UNIVERSITY OF BOLOGNA

MASTER SCIENCE THESIS

Efficient Support for Deep Sleeping
Modes in Embedded Systems: the Case of
Zenoh-Pico

Author: Supervisor:
Andrea ZANNI Paolo BELLAVISTA

A thesis submitted in fulfillment of the requirements
for the degree of Master Science in Computer Science Engineering

in the

School of Engineering and Architecture

March 19, 2024

ii

“The following anecdote is told of William James. [...] After a lecture on cosmology and the
structure of the solar system, James was accosted by a little old lady.

"Your theory that the sun is the centre of the solar system, and the earth is a ball which
rotates around it has a very convincing ring to it, Mr. James, but it’s wrong. I've got a better
theory,” said the little old lady.

"And what is that, madam?"” inquired James politely.

"That we live on a crust of earth which is on the back of a giant turtle.”

Not wishing to demolish this absurd little theory by bringing to bear the masses of sci-
entific evidence he had at his command, James decided to gently dissuade his opponent by
making her see some of the inadequacies of her position.

"If your theory is correct, madam,” he asked, “what does this turtle stand on?”

"You're a very clever man, Mr. James, and that’s a very good question,” replied the little
old lady, "but I have an answer to it. And it’s this: The first turtle stands on the back of a
second, far larger, turtle, who stands directly under him.”

"But what does this second turtle stand on?” persisted James patiently.

To this, the little old lady crowed triumphantly,

"It’s no use, Mr. James—it’s turtles all the way down.

"

iii

UNIVERSITY OF BOLOGNA

Abstract

School of Engineering and Architecture
Master Science in Computer Science Engineering

Efficient Support for Deep Sleeping Modes in Embedded Systems: the Case of
Zenoh-Pico

by Andrea ZANNI

The Internet of Things (IoT) is an ever evolving and ever growing field where plenty
of devices communicate with each other and transfer data to/from the Cloud via
an infrastructure, usually a pub/sub. In this extensive field comes to rescue Zenoh,
a pub/sub/query middleware for Cloud and IoT applications. It supports many
interesting functionalities but in this thesis we focus on its lightweight counterpart
for embedded devices - Zenoh-Pico. Zenoh-Pico is entirely written using the C pro-
gramming language thus making it extremely lightweight and efficient, perfect for
an embedded device. In this work I focus on the support to deep-sleeping mode for
Zenoh-Pico on UDP unicast communications. The deep-sleeping modes are typical
of embedded devices such as ESP32 or Zephyr boards and they are used to put the
board in a kind of energy saving state.

In order to work with Zenoh-Pico I used PlatformIO, ESP-IDF, VSCode, and the
board az-delivery-devkit-v4 ESP32. PlatformIO and ESP-IDF are used to manage
the toolchain for the creation of a firmware to be put on the ESP32 starting from the
code on VSCode. VSCode is used to program the code that will run on the board.

I carried out many experiments from my support to deep-sleeping mode on the
ESP32. The main and most interesting results being the time and space efficiency of
my support to deep-sleeping mode, and the fact that with just 3 seconds of deep-
sleeping on a low duty cycle programme (about 6 seconds of activity - 3 seconds of
sleeping) with a 250mAh battery, the battery gains about 2 weeks of autonomy with
3 seconds of deep-sleeping.

In conclusion, the deep-sleeping mode is of paramount importance for the em-
bedded system world when those embedded devices are powered from an external
battery limited in its capacity thus the importance of a middleware like Zenoh-Pico
to support the deep-sleeping mode.

Acknowledgements

I would like to start the acknowledgement section by saying thanks to whom gave
me the opportunity to do an Erasmus in Paris and then a proposal for an internship
at ZettaScale Tech., my current supervisor Paolo Bellavista.

I want to thank the CTO of ZettaScale Angelo Corsaro, my informal co-supervisor
which has always been fully available to me before, during, and after my internship
at ZettaScale Technology. Then, I want to say thank you to Carlos Guimaraes for
their support during my stay at ZettaScale and having helped me to set up the job
about the deep-sleeping mode by telling me what was needed to be done for such
feature and guided me in the internals of Zenoh-Pico. I want to thank Pierre Avital
as his support has been crucial for the development of my feature at the second step.
Also, gave me the idea of how to deal with user-defined struct. Thanks to Julien
Enoch with whom I shared many rides by car from home to the workplace and we
listened to very cool rock music at the radio. I say thank you to Luca Cominardi
who, maybe unconsciously, unblocked me when I was stuck searching and looking
for what to do on my internship for my master’s thesis. I say thank you to all the
other colleagues at ZettaScale Tech. for always being kind and professional to me,
giving small advice or help when I was in need of.

Voglio ringraziare la mia famiglia, in particolare mia madre Marta Tagliabracci,
mio padre Marco Zanni e mio fratello Mattia Zanni. Alla mia famiglia io dedico
questo lavoro perché e grazie alla mia famiglia se ho intrapreso e mantenuto gli
studi universitari, se sono riuscito ad andare a Parigi e se sono riuscito a terminare
gli studi universitari nonostante i mille problemi che hanno rischiato di mandare a
monte la mia intera carriera accademica.

Infine, ringrazio tutti i buoni amici che mi sono rimasti accanto, nonostante tutto,
durante questi anni e continuano a volermi bene. Grazie.

Contents

Abstract

Acknowledgements

Introduction

1 Thesis Motivations, Objectives, and Internet of Things
1.1 Motivations e e e e e
1.2 Objectives e
1.3 Whatis the Internetof Things

1.3.1
1.3.2
1.3.3
1.3.4

TheGateway
IoT Fog/Edge Computing
Constrained networks and devices
Wireless communication protocols for theloT
Data exchange protocols
Request/Responsemodel
REST (REpresentational State Transfer)
Constrained Application Protocol (CoAP)
Publish/Subscribemodel
Message Queue Telemetry Transport MQTT)
Advanced Message Queuing Protocol (AMQP).
Data Distribution Service (DDS)
Industrial data exchange frameworks
RabbitMQ
MTConnect
OPCFoundation

2 Embedded Systems
21 Espressif ESP32

211

212

Technical Details
ClockSources
RTC Fast Memory and RTC Slow Memory
Universal Asynchronous Receiver Transmitter (UART)
Inter-Integrated Circuit (I2C)
Serial Peripheral Interface (SPI)
Advanced Peripheral Bus (APB)
SleepModes
Memorymodel o oo
Brief description of the environments
ESP-IDF e
PlatformIO e

2.2 Deep-SleepinginloT
2.3 The Company - ZettaScale Technology

vii

iii

viii

3 Zenoh-Pico 31

31 AboutZenoh. 31

311 ZenohKeys 31

312 Zenohdatamessages. 32

313 ZenohRouter 32

314 Clientmodeandpeermode 32

315 Scouting e 33

3.1.6 Communicationmodels 33

Requestand Response 33

Publisher and Subscriber, . 34

Push and Pull communicationmodel 34

3.1.7 Reliability 34

Hop to Hop reliability 34

End to End reliability 35

First router to last router reliability 35

3.1.8 Reliability & Control Flow 35

319 Mobility 35

3.1.10 ZenohoverSerial 36

3.1.11 Replicatedstorages 36

3.1.12 Payloadtothequery 36

3.1.13 Hybrid Logical Clock (HLC) 36

32 Architecture 37

321 Zenoh-Pico’s architecture 38

Platform-Agnostic 38

Theinclusion 39

Architecture as macro-blocks o L. 40

4 The Project, the Implementation, and Experimental Evaluations 43

4.1 The project - Efficient support for deep-sleeping modes 43

411 Savingthesession 44
Why you did not use a third-party library to serialize/deseri-

alizethesession? 44

Why RTC Slow Memory? 45

412 UsethesameUDPport 46

413 Restoringthesession 47

414 Serdefunctions 47

42 Implementation 48

421 zp_prepare_to_sleep() 48

Lists” serialization, 49

Functionpointers L. 50

_z_transport_t serialization 0., 53

422 zp_wake up() 54

List’s deserialization 55

_dnit_transport_t. Lo o oo 57

Bound UDP socket to the previously used port 57

423 The mostdifficulterrors 59

assert_failed: block_trim_free tlsf.c:502 59

InstrFetchProhibited 60

Working on copies: _deserialize_z_transport_t 61

LoadProhibited, StoreProhibited 62

424 Glueing the serde functions with the rest of zenoh-pico 63

iX

43 Experimental evaluations 64
43.1 Baseline measurements 64
432 Varying theload of thesession 65
433 Size 66
434 AveragePower o e 67

250mAh . .. 67
43.5 Performance Monitor 68

Conclusion

xi

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
211
2.12
2.13
2.14
2.15
2.16
217
2.18
2.19
2.20
2.21
2.22

3.1
3.2
3.3

4.1

Hourglass model Named Data Networking (NDN) 3
Logical Architecture forIoT 7
Fog/Edge Computing 8
Wireless Protocols forIoT 9
MQTT Architecture e e 11
DDS . . e e e e 12
The cyber-physicalloop 16
Von Neumann-Harvard 16
ESP32 - Logical Architecture 16
RTCClocks o o e e e e e s e e 18
RTCaddresses e 18
UART . . . e e 19
UART Protocol 19
I2C e 20
SPL . . e 21
SPICPHA =0 e e s e e 21
SPICPHA =1 e e e e e 21
SPICPOL=1,CPHA =1 it i 22
APBNames e e 22
APB Write Transaction e 22
APB Read Transaction o i i i v i 23
ESP32-SleepModes 23
Internal RAM layout 23
Programmer’smemorymap 24
IRAMLayout 24
DRAMULayout 25
ESP-IDF Toolchain 26
LifecycleofaMCU 29
AZenohtopology 33
Zenoh Reliability, 35
ZenohLayers 38

Functioncalls e 46

xiii

List of Tables

4.1 Baseline measurements. 64
4.2 Time differences zp_prepare_to_sleep(). 66
4.3 Time differences zp_wake_up(). L oL 66

XV

Dedicated to my brother Mattia, my mother Marta, my father
Marco, and the forever living in our hearts - my brother
Nicola. ..

Introduction

In this work, first I expose the motivations and the objectives of this master thesis
and I try to give a possible driving trend led by pub/sub communications, location-
transparent communications, and Named Data communications. Then, I guide the
reader in the Internet of Things world by giving a possible definition of IoT, some
important concepts in the IoT such as Gateways, Edge Computing, constrained net-
works and constrained devices. At last, I present some request/response protocols
and pub/sub protocols widely used in the IoT.

What I do next is to expose the peculiar characteristics of an embedded system
and where I can find an embedded system in the society of today. I introduce the
cyber-physical loop typical of an embedded system along with its typical Harvard
architecture. I present the ESP32 board since it is an embedded system and I explain
its logical architecture, then I delve deeper in the technical details of the board, start-
ing with the name of the 2 CPUs, the clock sources, the memories, the supported
hardware protocols like UART or I12C. After that, I give a brief description of the en-
vironments needed to operate on the ESP32 or generally speaking on a wide range
of IoT boards. I explain the common active-sleep pattern found on Micro Controller
Units (MCUs) then I give some theoretical formulas used to understand the neces-
sity of minimizing the Tcpy (composed by the execution time and the idle time) in
order to extend the battery lifetime. I conclude by presenting to the reader the com-
pany where I did my internship which is called ZettaScale Technology and is located
at Saint-Aubin, France, that is a little city near Paris.

I introduce Zenoh that is a framework, a middleware, a protocol that unifies
data in motion, data at rest, and distributed computations by blending pub/sub
communications with geo-distributed storages, queries, and computations. Then I
introduce Zenoh-Pico, the Zenoh counterpart for embedded systems. With Zenoh-
Pico, Zenoh opens the doors to ubiquitous computing. I introduce the core concepts
of the Zenoh middleware like the keys, data message format, router/client/peer,
scouting, supported communication models, types of reliability, control flow, how
mobility is tackled, the usage of an Hybrid Logical Clock. I give a rough idea of
the Zenoh architecture before moving my focus on the Zenoh-Pico’s architecture.
There I explain how some properties like the platform-agnostic and the file inclu-
sion are achieved along with its architecture as macro blocks by explaining what a
folder contains and what is its job. Along with the description of the folder I explain
the anatomy of a Zenoh packet and how the protocol behaves when it is opened
a Zenoh session. Moreover, I explain the composition of an important abstraction
buffer called IOSIi buffer.

Ultimately, I discuss my personal project developed at ZettaScale Technology
to efficiently support the deep sleeping modes of the board az-delivery-devkit-v4
ESP32 on the Zenoh-Pico middleware. I support only UDP unicast communications
on Zenoh-Pico. The supported modes on the ESP32 are deep sleeping and hiberna-
tion as long as for the latter is not powered off the RTC Slow Memory. The project
consists in the following phases being saving the session in the RTC Slow Memory,
going to deep sleep/hibernation, restore the session from the RTC Slow Memory

and bind the UDP unicast socket to the previously used port. I show the compo-
nents of the session that must be serialized onto the RTC Slow Memory, I discuss
the whys and drawbacks of not using a third-party library to serialize/deserialize
the components of the session. I discuss why I chose the RTC Slow Memory to save
the session on. I explain how I found the point where I had to edit the code in order
to use the same UDP port among deep sleeps/hibernations. I explain how I restore
the session. I explain the concepts behind the serde functions used to serialize/de-
serialize user-defined structs in the Zenoh session. In the implementation section
I deeply explain how I implemented the two functions added to the Zenoh-Pico’s
API: the zp_prepare_to_sleep() to save the session in the RTC Slow Memory, and
the zp_wake_up() to restore the session from the RTC Slow Memory and restore the
UDP unicast transport. After the implementation details, I showcase the most dif-
ficult errors encountered while developing the support to the deep sleeping modes
then I explain how I glued the serialization/deserialization (serde) functions with
the rest of Zenoh-Pico. At last, I discuss the experimental evaluations conducted on
my implementation starting with the baseline measurements then varying the load
of the session and make comparisons w.r.t. baseline measurements. Also, I make
further measurements about the size and the average power consumed by the board
az-delivery-devkit-v4 ESP32 with a low duty cycle active-sleeping pattern.

Chapter 1

Thesis Motivations, Objectives,
and Internet of Things

The UDP communication at the transport layer is the favorite one for what con-
cerns the Internet of Things (IoT). This is due to the lossy nature of the majority of
the IoT communications since the communications are mostly done over long range
network and the Access Point may be far away from the devices. Moreover UDP,
being simpler than the TCP, is easier to implement and occupies less memory sur-
face than TCP, a feature constrained devices benefit a lot from. However, it is not
still clear which application protocol will succeed in the application layer. Will be
MQTT+ (enhanced version of MQTT), HTTP (or its lightweight version CoAP), or
Zenoh? Let us tell that Zenoh, apart from being an application protocol, can also
dive deep in the ISO/OSI stack straight to the data link layer since it has the capa-
bilities to use UDP or TCP, Multicast in the former case, IPv4, IPv6, or 6LoOWPAN,
and many more capabilities. It must also be said that Zenoh has the support for
RESTful interfaces via HTTP to query and edit the Zenoh router and it provides a
plugin to make Zenoh capable of interacting with MQTT. The minimum common
denominator of MQTT+ and Zenoh is that both use a publish/subscribe communi-
cation model. The pub/sub communication model consists of a broker that manages
subscriptions from devices to a certain topic and, when one or more device publish
something on a topic, all the subscribers to that topic will receive the information
associated with the topic. A particular scenario would be the usage of the pub/-
sub communication model in the edge of the network. By edge of the network I
intend that specific region of network behind a router whose role is the gateway i.e.
a virtualized application runs on the gateway and performs data aggregation, data
pre-processing, security (by implementing the TLS encryption between the gateway
and the cloud), scalability, service discovery, geo-localization, billing, etc.

The Named Data Networking (NDN) is a proposed Internet architecture, it is

applications and
pplication protocols

transport

applications and
application protocols

Push packets
to destination
addresses

Fetch data
chunks by
names

FIGURE 1.1: Hourglass model Named Data Networking (NDN)

4 Chapter 1. Thesis Motivations, Objectives, and Internet of Things

designed to network the world of computing devices by naming data instead of
naming data containers as IP does today (see figure 1.1). With this change, NDN
brings a number of benefits to network communication, including built-in multi-
cast, in-network caching, multipath forwarding, and securing data directly. NDN
also enables resilient communication in intermittently connected and mobile ad
hoc environments, which is difficult to achieve by today’s TCP/IP architecture. In
a nutshell, all a network does is ship data bits. It is the job of the network archi-
tecture to define how this data shipping is realized. A network architecture design
makes two fundamental decisions: (1) what namespaces are used for data delivery,
and (2) what are the specific mechanisms for the delivery. There are two main op-
tions for the first design decision: (1) name the locations to ship the bits to; (2) name
the bits themselves. The second design decision depends on the first: if named by
location, data bits to be sent from host A to host B may either be delivered along
an established path between the two communicating endpoints (virtual circuit), or
travel through the network as independent pieces to reach B (datagrams). If one
names the data bits directly instead of by location, then a network delivers named
bits (named data packets) to their requesters. Today’s TCP/IP protocol architecture
picked the first option of network namespace design, naming locations, the same
communication model used by circuit-switched telephone networks. A telephone
network assigns a phone number to each telephone set wired at a specific location
and sets up a circuit between two calling parties. From telephony to IP networking,
phone numbers are replaced by IP addresses, circuit switching by packet switching
with datagram delivery, but the same location-based, point-to-point communication
model remains. Named Data Networking (NDN), takes the second option of net-
work namespace design, naming bits. As a proposed Internet architecture, NDN is
designed to network the world of computing devices, ranging from IoT sensors to
cloud servers, by naming data bits. Named data chunks make the centerpiece in
the NDN network architecture, and the NDN network layer uses application data
names to communicate. This design empowers the network to retrieve named data
by any means necessary, treating networking, storage, and computing resources in
the same manner and enables one to secure data directly [Afanasyev, 2018].

The advent of Zenoh brings the pub/sub/query model and the NDN to work
together over the Internet Protocol (IPv4 and IPv6), 6LoWPAN, and many others.
That means an user can retrieve data simply by naming the data she wants (i.e.
"demo/room2/temperature") or she can activate an actuator by simply naming it
(i.e. "demo/room3/radiator/on"). In the case of zenoh, the IPs are specified in spe-
cial configuration files that interconnect the routers which serve the role of broker
in the pub/sub infrastructure, they also serve the role to route data in a location-
transparent way. This is important in the IoT field since data can be accessed or
edited just by naming it without the knowledge of how to reach it and in an ever
evolving and ever growing field like the IoT where a lot of number of devices are
connected to each other this location-transparent approach is beneficial as multiple
devices can retrieve information from other multiple devices simply with a name
(i.e. "demo/room3/**") and multiple devices can subscribe to multiple topics with
the usage of a single name per topic.

1.1 Motivations

While at ZettaScale Tech., the company where I worked off for over 5 months on
Zenoh-Pico for my master’s thesis, I was lost at first thinking the answer to what

1.2. Objectives 5

should have been done on Zenoh would have been found on some paper taken from
Google Scholar i.e. a search engine for academic papers relevant for many fields
especially Computer Science and Engineering. [was saying that I was searching for
papers on Google Scholar about 5G and Multi-Access Edge Computing (MEC) in
order to insert Zenoh on a 5G-MEC environment and make some tests. But I was
missing something important. Earlier in time, on October 2021, I went to visit for
the first time the offices of AdLink Tech. at Saint-Aubin, France 91190 (at that time
ZettaScale Tech. was AdLink, ZettaScale was born on February 2022 and is a spin-off
of AdLink Tech.). There I met for the very first time the AdLink Team. and I told
them I was quite interested in embedded devices. On March 2022 I was still looking
for an answer on what to do on Google Scholar and my scope was 5G-MEC. One
day of that month of that year I had an interesting conversation with my colleague
Luca Cominardi who noticed I was stuck somewhere and just told me it was time
to start writing some code. Well. A few months before I told the whole team I
was interested on embedded systems and all of a sudden I changed my scope to
5G-MEC, that was hindering my master’s thesis, so I decided to take a step back,
think about what was told to my colleagues i.e. I like embedded devices, and start
writing some code. After all, my bachelor’s thesis was about HTTP/3 (HTTP over
QUIC over UDP) and its applications in a possible Internet of Things scenario, thus
why not embedded devices? I started out by looking at the documentation for the
ESP32, a board supported by Zenoh-Pico, the counterpart of Zenoh for constrained
devices, and my interests lashed out against the deep sleeping modes supported
by the board and how each sleep mode decreased the usage of the energy. There
are many boards supporting deep sleeping which are also supported by Zenoh-Pico,
think about the Zephyr board, but I chose the ESP32 as I was somewhat bounded
to its predecessor, the ESP8266 because in the course Software Systems Engineering
(which I left for a couple of reasons) there was the opportunity to play around with
either a Raspberry Pi or an ESP8266 board (way cheaper than a Raspberry even
though it has more constrained resources).

In 2024 and beyond it is becoming of paramount importance the support to deep
sleeping for devices ran with an external battery with limited capacity that is why
I strongly believe (and demonstrate with my experiment) that the support for the
deep-sleeping mode on embedded systems for Zenoh-Pico is jovial in terms of bat-
tery’s life.

1.2 Obijectives

The objectives of this master’s thesis are:

* to better understand the world of the Internet of Things.
¢ to better understand the Zenoh middleware and what a middleware is.

¢ tobetter understand what improvements a feature to support the deep-sleeping
mode in Zenoh-Pico can bring in the field of the Internet of Things.

1.3 What is the Internet of Things

The Internet of Things is subject to many definitions but I will anyway try to give
one definition: it is a “thing” equipped with sensors and actuators, uniquely iden-
tifiable in the network, connected to the Internet and capable of taking decisions

6 Chapter 1. Thesis Motivations, Objectives, and Internet of Things

without the human intervention. The above definition is pretty general so let me
delve deeper into the IoT world. Possibly every single device and object, “a thing”,
can be connected to the internet (around 50 — 100 billions in 2020). Their main task is
to gather information from things for monitoring and control, send information back
and forth, store and aggregate information, analyze information, take decisions in a
human-assisted or autonomous manner. In the past the idea of remote monitoring
and control was already existent, think about Supervisory Control And Data Acqui-
sition (SCADA) systems. There was, and still there is, a central control system with
sensors and actuators, controllers, communication equipment and software. Peri-
odic reading of values and status of sensors to collect data. Typical deployments
are gas and oil distribution, electrical power, water distribution, bus traffic system,
airport, These are widely tested solutions, real-time, reliable but they are ex-
pensive, extensible only within the same scope e.g. additional sensor or an addi-
tional machine, lacking of standards, and no interoperability with other SCADA
systems being horizontal or vertical plus no connection to the Internet. Let’s see
what is the IoT accordingly to the IEEE: “An IoT is a network that connects uniquely
identifiable “Things” to the Internet. The Things have sensing/actuation and poten-
tial programmability capabilities. Through the exploitation of unique identification
and sensing: information about the Thing can be collected and the state of the Thing
can be changed from anywhere, anytime, by anything.”. The difference between
an IoT and a SCADA system, beyond the cons of the latter, is the connection with
the Internet. Moreover, IoT interconnects Things to the Internet through the use
of standard communication protocols, are uniquely identifiable, and the Thing of-
fers services with or without human intervention through the exploitation of unique
identification, data capture, communication, and actuation capability. For this to
be true there are two important technologies considered IoT-enabler that are: re-
duced hardware cost and hardware size, pervasive and cheap wireless communi-
cations from cables to large bandwidth or wide-coverage wireless communication.
Nowadays the IoT is constituted by one horizontal layer managing heterogeneous
information in an efficient manner (like AWS IoT, Microsoft Azure) and several ver-
tical applications to provide specific information in a market-tailored manner.The
several heterogeneous things make the convergence of sensed data to the Internet
via multiple gateways capable of communicating through both classic IP protocols
(IP, TCP/UDP, HTTP) and the IoT-specific protocols (ZigBee, Bluetooth, Serial, Lo-
RaWAN). The gateways are geographically close to sensors or actuators and directly
interact with things or dispatch data to and from the Internet. The server-side re-
mote applications are stored in the Cloud and manage data. The logical architecture
in the figure 1.2 can be teared-down to:

¢ Things: any physical or digital object that should be monitored or controlled:
physical objects must be digitalized, virtual objects must be standardized.

* Gateway: close to one or multiple things to interact with them and send data
and command back and forth the Internet. The gateway can be seen as a point
of convergence to access the internet.

¢ Communication protocol: wired /wireless technology to actually send bytes.

¢ JoT Platform: data storing and management, application of (simple) aggrega-
tion / processing functions on data. Data exchange protocol to standardize
how information are transported (and eventually also represented, typically
JSON).

1.3. What is the Internet of Things 7

oy D D D D

. . r , 1f M1 .
Customization !>. piiaations || Analytics b susom 1 Solutions
. !

Data Storing L Data management

and Management loT Platform
Data exchange
(CTTTTTTTTE P S |
. 7 (D) = i Access
T N = * _______ IS S ! network
Communlcatlon WiFi, GPRS, UMTS, ZigBee, Bluetooth, Satellite)
o rEEeeeEeeemmmmmmmmmmmmmmmmmmmmmmmm——— '
| E - Gateway Hardware i Data
e o P e e el ; gathering
e . T H
Digitalization U B R L Thi
owge NS ; 1hings

FIGURE 1.2: Logical Architecture for IoT

* Analytics: complex analysis on data to infer new knowledge.

1.3.1 The Gateway

It is important to better define the tasks of the gateway. The gateway provides pro-
tocol translation between peripheral trunks of the IoT, eventually provided with
lower parts of the communication stacks. They may offer pre-processing, security,
scalability, service discovery, geo-localization, billing, etc. With pre-processing we
can intend data buffering i.e. temporarily store data to wait for connectivity or to in-
crease efficiency, data efficiency i.e. temperature read every 1s but only per-minute
average sent, data aggregation i.e. water level from different silos but only the sum
is sent, data filtering i.e. send temperature values only if greater than 25°C. If there
is no gateway, things have to send data on their own. In case of constrained devices
there might be a reduced set of capabilities e.g. no security since cryptography is
CPU-intensive, no data buffering, filtering aggregation, no programmability, etc.

1.3.2 IoT Fog/Edge Computing

With the gateways we have seen the first evolution of the IoT Cloud Computing
architecture where most of the computation is on the Cloud, only gateways are de-
ployed close to things, gateways perform few and simple tasks. The second evolu-
tion wave, IoT Fog/Edge Computing architecture, adds relatively powerful devices,
it is closer to things but between gateways and the Cloud, complex analytical tasks
are performed on the client side before sending data to the cloud. From now on I will
refer to Fog/Edge computing as Edge computing. In an IoT Edge Computing archi-
tecture the use of Docker, VMWare, generally speaking the use of virtualization can
be used on On-Premise servers that means Edge computing. The on-premise server
is located between the gateway and the Cloud. We can think of Edge Computing as it
extends the cloud to be closer to the things that produce and act on IoT data (Cisco).
Edge computing allows to minimize latency, conserve network bandwidth, address
security concerns in transit and at rest, move data to the best place for processing.
The Edge computing is to be considered when data is collected at the extreme edge
(vehicles, ships, factory floors, roadways, railways, etc.), thousands or millions of

8 Chapter 1. Thesis Motivations, Objectives, and Internet of Things

I:r

laT \ On-Premises Metwork CloudfIndustrial
Gateway \ Server Switches Infrastruciure

-

Devices

Edge Analytics Big Data

FIGURE 1.3: Fog/Edge Computing

things across a large geographic area are generating data, it is necessary to analyze
and act on data promptly, in less then a second (see figure 1.3).

1.3.3 Constrained networks and devices

Constrained devices are "A node where some of the characteristics that are other-
wise pretty much taken for granted for Internet nodes at the time of writing are not
attainable, [...] due to cost, size, and energy constraints". Significant constrains on
maximum code complexity (due to ROM/Flash memory), size of state and buffers
(RAM), available computational power, connectivity. Later in this chapter I will dis-
cuss the constrained device ESP32, the one used for this thesis.

Constrained networks are "A network where some of the characteristics pretty
much taken for granted with link layers in common use in the Internet at the time
of writing are not attainable". There are significant constraints on low achievable
throughput, high packet loss, highly asymmetric links, severe penalties for using
larger packets, limits on reachability over time.

1.3.4 Wireless communication protocols for the IoT

Wired and wireless protocols are used to transport bits and messaging protocols are
used to transfer data. Data is information and commands described following a
given syntax and semantic whereas messaging protocols to exchange data encapsu-
late data and transmit it via wired or wireless protocols. There are several wireless
protocols for IoT, see figure 1.4 for an overview of the wireless protocols for IoT.

Data exchange protocols

There are two method to establish who should initiate the communication from gate-
ways to servers:

¢ push: gateways autonomously decide to send messages to servers e.g. when
new sensed values are available.

1.3. What is the Internet of Things 9

ACpp
Ju' L

@\ _3GPP2 Cdma2000

. N, - WiMAX
_EMV @| N\ 3PP NB-loT
X

\ <1D“m <5 km X <100 km
\ : N\]
a ! »
i Terms not precise i Cellular (licensed)
@ WPAN Wi AN LPWAN (licensed)
WHAN WFAN ~_ LPWAN (un-licensed)

B~

E 'S

ZigBee 15A100.11a (BLoOWPAN) Wi-SUN (BLoWPAN)
- Z-Wave - WirelessHART - ZigBee NAN (BLoWPAN) Loa
- Miwi - Thread (GLoWPAN) - Many others - Wireless M-bus - Telensa
EnOcean) Many others OnRamp/Ingenu
- Many others - 802.11af lwhte space) - Weightless P
- Many others
W ; Billion units/year now WPAN: Wireless Personal Area Network WNAN: Wireless Neighborhood Area Network
W Emerging WHAN: Wireless Home Area Network WWAN: Wireless Wide Area Network

WFAN: Wireless Field (or Factory] Area Network LPWAN: Low Power Wide Area Network
WLAN: Wireless Local Area Network

FIGURE 1.4: Wireless Protocols for IoT

¢ pull: servers ask to gateways to send messages e.g. only when servers actually
require sensed values.

The two primary models to accomplish data exchange protocols are the request/re-
sponse which can be push or pull and the publish/subscribe that usually is only
push.

There are several protocols such as REST/HTTP, CoAP.... as request/response
and MQTT, AMQP, DDS, ... as publish/subscribe.

Request/Response model

A client application requests services (e.g., send data, require data, perform an ad-
dition) and a server application responds to the service request (e.g., by providing
the data or the addition results), direct communication between client and server,
data exchange only if the client starts the communication and the server is not able
to contact the client autonomously. Typical interactions in the IoT scenario are push:
sensors send data to servers, pull: actuators request to servers new configurations.

REST (REpresentational State Transfer)

REST is not an actual protocol but substantially a solution architectural style. It
promotes client/server and stateless interaction, oriented to the usage of caching
opportunities also with possibility of code-on-demand to clients. It is usually based
on HTTP, the protocol used to surf the web. REST is very simple but each time the
client has to start the communication from the beginning.

URI (Uniform Resource Identifier) is used to identify the remote resource: any
resource has a persistent identified, do not transfer resources but their representa-
tions via HTTP, example of an endpoint for a service managing user information:
www.examples.com/resources/users. HTTP methods are used to interact with re-
mote resources in a standard manner. GET to retrieve a specific resource (by ID) or

10 Chapter 1. Thesis Motivations, Objectives, and Internet of Things

a collection of resources, PUT to create a new resource, POST to update a specific
resource by ID, DELETE to remove a specific resource by ID. Usually it is used JSON
for formatting and serializing data.

Constrained Application Protocol (CoAP)

Designed for M2M and IoT applications such as smart-metering, e-health, build-
ing and home automation with constrained devices e.g. 8-bit microcontrollers with
16KB of RAM and battery operated, constrained networks e.g. Wireless sensor net-
works. CoAP is a low-overhead request/response protocol that also supports dis-
covery of services and resources. It is based on UDP communications with multicast.
Inspired by and compatible with the HTTP protocol and REST architectures: CoAP
is a specialized web transfer protocol.

CoAP features a web RESTful protocol fulfilling M2M requirements in con-
strained environments, simple request/response HTTP mapping to access CoAP re-
sources via HTTP, URI and content-type support (a sensor is defined by an URI), low
header overhead and parsing complexity, security binding to Datagram Transport
Layer Security (DTLS), UDP binding with optional reliability supporting unicast
and multicast, asynchronous message exchanges, services and resources discovery,
publish/subscribe, simple caching.

Publish/Subscribe model

The pub/sub model pattern is an alternative to the traditional client-server model,
where a client communicates directly with an endpoint. The roles are well defined
and are 3: publisher that is a client sending a message, subscriber that is one or more
receivers waiting for the message, broker that is the central component receiving
and distributing messages to interested receivers.

The broker routes messages based on:

* message topic: a subject, part of each message. Receiving clients subscribe on
the topics they are interested in with the broker and from there on they get all
message based on the subscribed topics.

* message type: depending on the type of the message.
¢ message header: depending on a set of fields of the message.

* message content: possibly depending on the whole message content (expres-
sive but expensive).

With the pub/sub model we experience 3 decouplings which are space decou-
pling i.e. publisher and subscriber do not need to know each other, time decoupling
i.e. publisher and subscriber do not need to run at the same time, synchronization
decoupling i.e. operations on both components are not halted during publish or
receiving.

Event system as logically centralized system provide anonymous communica-
tion, possibility to use filters (on headers or entire messages), basic primitives such
as subscribe, unsubscribe and publish.

Message Queue Telemetry Transport (MQTT)

MQTT is the evolution of the WebSphere MQ developed by IBM. MQTT is sim-
ple, lightweight, broker-based, pub/sub, open messaging protocol. Ideal for use in

1.3. What is the Internet of Things 11

1 SUBSCRIBE
(to topic Y)
emmmmmT T T DEVICE 1

4 "X" (from topic Y)

SENSOR
PUBLISH "X"

3 (to topic Y) S x (from topic Y)

____________ DEVICE 2
SUBSCRIBE
(to topic Y)

FIGURE 1.5: MQTT Architecture

constrained nodes and networks like embedded devices with limited processor or
memory resources, where the network is expensive has low bandwidth or is unre-
liable. Then we have MQTT-SN for wireless sensor networks, aimed at embedded
devices non non-TCP/IP networks (such as Zigbee).

The features of MQTT are pub/sub pattern to provide one-to-many message dis-
tribution, decoupling applications (see figure 1.5). TCP/IP is used to provide basic
network connectivity. Transport overhead of only 2 bytes and protocol exchanges
minimized to reduce the network traffic. It is easy to use with few commands and
messages are retained that means and MQTT broker can retain a message that can be
sent to newly subscribing clients. The Quality of Service has three delivery seman-
tics i.e. at least once, at most once, exactly once. Client subscriptions remain active
even in case of disconnection. Subsequent messages with high QoS are stored for
delivery after connection establishment. A client can setup a will that is a message
to be published in case of unexpected disconnection e.g. an alarm.

Advanced Message Queuing Protocol (AMQP)

AMQP has a richer semantic than MQTT e.g. supports topics and queues but it is
also heavier than MQTT e.g. the broker is more complex. Among the AMQP im-
plementations we have Apache Qpid that focuses on providing several features like
queuing, message distribution, security, management, clustering, federation, het-
erogeneous multi-platform support (most of them possibly not essential in the IoT
scenario).

Data Distribution Service (DDS)

DDS is pub/sub but is broker-less based on multicast. It is scalable, real-time, de-
pendable, high performance and interoperable. Proposed in several mission-critical
environments where performance and reliability are essential (see figure 1.6).

Industrial data exchange frameworks

In the following are showcased the main frameworks used in the industry.

12 Chapter 1. Thesis Motivations, Objectives, and Internet of Things
€08 Qos
DATA
£l
QoS P QoS
=
anlicki \. Qo5 & / :
Topic B
o5

Topic A — ——_, s

— READER
DDS DOMAIN
Qa5

DATA
Qo5 sl READER

QoS

_____._._.-u TopicC =~ —
WRITER) Py 05
& Topic D READER
DATA
/?/ \
READER

FIGURE 1.6: DDS

RabbitMQ

RabbitMQ actually is not an IoT platform but an interesting messaging infras-
tructure. It has robust messaging for applications, reliable message delivery, dis-
tributed deployment as clusters for high availability and throughput, federate across
multiple availability zones and regions, multi-protocol support like AMQP, MQTT,
HTTP, etc., managing and monitoring via HTTP-API, command line tool, and UL
RabbitMQ runs on all major operating systems, supports a huge number of devel-
oper platforms, open source and commercially supported. Exchanges (topics) and
queues can be durable i.e. capable of surviving a broker restart (as opposed to tran-
sient). Messages can be defined as persistent i.e. only persistent messages survive
exchange/queue/brokers/channel failures. The synchronization has an automatic
acknowledgement model i.e. verify that the message is actually delivered to the
application waiting for it, it also has an explicit acknowledgement model i.e. wait
for explicit acknowledgement sent back by the application immediately at message
reception, after processing.

MTConnect

Mostly used in the USA, it is a protocol/platform specialized for data exchange be-
tween shop floor equipment and software applications, over networks using the In-
ternet Protocol (IP). MTConnect is lightweight, open, extensible, and read-only as
it was introduced only for the monitoring of numerically controlled machine tools.
MTConnect exploits several internet open standards, XML format for data, REST-
ful interface via HTTP for communication, Ligtweight Directory Access Protocol
(LDAP) for discovery services.

OPC Foundation

OPC = OLE (Object Linking and Embedding) for Process Control. OPC Foun-
dation is a Microsoft software architecture for industrial control systems. It was

1.3. What is the Internet of Things 13

designed for connecting Windows based PC with PLC and SCADA systems in in-
dustrial automation. Based on COM and DCOM, so formerly tightly related to Mi-
crosoft technology. It presents a client/server architecture where client and server
can be on the same or different machines. The interface between OPC Server and a
specific PLC is always vendor-specific: typically each PLC producer sells also its spe-
cific OPC Server component. The OPC Unified Architecture (OPC UA) is a modern
release of OPC, greatly differing from the previous one. It is platform independent:
PC, ARM, Cloud, Windows, Linux, Android, it is secure as it allows for authenti-
cation, encryption, auditing, fault tolerance, extensible as it is multi-layered archi-
tecture of OPC UA that provides a future proof framework.

The whole content and images of these subsections are taken from the slides of
the professor [Bellavista, 2023].

15

Chapter 2

Embedded Systems

Nowadays embedded systems are everywhere, from your smartphone to your smart-
watch passing through consoles (PS4) or voice assistants such as Alexa. The Internet
of Things refers to a world in which a large range of objects are addressable via
the network. These objects can be the above already mentioned plus washing ma-
chines, fridges, bridges, railways, wearable devices, medical devices, and possibly
everything in the world. An IoT application can be described as a cyber-physical
loop (see figure 2.1) in which information is processed by the CPU, such informa-
tion can be either displayed or to be used to control actuators that modify the sur-
rounding environment. Moreover, there can be sensors that sense parameters like
heat, humidity, CO; of the surrounding environment and feed these data to the CPU
in order to be processed and either be displayed or used to control actuators which
close the loop.

The architecture commonly used on embedded systems is the Harvard Archi-
tecture (see figure 2.2). This architecture allows for a parallel fetch and store that
means separate instruction bus and data bus can make the programme do a read
from the instruction memory in parallel with a write to the data memory. This was
not possible in the Von Neumann’s architecture as it uses the same memory unit for
both data and instructions. The program is saved in the Read-Only Memory (ROM)
so the board knows what to do when turned on or in case of a crash.

This section has references to the slides of the professor [Benini, 2023].

2.1 Espressif ESP32

The Espressif ESP32 is a versatile development board produced by Espressif Sys-
tems. The board is broadly used by a plethora of IoT applications. Here I describe
the architecture, its functionalities, the technical details, and at last the two main en-
vironments to develop, cross-compile, and deploy software on an ESP32 which are
PlatformIO and ESP-IDE.

The ESP32 development board presents the following logical architecture (figure
2.3):

It consists of 5 different macro-areas, to be specific:

* Core and Memory: contains the microprocessor Xtensa LX6 32-bit dual-core,
the ROM and the SRAM.

¢ RTC and low-power management subsystem: contains the subsystem for the
low power modes supported by the microprocessor.

* Peripheral interfaces: contains all the supported peripheral interfaces for 1/0O,
the temperature sensor, the touch sensors, a Digital-to-Analog converter and
an Analog-to-Digital converter.

Chapter 2. Embedded Systems

A/D converter |- information display
processing A
D/A converter

sample-and-hold

(physical)
environment

actuators
s

SEensors

'

o
“

Control Unit M Memory Unit ‘

|nmmmmnMemowK:> Gontrol Unit c:w THT T ‘

‘ o ‘ ‘ o ‘

=

Von Neumann's Architecture Harvard's Architecture

FIGURE 2.2: Von Neumann - Harvard

Espressif ESP32 Wi-Fi & Bluetooth Microcontroller — Function Block Diagram

Touch sensors

RS Bluetooth BI"?:'MH' : Embedded flash memo
! Included in ESP32-PICO-D4 system-in-package QFN module
[RF receive J e controller e e .
r ¥
[Clock generator] Peripheral sp1
Wi-Fi Wi-Fi interfaces Serial Peripheral Interface
[RF transmit] baseband MAC
12 12
Circuit Inter-IC Sound
Cryptographic hardware acceleration Core and memory
SDIO
[Secure Digital Input Output.] [Universal async re:elver transmitter]
RSA SHA Xtensa LX6
Rivest-Shamir-Adieman FIPS PUB 180-4 32:bit; dual-core or single-core
[cAN J [ETH]
Controller Area Network Ethernet MAC
[RNG] [AES] [ROM] { SRAM]
Random number gen. FIPS PUB 197 Read-only memory Static random-access mem. IR PWM
[Infrared J [Pulse-width modulation]
Temperature sensor
RTC and | b o [\nterna?range of -40°Cto 125°C] [Ten capacitive-sensing inputs J
PMU Ultra-low-power Recovery DA SAR ADC
[Power management unit] [co-processor memory Digital-to-analog converter Successive approx. analog-to-digital conv.

FIGURE 2.3: ESP32 - Logical Architecture

2.1. Espressif ESP32 17

* Cryptographic hardware acceleration: contains the acceleration hardware for
cryptographic purposes.

¢ Radio: contains the system for radio transmitting and receiving.

Among the just discussed macro-areas there is support for Bluetooth and WiFi.

2.1.1 Technical Details

The Espressif ESP32 development board has a dual-core Xtensa LX6 32-bit RISC mi-
croprocessor @ 160MHz up to 240 MHz, 512 KiB of SRAM, 4 MiB of flash, ROM 448
KiB, 8 KiB of RTC Slow Memory, and 8 KiB of RTC Fast Memory. One core is called
PRO_CPU (core 0), the other one is called APP_CPU (core 1). As the core’s name
suggests, usually the core 0 is used by protocols activities tasks such as Bluetooth
or WiFi whereas core 1 is used by the application logic but every core can be used
interchangeably by assigning to a task a particular affinity via the function xTaskCre-
atePinnedToCore which takes as a parameter the core number where the task must
run on. The affinity can be tskNO_AFFINITY so the task can run on both cores.

Clock Sources

The ESP32 integrates multiple clock sources for the CPU, peripherals and the RTC.
These clocks can be configured to meet different requirements. Some are High
Speed clocks, other one are low power clocks. For what concerns low power clocks,
XTL32K_CLK is a clock with a frequency of 32 Khz, RC_FAST_CLK has a default
frequency of 8 MHz, the RC_FAST_DIV_CLK has a frequency of RC_FAST_CLK di-
vided by 256, RC_SLOW_CLK has a frequency of 150 Khz, and RC_SLOW_CLK is
an internal low power clock with a default frequency of 150 Khz. The RTC_SLOW_CLK
is used to clock the Power Management module, hence to clock the RTC Slow Mem-
ory and RTC Fast Memory, and is sourced by RC_SLOW_CLK, XTL32K_CLK or
RC_FAST_DIV_CLK whereas RTC_FAST_CLK clocks the On-chip sensor module
and is sourced by XTL_CLK or RC_FAST_CLK. By default, are used RC_SLOW_CLK
and RC_FAST_CLK as clock sources for RTC_SLOW_CLK and RTC_FAST_CILK re-
spectively (see figure 2.4).

RTC Fast Memory and RTC Slow Memory

RTC Fast Memory is 8 KiB of SRAM and can be read and written only by PRO_CPU
at an address range of 0x3FF8 0000 — 0x3FF8 1FFF on the data bus or at an address
range of 0x400C 0000 — 0x400C 1FFF on the instruction bus. The two address ranges
of PRO_CPU access the memory in the same order, for instance a load or store from
the address 0x3FF8 0000 accesses the same word from a load or store from the ad-
dress 0x400C 0000. It is about 10 times faster than the RTC Slow Memory. RTC Slow
Memory is 8 KiB of SRAM and can be accessed either by PRO_CPU or APP_CPU
in read or write at an address range of 0x5000 0000 — 0x5000 1FFF from the instruc-
tion/data bus.

Universal Asynchronous Receiver Transmitter (UART)

A serial communication protocol is to be used when it is not possible to move data
in parallel either because of physical or cost terms. Serial protocols are meant for
short distances, they have low complexity, low cost, low speed.

18 Chapter 2. Embedded Systems

)) RTC
Selection Signal
RTC Timer
RC_SLOW_CLK
0
XTL32K_CLK
1 RTC_SLOW _CLK RTC Main State
RC_FAST_DIV_CLK
2
PMU
RTC Slow Clock
ULP Coprocessor
Selection Signal
XTAL_DIV_CLK Sansor Controller
RTC_FAST_CLK
RC_FAST CLK
1 I RATC Memary
RTC Fast Clock .
__‘ RTC Registers

FIGURE 2.4: RTC Clocks

0x0000_0000
0x3F3F_FFFF
0x3F40_0000
Ox3F7F_FFFF

Ox3FB0_0000
Ox3FBF_FFFF

(3FCO_0000
Ox3FEF_FFFF

0:3FF0_0000
UR3FFT_FFFF Perighass)

0x3FFB_0000
Ox3FFE_1FFF

0x3FFB_2000
g

Fuah 0x3FF9_0000
0x3FF9_FFFF
0x3FFA_DDOO

ey
SRAM 0x3FFA_EDOD

0x3FFF_FFFF

0x4000_0000
0x4005_FFFF

0x4006_0000
Ox4006_FFFF

0x4007_0000
0xA00B_FFFF

02400C_0000
0x400C_IFFF

0x400C_2000
OxADBF_FFFF

0x40C0_0000
Ox4FFF_FFFF
0x5000_0000
Ox5000_1FFF

0x5000_2000
OxFFFF_FFFF

FIGURE 2.5: RTC addresses

2.1. Espressif ESP32 19

X RX
-
MCU RX TX device
-
FIGURE 2.6: UART
START 1 2 3 4 5 6 7 8 STOP STOP
1 1 0 1 0 0 1 0
| | | | | I | I | I | |
1 start bit 4-8 data bits 1 parity bit

FIGURE 2.7: UART Protocol

Sometimes also found as Universal Synchronous Asynchronous Receiver Trans-
mitter (USART), is used to interface MCUs with other computing devices such as
other processors, a PC, interface microcontroller with others transmission bus as
RS232, USB, CAN BUS, etc..., used to connect MCU with modems and transceivers
as telephone modems.

It is essentially a parallel2serial in transmission and serial2parallel upon recep-
tion converter couple e.g. using a shift register for parallel2serial conversion. It
is asynchronous as there is no common clock shared, each device has its own lo-
cal clock typically running faster than the bit rate. The phase of the receiver clock
is locked onto the edge of the transmitted data. UART is highly configurable for
instance parity or no parity bit, data framing (e.g. number of stop bits, number of
payload bits), communication simplex/full-duplex/half-duplex (see figure 2.6). The
wording "8-N-1" printed when used UART as transmission and reception means 8
bits of payload, No parity bit, 1 stop bit.

Let us see how the UART protocol works. At first, (1) in idle the transmission
line is driven to 1. The (2) transfer begins with a start bit where the transmission
line is driven to 0 for one clock. Then, (3) a symbol of 5 to 9 bits is transmitted, most
often 8 bits (i.e. an ASCII character), the symbol size is defined by the application
and known a-priori w.r.t. the communication. One of the data bits can be used for
(4) parity. Finally, (5) 1 or 2 stop bits where the transmission line is brought back to
1 and are used 1 or 2 stop bit depending on the application. Usually, 2 stop bits are
used to realign the sampler (see figure 2.7).

The UART communication speed is defined by its symbol rate measured in baud
where 1 baud is 1 symbol per second. In UART, a symbol has two values (0/1)
hence 1 bit. This number includes both data payload and protocol bits (e.g. parity,
framing) - this number is also called physical or gross bit rate. To be remembered
that in some devices (e.g. modems) one symbol might correspond to more bits that
means the baud rate is not the same as the gross bit rate. The baud rate of the ESP32
to communicate with the terminal of VSCode is to be set to 115200. The ESP32 has
integrated on its board the USB2UART and UART2USB converter.

The UART protocol can also include a handshake. First, a Request-to-Send (RTS)
signal from the MCU to the device means MCU can accept new data. A Clear-to-
Send (CTS) signal from the device to the MCU means that the device can send new
data. The signals have a dual meaning if send from the other point of view. Exchange
happens when CTS and RTS are both asserted.

20 Chapter 2. Embedded Systems

address (7 or 10 bits) ~ ack bit ack bit
| 1 | oy

Wl i b

|] - |
start bit directionbit data payload " stop bit

FIGURE 2.8: I2C

Inter-Integrated Circuit (I12C)

Usually pronounced "I-Squared-C", it was introduced by Philips in 1982. It is used
for communication with external peripherals, for example: EEPROMs, thermal sen-
sors, real-time clocks. Also used as a control interface for signal processing devices
with separate data interfaces, for example: radio frequency tuners, video decoders
and encoders, audio processors. 12C has three supported modes being slow (un-
der 100 kbps), fast (400 kbps), high speed (3.4 Mbps) in 12C v2.0. The maximum
inter-IC distance is of about 3 meters for moderate speeds, the distance decrease
for higher speeds. The communication protocol can support multi-master mode for
complex applications where the communication is always started by a master, both
in single-master and multi-master mode. The half-duplex synchronous communica-
tion scheme is where the master of the communication generates the clock (SCL) on
which data (SDA) is synchronized.

I2C is based on two lines: serial clock (SCL) and serial data (SDA). Two pull-up
resistors connected respectively to Vdd on the lines SCL and SDA. In idle, (0) both
SCL and SDA lines are pulled-up to 1. (1) To start the communication, the master
asserts the start bit that means the SDA bit is brought from 1 to 0 while SCL remains
to 1. Then, the master starts generating the SCL clock. Except for the start and stop
bits, SDA has transitions only when SCL is 0. (2) The master transmits the slave
address that is broadcasted to all devices on the I2C bus, the slave address is used to
select the target slave and the address ranges from 7 bits up to 10 bits (newer devices
- 7 bits address space is small). (3) The master transmits a direction bit, if this bit is 0
the transfer is master to slave (a write - w.r.t. the master)), if this bit is 1 the transfer
is slave to master (a read - w.r.t. the slave). In our case we assume a write transfer
(i.e. bit set to 0 - a write). (4) The slave then acknowledges the reception by driving
SDA to 0. If not acknowledged, the transaction must be repeated by the master. (5)
The master transmits its data payload, each payload packet is 8 bits. There might
be more than one packet, depending on the application. (6) The slave acknowledges
the reception of each data packet (1 ack bit every 8 bit of payload). (7) At the end of
the transfer, the master transmits a stop bit: first, it sets SDA to 0, then it releases SCL
(it let the SCL signal go to 1), finally it releases SDA which goes to 1. It is done at the
same clock cycle (see figure 2.8). The reads (w.r.t. the master) work similarly, but data
transfer and ack roles are reversed: the slave drives the SDA when transmitting data
byte, the master acknowledges the transfer. Note that the clock is always generated
by the master.

A slave can ask for more time to process a bit by clock stretching where the slave
drives the SCL to 0 if in need of more processing time.

Serial Peripheral Interface (SPI)

SPI was introduced by Motorola for the MC68HCxx line of microcontrollers. The use
cases are generally similar to I2C but it is generally faster than I2C (up to serveral
Mbit/s). Single-master, multiple slave architecture it is needed one chip select per

2.1. Espressif ESP32 21

MOST
< MIS0

CLK device
CSN

\d

Yy

FIGURE 2.9: SPI

e i -

rs«?s: _r;“| |_1_|]

soI !
MIso i M [
T i
| |
slave samples master samples CPOL=0
@posedge SCK @negedge SCK CPHA=0

FIGURE 2.10: SPI CPHA =0

slave device. The communication scheme is full-duplex synchronous - the master
drives the clock (SCLK or CLK) with a clock polarity (i.e. write/read edges) and
phase depending on the specific application.

SPI is based on two data and two control lines (see figure 2.9): MISO (master in,
slave out data), MOSI (master out, slave in data), CLK (clock), CSN (chip select, one
per slave, usually active low). The names are not standard, you might encounter
SDI (SPI data in) instead of MISO, SDO (SPI data out) instead of MOSI, SCLK/SPC
instead of CLK, CCS/SS/SSN instead of CSN.

The full duplex transfer means that data is streamed between master and slave
shift registers/FIFO buffers: the master pushes the content of its buffer to the slave
via MOSI, the slave pushes the content of its buffer to the master via MISO.

SPI has four operating modes varying by clock polarity (CPOL) and phase (CPHA):
polarity sets the initial value of the SPI clock signal, phase defines the edge at which
MOSI is switched and the one at which MISO is sampled (see figures 2.10, 2.11, 2.12).

The master is completely in charge of the transfer i.e. no ack no clock stretch-
ing contrarily to I2C. A more complex behavior than simple data streaming can be
mapped on top of SPI protocol.

For point2point, SPI is simple and efficient for the less overhead than I2C due
to the lack of addressing, plus SPI is full-duplex. For multiple slaves, each slave
needs separate slave select signal then SPI requires more effort and more hardware
than I2C.

e | | -
MOSI ; |_§—| |—|
mso L[] —

I 1
slave samples master samples CPOL=0

(@negedge SCK @posedge SCK CPHA=1

FIGURE 2.11: SPICPHA =1

22

Chapter 2. Embedded Systems

N T E g [
1 [1
1 M [1

MOSIT

MISO

1 |
slave samples master samples CPOL=1
@posedge SCK @negedge SCK CPHA=1

FIGURE 2.12: SPICPOL =1, CPHA =1

PADDR 32 Initiatorto Target Address of peripheral

PURITE 1 Initiator to Target 1= store, 0= load

PSEL 1 Initiator to Target 1 for selected slave during the full transaction
PENABLE 1 Initiator to Target 1 during ACCESS phase

PWDATA 32 Initiatorto Target Data to be stored

PROATA 32 Targetto Initiastor Data loaded

PREADY 1 Targetto Initiator 1 during ACCESS phase terminates transaction

FIGURE 2.13: APB Names

Advanced Peripheral Bus (APB)

It is the peripheral bus from which the RTC Slow RAM is accessed. It is a low-cost
interface optimized for power consumption and reduced interface. It is fully syn-
chronous, every transfer takes at least two cycles, two phases: SETUP and ACCESS.
It is a simple protocol designed for peripherals (see figure 2.13).

The subsection and images about UART, 12C, SPI, and APB are taken from the

slides of the professor [Conti, 2023].

Sleep Modes

¢ Light-Sleep mode: digital peripherals, most of the RAM, and CPUs are clock-

gated and the supply voltage is reduced. Upon exit from this mode, the digital
peripherals, RAM, and CPUs resume operation and their internal states are
preserved

Deep-Sleep mode: the CPUs, most of the RAM, and all digital peripherals that
are clocked from APB_CLK are powered off. The only parts of the chip that are
powered on are: RTC controller, ULP coprocessor, RTC fast memory, RTC slow
memory.

There is also a third sleep mode called Modem sleep which, if needed, only
affects WiFi in station mode but is treated here for completeness’ sake: the
station will switch between active and sleep state periodically after connecting
to AP successfully. In sleep state, RF, PHY, and BB are turned off in order to
reduce power consumption.

SETUP ACCESS
T0 T T2 T3 T4 T5 T6

T T s)) O s

PADDR i Addr 1
PWRITE ¥ j
PSEL i 0
PENABLE 0
PWDATA i Data 1 |
PREADY [\ ¥y U

FIGURE 2.14: APB Write Transaction

2.1. Espressif ESP32 23

SETUP ACCESS
™ T2 T3 T4

T0 T5 6
T S s O s O s 0 B
PADDR) | Addr 1
PWRITE |\
PSEL I 0
PENABLE [W}
PRDATA) (Datat1)
PREADY T\ Fy w

FIGURE 2.15: APB Read Transaction

Power mode Description Power consumption
240 MHz - Dual-core chip(s) 30 mA ~ 68 mA
Single-core chip(s) N/A
The CPU is - Dual-core chip(s) 27 mA ~ 44 mA
Modem-sleep 160 MHz -
powered on. Single-core chip(s) 27 mA~ 34 mA
Dual-core chip(s) 20 mA ~ 31 mA
Normal speed: 80 MHz -
Single-core chip(s) 20mA~ 25 mA
Light-sleep - 0.8 mA
The ULP coprocessor is powered on 150 pA
Deep-sleep ULP sensor-monitored pattern 100 pA @1% duty
RTC timer + RTC memory 10 A
Hibermnation RATC timer only 5 ph
Power off CHIP_PU is set to low level, the chip is powered off. 1 phA

FIGURE 2.16: ESP32 - Sleep Modes

A particular sleep mode is called hibernation which keeps powered on only the RTC
Timer and consumes less power than Deep-Sleep mode. Such mode is achieved by
manually, programmatically speaking, powering off all the sections except the RTC
Timer.

Memory model

In this subsection I am going into the details of the memory model for the ESP32.
The diagram in figure 2.17 shows the ESP32 internal memory (SRAM) layout.
The SRAM is divided into 3 memory blocks being SRAMO, SRAM1 and SRAM2
(and two small blocks of RTC fast and slow memory which we’ll consider separately
later). The SRAM is used in two ways — one for instruction memory — IRAM(used
for code execution — text data) and data memory — DRAM (used for BSS, data,
heap). SRAMO and SRAMI1 can be used as a contiguous IRAM whereas SRAM1 and
SRAM2 can be used as a contiguous DRAM address space (see figure 2.18). While

RTC Fast RAM RTC Slow RAM

8KB 8KB
SRAMO SRAM1 SRAM2
(192 KB) (128 KB) (200 KB)

IRAM
Addressing

0X4007_0000
0x4009_FFFF
0x400A_0000
0x4008_FPFF

DRAM
Addressing

Ox3FFF_FFFF
0x3FFE_0000
OX3FFD_FFFF
Ox3IFEA_E000

FIGURE 2.17: Internal RAM layout

24 Chapter 2. Embedded Systems

RTC Fast RAM RTC Slow RAM

BKB BKB
SRAMO SRAM1 SRAMZ2
(192 KB) (128 KB) (200 KB)

0x4007_0000
0x4009_FFFF

DRAM

Ox3FFA_E000

Ox3IFFF_FFFF

FIGURE 2.18: Programmer’s memory map

SRAMO
(192 KB)

CPUD CPU1
Cache Cache
(32 KB) (32 KB)

Free IRAM
(Added to Heap)

g
2
]
E

iram start

0x4007_0000
0x4007_8000
0x400%_FFFF

iram_text_end

iram text_start

FIGURE 2.19: IRAM Layout

SRAMI can be used as a IRAM and DRAM both, for practical purposes, ESP-IDF
uses SRAM1 as DRAM, as it’s generally the data memory that applications fall short
of. The diagram in figure 2.17 shows the memory map for programmers to consider
for their application development where they get 192KB IRAM and 328KB DRAM.
While it does not matter much for the application as there is no overlap, please note
that the direction of the address range is opposite for IRAM and DRAM address
spaces.

While SRAM1 can be used as a IRAM and DRAM both, for practical purposes,
ESP-IDF uses SRAM1 as DRAM, as it’s generally the data memory that applications
fall short of. The diagram 2.18 shows the memory map for programmers to consider
for their application development where they get 192KB IRAM and 328KB DRAM.
While it does not matter much for the application as there is no overlap, please note
that the direction of the address range is opposite for IRAM and DRAM address
spaces.

Let us now zoom into the IRAM section (see figure 2.19).

The 192 KB of available IRAM in ESP32 is used for code execution, as well as
part of it is used as a cache memory for flash (and PSRAM) access.

¢ First 32KB IRAM is used as a CPUO cache and next 32KB is used as CPU1 cache
memory. This is statically configured in the hardware and can’t be changed.

¢ After the first 64KB, the linker script starts placing the text region in IRAM. It
first places all the interrupt vectors and then all the text in the compiled appli-
cation that is marked to be placed in IRAM. While in common case, majority of

2.1. Espressif ESP32 25

SRAM1
(128 KB)

_heap_end
_bss_start
data_end
0x3FFB_0000
Ox3FFA_E000

FIGURE 2.20: DRAM Layout

the application is executed out of the flash (XiP), there are some portions of the
applications which are time critical, or that operate on flash itself. They need
to be placed in IRAM and that is achieved using a special attribute to these
functions or files and linker script doing a job of placing them in IRAM. The
symbols _iram_text_start and _iram_text_end are placed by the linker script at
the two boundaries of this text section.

¢ The IRAM after the text section remains unused and is added to the heap.

_iram_text_start and _iram_text_end symbols are placed by the linker script at
the two boundaries of this text section. The IRAM after the text section remains
unused and is added to the heap. Also, when the application is configured in a
single-core mode, the CPU1 is not functional and CPU1 cache is unused. In that case,
CPU1 cache memory (0x40078000-0x4007FFFF) is added to the heap. The unused
IRAM, that is placed in the heap, can be accessed through dynamic allocations. It
can be used to place any code in IRAM if the application has such a requirement.
However this is quite uncommon. The IRAM can also be used for data, but with
two important limitations.

1. The address used for access to the data in IRAM has to be 32-bit aligned.

2. The size of data accessed too has to be 32-bit aligned.

If the application has such data that can obey these two rules of accesses, it can
make use of IRAM memory for that data.

Now let us see the DRAM organization (see figure 2.20).

The diagram 2.20 shows a typical (simplified) DRAM layout for an application.
As the DRAM addresses start at the end of SRAM2, increasing in backward direc-
tion, the link time segments allocation happens starting at the end of SRAM2.

* The first 8KB (0Ox3FFAE000-Ox3FFAFFFF) are used as a data memory for some
of the ROM functions.

* The linker then places initialised data segment after this first SKB memory.
* Zero initialised BSS segment comes next.

¢ The memory remaining after allocating data and BSS segments, is configured
to be used as a heap. This is where typical dynamic memory allocations go.

Please note that the size of data and BSS segments depend on the application.
So each application, based on the components that it uses and APIs it calls has a
different available heap size to begin with. There are two regions within the heap

26 Chapter 2. Embedded Systems

CMake [IDE

Project

Application

BUILD

T

UPLOAD

FIGURE 2.21: ESP-IDF Toolchain

(0x3FFE0000-0x3FFE0440 — 1088 bytes) and (0x3FFE3F20-0x3FFE4350-1072 bytes)
that are used by ROM code for its data. These regions are marked reserved and the
heap allocator does not allocate memory from these regions.

The above content along with images has been taken from the ESP32’s blog post
written by [Inamdar, 2020].

2.1.2 Brief description of the environments

Usually, working with embedded devices is defined by a development environment
on your laptop and your microcontroller attached to the laptop with a USB cable. In
order to write the firmware onto the microcontroller we need a compiler toolchain
with target the microcontroller to generate the firmware and then a protocol that
allows us to write (or flash) the firmware on the microcontroller. The process of
compiling a programme/firmware for another architecture or board is called cross-
compilation. I used two tools to help me with the cross-compilation and the protocol,
being ESP-IDF and PlatformIO

ESP-IDF
To start using ESP-IDF on ESP32, install the following software:

* Toolchain to compile code for ESP32.
¢ Build tools - CMake and Ninja to build a full Application for ESP32.

¢ ESP-IDF that essentially contains API (software libraries and source code) for
ESP32 and scripts to operate the Toolchain (see figure 2.21).

Once the ESP-IDF toolchain is installed, you are able to cross-compile and flash
the firmware on your board via Python scripts. If you followed the installation in-
structions you just type the command get_idf on a terminal and you will have the
environment prepared for that terminal session.

$ get_idf
Setting IDF_PATH to ’/home/chloe/esp/esp-idf’
Detecting the Python interpreter

2.1. Espressif ESP32 27

Checking "python3"

Python 3.10.12

"python3" has been detected

Checking Python compatibility

Checking other ESP-IDF version.

Adding ESP-IDF tools to PATH...

Not using an unsupported version of tool cmake found in PATH: 3.22.1.

Not using an unsupported version of tool ninja found in PATH: 1.10.1.

Checking if Python packages are up to date...

Constraint file: /home/chloe/.espressif/espidf.constraints.v5.0.txt

Requirement files:

- /home/chloe/esp/esp-idf/tools/requirements/requirements.core.txt
Python being checked: /home/chloe/.espressif/python_env/idf5.0_py3.10_env/bin/python
Python requirements are satisfied.

Added the following directories to PATH:
/home/chloe/esp/esp-idf/components/esptool_py/esptool
/home/chloe/esp/esp-idf/components/espcoredump
/home/chloe/esp/esp-idf/components/partition_table
/home/chloe/esp/esp-idf/components/app_update
/home/chloe/.espressif/tools/xtensa-esp-elf-gdb/11.2_20220823/
xtensa-esp-elf-gdb/bin
/home/chloe/.espressif/tools/riscv32-esp-elf-gdb/11.2_20220823/
riscv32-esp-elf-gdb/bin
/home/chloe/.espressif/tools/xtensa-esp32-elf/esp-2022r1-11.2.0/
xtensa-esp32-elf/bin
/home/chloe/.espressif/tools/xtensa-esp32s2-elf/esp-2022r1-11.2.0/
xtensa-esp32s2-elf/bin
/home/chloe/.espressif/tools/xtensa-esp32s3-elf/esp-2022r1-11.2.0/
xtensa-esp32s3-elf/bin
/home/chloe/.espressif/tools/riscv32-esp-elf/esp-2022r1-11.2.0/
riscv32-esp-elf/bin
/home/chloe/.espressif/tools/esp32ulp-elf/2.35_20220830/esp32ulp-elf/bin
/home/chloe/.espressif/tools/cmake/3.24.0/bin
/home/chloe/.espressif/tools/openocd-esp32/v0.11.0-esp32-20221026/
openocd-esp32/bin
/home/chloe/.espressif/tools/ninja/1.10.2/
/home/chloe/.espressif/python_env/idf5.0_py3.10_env/bin
/home/chloe/esp/esp-idf/tools

Detected installed tools that are not currently used by active ESP-IDF version.

For removing xtensa-esp32s3-elf, esp32ulp-elf, cmake, xtensa-esp32-elf,
riscv32-esp-elf-gdb, riscv32-esp-elf, ninja, xtensa-esp32s2-elf, xtensa-esp-elf-gdb use cor
To free up even more space, remove installation packages of those tools.

Use option ’python3 /home/chloe/esp/esp-idf/tools/idf_tools.py uninstall
--remove-archives’.

Done! You can now compile ESP-IDF projects.
Go to the project directory and run:

idf.py build

28 Chapter 2. Embedded Systems

Another interesting feature ESP-IDF provides is the addr2line feature that allows
you to convert an address into a function and position in the code w.r.t. a specific
firmware image.

xtensa-esp32-elf-addr2line -pfiaC -e build/PROJECT.elf ADDRESS

PlatformIO

PlatformlO is a user-friendly and extensible integrated development environment
with a set of professional development instruments, providing modern and power-
ful features to speed up yet simplify the creation and delivery of embedded prod-
ucts. It leverages sometimes the tools provided by the ESP-IDF to operate on the
ESP32’s board. It leverages a platformio.ini file for configuration purposes.

//example of a platformio.ini file

[env:az-delivery-devkit-v4]
platform = espressif32
board = az-delivery-devkit-vé
framework = espidf
build_flags =

-DZENOH_ESPIDF
monitor_speed = 115200 // baud rate

While working on zenoh-pico I found the following bug on PlatformlIO: it does
not detect correctly the environment used thus it does not correctly set the environ-
ment variable, hence you have to specify on platformio.ini the build flags to build
the zenoh-pico part for the zenoh-espidf.

2.2 Deep-Sleeping in IoT

A common pattern found in software with Micro Controller Units (MCUs) is an
active-sleep pattern where the software operates on data for a while then it makes
the board fall in deep sleep for a certain amount of time or is waken up by an external
interrupt or sensors. By giving the capability to zenoh-pico of supporting deep-
sleep by restoring the session after a deep-sleep we give the final user of zenoh-pico
the possibility to consume less average power by the MCU thus a longer battery
lifetime. According to the following formula the average power consumed by a
MCU is the sum of the Power consumed while active plus the power consumed
while in sleep mode plus the division of the Energy consumed when active by the
time needed to wake up

Eactive
Puvg = Palways_on + Psleep + T
wkup

The figure below represents a common pattern found on MCUs connected to
sensors. We can get a longer battery lifetime by minimizing the energy consumed
by the general operations. The real time processing of sensor data equals to the
minimization of

. 1
minEg + Eypcus.t-Tepy < e
S

2.3. The Company - ZettaScale Technology 29

1/F,
5
Power
Consumption P MU
of the sensor Sersar MCU MCU
node Operatian elabarates sleeps
data
P sleep
-
time
Teocn Tepu Tsieep

FIGURE 2.22: Lifecycle of a MCU

where Eg is the energy consumed by the sensors and Eycy; is the energy con-
sumed by the microcontroller. Assuming a fixed sample rate Fs, a negligible sensor
energy cost Es << Epcy and a constant power envelope of the MCU for both active
mode (Ppcy) and sleep mode (Psyeep) we get

. 1

minTcpuPpcu + Tsleeppsleepw}wYETCPU + Tsleep = FS

thus minimizing the Tcpy will extend the battery lifetime. The processing time

Tcpu is composed by the execution time and the idle time where the CPU waits for

events or interrupt requests (IRQs). Given a CPU clock frequency, the performance
of a task can be measured as

Tcpu = NerxTerk = CPlaygNistr TepxwhereCPlaye = Nepk Nistr

2.3 The Company - ZettaScale Technology

ZettaScale Technology is the company which hosted me for my internship in the
period February 2022 - July 2022. It is a spin-off of the Taiwan-based ADLINK
Technology, a leader in the embedded computing, edge computing, and intelli-
gent computing areas and it develops cutting-edge technologies. ADLINK Tech.
has many offices located around the world, in particular it has its global headquar-
ters in Taiwan and offices in China, Japan, South Korea, Singapore, United States
of America, United Kingdom, Israel, Germany, Netherlands, and France. ADLINK
Technology is composed of 6 Design Centers, 6 Operations and Logistic Centers, and
22 Support Offices. ADLINK Technology has been on the Internet of Things scene
since 1995 when it was first founded.

The Support Office ZettaScale Technology at Saint-Aubin, France, 91190, is led
by the CEO & CTO Angelo Corsaro. Him and his world class team maintain and
develop zenoh, zenoh-pico, and zenoh-flow. Zenoh is a framework, a protocol, and
a middleware capable to operate in the cloud-to-thing continuum. Zenoh-Pico is
the subject of this master thesis and it provides the zenoh API on embedded de-
vices like ESP32 boards or Zephyr boards. Zenoh-Flow is a data-flow programming
framework mostly used in automotive and robotics.

I will introduce Zenoh and deeply explain Zenoh-Pico in the next chapter.

31

Chapter 3

Zenoh-Pico

Zenoh provides a stack that unifies data in motion, data at rest, and distributed
computations by carefully blending traditional pub/sub with geo-distributed stor-
ages, queries, and computations while retaining a level of time and space efficiency
that is well beyond any of the mainstream stacks. Zenoh and Zenoh-Pico provide a
slim API to not overload tiny microcontrollers. Feature extensibility is provided by
the pattern option struct in C. This allows Zenoh API to accomodate the addition of
any new capability in the future whilst being backward compatible.

Zenoh-Pico is the Zenoh implementation that targets constrained devices by
providing a lightweight implementation of the functionalities provided by Zenoh
itself. Zenoh-Pico can run on Unix systems, Windows systems, Zephyr board, Ar-
duino environments, ESP-IDF environments, MbedOS, OpenCR, and Emscripten. It
is compatible with its main Zenoh implementation. What Zenoh-Pico does is man-
aging data in the cloud-to-thing continuum that is data moving from the cloud to
devices and vice-versa. With Zenoh-Pico, Zenoh opens the door to ubiquitous com-
puting with something more with respect to vertical and horizontal scalability - it is
support for constrained devices with low duty cycle. In other terms, devices that are
disconnected or sleeping most of the time as well as ability to deal with both data
in motion and data at rest. It allows configuration of features (including enable/dis-
able) at compilation time in order to reduce its footprint, including support for single
or multiple thread mode. Additionally, Zenoh-Pico is compliant to MISRA-C.

3.1 About Zenoh

3.1.1 Zenoh Keys

Zenoh being a Named-Data oriented protocol, its address space is the space of
names given to data. In Zenoh to every key is associated a value, the key looks
like a Unix file system path e.g. /home/kitchen/temp, and the value can be of dif-
ferent encodings like JSON, string, raw byte buffer et cetera. The key represents a
resource which can be a read value from a sensor, for instance. Thus, to address data
are used key expressions. A formal definition and formalization has been done for
the following reasons:

1. to avoid ambiguity in key expression definition and matching.
2. to improve the key expression matcher for better performance.

3. to allow future extensibility to be introduced for more complex matching and
behaviours.

32 Chapter 3. Zenoh-Pico

We can define a key expression as a /-separated list of chunks, where each chunk
is a non-empty (UTF-8) string. The single wild * expresses exactly one chunk of any
value, and is equivalent to the [/]+ regular expression. For example, a/*/b:

¢ includes a/c/b,a/hi/b
¢ intersects */a/b, */*/*

¢ does not intersect a/**/b/c

3.1.2 Zenoh data messages

Zenoh data message has a minimal wire overhead which sums up to at least 3 bytes
— 1 byte for the data header, 1+ bytes for the resource, 1+ bytes to encode the user
data length then the user payload. The minimal wire overhead has been achieved
using Variable Length Encoding (VLE) variables, such variables can be compressed
with zero error and read back symbol by symbol without losing any data. Zenoh-
Pico uses the following coding strategy. For the user data length, the field represents
a 64-bit integer. The resource key is dynamically mapped in a more compact inte-
ger form called resource ID, thus having the possibility to encode the resource ID
with a smaller number of bytes dependently on its size. Now, the representation
of resource keys allows to represent prefixes. Previously, zenoh could represent on
the wire either a numerical resource identifier or a full resource key and now it is
able to represent a prefix and a suffix for instance /org/eclipse/zenoh/demo/hello
becomes (42, “demo/hello”). Whereas zenoh frame messages use at least 2 bytes
as overhead — 1 byte for the frame header and 1+ byte for the sequence number.
The frame can have multiple user messages decided in a process called automatic
batching. The sequence number can be dimensioned as the end-user’s leisure. A
higher resolution means the network can have more messages on the flight whereas
a lower resolution means the network can have way more less messages on the flight
but once encoded the sequence number will occupy a few bytes (just 1 byte if the res-
olution is set to 128).

3.1.3 Zenoh Router

Zenoh routers route data between clients and local subnetworks of peers. They
can be deployed using any topology. They, by default, never try to interconnect
themselves automatically. They must be configured with the endpoints of the other
routers they are supposed to connect to via a configuration file.

3.1.4 Client mode and peer mode

In client mode the client communicates with a Zenoh router, whereas in peer mode
it routes information between themselves and can also route on behalf of clients
acting like routers. Peer-to-peer communication is supported for arbitrary connec-
tivity graphs and supports cliques as special case. Peer mode and client mode can be
chosen at runtime. Communicating peer to peer implies establishing multiple ses-
sions with multiple peers and a state must be maintained for those sessions. Main-
taining such states can be undesirable either for scalability reasons or because the
application runs on a constrained device. In the latter case, the Zenoh application
can be configured to operate in client mode. In such mode, the application will
maintain, at any given time, a single session with another process, typically a Zenoh
router, that will grant connectivity with the rest of the system.

3.1. About Zenoh 33

Region 4

Region 1

Region 2

Region 3

FIGURE 3.1: A Zenoh topology

3.1.5 Scouting

By default all Zenoh applications run in peer to peer mode. Such applications, in
order to discover other Zenoh applications or Zenoh routers, run both

e multicast scouting: Zenoh applications in peer mode join the multicast group
224.0.0.224:7446 over UDP. Scout messages are sent to this address to discover
local applications and routers. The scouting address and the behavior can be
configured via configuration files.

¢ gossip scouting: Zenoh applications in peer mode forward all local applica-
tions and router they have already discovered to the newly scouted applica-
tions. Applications need to connect to an entry point to discover the rest of the
system. This entry point can be one or several Zenoh routers or one or several
Zenoh peers.

Closure-based discovery, supported by the scouting protocol, is deployed in order
to ease the deployment of systems that want to leverage a clique connectivity for
cases in which multicast is not available. In few terms starting from a single peer
we can discover its closure that are peers reachable directly or indirectly from the
starting point. Region-based routing means routing information required to build
and maintain the routing tables scales with the size of the region, and each region
can decide whether to route over an arbitrary connectivity graph or assume a clique.
3.1.6 Communication models

The most common communication patterns found in IoT applications:

* Request and Response.

e Publisher and Subscriber.

e Push and Pull.

Request and Response
The Request and Response communication model consists of:

¢ A client: it initiates the exchange of messages with the server. The first message
can be called "request".

34 Chapter 3. Zenoh-Pico

* A server: it receives messages from the clients and produces responses.

Nowadays, it is the current communication model for the HTTP protocol.

Publisher and Subscriber
The Publisher and Subscriber communication model consists of:

* A publisher: publishes data named for instance demo/example/zenoh-pico-
pub/temp.

¢ A subscriber: receives data of which it is interested for example data named
demo/example/zenoh-pico-pub/temp.

¢ A broker: manages the published data by the publisher by routing it to the
correct subscribers.

In our case, the zenoh routers (or the zenoh peers) can assume the role of a broker
whereas clients can be the publishers and the subscribers. Examples can be found in
z_pub and z_sub.

Push and Pull communication model

The Pull communication is a type of network communication where the client ap-
plication initiates the communication by requesting updates. It pollingly asks for
updates to the server. The Push communication model allows the server to send
updates to the client whenever new data becomes available without the need for the
client to explicitly request it. Example can be found in z_pull. The Push counterpart
can be seen as in the publisher and subscriber model when the subscriber subscribes
to a named data and wait for updates to that data.

3.1.7 Reliability
Hop to Hop reliability

The Zenoh protocol is composed of two layers: the session protocol and the rout-
ing protocol. The session protocol establishes a bidirectional 1-1 session between
two Zenoh runtimes which can be either client, peer, or router. Each session comes
by default with a best-effort channel and a reliable channel. The session protocol,
among other things, takes care of performing automatic batching in order to max-
imise network usage and fragmentation to give the illusion of an unlimited MTU.
Whereas, the routing protocol leverages the session protocol to propagate interests
and route data from many producers to many consumers. Consequently, the reli-
ability state maintained by each application is independent of the number of data
producers and data consumers hosted by the application. As Zenoh offers routed
communication, a single data producer connected to a Zenoh router can reliably
send data to as many data consumers as needed while maintaining a single reliabil-
ity state (see figure 3.2). This strategy is highly scalable and offers a good level of
reliability. No data samples are lost while the infrastructure is stable. If a Zenoh
router fails, the Zenoh infrastructure will automatically adapt to the new topology.
During the failover, data samples may be lost. As soon as the infrastructure is re-
stabilized, data is reliably distributed again.

3.1. About Zenoh 35

Data zenoh Data
Producer routers Consumer

Hop to hop reliability

First router to last router reliability

m Reliable channel Reliable channel

End to end reliabiliti

FIGURE 3.2: Zenoh Reliability

End to End reliability

A reliability channel is established between each data producer and data consumer
pair. This avoids sample loss even during topology changes but is less scalable and
induces higher resource consumption on producers and consumers.

First router to last router reliability

A reliability channel is established between the first Zenoh router and the last Zenoh
router of each data route. This allows to relax pressure on producers and consumers
by deporting the pressure to the nearest infrastructure components.

3.1.8 Reliability & Control Flow

¢ In Zenoh the receivers control reliability by selecting a resending strategy. It
must be declared.

¢ The senders and intermediate infrastructure components (L.E. the Zenoh routers)
individually decide how much memory they are willing to dedicate to relia-
bility. This allows constrained devices to dedicate few resources while re-
sourceful intermediate routers can dedicate more memory lowering the prob-
ability of congestion situations.

¢ Senders control congestion by selecting a message dropping strategy. For each
sample they decide what should be done in case of congestion L.E. drop the
sample or block the publication. The congestion control strategy is propagated
from the sender to all involved infrastructure components and applied along
the entire routing path.

3.1.9 Mobility

When mobility gets in, things get more complicated. As a device is moving and the
handoff occurs in the physical layer, if the device remains connected to the same
Zenoh router LE. the anchor point, the data path becomes less and less optimal as
the distance within them grows. The Zenoh wire protocol is very lightweight and
its discovery very efficient along with its infrastructure and its several routing algo-
rithms which support high dynamicity. This allows Zenoh devices to migrate their

36 Chapter 3. Zenoh-Pico

sessions from one Zenoh router to another one in a smooth and seamless manner.
Devices can then connect to the nearest router after the mobility occurs and main-
taining optimal latency by migrating from Zenoh router to another one by moving.
To perform such Zenoh session migration it is needed that the device:

1. Detects that it moved, more precisely that the handover occurred. This detec-
tion is highly dependant on the kind of wireless communication involved (5G,
WiFj, etc.) and it could be detected by the Zenoh scouting protocol.

2. Finds the new closest Zenoh router. This is dependent on the underlying in-
frastructure and would leverage an implementation of Zenoh’s scouting that
is specific to the network.

3.1.10 Zenoh over Serial

By supporting serial communications, Zenoh is unleashing its potential to a new set
of devices lacking any kind of networking interface. This is a common scenario,
especially in robotics, vehicles, bus, maritime, agricultural, and industrial devices
where conventional computer network technologies are rarely used.

3.1.11 Replicated storages

Zenoh ensures eventual consistency for storages that subscribe for the same key
expression, even in the presence of network partitions and system faults. The storage
alignment protocol is called "anti-entropy protocol”; as the name suggests it keeps
the entropy in the system low.

3.1.12 Payload to the query

Zenoh has the possibility to attach some user payload when issuing a query. This
simplifies and makes it more efficient for an application to pass information, such as
arguments or body, in the query that can be received and interpreted by the match-
ing queryables. For example, you can attach a picture to a query that is analyzed by
a queryable running an object detection algorithm. The above contents have been
taken from the [ZenohTeam-Blog, 2024].

3.1.13 Hybrid Logical Clock (HLC)

Logical clock (LC). LC was proposed in 1978 by Lamport as a way of timestamping
and ordering events in a distributed system. LC is divorced from physical time
(e.g., NTP clocks): the nodes do not have access to clocks, there is no bound on mes-
sage delay and on the speed/rate of processing of nodes. The causality relationship
captured, called happened-before (hb), is defined based on passing of information,
rather than passing of time.1 While being beneficial for the theory of distributed sys-
tems, LC is impractical for today’s distributed systems: 1) Using LC, it is not possible
to query events in relation to physical time. 2) For capturing hb, LC assumes that all
communication occurs in the present system and there are no backchannels. This is
obsolete for today’s integrated, loosely-coupled system of systems. In 1988, the vec-
tor clock (VC) was proposed to maintain a vectorized version of LC. VC maintains
a vector at each node which tracks the knowledge this node has about the logical
clocks of other nodes. While LC finds one consistent snapshot (that with same LC

3.2. Architecture 37

values at all nodes involved), VC finds all possible consistent snapshots, which is
useful for debugging applications.

Physical Time (PT). PT leverages on physical clocks at nodes that are synchro-
nized using the Network Time Protocol (NTP) [20]. Since perfect clock synchroniza-
tion is infeasible for a distributed system, there are uncertainty intervals associated
with PT. While PT avoids the disadvantages of LC by using physical time for times-
tamping, it introduces new disadvantages: 1) When the uncertainty intervals are
overlapping, PT cannot order events. NTP can usually maintain time to within tens
of milliseconds over the public Internet, and can achieve one millisecond accuracy
in local area networks under ideal conditions, however, asymmetric routes and net-
work congestion can occasionally cause errors of 100 ms or more. 2) PT has several
kinks such as leap seconds and non-monotonic updates to POSIX time which may
cause the timestamps to go backwards.

TrueTime (TT). TrueTime is proposed recently by Google for developing Span-
ner, a multiversion distributed database. TT relies on a well engineered tight clock
synchronization available at all nodes thanks to GPS clocks and atomic clocks made
available at each cluster. While TT avoids some of the disadvantages of LC/VC/PT,
it introduces new disadvantages: 1) TT requires special hardware and a custom-
build tight clock synchronization protocol, which is infeasible for many systems
(e.g., using leased nodes from public cloud providers). 2) If TT is used for ordering
events that respect causality then it is essential that if e hb f then tt.e < tt.f. Since TT
is purely based on clock synchronization of physical clocks, to satisfy this constraint,
Spanner delays event f when necessary. Such delays and reduced concurrency are
prohibitive especially under looser clock synchronization.

HybridTime (HT). HT, which combines VC and PT clocks, was proposed for solv-
ing the stabilizing causal deterministic merge problem. HT maintains a VC at each
node which includes knowledge this node has about the PT clocks of other nodes.
HT exploits the clock synchronization assumption of PT clocks to trim entries from
VC and reduces the overhead of causality tracking. In practice the size of HT at a
node would only depend on the number of nodes that communicated with that node
within the last € time, where € denotes the clock synchronization uncertainty.

The Hybrid Logical Clock (HLC) is a logical clock version of HT. We could ex-
amine how the algorithm works under the hood but for the purpose of this master’s
thesis knowing that HLC are a logical clock version of HT is more than sufficient
[Kulkarni, 2014].

3.2 Architecture

The whole Zenoh framework is written using the Rust programming language thus
it operates through an Object-Oriented Programming paradigm and it supports the
features of a functional language. Zenoh has a complex architecture (see figure 3.3)
which allows it to perform from the pub/sub/query to store in different type of
databases the results of the publications/subscriptions/queries. It manages REST,
the different type of backends, the storage manager through a plugin architecture
which contains a plugin manager that manages all the plugins by loading the needed
ones at runtime, this is the behavior of the zenohd router. Indeed, we have already
seen that zenoh has 2 mode of communication: client and peer mode. The former
connects to a zenohd router from which its messages are routed in the zenoh’s infras-
tructure. The latter forms a network with the different peers or zenohd routers and
their messages are sent in the just created network composed of peers and zenohd

38 Chapter 3. Zenoh-Pico

20n0oh

Distributed Geo-Distributed
Computations | |Storage
Data / Query Encoding and Transcoding

2cnoh.net

Transport

Network

Data Link

Physical

FIGURE 3.3: Zenoh Layers

routers. It is possible to configure the majority of the zenoh’s features through a
configuration file.

3.2.1 Zenoh-Pico’s architecture

I have written so far of the main characteristics of the zenoh'’s architecture. Now
let me write and delve deeper on the zenoh-pico’s architecture, the counterpart of
zenoh for embedded devices which is written using the C programming language,
the constrained devices” language par excellence.

Platform-Agnostic

The zenoh-pico’s architecture aims, among the many other things, to a platform-
agnostic architecture. This is due to the fact that the embedded systems world is
constituted by many different microcontrollers” environments, the most famous ones
(and supported by zenoh-pico) are ESP-IDF, zephyr, Arduino, mbedOS, OpenCR,
Emscripten (for web applications), FreeRTOS-Plus-TCP and at last Unix and Win-
dows. What changes between these environments are:

¢ the system calls used for instance to open a network socket.
¢ their respective architecture.
* the operating systems in use e.g. ESP-IDF uses the freeRTOS operating system.

In order to accomplish the platform-agnostic architecture the professional embed-
ded systems development environment PlatformIO comes to rescue us. Indeed,

3.2. Architecture 39

zenoh-pico uses a small python script called extra_script.py. PlatformlIO sets at run-
time the framework in use (in our case it is ESP-IDF which corresponds to the string
‘espidf”). The python script tests at runtime which one is the framework in use and
accordingly to that information loads the correspondent system/<platform> folder
in our case the folder is system/espidf. Along with it, it allows to set to "1" macros
like ZENOH_ESPIDF which are used later in the code. Alas, PlatformIO at the cur-
rent date has a bug which does not correctly set the macro at runtime resulting in
the file platformio.ini to contain

build_flags = -DZENOH_ESPIDF

otherwise the compiler would have returned "Unknown platform". This is because
the macro ZENOH_ESPIDF is used in the file platform.h to choose what to include
among the different environments supported by zenoh-pico. Here a snippet on what
the code looks like just to give a rough idea:

#elif defined(ZENOH_ESPIDF)
#include "zenoh-pico/system/platform/espidf.h"

The file espidf.h contains nothing but the definition of the zenoh type _z_sys_net_socket_t
and the zenoh type _z_sys_net_endpoint_t which are necessary to manage the TCP /UD-
P/SERIAL communication on the board ESP32 which uses freeRTOS as operating
system.

The inclusion

After the platform has been set, it is necessary to include all the headers with zenoh-
pico.h in primis. To do so the folders” hierarchy must be as follows:

zenoh-pico

| -include

| | -zenoh-pico.h
| | -zenoh-pico
|-src

This must be done as-is because the default inclusion files for the CMake, accord-
ingly to the CMakelists.txt, are in the include folder:

if (SKBUILD)

set (INSTALL_RPATH "zenoh")

set (INSTALL_NAME_DIR "zenoh")

set (INSTALL_INCLUDE_NAME_DIR "zenoh/include")
endif ()

Thus, when called
#include "zenoh-pico.h"

the default location is the include folder as referred by the CMakelists.txt.

40 Chapter 3. Zenoh-Pico

Architecture as macro-blocks

Looking at the code’s architecture we recurringly find in the code the start and stop
of the lease and read task at the edges of the business logic of our program in the
main() function. This is because the lease and read tasks are two important tasks for
the architecture of zenoh-pico. As suggested by the name of the tasks, the lease task
manages the session leasing timeout whereas the read task operates to make reads
from the network in an asynchronous manner.

Still looking at the code’s organisation we can tear down the code’s architecture
to the following macro-blocks:

* api

¢ collections
e link

* net

¢ protocol
® session

® system

® transport
¢ utils

¢ config.h

The api folder has a file containing some "public” functions whose purpose goes
from creating a default configuration file to check whether the key expression is
canon. Also, it defines zenoh types, zenoh constants, zenoh primitives and zenoh
macros.The file macros.h in the include/api folder contains, among many other
things, the macros to foster an ownership model like the one in the Rust program-
ming language. This custom ownership model works like this - any destructible
type, thus a type which requires a free(), must start with z_owned. To move data
among functions the owned type must be wrapped in a z_move function which will
transfer the ownership of the owned data to the callee function, that means the callee
function has the duty to free() the passed data. On the other hand, if the callee func-
tion just need to borrow data then it will take values as z_loan(data). In the latter
case, the duty to free() the owned data is of the caller function.

The collections folder contains the private primitives to operate on collections
such as lists, vectors, intmaps, strings, bytes and slice of bytes. I said "private" as
the functions implementing the lists and the other collections they start with a
that means in the C lingo that that function must be called only by the Zenoh—plco
core. Many of the _z_ functions are wrappers to system calls (such as zp_malloc
which calls malloc) or to already famous function (such as _z_str_n_copy which
calls strncpy).

The link folder contains what is needed to the link such as a zenoh UDP socket or
a zenoh TCP socket or a zenoh raw ethernet socket or a zenoh websocket socket. The
manager has the job to create the link and check whether the link is still valid. The
implementation of the headers contains what is needed to open/listen/close/free/write /read-
/create a new link on a specific zenoh socket. In the implementation there are two

3.2. Architecture 41

types of sending information wherever the protocol underneath zenoh support it -
unicast (serial, TCP, UDP, websocket) and multicast (bluetooth and UDP).

In the net folder we find the primitives to declare/undeclare a resource, the
scouting primitive, the declare/undeclare a publisher, the declare/undeclare a sub-
scriber, the declare/undeclare queryable, and the query primitive to query data from
the matching queryables in the system. The declaration and undeclaration is a typ-
ical step of the zenoh protocol. Moreover, this folder contains, in the session.h, the
definition of the session we serialized and deserialized in the RTC Slow Memory
along with the operations on the session.

The protocol folder contains two subfolders which are codec and definitions.
The codec folder has the headers and logic to serialize or deserialize a zenoh message
on or from the underneath protocol payload. The serialization and deserialization is
little-endian. In the definitions folder there are the headers and logic of the internals
of the zenoh messages such as how the messages are structured in the transport
protocol, for example the following is the HELLO message, very important in the
scouting phase to tell the node sending HELLO is reachable with a certain locator or
list of locators (e.g. tcp/192.168.1.98):

76543210
R S
|ZIXIL| HELLO |
N ———
I version I

|zid_len|X|X|wail (%)
bttt 4+
~ [u8] ~ —-- ZenohID

<utf8;z8> 7 if Flag(L)==1 -- List of locators

(*) WhatAmI. It indicates the role of the zenoh node sending the HELLO message.
The valid WhatAmI values are:
- Ob00: Router
- Ob0O1: Peer
- 0Ob10: Client
- Obl1l: Reserved

In order to open a zenoh session the zenoh protocol sends the following messages
on the network:

Client zenohd Router
I InitSyn------ > |
I I
[—— InitAck------- |
I I
[------ OpenSyn------ > |
I I
[<———-- OpenAck------- |

| ----Declarations--->|

Note that the session has associated two timers, one timer from the client and one
timer from the zenohd router. When the timer exceeds a certain configurable value

42 Chapter 3. Zenoh-Pico

then the session is no longer valid. To configure the value after which the session
is no longer valid it is necessary to check for it in the config JSON5 for the zenohd
router and the config.h in the zenoh-pico’s codebase. Of the two configured timers,
it is taken the value of the minimum valued timer configured. The rest of the header
files in the protocol folder are about definitions and operations on the key expres-
sions, extensions to the zenoh protocol, the definitions of different type of buffers to
send and receive to and from the network. The most important and basic buffer is
the IOSIi buffer which is structured as

typedef struct {
size_t _r_pos;
size_t _w_pos;
size_t _capacity;
uint8_t *_buf;
_Bool _is_alloc;
} _z_iosli_t;

It is defined by its capacity, whether it is allocated or not, the read position of the
cursor and the write position of the cursor.

The session folder contains the headers to operate on a zenoh session, to oper-
ate on subscriptions, to operate on list of replies to a query, the list of resources a
node has to manage (e.g. "demo/temperature"), the subscriptions of the node, the
current pending queries which are queries that have not received a reply final yet,
registration/unregistration/operations on the resource IDs. Generally speaking, it
contains the operations to the elements of the session’s struct defined in the file
net/session.h.

The system folder contains two subfolders which are link and platform. The
link folder contains the header files for the operations to support the supported
links by zenoh-pico. It supports the following links: bluetooth, raw ethernet, se-
rial, TCP, UDP, websocket. The platform folder contains the header files to support
many platforms. The supported platforms are Arduino (ESP32 and openCR), em-
scripten, ESP-IDF, freeRTOS-Plus-TCP, mbedOS, Unix, Windows, Zephyr. At last,
the file platform.h contains nothing but the right includes to the right header file
based on what environment variable has been defined like ZENOH_WINDOWS or
ZENOH_ESPIDE. When no recognizable environment variable has been defined it is
used a "gravestone include" to make the compiler compile and make good the syntax
highlight, the "gravestone include" is the include with the file platform/void.h.

The transport folder is composed of 4 subdirectories which are common, multi-
cast, raweth and unicast. The common one has the headers to send to and receive
from the transport layer. The multicast has the headers to send to and receive from
the multicast transport layer, moreover it contains the operations a transport layer
must have to support multicasting. The same for multicast is valid for the unicast
folder. The raweth folder contains the headers to transmit to and receive from the
ethernet transport. The headers of which it is composed require a manager that
manages the creation and the free of the transport layer.

The utils folder, as the name suggests, contains utilities for the zenoh framework.
For instance to apply a CRC32 checksum to a vector of bytes, operations on strings,
logging, operations on pointers, types of results a function may return, and at last
my header deep-sleeping.h that defines the functions to support a deep sleeping
but is not present in the Pico’s codebase along with its implementation yet.

43

Chapter 4

The Project, the Implementation,
and Experimental Evaluations

In this chapter I will discuss the project, the implementation details and the exper-
imental evaluations taken from my implementation.

4.1 The project - Efficient support for deep-sleeping modes

The deep sleeping mode is a paramount mode on embedded systems where the
device consumes way less energy and power than normal mode and nowadays in
2024 is even more important to have support for such mode. Here I will discuss
the higher level details of my project leaving the implementation details to the next
chapter. For Zenoh-Pico, I will create the support for deep sleeping and hibernation
mode on the board ESP32 for the communication type UDP unicast mode.

In order to support the deep sleeping for Zenoh-Pico on the board ESP32 I had
to (1) save the session in the RTC Slow Memory then (2) use the same UDP port
among the deep sleeps. To have things clear in mind, I serialized before the deep
sleeping the session, then deserialized and rebuilt in memory after the deep sleeping
the session represented in listing 3.1 except the _mutex_inner variable:

LISTING 4.1: The Zenoh Session

typedef struct |

#if Z MULTL. THREAD == 1
_7z_mutex_t _mutex_inner;

#endif // Z MULTI THREAD == 1

// Zenoh—pico is considering a single transport per session.
_z_transport_t _tp;

// Zenoh PID
z id_t _local_zid;

// Session counters
uintlé_t _resource_id;
uint32_t _entity_id;
_z_zint_t _pull_id;
_z_zint_t _query_id;

7z zint_ t _interest_id;

// Session declarations

44 Chapter 4. The Project, the Implementation, and Experimental Evaluations

_z_resource_list_t *_local_resources;
_z_resource_list_t »_remote_resources;

// Session subscriptions
_z_subscription_sptr_list_t *_local_subscriptions;
_z_subscription_sptr_list_t *_remote_subscriptions;

// Session queryables
_z_questionable_sptr_list_t *_local_questionable;
_z_pending_query_list_t *_pending_queries;

} _z_session_t;

4.1.1 Saving the session

In order to save the session I had to memcpy the content of the session from the heap
memory to the RTC Slow Memory. To do so, I created one function for each one of
the lists I had to memcpy to the RTC Slow Memory. Moreover, I created a function
for the _z_transport_t complex struct.

Why you did not use a third-party library to serialize/deserialize the session?

The serialization and deserialization process has been done a million of times and
there exist libraries written in C (such as Protobuf) that will get the job done for you,
so, why did I decide to implement the serialization/deserialization from scratch?
There are a couple keypoints of why I decided to do it by myself, being:

¢ less overhead than using a third-party library for serialization/deserialization
- the serialization/deserialization has been written ad-hoc for Zenoh-Pico and
it removes the overhead and the memory/disk footprint left by a third-party
library such as Protobuf or Binn and it is anyway fast and efficient even though
must be said that the library Protobuf is already built-in in the libraries on the
ESP32.

¢ Zenoh-Pico uses function pointers in many occasions and some libraries do
not support the serde of function pointers.

¢ in Zenoh-Pico there are several user-defined structs for which it would have
been needed anyway ad-hoc functions to serde the content of the user-defined
structs.

One drawback of not having used a third-party library for serde is that my im-
plementation is not zero-copy when it could be zero-copy, for instance in the de-
serialization process I create the space to store a string in the heap memory then I
memcpy from the RTC Slow Memory to the just allocated heap memory thus making
a copy of the string instead of creating a pointer char * to the beginning of the null-
terminated string in the RTC Slow Memory’s buffer, doing so I would have saved a
copy and my deserialize function would have been faster than it is right now.

Another drawback is less abstraction, indeed with a third-party library I could
have abstracted away more the serde problem and focus on the real problem that
was how to restore the UDP unicast communication after the deep-sleep reset of the
MCU.

4.1. The project - Efficient support for deep-sleeping modes 45

Why RTC Slow Memory?

Someone might object why I used the RTC Slow Memory and not the RTC Fast
Memory or the NVS (Non-Volatile Storage) or the FAT (File Allocation Table) File
System or the SPIFFS (Serial Peripheral Interface Flash File System) File System. Let
us proceed step by step by discarding one solution at a time while explaining the
reasons behind.

¢ The NVS library operates on key-value pairs and its application scenario is
about storing parameters such as WiFi parameters so this one is discarded as
it is possible to save only integers, strings and binary large object (BLOB) and
NVS works well only for storing many small values.

¢ The FAT File System is capable of storing MiB to GiB of files and its application
scenario is about storing audio, video and other files. It has been discarded as
it is relatively slower than the RTC Slow /Fast Memory.

¢ The SPIFFS File System was a worthy option as it is an excellent storage on the
embedded systems world due to its capability of storing on a SPI NOR flash
device targeting embedded systems. SPIFFS occupies less RAM resources than
FAT File System and is only used to support flash chips with their capabilities
less than 128 MiB. It has been discarded as it is relatively slower than the RTC
Slow /Fast Memory even if in the future could be used as an extension to sup-
port multicast and peer to peer mode by saving many sessions at once.

¢ The RTC Fast Memory is 8 KiB like the RTC Slow Memory and it is 10 times
faster than the RTC Slow Memory. It has been discarded as it can be only
accessed by PRO_CPU (Core 1) but could have been a worthy solution for a
faster session serialization and deserialization to and from the RTC Fast Mem-
ory. With this solution would have only been possible to save one and only
one session at a time thus supporting only unicast solutions as well as using
the RTC Slow Memory.

At this point, for the future, a SPIFFS File System would have been a better solu-
tion in terms of session scalability.

Below, I show the static attributes used to save one and only one session hence
not supporting extension capability to the multicast or peer to peer which use one
session per connection with their peers/end systems.

LISTING 4.2: RTC static data attributes

RTC_DATA_ATIR static uint8_t local_resources[DIM_LOCAL_RESOURCES];
RTC_DATA_ATIR static uint8_t remote_resources[DIM_REMOTE _RESOURCES];

RTC_DATA_ATIR static uint8_t local_subscriptions [DIM_LOCAL_SUBSCRIPTIONS |;
RTC_DATA_ATIR static uint8_t remote_subscriptions

[DIM_REMOTE_SUBSCRIPTIONS | ;
RTC_DATA_ATIR static uint8_t local_questionable [DIM_LOCAL_QUESTIONABLE];
RTC_DATA_ATIR static uint8_t pending_queries [DIM_PENDING_QUERIES];

RTC_DATA_ATIR static uint8_t transport[DIM_TRANSPORT];

46 Chapter 4. The Project, the Implementation, and Experimental Evaluations

serialize session's structs
z_open zp_prepare_to_sleep [2| RTC Slow Memory
Legenda deserialize session's structs

: |s called br
» y T zp_wake_up <:
A

_z_open

T

__Z_open_inner

T

_Z_new_transport

T

_Z_new_transport_client

*via zI->_open_f

* via zI->_open_f

y—b _E_open_link €———

_z_new_link_udp_unicast

_z_f link_open_udp_unicast

!

_Z_open_udp_unicast

* modified to keep the same
UDF port

FIGURE 4.1: Function calls

// Zenoh PID
RTC_DATA_ATIR static uint8_t RTC_local_zid[16];

// Session counters

RTC DATA_ATIR static uintl6_t RTC resource_ id;
RTC_DATA_ATIR static uint32_t RTC_entity_id;
RTC_DATA_ATIR static size_t RTC_pull_id;
RTC_DATA_ATIR static size_t RTC_query_id;
RTC_DATA_ATIR static size_t RTC_interest_id;

See how the mapping is 1:1 w.r.t. the zenoh’s session seen in Listing 3.1. The
RTC_DATA_ATTR is a keyword to tell the compiler that such static variables are
stored in the RTC Slow Memory. The type for serializing the lists is a uint8_t which
is a byte-size vector. The DIM_X_Y is to give a dimension at compile time to the
buffers containing the serialized lists and the zenoh transport. In case of weird errors
happening at runtime, it is advisable to first check whether the dimensions are large
enough for the buffers to store the whole list and not overflowing outside the buffer
which will not cause an Overflow error at runtime.

4.1.2 Use the same UDP port

For the session to be correctly restored I had to save the UDP port. The figure 4.1
gives an overview of the function calls called to open a UDP unicast communication
in Zenoh. The figure 4.1 helped me a lot to get where and when I had to call the
function to recreate the UDP unicast communication and binding to the same UDP
port for the Zenoh router to recognize me.

4.1. The project - Efficient support for deep-sleeping modes 47

4.1.3 Restoring the session

To restore the zenoh session I memcpy’d from the RTC Slow Memory to the malloc’d
structs of the element of the list the serialized content of the buffers. The result is
a struct element of the list which is pushed in the correct zenoh list at runtime. It
makes sense to restore the function pointers as on embedded devices it is all stati-
cally linked thus the position of the functions in the memory does not change be-
tween offs and ons or resets of the board.

4.1.4 Serde functions

The serialization and deserialization functions (contracted to serde) are special func-
tion pointers used to serialize and deserialize user-given structs at the right time at
the right position in the code. The serde functions have been very intrusive to the
zenoh-pico API because they required the user to provide the serde functions via the
option struct thus I had to edit many inner zenoh-pico functions to glue the serde
functions passed through the option structs with the rest of zenoh-pico.

This is how the end user is expected to implement the serialize function

int8_t serialize(int8_t (*write) (void *writer, const char* serialized,
size_t serialized_len), void *writer, void* ctx) {

my_args* args = (my_args*)ctx;

char buffer[512]; size_t buffer_len = 0;

// serialization code for args here

return write(writer, buffer, buffer_len);

¥

The serialize function takes as an argument a pointer to a function that returns an
int8_t which is a 1-byte signed integer to signal any error may arise from the serialize
function. Such pointer to a function takes a pointer to a void, a pointer to a char
array and a size_t that is the length of the char array. This is because this pointer to a
function is the write() function, its implementation will write the serialized content
of buffer in a RTC Slow RAM buffer we have seen before.

writer is there because write can not hold state. For example it could point to a
struct that holds the start and capacity of the section I am allowing write to write
to. Even if write does not need state yet (it might all be static), having that opaque
pointer gives me the option to add some in the future if needed. An example of how
the write function can be implemented is the following:

int8_t _write_drop_arg(void * writer, const char * serialized, int serialized_len){
int8_t ret = O;

memcpy (* (uint8_t **)writer, &serialized_len, sizeof(serialized_len));
*(uint8_t **)writer += sizeof(serialized_len);

memcpy (* (uint8_t **)writer, serialized, serialized_len);

*(uint8_t **)writer += serialized_len;

return ret;

}

In my case, writer points inside the RTC Slow Memory buffer thus I need a double
pointer to it to increment the position of the writer pointer after the serialization

48 Chapter 4. The Project, the Implementation, and Experimental Evaluations

took place. Doing so, the caller of _write_drop_arg obtains the updated position of
the buffer.
This is the signature of the deserialize function

int8_t (*deserialize) (const char* serialized, int serialized_len, void** ctx)

It takes the array of the serialized struct, the length of the serialized struct and even-
tually some context information if needed. The context information is provided via
a double pointer that way if the user needs to allocate again for their state, they can
replace the ctx pointer with the result of the new allocation.

In order to easily manage the two new function pointers and glue them with the
option struct and the rest of zenoh-pico I created the new type zp_serde_functions_t

typedef int8_t (*zp_serializer_t) (int8_t (*write) (void *writer, const char *serialized.
int serialized_len),void *writer, void *ctx);

typedef int8_t (*zp_deserializer_t)(const char* serialized, int serialized_len,

void **ctx);

typedef struct {
zp_serializer_t serialize;
zp_deserializer_t deserialize;
} zp_serde_functions_t;

In the next chapter I will delve deeper on how I glued the options with the rest
of zenoh-pico.

4.2 Implementation

The implementation can be teared down to the two main functions added to the
zenoh-pico’s API: the zp_prepare_to_sleep which serializes into the RTC Slow Mem-
ory the session’s structs, and the function zp_wake_up() that deserializes from the
RTC Slow Memory the session’s structs and rebuilds in the heap memory the zenoh
session. Then I will discuss the most difficult errors encountered when develop-
ing zenoh-pico. At last, I will even discuss how I glued the serde functions to
the rest of zenoh-pico via the option struct. Let us start by dissecting the function
zp_prepare_to_sleep first then I will focus on the function zp_wake_up.

4.2.1 zp_prepare_to_sleep()
The zp_prepare_to_sleep() looks like the listing below:

LISTING 4.3: The function

int zp_prepare_to_sleep(z_owned_session_t zs){
_serialize_z_transport_t(zs._value->_tp, transport);

// Saving Zenoh PID
memcpy (RTC_local_zid , zs._value->_local_zid.id, 16);

// Saving session counters
RTC_resource_id = zs._value—->_resource_id;
RTC_entity_id = zs._value->_entity_id;
RTC_pull_id = zs._value->_pull_id;

4.2. Implementation 49

RTC_query_id = zs._value->_query_id;
RTC_interest_id = zs._value—>_interest_id;

_serialize_z_resource_list_t(zs._value->_local_resources,
local_resources);
_serialize_z_resource_list_t(zs._value—>_remote_resources,
remote_resources);

memset(local_subscriptions , 0, DIM_LOCAL_SUBSCRIPTIONS);
memset(remote_subscriptions , 0, DIM_REMOTE_SUBSCRIPTIONS) ;
_serialize_z_subscription_sptr_list_t(zs._value—>_local_subscriptions,
_write_subscription_local , local_subscriptions);
_serialize_z_subscription_sptr_list_t(zs._value—>_remote_subscriptions,
_write_subscription_remote , remote_subscriptions);

memset(local_questionable , 0, DIM_LOCAL_QUESTIONABLE);
_serialize_z_questionable_sptr_list_t(zs._value—>_local_questionable,
_write_questionable_local , local_questionable);

memset(pending_queries, 0, DIM_PENDING_QUERIES) ;
_serialize_z_pending_query_list_t(zs._value->_pending_queries,
_write_call_arg , _write_drop_arg, pending_queries);

return 0;

)

As I can see from the listing of the zp_prepare_to_sleep, first I serialize the struct
_z_transport_t, then the zenoh PID, the session counters and at last the lists. It is
good practice to initialize to zero the destination buffers by using memset as has been
done in the listing above. Saving the zenoh’s PID and the session counters has been
pretty straightforward to implement so let’s delve deeper in finer details on how the
serialization of the lists works.

Lists’ serialization

For the lists to be serialized I followed the following pattern (in pseudo-code):

save_the_number_of_elements_in_the_list

while list NOT empty:
save_each_element_of_the_list
if_found_any_subelement_then_save_it
list = list->next

The resulting code looks like this:

LISTING 4.4: An example
int _serialize_z_resource_list_t(_z_resource_list_t =list,
uint8_t =resources){
int ret = _Z_RES_OK;
_z_resource_t xelement;
size_t no_of_elements = _z_resource_list_len(list);

50 Chapter 4. The Project, the Implementation, and Experimental Evaluations

uint8_t *_buffer = resources;

// Serialization no_of_elements _id _key._id _key._mapping._val
// _key. _suffix _refcount

memcpy (_buffer, &no_of_elements, sizeof(size_t));

_buffer += sizeof(size_t);

_z_resource_list_t sxiterate_list = list;
while (! _z_resource_list_is_empty (iterate_list)){
element = _z_resource_list_head (iterate_list);

memcpy (_buffer, &element—>_id, sizeof(size_t));
_buffer += sizeof(size_t);

memcpy (_buffer, &element—>_key._id, sizeof(uintl6_t));
_buffer += sizeof(uintl6_t);

memcpy (_buffer, &element->_key._mapping._val, sizeof(uintl6_t));
_buffer += sizeof(uintl6_t);

strcpy ((char +)_buffer, element—>_key._suffix);
_buffer += strlen (element—>_key._suffix) + 1;

memcpy(_buffer, &element—>_refcount, sizeof(uintl6_t));
_buffer += sizeof(uintl6_t);

iterate_list = _z_resource_list_tail(iterate_list);

}

return ret;

As I can see from the listing above, first I get the length of the list then I save it
on the buffer and I increment the pointer to the buffer with the size of the just saved
element LE. a size_t. Hence, now the buffer points to an empty space initialized with
zeros. Next, I start iterating over the element of the list and I save every element and
sub-element of the struct _z_resource_t in this case. Note how after every element
and sub-element have been saved I increment the buffer to always point to a free
space on it. Additionally, note how every element is fixed apart from the type char *
which is a string. The type char * is the only varying type in size but luckily I have
the tools to measure with precision and deterministically its length LE. the strcpy
and strlen since it is null-terminated.

Function pointers

The following 3 functions take at least one extra argument containing one function
pointer:

¢ _serialize_z_subscription_sptr_list_t

* _serialize_z_questionable_sptr_list_t

4.2. Implementation 51

* _serialize_z_pending_query_list_t

This is due to the fact that the functions may treat structs containing user pro-
vided arguments thus only the user knows how to serialize and deserialize those
arguments that is where serde (serialize deserialize functions) functions, discussed
in the previous chapter, come handy. In the following listing I report one of the above
function as the principles are valid for each one of the remaining 2 functions. I chose
_serialize_z_pending_query_list_t as it is a special case of the other 2 functions.

LISTING 4.5: The function

int _serialize_z_pending_query_list_t(_z_pending_query_list_t =list,
int8_t (xwrite_call_arg)(void *writer, const char =serialized,
int serialized_len),
int8_t (xwrite_drop_arg)(void *writer, const char =serialized,
int serialized_len),
uint8_t *pending_queries)|{

int ret = _Z_RES OK;

_z_pending_query_t xelement;

size_t no_of_elements = _z_pending_query_list_len(list);
uint8_t *_buffer = pending_queries;

// Serialization
memcpy (_buffer, &no_of_elements, sizeof(size_t));
_buffer += sizeof(size_t);

_z_subscription_sptr_list_t xiterate_list = list;
while (! _z_pending_query_list_is_empty (iterate_list))
{

element = _z_pending_query_list_head (iterate_list);

// _key._id _key._mapping._val _key. _suffix _id _parameters _target
// _consolidation _anykey _pending_replies _callback _dropper

// _serialize _deserialize _call_arg_len _call_arg _drop_arg_len
// _drop_arg

memcpy (_buffer, &element—>_key._id, sizeof(uintl6_t));

_buffer += sizeof(uintlé6_t);

memcpy (_buffer , &element->_key._mapping._val, sizeof(uintl6_t));
_buffer += sizeof(uintl6_t);

memcpy (_buffer, element—>_key._suffix,
strlen (element—>_key. _suffix) + 1);
_buffer += strlen (element—>_key. _suffix) + 1;

memcpy (_buffer, &element->_id, sizeof(uint32_t));
_buffer += sizeof(uint32_t);

// Since there is no _parameters_len I assumed _parameters is
// null-terminated .
memcpy (_buffer, element—>_parameters,

strlen (element—>_parameters) + 1);

52 Chapter 4. The Project, the Implementation, and Experimental Evaluations

_buffer += strlen(element—>_parameters) + 1;

memcpy (_buffer, &element—>_target, sizeof(z_query_target_t));
_buffer += sizeof(z_query_target_t);

memcpy (_buffer , &element->_consolidation,
sizeof (z_query_consolidation_t));
_buffer += sizeof(z_query_consolidation_t);

memcpy (_buffer , &element->_anykey, sizeof(_Bool));
_buffer += sizeof(_Bool);

_serialize_z_pending_reply_list_t (element—>_pending_replies,
&_buffer);

// &_buffer to update the buffer pointer from the callee to

// the caller

//(1.E. this function)

memcpy (_buffer , &element—>_callback, 4); //cannot be NULL
_buffer += 4;

// // troubleshooting Illegallnstruction
if (element—>_dropper != NULL) memcpy(_buffer, &element—>_dropper,
_buffer += 4;

if (element->serde_functions.serialize != NULL)
memcpy(_buffer, &element->serde_functions.serialize , 4);
_buffer += 4;

if (element—->serde_functions.deserialize != NULL)

memcpy (_buffer, &element->serde_functions. deserialize, 4);
_buffer += 4;
if (element->serde_functions.serialize != NULL)

element—>serde_functions.serialize (write_call_arg , &_buffer,
element—>_call_arg);

if (element—>serde_functions.serialize != NULL)
element—>serde_functions.serialize (write_drop_arg, &_buffer,
element—>_drop_arg);

iterate_list = _z_pending_query_list_tail(iterate_list);

}

return ret;
}

The listing above does what is usually done to serialize lists — it saves the number
of elements first, then all the elements and sub-elements of the list are serialized one
after the other. What is different in this listing w.r.t. the previous listing showing the
serialization is the following:

4.2. Implementation 53

* in this listing we serialize a list inside a list because the element _z_pending_query_t
contains a list called _pending_replies.

¢ in this listing we use the serde functions.

In order to serialize a list inside a list we had to leverage the double pointers to
the serialization’s buffer, indeed I call

_serialize_z_pending_reply_list_t(element->_pending_replies, &_buffer);

The _serialize_z_pending_reply_list_t dereference the variable _buffer (like this:
*_buffer) each time it is needed to update the buffer pointer. At the end of the se-
rialization process of this function, the buffer’s pointer points to a buffer zone that
is free. So, I can say that the callee updates the buffer pointer of the caller by using
double pointers.

Additionally, in this function I use the serde functions given by the end-user
to serialize and deserialize (in this case to serialize) its custom structs. The serde
functions are given a value by the end-user thus I check if they are NULL or not. If
they are not NULL that means the user gave a value to the serde functions hence the
element contains user-provided structs. In the latter case, I invoke the serialization
function and keep updated the buffer pointer by giving a pointer to the buffer’s
pointer.

if (element->serde_functions.serialize '= NULL)

element->serde_functions.serialize(write_call_arg, &_buffer, element->_call_arg)

if (element->serde_functions.serialize != NULL)

element->serde_functions.serialize(write_drop_arg, &_buffer, element->_drop_arg)

Before using the serde functions, I check whether the serde functions are not
NULL, if so I save the function pointers in the serialization buffer so I can retrieve
after the DEEPSLEEP_RESET the function pointer to both the serialization function
but most importantly the deserialization function.

if (element->serde_functions.serialize !'= NULL)

memcpy (_buffer, &element->serde_functions.serialize, 4);
_buffer += 4;
if (element->serde_functions.deserialize != NULL)

memcpy (_buffer, &element->serde_functions.deserialize, 4);
_buffer += 4;

Note that the size of the function pointers is 4 bytes as we are on a 32-bit address-
ing system LE. address of 4 bytes (32-bit).

_z_transport_t serialization

int _serialize_z_transport_t(_z_transport_t tp, uint8_t =transport){
[...]

memcpy (_buffer , &link._open_f, 4);

_buffer += 4;

memcpy (_buffer , &link._listen_f, 4);

b

b

54 Chapter 4. The Project, the Implementation, and Experimental Evaluations

_buffer += 4;

memcpy (_buffer, &link._close_f, 4);
_buffer += 4;

memcpy (_buffer, &link._write_f, 4);
_buffer += 4;

memcpy (_buffer, &link._write_all_f, 4);
_buffer += 4;

memcpy (_buffer, &link._read_f, 4);
_buffer += 4;
memcpy (_buffer, &link._read_exact_f, 4);
_buffer += 4;
memcpy (_buffer, &link._free_f, 4);
_buffer += 4;

[...]

}

What is interesting of the function _serialize_z_transport_tis that at a certain pointin
time it must save function pointers in the RTC Slow Memory. Such function pointers
have an address like 0x4XXXXXXX. You might be wonder why, between deep sleep-
ing resets, the function pointers are stable in memory thus not changing. This is due
to the embedded world favoring static linking that means the function pointers,
called labels, from the different libraries are all statically linked thus their pointers
are not changing in memory between deep sleeping resets and the labels are trans-
lated into an address stable in memory. This is good for our use case because no
dynamic linking means once the linker has created the final firmware’s image all
the functions will have their pointer pointing always to the same zone of memory.
Moreover, note that the function _open_f will be used by the zp_wake_up() to bind
to the previously used UDP port.

4.2.2 zp_wake_up()

The function zp_wake_up() does something more than the function zp_prepare_to_sleep()
does. It does:

¢ deserializes the session from the RTC Slow Memory
¢ it recreates the session in the heap memory

¢ it binds to the previously used UDP port

* it assigns the session field of the struct _z_transport_t

e it initializes the struct _z_transport_t which includes its buffers and its mutex

In this subsection I will discuss in details what and how the zp_wake_up() performs
its tasks.
First, the zp_wake_up() looks like:

LISTING 4.6: The function
z_owned_session_t zp_wake_up (){
z_owned_session_t zs = |
._value = (_z_session_t #*)z_malloc(sizeof(_z_session_t))
b

memset(zs._value, 0, sizeof(_z_session_t));

4.2. Implementation 55

if (zs._value != NULL) ({
_deserialize_z_transport_t(&zs._value->_tp, transport);
zs._value->_tp. _transport._unicast._session = zs._value;
// Restoring Zenoh PID
memcpy (zs . _value—>_local_zid .id, RTC_local_zid, 16);

// Restoring session counters
zs._value—>_resource_id = RTC_resource_id;
zs._value—>_entity_id = RTC_entity_id;
zs._value—>_pull_id = RTC_pull_id;
zs._value—>_query_id = RTC_query_id;
zs._value—>_interest_id = RTC_interest_id;

zs._value—>_local_resources =
_deserialize_z_resource_list_t(local_resources);
zs._value—>_remote_resources =
_deserialize_z_resource_list_t(remote_resources);

zs._value—>_local_subscriptions =
_deserialize_z_subscription_sptr_list_t(local_subscriptions);
zs._value—>_remote_subscriptions =
_deserialize_z_subscription_sptr_list_t(remote_subscriptions);

zs . _value—>_local_questionable =
_deserialize_z_questionable_sptr_list_t(local_questionable);

zs._value—>_pending_queries =
_deserialize_z_pending_query_list_t(pending_queries);

__init_transport_t(&zs._value—>_tp);

// open UDP socket with the same port
zs._value—>_tp._transport._unicast._link._open_f
(&zs._value—>_tp . _transport._unicast._link);

)

return zs;

)

As I can see from the listing of the zp_wake_up(), first I deserialize the struct _z_transport_t,
then I assign the session field of the transport unicast field, then I restore the zenoh

PID, the session counters, the lists, I initialize the _z_transport_t, I bind to the UDP

socket with the previously used port. Restoring the zenoh’s PID and the session
counters has been pretty straightforward to implement so let’s delve deeper in finer
details on how the deserialization of the lists works, then we will see how the ini-
tialization of the _z_transport_t works and at last how the UDP socket is bound to

the previously used port.

List’s deserialization

The dual of the serialization is the deserialization. The pseudo-code used to deseri-
alize and rebuild in the heap memory the session’s structs looks like this:

56 Chapter 4. The Project, the Implementation, and Experimental Evaluations

read_how_many_no_of_elements_previously_stored

iterates_no_of_elements_times:
read_element
create_the_heap_in_memory
fill_the_heap_in_memory
read_its_sub_elements
create_the_heap_in_memory
fill_the_heap_in_memory

Here I report the counterpart of the function used to serialize: deserialize.

LISTING 4.7: An example

_z_resource_list_t = _deserialize_z_resource_list_t(uint8_t =buffer){
_z_resource_list_t =list = _z_resource_list_new ();
size_t no_of_elements;
uint8_t * _buffer = buffer;

// Deserialization no_of_elements _id _key._id _key._mapping. _val
/] _key. _suffix _refcount

memcpy(&no_of_elements , _buffer, sizeof(size_t));

_buffer += sizeof(size_t);

for(size_t i = 0; i < no_of_elements; i++)f{
_z_resource_t xelement =

(_z_resource_t =)malloc(sizeof(_z_resource_t));

memcpy(&element—>_id , _buffer, sizeof(size_t));
_buffer += sizeof(size_t);

element—>_key = =+((_z_keyexpr_t =x)malloc(sizeof(_z_keyexpr_t)));

memcpy(&element—>_key._id, _buffer, sizeof(uintl6_t));
_buffer += sizeof(uintl6_t);

memcpy(&element—>_key._mapping._val, _buffer, sizeof(uintl6_t));
_buffer += sizeof(uintl6_t);

size_t len = strlen ((char =)_buffer) + 1;
element—>_key. _suffix = malloc(len);
memcpy (element—>_key. _suffix , _buffer, len);

_buffer += len;

memcpy(&element—>_refcount, _buffer, sizeof(uintl6_t));
_buffer += sizeof(uintl6_t);

list = _z_resource_list_push(list , element);

4.2. Implementation 57

return list;

}

Simply, in the above function I restore the previously saved "number of elements"
number, then I iterate n times deserializing then building step by step the struct, in
this case the struct is _z_resource_t. Obviously, the buffer must point to the right
position in order to restore the right value from the RTC Slow Memory. At last, I
push the just created and initialized element in the list and I continue the iteration
until I finish the n-th iteration.

__init_transport_t

The __init_transport_t function has been very simple to implement, I just copied
and pasted the content of src/transport/transport.c::_z_transport_unicast. What the
code does is:

1. initialize the mutexes.
2. initialize the read and write buffers.

3. initialize the defragmentation buffers.

And, it fallbacks in case of allocation failure giving to the variable ret the proper
value.

Bound UDP socket to the previously used port

In order for the zp_wake_up() to bound to the previously used port I had to call the
saved function pointer _open_f and edit it.

// open UDP socket with the same port
zs._value->_tp._transport._unicast._link._open_f
(&zs._value->_tp._transport._unicast._link);

The function _open_f is just an alias for _z_f_link_open_udp_unicast
z1->_open_f = _z_f_link open_udp_unicast;
which calls our function of interest _z_open_udp_unicast.
_z_open_udp_unicast (&self->_socket._udp._sock, self->_socket._udp._rep, tout);

Let us see how I edited the function _z_open_udp_unicast for the socket to cor-
rectly bind to the previously used UDP port:

LISTING 4.8: The function _z_open_udp_unicast

int8_t _z_open_udp_unicast(_z_sys_net_socket_t =*sock,
const _z_sys_net_endpoint_t rep, uint32_t tout) {
int8 t ret = Z RES OK;

struct sockaddr_in sin;

sin.sin_port = 0;

sin.sin_family = rep._iptcp—>ai_family;
sin.sin_addr.s_addr = INADDR ANY;

58 Chapter 4. The Project, the Implementation, and Experimental Evaluations

socklen_t slen = sizeof(sin);

sock—>_fd = socket(rep._iptcp—>ai_family, rep._iptcp—>ai_socktype,
rep._iptcp—>ai_protocol);

if (RTC_source_port == 0){// first time that the socket is used
if (sock—>_fd != -1) {
Z_time_t tv;
tv.tv_sec = tout / (uint32_t)1000;
tv.tv_usec = (tout % (uint32_t)1000) = (uint32_t)1000;
if ((ret == _Z RES_OK) && (setsockopt(sock—>_fd, SOL_SOCKET,
SO_RCVTIMEQO, (char #)&tv, sizeof(tv)) < 0)) {
ret = _Z ERR GENERIC;
}

if (ret !'= _Z RES_OK) {
close (sock—>_fd);

}

// get currently used port
bind (sock—->_fd, (struct sockaddr #)&sin, slen);
if (getsockname (sock—>_fd, (struct sockaddr *)&sin, &slen) < 0)
ESP_LOGI("ERROR" ,
"_z_open_udp_unicast:_unable_to_getsockname()\n");
ret = _Z ERR_GENERIC;
}

RTC_source_port = ntohs(sin.sin_port);

if (ret != _Z RES_OK) {
close (sock—>_fd);
}
} else {
ret = _Z ERR GENERIC;
}
} else {// bind to the previously used port
if (sock—>_fd !'= -1){
Z_time_t tv;
tv.tv_sec = tout / (uint32_t)1000;
tv.tv_usec = (tout % (uint32_t)1000) % (uint32_t)1000;
if ((ret == _Z RES_OK) && (setsockopt(sock—>_fd, SOL_SOCKET,
SO_RCVTIMEQO, (char #)&tv, sizeof(tv)) < 0)) {
ret = _Z ERR_GENERIC;
}

sin.sin_port = htons(RTC_source_port);

bind (sock—>_fd, (struct sockaddr #)&sin, slen);
} else |

ret = _Z ERR_GENERIC;
}

4.2. Implementation 59

return ret;

}

In the listing above, first I prepare the general struct sockaddr_in to store information
about the socket.

struct sockaddr_in sin;

sin.sin_port = 0;

sin.sin_family = rep._iptcp->ai_family;
sin.sin_addr.s_addr = INADDR_ANY;
socklen_t slen = sizeof(sin);

I o

Note that the port is initialized to zero meaning has not been assigned any value
to it as the port 0 is not a well-known port. To the sin_family is assigned the value
rep._iptcp->ai_family and the source address s_addr is INADDR_ANY (0.0.0.0) mean-
ing it assumes the address of any network interface present in the microcontroller.
After that, a network socket is opened with the given parameters.

Then, I check whether RTC_source_port, a variable stored in the RTC Slow Mem-
ory, is 0 or not. If it is zero that means is the first time that the socket is used. In such
case some timers are set with the function setsockopt and I get the used UDP port by
the socket with the function getsockname. The information about the socket, along
with the used port, is stored in the struct sockaddr_in. At runtime the value of
sin.sin_port was zero even after the socket was initialized and the getsockname per-
formed. This is due to the fact that the freeRTOS’s operating system assigns a UDP
port number to the socket only upon packets sent. Since I needed that information
earlier in the code I had to bind the socket to its file descriptor thus receiving a UDP
port number before any packet was sent on the network. The used port is saved in
the variable RTC_source_port for the next DEEPSLEEP_RESET to switch to the if’s
body containing the code to restore the previous UDP port.

Indeed, if the RTC_source_port is different than zero that means the socket had
previously binded to a UDP port. Such port is stored in the RTC Slow Memory’s
variable RTC_source_port. Then, I bind the file descriptor to the previously used
port assigning to the variable sin.sin_port the value RTC_source_port.

4.2.3 The most difficult errors

Having to deal with serialization and deserialization brought plenty of errors dur-
ing the development phase. Here I discuss the most difficult errors I had to deal
with in the development phase of the project. Consider that the development phase
had proceeded by testing time by time the single serialization and deserialization
functions as they were ready to be tested and not, like discussed in this work, taken
separately just for the tidyness’ sake.

assert_failed: block_trim_free tlsf.c:502

One of the most annoying errors I had to deal with was the assert failed: block_trim_free
tlsf.c:502 (block_is_free(block) && "block must be free")

assert failed:
block_trim_free tlsf.c:502 (block_is_free(block) && "block must be free")

Backtrace:

60 Chapter 4. The Project, the Implementation, and Experimental Evaluations

0x400819aa:0x3ffbfd00 0x40088ac9:0x3ffbfd20 0x4008£6b9:0x3ffbfd40
0x4008d5d4: 0x3ffbfe60 0x4008d073:0x3ffbfe80 0x40082951:0x3ffbfeal
0x400829af : 0x3ffbfecO 0x400829e6:0x3ffbfee0 0x4008£6c9:0x3ffbff00
0x400821£fd:0x3ffbff20 0x4015589d:0x3ffbff40 0x4009245d:0x3ffbff70
0x40093258:0x3ffbffa0 0x400936el:0x3ffbffe0 0x40093797:0x3£fc0020
0x40090fca:0x3f£c0060 0x4008bc65:0x3f£fc0090

This error happened when I was using the function _deserialize_z_questionable_sptr_list_t
for the example z_queryable.c. Note that at the beginning of the development phase
I was calling the two functions zp_prepare_to_sleep() and zp_wake_up() without
a DEEPSLEEP_RESET between them for testing purposes. The code looked some-
thing like:

zp_prepare_to_sleep(s);

z_owned_session_t zs = zp_wake_up();

The error occurred just sometimes after a random time at the end of the code
execution for no apparent reason and dissecting the backtrace via the usage of the
command

/path/to/xtensa-esp32-elf-addr2line -pfiaC -e firmware.elf 0x400819aa:0x3ffbfd00

did not give much insight about the reason of the error. Zeroing the buffer con-
taining the serialized list for queryables seemed to solve the problem but I had just
zeroed what I had previously saved with the zp_prepare_to_sleep() so zeroing the
buffer did not make much sense. I asked for information about the error on the
ESP32’s forum and the user ESP_Sprite told me it was a buffer overflow or some-
thing similar. Then I started again my research on the error and found the following
piece of code:

element = (_z_questionable_sptr_t *) malloc(sizeof (_z_questionable_sptr_t));
memset (element->ptr, 0, sizeof(_z_questionable_t));

element->ptr->_key = *((_z_keyexpr_t *)malloc(sizeof (_z_keyexpr_t)));

Do you note something strange here? Yes, by what ESP_Sprite told me I noticed
I was setting to zero a zone of memory that was not malloc’d. 1 corrected the error
with the following edit:

element = (_z_questionable_sptr_t *) malloc(sizeof (_z_questionable_sptr_t));
memset (element, O, sizeof(_z_questionable_sptr_t));

element->ptr = (_z_questionable_t *)malloc(sizeof (_z_questionable_t));
memset (element->ptr, 0, sizeof (_z_questionable_t));

After such edit, the error assert_failed: block_trim_free tlsf.c:502 disappeared.

InstrFetchProhibited

I stumbled upon this kind of error very frequently during the development phase.
From the ESP32’s documentation: "This CPU exception indicates that the CPU could
not read an instruction because the address of the instruction does not belong to a
valid region in instruction RAM or ROM.

4.2. Implementation 61

Usually, this means an attempt to call a function pointer, which does not point
to valid code. PC (Program Counter) register can be used as an indicator: it will be
zero or will contain a garbage value (not Ox4xxxxxxx)."

Here, I discuss what does it mean to not check the errors in code. See the follow-
ing code of the function _serialize_z_pending_query_list_t:

if (element->_call_arg != NULL) element->serde_functions.serialize(write_call_arg,
&_buffer, element->_call_arg);

if (element->_drop_arg != NULL) element->serde_functions.serialize(write_drop_arg,
&_buffer, element->_drop_arg);

It should not happen that element->_call_arg != NULL and element->serde_functions.serialize
== NULL because the user is expected to provide serde functions along with their

custom structs. I did not check this case so the above code raises a InstrFetchPro-

hibited CPU exception when element->_call_arg != NULL because it is invoked the

function element->serde_functions.serialize which by looking at the PC of the regis-

ter dump it was around the value 9500 (not 0x4XXXXXXX). The following edit solves

the error:

if (element->_call_arg != NULL && element->serde_functions.serialize != NULL)
element->serde_functions.serialize(write_call_arg, &_buffer, element->_call_arg);

if (element->_drop_arg != NULL && element->serde_functions.serialize != NULL)
element->serde_functions.serialize(write_drop_arg, &_buffer, element->_drop_arg);

Working on copies: _deserialize_z_transport_t

I thought I was mastering pointers very well, I was wrong and this subsection
demonstrates so: when I was working on the function _deserialize_z_transport_t,
due to the many sub-elements it is composed of, I decided to structure the code
like I did for the serialization counterpart by creating a struct variable for each sub-
element and work on each struct variable for tidyness’ sake, like this:

[...]

_z_transport_unicast_t unicast = res._transport._unicast;

memcpy(unicast._remote_zid.id, _buffer, 16);
_buffer += 16*sizeof (uint8_t);

memcpy (unicast._sn_res, _buffer, sizeof(_z_zint_t));

_buffer += sizeof(_z_zint_t);

memcpy (unicast._sn_tx_reliable, _buffer, sizeof(_z_zint_t));
_buffer += sizeof(_z_zint_t);

memcpy (§unicast._sn_tx_best_effort, _buffer, sizeof(_z_zint_t));
_buffer += sizeof(_z_zint_t);

memcpy (&unicast._sn_rx_reliable, _buffer, sizeof(_z_zint_t));
_buffer += sizeof(_z_zint_t);

memcpy (&unicast._sn_rx_best_effort, _buffer, sizeof(_z_zint_t));
_buffer += sizeof(_z_zint_t);

memcpy (&unicast._lease, _buffer, sizeof(_z_zint_t));

_buffer += sizeof(_z_zint_t);

62 Chapter 4. The Project, the Implementation, and Experimental Evaluations

memcpy (&unicast._received, _buffer, sizeof(_Bool));
_buffer += sizeof (_Bool);

memcpy (&unicast._transmitted, _buffer, sizeof(_Bool));
_buffer += sizeof(_Bool);

[...]
Do you see the problem? In the above code the assignation

_z_transport_unicast_t unicast = res._transport._unicast;

is like doing
int a = 5;
int b = 6;
a = b;

thus the future changes in the variable "unicast" do not affect the struct variable
res._transport._unicast. I should have used a pointer but I opted out to rewrite the
whole res._transport._unicast anywhere it was needed.

memcpy (tp->_transport._unicast._remote_zid.id, _buffer, 16);
_buffer += 16%*sizeof (uint8_t);

memcpy (&tp->_transport._unicast._sn_res, _buffer, sizeof(_z_zint_t));

_buffer += sizeof(_z_zint_t);

memcpy (&tp->_transport._unicast._sn_tx_reliable, _buffer, sizeof(_z_zint_t));
_buffer += sizeof(_z_zint_t);

memcpy (&tp->_transport._unicast._sn_tx_best_effort, _buffer, sizeof(_z_zint_t));
_buffer += sizeof(_z_zint_t);

memcpy (&tp->_transport._unicast._sn_rx_reliable, _buffer, sizeof(_z_zint_t));
_buffer += sizeof(_z_zint_t);

memcpy (&tp->_transport._unicast._sn_rx_best_effort, _buffer, sizeof(_z_zint_t));
_buffer += sizeof(_z_zint_t);

memcpy (&tp->_transport._unicast._lease, _buffer, sizeof(_z_zint_t));

_buffer += sizeof(_z_zint_t);

LoadProhibited, StoreProhibited

From the ESP32’s documentation: "These CPU exceptions happen when an appli-
cation attempts to read from or write to an invalid memory location. The address
which has been written/read is found in the EXCVADDR register in the register
dump. If this address is zero, it usually means that the application has attempted to
dereference a NULL pointer. If this address is close to zero, it usually means that the
application has attempted to access a member of a structure, but the pointer to the
structure is NULL. If this address is something else (garbage value, not in 0x3fxxxxxx
- Ox6xxxxxxx range), it likely means that the pointer used to access the data is either
not initialized or has been corrupted.”
The register dump looks like:

Guru Meditation Error: Core O panic’ed (LoadStoreError). Exception was unhandled.

4.2. Implementation 63

Core O register dump:

PC : 0x400d68c2 PS : 0x00060c30 A0 : 0x800d6al5 A1l

A2 1 0x3ffcb904 A3 : 0x400d65b8 A4 : 0x50000224 A5

A6 : 0x00000000 A7 : 0x00000000 A8 : 0x400d1lebc A9

A10 : 0x00000022 A1l : Ox3ffbale0 Al2 : 0x000000ff A13 :
Al14 : 0x00££0000 A15 : 0xf£000000 SAR : 0x00000004 EXCCAUSE:
EXCVADDR: 0x400dle5c LBEG : 0x400014fd LEND : 0x4000150d LCOUNT

Backtrace: 0x400d68bf:0x3ffba020 0x400d6a12:0x3ffba050 0x400d2232:0x3ffbal70

0x401573b7:0x3ffbal0cO0 0x4008bc65:0x3ffbalf0

It happened to me that I received a LoadProhibited error with EXCVADDR equal
to, more or less, the value 1000. That was because at a certain point in the code I was
accessing a field of the session in the zs._value->_tp._transport._unicast._session
which I forgot to initialize. The following edit in the function zp_wake_up() solved
the problem:

zs._value->_tp._transport._unicast._session = zs._value;

4.2.4 Glueing the serde functions with the rest of zenoh-pico

The process of integrating the new serialization and deserialization functions has
been very intrusive to zenoh-pico.
I added the serde type to the proper structs which are:

¢ _z subscription_t
* _7 questionable_t
e _z pending_query_t

Since zenoh-pico uses the pattern options to provide feature extensibility, I added
the serde functions type to the following zenoh-pico options because their respective
operations operate on user-provided data to be serde for deep-sleeping’s purpose.

¢ z_subscriber_options_t

* z_pull_subscriber_options_t
* z_queryable_options_t

* z_get_options_t

Such options will be used by the end user to provide user-defined serde functions for
user-defined data. Then, I changed the _z_declare_subscriber signature in order to
be able to fit the serde functions in and assign the passed serde functions to the inner
struct _z_subscription_t. The function is a private one so is possible to add/remove
parameters without breaking the API. After that, I changed the function’s signature
of _z_query to accept zp_serde_functions_t as an argument and the serde type is as-
signed to the struct type _z_pending_query_t. The same goes for _z_questionable_t
with the function _z_declare_queryable.

: 0x3f£fba020
: 0x3ffcb8ed
: 0x3£fb9£do
: 0x0000££00

0x00000003

: Oxffffffff

64 Chapter 4. The Project, the Implementation, and Experimental Evaluations

| EXAMPLE | PREPARE_TO_SLEEP [us] | WAKE_UP [us] | RAM [bytes] |

z_get.c 883 16668 128392
z_pub.c 1074 16732 128480
z_pull.c 1225 16660 128576
z_sub.c 1058 16641 128464

TABLE 4.1: Baseline measurements.

4.3 Experimental evaluations

The experimental evaluations have been conducted on the 4 examples I created as a
demonstration: z_get.c, z_pub.c, z_pull.c, z_sub.c. Must be noted that as of today is
still missing the example z_queryable.c as it has a minor issue causing it to crash on
an InstructionFetchError after a couple of DEEPSLEEP_RESET.

4.3.1 Baseline measurements

I measured the time needed to prepare to sleep, the time needed to wake up, and
the RAM occupied by the session on each one of the above examples. These are of
interests because the session is composed, among many other things, by different
lists and with each one of the example I get a gauge of how much RAM is occupied
by the different lists (and the session itself) and the time needed to serialize and
deserialize the different lists. The results are reported in the table 4.1:

To get the results in table 4.1, in order to measure the time needed, I simply
wrapped the functions of interest L.E. zp_prepare_to_sleep and zp_wake_up with
the system call gettimeofday() which measures the microseconds ([us]) since the
Unix epoch time (1st January 1970). Note that gettimeofday() has a slightly higher
overhead w.r.t. the function esp_timer_get_time() but at the time of testing I did not
know the existence of such function.

struct timeval tv_start;
struct timeval tv_stop;

gettimeofday (&tv_start, NULL);

zp_wake_up() ;/zp_prepare_to_sleep();

gettimeofday (&tv_stop, NULL);

long elapsed_time = tv_stop.tv_sec * 1000000 + tv_stop.tv_usec -
(tv_start.tv_sec * 1000000 + tv_start.tv_usec);

printf ("elapsed time: %1ld[us]\n", elapsed_time);

Whereas to get the size of DRAM allocated by the zp_wake_up:

before = heap_caps_get_free_size (MALLOC_CAP_8BIT);
zp_wake_up() ;

after = heap_caps_get_free_size(MALLOC_CAP_8BIT);
printf ("bytes allocated %zd\n", before - after);

I must consider that the experiments have been conducted on lists of at least 1
element and at maximum 1 element. Taken that, I see that the zp_wake_up() func-
tion almost takes a constant time around 16ms and 17ms to deserialize then create
the session in the heap memory whereas the zp_prepare_to_sleep() takes between

4.3. Experimental evaluations 65

1.04ms and 1.225ms to serialize the session’s struct in the RTC Slow Memory. The
difference between the zp_prepare_to_sleep() and the zp_wake_up() is of a factor
of x10000. This is due to the fact that the zp_wake_up(), other than deserializing
the session, has to create the session in the heap memory by calling many times the
onerous system call malloc().

4.3.2 Varying the load of the session

Here I measured how long does it take for the zp_prepare_to_sleep() and the zp_wake_up()
to serialize and deserialize the session varying the session’s size (L.E. its lists as the
other elements are not varying).

I started my measurements with the example z_pub.c by creating 6 different top-
ics to publish to named "demo/example/zenoh-pico-pub-{number}", with a lower
number of publication topics there were no notable differences. I noticed the zp_prepare_to_sleep()
time increased to 1.102ms (30us of difference w.r.t. table 4.1) whereas the zp_wake_up()
time is almost stable at 16.7ms. I repeated the same measurements with 10 different
publication topics and the zp_prepare_to_sleep() time increased to 1.251ms while
the zp_wake_up() time is marked at around 17.5ms which are respectively around
200us and 800us more w.r.t. the measurements taken for the z_pub.c on the table 4.1.

For what regards the example z_sub.c I subscribed to 6 different topics first,
then to 10 different topics as I did with the z_pub.c example but this time with
the subscriptions instead of the publications. I declared the different subscribers on
"demo/example/zenoh-pico-pub-{number}". For the 6 different topics, the zp_prepare_to_sleep()
time increased to 1.271ms whereas the zp_wake_up() increased to 16.691ms which
are respectively 213us more and 50us more w.r.t. the measurements taken for z_sub.c
on the table 4.1. For the 10 different topics I incurred on an InstrFetchProhibited er-
ror due to the fact that I was reading from outside the buffer and the runtime did
not raise any error about reading from outside the buffer. I was reading the value
0xff000000 that was assigned to the function of the callback which resulted in an er-
ror when it was called (indeed, on the stack backtrace of the error the PC value was
0xff000000). In order to solve the error, I incremented the RTC Slow Memory buffer’s
size to 1024 bytes by dimensioning the #define DIM_LOCAL_SUBSCRIPTIONS 1024.
For what concerns the measurements, I measured 1.378ms for the zp_prepare_to_sleep()
and 16.738ms for the zp_wake_up() which are respectively 320us and 97us more
w.r.t. the baseline measurements taken for the z_sub.c in the table 4.1.

For the z_get.c I sent the first 6 queries to "demo/example/zenoh-pico-pub-
{number}". It took to the zp_prepare_to_sleep 883us and 16.663ms to the zp_wake_up
which are, w.r.t. table 4.1, almost the same results. This is due to the fact that the ses-
sion’s list affected by the z_get.c is the list _pending_queries which are the queries
emitted to the network but have not received a reply final. Since before the end of
the deep sleep cycle the reply final are received the list is empty thus it takes to our 2
functions the same time as the baseline measurements taken for the example z_get.c.
The same logic is valid for sending 10 different queries to "demo/example/zenoh-
pico-pub-{number}".

At last, for the example z_pull.c, I declared subscriber on 6 different topics named,
as always, "demo/example/zenoh-pico-pub-{number}". For the zp_prepare_to_sleep
it takes 1.486ms whereas for the zp_wake_up it takes 16.656ms which are respec-
tively 261us more and almost the same for what concerns the zp_wake_up w.r.t.
table 4.1. Then, I declared 10 different topics named "demo/example/zenoh-pico-
pub-{number}". It took 1.717ms for the zp_prepare_to_sleep and 16.528ms for the

66 Chapter 4. The Project, the Implementation, and Experimental Evaluations

] EXAMPLE \ 6 topics [ps] \ 10 topics [ps] ‘

z_get.c 0 0

z_pub.c 28 177
z_pull.c 261 492
z_sub.c 213 320

TABLE 4.2: Time differences zp_prepare_to_sleep().

’ EXAMPLE \ 6 topics [ps] \ 10 topics [ps] ‘

z_get.c 0 0
z_pub.c 0 800
z_pull.c 0 0
z_sub.c 50 97

TABLE 4.3: Time differences zp_wake_up().

zp_wake_up which are respectively 492us more and almost the same for what con-
cerns the zp_wake_up. With this example, the zp_wake_up works fine but the third
z_declare_pull_subscriber fails and it is unable to declare the subscriber. I did not
investigate deeper due to lack of time.

To sum up the obtained results for each example, in the table 4.2 I report all the
differences in time for what concerns the function zp_prepare_to_sleep w.r.t. base-
line measurements on table 4.1. In the table 4.3 I report all the differences in time for
what concerns the function zp_wake_up() w.r.t. baseline measurements on table 4.1.

By looking at the table 4.3 I do not notice any great difference, indeed almost
all the fields are Os. This is quite strange as I expected a remarkable increment of
the values in terms of time in us needed because of the mallocs. It might be due to
caching I guess, really, I have no clue about.

On the other hand, by looking at the table 4.2 I notice a great increment between
the usage of 6 topics first then 10 topics. In particular, apart from the example z_get.c,
the example z_pub.c has an increment of x6.32, the z_pull.c has an increment of
x1.88, the z_sub.c has an increment of x1.50. The major increment has been acquired
by the z_pub.c which is x6.32 times the time for 6 topics.

4.3.3 Size

In this section I reported the total image size of the firmware produced by each one
of the examples for the deep sleeping and not deep sleeping. The results have been
annotated in the table below:

’ EXAMPLE \ Deep Sleeping [bytes] \ No Deep Sleeping [bytes] \ % ‘

z_get.c 816309 773661 5.22
z_pub.c 816053 773657 5.20
z_pull.c 816805 774109 5.23
z_sub.c 816677 773953 5.23

The measures have been detected by the end of the building process of Plat-
formIO which outputs the SRAM used and the flash size of the final firmware’s

4.3. Experimental evaluations 67

image. Consider that the flash size of the no deep sleeping has been taken on zenoh-
pico v0.11.0.0 whereas the flash size of the deep sleeping has been taken on zenoh-
pico v0.10.0.0 but at the end does not change that much for what concerns the used
zenoh-pico version. These measurements are very important as constrained devices
in the embedded systems world are constrained in flash size. Indeed, with my deep
sleeping implementation I just occupy an average of 5.22% more in the flash than
Zenoh Pico without deep sleeping which is great.

4.3.4 Average Power

We have seen in the chapter 2 a formula to compute the average power consumed
by a microcontroller, reported here:

Euctive

Pzwg = Palwaysfon + Psleep + T
wkup

The problem is the above formula needs to know the time to wake up which is
pretty complex to acquire in the ESP32 but I studied a simpler method to gain the
same result. But first, let us discuss why we need the average power.

Usually, microcontrollers are connected to external batteries which provide en-
ergy to the MCU. The electric charge (I.E. an energy) stored in batteries is measured
in mAh (milli Ampere-hour) and we can calculate the time needed to drain the elec-
tric charge in the battery by remembering that

E=Pxt

thus

el

Moreover, we know that

Ebattery = mAh x V x 3600s

where mAh is the capacity of the battery, V is the voltage at which the ESP32 is
powered (it is 5V) and 3600s are the seconds in an hour. Given the current consumed
at each sleeping mode by looking at the figure 2.16, we can compute the time needed
to drain the battery in normal mode and in deep sleeping mode because

P=V=xI]

250 mAh

We suppose to have an external battery with a capacity of 250mAh @ 5V and our
ESP32 is operating with a dual core chips at a normal speed of 80MHz (thus current
of 20mA - 31mA). Let us do the math:

Ebattery 250mAh * 5V * 3600s 250mAh * 5V * 3600s
= = = 45000s = 750h
Prycu Vmcu * Imcu 5V x20mA °

tdmin -

Our ESP32 will drain 250mAh of battery in 750 hours or in 31.25 days.
Now, let us do the same but we will take as an example the deep sleeping exam-
ple z_pub.c, we will compute the average power then we will compute the ¢4,;,. The

68 Chapter 4. The Project, the Implementation, and Experimental Evaluations

z_pub.c takes a certain amount of normal activity where it connects to the wifi, es-
tablishes the zenoh session then publish data before going to deep sleep for 3000ms.
Then it wakes up, it connects to the wifi, it restores the zenoh session then publish
data before going to sleep for 3000ms for a total normal activity of around 6193785us
LE. 6.193785s. In the long term what interests us is the Py,; without the zenoh ses-
sion establishment thus the zenoh session wake up. This is due to the fact that, apart
from the first cycle, in the rest of the cycles there is no need to perform the session
establishment because of the zenoh wake up. We consider in deep sleeping a current
of 104 A LE. the Amperage of when only the RTC Timer and the RTC Memories are
powered on. Let us compute the Ppyg:

Vactive * Lnctive * 6.193785s + Vdeep_sleeping * Ideep_sleeping * 35
6.193785s + 3s

Pavg =

_ 5V x20mA * 6.193785s + 5V * 10u A * 3s

9.193785s = 0.067W = 67mW

as we can see the Payg is a weighted average based on the time in normal mode
and the time in deep sleeping mode. Then,

Ebattery 250mAh % 5V x 3600s
tarain = = = 67164.18s = 1119.4h = 46.64d
drain Pavg 67mW 6716 8s 6.6 ays

Notice how, introducing a short deep sleeping of 3s we see an increment in the
autonomy of the battery of slightly more than 2 weeks. The deep sleeping is in-
credibly important for constrained devices leveraging the power of a battery thus
the importance in having such support in zenoh-pico.

4.3.5 Performance Monitor

Performance monitor technique is used to profile functions. It is of good importance
as it gives an insight on the total cycles used, the memory reads/writes performed,
the total instructions. These basics performance counters are of interest to us because
the higher they are the more battery is used so a further step would be to decrease
somehow the performance counters above.

I tried to measure the performance counters but in order to measure the per-
formance counters of a function such function must be executed and in my case I
cannot execute the function without actually having a z_owned_session_t type (for
the zp_prepare_to_sleep) or having an established transport (for the zp_wake_up)
thus resulting in runtime errors with Core 0 panics.

69

Conclusion

Through this master thesis we have seen a lot of interesting concepts for what con-
cerns the world of the Internet of Things. We gave a precise definition of what an
embedded system is then we deeply studied the board ESP32 in particular its tech-
nical details. We introduced the environments and tools used to operate on embed-
ded systems’ boards. Then we learnt the basics and most important concepts about
Zenoh and Zenoh-Pico, we delved deeper in the Zenoh-Pico’s architecture and now
we have a clearer idea on what a middleware is and what are its purposes along
with how Zenoh-Pico is structured internally. We presented the project for this mas-
ter thesis which contains the pillar concepts on which the master thesis project has
been built. We have delved deeper in the implementation rationale and details of
the implementation then we conducted some experimental evaluations on the im-
plementation.

Obtained results

The experimental evaluations have been conducted on the 4 working examples I
created as a demonstration: the z_get.c, z_pub.c, z_pull.c, and z_sub.c. The only one
not working example is the z_queryable.c example which has a minor issue causing
a crash on an InstructionFetchError error after a couple of DEEPSLEEP_RESET sent
by the CPU.

In order to get the main results about the time taken I used the POSIX function
gettimeofday() which returns the system time in ys and has a resolution of 1us. I use
the function gettimeofday() before the target function and after the target function
saving the result in two struct timeval then making the difference to measure, in ys,
the time taken by the target function. Note that gettimeofday() has a slightly higher
overhead w.r.t. the function esp_timer_get_time() thus it is not the best function to
measure time.

To measure the RAM occupied at a certain instant in time I used the FreeRTOS’s
function heap_caps_get_free_size(MALLOC_CAP_8BIT) which returns the free num-
ber of bytes in the heap memory. By doing the difference before and after a target
function you get how many bytes that target function allocates in the heap memory.

I carried out measurements about the time taken by the two main functions
added to the API: zp_prepare_to_sleep() and zp_wake_up(). I measured the time took
from these functions to perform their operations and the zp_prepare_to_sleep() takes
a minimum of 883us and a maximum of 1225us whereas the zp_wake_up() takes a
minimum of 16641ys and a maximum of 16732us. The RAM occupied is almost con-
stant for every tested example. Additionally, the difference between the two main
functions is of a factor of x10000 due to the fact that the zp_wake_up() has many sys-
tem calls to malloc(). These baseline measurements are reported in the table 4.1. It
must be taken into account that the baseline measurements have been conducted on
session’s lists with just 1 element.

Varying the load of the session by adding 6 topics first then 10 topics, on each
example, for what regards the time differences of the function zp_prepare_to_sleep(), 1

noticed the example z_get.c being the fastest one with the minor time shift w.r.t. the
baseline measurements carried out with 1 topic only. The second fastest example is
z_pub.c w.r.t. time differences in the zp_prepare_to_sleep(). The time differences for
the function zp_prepare_to_sleep() are reported in the table 4.2. I did not notice great
differences w.r.t. the time differences in the zp_wake_up() apart from the example
z_pub.c taking 800us more for the example with 10 topics w.r.t. the z_pub.c for the
example with just 1 topic or the z_sub.c taking 50is more with 6 topics then 97us
more with 10 topics w.r.t. the baseline measurements. The time differences for the
function zp_wake_up() are reported in the table 4.3.

About the experimental evaluations of the implementation, I made calculus on
what was the average power consumed by a programme on the ESP32 implementing
an active-sleeping pattern (about 6 seconds active, 3 seconds of deep-sleeping) and I
noticed that by performing a 3 seconds of deep-sleeping I gain about 2 weeks more
as battery duration on a battery with 250mAh of charge w.r.t. an active-only program
running on the ESP32. This is an important result describing the real importance of
the support to deep-sleeping for a middleware like Zenoh-Pico.

Moreover, my implementation for the support to deep-sleeping is only about
5.22% greater than the Zenoh-Pico without the support to deep-sleeping which is a
very good result also considering that I did not use a third-party library for the serde
implementation.

Open problems

This analysis has a limit concerning the time taken by the zp_wake_up() as I was not
able to accurately take the results with the given method which used the function
gettimeofday() at the beginning and at the end of the function to take the time needed
by a function to perform its task. I expected different results by using 6 topics then
10 topics because the zp_wake_up has many malloc system calls which are time con-
suming and by incrementing the number of the topics I increment the length of the
inner list in the session struct thus I increment the mallocs needed to restore the list
in the heap memory. This is an open problem and needs further analysis.

I'had not been able to profile the two API functions with the performance coun-
ters via the performance monitor technique. The problem arose because for a func-
tion to be analyzed with performance counters it must be executed. In my case the
functions to be analyzed need an active transport and an active Zenoh session thus
executing such functions for performance monitoring results in runtime errors with
Core 0 panics.

I had a problem with the usage of my support to deep-sleeping implementa-
tion for the example z_queryable.c which crashes on an InstructionFetchError after
a couple of DEEPSLEEP_RESET by the CPU. Also this problem needs further inves-
tigation.

Also, analyzing the packets sent with the tool Wireshark I noticed that the key
expression is not compacted to a number when sent on the wireless as happens
with the normal Zenoh protocol. This problem needs further investigation. It might
be because the user has to declare at each DEEPSLEEP_RESET the publisher/sub-
scriber as discussed in the next paragraph.

One issue regarding the user experience with the two APIs provided to support
the deep-sleeping is that the user has to declare the publisher/subscriber not only
once but each time it is needed. I should implement another mechanism to save the

proper struct created by the declaration on the RTC Slow Memory then retrieve the
struct and place it in the correct space when needed.

The serde functions to serde user-provided structs have not been tested thor-
oughly.

Future extensions

With the current implementation of the support to the deep-sleeping mode on Zenoh-
Pico for the board ESP32 I have only taken into account the support for UDP unicast
communications for simplicity’s sake because a first prototype about only one type
of transport would have been faster and easier to implement. A future extension
would be to support the deep-sleeping mode for the UDP multicast transport type.
Then, we could add the support to the TCP communication transport even though
it will be tough as TCP has to keep some timers client-side and the client will go
to sleep so we must leverage what the platform has to offer to the programmer to
retain the needed information about timers while the board is asleep.

Another important implementation is to make and create the infrastructure in
the code for the support to deep-sleeping to be platform-agnostic. At the moment,
the support to deep-sleeping mode is tightly coupled with the board ESP32 as the
implementation targets the board az-delivery-devkit-v4 ESP32. Also, the current
implementation makes heavy use and made some modifications to portions of code
that relate to the board ESP32-only. This is because zenoh-pico is structured in a way
that PlatformIO sets an environment variable containing the current framework and
board used (Zephyr, Arduino, ESP-IDF) and based on that value, at compilation
time, the C pre-processor compiles only the needed portions of code. Doing so the
zenoh-pico middleware acquires the platform-agnostic property. This heavy mod-
ification to the code to make the support to deep-sleeping mode is intrinsic to the
property we want to acquire i.e. the deep-sleeping mode, since every board has its
peculiarities to support the deep-sleeping mode and to support memory that retains
information while the board is sleeping (RTC Slow /Fast Memory in the case of the
ESP32 board).

We could conduct another experiment where we use either protobuf or the Binn
library to serialize and deserialize the components of the session and see among the
three paths which one is the best and adopt the best way to accomplish the task in
terms of time efficiency, space efficiency, usability and maintainability.

Wrapping things up

To wrap things up, the support to deep-sleeping mode is of paramount importance
in the embedded systems world if the device must be fed with energy from an ex-
ternal battery with limited capacity (I made an example with the battery capacity of
250mAh). UDP is the favorite protocol at the transport layer and supporting both
UDP unicast and UDP multicast would be beneficial for the end users using zenoh-
pico in need of a support to the deep-sleeping mode because their system is powered
with a battery limited in its capacity.

73

Bibliography

Afanasyev, Alex (2018). “A Brief Introduction to Named Data Networking”. In.

Bellavista, Paolo (2023). “IoT”. slides 1 to 92.

Benini, Luca (2023). “Trends Architecture”.

Conti, Francesco (2023). “MCU I/O Interfaces MCU Interconnects InterruptTimers”.

Inamdar, Amey (2020). “ESP32 Programmers” Memory Model”. https : //blog .
espressif.com/esp32-programmers-memory-model-259444d89387.

Kulkarni, Sandeep (2014). “Logical Physical Clocks and Consistent Snapshots in
Globally Distributed Databases”. https://cse.buffalo.edu/tech-reports/
2014-04 .pdf.

ZenohTeam-Blog (2024). “Zenoh Blog”. https://zenoh.io/blog/2024-01-31-
zenoh-flow-getting-started/.

https://blog.espressif.com/esp32-programmers-memory-model-259444d89387
https://blog.espressif.com/esp32-programmers-memory-model-259444d89387
https://cse.buffalo.edu/tech-reports/2014-04.pdf
https://cse.buffalo.edu/tech-reports/2014-04.pdf
https://zenoh.io/blog/2024-01-31-zenoh-flow-getting-started/
https://zenoh.io/blog/2024-01-31-zenoh-flow-getting-started/

	Abstract
	Acknowledgements
	Introduction
	Thesis Motivations, Objectives, and Internet of Things
	Motivations
	Objectives
	What is the Internet of Things
	The Gateway
	IoT Fog/Edge Computing
	Constrained networks and devices
	Wireless communication protocols for the IoT
	Data exchange protocols
	Request/Response model
	REST (REpresentational State Transfer)
	Constrained Application Protocol (CoAP)
	Publish/Subscribe model
	Message Queue Telemetry Transport (MQTT)
	Advanced Message Queuing Protocol (AMQP)
	Data Distribution Service (DDS)
	Industrial data exchange frameworks
	RabbitMQ
	MTConnect
	OPC Foundation

	Embedded Systems
	Espressif ESP32
	Technical Details
	Clock Sources
	RTC Fast Memory and RTC Slow Memory
	Universal Asynchronous Receiver Transmitter (UART)
	Inter-Integrated Circuit (I2C)
	Serial Peripheral Interface (SPI)
	Advanced Peripheral Bus (APB)
	Sleep Modes
	Memory model

	Brief description of the environments
	ESP-IDF
	PlatformIO

	Deep-Sleeping in IoT
	The Company - ZettaScale Technology

	Zenoh-Pico
	About Zenoh
	Zenoh Keys
	Zenoh data messages
	Zenoh Router
	Client mode and peer mode
	Scouting
	Communication models
	Request and Response
	Publisher and Subscriber
	Push and Pull communication model

	Reliability
	Hop to Hop reliability
	End to End reliability
	First router to last router reliability

	Reliability & Control Flow
	Mobility
	Zenoh over Serial
	Replicated storages
	Payload to the query
	Hybrid Logical Clock (HLC)

	Architecture
	Zenoh-Pico's architecture
	Platform-Agnostic
	The inclusion
	Architecture as macro-blocks

	The Project, the Implementation, and Experimental Evaluations
	The project - Efficient support for deep-sleeping modes
	Saving the session
	Why you did not use a third-party library to serialize/deserialize the session?
	Why RTC Slow Memory?

	Use the same UDP port
	Restoring the session
	Serde functions

	Implementation
	zp_prepare_to_sleep()
	Lists' serialization
	Function pointers
	_z_transport_t serialization

	zp_wake_up()
	List's deserialization
	__init_transport_t
	Bound UDP socket to the previously used port

	The most difficult errors
	assert_failed: block_trim_free tlsf.c:502
	InstrFetchProhibited
	Working on copies: _deserialize_z_transport_t
	LoadProhibited, StoreProhibited

	Glueing the serde functions with the rest of zenoh-pico

	Experimental evaluations
	Baseline measurements
	Varying the load of the session
	Size
	Average Power
	250 mAh

	Performance Monitor

	Conclusion

