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Sommario

In un’era in cui il ritmo dell’esplorazione spaziale sta accelerando, la domanda di pro-

cessori elettronici in grado di dimostrare affidabilità nel difficile ambiente spaziale è

aumentata in modo significativo. Una delle principali preoccupazioni per i proces-

sori che operano nello spazio è la loro suscettibilità ai guasti indotti dalla radiazione

di fondo dello spazio. Le particelle ad alta energia che colpiscono qualsiasi parte del

processore possono causare errori nei dati. Gli approcci tradizionali, come l’induri-

mento delle radiazioni, incontrano sfide sostanziali, tra cui costi elevati e limitazioni

nella fabbricazione. L’uso di processori COTS (Commercially Off-The-Shelf) rappre-

senta una potenziale soluzione. I recenti progressi tecnologici hanno reso i processori

COTS non solo estremamente veloci ed economici, ma anche facilmente disponibili.

Questo lavoro introduce un nuovo approccio attraverso lo sviluppo e l’integrazione di

un modulo iniettore di guasti nell’architettura PULP (Parallel Ultra-Low Power). Ciò

consente la simulazione e la valutazione dei guasti indotti dalle radiazioni, in parti-

colare degli errori singoli e dei guasti bloccati. Valutando la tolleranza agli errori di

questi processori, questa ricerca mira a aprire la strada a una metodologia per miglio-

rarne l’affidabilità per le applicazioni spaziali. Sebbene i processori COTS non siano

intrinsecamente progettati per le impegnative condizioni dello spazio, questo studio

dimostra che con modifiche mirate e test rigorosi, possono essere adattati efficacemente

per l’esplorazione spaziale. Questo approccio implica uno spostamento verso l’utilizzo

di soluzioni più convenienti e tecnologicamente avanzate, rendendo i processori COTS

utilizzabili per applicazioni spaziali critiche.
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Abstract

In space exploration, the demand for electronic processors capable of demonstrating

reliability in the harsh space environment has significantly increased. One of the main

concerns for processors operating in space is their susceptibility to faults induced by

radiation. High-energy particles striking any part of the processor may induce data er-

rors. Traditional approaches, such as radiation hardening, encounter substantial chal-

lenges, including high costs and limitations in fabrication. The use of Commercially

Off-The-Shelf (COTS) processors presents a potential solution. Recent advances have

made Commercial Off-The-Shelf (COTS) processors widely accessible, offering speed

and cost-efficiency. However, these generic COTS processors lack reliability features

and are not tested for space applications. In addressing this, our approach integrates

a fault injector module within a scalable processing platform, offering a tool that can

be applied in early design phases. This facilitates validation against various faults,

identifying vulnerable design areas, and enhancing overall system robustness without

being limited to a specific architecture. This enables the simulation and evaluation of

radiation-induced faults, notably single-event errors and stuck-at faults. While we uti-

lize the PULP architecture as a test platform for our module, the applicability extends

to a broader range of architectures. By assessing the fault tolerance of these processors,

this research aims to pioneer a methodology for enhancing their reliability for space

applications. Moreover, our tool provides insights into the parts of the design that are

more sensitive than others, allowing us to identify areas requiring improvement to en-

sure reliability in space missions. This study demonstrates the potential for adapting

COTS processors to space exploration, marking a shift towards more cost-effective and

technologically advanced solutions viable for critical space-borne applications.
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Chapter 1

Introduction

Venturing into the vast expanse of space, humanity has continuously sought to over-

come the difficult challenges posed by its hostile environment. In the vacuum of space,

beyond the Earth’s atmosphere, electronic systems are bombarded with high-energy

particles, leading to the phenomenon of single-event upsets and persistent stuck-at

faults in the circuitry of space-bound processors. These anomalies have the potential to

derail missions, destroy satellites, and endanger lives. Consequently, the field of space

exploration has relied on specially crafted space-grade processors, engineered to with-

stand this bombardment through radiation-hardening techniques. While radiation-

hardening techniques are effective, they come at a high cost both in terms of financial

investment and technological advancement, often resulting in trade-offs between re-

silience and computational performance [3].

Enter the age of Commercial Off-The-Shelf (COTS) processors—devices that have rev-

olutionized terrestrial applications with their performance and cost efficiency. Their

potential utility in space applications remains largely untapped, primarily due to their

inherent vulnerability to the relentless barrage of high-energy particles beyond Earth’s

protective atmosphere [3]. Yet, the allure of harnessing these processors for space ex-

ploration is undeniable. However, the architectures that grant them their impressive

capabilities on Earth are also the cause of their failure in the face of cosmic radiation

encountered in space. The integration of these commercially produced processors into

space systems, therefore, necessitates a paradigm shift approach to equip them with
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CHAPTER 1. INTRODUCTION

the necessary changes to operate reliably in the harsh extraterrestrial environment.

The work presented is a step in that direction. Through the design and integration

of a fault injector into any processor architecture, this research demonstrates a method

for simulating the effects of space-induced faults within terrestrial processors. This

module injects errors into specific target locations, enabling the study of fault propaga-

tion pathways and the subsequent effect on the processor’s outputs. The overarching

aim is to utilize these insights to devise strategic modifications that enhance the relia-

bility of COTS architecture, thereby extending their operationability to the domain of

space exploration. This approach promises to bridge the gap between the resilience of

space-grade processors and their desirability for high-performance, economical COTS

systems. The modifications to these processors can be tailored to the specific demands

of the application and the difficulties of the space environment in which they operate.

The implications of this research are far-reaching. By providing a detailed assessment

of how COTS processors respond to injected faults, that mimic space conditions, it lays

the groundwork for a new class of space-ready electronics. These enhanced proces-

sors could drastically reduce the cost and complexity of space missions, democratizing

access to space technologies, and fostering innovation in the sector.

2



Chapter 2

Literature review

The need for viable and cost-effective electronic processors for space has been a cause

of much research. Especially finding proper methodologies for testing COTS proces-

sors for their resilience to radiation-induced errors.

The survey by Ginosar [3] on processors for space applications presents a detailed

overview of the resilience strategies employed to ensure the reliability of processors

in the harsh conditions of space. This study helps to understand the critical balance

between cost, performance, and radiation tolerance. It offers a good foundation for

discussing various approaches that exist or are under research.

The study [1], underscores a holistic approach toward fault tolerance by weaving to-

gether hardware and software strategies across various system layers. A particular

interest of this research is their testing strategy, which evaluates the impact of soft er-

rors through extensive fault injection experiments. The tools used in this work for fault

injection are the BEE3 FPGA and mixed simulation using supercomputers. This work

required hefty resources to gather data on the fault resilience of the processor. Our

work makes use of the specially-made fault injection module which can be incorpo-

rated into any processor architecture to do simulations of radiation-induced faults.

One of the methodologies to inject errors into a processor design for testing its re-

silience is using software. In the work [5], the validation of the design is primarily

3



CHAPTER 2. LITERATURE REVIEW

done using the software-based error injection. This methodology involves simulat-

ing single event upsets (SEUs) by artificially inducing data errors directly through the

software, bypassing the need for physical fault injection hardware. The results of this

approach provide invaluable insights into the robustness of the architecture used. The

difficulty faced in this work is to inject fault. Injecting errors through software requires

an extensive setup of external computers. Our work highlights that the fault injection

can be done using the same hardware DUT, making the data acquisition phase of the

design much easier.

Other methodologies that provide good insights into how the faults are described in

the work done in [6]. Fault injection is approached through simulation-driven tech-

niques, particularly focusing on the interaction and behavior of cores within a locked

state. The methodology for injecting faults includes inverting core interface signals

during the execution of tests to simulate errors and flipping select state bits within

the cores’ Register Files (RF) to verify the effectiveness of recovery mechanisms. This

changing of signals is done using software and manually. The task of doing this test-

ing manually is daunting. Considering the sheer number of elements in a processor

architecture, the time taken to run an iterative test using this methodology puts strain

on the development stages of a processor.

The fault injecting methodology used in the work [4] highlights a methodology that is

based on hardware-based fault injection. The introduction of the Fault injection mod-

ule (FIM) that simulates runtime errors by logically OR’ing and AND’ing the output

bits of the primary functional unit with the data from Linear Feedback Shift Registers

(LFSR) to simulate stuck at 1 and stuck at 0 faults, respectively. This method allows for

testing of the processor’s fault handling mechanisms by maintaining faults for 3 con-

secutive cycles to simulate permanent errors and observing if the fault handling logic

can isolate the fault unit and switch to the redundant unit for continued operation.

The work done in this research paper is analogous to what is done in this work with

major differences in how the fault injector module works and the type of faults that it

can simulate. Moreover, my work also emphasizes the efficient utilization of hardware

resources, incorporating lower LUTs while maintaining robust fault injection capabil-
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ities. This optimization enhances the scalability and applicability of the fault injection

methodology, ensuring its effectiveness across a wide range of processor architectures

and fault scenarios.

The work presented in this thesis shows a direct and practical approach to simulate

and test the resilience of processors against space-induced faults. This method allows

for a comprehensive assessment of the processor’s reliability, offering a novel contribu-

tion to the field by bridging the software-induced errors and hardware-induced errors.

The ability of the fault injector module designed in this work to integrate seemingly to

any processor architecture that has an APB (Advances Peripheral Bus) interface, TCL

(Tool Command Language) scripting, and the ability to change the type of fault, du-

ration, and location dynamically during runtime. This provides us great versatility in

testing the resilience of the fault.
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Chapter 3

Background

3.1 PULP system
Among the available processors, PULP (Parallel Ultra-Low-Power) architecture has the

potential to be used in space-based applications because of the inherent design philos-

ophy of parallelization present in the architecture. [6]

Figure 3.1 – PULP architecture

Fig. 3.1 1 illustrates the architecture of the PULP. The PULP (Parallel Ultra-Low Power)

platform is designed around a cluster of RISC-V cores optimized for energy efficiency

and computational performance. It is an open-source platform. This allows for unpar-

alleled flexibility in customizing and adapting the architecture to specific needs, such

1. PULP Platform Repository: https://github.com/pulp-platform/pulp/blob/master/
doc/datasheet.pdf
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CHAPTER 3. BACKGROUND

as radiation tolerance in space applications.

The PULP platform follows a hierarchical design. The system’s design features a fabric

controller (FC) core for control, communication, and security functions, along with a

cluster of eight cores, each fine-tuned for vectorized and parallelized algorithm execu-

tion. This multi-core structure is ideal for implementing fault tolerance mechanisms,

such as error detection and correction codes, which are crucial in mitigating single-

event faults and stuck-at faults induced by radiation.

The PULP’s combination of high-speed shared and instruction memories in the cluster

makes it ideal for the execution of code implementing parallel computing. The PULP

also features a debug architecture that contains functionalities to help the developer

observe/control application code execution.

3.2 Single Event Errors and Stuck-at Faults
The most common types of faults that appear in electronic processors that are exposed

to radiation are Single-Event Errors (SEEs) and Stuck-at faults. SEEs are a category of

faults that have become increasingly relevant due to the deep scaling in CMOS tech-

nology, which, while improving speed and scale of integration, has concurrently high-

lighted the vulnerability of systems to these faults [3]. SEEs are broadly categorized

into two types: non-destructive and destructive.

Non-destructive SEEs, such as Single Event Upset (SEU) and Single Event Transient

(SET), induce transient changes in the state of a cell or node without causing perma-

nent damage. These can result in bit flips in digital circuits, which, while not per-

manently impairing the device’s functionality, can lead to erroneous behavior if not

properly managed [2].

On the other hand, destructive SEEs, which include Single Event Latch-up (SEL), Sin-

gle Event Burnout (SEB), and Single Event Hard Error (SHE), lead to permanent dam-

age to the device, potentially causing irreversible failure. The probability of occurrence

of these faults increases with harsher environmental conditions, such as those found in

7
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higher radiation belts surrounding Earth, which satellites in geostationary orbit (GEO)

or interplanetary missions may encounter [2].

In terms of processors, testing for resistance to SEEs, the fault detection capability is

a critical parameter. For instance, in a no-fault condition, the expected normal result

(Fn) should match the redundant result (Fr). Any discrepancy indicates a fault within

the system [2]. The fault injection method is often employed to simulate SEEs and as-

sess the system’s response. This can involve altering data bits to replicate SEU effects

or maintaining a fault condition across multiple cycles to simulate permanent errors

(PEs). [4].

The design and testing of the fault injector modules, which are essential in emulat-

ing the conditions that processors may face in space, focus on simulating SEUs by

inverting data bits or generating stuck-at faults by maintaining signal levels opposite

at their input state for a duration of time [4]. These modules are integral to validating

the fault tolerance capabilities of the processors and often involve extensive simulation

campaigns to ensure comprehensive coverage of potential fault scenarios.

3.3 Testbed
The test bed used for evaluating and validating the fault tolerance of the processor

designs in this work is the Xilinx Zynq ZCU102 FPGA. ZCU102 is a part of the Ultra-

Scale+ family which has a range of integrated features conducive to advanced design

testing.

Using this particular FPGA comes with utilizing the Vivado Design Suite, which fa-

cilitates a streamlined design process. On top of that, the design files used to program

the ZCU102 FPGA, such as constraints, TCL scripts, bitstream, and netlist, are highly

modifiable, allowing for rapid iterations and testing of various fault scenarios.
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3.4 Programming languages and software
In this section, there is a review of the software and programming languages used in

our design.

• SystemVerilog: A hardware description and verification language. It was used

in the design of all modules comprising the fault injector. The design of the fault

injector was verified using the Questasim Advanced simulator and Vivado sim-

ulator.

• TCL script (Tool Command Language): widely used in Electronic Design Au-

tomation (EDA). It was used in our work to automate the modification of the

PULP architecture.

• C-programming language: used for implementation and giving input parame-

ters for the fault injector to start injecting faults. Using this, it was possible to

enable and disable the fault injector module while testing the fault tolerance of

the architecture.

• Git: used for version control of the design. Enabling to switch between differ-

ent designs of the fault injector module and also switching designs that target

different registers of the PULP architecture.

• Vivado Design Suite: used throughout the entire design procedure. Specifically

to design the modules, create test benches, check the synthesis design of each

module, run TCL scripts, simulation, and verification of the design.

• Openocd: Open On-Chip Debugger, used along with GDB (GNU Debugger) for

debugging and in-system programming.

9



Chapter 4

Architecture

This chapter gives a detailed description of the design of the fault injector module

and other modules that it comprises. The design of the fault injector is based on the

template shown in Fig. 4.1.

Figure 4.1 – Fault injector architecture

In this template, the module is directly connected to the target registers on the driver
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CHAPTER 4. ARCHITECTURE

side and connected to the APB BUS on the control side. The fault injector module is

integrated as a part of the SOC peripherals along with other peripherals of the PULP

architecture like the GPIO, timer, etc.

4.1 Key features of the design
The fault injector module enables precise simulation of the faults within the proces-

sor’s environment. The module’s core capability allows for the configuration of a wide

array of fault scenarios and it is particularly adept at mimicking SEEs and Stuck-at

faults, which are crucially relevant to the faults experienced because of the harsh con-

ditions of space.

The key feature of the module is its real-time fault injection mechanism. This feature

allows designers and testers to introduce faults into the system as it operates, enabling

us to perform fault injection tests on different types of computational tasks.

The fault injector module can be scaled to different numbers of registers, creating

driver ports on its own to drive every register that needs to be tested. This adaptability

ensures that the module remains a versatile tool for fault tolerance testing across vari-

ous hardware implementations.

By leveraging TCL scripting during the synthesis phase, modifications to PULP ar-

chitecture are made, ensuring that the fault injector module interacts with the system

in a controlled and predictable manner, across different hierarchies of the design.

The fault injector module also provides the location of the faults and the time of the

fault it injects. This feature can be utilized to read this information during the opera-

tion of the PULP architecture using the APB BUS interface.

The fault injector module incorporates the feature to be configured during its work-

ing stages, using the APB bus interface. This enables us to manage the metrics of the

faults it injects on the go. It allows for easy control of the delay between the faults,

the duration of time it will inject the same fault, and control the start and stop of the

11
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fault injection operation. All this can be achieved using the APB Bus interface anytime

during the normal operations of the PULP architecture, providing us with a module

that is versatile and easily configurable. Moreover, the fault injector module can be

integrated into any scalable processing platform with a peripheral bus with minimum

Register Transfer Level(RTL) code changes.

4.2 Design space exploration
The crucial focus of the preliminary phase was to identify a way to modify the PULP

architecture that enables us to inject faults in particular targeted registers. In this sec-

tion, There will be a brief description of the design modification strategies that were

explored.

4.2.1 Direct SystemVerilog code Modification

One of the methods discussed was to directly modify the SystemVerilog code of the

PULP architecture. The complexity arises from the intricate and interconnected na-

ture of the hardware description languages, where changes can have cascading effects.

This necessitated the need for a meticulous verification process for each iteration. The

primary concerns with this approach were the potential for introducing errors and the

sheer time consumption of the task, rendering it impractical for rapid iteration of the

design.

4.2.2 Netlist file modification

The other alternative strategy was to utilize the .edif files that can be generated for

the netlist. The idea was to change the .edif files that regulate the rules of the netlist,

adding new logic to it and connecting these changes. Though scripting in Python or

C to edit the .edif files could theoretically target the necessary registers, this approach

lacked the flexibility and efficiency required.
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4.2.3 TCL scripting

Using Vivado, it was possible to find a way to modify the design using simple TCL

scripts 1. The TCL scripting feature that Vivado employs to control the design flow

provided an efficient way. Its utilities lie in its capability to interact with hardware

synthesis tools, enabling automation and precise modifications to the design without

needing to manually alter the HDL code. This method greatly facilitated the process

of implementing targeted modifications, such as configuring specific registers for fault

injection within the PULP system. On top of that, it also provided features to map the

connections between the driver ports and the targeted registers into a .csv file which

was crucial in determining which drivers will inject faults in which registers.

4.2.4 Conclusion

After exploring the viability of these strategies, it was concluded that the TCL script-

ing offers superior functionality to our application. Its efficiency, flexibility, and reduc-

tion of potential errors compared to other modification strategies that were tested. It

enabled automation of the process for implementing changes within the PULP archi-

tecture, enabling rapid, iterative changes within the Vivado Design environment itself.

The design of the fault injector module is made in a way such that the target regis-

ters can be determined during the synthesis phase and connected to the fault injector

module. All of this is done by TCL scripting.

4.3 Address Generation
The address to which the fault will be injected is generated as a pseudorandom se-

quence provided by the LFSR.

4.3.1 Working Principle of LFSR

Linear Feedback Shift Registers (LFSRs) are a type of shift register where the input is a

linear function of its previous state 2. The most common use of LFSRs is in generating

pseudo-random sequences based on an initial input. In LFSR, the feedback path is

1. TCL Script documentation: https://docs.xilinx.com/r/en-US/ug894-vivado-tcl-scripting
2. LFSR https://en.wikipedia.org/wiki/Linear-feedback_shift_register
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determined by a polynomial equation. The taps, selected based on this polynomial,

are XORed together to produce the new input bit. For example, for an 8-bit LFSR, a

typical polynomial might look like this:

x8 + x6 + x5 + x4 +1

This indicates that the 8th, 6th, 5th, and 4th bits are XORed to generate the feedback

bit. This mechanism ensures the generation of a maximal-length pseudo-random se-

quence, provided the polynomial is chosen correctly. The polynomial has to be chosen

in a way that ensures maximum periodicity of the LFSR. The periodicity in the context

of LFSR refers to the number of cycles an LFSR takes to reach the same sequence as the

initial seed value. Once it reaches the initial seed value, the LFSR repeats the sequence.

It is to be noted that only a certain type of polynomials allow for maximum periodicity,

ensuring that it generates all possible sequences before starting to repeat itself 3. Fig.

4.2 4 shows a 16-bit Fibonacci LFSR.

Figure 4.2 – A 16-bit Fibonacci LFSR

4.3.2 Implementaion of the LFSR

The Address generator module in the design reflects this working principle. The ad-

dress generator generates pseudo-random sequences, which are then utilized as ad-

dresses targeting specific registers within the PULP architecture. Each sequence pro-

duced corresponds to an address location, enabling a full sweep across various regis-

ter locations for injecting faults. The implementation begins with initializing the LFSR

with a seed value which can be given as an input using the APB BUS interface and this

3. Maximal Length LFSR https://users.ece.cmu.edu/~koopman/lfsr/index.html
4. LFSR https://en.wikipedia.org/wiki/Linear-feedback_shift_register#

/media/File:LFSR-F16.svg
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Figure 4.3 – Address module connections

process is controlled by the start bit input of the address generator module. The start

bit enables us to take into account a seed value if it is available, or else pick up a default

value which in our case is a 32-bit hexadecimal number 32′hDEADBEEF .

As the LFSR operates when it is enabled, the XOR logic embedded within the mod-

ule calculates the next bit based on the current state of specific tapped bits, as dictated

by the polynomial equation. This bit is then shifted into the register, with the entire

register shifting one position, thereby generating a new pseudo-random value every

clock cycle. This process ensures a varied and unpredictable pattern of addresses, es-

sential for effective fault injection and testing strategies. The address generator module

is controlled by the fault injector’s driver logic. Fig. 4.3 shows how the Address mod-

ule communicates with the driver logic which uses the output of LFSR as addresses to

inject fault into the system.

4.4 Counters

4.4.1 Working principle

Counters are fundamental digital devices used in electronics and computing to keep

track of occurrences or events by incrementally increasing or decreasing their value in

response to input signals. The primary working principle of counters involves sequen-

tial state transitions in response to clock pulses, which are represented as a series of

flip-flops connected in a specific configuration. In typical scenarios, each pulse on the

counter’s clock input increments or decrements the count held within the device.
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Figure 4.4 – Counter module connections

4.4.2 Implementation of counters

The counter module is implemented twice, each instantiated for different purposes and

used by the FSM control logic. The implementation of the counter is straightforward,

it increments its value with every positive edge of the clock signal provided it is not

held, cleared, or reset. The counter is designed to be 32-bit to ensure it can handle a

wide range of counts without overflow, which is particularly useful when dealing with

scenarios that may introduce significant delays.

There are two counters in this design; the timing counter is used to keep track of the

delay period between faults, and the reference counter is used to keep track of the

number of clock cycles that have passed since the start of the operation, which essen-

tially provides the information about the time of the fault injection. Fig 4.4 shows how

both counters are connected to FSM Control logic. Keeping the clear input signal high

would cause the counter to clear its registers, and initialize to zero. The hold signal,

when high will stop the counter from incrementing, essentially holding the previous

value until it is pulled low.

4.5 Buffers

4.5.1 Working principle

In our design, FIFO buffers are used extensively to store the fault address and tim-

ings of the fault. A FIFO (First In, First out) buffer is a type of data structure used

extensively in hardware design and computer science to manage data packets or infor-
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mation units in a sequential order. The fundamental principle of a FIFO ensures that

the order in which data enters the buffer is the same order in which it exists. This char-

acteristic is why it was picked to be used in the design, as our design has situations

where the data timing and order are critical.

There are many ways a FIFO can be implemented, but the working principle is similar.

FIFOs operate on two primary pointers: the read pointer and the write pointer. The

write pointer tracks where the next data element will be inserted into the buffer, while

the read pointer tracks the location of the next element to be read and removed from

the buffer.

4.5.2 Implementation

In our design, there are two FIFO buffers. The Address FIFO buffer and the Timing

FIFO buffer.

4.5.2.1 Address FIFO

The address FIFO buffer is used to store the address to which the faults are injected.

The address FIFO is 32-bit wide, with a buffer depth of 32, both can be changed during

the synthesis process based on our need and the number of target registers in our

design to inject fault on. Fig. 4.5 shows how the address FIFO buffer is connected.

The address buffer is controlled by the control logic. Every time the FSM control logic

reaches the state of PULSE, it samples the fault address that is generated by the driver

logic by making the input signal valid high. When the configuration logic makes the

input signal ready high depending on the data received from the PWDATA of the APB

bus interface, it outputs the stored data into the PRDATA of the APB bus. The process

of reading data from the address buffer clears that particular part of the buffer. This

makes sure the buffer can be emptied by simply reading the data from it, making room

for more data to be stored in the buffer.

4.5.2.2 Timing FIFO

The timing FIFO buffer is used to store the timing of the faults injected. Similar to

the address buffer, the timer buffer is also 32-bit wide, with a buffer depth of 32. This
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Figure 4.5 – Address FIFO buffer connections

can also be changed during the synthesis process based on our need and the number

of target registers in our design to inject fault on. Similar to the address FIFO buffer,

the configuration logic also controls the timing buffer, and the data to be stored in the

timing buffer comes from the reference counter which is controlled by the FSM control

logic. The input signal valid is made high at the same time as the address buffer’s

input signal and stored at the same time. This ensures the timing of the fault address

generation is recorded into the buffer for later use. When the configuration logic makes

the input signal ready high, depending on the data received from the PWDATA of the

APB bus interface, it outputs the stored data into the PRDATA of the APB bus. Similar

to the address buffer, the process of reading data from the timing buffer clears that

particular part of the buffer. The data stored in the timing buffer is synced with the

address buffer, making sure that if the data is read from the address buffer and timing

buffer in the same order (one after the other) gives us the fault address and the timing

at which this particular fault address is used by the driver logic. This is all synced

with the FSM control logic to ensure when the PULSE state of the FSM control logic is

detected, the data is stored in the buffers.

4.6 FSM Control logic
The design and implementation of the fault injector Finite State Machine (FSM) control

logic were aimed to be simple and efficient. This module is crafted to orchestrate the

timing and execution of the fault injection processes, adhering to predefined opera-
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Figure 4.6 – Timing FIFO buffer connections

tional parameters or new operational parameters that are given to it through the APB

Bus interface. At the core of the FSM control logic lies its ability to accurately monitor

and control the fault injection timeline, from the initiation of the fault injector module

to the application of faults within the target system.

4.6.0.1 Operation Dynamics

At the heart of the FSM control logic is a Finite State Machine (FSM) that has three

states: IDLE, DELAY, and PULSE. These three states switch within each other once the

fault injector module starts its operations. The FSM control logic takes the following

inputs from other modules in the fault injector design.

• Start operation: This is an input control signal, that is taken from the PWDATA

of the APB BUS interface. When this input signal is HIGH, the fault injector

module will start its operations. The FSM in this module will not progress unless

this input control signal is made HIGH.

• DELAY CYCLES: This is a 32-bit wide input data, that determines the periodicity

with which the faults will be injected. This input data is taken from the APB BUS

interface and is given by the user. If this input data is not given by the user

and the user has initiated the operation of the fault injector module, this takes a

default value (which can also be changed during the synthesis phase by simply

changing it in the params.svh header file).

• PULSE WIDTH: This is a 32-bit wide input data, that determines how long the

19



CHAPTER 4. ARCHITECTURE

injected fault will keep flipping the bits of the input to the target registers. This

input data is taken from the APB BUS interface and is given by the user. If this

input data is not given by the user and the user has initiated the operation of

the fault injector module, this takes the default value (which can also be changed

during the synthesis phase by simply changing it in the params.svh header file).

Keeping this as 1’ (one) would essentially simulate SEEs.

The output of the FSM Control logic is the current state of the FSM itself. The FSM

control logic does nothing more than to keep the fault injector working in the right

state. Its only job is to use the counters and change the states at the right time. The

FSM output is a 2-bit state variable, that is taken as an input by all the other modules.

Apart from the counter that is used by the FSM control logic, there is an additional

counter called the reference counter which is responsible for keeping track of the clock

cycles from the start of the operation. The output of this counter is directly given as

an output of the FSM control logic to be used by other modules in the design. This is

particularly used by the Configuration logic module that uses this output data to be

stored in the timing buffers when the FSM control logic outputs the right state.

4.6.0.2 Finite State Machine

The fig. 4.7 shows the operation of the finite state machine in this module. All the

condition checks that are made by the FSM are based on the counter inside the FSM

Control logic module. The operations of each state are as follows.

• IDLE State: The IDLE state is the default state of the FSM. In this state, the FSM is

designed to keep checking the counter value and the input data DELAY CYCLES

value. It will remain in this state until the start-bit is made high. Once the start-

bit is made high, it will check the current counter value (which is incrementing

every clock cycle) with the DELAY CYCLES input data value. Once the counter

value is equal to the DELAY CYCLES value, it will transition to the DELAY state,

else it will stay in the IDLE state.

• DELAY State: Upon entering this state, the FSM checks if the counter value is

within the limit DELAY CYCLES+PULSE WIDT H. It will transition to the PULSE

State and also stop the counter to ensure that the counter doesn’t increment in
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Figure 4.7 – FSM control logic state machine diagram

this DELAY state. If the counter value is not within the limit of DELAY CYCLES+

PULSE WIDT H it will transition back to the IDLE state.

• PULSE State: This is the state where the signal to inject fault is issued. If the FSM

is found to be in this state, it means that the fault injection is in progress. Once it is

in this state, it will check whether the counter value is equal to DELAY CYCLES+

PULSE WIDT H, if equal, it will clear the counter and go back to the IDLE state.

if not equal, it will increment the counter, and continue to stay in this state.

This makes sure that for a longer PULSE WIDT H duration, the FSM stays in the

PULSE state, ensuring that fault is injected for the required duration.

4.7 Drivers design
The driver module does the crucial job of injecting the faults into the target registers. It

relies on the use of LFSR to produce addresses to which the faults will be applied. The

operation of the driver module will be discussed below.

4.7.1 Operation of the driver module

The basic connections of the driver module can be seen in Fig. 4.8. The driver module

operates based on the state output by the FSM control logic. The number of output

ports driven by this module depends on the number of target registers. This is a pa-

rameter that must be changed during the synthesis phase of the design. To change the
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Figure 4.8 – Driver module connections

number of driver ports, one must change the assignment to the variable N_ports in the

params.svh header file of the design.

The driver module uses the output of the FSM control logic to perform its operation.

As seen in section 4.6, there are three states, the operation of the driver under each of

these states is as follows:

• IDLE State: In this state, the driver module drives all the output ports down,

making sure that no output port retains its value from the previous fault.

• DELAY State: In this state, the crucial step of giving the seed value to the LFSR

is done. Based on the output of the LFSR, this state decides whether to use a

new seed value received from the user or use the previous output of the LFSR as

a new seed value. The idea of using the previous output of the LFSR as a new

seed value is done to have the LFSR cycle through all of its available possible

sequences given an initial seed value. This is achieved by controlling the start

bit and assigning the input of the LFSR to either the seed value or the previous

value.

• PULSE State: In this state, the fault is applied and the output port that drives

the fault is decided by the address that is generated by the LFSR in this state. A

new address sequence is generated by the LFSR each time the FSM Control logic
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transitions from the DELAY state to the PULSE State and because of the way the

FSM control logic is designed, it will always transition from the DELAY state to

the PULSE State.

Thus the driver module precisely acts and injects faults at the right time and duration.

The output driver ports are connected to the target registers using the TCL scripting.

It is completely possible to use TCL commands like get_cells, and get_nets to get the

target registers and connect them to the driver ports. This will be further explained in

the upcoming sections. This enables us to connect to any part of the PULP architecture

while the fault injector module is still connected as a peripheral.

4.8 Configuration logic
The configuration logic module within the fault injector design is a critical component

that organizes various elements, ensuring they operate in sync to achieve desired fault

injection outcomes. The module is responsible for the following things.

• Data storage: It manages data flow between the driver logic, which generates

the fault address, and the FSM logic, which provides the time of the fault. By

interfacing with the address and timing FIFO buffers, it makes sure that the data

is stored during the PULSE State and can be read using the APB bus interface’s

PRDATA line.

• API interface: The module utilizes the APB protocol for configuration settings,

receiving operational parameters such as delay cycles, pulse width, and start op-

eration signals. This is achieved by reading the corresponding values from the

APB bus’s PWDATA line.

• Initiation of the operations: An important function of this module is to interpret

the start operation command, which is a signal received from the APB interface

that triggers the commencement of the fault injection process.

• Seed value configuration: It also reads the seed value from PWDATA, which is

used to initialize the LFSR in the driver logic, influencing the sequence of the

fault address.

• Address decoding logic: This module does the essential task of parsing the in-

coming addresses on the PADDR line, enabling appropriate read or write opera-
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Figure 4.9 – Configuration logic module connections

tions depending on the address specified.

• Error management: The module ensures system integrity by driving the PSLAV EERR

signal when erroneous conditions are detected. The erroneous condition in terms

of the fault injector would be the module reading the wrong address from the

PADDR line.

4.8.1 Operation

The configuration logic module acts as a central hub, decoding the APB bus addresses

to trigger specific actions within the fault injector. It maintains the synchronization

between the storage of the fault address and timing parameters, only allowing data

storage during the PULSE State to avoid duplication. The read-and-write logic is con-

structed to handle data exchanges with the APB bus, ensuring that configuration data

is received properly. It interfaces directly with the APB bus to manage and config-

ure the fault injection parameters. The module harnesses the APB bus signals such

as PADDR for address decoding, PWRIT E, and PENABLE for determining operation

modes, and PWDATA for configuring the operational parameters. The PREADY , PRDATA,

PSLAV EERR are used for managing the readiness of the data transfer and error signal-

ing.
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This module controls all the other modules in the design, making sure they are all

synced to the FSM control logic’s state output. Fig. 4.9 shows how the inputs and

outputs to the other modules are governed by this module.

4.8.2 Address allocations

This subsection discusses how the configuration logic module interprets and responds

to address signals from the APB bus to manage the state and behavior of the fault

injector design. The PADDR line of the APB bus is 32-bit wide. For the design of the

fault injector module, the whole 32-bit of the signal PADDR is not utilized, instead, only

the last 16 bits are utilized by the decoding logic. Table 4.1 shows the address mapping

used by the fault injector module.

Address Operation
0x0000 Start operation
0x0001 Delay cycles configuration
0x0002 Pulse Width configuration
0x0003 Seed value configuration
0x0004 Address buffer read operation
0x0005 Timing buffer read operation

Table 4.1 – Fault Injector Module Address Mapping

• Start operation: The address 0x0000 is allocated for initiating the fault injection

process. Writing to this address triggers the beginning of operations by setting

the fault injector into an active state.

• Delay cycles configuration: The address 0x0001 controls the delay cycles. Data

written to this address sets a delay period between each fault occurrence.

• Pulse Width configuration: Address 0x0002 is designated for adjusting the pulse

width, which dictates the duration of fault once injected. This is the parameter

that is responsible for simulating Single Event Errors (SEEs) or Stuck-at faults.

• Seed value configuration: The seed value, used to generate the pseudo-random

sequence for the fault addresses is configured through address 0x0003. Modify-

ing this value changes the pattern of fault address generation.

• Address buffer read operation: Address 0x0004 is used for reading from the

address FIFO buffer, enabling the system to retrieve stored fault addresses for

inspection or further processing.
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• Timing buffer configuration: Similarly, address 0x0005 is assigned to read opera-

tions from the timing FIFO buffer, which holds the timing information associated

with each fault.

Each address acts as a specific register within the configuration logic, and writing or

reading from these addresses allows the system to configure and monitor the fault

injection process dynamically. This structure ensures a modular and easily extensible

system where modifications can be made through simple APB transactions without

the need for direct hardware intervention.

4.9 APB bus Design
The fault injector module communicates with the Fabric Controller (FC) using the APB

Bus. Since the fault injector module is connected as a peripheral, the fault injector

module can work independently from the FC and inject faults.

4.9.1 Protocol description

The Advanced Peripheral Bus (APB) protocol is part of the AMBA (Advanced Mi-

crocontroller Bus Architecture) suite of protocols. It is designed for low-bandwidth

control accesses, for example, peripheral or control registers. Below is a table (Table

4.1) 5 of the APB protocol signals:

Signal Source Width
PCLK Clock 1
PRESET n System bus reset 1
PADDR Requester ADDR_WIDTH
PSELx Requester 1
PENABLE Requester 1
PWRIT E Requester 1
PWDATA Requester DATA_WIDTH
PREADY Completer 1
PRDATA Completer DATA_WIDTH
PSLV ERR Completer 1

Table 4.2 – APB Bus Protocol Control Signals

The signals described in the table 4.1 are used as follows:

5. APB bus protocol https://developer.arm.com/documentation/ihi0024/latest/
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• PCLK: This is the clock signal for the APB protocol. All transactions on the APB

are synchronized to the rising edge of PCLK.

• PRESETn: An active-low signal that resets the APB interface logic.

• PADDR: This bus carries the address code to the peripherals. The width can vary

to accommodate the system address space. In the PULP architecture, this is fixed

to 32-bit wide.

• PSELx: This signal is asserted by the master to select the corresponding slave

device.

• PENABLE: A signal to indicate that the current transfer is active.

• PWRITE: This signal indicates the direction of the data transfer; if high, it’s a

write operation, and if low, it’s a read operation.

• PWDATA: The data bus carrying information from the master to the selected

slave during a write transaction. In the PULP architecture, this signal is also 32-

bit wide.

• PREADY: A signal from the slave to the master to indicate the end of the transfer

cycle.

• PRDATA: The data bus carrying information from the slave to the master during

a read transaction.

• PSLVERR: An optional signal that indicates an error in the transfer.

4.9.2 Implementation of the protocol

The entire fault injector module is integrated into the PULP architecture using a wrap-

per module. The wrapper module takes care of parsing the APB bus slave interface

into their appropriate signals and giving it as input to the fault injector module. The

integration of the APB bus into the fault injector is made easy because of the way the

configuration logic is designed. It is designed to directly take the inputs and outputs

of the APB bus slave interface and use it for its operation. Fig. 4.10 shows the wrapper

module that takes in the APB bus slave interface and assigns the input and outputs of

the interface to the fault injector module, effectively enabling communication with the

processor.
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Figure 4.10 – APB bus wrapper module

The fault injector module is allocated a unique address space within the PULP archi-

tecture to facilitate clear and efficient communication over the APB bus. The defined

starting address for the fault injector module is 32′h1A12_0000, and the ending address

is 32′h1A12_FFFF . This dedicated address range ensures that the fault injector can be

accessed and managed without interference from other peripherals, providing a clean

and isolated namespace for control operations.

4.9.2.1 Address Space Utilization

• Start Address: 32′h1A12_0000 Marks the beginning of the fault injector’s com-

mand space. Specific offsets from this base address are used to access various

control registers within the fault injector module.

• End Address: 32′h1A12_FFFF Signifies the end of the fault injector’s address-

able space, providing ample room for future expansion of control registers or

additional functionalities. The allocation of a contiguous address space simpli-

fies the design and enhances the modularity of the PULP system, allowing for

straightforward mapping of the APB bus signals to the fault injector’s inputs and

outputs.
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4.10 Configurable Parameter Pre-synthesis:
The following parameters can be changed before the synthesis. The header file used by

the fault injector module (params.svh) has initialization values for the following and

each can be modified as per requirements.

• N_ports: This parameter must be equal to the number of target registers. This

dictates the number of output ports that needs to instantiated by the fault injector

module.

• BUFFER_DEPTH: This parameter dicates the size of address and timing FIFO

buffers.

• DEFAULT_DELAY_CYCLES: This parameter can be used to set the default delay

between faults, this value will be used if Delay_cycles is not provided through

APB bus interface.

• DEFAULT_PULSE_WIDTH: This parameter is used to provide the default fault

duration. This will not be used if PULSE_CYCLE is fed into the fault injector

module using APB bus interface.

• DEFAULT_SEED_VALUE: This value dictates the initial value given to the LFSR

for pseudo-random sequence generation. This can be given as an input through

APB bus interface else, it will use the default specified value.

4.11 Modification of the Processor Architecture
To inject fault into the target registers in a processor architecture, it becomes necessary

to modify some elements of architecture. As discussed in section 4.2, the conclusion

led to the development of a custom TCL script. This script automates the process of

introducing new hardware elements around target registers, facilitating the injection of

faults. The number of target registers is first determined using TCL scripts and Vivado

Design Suite. Using this value of number of registers, the params.svh file is changed to

accommodate the number of output drivers needed to connect to all the required target

registers and then the modified design is synthesized. Once the synthesis is done, the

custom script that was developed for modification of the processor architecture is used

either using the TCL console or TCL tool in Vivado Design Suite.
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Figure 4.11 – Modified target register in PULP architecture

4.11.1 New Design Elements

Fig. 4.11 shows a single targeted register modified using the TCL script. To enable pre-

cise control over fault injection within the architecture, the implementation required

the introduction of specific logic elements. These elements were inserted near the tar-

get registers and manipulated through a TCL script to modify the pre-existing netlist

dynamically. These elements, sourced from the Xilinx Vivado Design Suite libraries 6,

include AND2B1L, FDRE, and MUXF7, which play crucial roles in the fault injection

process.

4.11.1.1 AND2B1L

The AND2B1L is a two-input AND gate utilized to replace a Configurable Logic Block

(CLB) latch. It’s adept at reducing logic levels and enhancing logic density, optimizing

the trade-off between register/latch resources and logic utilization. As shown in Table

4.2, the operation of this logic block is not that of a true AND gate. The input DI is

connected to the fault injector output driver and the SRI to the output of the FDRE

block which mimics the input data line of the original register. The output (O) of this

logic block is connected to the I1 input of the MUXF7 block.

DI SRI O
0 0 0
0 1 0
1 0 1
1 1 0

Table 4.3 – AND2B1L Truth Table

6. Vivado Design library elements https://docs.xilinx.com/r/en-US/
ug974-vivado-ultrascale-libraries/Design-Elements
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4.11.1.2 FDRE

The FDRE is a D Flip-Flop with Clock Enable and Synchronous Reset, forming the core

of the newly integrated fault injector logic. It ensures that only when the Clock Enable

(CE) is active, and the reset (R) is not asserted, the data is transferred to the output

(Q) in synchrony with the clock. This element’s introduction is pivotal for maintaining

synchronization and ensuring that faults can be injected and retracted in sync with the

system’s clock. Table 4.3 shows the truth table of the FDRE. The input of the FDRE is

connected to the data line of the target register and the output is connected to the SRI

input of the AND2B1L logic block. The Clock and reset pins of the FDRE are connected

to the system clock and reset while the CE pin is connected to the fault injector’s output

driver port. This means that the FDRE Flip-Flop is enabled to sample just when the

fault is injected and once the signal from the fault injector module’s output driver port

injects the fault and stops, the CE pin is pulled low, making the FDRE hold any input

it sampled, enabling for more versatility with the design.

R CE D Q (next state)
1 X X 0
0 0 X No Change
0 1 D D

Table 4.4 – FDRE Truth Table

4.11.1.3 MUXF7

The MUXF7 is a multiplexer that assists in creating complex logic functions within a

single CLB. In the fault injection context, the MUXF7 is paramount in selecting between

the original data path and the fault-injected path, effectively controlling when and

where faults are introduced into the system. Table 4.4 shows the truth table of the

MUXF7 block. MUXF7 is a true multiplexer, that allows selection of 1 of the two input

signals. The I0 input of the MUXF7 block is connected to the original data line of the

target register while the I1 input of the MUXF7 block is connected to the output of the

AND2B1L. The select input (S) is connected to the fault injector’s output driver ports.

Each element was carefully chosen for its specific properties that contribute to the fault

injector’s functionality—such as the AND2B1L’s ability to flip logic state under fault

conditions, the FDRE’s precise control over data synchronization, and the MUXF7’s
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S I0/I1 O
0 I0 I0
1 I1 I1
X 0 0
X 1 1

Table 4.5 – MUXF7 Truth Table

Figure 4.12 – TCL Script for identifying the target registers and creation of New Design
Elements

capability to route the fault signals to the correct locations. The combined operation

of all these elements ensures that the input bit to the target register is flipped and

successfully enables us to inject a fault into the target registers.

4.11.2 Working of the TCL script

The script’s operations are as follows:

• Identification of Target registers: The script begins by gathering the registers

with the given design. This design can be changed depending on which part

of the PULP architecture our target registers reside. Fig. 4.12-A shows the TCL

script that gets into the hierarchy of the design in which the target registers are

situated, finds the number of target registers, and stores them before switching

back to the instance of the PULP.

• Creation of Additional Hardware Elements: For each identified register, the

script dynamically creates a series of new hardware elements: FDRE(Flip-Flop

with Synchronous Reset and Clock Enable), MUXF7 (Multiplexer), and AND2B1L
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Figure 4.13 – TCL Script for connection, disconnection and integration

(AND gate with one inverted input). These elements are named systematically

based on the original registers, ensuring a clear relationship between the original

and the new elements. Fig. 4.12-b shows the TCL script that executes this task.

• Wiring of New Elements: The script proceeds to wire the new elements together

and to the original design. It carefully constructs nets to connect the multiplexer’s

outputs to the inputs of the target registers, ensuring the fault signals can be

appropriately directed through the new hardware. Fig. 4.13-A demonstrates the

TCL script that connects the nets to the inputs and outputs of the new design

element.

• Decoupling Original Connections: It is crucial to decouple the original flip-

flop input connections to prevent interference with normal operation. The script

shown in Fig. 4.13-B disconnects the existing nets and reroutes them through the

newly inserted hardware.

• Clock and Reset Integration: The newly inserted FDREs are connected to the ex-

isting clock and reset lines to maintain synchronization with the overall design’s

timing.

• Fault Signal Routing: Finally, the script routes the fault signals from the fault

injector output to the select lines of the multiplexers. This step is pivotal as it

allows the fault injector to control which registers receive the fault condition,
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thereby enabling selective fault injection. Fig. 4.13-C shows a snippet of the TCL

script that is responsible for this task.

This automated process not only enhances the efficiency of the modification procedure

but makes the iterative changes much faster. The script’s flexibility allows for easy

adjustments to be made, accommodating changes in the design or the fault injection

requirements.
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Design Integration with a Processor

Architecture

5.1 PULP SoC Integration
The fault injector module is designed to be integrated into any processor architecture

that supports an APB bus interface. The PULP architecture is used as test architecture.

The fault injector module is integrated from two ends, one from the input side of the

fault injector and the other is the output ports of the fault injector that are connected

to the target registers. The APB (Advanced Peripheral Bus) serves as the communica-

tion backbone for interfacing the fault injector module within the PULP architecture.

This process was particularly made easier because of the already existing APB infras-

tructure, which the PULP architecture uses to communicate with its other peripheral

devices like the GPIOs, Timers, etc. This largely reduced the time to integrate and

didn’t require extensive modification to the RTL design files of the PULP architecture.

The fault injector is assigned a dedicated address space within the PULP memory map,

allowing it to operate as a standalone peripheral, akin to existing peripheral compo-

nents. Fig. 5.1 shows an overview of the integration of the fault injector module into

the PULP architecture. It is to be noted that the output port of the fault injector doesn’t

lead to any external pads like some of the other peripherals in the architecture but in-

stead is connected to the target registers using TCL scripting.

35



CHAPTER 5. DESIGN INTEGRATION WITH A PROCESSOR ARCHITECTURE

Figure 5.1 – Fault injector integrated PULP overview

The first part of the integration process includes declaring the fault injector wrap mod-

ule in the SoC peripheral part of the PULP architecture. This can be verified in the

Vivado Design Suite, by looking at the SoC peripheral part of the PULP architecture

and seeing the fault injector module appear in the hierarchy of the PULP Architecture.

Fig 5.2 shows the fault injector module instantiated inside the SoC peripherals module

of the PULP Architecture. The second part of the integration process includes the

declaration of the APB bus interface using which the fault injector module will com-

municate with the PULP Architecture. This was done by simply instantiating a new

bus with the help of an already existing APB bus interface and using this bus interface

as input to the fault injector module. Fig. 5.2 shows the instantiation of the APB bus

interface used by the fault injector along with the other APB buses in the SoC peripher-

als. Some further modifications were done to add additional parameters like N_PORT S

which are used by the fault injector module to determine the number of output ports

in the design.

Table 5.1 shows how the address is allocated to the Fault injector module compared

to the order peripherals in the architecture.
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Figure 5.2 – Fault injector and fault injector APB bus instantiation in the SoC peripher-
als

5.2 TCL scripted connections
As discussed in Chapter 4, section 4.10, TCL scripting was employed to automate the

tedious and error-prone task of manually connecting the fault injector’s outputs to the

appropriate target registers. This automation process involves several steps:

• Identification of Target Registers: The script initiates by scanning the PULP ar-

chitecture to identify the registers within the specified design level of the PULP

architecture. Once the target registers have been identified, the connections of

the new elements and their interconnections are added to the design again using

TCL scripting.

• Output to Register Mapping: For each identified register, the script dynamically

generates connections from the fault injector’s outputs. This mapping ensures

that each register can be selectively subjected to fault conditions during the sim-

ulation or testing phases. The script connects the output ports of the fault injector

module, to the select pin of the MUXF7 block, to the CE pin of the FDRE block,

and to the DI pin of the AND2B1L block.

• Hierarchical Integration: Given the complex hierarchy of the PULP SoC design,

the script intelligently navigates through various levels of the design, establish-
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Table 5.1 – PULP SoC Peripheral Address Allocations
Peripheral Address Range Description
FLL 0x1A10_0000

0x1A10_0FFF
Frequency Locked Loop (FLL) for dy-
namic clock frequency management.

GPIO 0x1A10_1000
0x1A10_1FFF

General-Purpose Input/Output
(GPIO) for interfacing with external
devices.

SPI Master 0x1A10_2000
0x1A10_3FFF

Serial Peripheral Interface (SPI) Mas-
ter for serial communication with pe-
ripherals.

SoC Control 0x1A10_4000
0x1A10_4FFF

Control unit for managing SoC-wide
settings and configurations.

Adv Timer 0x1A10_5000
0x1A10_5FFF

Advanced Timer unit for high-
resolution timing and event manage-
ment.

SoC Event Gen 0x1A10_6000
0x1A10_6FFF

Event Generator for orchestrating
event-driven actions within the SoC.

EU 0x1A10_9000
0x1A10_AFFF

Event Unit for managing internal and
external event triggers.

Timer 0x1A10_B000
0x1A10_BFFF

Basic Timer unit for general timing
and delay functions.

HWPE 0x1A10_C000
0x1A10_CFFF

Hardware Processing Engine for
accelerating specific computational
tasks.

Stdout 0x1A10_F000
0x1A10_FFFF

Standard Output interface for debug-
ging and printing messages.

Debug 0x1A11_0000
0x1A11_FFFF

Debugging module for system in-
spection and troubleshooting.

Fault Injector 0x1A12_0000
0x1A12_FFFF

Custom module for injecting faults
into the system for testing the re-
silience and fault tolerance.

ing the connections. This involves traversing modules, submodules, and their

interfaces, ensuring that the fault injector’s output ports are correctly linked irre-

spective of the design layer.

An essential part of the integration process is documentation, for which the TCL script

automatically generates a CSV file, detailing the connections established between the

fault injector’s output ports and the target registers. As can seen from Fig. 5.3, the CSV

file gives a detailed idea of which output port is connected to which target registers.

The traceability is further improved when the fault address that is outputted by the

fault injector module through the APB bus corresponds directly to an output port.

For example, in Fig 5.3, the output port fg_output_driver[100] corresponds to the fault
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Figure 5.3 – Output port mapping of the fault injector

address that is equal to the hexadecimal value of decimal number 100 (which is 0x64).

This plays a crucial role in understanding the impact of different faults injected during

simulations and testing. The fault injector module is integrated using TCL scripts in

such a way that it doesn’t significantly affect the timing constraints of the architecture.

Fig. 5.4 shows the schematics of connections that are done through the hierarchy of the

design. The register on the right-hand side is the target register and the elements on

the left-hand side are the interconnected new design elements with the net connecting

this design around the target register to the output port of the fault injector.

5.3 Working of fault injector post integration
Once the fault injector module is integrated into the design, it operates under a defined

set of procedures that dictate how faults are introduced into the system.

• Initialization: Upon global system reset, the fault injector module initializes, sets

up the internal registers, and waits for activation commands from the APB inter-

face.

• Configuration: Through the APB bus, configuration parameters such as delay cy-

cles, pulse width, and initial seed value are specified. This step involves writing

to a specific address mapped to the Fault injector’s control registers.

• Activation: The module is activated via the APB bus interface. If the configu-

ration parameters are not specified, the fault injector will assume default prede-

fined values and proceed with injecting the faults. These default parameters are

predefined in the header files of the fault injector’s design.
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Figure 5.4 – Schematics of the TCL scripted connections

• Fault injection: The module alters the logic of target registers, simulating the

desired fault conditions. This manipulation is achieved by routing the outputs of

the fault injector through the newly added design elements.

• Monitoring and Feedback: Throughout the fault injection process, the module

stores the time of the fault and the fault address in its buffers. This data can be

accessed through the APB interface for analysis and further testing.

• Termination: The fault injection cycle can be terminated through the APB bus by

making the start bit low.

The integration and operation of the fault injector module within the PULP architecture

represent a significant advancement in our ability to rigorously test and enhance the

reliability of systems exposed to fault conditions. Through automated scripting and

detailed procedural integration, this module not only simplifies the process of fault

injection but also lays the groundwork for further innovations in fault tolerance and

system resilience. This work underscores the critical importance of such tools in the

development and verification of robust electronic systems, promising a future where

reliability is as dynamically adaptable as the systems it seeks to protect.
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Validations and Results

6.1 Validation of the design
The validation phase of the fault injector module plays a crucial role in ensuring its

reliability and effectiveness within the PULP architecture. This comprehensive test-

ing strategy is designed to cover every component and functionality of the module,

ensuring that it performs as expected under various conditions. Each component of

the fault injector module underwent rigorous testing through carefully designed test

benches that were written in SystemVerilog. These test benches were crafted to en-

compass a wide range of test cases that mimic operational scenarios the component

would encounter during actual use. By adopting this approach, we ensured that every

module component adhered to its specified operational and logical functionality.

• For every design phase, a corresponding test bench was developed. This ap-

proach allowed for immediate and targeted validation of new or modified com-

ponents, facilitating early detection and correction of errors.

• The validation process employed both behavioral simulations and post-synthesis

functional simulations, utilizing industry-standard tools such as Vivado and Ques-

taSim. This dual-simulation approach provided a robust validation framework,

enabling the detection of issues that may not be apparent in one environment

alone.

• The integrated system was subjected to extensive testing using test benches writ-

ten in SystemVerilog. These tests were designed to simulate real-world operating
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conditions, ensuring that the fault injector module could reliably perform its in-

tended functions within the PULP environment. To test the APB bus integration

of the fault injector module, additional test benches were designed, ensuring that

the fault injector module captured all the necessary configuration parameters for

its ideal operations.

• Special attention was given to the driver logic that connects the fault injector

module to target registers. This connection is vital for the precise injection of

faults into the system. Through dedicated test benches, we validated the accuracy

and reliability of these connections, ensuring that faults could be injected and

retracted as designed, without unintended consequences.

• The validation of the new design elements and connections made using TCL

scripting is incorporated into the TCL Script that makes this connection. A failure

in the processing of the TCL script halts the script from executing along with its

respective error message. This error message should be used to correct the script

and the process can be restarted again.

6.2 Target registers
The registers that were targeted for evaluation of the fault injector module are from

the execution stage and the Instruction Fetch (IF) stage of the cores of the PULP archi-

tecture. The parameter that dictates the number of target registers is changed before

synthesis with the fault injector to create the number of output ports that will be con-

nected to the output registers using TCL scripts.

6.3 Results
The results were evaluated in terms of FPGA resource utilization, timing, and energy

efficiency. These key metrics provide us with information about how the fault injector

module performs within the processor architecture. The design was synthesized at

1.02V, 25°C, typical corner, and targeting 125MHz operating frequency.
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Figure 6.1 – Utilization of LUTs by the fault injector module

6.3.1 Timing and Utilization

The fault injector module was designed to work at the maximum frequency of 125MHz.

In the PULP architecture, the fault injector module only interacts with the target regis-

ters, the fault injection modification done to the architecture is synchronized with the

timing path of the target registers. Depending on the position of the target registers,

the fault injector module does not limit the architecture’s operation.

The evaluation of the utilization was done by connecting the output of the fault in-

jector module to 200 registers of the prefetch buffer under the Instruction Fetch (IF)

pipeline stage of the PULP architecture’s core. In this work, the fault injector module’s

output ports are connected to the target registers through newly introduced design el-

ements. As discussed in section 4.10, the newly introduced design elements require

more CLB LUTs to be utilized. Fig. 6.2 shows the number of CLB LUTs utilized by the

prefetch buffer in the IF stage of a PULP’s RISC-V core before and after the addition

of new design elements. The new design elements add an additional overhead that is

equal to 1.6 times the unmodified prefetch buffer. The FPGA resource utilized by the

fault injector module is 0.74% of the total available resources. Fig. 6.1 shows the area

utilization of each sub-module of the fault injector module. It can seen that most of
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Figure 6.2 – Utilization comparison of LUTs

the resource utilization used by the fault injector module is its buffers. The buffer size

can be adjusted during the synthesis process as needed. The rest of the sub-module

utilization is only 21% of the total utilization of the fault injector module.

6.3.2 Power Consumption

Fig.6.3 shows the percentage of power, each sub-module of the fault injector mod-

ule consumes. The power evaluation was done by performing a post-implementation

simulation of the integrated PULP architecture. The total power consumed by the fault

injector module is observed to be 1.407mW at 1.2V, 125MHz working frequency target-

ing 200 registers. As expected during the design phase, the power consumed by driver

logic is the highest since it drives the fault into the targeted registers. This power also

depends on the number of target registers, which is a parameter that can be modified

during the synthesis phase of the design. The PULP architecture with an integrated

fault injector, along with the new design elements consumes 0.394W of power. The

power difference between bare PULP architecture and PULP architecture with inte-

grated fault injector module is very insignificant.

6.3.3 Targeting Instruction Decode stage registers

The fault injector module was tested to target different registers from different parts

of the architecture of the processor. The module is designed to have variable parame-
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Figure 6.3 – Power utilization of the sub-modules of the fault injector

Figure 6.4 – LUT utilization of the sub-modules of the fault injector for 992 Target reg-
isters

ters that need to be changed during synthesis depending on the target registers. The

number of registers targeted in this section is 992, belonging to the Instruction Decode

(IF) Stage of the pipeline. The evaluation was done in a synthesized design at 1.02V,

25°C, typical corner, and an operation frequency of 125MHz. Fig. 6.4 shows the LUT

utilization of the fault injector targeting 992 registers of the IF stage. As expected from

the previous results, the buffers utilize the most LUTs. A key difference to be noted is

the utilization done by the driver logic of the fault injector module. Since it has been

scaled up to accommodate a large number of registers, the utilization of the driver

logic seems to have increased. Fig. 6.5 shows the comparison between the utilization

of LUTs for different target registers. It can be noted that only the utilization of the

driver logic increases while the rest of the logic remains almost unchanged.
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Figure 6.5 – LUT utilization comparison of the fault injector for 992 and 200 Target
registers. The X-axis shows the number of LUTs utilized

The power utilization of the fault injector module increases as the number of target reg-

isters increases. The total power consumption of the fault injector module for targeting

the IF stage registers is 1.71mW, which is 1.2 times higher than the power consumed

by the fault injector targeting 200 registers.

From this analysis, it can be seen that the LUTs utilization and power consumption

of the fault injector module depend solely on the number of target registers. The num-

ber of target registers can be modified, the fault injector module can be used to test

small parts of the design if the overhead incurred by the fault injector module exceeds

the limit of Device Under Test.
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Future improvements

The simulation of faults in architecture is the first step towards making it resilient to

the faults that can occur in the harsh environment of space. The integration of the fault

injector module was tested only on the PULP architecture. To further consolidate the

versatility of the module designed in this work, it can be tested with other processor

architecture families with scalable peripheral bus interfaces.

7.1 Data Collection on Fault Propagation
This work can be further expanded by gathering data on the registers of the PULP

architecture. This part is done in this work, but not for all the registers. Creating a sys-

tematic approach to collect and analyze data on how injected faults propagate through

the PULP architecture. This would involve monitoring and logging to trace the path

of the faults from the faults injection points to observable outputs.

Utilize the data collected from fault simulations to identify which registers have a di-

rect impact on the output. By understanding which registers are critical for maintain-

ing minimal errors in the output, the fault injector module can be refined to target these

registers preferentially. This targeted approach can significantly enhance the effective-

ness of testing, allowing for more focused and efficient fault injection campaigns.

Based on this collected data, a predictive model can be developed that can estimate

the fault tolerance of different components and configurations within the PULP ar-
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chitecture. These models could guide the design of future iterations of the systems,

focusing on enhancing resilience where it is most needed.

7.2 Adaptive changes to the architecture
The data from the fault injector module, allows us to identify mission-critical registers.

With this processed data, The following strategies can be incorporated into the design

and operation of satellite computing platforms.

• Enhanced Error Detection and Correction (EDAC) Techniques: Implement

advanced EDAC techniques that can detect and correct errors that can occur

in stored data. Depending on the criticality of the registers, we can use a va-

riety of EDAC techniques like parity checks that can detect single-bit errors to

more sophisticated systems like hamming codes, Reed-Solomon codes, and Con-

volutional codes that can detect and correct multiple-bit errors. This improves

the resilience of mission-critical registers with little modifications done to the

architecture[1].

• Incorporation of Radiation Tolerant Components: Where possible, radiation-

tolerant components designed specifically for space applications can be used.

While this approach may increase costs, it significantly enhances the reliability

and longevity of satellite systems.[1]

• Redundant System Design: Resilience strategies like Triple Modular Redun-

dancy (TMR) for critical register sets can improve the resilience of the archi-

tecture. TMR involves tripling the hardware and voting on the output to miti-

gate errors caused by radiation-induced faults. Furthermore, designing systems

with redundant paths for critical functions can ensure correct operation if one

path is compromised due to a fault, an alternative path can maintain system

operations[7].

Incorporating these enhancements into the fault injector module will undoubtedly in-

cur additional costs, both in terms of development and operational overhead. How-

ever, the cost must be weighed against the criticality of the application. For satellite

computing platforms, ensuring resilience against space radiation is paramount, and

the fault injector module plays a crucial role in this aspect.
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While the adaptations may increase the overall cost, it is essential to consider the cost-

effectiveness compared to space-based radiation-hardened processors. These special-

ized processors are inherently expensive and offer lower performance relative to their

Commercial Off-The-Shelf (COTS) counterparts. The data gathered from this work can

affect how the architecture can be modified, analyzing this data will provide crucial in-

sight into the adaptions that need to be done to make the COTS processor resilient and

ensure that it still outperforms the traditional radiation-hardened processors providing

reliable operation at a fraction of the cost.
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Conclusion

In this study, we have presented a novel methodology for injecting faults into any pro-

cessor architecture with a Peripheral Bus. The fault injector module was designed to

inject faults into various parts of the processor architecture. Additionally, the fault in-

jector module’s versatility simplifies iterative processes such as testing and synthesis,

streamlining the overall workflow. The fault injector module was integrated into the

PULP architecture using the APB interface and targeted the Prefetch Buffers and De-

coding registers of the IF and ID stages respectively. The PULP architecture was used

as a test device, but the fault injector can be scaled to any processor architecture that

supports the peripheral bus interface. It features very low LUT utilization and power

consumption while still being able to target a large number of registers. The integra-

tion of a fault injector module into a processor architecture requires very little RTL code

modification and uses TCL scripting to target registers in the design, enabling fast and

reliable iterations for testing the different part of the architecture.
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