THE LARGE HADRON COLLIDER AND CMS EXPERIMENT

Figure 2.2: General view of the CMS detector and its sub-detectors, from [41].

• the tracking system, which allows to reconstruct the trajectories of charged particles;

• the electromagnetic calorimeter, which measures the energy of electrons and photons;

• the hadronic calorimeter, which measures the energy of hadrons;

• the superconducting solenoid;

• the muon system, which allows to reconstruct the trajectories of muons.

When dealing with cylindrical detectors, it is customary to distinguish between the barrel region,
which is the central region of the detector, and the endcap region, which is the region at the
two ends of the cylinder.

Coordinate system

The coordinate system used in CMS is a right-handed Cartesian system, with the origin at
the nominal interaction point. The x axis points towards the center of the LHC ring, the y
axis points upwards, and the z axis points along the beam direction. The azimuthal angle ϕ is
measured in the x− y plane and ranges from −π to π. The polar angle θ is measured from the
z axis and ranges from 0 to π. For practical reasons, the pseudorapidity η is often used instead
of θ, defined as η = − ln tan(θ/2) and ranges from −∞ to +∞. Figure 2.3 shows a schematic
view of the CMS coordinate system. When referring to the transverse plane, we mean the
plane perpendicular to the beam direction, described by a set of two coordinates (x, y) or (r, ϕ),
where r is the distance from the beam axis. The transverse momentum pT is the momentum
of a particle projected onto the transverse plane, and the transverse energy ET is defined as
ET =

√
m2 + p2T [40].

Figure 2.3: Schematic view of the CMS coordinate system.
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2.2.1 The tracking system
The tracking system is the closest sub-detector to the interaction point, and it is designed to
measure the trajectories of charged particles and reconstruct the vertices of the collisions. It
has two main components: the pixel detector and the silicon strip tracker.

The pixel detector is the innermost component, and as such it requires a very high granularity
to cope with the high particle flux. The current pixel detector has been installed in 2017 during
the Phase-1 upgrade to replace the original one, which was installed in 2008. It is composed of
four concentric layers in the barrel region and three disks in each endcap region, for a total cover-
age of |η| < 2.5. The concentric layers are located at a radial distance of 2.9, 6.8, 10.9, 16.0 cm
from the beam axis while the disks on each end are located at 29.1, 39.6, 51.6 cm from the
center of the detector [42]. The layout of the current pixel detector, as well as the original one,
is shown in fig. 2.4.

Figure 2.4: Layout of the CMS pixel detector, with a comparison between the old and the new
detector.

The pixel detector is built from 1184 modules in the barrel region and 672 modules in the
endcap region. Each module is composed of a silicon sensor and 16 readout chips. The pixel
size is 100× 150 µm2. The pixel layers provide 3-D measurements of the hits on their sensors,
where two coordinates are given by the position of the hit on the sensor plane and the third is
provided by the position of the sensor plane itself. The resolution on individual hits is ∼ 10 µm
in the transversal plane, and ∼ 20 µm in the z direction [42].

The silicon strip tracker is outside the pixel detector, and it is composed of four subsystems:
the Tracker Inner Barrel (TIB), the Tracker Inner Disks (TID), the Tracker Outer Barrel (TOB),
and the Tracker EndCaps (TEC). The TIB and TID are composed of four barrel layers and three
disks respectively, positioned in a radial distance range of 20 cm < r < 55 cm. The TOB is
positioned outside the TIB/TID system, and it is composed of six barrel layers, extending the
coverage up to a radial distance of 116 cm. The TIB, TID, and TOB are in a z range of
|z| < 118 cm. Outside this range, we have the TEC. The TEC is composed of nine disks, and
it covers the z range of 124 cm < |z| < 282 cm. The total coverage of the silicon strip tracker
in η is |η| < 2.5 [40]. The layout of the full pixel and strip tracker is shown in fig. 2.5.

The silicon strip detector is built from a total of 15 148 modules divided among the four
subsystems. Each module carries one thin (320 µm) or two thick (500 µm) silicon sensors.
The sensors on the modules have different geometries depending on the subsystem, with typical
dimensions of about 6×12 cm2 in the inner barrel and 10×9 cm2 in the outer barrel. The strip
pitch is different for each subsystem, and ranges from ∼ 100 µm to ∼ 180 µm. The strip layers
provide 2-D measurements of the hits on their sensors but some layers (shown in blue in fig. 2.5)
have back-to-back modules with a shift in the stereo angle, which allows 3-D measurements.
The resolution on individual hits on the r − ϕ plane for the barrel part is ∼ 20− 30 µm for the
TIB/TID and ∼ 30− 50 µm for the TOB [40].
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Figure 2.5: Layout of the full tracker system of the CMS experiment. The pixel detector layers
shown in the picture are not updated to the Phase-1 upgrade. The collision point is indicated
by a star. Green dashed lines separate the different subsystems. Black lines indicate layers that
provide 2−D hits, while the blue lines layers that provide 3−D hits. The picture is taken from
Ref. [43].

2.2.2 The electromagnetic calorimeter
The electromagnetic calorimeter of CMS (ECAL) is a hermetic and homogeneous calorimeter. It
consists of 61 200 lead tungstate (PbWO4) crystals, which cover the barrel region with |η| < 1.48
and 7 324 crystals in each of the endcap regions with 1.48 < |η| < 3.00. The length of the crystals
in the barrel region corresponds to 25.8 radiation lengths (X0) and 24.7 X0 in the endcap region.
Preshower detectors are located in front of each endcap crystals. The preshower detectors consist
of two planes of silicon sensors interleaved with lead, and its thickness corresponds to 3X0. These
preshower detectors are important for distinguishing between single photons and neutral pions,
which decay into two photons. The main purpose of the ECAL is to measure the energy of
electrons and photons. The energy deposited in the ECAL crystals is detected in the form of
scintillation light by avalanche photodiodes (APDs) in the barrel and by vacuum phototriodes
(VPTs) in the endcaps [40].

The crystals of the barrel region are contained in thin-walled structures, called submodules,
which are of different shapes and sizes depending on the position in the detector. The submodules
are arranged into modules, with a total of 400 or 500 crystals each, and the modules are arranged
into groups of 4 called supermodules. On the other hand, crystals in the endcap region are
grouped into 5 × 5 called supercrystals. Each endcap is divided into two halves, called Dees,
which are built from 138 supercrystals (and 18 partial supercrystals) each. All modular units
are placed in quasi-projective geometry, to minimize the possibility of particles passing through
the gaps between the crystals: the axis of the crystals forms a small angle (3◦) with respect
to the vector pointing to the nominal interaction point [40]. The layout of the ECAL and its
modular units are shown in fig. 2.6.

The barrel region crystals have a front face of 22× 22 mm2, a rear face of 26× 26 mm2, and
a length of 230 mm. The endcap region crystals have a front face of 28.62× 28.62 mm2, a rear
face of 30× 30 mm2, and a length of 220 mm. PbWO4 has a density of 8.28 g/cm3, short X0 of
0.89 cm, and a small Molière radius of 2.2 cm. This allows having a compact calorimeter with
fine granularity.
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Figure 2.6: Layout of the CMS ECAL, with each modular unit that composes it.

2.2.3 The hadron calorimeter

The hadron calorimeter system of the CMS detector is designed to measure the energy of hadrons
jets and is important for its contribution to the measurement of the missing transverse energy.
It is composed of four subsystems: the Hadron Barrel (HB), the Hadron Endcap (HE), the
Hadron Outer (HO), and the Hadron Forward (HF) calorimeters [44, 40].

The HB is a sampling calorimeter that covers the range |η| < 1.4. It is composed of 36
wedges, made of passive absorber layers interleaved with active plastic scintillator layers. The
first and last layer of the absorber are made of steel plates for structural support, and the rest
of the absorber is made of brass. In terms of interaction lengths (λI), the HB has a depth of
5.82 λI at η = 0 and 10.6 λI at η = 1.3. The active part of the calorimeter uses scintillator tiles
and wavelength shifting fibers to collect the light. The HB is divided into two half-barrels along
the z axis, and each half-barrel is divided into 18 azimuthal wedges, thus each wedge covers a
∆ϕ of 20◦. The HB has ∼ 40 000 scintillator tiles, that are grouped together into megatiles to
limit the number of individual elements. Each megatile covers a ∆ϕ of 5◦ and is divided into 16
|η| sectors. Clear fibers are used to collect the light and transport it hybrid photodiodes (HPDs)
for readout.

The layout of the HB and other hadron calorimeters is shown in fig. 2.7.

Figure 2.7: Layout of the CMS hadron calorimeter subsystems.

The HE is an endcap continuation of the HB, and it covers the range 1.3 < |η| < 3.0. It is a
calorimeter with the same sampling structure of the HB i.e. passive brass absorber interleaved
with active scintillator tiles. The total length of the calorimeter, including the electromagnetic
calorimeter in front of it, is about 10 λI . It is divided into 18 sectors in ϕ, each covering 20◦.
The scintillator plates on either side are divided into 14 |η| sectors. Like the HB the light is
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collected by clear fibers and transported to HPDs for readout.

The HO is located in the central barrel region outside the solenoid magnet, and it is designed
to measure the energy of the hadrons that are not contained by the stopping power of the EB
and HB. The HO is physically constrained because it is placed between the solenoid and the
magnet return yoke. The iron of the magnet return yoke and the solenoid itself serve as the
absorber material, and the active part is composed of scintillator tiles. The HO is divided into
5 rings along z, and each ring is divided into 12 sectors in ϕ. It covers the range |η| < 1.26, and
it extends the length of the calorimeter system to a minimum of 11.8 λI in the central region.
The light is carried to silicon photomultipliers (SiPMs) for readout.

The HF is located in the forward region on either side, ∼ 11 m away from the interaction
point. It is designed to measure the energy of hadrons in the very harsh radiation environment
of the forward region. Each HF module is composed of 18 wedges of steel with quartz fibers
embedded in them. Unlike the other subsystems, the HF detects the Cherenkov light produced
by the particles in the quartz fibers. Half of the fibers run over the full length of the module,
while the other half only begin after the first 22 cm. The different fibers are read out separately
and this arrangement makes it possible to distinguish between electromagnetic, which deposit
a significant fraction of their energy in the first 22 cm, and hadronic showers, which penetrate
deeper into the absorber. The HF covers the range 2.85 < |η| < 5.19, the full absorber length
along z is 165 cm which is ∼ 10 λI .

2.2.4 The Muon system

Other than identifying muons and measuring their momentum, the muon system is also one of
the most important components for the trigger system of CMS. It is composed of three different
types of gaseous detectors: Drift Tubes Chambers (DTs), Cathode Strip Chambers (CSCs), and
Resistive Plate Chambers (RPCs). The DTs cover the region |η| < 1.2, the CSCs cover the
region 0.9 < |η| < 2.4, and the RPCs cover the region |η| < 1.8. The layout of the muon system
is shown in fig. 2.8.

The DTs are organized in 4 stations of concentric cylinders divided into 5 ‘wheels’ along the
z axis. The three inner stations are composed of 60 chambers, while the outermost station is
composed of 70 chambers. There are 12 sectors in ϕ (following the geometry of the yoke) for
each station. The main unit of the DT is a superlayer (SL): the outermost chambers in the 4th
station have 2 SLs, while the chambers in the inner stations have 3 SLs. The SLs are composed
of 4 layers rectangular drift cells, staggered by a half-cell. For DT chambers with 3 SLs, the two
outer SLs have a wire parallel to the beam axis, which allows measurements on the transverse
plane, while the inner SL has a wire perpendicular to the beam axis, thus providing full 3-D
measurements of the muon position. The wire chambers are filled with a gas mixture of 85%
Ar, 15% CO2.

The CSCs system is meant to be the CMS endcap muon system. It is composed of 540
trapezoidal chambers, arranged in four stations that have approximately the same z position.
In each station the chambers are placed to form rings at different radial distances from the beam
axis, and each chamber covers 10◦ or 20◦ in ϕ. The CSCs are multiwire proportional chambers,
composed of 6 layers of anode wires interleaved with 7 cathode strips panels. The cathode strips
run radially, at a constant δϕ width, and the anode wires run along the ϕ direction. Since
the strip and wire directions are orthogonal, the CSCs provide 2-D measurements of the muon
position. The CSCs are filled with a gas mixture of 40% Ar, 50% CO2, and 10% CF4.

The RPC system is used to provide a fast trigger signal for the muon system. The RPCs of
the barrel part are arranged in 4 concentric stations, that are divided into 12 sectors in ϕ. For
the two stations closest to the interaction point, two layers of RPCs are placed with the DTs in
between, while for the two outermost stations, two layers of RPCs are placed side by side on the
innermost side of the DTs. The RPCs of the endcap part are arranged in 3 disks. The endcap
RPCs have a trapezoidal shape, to match the geometry of the CSCs, and they cover 10◦ or 20◦

in ϕ. The CMS RPC modules are double-gap RPCs: each module is composed of two gas gaps
operated in avalanche mode, with a common pick-up strip in between. The gas mixture used in
the RPCs is 96.2% R134a (C2H2F4), 3.5% iC4H10, and 0.3% SF6.
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Figure 2.8: Layout of the CMS muon system, from Ref. [45].

2.3 The CMS trigger system and B-parking dataset

The CMS physics program ranges over a wide variety of physics processes. Since the discov-
ery of the Higgs boson [46, 47], measurements of its properties have become one of the main
goals, together with precision measurements of the SM properties in the sectors of electroweak
interactions, quantum chromodynamics, top quarks, and the search for new physics beyond the
SM.

The LHC collides bunches of particles with a maximum rate of ∼ 40 MHz, meaning bunches
collide every 25 ns. At the design luminosity of 1034cm−2s−1, the proton-proton interaction
frequency is more than 1 GHz. Of all collisions that take place, only a small fraction contains
interesting physics processes for the CMS experiment, and for practical reasons, only a small
fraction of these interesting events can be stored for further analysis. The purpose of the trigger
system is to select the interesting events and bring the rate of events down to a level that can
be stored and analyzed.

2.3.1 The CMS trigger system

The CMS trigger system has two levels [48]: the Level-1 (L1) trigger system and the High-Level
Trigger system (HLT). The L1 trigger selects up to around 100 kHz of the most interesting
events with a latency of 4 µs. The HLT performs a more detailed analysis of the events selected
by the L1 trigger, reducing the rate to a few kHz with a latency of ∼ 100 ms.

The L1 trigger

The L1 trigger is hardware-based, and it provides coarse information about the events by using
the signals from the calorimeters and the muon system. The selections are based on a set of
algorithms called ‘seeds’, that check that a given criterion is satisfied. A collection of seeds is
called ‘menu’, and the menu is updated regularly to adapt to the changing conditions of the
detector and the different physics goals of the experiment.

When an event satisfies the conditions of at least one seed in a menu, it is passed in the trigger
chain for further analysis. This step initiates a readout of the full event from the detector’s data
acquisition system, and the information of event is then sent to the HLT.

The trigger algorithms are usually based on criteria applied to one or more physics objects:
muons, jets, tau leptons, photons, electrons, sum of transverse energy, or also a combination
of different objects. The criteria are typically contraints on the objects pT , ET or η or some
combination of them. These criteria are meant to be a first selection of the most interesting
events: a typical interesting event contains some relatively high-pT objects in the barrel region,
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while most of the events have low-pT objects in the forward regions. As an illustrative example,
fig. 2.9 shows how the L1 trigger rate was allocated to various object seeds in a Run-2 menu.

Figure 2.9: Fractions of the 100 kHz L1 trigger rate allocated to various single and multi-object
triggers and cross triggers in a typical Run-2 menu.

An important concept in the trigger system is the prescale. The prescale is a factor that is
used to reduce the rate of a trigger. It is indicated by a positive integer N , and it means that
only one out of every N events that satisfy the seed condition is actually accepted. A prescale
column is a set of prescales applied to each seed of a trigger menu. The prescale columns are
updated depending on the instantaneous luminosity, in a way that maximizes the efficiency of
the trigger system while also keeping the rate under the maximum manageable value of 100 kHz.

The following paragraphs briefly summarize the workflow of the L1 trigger [49].
The calorimeter trigger has two levels: Layer-1 receives the energy deposits from the calorime-

ters calibrates and sorts them, and then sends the information to Layer-2; Layer-2 uses the
information to reconstruct physics objects such as electrons, photons, jets, and energy sums.

Electrons and photons are indistinguishable at the L1 trigger level, because no tracking
information is available yet. The electron/photon candidates are built by looking for energy
clusters in the ECAL+HCAL energy deposits around a ‘seed’ with energy threshold of ET >
2 GeV. This same clustering technique is used for tau lepton candidates.

For jets, the L1 trigger uses a ‘sliding window’ technique, which spans the full η − ϕ space
in 3 × 3 calorimeter regions. If the central region of the 3 × 3 matrix has ET higher than the
eight neighbors, and above a certain threshold, the region is flagged as a jet candidate.

The muon trigger system has three muon track finders (MTF): the barrel muons (BMTF),
the DT-CSC overlap muons (OMTF) and the endcap muons (EMTF). The trigger primitives
from the muon system are used to build muon track candidates. Each MTF uses a different
algorithm that is optimized for the specific region of the muon system it covers. Each MTF
sends up to 36 muon candidates to the Global Muon Trigger (GMT), which then selects the 8
best candidates.

The final L1 trigger decision is made by the Global Trigger (GT), which receives the muon
and calorimeter objects and executes the selection based on the trigger menu. A diagram of the
L1 trigger workflow is shown in fig. 2.10.

The HLT

The HLT consists of a farm of processors running high-level physics algorithms, which are based
on a simplified version of the ones used for the offline reconstruction, with an output rate around
1kHz. The HLT menu is divided in different paths, and each path corresponds to a sequence
of reconstruction and filtering modules that can rely on information from all the sub-detectors,
including the tracker system. The modules within a path are ordered in increasing complexity,
so that if the first module in a path fails, the rest of the path is not executed. The HLT can also
use the ‘regionality’ of the detector to reduce the computing time, by considering only regions
around the previously selected L1 objects. The final trigger decision is the logical OR of the
decisions of the different paths. The trigger rate of the HLT can also be reduced with prescales,
like the L1 trigger. When an event passes the HLT selection, it is stored and further processed
at CERN Tier-0 center, to produce the reconstructed objects (described in section 2.4).
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Figure 2.10: Diagram of the CMS L1 trigger system during Run-2.

2.3.2 The Data parking strategy

For the usual core physics program of CMS, data streams are promptly reconstructed at the
CERN Tier-0 data center, and available for analysis within 48 hours. However, a new data-taking
strategy was devised by the CMS experiment called ‘data parking’: this strategy allows storing
events that pass the HLT selection directly to tape storage, without prompt reconstruction.
Removing the need for prompt reconstruction also allows recording more than the usual 1 kHz
of physics events. The rate is only constrained by the bandwidth of the CMS data acquisition
system and the amount of tape storage space [50].

In particular, a dedicated stream called ‘B-Parking’, allowed to record a large unbiased
sample of b hadron decays in the 2018 data-taking period at

√
s = 13 TeV [6].

The 2018 B-parking dataset

The trigger strategy of the 2018 B-Parking dataset is designed to record a large unbiased sample
of b hadron decays, exploiting the fact that in proton-proton collisions at the LHC, b hadrons
are often produced in pairs. The trigger targets the muon coming from semi-leptonic decays of b
hadrons, that are typically produced as low-pT non-prompt muons, since b hadrons usually have
a significant travel distance of ∼ 0.1 − 0.5 mm before decaying. The b hadron that produces
the trigger muon is called ‘tag’, and the other b hadron (which is usually produced in the same
event) is called ‘signal’, and is unbiased by the trigger logic.

The key achievement of the B-Parking dataset was collecting a large sample of data while
leaving the core physics program unaffected. This is done by exploiting the natural decrease of
the instantaneous luminosity at the end of an LHC fill. This makes it possible to use part of
the bandwidth of the trigger system to record the B-Parking data, while still keeping the L1
trigger rate below the maximum manageable value of around 100 kHz. As illustrative example,
fig. 2.11 shows the HLT rate of CMS physics and B-Parking in a typical fill: the CMS physics
stream starts from a rate ∼ 2 kHz which decreases over time, while the rate of the B-Parking
stream starts from 0 and is increased in steps up to peaks of ∼ 5 kHz.

The L1 B-Parking trigger requires the trigger muon to have |η| < 1.5 and a specific pT thresh-
old which evolve with time, and become less tight as the instantaneous luminosity decreases, or
a trigger muon with pT > 22 GeV without restrictions on η.

The HLT paths have the same pT requirements of the L1 seeds and a further selection on
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Figure 2.11: HLT rate of the CMS physics (black) and B-Parking (blue) streams over time in
a typical fill. The red dashed lines indicate a change in the prescale values of the B-Parking
trigger. The total time interval shown is approximately 13 hours.

the impact parameter significance of the muon (i.e. the ratio of the impact parameter to its
uncertainty). The thresholds of the L1 seeds and HLT paths are relaxed as the luminosity
decreases, which increases the trigger rate but also decreases the b hadron purity of the sample.
Table 2.1 shows an example of the settings of the B-Parking trigger in a typical fill.

Settings peak Linst(
10−34 cm−2 s−1

) L1 µ pT
threshold

(GeV)

HLT µ pT
threshold

(GeV)

HLT IPS
threshold

trigger
purity
(%)

Peak rate
kHz

1 1.7 12 12 6 92 1.5
2 1.5 10 10 6 87 2.8
3 1.3 9 9 5 86 3.0
4 1.1 8 8 5 83 3.7
5 0.9 7 7 4 59 5.4

Table 2.1: Summary of the settings of the B-Parking trigger, including the L1 and HLT thresh-
olds. The b hadron purity column refers to the purity as computed from simulations.

The b hadron purity is defined as the fraction of events triggered by muons that actually
come from a b meson decay:

P =
N (B → Xµ)

N(µ)
. (2.5)

This is evaluated with simulations, and has an average value of ∼ 0.75 which has been vali-
dated with data. The trigger purity in the data is measured by considering the B0 → D∗+µν
decay, which has a large branching fraction. The subsequent decays that are targeted are
D∗+ → D0π+ → K−π+π+. The difference of invariant mass between the K−π+π+, which form
the D∗+ candidate, and the K−π+ candidate, shows a narrow peak around the mass of the pion,
which is fitted to obtain the yield of D∗+ and consequently of B0 (shown in fig. 2.12). The num-
ber of expected events is corrected to account for reconstruction efficiency, acceptance effects
and branching ratios of the channel. The full B-Parking dataset corresponds to an integrated
luminosity of 41.6 fb−1, and recorded a total of ∼ 1010 unbiased b hadron decays [6].
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Figure 2.12: Invariant mass difference of the D∗+ and D0 candidates. Right sign data points
refer to events where K and µ have same charge, while wrong sign data points refer to the events
where they have opposite charge. The red solid line is the fit to the data.

2.4 CMS Event reconstruction

A particle travelling through the detector is expected to produce several signals in the various
CMS subdetectors, depending on the nature of the particle.

• Charged particles give rise to signals (hits) in the sensitive layers of the tracker system,
allowing reconstruction of their trajectory (track) and their origin (vertex );

• Electrons and photons are absorbed in the ECAL, where they produce clusters of energy,
which allow measuring the particle’s energy and direction;

• Charged and neutral hadrons may deposit a fraction of their energy in the ECAL, but
should be primarily absorbed in the HCAL, which measures their energy;

• at the energies involved at the LHC, muons are practically minimum ionizing particles,
and they lose only a small fraction of their energy when traversing the detector material.
Muons are detected both in the tracker and in the muon system. Although they are not
absorbed in the calorimeters, they might deposit there a small fraction of their energy;

• Neutrinos pass through the CMS detector with almost no interaction, their presence can
only be inferred by reconstructing the transverse momentum imbalance in collision events.

The signals produced by the particles in the subdetectors are used to reconstruct various
physics objects and measure their properties. The software used by CMS to reconstruct such
objects is based on correlating the basic elements from all detector layers (tracks and clusters)
to identify each final-state particle, and reconstructing the particle properties by combining
the corresponding measurements on the basis of this identification. This approach is called
particle-flow (PF) reconstruction [51].

2.4.1 Particle-flow elements

The reconstruction of the basic PF elements uses advanced algorithms specifically designed for
each element. They are briefly described in the following sections, based on ref. [51].

Charged particle tracks

The goal of the track reconstruction is to find the parameters of the trajectory of a charged
particle, given the hits in the tracker. The original track reconstruction algorithm used by CMS
is the Combinatorial Track Finder (CTF), which is based on the Kalman filtering technique. The
algorithm used by PF is a new iterative tracking method. The core idea is that in initial iterations
the search is for tracks that are easiest to find (e.g. large pT ) and the hits associated with these
tracks are removed for the subsequent iterations, reducing the combinatorial complexity and
simplifying the search for the following steps.
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In each iteration, the algorithm starts from seeds, which are 2 or 3 hits in the inner tracker
that constrain the parameters of a track. The tracks provided by the seeds are then propagated
to the following tracker layers, and the hits that are compatible with the track are added to
the track. Multiple tracks with different combinations of hits are built in parallel, and the best
combination is chosen by a quality estimator. For each track, the algorithm associates the hits
and an estimate of the track parameters, and the track is refitted using the Kalman filter.

The tracks are categorized based on their expected purity according to: their hits on the pixel
and tracker system, the track fit χ2 and the longitudinal and transverse impact parameters (with
associated uncertainties). Most analyses use HighPurity tracks, which are the tightest selection
of tracks [52].

Primary vertex reconstruction

The goal of primary vertex reconstruction is to find the position of the primary vertices, i.e. the
vertices of proton-proton interactions in each event, by using the information from the tracks.

First, a selection of tracks that are produced promptly after the collision is made, based
on the number of hits in the pixel and tracker system, the χ2 of the track fit, and the impact
parameters. The selected tracks are clustered based on their point of closest approach to the
center of the beam spot. The clusters with at least two tracks are then fitted with an adaptive
vertex fitter, which computes the best estimate and associated uncertainties of x, y, z coordinates
of the vertex.

Muon objects

The muon system of the CMS experiment allows muon identification with high efficiency over its
acceptance range. The calorimeters before the muon system are helpful to absorb other particles
and increase the purity of the muons that reach the muon system.

Three different high-level muon types are reconstructed:

• standalone muon: hits within the DTs or CSCs are clustered to form a track segment
which is used as seed for a track reconstruction in the muon system only;

• global muon: standalone muons are matched with tracks in the inner tracker, if they can
be propagated onto a common surface. All hits are combined and fitted to form a global
muon track; for pT ≳ 200 GeV the muon system hits improve the momentum resolution
of these muons;

• tracker muon: inner tracks with pT > 0.5 GeV and total momentum p > 2.5 GeV are
matched with hits in the muon system. If at least one muon segment that matches the
extrapolated track is found, and the difference between the x coordinate of the track and
the segment below a certain threshold, the track is promoted to a tracker muon.

A set of selection criteria are applied to the reconstructed muon candidates. The cuts are
based on variables coming from the fitting procedure, such as χ2, the number of hits and the
quality of the matching between the muon system and the inner tracker. The cuts of the
selection have different levels of purity and efficiency, that can be used by different analyses
for their specific needs. These are referred to as muon identification (ID) criteria, and some
commonly used ones are [53]:

• Loose muon ID : it efficiently selects muons prompt muons and muons coming from both
light and heavy flavor hadrons;

• Medium muon ID : it is used to select prompt muons and muons from heavy flavor hadrons;
• Tight muon ID : it is a tighter selection designed to suppress signatures coming from decay

in flight and hadronic punch-through;
• Soft muon ID : it is used to select muons with low pT , especially for B-physics and quarkonia

analyses;
• High pT muon ID : it is used to efficiently select muons with pT > 200 GeV.

In particular, the soft muon ID, which is a flag used in this work, has the following requirements:

• the muon is a tracker muon that satisfies the HighPurity flag, and has hits from at least
six layers of the inner tracker, including at least one pixel hit;
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• the pulls between the muon system segments and the track are required to be below 3 on
the x and y axes;

• its transverse impact parameter is below 0.3 cm and its longitudinal impact parameter is
below 20 cm.

Another important quantity associated to the reconstructed muon is the isolation of the
muon, that gives a measure of the number of tracks surrounding the muon, allowing distinction
between prompt muons and those from weak decays within jets. The isolation of a muon is
computed as Iso(µ) =

∑
ptrack
T /pµT where the sum is on the tracks in a geometric cone of

∆R =
√
(∆ϕ)2 + (∆η)2 around the muon.

Calorimeter clusters

Calorimeter clusters have several purposes:

• detect and measure energy and direction of neutral particles such as photons or neutral
hadrons;

• separate these neutral particles from deposits of charged particles;

• reconstruct and identify electrons and their showers;

• help in the energy measurement of charged hadrons determined by the tracker.

The clustering is performed separately in each subdetector: ECAL (barrel and endcap), HCAL
(barrel and endcap) and preshower layers.

The clustering algorithm starts from cluster seeds, which are cells with energy above a certain
threshold and with more energy than neighboring cells. The algorithm then forms topological
cluster by aggregating cells that neighbor a cluster seed. The clusters within a topological
cluster are reconstructed by fitting the energy deposits with Gaussian functions. This allows to
measure the energy and position of the cluster.

For the energy measurement in the ECAL endcaps, the energy is a function of the measure-
ment of the ECAL endcap itself and the two preshower layers. Similarly, the energy measurement
in the HCAL is a function of the measurement of the HCAL and the ECAL.

2.4.2 Particle-flow reconstruction
The key feature of the PF algorithm is to put together information from multiple subdetectors
to achieve the best possible reconstruction of the physics objects. Thus, a fundamental part
of PF is the link algorithm, that connects the PF elements from different subsystems. This
algorithm forms PF blocks which are groups of PF elements that have direct links or indirect
links through other elements.

For each PF block, an identification and reconstruction sequence is performed. When a
physics object is identified and reconstructed, the corresponding PF elements are removed from
the block. The steps are the following:

• the muon candidates are identified and reconstructed;
• the electrons are identified and reconstructed, with a particular importance given to re-

constructing their bremsstrahlung photons; in this same step isolated photon clusters are
identified;

• the PF elements that remain at this step are subject to cross-identification of charged
hadrons, neutral hadrons and photons.

When all blocks of an event have been processed, a post-processing step is performed that helps
reduce misreconstruction and improve the performance of the algorithm.

2.5 Data and Monte Carlo processing workflow
To produce a simulated sample in CMS, the following steps are performed (further explained
below the list):

1. generating the event (also known as ‘GEN’ step);
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2. simulating the interaction of final state particles with the detector (also known as ‘SIM’
step);

3. simulating of the response of the detector’s electronics to the particles (also known as
‘DIGI’ step) and adding the contribution of pileup (also known as ‘PU’ mixing);

4. simulating the CMS trigger (L1 and HLT) based on the simulated response.

After reaching this step, the simulated sample has reached a format that is analogous to the
ones produced by the real detector, and the following steps are the same for both data and
simulation:

5. the CMS reconstruction software is run on the sample (also known as ‘RECO’ step), and
the reconstructed events are saved in a format called Analysis Object Data (AOD);

6. the AOD format is refined and skimmed, to produce lighter formats that, while losing
some information, are much more lightweight and easier to handle. This data formats are
suitable for most CMS analyses.

Event generation

Monte Carlo event generators allow simulation of a wide range of physics processes at LHC
[54]. The simulation of high energy physics events and their interactions with the detector is
an essential part of the CMS physics program. Different Monte Carlo event generators are used
to simulate different physics processes. For instance they are used to: simulate a signal of new
physics over the SM background; be a guiding tool in the process of designing a new experiment;
help in the choice of the best reconstruction techniques.

When simulating hadron-hadron collisions like the ones at the LHC, the basic steps of the
physics process that are simulated are the following:

• the primary hard sub-process
• the parton showers associated with the particles involved in the primary hard sub-process;
• the hadronization of the partons into final state hadrons;
• the secondary interactions that can contribute to the underlying event;
• the unstable particles decays.

This processes results in a collection of final state particles, however a key additional step
is simulation of pileup interactions. When a proton-proton collision occurs, the number of
interactions in the same bunch crossing is not fixed, especially at the high luminosities of the
LHC: in the 2018 run the average pileup per bunch crossing was ∼ 30 [55].

Simulation of the detector response and trigger

After the generation of the final state particles, the next step is to simulate their interaction with
the CMS detector e.g. the energy deposits in the calorimeters, the hits in the tracker, . . . For
the CMS detector, this is done with GEANT4 [56]. GEANT4 is a C++ object-oriented toolkit
that uses information about the geometry, materials and other properties of CMS to simulate
the passage of particles through the detector.

To simplify the computations, the other particles coming from pileup interactions are not
simulated yet at this stage, but only added in the DIGI step. Other than the signal of interest
produced on the detectors’ electronics, additional noise from the so-called ‘minimum bias’ events
is added, that is meant to reproduce the real data-taking conditions caused by pileup.

At this point, the L1 and HLT triggers are simulated, and the reconstruction software is run
on the sample of simulated events.
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Chapter 3

Search for Heavy Neutral Leptons
from Ds meson decays

As discussed in chapter 1, HNLs are theoretical particles that can be added to the SM with
minimal assumptions. They are spin 1/2 fermions with no SM charge that only interact faintly
with the SM particles through their coupling with the active left-handed neutrinos. The two
relevant parameters of a HNL are its mass mN and its mixing matrix elements with the active
neutrinos Vα, where α = e, µ, τ . A wide range of different experiments have provided constraints
on the parameter space mN − |Vα| for HNLs. Ref. [5] contains a review of the experimental
searches and limits on HNLs. Currently, there are no published results on HNL searches from
charmed meson decays at LHC. The work presented in this chapter refers to a HNL search from
Ds meson decays in the CMS experiment.

The chapter is organized as follows: in section 3.1 we present the overall analysis strategy; in
section 3.2 we present the data and MC samples used in the analysis; in section 3.3 we describe
the event selection and in section 3.4 we briefly describe the procedure to extract the expected
limits on HNL production.

3.1 Analysis strategy
The most promising channel for HNL search from charmed mesons, as discussed in section 1.3.1,
are two-body decays of Ds mesons, because of the higher branching ratio and the relatively wide
range of mN masses that can be studied with it, which is below the Ds mass (≲ 2 GeV).

The specific channel considered is the D+
s → Nµ+ decay with the subsequent N → µ+π−,

where N is the HNL. Thus, the final state is fully visible and consists of two muons and a pion.
Figure 3.1 show a Feynman diagram of the decay under study.

This channel has the following advantages:

• low pT muons from the Ds decay can be selected profiting from the B-Parking displaced
muon triggers (described in section 2.3.2) with low pT thresholds that allowed collection
of a large number of events;

• the excellent muon reconstruction and identification performance of the CMS detector can
be exploited;

c

s

µ µ

u

d

W

N W
Ds

π

Figure 3.1: Feynman diagram for Ds → πµµ decay via Majorana neutrino labeled N .
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• the secondary vertex formed by the HNL decay products (µ and π) can be reconstructed,
allowing to search for HNL decaying within the CMS tracker volume (< 1 m), and the
optimal resolution of the µπ invariant mass provides a narrow peak for bump hunting;

• the Ds decays can be fully reconstructed, allowing to put a cut on the reconstructed Ds

mass and reject combinatorial background.

The main form of background for this analysis is the combinatorial background, coming from
accidental associations of muons and pions into a common vertex.

The displaced vertex of the HNL decay can be used as a signature to reject the combinatorial
background but, at the same time, this can be a limiting factor for the analysis, because if the
HNL has a large proper decay length, the displaced vertex can be outside the tracker acceptance
and thus the HNL decay cannot be reconstructed.

The optimization of the signal selection is performed using MC samples: a cut-based selection
is applied to efficiently select MC signal events and reject MC background. On the other hand, a
data-driven method is used to make an estimate of the background yield while avoiding potential
MC mis-modeling: for each HNL mass point the number of expected background events is
estimated by fitting the µπ invariant mass distribution in the “sidebands” i.e. the region outside
a window of interest centered around the HNL mass peak.

The analysis doesn’t focus on a single signal hypothesis and takes into account four different
values of HNL mass: 1.0, 1.25, 1.5 and 1.8 GeV and three different values of proper mean decay
length cτ(also referred to as “lifetime” for short): 10, 100 and 1000 mm. Because of the pro-
portionality cτ ∼ m−5

N |Vµ|−2 (see section 1.5), considering larger values of cτ allows exploring
smaller values of the mixing parameter |Vµ|.

For all the HNL mass points, the number of signal events is extracted from the data using
an unbinned maximum likelihood (UML) fit of the HNL invariant mass. A limit on the value of
|Vµ|2 is set with asymptotic approximations [57]. This limit assumes that the mixing with the
other active neutrinos, |Ve|2 and |Vτ |2, is zero. To avoid biases, at this stage, the analysis uses
“data blinding”: the optimization studies are performed on data excluding events compatible
with the HNL mass.

3.1.1 Signal yield
To estimate the number of expected signal events a reference “normalization channel” is used.
The normalization channel is D+

s → ϕ (→ µ+µ−)π+. The expected signal yield in the signal
channel ND+

s →Nµ+ is:

ND+
s →Nµ+ = Lintσ (Ds)B

(
D+

s → Nµ+
)
B
(
N → µ+π−) εD+

s →Nµ+ , (3.1)

and the number of events in the normalization channel ND+
s →ϕµ+ is:

ND+
s →ϕµ+ = Lintσ (Ds)B

(
D+

s → ϕπ+
)
B
(
ϕ→ µ+µ−) εD+

s →ϕµ+ , (3.2)

where in both equations Lint is the integrated luminosity, σ (Ds) is the production cross-section
of Ds mesons, B is the branching ratio of the decay and ε is the total selection efficiency. All
these quantities can be measured or estimated:

• the efficiencies can be computed from MC samples, by comparing the number of generated
events with those that pass the final selection;

• the branching ratios for the normalization channel i.e. B (D+
s → ϕπ+) and B (ϕ→ µ+µ−)

are well known and reported by the PDG [13];

• the branching ratios for the signal channel i.e. B (D+
s → Nµ+) and B (N → µ+π−) come

from the theoretical model as described in section 1.5;

• The number of Ds in the normalization channel can be measured from data.

Thus, the signal yield can be computed by combining eqs. (3.1) and (3.2) into:

ND+
s →Nµ+ = ND+

s →ϕµ+

B (D+
s → Nµ+)B (N → µ+π−)

B
(
D+

s → ϕπ+
)
B (ϕ→ µ+µ−)

εD+
s →Nµ+

εD+
s →ϕµ+

. (3.3)

Measuring the yield with respect to the normalization channel allows the cancellation of
systematic uncertainties on the luminosity, the production cross-section, and partially on the
selection efficiencies having the same particles in the final state.
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3.2 Data and Monte Carlo samples
The analysis uses data from proton-proton collisions collected at the CMS experiment with√
s = 13 TeV during the 2018 data-taking period with the B-Parking trigger. Monte-Carlo (MC)

samples are used for signal selection optimization, background modeling, measuring acceptance
and efficiency and estimating the systematic uncertainties.

3.2.1 B-parking dataset
Events are selected with the B-parking trigger (described in section 2.3.2), which is designed to
select events with the presence of at least one displaced muon. The Level 1 (L1) trigger requires
the presence of either a low pT muon with pseudorapidity |η| < 1.5 (the specific threshold on pT
changes based on the instantaneous luminosity) or a higher pT muon (pT > 22 GeV) without
pseudorapidity restrictions. Then, at the HLT level the muon is required to have, in addition
to the pT threshold, an impact parameter significance (IPS) above a certain threshold (which
again changes based on the instantaneous luminosity).

The pT and IPS thresholds range from 7 to 12 GeV and from 3.5 to 6 respectively. Table 3.1
shows a summary of all HLT paths and the integrated luminosity collected by each of them.

Total Integrated
HLT path Luminosity (fb−1)

HLT_Mu7_IP4 6.940
HLT_Mu8_IP3 1.583
HLT_Mu8_IP5 8.259
HLT_Mu8_IP6 8.259

HLT_Mu8p5_IP3p5 0.320
HLT_Mu9_IP4 0.010
HLT_Mu9_IP5 20.89
HLT_Mu9_IP6 33.669

HLT_Mu10p5_IP3p5 0.320
HLT_Mu12_IP6 34.791

Table 3.1: Total integrated luminosity for each B-Parking HLT path. The HLT paths are
indicated as HLT_MuX_IPY where X is the pT threshold and Y is the IPS threshold.

To compute the total integrated luminosity we must take into account the fact that some
triggers paths are active at the same time and thus share some luminosity sections. The total
luminosity collected with the B-parking trigger, after excluding overlaps, is 41.6 fb−1.

3.2.2 Monte-Carlo simulated sample
The signal samples are generated with four values of HNL mass mN : 1.0, 1.25, 1.5 and 1.8 GeV,
and three values of the mean proper decay length cτ : 10 , 100 and 1000 mm. The Ds in the
generated sample is inclusive i.e. it contains both prompt generated Ds mesons and Ds mesons
produced from in-flight decays of heavier hadrons. The decay D+

s → ϕπ+ with subsequent
ϕ → µ+µ− is used to measure the acceptance and efficiency of the normalization channel.
These MC samples are produced with PYTHIA 8.240 [58] which generates the hard event and
handles both the hadronization of the partons and the particles decay, except for the decay of
interest, which is handled by the EVTGEN 1.6.0 software [59]. The Ds → Nµ+ and subsequent
N → µ+π− are generated assuming no spin correlation between the particles involved.

The background from SM is simulated by generating events with jets in the final states,
which we will refer to as QCD background events. The event generation for the QCD back-
ground is divided into different samples, each corresponding to a different range of the transverse
momentum of the hard process, p̂T . This is done because the production cross-section depends
on p̂T , and the event generation is more efficient at low p̂T . The range of p̂T varies from 20
to 300 GeV. The QCD events are then weighted in a way that is inversely proportional to the
cross-section of the specific p̂T range.

These QCD samples are also “muon enriched” i.e. the events are required to have at least
one muon with pT > 5 GeV and |η| < 2.5. The background samples have also been generated
with PYTHIA.
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While the QCD MC is used to model the distribution of the combinatorial background in
the optimization of the signal selection requirements, the background yield is extracted directly
from data, avoiding any MC mismodelling.

Additional requirements, at the generated particle level, are applied for both signal and
background MC samples to the final states particles pT and η to ensure that they are within
detector acceptance, meet trigger conditions and meet the kinematic requirements for the decays
under study (signal channel or normalization channel).

Details on these additional requirements and the generator settings for the MC samples are
listed in appendix A.

3.3 Event Selection

Before finding the best selection for the signal, a loose pre-selection (section 3.3.1) is applied.
The MC samples must be corrected for potential differences between data and simulation (sec-
tion 3.3.2). After this, the signal selection is optimized using the MC samples (section 3.3.3).

3.3.1 Pre-selection

The Ds candidates of the analysis are built from three final states objects: two muons and
a pion. A set of loose selection criteria is applied to the final state reconstructed objects, to
reduce mis-reconstructed candidates coming from background. In what follows we list: the pre-
selection requirements for the individual muons and pions, the trigger matching criteria, the
signal candidate pre-selection and the selection for the normalization channel.

Muon pre-selection

The reconstructed muons are required to pass the following conditions:

(i) pT > 3.5(2.0) GeV for muons with |η| < 1.2(2.4); these are meant to ensure that the muons
can reach the muon chambers

(ii) pass Soft muon ID [53]; this is a typical muon identification used by CMS in its B-physics
analyses.

Pion pre-selection

Among all candidates reconstructed by the PF algorithm (description in section 2.4.2), the
objects that are considered pion candidates must meet the following requirements:

(i) the track passes the highPurity [52] condition;
(ii) the PDG ID assigned by the reconstruction is a charged hadron;
(iii) pT > 0.5 GeV and |η| < 2.4.

Trigger matching

In both data and MC, at least one of the muons must be the one that fired the B-Parking
trigger. We consider a muon to match a trigger object by considering the track separation
∆R ≡

√
∆η2 +∆ϕ2 and the pT : the muon and the trigger object must have ∆R < 0.05 and

∆pT /pT < 0.1.

Signal candidate pre-selection

Other than the pre-selection applied to the individual muons and the pions, the signal candidates
have to satisfy the following requirements:

• the muon and the pion forming the HNL candidate are required to:

– have total pT > 1.0 GeV;
– have opposite electric charge;
– form a common vertex with a fit probability greater than 0.01;
– have an invariant mass 0.2 < mµπ < 2.0 GeV.
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• Once a HNL candidate is found, it is combined with an additional muon and fitted to a
common vertex to form a Ds candidate:

– the invariant mass of the µµπ system must be between 1.5 and 2.5 GeV, so that it is
compatible with the Ds mass;

– the vertex fit probability of the Ds candidate must be greater than 0.01.

Normalization channel selection

The Ds candidates for the normalization channel D+
s → ϕ (→ µ+µ−)π+ are built from the same

final state objects as the signal channel, and have to satisfy the following requirements:

• the two muons forming the ϕ candidate are required to:

– have an invariant mass within 0.05 GeV of the known ϕ mass (taken from PDG [13]);
– have a fit probability of the common vertex greater than 0.01;

• for each good ϕ→ µ+µ− candidate, the muons are combined with a π candidate to form
a Ds candidate, which is required to:

– have an invariant mass between 1.75 and 2.15 GeV;
– have a fit probability of the common vertex greater than 0.01.

3.3.2 Correction factors
A number of correction factors are applied to the MC samples to account for differences between
data and simulation:

• pileup distribution: the number of pileup interactions in the MC samples does not match
the number of pileup interactions in the data. To correct for this, the MC samples are
re-weighted so that the distribution of the number of pileup interactions are the same in
data and MC;

• muon reconstruction and identification efficiency: the MC simulation does not reproduce
perfectly the muon reconstruction and identification efficiencies of the real detector. To
correct for this, the MC samples are re-weighted so that the efficiency of the muon recon-
struction and identification is the same in data and MC;

• trigger efficiency: several single muon HLT paths were used to collect the B-Parking
data and during the data taking not all the triggers were simultaneously on. The time
evolution of the trigger paths activation is not reproduced in MC samples. Correction
factors are computed and applied in order to correct the MC samples to the complex
trigger composition of the data.

After applying these corrections, the MC simulated samples reproduce the data reasonably well,
with some small differences still present, that will be accounted for as systematic uncertainties
(see section 3.4.4).

Figure 3.2 shows the comparison between data and MC for the pT , η and IPS of the two
muons and pion. The muon pT distributions show several structures: one effect is due to the
selection cut requirements based on the muon η, i.e. muon pT > 3.5 GeV for |η| < 1.2 and
pT > 2 GeV for 1.2 < |η| < 2.4; other effects for pT > 7 GeV and a small bump around 12 GeV
are due to the additional trigger thresholds on the muon pT . The IPS distribution shows low
values and falls off rather quickly.

3.3.3 Signal selection
After the pre-selection, the signal selection is optimized using the MC samples.

Since the search is not focused on a single kind of signature and different HNL masses or
lifetime hypotheses can have different signatures, the selection is optimized in different event
categories. The categorization is based on:

• relative muon sign: same sign muons or opposite sign muons;
• HNL decay length on the transverse plane (Lxy): 0 < Lxy < 1 cm, 1 < Lxy < 5 cm and
Lxy > 5 cm,
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Figure 3.2: Data/MC comparison for pT (left column), η (middle column) and IPS (right col-
umn) for the muon forming the D+

s → Nµ+ (top row) and the N → µπ (middle row) candidate,
and for the pion (bottom row). The data corresponds to the full B-Parking data set.
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for a total of six categories.
The selection is based on choosing the best set of cuts on the variables which show a significant

separation power between signal and background: this selection is optimized by maximizing the
expected signal significance, defined as [60]:

Z0 =

√
2

[
(S +B) ln

(
1 +

S

B

)
− S

]
, (3.4)

where S and B are the expected yields of signal and background events. This reduces to
S/

√
S +B in the limit of S ≪ B.

The expected signal yield is computed with eq. (3.3) assuming a fixed mass of mN = 1.5 GeV
and a fixed mean proper decay length of cτ = 10 mm.

The expected background yield is the number of background events in the signal region,
which is a region of ± 3 σHNL around the HNL mass peak, where σHNL is the width of the HNL
mass peak, extracted from a fit to the HNL mass distribution in the MC samples. A different
value of σHNL is extracted for each signal mass hypothesis. To estimate the background yield,
the parameters of the exponential distribution are computed with an exponential fit on the µπ
invariant mass distribution in the “sidebands” of the HNL mass distribution in the data, i.e.
a ± 6 σHNL region outside the signal region, and then the background yield is computed by
integrating the exponential distribution in the signal region.

The optimization is performed by scanning the cut values on the following variables:

• Lxy/σLxy
: the HNL vertex displacement significance i.e. the HNL decay length divided by

its uncertainty;
• IP(π), IP(µ): the impact parameter (IP) on the transverse plane, measured with respect

to the beam spot (BS) for the pion and the muon forming the HNL candidate;
• IPS(π), IPS(µ): the impact parameter significance (IPS) on the transverse plane, i.e. the

impact parameter divided by its uncertainty, for the pion and the muon forming the HNL
candidate;

The following algorithm is used to find the best set of cuts in each category:

1. the significance is tested separately for each variable by varying the value of the selection
cut;

2. the variable giving the largest significance gain is selected and the optimized selection cut
is applied;

3. the variable selected in the previous step is excluded;
4. the procedure starts over.

Following this algorithm, the final set of variables used for the signal selection are
Lxy/σLxy , IP(π) and IPS(µ). Any further steps in the algorithm provide no further gain in
significance.

The final choice on the cut values defines a working point for the selection, with a fixed
signal and background efficiency. The signal efficiency is defined as the fraction of signal events
that pass the selection. Instead of the background efficiency, we can refer to the background
rejection defined as the fraction of background events that are rejected by the selection.

Table 3.2 shows the working points for all the signal mass hypotheses with a fixed mean
proper decay length of cτ = 10 mm.

Signal mass Signal Background
hypothesis (GeV) efficiency rejection

1.0 54.7 %

97.9 %1.25 62.8 %
1.5 67.9 %
1.8 62.9 %

Table 3.2: Signal efficiency and background rejection for the working points of the signal selection
for each mass hypothesis with fixed cτ = 10 mm.

There is a general trend of increasing signal efficiency with increasing mass, except for the
1.8 GeV mass hypothesis. This is because this is a peculiar limit case, very close to maximum
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allowed mass of the decay (the mass of the Ds meson), which makes the HNL decay products
very soft and thus harder to reconstruct.

The primary emphasis of this thesis work is improving these selection efficiencies. This
involves the use of Machine Learning techniques to optimize the process of signal selection. The
details of these techniques, their application and resulting selection efficiencies are discussed in
chapter 4.

3.4 Limits extraction
The analysis consists of a search for HNLs of unknown mass and lifetime. A scan in the displaced
muon and pion invariant mass spectrum is performed, where, in each window centered around
a mass hypothesis, signals of different lifetime are searched over the background. The signal
process we are looking for is rare, and the expected signal yield is very low. Thus, instead of
looking for a significant excess of events, we aim to set an upper limit. To obtain the results,
a simultaneous fit of signal and background to the µπ invariant mass spectrum is performed to
determine the signal strength.

3.4.1 Lifetime reweighting
The simulated MC signal samples are generated only for fixed values of cτ and mN . In order
to have a fine scan of the mean proper decay length of the HNL, the simulated samples are
reweighted to cover the cτ spectrum ranging from 10 to 1000 mm. To reweight a simulated
sample with lifetime cτ0 to a target lifetime cτ1, the events must be multiplied by the following
weight:

w(ct, τ0 → τ1) =

1
cτ1

exp
(
− ct

cτ1

)
1

cτ0
exp

(
− ct

cτ0

) , (3.5)

where ct is the generator-level proper lifetime of the HNL in the event, calculated as:

ct =
LM

p
, (3.6)

with L being the decay length, M the mass and p the momentum at generator level.
The signal selection described in section 3.3.3 is optimized for a fixed cτ = 10 mm, but this

reweighting procedure allows to extract the corresponding efficiencies for the other cτ values.

3.4.2 Normalization channel yield
The estimated yield in the signal channel can be computed with eq. (3.3) once the expected
yield in the normalization channel D+

s → ϕ (→ µ+µ−)π+ is known. The expected yield in the
normalization channel is computed with an unbinned maximum likelihood fit of the reconstructed
µµπ invariant mass distribution for the Ds candidates of the normalization channel.

Figure 3.2 shows the µµπ invariant mass distribution of the normalization channel candidates,
with the corresponding fit.

3.4.3 Signal and background fit
The limit extraction method requires the number of signal and background events, which can
be extracted from a binned maximum likelihood fit of the µπ invariant mass distribution for the
muon and pion forming the HNL candidate.

The signal region is defined as a window of ± 3σHNL around the HNL mass peak. The
sideband region is defined as a window of ± 6σHNL outside the signal region. σHNL is the width
of the HNL mass peak, extracted from a Voigtian fit of the HNL mass distribution in the signal
MC samples, for each mass hypothesis. Figure 3.4 shows as illustrative example the µπ invariant
mass distribution for a signal MC sample with mN = 1.0 GeV and cτ = 10 mm, in the category
of same sign muons with 0 < Lxy < 1 cm.

Thus, the signal and background events in the signal region can be extracted with a simulta-
neous fit of the signal and background probability density functions (PDFs) to the µπ invariant
mass distribution. The signal is modeled with a Voigtian PDF and the background with an
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Figure 3.3: The µµπ invariant mass distribution with fits of the D and Ds peaks and the
background. The bottom panel shows the pulls of the data with respect to the fit curve.

exponential PDF. However, since the analysis is blinded at this stage, the observed exclusion
limits cannot be extracted yet, but the number of signal and background events can be estimated
to get an expected limit.

To estimate the number of background events in the signal region, the parameters of the
exponential are computed with an exponential fit on the µπ invariant mass distribution in the
sidebands of the HNL mass distribution in the data, and then the background yield is computed
by integrating the exponential distribution in the signal region.

As an illustrative example, fig. 3.5 shows the µπ invariant mass distribution centered around
1.0 GeV, for the category of same sign muons with 0 < Lxy < 1 cm. At this stage of the analysis
the signal region is blinded.

3.4.4 Systematic uncertainties
Before describing the procedure to extracting the estimated limits, we briefly discuss the system-
atic uncertainties that affect the analysis. The estimated yield of the signal channel is affected
by the following sources:

Figure 3.4: The µπ invariant mass distribution for MC generated signal with mN = 1.0 GeV
and cτ = 10 mm, with signal fit. The data corresponds to the category of same sign muons with
0 < Lxy < 1 cm.
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Figure 3.5: The µπ invariant mass distribution centered around 1.0 GeV, with the exponential
fit in the sidebands of the HNL mass distribution to estimate the background yield in the signal
region. The signal region is blinded. The data corresponds to the category of same sign muons
with 0 < Lxy < 1 cm.

• normalization channel yield:

the uncertainty on the normalization channel yield is estimated by using alternative func-
tions to fit the peak of the Ds and D mesons: a Gaussian and a Crystal Ball function.
The background is still fitted with an exponential function in all cases. The systematic
error is taken as the maximum relative difference between the yields obtained with the
Voigtian compared to the yields obtained with the alternative functions, which is 10%;

an additional uncertainty is assigned to the normalization channel yield to account for the
difference in the yield based on using a fixed or free mass for the Ds mass in the fit, which
is 0.2%;

• data and MC simulation discrepancies:

even after applying the corrections described in section 3.3.2, there are residual differences
between data and MC. A re-weighting of the MC samples is performed to correct for these
differences. The systematic uncertainty is estimated by comparing the expected signal
yield with and without the re-weighting. The uncertainties vary depending on the event
category and on the reweighting variable and range between few % to 15%;

• vertex reconstruction efficiency:

the efficiency of the vertex reconstruction as a function of the displacement and pT is
estimated by comparing the number of reconstructed vertices for K0

s decays to charged
particles in data and MC [61]. The maximum difference in the efficiency is taken as the
systematic uncertainty, which is 7%;

• muon ID/reconstruction efficiency:

the correction factors for muon ID and reconstruction have an associated uncertainty. The
systematic uncertainty on the yield is estimated by varying the correction factors within
their uncertainties. It ranges between 0.1% and 1% for different event categories;

The yield of the background is affected by the choice of the PDF used to model the background.
The systematic uncertainty on the background yield is estimated by using alternative functions
to fit the background: a power law and a first order polynomial. The systematic error is taken
as the maximum relative difference between the yields obtained with the exponential function
compared to the yields obtained with the alternative functions. It ranges between 0.1% and 7%
for different event categories.

Table 3.3 shows a summary of the systematic uncertainties that have been mentioned and
their estimated values.
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Systematic
Source uncertainty (%)

D+
s → ϕπ+ PDF 10

D+
s → ϕπ+ fixed/floating mass 0.2

Data/MC agreement 1-15
Vertex reconstruction efficiency 7

Muon ID/reconstruction efficiency 0.1-1
Background PDF 0.1-7

Table 3.3: Sources of systematic uncertainty and their estimated values.

3.4.5 Expected limit extraction procedure
The expected background yield can be extracted from data by fitting the HNL mass sidebands
(see section 3.4.3), while the number of expected signal events can be computed with eq. (3.3).
The systematics described in section 3.4.4 are taken as inputs to the fit. The MC reweighting
described in section 3.4.1 can be used to span over the cτ spectrum from 10 to 1000 mm.

Since the analysis is blinded, the observed exclusion limits cannot be extracted. However,
the expected limits is extracted with the CLs method, using as test statistic a binned profile
likelihood ratio in the asymptotic approximation [57].
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Chapter 4

Machine Learning algorithms for
the search for Heavy Neutral
Leptons

One of the margins of improvement in the search for Heavy Neutral Leptons (HNL) seen in
chapter 3 is the efficiency of the selection of signal events. Thus, we attempt a different approach,
compared to the current cut-based analysis, exploiting different Machine Learning (ML) models
and evaluating the possible improvement in the selection efficiency [7].

The chapter is organized as follows: section 4.1 is an introduction to the basic concepts of
ML models that are relevant for this work; in section 4.2 we describe the topological charac-
teristics of the signal channel under study and the variables used for the training of the ML
models; section 4.3 explains the data preparation, the hyperparameter configuration of the ML
models and the monitoring of the training process; in section 4.4 we present the results of the
training: the choice of the best models, which physical variables are the most important for the
discrimination of signal from background, and the performance of the chosen models. Finally,
we conclude with section 4.5 where we summarize the results and the future prospects of this
work.

4.1 Brief introduction to Machine Learning
The ML models we focus on in this work are supervised classifiers.

The input data is provided to the model in a table-like format: the input features are the
columns of the table, and they represent the characteristics of each data point, while the rows
of the table are the events, and they represent the individual data points. For each event there
is a label that represents the true class of the event. The purpose of the model is to learn the
relationship between the input data and the labels, so that it can make predictions on new data
for which the label is unknown [62].

In our case the input features are the physical variables that describe the particles in the
event, and the label is either signal or background, which makes this a binary classification
problem.

The main goal typically consists in finding the optimal parameters of the model that minimize
a so-called loss function. A loss function (also known as cost or objective function) is a measure
of the difference between the model’s predictions and the labels. Thus minimizing the loss
function means that the model’s predictions are as close as possible to the labels.

The training process involves two main steps: forward propagation and backward propagation.
In the forward propagation, the input data is passed through the model to generate predictions.
These predictions are then used to compute the loss function. Then, in the backward prop-
agation, the gradient of the loss function with respect to the model’s internal parameters is
computed. This gradient is then used to update the parameters in a way that minimizes the
loss function. This process is repeated for a fixed number of iterations, or until a stopping
criterion is met [63].

Other than the models’ internal parameters, the hyperparameters [64] of the models are
configurable settings that are set before the training process. They define the learning process
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and the architecture of the model, for instance: the specific choice of loss function, the number
of trees in an ensemble for a decision tree model or the number of nodes/layer in an artificial
neural network.

A common problem with ML is overtraining (or overfitting). This particular issue occurs
when a trained model matches the data used for training very precisely, thus achieving a high
accuracy, but lacks in generalization capability on new, previously unseen data (see as an illus-
trative example fig. 4.1). To keep this issue under control, the input data is divided into three
sets: the training set, the validation set, and the test set. The training set is used to train the
model, the validation set is used to monitor the performance of the model during the training
process, and the test set is used to evaluate the performance of the model after the training
process is complete [63].

Figure 4.1: Example of overtraining (left) and no overtraining (right). The dots represent the
training data, blue and orange for the two classes. The colored areas represent the decision
boundary of the model. In the left plot, the decision boundary is very complex and follows the
training data very closely, while in the right plot the decision boundary is simpler. Images are
generated with Tensorflow playground [65].

A technique used in this work to mitigate overtraining is called early stopping. A metric,
called early stopping metric, is evaluated on the validation set at each iteration of the training.
In this work, we use a loss function as the early stopping metric, and thus refer to it as validation
loss. When the validation loss stops improving for a number of iterations (called patience), the
training is stopped. The model at the iteration with the lowest validation loss (typically referred
to as early stopping point) is then chosen as the final model [66].

Logistic loss

As previously mentioned, the class of ML models we focus on are binary classifiers, i.e. they are
trained to distinguish between two classes of events, in our case signal and background. One
commonly used loss function in binary classification problems is the Logistic loss or log-loss for
short [63]. The log-loss function is defined as:

Llog(y, p) = − [−y log(p)− (1− y) log(1− p)] (4.1)

where y ∈ {0, 1} is the true class label, and p ∈ [0, 1] is the model’s predicted probability that the
event belongs to the class 1. It is particularly suitable for binary classification problems because
it penalizes strongly erroneous predictions e.g. if the true class label is 1 and the predicted
probability is 0, the loss is negative infinity. Due to its suitability for binary classification
problems, the log-loss is used as the loss function and early stopping metric for the training of
all ML models in this work.

4.1.1 Boosted Decision Trees

Decision trees are a simple type of ML classifier that work by recursively splitting the input
feature space into regions, and assigning a class label to each region. The regions are defined by
a series of binary decisions, based on the values of the input features. The decision tree is built
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by iteratively choosing the input feature and the threshold that best splits the input feature
space, based on a criterion that measures the purity of the regions [63]. The specific criterion
used to measure the purity can be different based on the specific implementation of the decision
tree algorithm.

A key hyperparameter of decision trees is the maximum depth of the tree, which is the
maximum number of binary decisions that can be made before a class label is assigned. Figure 4.2
shows an example of a simple decision tree.

Boosted Decision Trees, in particular, are a type of ensemble learning method, which is very
commonly used in the field of HEP [67]. The idea of boosting is to combine several decision trees,
that alone have a relatively low predictive power, to create a new classifier, called ensemble, with
a significantly improved predictive power.

One of the first popular examples of boosting algorithms for ensembles of decision trees is the
AdaBoost (which stands for Adaptive Boosting) algorithm [68]. The key idea of AdaBoost is to
train a weak learner on the dataset, then re-weight the dataset in order to give more importance
to the misclassified events, and then train another weak learner on these re-weighted dataset.
This process is repeated for a fixed number of iterations, and the weak learners are combined to
form a stronger learner, in a way that gives more importance to the weak learners that perform
better.

Another class of boosting techniques is Gradient Boosting [69]. There are several implemen-
tations of gradient boosting, but the core idea is that at each iteration of the training, new
weak learners are trained to minimize the gradient of the loss function. One popular implemen-
tation of gradient boosting is the XGBoost (short for eXtreme Gradient Boosting) algorithm
[70]. This specific gradient boosting algorithm uses second-order gradients to improve the con-
vergence of the training process, and it is well known for its overall performance and stability
during training.

Figure 4.2: Example of a simple decision tree (left) and corresponding two-dimensional input
feature space partitioning (right). xi are the input features and θj are the splitting thresholds.
This tree has a maximum depth of 3.

4.1.2 Artificial Neural Networks
Artificial Neural Networks are a class of ML models that are based on a series of interconnected
nodes, called neurons, that are organized in layers: the input layer, composed by the entirety
of input features, the output layer for the output score computation, and the hidden layers in
between, for increasing the complexity of the parameter matrix. The specific choice of arrange-
ment of the nodes and layers is called the architecture of the neural network, and a typical
choice, which we consider in this work, is a fully connected architecture, where each node in a
layer is connected to each node in the next layer. Each node receives as input the weighted sum
of the outputs of the nodes in the previous layer, applies an activation function to this sum, and
then passes the result to the nodes in the next layer. The activation function is a non-linear
function, and it is what allows the neural network to learn non-linear patterns from the input
data [62].

The architecture of the ANN models we use is the following (shown in fig. 4.3):

• Input layer: a normalization layer, which scales the input features to have zero mean and
unit variance; this is a typical preprocessing step for neural networks [71];
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• Hidden layer: a single layer with 64 nodes and a ReLU activation function [72] to allow
non-linear output capabilities;

• Output layer: single layer with one node and a sigmoid activation function, which is a
common activation function for binary classification problems, because it is defined in a
fixed range [0,1], and prevents jumps in the output values by being always differentiable.
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Figure 4.3: Architecture used for the ANN models. The input layer is followed by a single
hidden layer with 64 nodes and the final output layer.

Using a more complex architecture with more hidden layers and nodes did not show any sig-
nificant improvement in performance, thus we chose this relatively shallow one for its simplicity
and discrete overall efficiency.

An important hyperparameter of ANN models is the number of epochs. An epoch is a single
pass through the entire training dataset with a forward and backward propagation step.

The optimization algorithm used in this work for the ANN models is the Adam algorithm
[73].

4.1.3 Evaluating the performance of the models

Finally, a trained model will produce an output score for each candidate event and, if trained
properly, the score for signal and background events should be significantly different. The
classification of the events (as signal or background) is then done by choosing a cut value on
such score: all events with a score above the cut value (N score>cut) are classified as signal, while
all events with a score below the cut value (N score<cut) are classified as background. Different cut
values will result in a different signal efficiency and background rejection, which are defined as
the fraction of signal events that are correctly classified as signal and the fraction of background
events that are correctly classified as background i.e. :

signal efficiency =
N score>cut

true signal

N total
true signal

background rejection = 1−
N score>cut

true background

N total
true background

.

(4.2)

The receiver operating characteristic (ROC) curve is a useful tool that visualizes the signal
efficiency against the background rejection for all possible cut values. The ideal ROC curve has
a background rejection of 1 and a signal efficiency of 1: this means that the model can perfectly
separate signal and background. The area under the ROC curve (AUC) is a metric that can be
used to compare the performance of different binary classification models. The closer the AUC
is to 1, the better the performance of the model, since it means that it is close to the ideal case
[62]. Figure 4.4 shows illustrative examples of ROC curves for differently performing models.
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Figure 4.4: Examples of different ROC curves, comparing better and worse performing models.
The dashed red line is a random classifier, the blue dot is the ideal classifier.

4.2 Signal topology and variable selection

The process under study is the decay D+
s → N (→ µ±π∓)µ+where N refers to the HNL. The

final state consists in two muons and a pion. To distinguish them, we will refer to the muon
coming from the Ds as µD and the muon coming from the HNL as µN . Figure 4.5 shows a
schematic representation of the topology of this process, where a reconstructed displaced vertex
formed by the HNL decay products (µN and π) is sketched. The muons and pion in the event
are in the low transverse momentum (pT ) regime. The main background comes from QCD
processes at low pT , since contribution of physics at high pT is negligible. The background is
combinatorial in nature, arising from unrelated combinations of two muons and a track.

Figure 4.5: Topology of the decay under study D+
s → N (→ µ±π∓)µ+ projected on the x-y

plane; N refers to the HNL; Lxy is the HNL decay length measured with respect to the beam
spot.

The datasets used for the training of the ML models are MC generated (see appendix A
for details). The signal datasets take into account four different values of HNL mass mN :
1.0, 1.25, 1.5 and 1.8 GeV and mean proper decay length (or lifetime for short) cτ : 10 mm.

A set of loose pre-selection criteria are applied to reduce the number of candidates arising
from background while keeping the majority of those arising from signal events, as described in
section 3.3.
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4.2.1 Discriminating variables
The variables used for discriminating signal from background in the cut-based approach (see
section 3.3.3) are the following:

• the HNL vertex displacement significance (Lxy/σ) on the transverse plane, i.e. the HNL
decay length divided (see fig. 4.5) by its uncertainty measured with respect to the beam
spot (BS);

• the impact parameter (IP) of the pion on the transverse plane, measured with respect to
the BS;

• the impact parameter significance (IPS) of µN on the transverse plane i.e. the IP of µN

measured with respect to the BS, divided by its uncertainty.

In a ML approach, we can include more variables for the signal selection, which could help
achieve a better discrimination. The set of variables that are used as input features (see sec-
tion 4.1) for the training of the ML models are the following:

• Lxy/σ: HNL vertex displacement significance on the transverse plane, measured with
respect to Beam Spot (BS) (see fig. 4.5);

• pT (Ds), pT (µD), pT (µN ), pT (π): transverse momentum of Ds, µD, µN , π;
the background should mostly populate the soft spectrum of pT while the signal should
populate slightly higher pT spectrum, especially for HNLs with higher mass;

• IPS(µD), IPS(µN ), IPS(π), IP(π): IPS of µD, µN , π, and IP of π on the transverse plane,
measured with respect to the BS;
because of the long-lived nature of the HNL, the IP of its decay products (µN and π)
should be large compared to the combinatorial background;
IPS(µD) has an appreciable half-life which should lead to a distinct signature for signal
events that distinguish them from combinatorial background;

• cos θpt(Ds), cos θpt(N): cosine of the pointing angle of Ds and HNL on the transverse
plane;
the pointing angle θpt is the angle formed by the fitted pT at the vertex and the vector
joining the BS with the position of the vertex (see fig. 4.6); signal events should have an
angle closer to 0 compared to the accidental background;

• vertex prob(Ds), vertex prob(N): fit probability of the Ds and HNL vertices;
since background events are combinatorial, they should have a worse vertex fit probability;

• ∆R(µD, µN ), ∆R(µD, π): track separation between µD and µN , and between µD and π,
where ∆R ≡

√
∆η2 +∆ϕ2;

• Npixel(µN ), Npixel(π): number of hits in the pixel system for µD, µN , and π;
because of the long-lived nature of the HNL, the number of pixel hits for its decay products
should be small compared to the combinatorial background;

• Iso(µN ): isolation of µN (see section 2.4.1);
isolation is computed as Iso(µ) =

∑
ptrack
T /pµT where the sum is on the tracks from the

primary vertex in a cone of ∆R = 0.3 around the muon. Muons from signal events tend
to be more isolated than muons from combinatorial background.

Figure 4.6: Sketch of the pointing angle θpt(A) for the generic decay A→ BC;
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Correlation of input features

We initially studied a larger set of input features, but highly correlated features constitute
redundant information for the algorithm, so some have been removed. The correlation matrix
for the background dataset is shown in fig. 4.7 while the correlation matrices for each signal
mass hypothesis dataset are shown in figs. 4.8 to 4.11. In the final set of input features there is
no correlation coefficient above 80%. An interesting thing to remark is the correlation between
IPS(µN ) and IPS(π), which is > 70 % for the signal datasets and 30 % for the background. This
is expected, since the muon and the pion come from the same secondary vertex in the signal,
while in the background the association between µN and π is random.

Figure 4.7: Correlation matrix of the input features for the QCD background dataset.
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Figure 4.8: Correlation matrix of the input features for the signal dataset with mass hypothesis
mN = 1.0 GeV.

Figure 4.9: Correlation matrix of the input features for the signal dataset with mass hypothesis
mN = 1.25 GeV.
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Figure 4.10: Correlation matrix of the input features for the signal dataset with mass hypothesis
mN = 1.5 GeV.

Figure 4.11: Correlation matrix of the input features for the signal dataset with mass hypothesis
mN = 1.8 GeV.
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4.2.2 Categorization of events

The search for HNL is not focusing on a single signal signature and different HNL masses or life-
time hypotheses can have different signatures. The selection strategy should aim to discriminate
against the background for as many signatures as possible. The selection is therefore optimized
in different event categories. The events are divided into 6 different categories based on the
HNL vertex displacement significance (Lxy/σ) and the relative sign of the muons.

The background comes from combinatorics that are mostly low-displaced, while signal events
can have very large displacements. This is reflected in the Lxy/σ distribution of the signal and
background, shown in fig. 4.12. This categorization allows studying different signal lifetime
hypotheses, since long-lived signals should mostly populate the high Lxy/σ categories, while
short-lived signals should mostly populate the low Lxy/σ categories. Three different categories
are defined based on the displacement significance:

• Low Lxy/σ category: Lxy/σ ≤ 50;

• Medium Lxy/σ category: 50 < Lxy/σ ≤ 150;

• High Lxy/σ category: Lxy/σ > 150.

The categorization on relative muon sign is:

• muons have same sign (SS);

• muons have opposite sign (OS).

This categorization is physically significant because same sign muons violate lepton number
conservation and are only allowed if the neutrino is of Majorana kind, while opposite sign
muons conserve lepton number and are allowed by both Dirac and Majorana kind neutrinos.
Table 4.1 shows the naming we use for each of the six categories of the analysis.

Same Sign muons Opposite Sign muons
Lxy/σ ≤ 50 lowDisp_SS lowDisp_OS

50 < Lxy/σ ≤ 150 mediumDisp_SS mediumDisp_OS
Lxy/σ > 150 highDisp_SS highDisp_OS

Table 4.1: Summary table of all the six categories used in the analysis, with their respective
names. Lxy/σ is the HNL vertex displacement significance.

Figure 4.12: Distribution of the HNL vertex displacement significance Lxy/σ for the QCD
background and signal mass hypotheses mN = 1.0 GeV (solid), mN = 1.5 GeV (dotted). The
red vertical lines at Lxy/σ = 50 and Lxy/σ = 150 refer to the boundaries of the event categories
definition. All histograms are normalized to unit area.
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4.3 Training the models

The signal datasets take into account four different values of HNL mass mN : 1.0, 1.25, 1.5
and 1.8 GeV and lifetime cτ : 10 mm. The background dataset comes from combinatorial QCD
events. The full details on the signal and background datasets is described in section 3.2.

Like for the selection of current cut-based analysis, we use the signal datasets with lifetime
cτ = 10 mm for the training of the ML models. This ensures consistency with previous work,
and should also represent the most conservative choice: if we can select particles with short
lifetimes, it’s likely we can also select those with longer lifetimes, while the reverse is less likely
to be true.

4.3.1 Data preparation

The datasets, derived from the preselection stage of the current (see section 3.3) analysis, are
in the format of ROOT NTuples. To facilitate further analysis in Python, we adopt the uproot
[74] library. This library allows us to convert these ROOT NTuples [75] into a tabular format
that Python can handle more efficiently. Once the data is in a Python-friendly format, we can
seamlessly interface with a wide range of ML libraries via their Python programming interfaces.
These libraries provide us with the tools necessary for advanced data analysis and model training.
The events of all the data samples are also weighted to account for several correction factors
(e.g. cross-sections, scale factors, efficiencies, . . . ) described in section 3.3.2.

The analysis uses four different datasets for the signal, one for each signal mass hypothesis,
and one for the QCD background. Each of these datasets is split into 6 category datasets,
based on the displacement of the HNL vertex and the relative sign of the muons, ad describe in
table 4.1 above.

The events in the category datasets are imbalanced, i.e. the total weights of the signal class
and background class are different. Since this can negatively impact the training process, a
constant multiplicative factor is added to the weights of each class to ensure that the total
weights are equal. Taking into account the split in categories, we have a total of 24 signal-
background pairs of datasets to train the models on.

Training, validation and test splitting

As mentioned in section 4.1, it is common practice to split the dataset into three different sets:
the training set, the testing set, and the validation set. The splitting fractions chosen for this
work are:

• training set: 65% of the total;
• testing set: 25% of the total;
• validation set: 10% of the total.

After dividing the dataset into training, testing, and validation sets, it is crucial to maintain an
unbiased distribution of events. Since the events in our datasets have different weights, randomly
choosing events for the training, testing, and validation sets could lead to a biased distribution
of signal and background classes across the sets. The splitting is done in such a way that the
weights of the signal and background classes are equal in the training, testing, and validation
sets, preserving the original proportions of the dataset.

4.3.2 Configuration of the ML models

In section 4.1 we introduced the basic concepts of the ML models used in this work. The specific
implementation of the models used is:

• Boosted Decision trees with AdaBoost boosting algorithm, implemented with the Scikit-
learn python module [76], we refer to this as BDT;

• Gradient tree boosting, implemented with the open-source software library XGBoost [70],
we refer to this as XGB;

• Artificial Neural networks, implemented with the Keras high-level API of the TensorFlow
platform [77], we refer to this as ANN.
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The hyperparameters used for the training of the models are listed in table 4.2 for BDT,
table 4.3 for XGB, and in table 4.4 for ANN. Further explanations of the hyperparameters were
already provided in sections 4.1.1 and 4.1.2.

The chosen hyperparameters are determined through a series of scans, as a compromise
between performance and computation time.

4.3.3 Monitoring training progress
As previously mentioned in section 4.1, monitoring the performance of the model on the val-
idation sets during the training process is important to keep overtraining under control. The
example considered in fig. 4.13 shows the training behavior of the XGB models for the signal
mass hypothesis mN = 1.0 GeV in the category lowDisp_SS.

The y-axis shows the loss value, computed using the log-loss defined in eq. (4.1), that rep-
resents the degree of correctness of the predictions (see section 4.1), while the x-axis shows the
iteration number, in this case represented by the number of trees in the model (see section 4.1.1).
Lower values of the loss translate to a more accurate prediction. The plot shows the loss for
both the training and validation sets. As the number of trees increases, the loss on the training
set keeps decreasing, while the loss on the validation set starts flattening out.

Since the validation set is not used for training, the performance on the validation set is
an indicator of the model’s generalization capability. Thus, the training is stopped when the
performance on the validation set does not improve anymore, because if the training continues,
there is a risk of overfitting the model to the training set i.e. the model will not be able to
generalize well to new, unseen data.

In this specific case, in the region where the validation loss is relatively flat, the model reaches
the lowest loss value for a number of trees equal to 43, and since all 10 subsequent values of the
validation loss are higher, this is chosen as early stopping point.

Figure 4.13: Performance of the XGB models on training and validation sets during the training
process, for the signal mass hypothesis mN = 1.0 GeV in the category lowDisp_SS. The blue
line represents the performance on the validation set, while the orange line represents the per-
formance on the training set. The black dashed line represents the early stopping point.

An analogous behavior is seen in fig. 4.14, which shows the training behavior of the XGB
models on all categories for the signal mass hypothesis mN = 1.0 GeV.
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Boosted Decision Trees (BDT)
Hyperparameter Value

Maximum depth 3
Maximum number of trees 10

Boosting type AdaBoost
Early stopping metric Logistic loss

Patience 3

Table 4.2: Summary table of the hyperparameters used for the BDT models.

XGBoost (XGB)
Hyperparameter Value

Maximum depth 3
Maximum number of trees 100

Loss function Logistic loss
Early stopping metric Logistic loss

patience 10

Table 4.3: Summary table of the hyperparameters used for the XGBoost model.

Artificial Neural Network (ANN)
Hyperparameter Value

hidden layers 1
hidden layer nodes 64

epochs 10
loss function Logistic loss

optimization algorithm Adam
Early stopping metric Logistic loss

patience 3

Table 4.4: Summary table of the hyperparameters used for the ANN models.

67



CHAPTER 4. MACHINE LEARNING ALGORITHMS FOR THE SEARCH FOR HEAVY
NEUTRAL LEPTONS

(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

(d) lowDisp_OS (e) mediumDisp_OS (f) highDisp_OS

Figure 4.14: Performance of the XGB models on training and validation sets during the training
process, for the signal mass hypothesis mN = 1.0 GeV. Each plot represents a different category.
The blue line represents the performance on the validation set, while the orange line represents
the performance on the training set. The black dashed line represents the early stopping point.
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4.4 Results
One model of each type (XGB, BDT, ANN) is trained on each of the six category datasets for
each of the four signal mass hypotheses, for a total of 24 signal-background pairs of datasets and
72 models. After the training of the models, their performance is evaluated on the test set. Our
purpose is to find the optimal models that maximize the signal-to-background discrimination,
and compare the signal efficiency and background rejection we obtain with the ones from the
cut-based analysis.

4.4.1 Selecting the best algorithm
As a metric to compare the performance of the models, we use the AUC of the ROC curve on
the test set (see section 4.1.3). As an example, fig. 4.15 shows the ROC curve for all models,
for signal mass hypothesis mN = 1.0 GeV in the category mediumDisp_SS. The AUC values
for each model are shown in the legend.

Figure 4.15: ROC curve for all models, category mediumDisp_SS, signal mass hypothesis
mN = 1.0 GeV. The AUC values for each model are shown in the legend.

Each ROC curve shows the trade-off between signal efficiency and background rejection: we
can reach a higher signal efficiency at the cost of a lower background rejection, and vice versa.
To choose the best model we use as a metric the AUC of the ROC curve (see section 4.1.3) and
thus the best model is XGB: it can be seen that its curve is “above” the two other curves, which
means that it achieves a better background rejection for any given signal efficiency.

The ROC curves for all models and categories are shown for each signal mass hypothe-
sis: fig. 4.16 (mN = 1.0 GeV), fig. 4.17 (mN = 1.25 GeV), fig. 4.18 (mN = 1.5 GeV), fig. 4.19
(mN = 1.8 GeV). The AUC values for all models, categories, and signal mass hypotheses are
summarized in table 4.5.

Since the AUC of the XGB models is consistently higher than the AUC of the BDT and
ANN models for all categories and signal mass hypotheses, from now on we will only consider
the XGB models.

The ROC curves for the signal mass hypothesis mN = 1.8 GeV (fig. 4.19) show a discontin-
uous and erratic behavior. This is because the dataset for this signal mass hypothesis has low
statistics, which influences the distribution of scores and consequently the ROC curve. This can
be seen in the score distribution plots that will be shown and commented in section 4.4.3.
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AUC of model
category XGB BDT ANN

lowDisp_SS 0.961 0.925 0.917
mediumDisp_SS 0.967 0.891 0.903

highDisp_SS 0.944 0.902 0.843
lowDisp_OS 0.957 0.914 0.91

mediumDisp_OS 0.964 0.926 0.924
highDisp_OS 0.974 0.892 0.939
(a) signal mass hypothesis mN = 1.0 GeV

AUC of model
category XGB BDT ANN

lowDisp_SS 0.966 0.938 0.958
mediumDisp_SS 0.966 0.934 0.919

highDisp_SS 0.97 0.937 0.922
lowDisp_OS 0.978 0.956 0.957

mediumDisp_OS 0.978 0.912 0.931
highDisp_OS 0.985 0.963 0.947
(b) signal mass hypothesis mN = 1.25 GeV

AUC of model
category XGB BDT ANN

lowDisp_SS 0.994 0.977 0.975
mediumDisp_SS 0.99 0.964 0.959

highDisp_SS 0.991 0.969 0.965
lowDisp_OS 0.989 0.919 0.965

mediumDisp_OS 0.99 0.973 0.958
highDisp_OS 0.99 0.955 0.965
(c) signal mass hypothesis mN = 1.5 GeV

AUC of model
category XGB BDT ANN

lowDisp_SS 0.997 0.984 0.901
mediumDisp_SS 0.995 0.972 0.993

highDisp_SS 1.000 0.998 0.974
lowDisp_OS 0.946 0.704 0.902

mediumDisp_OS 0.997 0.972 0.995
highDisp_OS 0.998 0.956 0.953
(d) signal mass hypothesis mN = 1.8 Gev

Table 4.5: AUC of the ROC curves for each model and category, for all signal mass hypotheses.

(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

(d) lowDisp_OS (e) mediumDisp_OS (f) highDisp_OS

Figure 4.16: ROC curves of all models for the signal mass hypothesis mN = 1.0 GeV, for each
category.
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(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

(d) lowDisp_OS (e) mediumDisp_OS (f) highDisp_OS

Figure 4.17: ROC curves of all models for the signal mass hypothesis mN = 1.25 GeV, for each
category.

(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

(d) lowDisp_OS (e) mediumDisp_OS (f) highDisp_OS

Figure 4.18: ROC curves of all models for the signal mass hypothesis mN = 1.5 GeV, for each
category.

71



CHAPTER 4. MACHINE LEARNING ALGORITHMS FOR THE SEARCH FOR HEAVY
NEUTRAL LEPTONS

(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

(d) lowDisp_OS (e) mediumDisp_OS (f) highDisp_OS

Figure 4.19: ROC curves of all models for the signal mass hypothesis mN = 1.8 GeV, for each
category.
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4.4.2 Most discriminating variables

The variables we have used as input features can have a different impact on the discrimination
of signal from background. Tree ensemble models can provide a measure of the importance of
each variable in the discrimination process [62]. This constitutes a useful explainability feature
of the models, as it allows us to understand which physical variables are used by the model to
discriminate signal from background.

From now on, we will refer to this metric as “importance”. Here we consider the importance
as computed by the XGB models, since we have chosen it as the best performing model (as
reported in section 4.4.1). The four variables with the highest importance for each category, for
signal mass hypotheses mN = 1.0 GeV and mN = 1.5 GeV, are shown in tables 4.6 and 4.7.

variable importance
cos θpt(N) 0.3212

IP(π) 0.0991
cos θpt(Ds) 0.0837
IPS(µN ) 0.0756
(a) Category lowDisp_SS

variable importance
cos θpt(N) 0.279
IPS(µD) 0.1219
Lxy/σ 0.0821

Iso(µN ) 0.0703
(b) Category mediumDisp_SS

variable importance
cos θpt(N) 0.2117
IPS(µD) 0.11
pT (µD) 0.0989
IPS(π) 0.0981

(c) Category highDisp_SS

variable importance
cos θpt(N) 0.2746

IP(π) 0.1151
Npixel(π) 0.101
Lxy/σ 0.0909

(d) Category lowDisp_OS

variable importance
cos θpt(N) 0.2844
IPS(µD) 0.1108
Lxy/σ 0.0752
IP(π) 0.0675

(e) Category mediumDisp_OS

variable importance
cos θpt(N) 0.2027
Lxy/σ 0.1038

IPS(µD) 0.1006
IPS(π) 0.1002

(f) Category highDisp_OS

Table 4.6: Four most important variables for the XGB models in each category, for the signal
mass hypothesis mN = 1.0 GeV.

variable importance
cos θpt(N) 0.4112
IPS(µN ) 0.085
IP(π) 0.0793
pT (µD) 0.0627
(a) Category lowDisp_SS

variable importance
cos θpt(N) 0.4193
IPS(µD) 0.128
pT (µD) 0.069
Iso(µN ) 0.055

(b) Category mediumDisp_SS

variable importance
cos θpt(N) 0.2693
IPS(µD) 0.1455
pT (µD) 0.1397
pT (µN ) 0.088

(c) Category highDisp_SS

variable importance
cos θpt(N) 0.493

IP(π) 0.0913
pT (µN ) 0.0789
pT (µD) 0.054

(d) Category lowDisp_OS

variable importance
cos θpt(N) 0.3836
IPS(µD) 0.1232
pT (µN ) 0.0758
IPS(π) 0.065

(e) Category mediumDisp_OS

variable importance
cos θpt(N) 0.2477
pT (µN ) 0.1835
IPS(µD) 0.1628
IPS(π) 0.1166

(f) Category highDisp_OS

Table 4.7: Four most important variables for the XGB models in each category, for the signal
mass hypothesis mN = 1.5 GeV.

Among the most discriminating variable, as illustrative examples, we focus on the distribution
of cos θpt(N), IP(π), IPS(µN ) and Lxy/σ. These variables are shown in figs. 4.20 to 4.23 for the
signal mass hypotheses mN = 1.0 GeV and mN = 1.5 GeV in three categories with same sign
muons and displacement ranging from low to high, in order to appreciate possible patterns as a
function of displacement.

• cos θpt(N) (fig. 4.20):

signal events and background events are both peaked towards 1, but the signal peak is
higher and drops off more quickly for lower values of cosine; this is quite consistent across
all categories;
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• IP(π) (fig. 4.21):

the high IP(π) values are populated by more signal events than background events; if we
compare the behavior across the three categories, we can see that the signal distribution
is shifted towards higher IP(π) values for higher displacement categories; the background
distribution on the other hand drops off more quickly in the higher displacement categories;

• Lxy/σ (fig. 4.22):

signal events can have very large Lxy/σ while the combinatorial background distribution
drops off more quickly; if we compare the behavior across the three categories, we can
see that the background distribution drops off more quickly in the higher displacement
categories;

• IPS(µN ) (fig. 4.23):

the signal distribution is shifted towards higher IPS(µN ) especially in the higher displace-
ment categories;

The behaviors described are analogous for the opposite sign categories, see as illustrative
example fig. 4.24 that shows the distribution of cos θpt(N) for all displacement categories but
with opposite sign muons. The fact that the behavior is similar across the opposite sign and
same sign categories reinforces our hypothesis that the background is mainly combinatorial.

(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

Figure 4.20: Distribution of the variable cos θpt(N) for the QCD background (blue) and for the
signal mass hypotheses mN = 1.0 GeV (solid) and mN = 1.5 GeV (dotted) across three different
displacement categories.

(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

Figure 4.21: Distribution of the variable IP(π) for background for the QCD background (blue)
and signal for the signal mass hypotheses mN = 1.0 GeV (solid) and mN = 1.5 GeV (dotted)
across three different displacement categories.
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(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

Figure 4.22: Distribution of the variable Lxy/σ for background for the QCD background (blue)
and signal for the signal mass hypotheses mN = 1.0 GeV (solid) and mN = 1.5 GeV (dotted)
across three different displacement categories.

(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

Figure 4.23: Distribution of the variable IPS(µN ) for background for the QCD background (blue)
and signal for the signal mass hypotheses mN = 1.0 GeV (solid) and mN = 1.5 GeV (dotted)
across three different displacement categories.

(a) lowDisp_OS (b) mediumDisp_OS (c) highDisp_OS

Figure 4.24: Distribution of the variable cos θpt(N) for background for the QCD background
(blue) and signal for the signal mass hypotheses mN = 1.0 GeV (solid) and mN = 1.5 GeV
(dotted) across the three different displacement categories with opposite sign muons.
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4.4.3 Model scores and cut optimization
We have determined that the XGB algorithm provides the best models for the analysis, and we
have outlined the most important variables for the discrimination of signal from background.
However, we still need to choose a cut on the output score produced by the model to classify
the events as signal or background. In order to do this, we need to analyze the distribution of
the scores produced by the models for each of the four signal mass hypotheses in each category.

As an example consider fig. 4.25, which shows the distribution of scores produced by the
XGB models on the training and test sets for the signal mass hypothesis mN = 1.0 GeV and
category mediumDisp_OS. The orange histogram represents the distribution of scores for the
background class, while the blue histogram represents the distribution of scores for the signal
class. The filled histogram represents the test set, while the empty histogram represents the
training set. Comparing the distribution of scores on the test and training sets is important as
an additional overtraining check. In our case, the distributions of the scores on the test and
training sets are satisfactorily similar, which indicates that the model is fairly not overtrained.
We can see that the distribution of scores for the signal class is significantly separated from the
distribution of scores for the background class, which reflects the good performance of the model
in discriminating signal from background.

Figure 4.25: Distribution of scores of the XGB models on training and test sets for the signal
hypothesis mN = 1.0 GeV and category mediumDisp_SS. All histograms are normalized to
unit area.

For completeness, the distribution of output scores of the XGB models on the training and
test sets for each of the four signal mass hypotheses, for each category, are shown in figs. 4.26
to 4.29. Some fluctuations in the distribution of scores between the training and test sets are
visible, that are due to the limited statistics: the signal has reduced statistics in the lower dis-
placement categories; the background, on the other hand, is expected to have reduced statistics
in the higher displacement categories, since the combinatorial QCD background is expected to
decrease significantly with displacement. Since we have implemented early stopping to mitigate
overtraining, and in most cases the differences in the distributions are not extreme, we do not
consider this to be a sign of significant overtraining.

This issue of reduced statistics is particularly true for the signal mass hypothesis mN =
1.8 GeV (see fig. 4.29): this is a peculiar limit case, very close to maximum allowed mass of the
decay (the mass of the Ds meson), which makes the HNL decay products very soft and thus
harder to reconstruct.

As a criterion for the choice of the cut on the output score, we consider the expected discovery
significance (significance for short) Z0 of the signal over the background [60], in its limit for a
small number of signal events, which is given by:

Z0 =

√
2

[
(S +B) log

(
1 +

S

B

)
− S

]
S≪B−−−→ S√

S +B
, (4.3)

where S and B are the number of signal and background events that pass the cut. The green
curve in fig. 4.25 shows the significance as a function of the cut on the score, and we choose
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the cut that maximizes the significance, indicated by the dashed green line. Table 4.8 shows
the optimal cut on the score for each category and signal mass hypothesis, according to the
maximum expected discovery significance.

Signal mass hypothesis (GeV)
category 1.0 1.25 1.5 1.8

lowDisp_SS -0.938 -1.160 -1.592 -0.933
mediumDisp_SS -0.136 0.086 1.147 -0.686

highDisp_SS 0.168 -0.225 0.062 -0.062
lowDisp_OS 0.361 0.136 -0.829 -0.564

mediumDisp_OS -0.243 -0.338 0.364 -0.684
highDisp_OS 1.248 0.620 1.145 0.507

Table 4.8: Optimal cut on the score for each category and signal mass hypothesis, according to
the maximum expected discovery significance.

From the output score distributions in figs. 4.26 to 4.29, it is visually clear that the signal
and background histograms are more separated for the higher mN signal hypothesis: this seems
to indicate the fact that higher mN signals have a more distinct signature, and are thus easier
to discriminate.

(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

(d) lowDisp_OS (e) mediumDisp_OS (f) highDisp_OS

Figure 4.26: Distribution of scores of the XGB models on training and test sets for the signal
mass hypothesis mN = 1.0 GeV. All histograms are normalized to unit area. Distributions are
shown for each category.
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(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

(d) lowDisp_OS (e) mediumDisp_OS (f) highDisp_OS

Figure 4.27: Distribution of scores of the XGB models on training and test sets for the signal
mass hypothesis mN = 1.25 GeV. All histograms are normalized to unit area. Distributions are
shown for each category.

(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

(d) lowDisp_OS (e) mediumDisp_OS (f) highDisp_OS

Figure 4.28: Distribution of scores of the XGB models on training and test sets for the signal
mass hypothesis mN = 1.5 GeV. All histograms are normalized to unit area. Distributions are
shown for each category.
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(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

(d) lowDisp_OS (e) mediumDisp_OS (f) highDisp_OS

Figure 4.29: Distribution of scores of the XGB models on training and test sets for the signal
mass hypothesis mN = 1.8 GeV. All histograms are normalized to unit area. Distributions are
shown for each category.
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4.4.4 Results and comparison with the cut-based analysis

With the optimal cut determined (section 4.4.3), we have a model and a fixed working point
for each category and signal mass hypothesis. Table 4.9 shows the signal efficiency and back-
ground rejection for the chosen working points of the XGB models, for all signal hypotheses and
categories.

Signal Background
category efficiency rejection

lowDisp_SS 0.873 0.930
mediumDisp_SS 0.948 0.876

highDisp_SS 0.962 0.814
lowDisp_OS 0.888 0.937

mediumDisp_OS 0.924 0.909
highDisp_OS 0.909 0.932

(a) signal mass hypothesis mN = 1.0 GeV

Signal Background
category efficiency rejection

lowDisp_SS 0.942 0.868
mediumDisp_SS 0.912 0.907

highDisp_SS 0.954 0.853
lowDisp_OS 0.952 0.953

mediumDisp_OS 0.923 0.921
highDisp_OS 0.928 0.966

(b) signal mass hypothesis mN = 1.25 GeV

Signal Background
category efficiency rejection

lowDisp_SS 0.962 0.944
mediumDisp_SS 0.953 0.955

highDisp_SS 0.975 0.941
lowDisp_OS 0.939 0.969

mediumDisp_OS 0.986 0.909
highDisp_OS 0.955 0.941

(c) signal mass hypothesis mN = 1.5 GeV

Signal Background
category efficiency rejection

lowDisp_SS 1.000 0.961
mediumDisp_SS 0.957 0.971

highDisp_SS 1.000 0.987
lowDisp_OS 0.885 0.978

mediumDisp_OS 0.978 0.987
highDisp_OS 0.976 0.999

(d) signal mass hypothesis mN = 1.8 GeV

Table 4.9: Signal efficiency and background rejection for the chosen working point of the XGB
models, for all signal mass hypotheses and categories.

For visual reference, we take the example of the category mediumDisp_OS and show the
ROC curves of the XGB models for all signal mass hypotheses in fig. 4.30. This plot shows
the good performance of the XGB models in discriminating signal from background, with AUC
values close to 1 for all signal mass hypotheses. It is interesting to remark, as we had noticed
visually by looking at the scores distributions (section 4.4.3), that the models perform better for
higher signal mass hypotheses, as shown by the higher AUC values for the higher signal mass
hypotheses. For completeness, fig. 4.31 shows the same plot for all categories.

Figure 4.30: ROC curves of XGB models comparing all signal mass hypotheses for the category
mediumDisp_OS. The working points of the XGB models are shown as dots on the curves. The
crosses show the working points of the cut-based analysis. The legend shows the AUC of each
ROC curve.
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(a) lowDisp_SS (b) mediumDisp_SS (c) highDisp_SS

(d) lowDisp_OS (e) mediumDisp_OS (f) highDisp_OS

Figure 4.31: ROC curves of XGB models comparing all signal mass hypotheses for each category.
The working points of the XGB models are shown as dots on the curves. The crosses show the
working points of the cut-based analysis. The legend shows the AUC of each ROC curve.
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In order to compare the performance of the XGB models with the current cut-based analysis
(described in section 3.3.3), the signal efficiency and background rejection of the cut-based
analysis are summarized in table 4.10. For a visual comparison, the working points of the
cut-based analysis are also shown as crosses on the previously mentioned figs. 4.30 and 4.31.

Signal Background
mN (GeV) efficiency rejection

1.0 54.7 %

97.9 %1.25 62.8 %
1.5 67.9 %
1.8 62.9 %

Table 4.10: Signal efficiency and background rejection for the cut-based analysis, for all signal
hypotheses.

The working points of the XGB models show a significant improvement: they have a signal
efficiency roughly 30 percent higher than the cut-based analysis, allowing to reach values of 90
percent or above; the background rejection is only slightly (a few percent) lower.

To quantify the improvement in signal efficiency, we compare the significance of the cut-
based selection with the one from this ML approach, summarized in table 4.11. The significance
is computed as S/

√
S +B, where S and B are the number of signal and background events

selected by each approach.

Signal mass hypothesis Cut-based ML Improvement
(GeV) significance significance (%)

1.0 58.69 70.23 20
1.25 62.48 72.8 17
1.5 67.65 76.96 14
1.8 22.13 26.25 19

Table 4.11: Comparison of the cut-based and ML significance (S/
√
S +B) for different signal

mass hypotheses. The improvement is computed as the percentage increase in significance from
the cut-based to the ML approach.

The ML approach shows a significant improvement in significance over the cut-based analysis,
with an increase of the order of 14-20 percent for all signal mass hypotheses. This higher
significance in the selection should lead to an improvement in the expected limits on the mixing
parameters |Vµ|2 with respect to those that can be obtained with the cut-based analysis [7].

4.5 Summary and outlook
The focus of this work was to improve the selection efficiency of the current cut-based analysis
using ML techniques. To summarize, we have trained our models exploring the usage of three
different algorithms: XGB, BDT and ANN. We have found that the XGB algorithm provides
the models that best discriminate between signal and background. The results of the XGB
models show a significant improvement in signal efficiency (reaching values of 90 % or above)
compared to the cut-based analysis, while the background rejection is only slightly lower.

This work is part of an ongoing analysis effort within CMS, and there are still opportunities
to explore certain areas for improvement.

One margin of improvement for this analysis is the generation of higher statistics MC samples,
especially for the signal datasets. This is because the robustness of the ML models is limited
by the number of events in the training set, and the signal data samples used in this analysis
have low statistics in some categories. As far as background is concerned, an alternative to our
approach could be to use a ‘data-driven’ background, obtained from data excluding the signal
region of the µπ invariant mass. This has the twofold advantage of relying on data statistics,
instead of generating more MC events, and feeding the ML model with data from real data-
taking conditions.

The signal MC samples used for the training have been generated with a proper decay length
cτ = 10 mm, as a conservative choice that is also consistent with the current cut-based analysis.
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It could be worth cross-checking the behavior of the XGB model trained also on different cτ
hypotheses.

From a technical perspective another approach worth investigating is the use of more ad-
vanced ML algorithms, such as a parametrized neural network [78], which uses the mass hy-
pothesis parameter as an additional feature. This kind of model can interpolate predictions for
any arbitrary value of the signal mass hypothesis, instead of relying on a discrete set of models
for a finite number of signal mass hypotheses. This would also reduce the number of models to
be trained from N to only one (per category).

Thanks to the higher signal efficiency, the techniques presented in this work will also be used
in the future steps of the ongoing CMS analysis to calculate the new expected limits on the
mixing parameters |Vµ|2 of the HNL, which we expect to be improved over the current ones
obtained with the cut-based analysis.
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Conclusions

This thesis work focused on the use of Machine Learning (ML) techniques for the search of HNLs
from Ds meson decays in the CMS experiment. This study has been carried out in the context
of an ongoing analysis, that relies on a cut-based event selection, and its aim is to explore a
different approach, based on ML techniques, to improve the event selection.

The decay channel we have studied is D+
s → N (→ µ±π∓)µ+. The signature of this channel

comes from the displaced N → µπ vertex whereas the main background is caused by accidental
combination of muons and a track into a common vertex. The search is not focused on a
single kind of HNL signature: different HNL masses or proper decay length hypotheses can
have different signature. The signal datasets that have been used in this work take into account
four different HNL mass hypotheses: mN = 1.0 GeV, 1.25 GeV, 1.5 GeV and 1.8 GeV. Since
the selection strategy should discriminate signal against background for different signatures, the
events are divided into different categories. In particular, we have chosen to use six different
event categories based on: the HNL vertex displacement significance, that allows to enhance
signals with different proper mean decay length; the relative sign of the muons which is related
to lepton number violation (conservation) for same (opposite) sign.

In our ML approach, the models we focus on are supervised classifiers, which are trained
to distinguish events of different classes, in our case signal and background. We have explored
three different ML algorithms: boosted decision trees (BDT), gradient boosted decision trees
(XGB) and artificial neural networks (ANN). The ML models are trained using the Monte Carlo
samples (one for background and one for each HNL mass hypothesis) that have also been used
in the cut-based selection optimization. These Monte Carlo samples reproduce the data-taking
conditions of the Run-2 2018 data collected by the CMS experiment.

We have evaluated several physical variables to be used as inputs for the training of the ML
models. We studied the correlation of these variables in order to reduce the number of inputs,
and avoid feeding the algorithm with redundant information. In our approach, we have trained
one model of each type on each of the six category datasets for each of the four signal mass
hypotheses. This process has resulted in a total of 24 signal-background pairs of datasets, thus
72 ML models in total.

After training the models, we have evaluated their performance. The best models we have
chosen are the ones built with the XGB algorithm, because compared to the other algorithms,
they achieve a better signal efficiency for a fixed background rejection, for all categories and
signal mass hypotheses. The ML models provide an output score that is able to discriminate
between signal and background. In order to choose the best cut on the model’s output score, we
have chosen the discovery significance metric. With this approach we have derived the “working
points” in the selection efficiency-background rejection plane for all categories and signal mass
hypotheses.

The signal efficiencies of the XGB models are 90% or higher, which significantly improves
the efficiencies of the cut-based approach, with a small compromise in background rejection.
The overall impact of the selection can be evaluated using the significance. The significance
is estimated as S/

√
S +B, where S(B) are the number of signal (background) events selected.

The improvement in the event selection achieved with the ML approach translates into 14-20%
higher significances of the XGB models selection over the cut-based one.

The results of this work show that the developed ML-based strategy is an effective contri-
bution to the ongoing CMS analysis. Therefore, replacing the cut-based selection could lead to
an improvement of the upper limits extraction active-sterile neutrino mixing parameter |Vµ|2.
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Appendix A

Monte Carlo

After event generation, additional conditions are required for the event to be finally stored.
These requirements depend on the generated samples and usually are requirements on pT and
η of the final-state particles to make them fall into detector acceptance and to meet the trigger
conditions, or requirements for final-state particles to be generated from the decay of interest.
These requirements are often referred to as generator filters, and the fraction of events that
survive such requirements is called filter efficiency. The simulated samples used in the analysis
are summarized in table A.1. For each sample we report the number of events that pass the
generator filters, the cross-section and the filter efficiency. The reported cross-section was also
calculated using the PYTHIA software, and it refers to the production process only. A summary
of the generator settings and filters used for each of the simulated processes can be found in
Tab. A.2.

Process NTOTNTOTNTOT σσσ (pb) εfilterεfilterεfilter (%)
D±

s → N(→ µπ)µ±

mHNL = 1.8GeV; cτHNL = 10mm 309857 — 0.005
mHNL = 1.8GeV; cτHNL = 100mm 311533 — 0.005
mHNL = 1.8GeV; cτHNL = 1000mm 309867 — 0.004
mHNL = 1.5GeV; cτHNL = 10mm 215946 — 0.005
mHNL = 1.5GeV; cτHNL = 100mm 213340 — 0.005
mHNL = 1.5GeV; cτHNL = 1000mm 214422 — 0.003
mHNL = 1.25GeV; cτHNL = 10mm 211501 — 0.004
mHNL = 1.25GeV; cτHNL = 100mm 211400 — 0.004
mHNL = 1.25GeV; cτHNL = 1000mm 213100 — 0.004
mHNL = 1.0GeV; cτHNL = 10mm 277288 — 0.004
mHNL = 1.0GeV; cτHNL = 100mm 255234 — 0.005
mHNL = 1.0GeV; cτHNL = 1000mm 259243 — 0.003

D±
s → ϕ(µµ)π± 2964234 — 0.0160

Muon enriched QCD dijet
20 < p̂T < 30GeV 60640516 3.977× 108 0.65
30 < p̂T < 50GeV 58627984 1.070× 108 1.25
50 < p̂T < 80GeV 40022458 1.573× 107 2.35
80 < p̂T < 120GeV 45566475 2.341× 106 3.81
120 < p̂T < 170GeV 39114558 4.086× 105 5.17
170 < p̂T < 300GeV 71926577 1.036× 105 6.83

Table A.1: Total events that pass generator filters(NTOT), cross-section (σ) and filter efficiency
(εfilter) of simulated samples. Whenever the cross-section is not used in the analysis, it is
indicated with the “—” symbol.
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APPENDIX A. MONTE CARLO

Process PYTHIA settings EVTGEN settings Generator filters

Ds → N(→ µπ)µ
SoftQCD:inelastic =
on

B(Ds
PHSP−−−−→ Nµ) = 1.0

B(N PHSP−−−−→ µ+π−) = 0.5

B(N PHSP−−−−→ µ−π+) = 0.5

Final state µ having:

• pµT > 6.8;

• |ηµ| < 1.55.

At least a N → µ+π−

decay having:

• Ds mother;

• pµ,πT > 0.5GeV;

• |ηµ,π| < 2.5.

Ds → ϕ(→ µµ)π
SoftQCD: inelastic
= on

B(Ds
SVS−−→ ϕπ) = 1.0

B(ϕ VLL−−−→ µµ) = 1.0

At least a Ds.
Final state µ having:

• pT > 2.7GeV;

• |η| < 2.45.

QCD dijet

ParticleDecays:
limitTau0 = off
ParticleDecays:
limitCylinder = on
ParticleDecays:
xyMax = 2000
ParticleDecays:
zMax = 4000
HardQCD: all = on
PhaseSpace:
pTHatMin = pmin

T

PhaseSpace:
pTHatMax = pmax

T

130: mayDecay = on
211: mayDecay = on
321: mayDecay = on

-

Final state µ having:

• pµT > 5.;

• |ηµ| < 2.5;

• decay length <
2m on xy;

• decay length <
4m on |z|.

Table A.2: Summary of the generator parameters and generator filter settings used for the
simulation of each of the processes.
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