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Sommario

L’interazione con oggetti tramite l’analisi dei movimenti delle mani è una importante sfida nel
campo delle interfacce uomo-macchina (HMI). Una comprensione più profonda di tali mec-
canismi è essenziale per migliorare la funzionalità dei dispositivi indossabili che possono es-
sere utilizzati in diverse applicazioni HMI. Ciò richiede un approccio innovativo oltre i metodi
tradizionali che possano mimare la complessa interazione dei movimenti delle mani.
Sebbene l’attività elettrica muscolare sia comunemente utilizzata in questo campo, le immag-
ini e i movimenti degli occhi forniscono importanti indicazioni sull’intenzione di una persona
nell’esecuzione di gesti. Gli smart glasses offrono una piattaforma promettente per la cattura di
elettrooculogrammi (EOG) e immagini. Possono anche fungere da gateway di integrazione per
una Body Area Network, collegandosi ad altri biosensori come, ad esempio, un dispositivo per
l’elettromiografia (EMG).

Questa tesi si propone di sviluppare un prototipo di sistema composto da smart glasses con
sensori EOG, una scheda di acquisizione immagini e un dispositivo EMG. Questi dati vengono
trasmessi ad un computer, che ne consente la sincronizzazione e l’elaborazione.
La prima parte della tesi consiste nel determinare il posizionamento ottimale dei sensori EOG
sugli occhiali per garantire una corretta acquisizione del segnale rispetto ai metodi tradizionali
a base di gel. Per tale scopo, è stato sviluppato un prototipo di occhiali costituito da elettrodi
asciutti di Dätwyler, interfacciati con la piattaforma BioGAP. Uno studio esplorativo, basato
sulla classificazione di 9 movimenti oculari, in cui è stato confrontato questo prototipo con una
configurazione EOG convenzionale, ha mostrato una promettente accuratezza del 95% contro il
96% della configurazione tradizionale. Nella seconda parte della tesi, si impiega la piattaforma
GAP9 Shield, dotata di una piccola camera e di un modulo Wi-Fi per l’invio delle immagini.
Si procede a stabilire una connessione con BioGAP, assicurando un flusso di comunicazione
sincronizzato con un ritardo medio di 120 ms, paragonabile al periodo di frame di 166 ms.
Infine, un modello CNN MobileNet V2 è stato adattato per la classificazione binaria di immagini
di mano aperta e chiusa, ottenendo un’accuratezza del 97%.
Questa tesi di laurea magistrale è stata parzialmente condotta presso l’ETH di Zurigo.
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Abstract

The field of hand movements and grasp control has long faced challenges in replicating the
natural movements of the human hand. A deeper understanding of such mechanisms is es-
sential to enhance the functionality of wearable devices that can be used in multiple Human
Machine Interface (HMI) applications. This necessitates an innovative approach beyond tradi-
tional methods that can mimic the complex interplay in hand movements. Although electrical
muscle activity is commonly used in this field, images and eye movements provide important
cues about a person’s intention during hand gestures by offering visual context.
Smart glasses offer a promising platform for capturing electrooculograms (EOG) and images.
They can also serve as an integration gateway for a Body Area Network, connecting with other
biosensor nodes such as an electromyogram (EMG) device.

This thesis aims to develop a system consisting of a prototype for smart glasses with EOG sen-
sors, an image acquisition board, and an EMG acquisition device. These data are wirelessly
transmitted to a computer, which allows synchronization and processing.
The first part of the thesis consists of determining the optimal placement of EOG sensors on the
glasses to balance accuracy and ensure robust signal acquisition with respect to traditional gel-
based methods. To achieve this, a glasses prototype integrating dry electrodes from Dätwyler,
interfaced with the BioGAP platform, was developed and evaluated. An exploratory study in-
volving 9-task eye movement classification, comparing this prototype with a conventional EOG
setup, showed a promising 95% accuracy for the glasses prototype, close to the traditional
setup’s 96%.
The second part of the thesis involves utilizing the GAP9 Shield, a platform with a small camera
and a Wi-Fi shield for image transmission, and establishing a connection with BioGAP, guaran-
teeing synchronized communication with an average delay of 120 ms, comparable to the frame
period of 166 ms.
Finally, a MobileNet V2 CNN model was adapted for binary image classification of open and
closed hands, achieving an accuracy of 97%.
This master’s thesis has been partially conducted at ETH Zürich.
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Chapter 1
Introduction

Thanks to the advancement of technologies for biomedical applications and the continuous

progress of wearable devices, the development of reliable and non-invasive systems for moni-

toring human vital functions is continually unfolding [6].

Smart glasses represent an innovative solution capable of acquiring biopotentials, like Elec-

troencephalography (EEG) and electrooculography (EOG) [7], as well as images [8].

These devices open up numerous opportunities for engineering research applications in various

�elds, including Human Machine Interface (HMI) [9], assistive technologies [10], prosthet-

ics [11], and robotics [12]. Moreover, focusing on hand movements, smart glasses have been

used to capture hand gestures [13]. Other approaches explored in these studies involve using

electrical muscular activity (Electromyography - EMG) as the primary responsible for hand

movements. A drawback of this method lies in its lack of visual context of the surrounding

environment. Sensor fusion between camera images and physiological signals offers a com-

prehensive method for analyzing complex hand movements and grasping actions [14]. Images

provide valuable insight into the surrounding environment while incorporating EOG, which

enables capturing the directional focus of the user's gaze and contributes to target identi�ca-

tion. Furthermore, by integrating an EMG acquisition device to monitor muscular activity, the

resulting system mirrors human hand control functionalities more accurately.

1.1 HGR and Grasp Control

Hand gestures are one of the most natural ways for humans to express intuitive intention, ma-

nipulate objects, and interact with the surrounding environment.

Consequently, Hand Gesture Recognition (HGR) is considered one of the most signi�cant and
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1 Introduction

active research topic for developing HMIs [15], aiming to interpret human hand gestures using

machine learning algorithms.

HGR encompasses various types of gestures, including grasping objects of different shapes,

sizes, and textures, enabled by the coordination of the human brain and visual and tactile pro-

cesses. Understanding this mechanism can be useful across various disciplines inside the HMI,

for example:

• Virtual Reality and Gaming, where hand gestures work as the primary input, and a more

natural and intuitive user experience is needed [16].

• Robotics and Automation, where the ability to manipulate objects precisely and in various

complex manners is essential [17].

• Rehabilitation and Assistive Technologies, where individuals with motor impairments or

disabilities can improve their quality of life [18].

Various techniques have been developed in these �elds, and current methods primarily rely

on visual sensors [19] that interpret gestures by perceiving the environment and hand shape

or EMG sensors [4] that directly capture muscle signals. However, each method has limita-

tions: EMG signals vary due to anatomical differences between people, whereas visual-based

approaches are affected by changing lighting conditions. This inadequacy underscores the im-

portance of adopting a hybrid approach, which integrates multiple modalities to overcome these

challenges by utilizing their combined strengths.

1.2 Contribution and Objective

The user's intention during hand movements and grasping can be deduced from the electrical

activity of muscles and images, complemented by an understanding of the target facilitated by

eye tracking. At the same time, the primary challenge in HMI lies in developing increasingly

precise, minimally invasive, and user-friendly systems [20]. This thesis tackles these challenges

by coupling smart glasses for EOG and image acquisitions with an EMG acquisition system,

obtaining a system replicating the human capabilities for hand control functionalities. This

integration process involves the following main steps:

1. Develop a prototype of smart glasses based on dry electrodes for EOG acquisition, com-

paring it with a traditional design based on wet electrodes.

2. Incorporate the system with a nano camera, ensuring a wireless connection and transmis-

sion of images.

3. Integrate and synchronize the smart glasses with an EMG acquisition system.

2



1 Introduction

1.3 Thesis Structure

The rest of this master thesis is structured as follows:

• Chapter 2 provides an overview of the necessary background for understanding subse-

quent developments, including explanations of EOG and EMG, State of Art (SoA), the

platform utilized for experimentation (BioGAP), and the collaboration with the partnering

company.

• Chapter 3 explains the EOG module in detail, focusing on signal acquisition and process-

ing.

• Chapter 4 illustrates the camera module, its �rmware, and the employed image classi�-

cation.

• Chapter 5 describes the procedure for synchronizing the camera module with an EMG

acquisition system based on BioGAP.

• Chapter 6 presents the results obtained for each module.

• Chapter 7 exposes the conclusions and outlines the future work.

3
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Chapter 2
Background

2.1 EOG Theory

Electrooculography (EOG) is a technique designed to measure the Corneal-Retinal Potential

(CRP), that is, the potential between the front (cornea) and back (retina) of the human eye. The

CRP results in the observed signal called electrooculogram.

2.1.1 Eyes Dipole

The human eyes act as a dipole. Therefore, the EOG signal varies depending on the eye's

direction relative to a speci�c electrode, resulting in a positive or negative trend.

As illustrated in Figure 2.1, the signal increases when the cornea approaches an electrode and

decreases when the cornea moves in the opposite direction. Finally, the EOG re�ects changes

associated with eye movements.

Figure 2.1: The eye-dipole model with EOG waveform [1]
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2 Background

2.1.2 EOG Acquisition methods

As the EOG represents the eye movement, two different signals are typically de�ned to distin-

guish the horizontal and vertical movements, computed according to the electrode placement.

A standardized acquisition setup has not yet been developed. Following are the two methods

used in this thesis: the commonly used approach and an innovative alternative.

Traditional Method

The classical way to acquire EOG is to use gel electrodes attached at strategic points of the

face. As reported in [21], multiple possible con�gurations exist. The most used one has four

electrodes placed as described below, and the resulting EOG signals are:

• Vertical signal: differential measurement between one electrode above the eyebrows and

one below the eye of the left part of the face.

• Horizontal signal: differential measurement between the two electrodes placed on the

distal ends of the forehead by the corner of the eyes.

Figure 2.2: Electrodes placement for traditional method [2]

Glasses Method

Researchers tried to �nd a more comfortable, wearable solution. As introduced in Chapter 1, it

is possible to capture EOG using only three electrodes placed in the frame of a pair of glasses:

one in the bridge and two in the nose pads (left and right), as shown in Figure 2.3. In such a

method, the horizontal signal is given by the contribution of the left and right pads, while the

vertical one can be obtained by considering the bridge and both nose pads.

6



2 Background

Figure 2.3: Electrodes placement in JINS Meme glasses [3]

2.1.3 EOG Signal

The EOG signal, which re�ects eye movements, typically exhibits a potential difference with

amplitudes ranging from 0 to 100 mV, proportionally to the direction of the eye movements.

Additionally, it demonstrates a signi�cant frequency contribution from 0.1 to 40 Hz, as reported

in [22]. Like other biomedical signals, the EOG can be affected by multiple noise sources. The

most common ones are power line interference (50Hz), environmental noise (due to nearby

electronic equipment), cross-talk (the presence of other biosignals nearby), and even motion

artifacts (like facial expressions). In terms of signal processing, there's still no standardized

procedure, as it strongly depends on the acquisition system used, as mentioned in 2.1.2.

2.2 EMG Theory

Electromyography (EMG) is a functional diagnostic technique for evaluating and detecting

muscle electrical activity, called myoelectric signal, during contractions.

2.2.1 Origin of the Myoelectric Signal

Muscles are tissues primarily composed of muscle �bers with contractile capabilities.

The motor unit is the smallest functional unit responsible for muscle contraction, consisting of

thea motor neuron and the muscle �bers it innervates. The nerve impulse sent by the motor

neuron to the muscle �bers causes an electric signal to occur in them. More precisely, since a

motor unit consists of multiple muscle �bers, what is observed is the sum of the amplitudes of

all electrical signals of the activated �bers.

7



2 Background

2.2.2 EMG Acquisition Method

There are two main types of EMG: intramuscular electromyography (iEMG), which relies on

needle electrodes penetrating the skin to reach the muscle of interest and surface electromyog-

raphy (sEMG) which relies on electrodes placed on the skin above the muscle of interest. Being

painless and non-invasive [23], the latter is preferred for developing HMIs.

In sEMG, both dry and wet electrodes can be employed, and they can be used as individual

electrodes positioned at speci�c points of interest or as super�cial patches, such as electrode

arrays integrated into armbands, as shown in Figure 2.4. This setup allows for recording across

a two-dimensional surface, facilitating the acquisition of more comprehensive information from

different muscle �bers. However, surface electrodes collect signals from the underlying tissue

volume, potentially compromising signal quality [24].

Figure 2.4: EMG Armband with dry electrodes employed in [4]

2.2.3 sEMG signal

The sEMG signal captures the dynamic pattern of muscle activity over time, delineating mo-

ments of contraction and rest with zero mean, as shown in Figure 2.5. It offers insights into the

movement performed by the muscle under examination, as its amplitude re�ects the intensity of

muscular activation. However, it is affected by diverse factors such as baseline noise or tissue

motion artifacts, as well as the equipment used: electrode type and placement, signal ampli�ca-

tion, and �ltering techniques [25]. In the realm of signal processing, there are multiple machine

learning algorithms and pattern recognition techniques capable of recognizing muscle activity

and associating it with a speci�c gesture despite the variability of the measurement [26].
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Figure 2.5: EMG signal with three contractions over time

2.3 State of the art

2.3.1 Eye tracking

Eye tracking is a �eld focused on measuring and analyzing the intricate movements of eyes. Th-

Several techniques are used to capture the movement of the es. Some commonly used methods

are:

• Camera-based Eye Tracking [27]: this is one of the most common methods used today. It

involves using specialized cameras to record the movement of the eyes. Algorithms then

analyze the video footage to determine the position of the eyes over time.

• Infrared Eye Tracking [28]: this works by emitting infrared light toward the eyes and

measuring the re�ection using sensors. This method is advantageous in low-light condi-

tions.

• EOG [22]: this technique involves placing electrodes around the eyes to measure the elec-

trical potential difference between the cornea and the retina. By tracking these electrical

signals, eye movements can be detected.

Each of these techniques has its advantages and disadvantages, and the choice of method de-

pends on factors such as the required level of accuracy, the intended application, and whether

the tracking needs to be done in a laboratory setting or real-world environments.

In this work, EOG has been selected due to its cost-effectiveness and relatively more straight-

forward setup than other methods.
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2.3.2 Smart Glasses

Capture Images

Smart glasses equipped with cameras that �t directly into the frame offer users a seamless and

hands-free way to capture images and videos from their perspective.

This provides convenience, allowing users to capture moments without needing to hold a camera

[8], and opens up new possibilities for diverse applications. For example, smart glasses have

been widely employed for real-time object detection and other computations on edge, thanks

to energy-ef�cient onboard neural network processing [29]. This means that the glasses can

recognize objects, faces, or text directly from the captured images without relying on cloud-

based processing, ensuring faster response times. These capabilities demonstrate the potential

of smart glasses as wearable and society-accepted devices, not just passive recording devices.

EOG

In recent advancements, this technique has led to the creation of wearable devices, such as

eyeglasses equipped with dry electrodes. This represents a wearable and non-invasive solution,

contrasting with traditional methodologies. JINS MEME glasses [30] represent the primary

solution in this domain, equipped with three dry electrodes arranged in the frontal part of the

glasses frame: one in the bridge and two in the nose pads. These glasses have undergone testing

in multiple studies, con�rming the reliability of this electrode placement.

2.4 BioGAP

BioGAP [31] is a novel, compact, and modular biosignal acquisition and processing platform

for ExG biosignals. BioGAP integrates:

• nRF52811 System on Chip (SoC) (Nordic Semiconductor) for Bluetooth Low Energy

(BLE) connectivity and measurement control;

• GAP9 Parallel Ultra Low Power (PULP) processor (GreenWaves Technologies) for ef�-

cient multiprecision data processing (as required for advanced ML and DSP);

• Inertial Measurement Unit (IMU) for movement sensing and a dedicated power manage-

ment circuit with a rechargeable battery;
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• a specialized shield, including an analog front-end (AFE) (ADS1298, Texas Instruments)

with eight channels, is employed for biopotential measurements. The shield interfaces

to the electrodes (both active and passive electrodes are supported) and is con�gured as

detailed in Table 2.1;

• a �exibly placeable photoplethysmograph (PPG) PCB.

Moreover, it can work in different modes: streaming, computation on the edge, and sleep mode.

In this work, BioGAP is used in the streaming one, and as the name suggests, the acquired ExG

data is continuously streamed in real-time to the GUI (Graphical User Interface).

Figure 2.6: BioGAP platform

Parameter Value

Output data rate 500 SPS

-3dB bandwidth 131 Hz

PGA gain 6

Resolution 24 bit

Table 2.1: Measurement con�guration of BioGAP AFE

2.4.1 GUI

A Java GUI on the PC is used as an interface between the user and BioGAP. It is able to switch

between the different modes and send commands. Moreover, in the streaming mode case, it can

also:

• start and stop measurements;

• display measurements in real-time;

• save parameters (like sampling frequency) and data from each channel into a log �le in

binary format that can be used for further processing.

The communication between BioGAP and the GUI is established using the Bluetooth low en-

ergy (BLE) protocol. A small USB dongle is used as BLE receiver. It's also possible to create

a TCP connection with external devices to set the trigger vector of the acquisition. This allows

for a speci�c trigger value to be assigned to each sample of the acquired signal, enabling the

identi�cation of particular portions of the signal for speci�c purposes.
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Figure 2.7: BioGAP System Diagram

2.5 Collaboration with Dätwyler

The Integrated Systems Laboratory (ETH Zürich) collaborates with Dätwyler Schweiz AG to

develop state-of-the-art biosignal acquisition platforms. Speci�cally, Dätwyler specializes in

the fabrication of soft electrodes for biopotential acquisitions, and the SoftPulse electrode fam-

ily proved to be the perfect match for PULP's biosignal systems. In addition, as part of the

ETH Future Computing Laboratory (EFCL) framework, the PULP group and Dätwyler joined

forces to develop next-generation EEG and EOG smart glasses based on the SoftPulse electrode

technology and the BioGAP data acquisition platform. In this context, the envisioned glasses

feature:

• the BioGAP acquisition platform;

• a non-stigmatizing design of the glasses frame guaranteeing proper contact of the EEG

electrodes to the scalp;

• �ex-rigid electronics embedded in the glasses frame for buffering the electrodes' signal

and interfacing to BioGAP;

• multiple EEG channels on the temporal area and behind the ear;

• two connectors for inconspicuous interfacing to in-ear EEG electrodes;

• three EOG electrodes on the frontal part of the frame.
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