
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA

MSc in Engineering and Computer Science

Feasibility of Reactive Aggregate
Programming via Kotlin Flows

Thesis in:
Laboratory of Software Systems

Supervisor
Prof. Danilo Pianini

Co-supervisor
Dott. Gianluca Aguzzi

Candidate
Filippo Vissani

IV Graduation Session

Academic Year 2022-2023

ii

Abstract

The field of engineering self-organizing systems, encompassing realms such as robot
swarms, collectives of wearables, and distributed infrastructures, has witnessed ex-
tensive exploration through diverse methodologies. These approaches range from
deriving algorithms inspired by natural phenomena to leveraging design patterns,
utilizing learning techniques to synthesize behavior based on emergent expecta-
tions, and exposing pivotal mechanisms and abstractions at the programming lan-
guage level. Among these, a predominant focus has been on employing round-based
execution models in state-of-the-art languages for self-organization. While such
models offer simplicity in reasoning, they often exhibit limitations concerning flex-
ibility and granular management of sub-activities. Drawing inspiration from the
Functional Reactive Approach to Self-organisation Programming (FRASP) model
implemented in Scala, this thesis aims to showcase the feasibility of reactive ag-
gregate programming in Kotlin. Leveraging the Flow functional reactive library,
we demonstrate a functional reactive implementation of aggregate programming,
separating program logic from the scheduling of its sub-activities. The resulting
framework maintains the expressive power of aggregate scheduling while enhancing
scheduling controllability, flexibility in the sensing/actuation model, and execution
efficiency.

iii

iv

“A great adventure without success is far superior to a climb where everything
goes as planned.”

— Tommy Caldwell

v

vi

Contents

Abstract iii

1 Introduction 1

2 Background 3
2.1 Functional Programming . 3

2.1.1 Concepts . 4
2.1.2 Functional Programming in Kotlin 6

2.2 Reactive Programming . 7
2.2.1 Evaluation Model . 9
2.2.2 Reactive Operators . 9
2.2.3 Reactive Programming in Kotlin 10

2.3 Aggregate Computing . 12
2.3.1 Abstractions . 13
2.3.2 Field Calculus . 15
2.3.3 Field Calculus Extensions 17
2.3.4 Reactive and Proactive Models 20

3 Analysis 21
3.1 State of the Art . 21

3.1.1 Protelis . 21
3.1.2 ScaFi . 24
3.1.3 FCPP . 28
3.1.4 Collektive . 29
3.1.5 FRASP . 31

3.2 Design of FRASP . 35
3.2.1 Architecture . 35
3.2.2 Detailed Design . 37

3.3 Design of Collektive . 37
3.3.1 Architecture . 37
3.3.2 Detailed Design . 38

CONTENTS vii

CONTENTS

3.3.3 Alignment Processing Strategy 40
3.4 Re-implementation of FRASP in Collektive 41

3.4.1 Implementation Issues . 41
3.4.2 Feasibility of Reactive Aggregate Programming in Kotlin . . 43
3.4.3 Solutions Identified . 44

4 Design 47
4.1 Architecture . 47
4.2 Detailed Design . 50

4.2.1 Purely Reactive Model . 50
4.2.2 Model with Reactive Messages and Sensors 52

5 Implementation 55
5.1 Purely Reactive Model . 55
5.2 Model with Reactive Messages and Sensors 58

6 Validation 61
6.1 Testing . 61
6.2 Analysis of the Ergonomics of the Proposed Models 63

7 Conclusion 69
7.1 Future Work . 70

73

Bibliography 73

viii CONTENTS

List of Figures

2.2 Map operator in reactive applications. 10

2.4 Aggregate programming abstraction layers. The software and hard-
ware capabilities of particular devices are used to implement aggregate-
level field calculus constructs. These constructs are used to imple-
ment a limited set of building-block coordination operations with
provable resilience properties, which are then wrapped and com-
bined to produce a user-friendly API for developing situated Internet
of Thing (IoT) systems. 14

2.5 Abstract syntax of the field calculus. 16

2.6 Handling state sharing (nbr) and memory (rep) separately injects
a delay while information “loops around” to where it can be shared
(top) while combining state sharing and memory into the new share
operator eliminates that delay (bottom). 18

3.1 Protelis abstract syntax. 22

3.2 Example of computing a rendezvous route for two people in a crowded
urban environment. 23

3.3 A graphical representation of the gradient implementation in ScaFi
after stabilization. Each device of the network is labeled with its
distance from the source (in parenthesis) and its ID. The source
device is the one with ID 1. Note that devices that are not connected
to the source are considered to be at an infinite distance from it. . . 26

3.4 Dependencies between sub-computations in gradient program (List-
ing 3.6). 34

3.5 FRASP architecture. 35

3.6 Detailed design of FRASP. 36

3.7 Detailed design of Collektive Domain Specific Language (DSL). . . 39

3.8 Detailed design of Kotlin Distributed FRP. 44

LIST OF FIGURES ix

LIST OF FIGURES

4.1 Architecture of the reactive model proposed. The gray-colored
components are part of the original Collektive architecture, while
the orange-colored components are used to introduce the reactive
paradigm. 49

4.2 Detailed design of the Purely Reactive Model (PRM) proposed. . . 51
4.3 Detailed design of the Model with Reactive Messages and Sensors

(RMSM) proposed. 53

6.1 Figure 6.1a presents the environment where the gradient with ob-
stacles was executed. The node highlighted in green represents
the source, while those in red represent the obstacles. Figure 6.1b
presents the output field of the gradient with obstacles after stabi-
lization. 65

x LIST OF FIGURES

List of Listings

2.1 fold function. 7
3.1 Rendezvous implementation in Protelis. 24
3.2 Implementation of gradient in ScaFi. 27
3.3 Implementation of the Adaptive Bellman Ford algorithm in FCPP. . 29
3.4 Base constructs implemented in Collektive. 30
3.5 Gradient implementation in Collektive. 31
3.6 Gradient implementation in FRASP. 33
3.7 Gradient implementation in Kotlin Distributed FRP. 45
5.1 Implementation of the aggregate function in the PRM. 56
5.2 Implementation of the RAggregateContext class in the PRM. . . . 57
5.3 Implementation of the rBranch construct in the PRM. 58
5.4 Implementation of the rExchange construct in the PRM. 59
5.5 Implementation of the aggregate function in the RMSM. 60
6.1 Part of the test suite related to the rExchange construct. 62
6.2 Gradient with obstacles implementation in PRM. 64
6.3 Gradient with obstacles implementation in RMSM. 64
6.4 Gradient implementation in FRASP. 66
6.5 Gradient implementation in Kotlin Distributed FRP. 66

LIST OF LISTINGS xi

LIST OF LISTINGS

xii LIST OF LISTINGS

Chapter 1

Introduction

Developing artificial self-organizing systems with collective intelligence poses a

significant research challenge that spans multiple disciplines in science and en-

gineering [1, 2, 3, 4]. A central problem involves guiding the self-organizing be-

havior among a group of agents or devices, a task often referred to as “guided

self-organization” [5] or “controlled self-organization” [6]. This challenge revolves

around defining the control program that each agent must execute [7]. Solutions

to this problem can be approached through automatic approaches such as multi-

agent reinforcement learning [8] or manual approaches [7] involving the definition

of control rules or designs in terms of patterns involving, e.g., information flows

and control loops [9].

This thesis focuses on leveraging programming languages for self-organizing

systems. Here, developers craft the self-organizing control program using a macro-

programming language [10, 11], which aims to express the system’s macro-level

behavior. This language may be general-purpose or domain-specific, tailored to

specific applications such as robotic swarms [12] or wireless sensor networks [13].

The overarching objective is to design a programming language that is expressive,

practical, and declarative. This language should enable programmers to abstract

away operational details, allowing the underlying platform to handle them auto-

matically [14, 15].

Existing languages often use a round-based execution model, where devices

repeatedly evaluate their context program cyclically or periodically. While this

CHAPTER 1. INTRODUCTION 1

approach is simple, it lacks flexibility in scheduling and managing subtasks, espe-

cially in response to contextual changes. The primary objective of this thesis is

to demonstrate the feasibility of implementing reactive aggregate programming in

Kotlin and to analyze the ergonomics of the proposed language in comparison to

the proactive model, taking inspiration from the FRASP model [16]. Specifically,

we aim to assess the suitability of Kotlin for developing self-organizing systems

using a reactive programming approach.

Thesis structure The structure of this thesis is designed to provide a compre-

hensive exploration of the topics, starting with an in-depth Background section

(Chapter 2). Here, we delve into functional programming, reactive programming,

and aggregate computing, elucidating their core concepts and implementations

in Kotlin, which serves as the foundation for the subsequent analyses. Moving

forward, the Analysis section (Chapter 3) evaluates the current state of the art,

examining notable frameworks for aggregate computing, such as Protelis, ScaFi,

FCPP, Collektive, and FRASP. Building upon this analysis, we proceed to detail

the design of FRASP and Collektive. At the end of the chapter, possible solu-

tions are identified to provide a re-implementation of FRASP within Collektive.

Chapter 4, Design, delineates the architectural and detailed designs of the pro-

posed models, setting the stage for their Implementation (Chapter 5), where we

describe the practical realization of these models, divided into sections for the PRM

and the RMSM. Subsequently, the Validation section (Chapter 6) examines the

testing procedures and evaluates the ergonomic aspects of the proposed models.

Finally, the Conclusion section (Chapter 7) synthesizes our findings, encapsulating

the contributions of this thesis and suggesting avenues for future research in this

domain.

2 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter establishes the essential theoretical foundation for the subsequent ex-

ploration undertaken in this thesis. We focus on three key programming paradigms:

functional programming (Section 2.1), reactive programming (Section 2.2), and ag-

gregate computing (Section 2.3).

We begin by examining the core concepts of functional programming and its

practical implementation in Kotlin. This understanding underpins our exploration

of reactive programming, where we delve into its evaluation model, the reactive

operators, and their application in Kotlin. Finally, we explore the fundamental ab-

stractions of aggregate computing, including the field calculus and the contrasting

reactive and proactive computational models.

2.1 Functional Programming

The functional paradigm, in the context of computer science, involves building

programs through the application and composition of functions. It adopts a declar-

ative approach, where function definitions are represented as trees of expressions

mapping values to other values, rather than relying on a sequence of imperative

statements to update the program’s running state.

CHAPTER 2. BACKGROUND 3

2.1. FUNCTIONAL PROGRAMMING

2.1.1 Concepts

Functional programming is built upon a rich set of fundamental concepts that

serve as the foundation of its paradigm. This section aims to provide a comprehen-

sive understanding of these concepts, elucidating their significance and practical

implications in software development. From higher-order functions to referential

transparency, each concept plays a fundamental role in shaping the declarative

nature of the functional paradigm.

Higher-order functions higher-order functions possess the ability to either re-

ceive functions as arguments or produce them as results. The nuanced difference

lies in the mathematical concept denoted by “higher-order”, which involves func-

tions operating on other functions.

These functions facilitate partial application or currying, enabling a technique

where a function is applied to its arguments one at a time. With each application,

a new function is created to handle the next argument. This approach allows pro-

grammers to express ideas succinctly, such as representing the successor function

by partially applying the addition operator to the natural number one.

Purity pure functions, or expressions, lack side effects. This absence of side

effects endows pure functions with various advantageous properties, many of which

can be leveraged for code optimization. A pure function, to be defined as such,

must meet the following properties:

• If the result of a pure expression is not used, it can be removed without

influencing other expressions.

• If a pure function is invoked with arguments that do not introduce side

effects, the result remains constant concerning that set of arguments. Re-

peatedly calling the pure function with the same arguments yields identical

results.

Recursion functional languages typically employ recursion for iteration. Re-

cursive functions call themselves, allowing an operation to iterate until it meets

4 CHAPTER 2. BACKGROUND

2.1. FUNCTIONAL PROGRAMMING

the base case. Generally, recursion involves managing a stack, consuming space

proportional to the recursion depth. This characteristic might render recursion

less favorable compared to imperative loops due to potential space inefficiency.

Nonetheless, a specific type of recursion called tail recursion can be identified and

optimized by a compiler, producing code similar to that used for iteration in imper-

ative languages. Implementing tail recursion optimization involves transforming

the program using a continuous passing style during compilation.

Evaluation strategies in functional languages, various methods are commonly

provided for evaluating arguments during their passage to functions. Three pri-

mary approaches include:

• Call-by-value: This involves evaluating arguments before the function appli-

cation.

• Call-by-name: Here, arguments are assessed each time their value is needed

within the function body.

• Call-by-need : Also known as lazy evaluation, this approach involves evalu-

ating arguments only when their value is first required within the function

body.

Type systems functional programming languages have leaned towards employ-

ing typed lambda calculus. This approach involves rejecting all invalid programs at

compilation time, even at the risk of encountering false positive errors. In contrast,

untyped lambda calculus, accepts all valid programs at compilation time, running

the risk of false negative errors, as it rejects invalid programs only at runtime when

there is sufficient information to distinguish valid from invalid programs. The in-

corporation of algebraic data types enhances the ease of manipulating complex

data structures. Additionally, the robust compile-time type checking contributes

to program reliability, offering a level of assurance even in the absence of other

reliability techniques. Furthermore, type inference alleviates the need for manual

declaration of types by the programmer in most cases.

CHAPTER 2. BACKGROUND 5

2.1. FUNCTIONAL PROGRAMMING

Referential transparency in functional programming, there are no assignment

statements; once a variable is defined, its value remains constant throughout the

program’s execution. This characteristic eliminates the possibility of side effects

since any variable can be substituted with its actual value at any given point in

the program. Consequently, functional programs are characterized by referential

transparency.

Data structures purely functional data structures are often represented differ-

ently from their imperative counterparts. While arrays, providing constant access

and update times, are fundamental in most imperative languages, purely functional

alternatives might employ maps or random access lists. Although these alterna-

tives allow for a purely functional implementation, they come with logarithmic

access and update times. One distinguishing feature of purely functional data

structures is persistence, which involves maintaining unmodified previous versions

of the data structure.

2.1.2 Functional Programming in Kotlin

Kotlin1, an open-source programming language characterized by static typing, ac-

commodates both object-oriented and functional programming paradigms. Vari-

ants of Kotlin are designed to target different platforms, including the Java Virtual

Machine (JVM), JavaScript, and native code.

In Kotlin, functions are treated as first-class entities, implying their ability

to be stored in variables and data structures. Additionally, they can be passed

as arguments to and returned from other higher-order functions. The operations

that can be performed on functions are equivalent to those applicable to other

non-function values.

To support these functionalities, Kotlin, being a statically typed programming

language, employs a family of function types to represent functions. Moreover, it

incorporates specialized language constructs, such as lambda expressions.

An illustrative instance of a higher-order function in Kotlin is the functional

programming idiom fold (Listing 2.1) employed for collections. This function

1https://kotlinlang.org/.

6 CHAPTER 2. BACKGROUND

https://kotlinlang.org/

2.2. REACTIVE PROGRAMMING

Listing 2.1: fold function.�
1 fun <T, R> Collection <T>.fold(

2 initial: R,

3 combine: (acc: R, nextElement: T) -> R

4): R {

5 var accumulator: R = initial

6 for (element: T in this) {

7 accumulator = combine(accumulator , element)

8 }

9 return accumulator

10 }
� �
receives an initial accumulator value and a combining function. Subsequently, it

constructs its return value by iteratively combining the current accumulator value

with each element in the collection. Importantly, the accumulator value is replaced

with each iteration.

the combine parameter has the function type (R, T) → R, so it accepts a

function that takes two arguments of types R and T and returns a value of type

R. It is invoked inside the for loop, and the return value is then assigned to

accumulator.

Kotlin uses function types, such as (Int) → String, for declarations that deal

with functions. Each function type in Kotlin is characterized by a parenthesized

list specifying the parameter types and a return type. For example, (A,B) → C

represents a type indicative of functions that accept two arguments of types A

and B, yielding a result of type C. The parameter list may be empty, denoted by

() → A. It is essential to note that the return type cannot exclude the declaration

of Unit. Function types have the option to include an additional receiver type,

indicated before the dot in the notation. For instance, the type A.(B) → C signifies

functions that can be invoked on a receiver object A, accepting a parameter B,

and producing a result of type C.

2.2 Reactive Programming

Reactive programming, as defined in [17], is a programming paradigm centered

on the concept of continuous time-varying values and the seamless propagation

of changes. It streamlines the declarative creation of event-driven applications

CHAPTER 2. BACKGROUND 7

2.2. REACTIVE PROGRAMMING

by enabling developers to articulate programs in terms of desired actions, leaving

it to the language to autonomously handle the timing of execution. Within this

paradigm, alterations in the state are automatically and efficiently disseminated

throughout the network of interdependent computations by the intrinsic execution

model.

Consider the example of calculating the sum of two variables (Listing 2.2). In

conventional sequential imperative programming, the value of the variable var3

will always contain 3, which is the sum of the initial values of variables var1 and

var2 even when var1 or var2 is later assigned a new value (unless the programmer

explicitly assigns a new value to the variable var3). In reactive programming, the

value of the variable var3 is always kept up-to-date. In other words, the value of

var3 is automatically recomputed over time whenever the value of var1 or var2

changes. This is the key notion of reactive programming. Values change over time

and when they change all dependent computations are automatically reexecuted.

In reactive programming terminology, the variable var3 is said to be dependent

on the variables var1 and var2.

Listing (2.2) Example of a program with reactive values.�
1 var1 = 1

2 var2 = 2

3 var3 = var1 + var2
� �

2

1

3+

var2

var1

var3

(a) Graphical representation of expression
dependencies in Listing 2.2.

8 CHAPTER 2. BACKGROUND

2.2. REACTIVE PROGRAMMING

2.2.1 Evaluation Model

The evaluation model of a reactive programming language focuses on how changes

propagate across a dependency graph of values and computations. From the pro-

grammer’s perspective, the automatic propagation of changes is a fundamental

aspect of reactive programming. Essentially, any alteration in a value should be

automatically transmitted to all computations dependent on it. When an event

occurs at a source, computations reliant on that event should be notified of the

changes, potentially triggering a recomputation.

At the language level, a crucial design decision involves determining who initi-

ates the propagation of changes. This entails deciding whether the source should

push new data to its dependents (consumers) or if the dependents should pull data

from the event source (producer). In the pull-based model, the computation that

requires a value needs to “pull” it from the source. That is, propagation is driven

by the demand for new data. In the push-based model, when the source has new

data, it pushes the data to its dependent computations. That is, propagation is

driven by the availability of new data.

2.2.2 Reactive Operators

The primary advantage offered by libraries furnishing the reactive streams APIs

lies in the provision of operators. These operators are essentially functions ap-

plicable to a data stream, adept at solving problems related to the processing of

reactive streams, encompassing tasks such as filtering, mapping (Figure 2.2), and

aggregating.

Furthermore, these operator functions are intentionally designed to be compos-

able, signifying their capability to be consecutively linked to construct processing

pipelines.

CHAPTER 2. BACKGROUND 9

2.2. REACTIVE PROGRAMMING

941

map(x => x * 2)

1882

Figure 2.2: Map operator in reactive applications.

2.2.3 Reactive Programming in Kotlin

Kotlin Flow2 is a part of the Kotlin Coroutines library, introduced to provide a

reactive programming model for asynchronous cold3 and hot4 data streams.

A Flow is an asynchronous data stream that sequentially emits values and

completes normally or with an exception. Intermediate operators on the flow such

as map, filter, take and zip are functions that are applied to the upstream flow

or flows and return a downstream flow where further operators can be applied to.

Intermediate operations do not execute any code in the flow and are not suspending

functions5 themselves. They only set up a chain of operations for future execution

and quickly return. This is known as a cold flow property. Terminal operators

on the flow are either suspending functions such as collect, single, reduce and

toList or launchIn operator that starts collection of the flow in the given scope.

They are applied to the upstream flow and trigger the execution of all operations.

Execution of the flow is also called “collecting the flow” and is always performed

in a suspending manner without actual blocking. Terminal operators complete

normally or exceptionally depending on the successful or failed execution of all the

flow operations in the upstream.

By default, flows are sequential and all flow operations are executed sequentially

2https://kotlinlang.org/docs/flow.html.
3A flow that emits values only when there is an active collector.
4A flow that produces values regardless of whether there are active collectors.
5A function that can be paused and resumed at a later time.

10 CHAPTER 2. BACKGROUND

https://kotlinlang.org/docs/flow.html

2.2. REACTIVE PROGRAMMING

in the same coroutine6, with an exception for a few operations specifically designed

to introduce concurrency into flow execution such as buffer and flatMapMerge.

The Flow interface does not carry information on whether a flow is a cold

stream that can be collected repeatedly and triggers execution of the same code

every time it is collected, or if it is a hot stream that emits different values from the

same running source on each collection. Usually flows represent cold streams, but

there is a SharedFlow subtype that represents hot streams. In addition to that,

any flow can be turned into a hot one by the stateIn and shareIn operators, or

by converting the flow into a hot channel via the produceIn operator.

Listing (2.3) Kotlin Flow example.�
1 fun simple (): Flow <Int > = flow { // flow builder

2 for (i in 1..3) {

3 delay (100) // this represents an operation that takes time

4 emit(i) // emit next value

5 }

6 }

7

8 fun main() = runBlocking <Unit > {

9 // Launch a concurrent coroutine to check if the main thread is blocked

10 launch {

11 for (k in 1..3) {

12 println("I’m not blocked $k")
13 delay (100)

14 }

15 }

16 // Collect the flow

17 simple ().collect { value -> println(value) }

18 }
� �
Listing (2.4) Kotlin Flow example result.�

1 I’m not blocked 1

2 1

3 I’m not blocked 2

4 2

5 I’m not blocked 3

6 3
� �
The example Listing 2.3 demonstrates the asynchronous nature of Kotlin Flow

and how it allows concurrent execution without blocking the main thread. The

simple function creates a flow using the flow builder. Inside the flow, it emits

values from 1 to 3 with a delay of one hundred milliseconds between each emission.

6A concurrency design pattern that allows to write asynchronous, non-blocking code in a
sequential style.

CHAPTER 2. BACKGROUND 11

2.3. AGGREGATE COMPUTING

The delay simulates an operation that takes time, such as network calls or disk I/O.

In the main function, a coroutine is launched using launch to run concurrently with

the main thread. This coroutine prints messages indicating that it is not blocked

and introduces delays between each message. As the flow is collected in the main

coroutine, the emitted values are printed and interleaved with the messages from

the concurrent coroutine (Listing 2.4). This demonstrates that the main thread is

not blocked during the execution of the flow, thanks to the asynchronous nature

of flows.

2.3 Aggregate Computing

Aggregate computing is a method for designing intricate coordinations in dis-

tributed systems, particularly for Collective Adaptive Systems (CAS) [18]. The

approach primarily centers on the notion that understanding system interactions

is more straightforward when viewed in the context of information flowing through

the system as a whole, as opposed to focusing on individual devices and their in-

teractions with peers and the environment [19].

Aggregate computing is especially suitable for scenarios where the problem at

hand involves a network of devices possessing the following characteristics:

• Openness, indicating that the surrounding environment where devices op-

erate can undergo unforeseen changes and faults.

• Large scale, involving a potentially extensive number of devices or agents

that necessitate effective abstractions for coordination.

• Intrinsic adaptiveness, signifying the capability to respond to significant

events to ensure the overall resilience of the system.

Addressing these considerations requires an approach grounded in self-organization,

where a cohesive and resilient coordination behavior arises from localized coordi-

nation abstractions. Another objective of aggregate computing is to provide de-

velopers with a means to articulate the behavior of distributed systems possessing

the aforementioned features in a composable and declarative manner. This enables

12 CHAPTER 2. BACKGROUND

2.3. AGGREGATE COMPUTING

the creation of diverse layers that progressively align with specific application do-

mains. This layered approach enhances scalability by effectively addressing the

complexities inherent in the domain.

Aggregate computing builds upon the principles of Field Calculus (FC) (Sec-

tion 2.3.2) but adds abstraction layers to address scalability and resilience chal-

lenges (Figure 2.4). These layers hide the complexity of distributed coordination

and support efficient system engineering. The methodology ensures simplicity and

transparency in module composition, tailoring coordination mechanisms to differ-

ent subsystems based on varying requirements. Additionally, it abstracts away

intricate implementation details, enabling programmers to focus on high-level sys-

tem design rather than low-level intricacies. The introduction of “resilient coor-

dination operators” is fundamental in concealing complexity and ensuring system

robustness. By providing standardized ways to handle failures and adapt to chang-

ing conditions, these operators contribute to the overall efficiency and reliability

of distributed coordination systems.

2.3.1 Abstractions

Aggregate computing models a distributed system as a set D of devices, ranged

over by δ. On top of that, a reflexive 7 neighboring relation indicates the devices

with which one can communicate (which is application-dependent and can be used

to describe logical or physical proximity). In addition, each device has a set of

sensors that enable the perception of the environment.

The primary abstraction introduced by aggregate computing is the computa-

tional field (or simply field), which is a function ϕ : D 7→ L mapping each device

δ ∈ D to a local value l ∈ L [20]. A field evolution is a dynamically changing

field, and a field computation takes field evolutions as inputs and produces field

evolutions as outputs. These outputs are defined in such a way that they change

tracking input changes.

The key idea of aggregate computing is that any field computation (global in-

terpretation) can be mapped to a single-device behavior that is iteratively executed

by all the devices in the network (local interpretation). Each iteration executed

7Each device is a neighbor of itself.

CHAPTER 2. BACKGROUND 13

2.3. AGGREGATE COMPUTING

Figure 2.4: Aggregate programming abstraction layers. The software and hardware
capabilities of particular devices are used to implement aggregate-level field calcu-
lus constructs. These constructs are used to implement a limited set of building-
block coordination operations with provable resilience properties, which are then
wrapped and combined to produce a user-friendly API for developing situated IoT
systems.

14 CHAPTER 2. BACKGROUND

2.3. AGGREGATE COMPUTING

by a device is called a computation round and can be subdivided into three steps:

• sense: the device gathers information coming from its neighbors and local

sensors, which are collected to create its local context (or local state) for the

current round;

• eval: the computation defined by the behavior is evaluated against the local

context, producing an export ;

• broadcast: the export is broadcasted to all the device’s neighbors, which in

turn collect and use this information in their future rounds.

2.3.2 Field Calculus

Aggregate computing builds from a foundation of the field calculus, a functional

programming model for the specification and composition of collective behaviors

with formally equivalent local and aggregate semantics.

The concept of field calculus was introduced in [21] as a fundamental core

calculus designed to encapsulate the essential elements found in languages utiliz-

ing computational fields. These include functions operating over fields, functional

composition involving fields, the progression of fields over time, the creation of

fields of values based on neighboring elements, and the limitation of a field compu-

tation to a specific sub-region within the network. While its syntax, typing, and

semantics are deeply discussed in [19] and are omitted here for simplicity, a brief

description of its elements is presented below and in Figure 2.5:

• a field calculus program P consists of a sequence of function declarations F̄

followed by the main expression e;

• an expression e can be:

– a variable x, e.g., a function parameter;

– a local value l, such as a boolean, number, string, pair, tuple, etc;

– a neighboring field value ϕ, e.g., a map of neighbors to the distances to

those neighbors;

CHAPTER 2. BACKGROUND 15

2.3. AGGREGATE COMPUTING

Figure 2.5: Abstract syntax of the field calculus.

– a function call f(ē) to a user-declared function or a built-in function,

such as a mathematical or logical operator, a data structure operation,

or a function returning the value of a sensor;

– a branching expression if(e1){e2}{e3} which splits computation into

isolated sub-regions, where devices belonging to one subregion cannot

communicate with those belonging to the other, resulting in e2 where

and when e1 evaluates to true, and in e3 otherwise;

– a nbr(e) construct, which creates a neighboring field value that maps

each neighbor to the latest result of evaluating e;

– a rep(e1){(x) ⇒ e2} construct, which models state evolution over time.

This construct retrieves the value v computed for the whole rep expres-

sion in the last evaluation round (the value produced by evaluating the

expression e1 is used at the first evaluation round) and updates it with

the value produced by evaluating the expression obtained from e2 by

replacing the occurrences of x by v.

To work properly, the semantics of nbr and rep require a way to access, respec-

tively, the last registered state of each neighbor and the last registered output of

the device itself. In addition, this process should be made in such a way that differ-

ent instances of rep and nbr cannot inadvertently “swap” their respective value.

This process is called alignment, and it has the consequence that two branches

of an if expression execute in isolation, meaning that two devices that execute

16 CHAPTER 2. BACKGROUND

2.3. AGGREGATE COMPUTING

different branches cannot communicate with each other inside their branches. In

practice, this process is done by carefully constructing the export of an expression

as an evaluation tree that represents the aggregate computation. The complete

semantics of export construction and alignment can be found in [20].

2.3.3 Field Calculus Extensions

The Share Operator

In recent research on the universality of the field calculus, a limitation in the

efficiency of information propagation has been identified [22]. This limitation

arises from the combination of time evolution and neighbor interaction operators

in the original field calculus, resulting in a delay that restricts the speed at which

information can be effectively propagated.

The delay stems from the separation between state sharing (nbr) and state

updates (rep). Specifically, when information is received through a neighbor op-

eration, it must be retained and remembered through a state update before it can

be shared onward during the subsequent execution of the neighbor operation. This

process is illustrated in Figure 2.6.

This delay in information propagation has implications for the efficiency and

effectiveness of systems or models built upon the field calculus framework. Re-

searchers may need to explore alternative approaches or optimizations to over-

come this limitation and enhance the speed of information dissemination within

such systems.

In [22] is proposed a solution to the limitation mentioned by introducing the

share construct as an extension to the field calculus. This extension is designed

to overcome the delay in information propagation by integrating time evolution

and neighbor interaction into a single atomic coordination primitive.

The share construct leverages the asynchronous protocol of the field calculus,

enabling it to perform several crucial operations simultaneously:

1. observation of neighbors’ values;

2. reduction to a single local value;

CHAPTER 2. BACKGROUND 17

2.3. AGGREGATE COMPUTING

Figure 2.6: Handling state sharing (nbr) and memory (rep) separately injects
a delay while information “loops around” to where it can be shared (top) while
combining state sharing and memory into the new share operator eliminates that
delay (bottom).

3. update of a local variable and sharing of the updated value.

By incorporating these functionalities into a single atomic operation, the share

construct enables the immediate sharing of information received from neighbors

as soon as it is integrated into the system’s state. This eliminates the need to wait

for the next computation round, effectively addressing the delay in information

propagation identified in the original field calculus framework.

The XC Language

Programming distributed systems presents significant challenges, primarily stem-

ming from issues such as concurrency, asynchronous execution, message loss, and

device failures. These complexities are particularly pronounced in homogeneous

distributed systems, wherein devices are similar and interact with neighboring

devices while executing identical programs.

XC is a programming language introduced in [23], tailored for the development

of homogeneous distributed systems. Within XC, developers craft a singular pro-

gram that each device executes, facilitating collective emergent behavior. The lan-

18 CHAPTER 2. BACKGROUND

2.3. AGGREGATE COMPUTING

guage’s framework abstracts away complexities such as concurrency, asynchronous

execution, message loss, and device failures. A minimalist approach is adopted,

incorporating a single declarative primitive responsible for communication, state

management, and connection oversight (exchange). The alignment mechanism

within XC enables developers to abstract over asynchronous execution while pre-

serving composability.

XC features a single communication primitive:

exchange(ei, (n) ⇒ return er send es)

which de-sugars to:

exchange(ei, (n) ⇒ (er,es))

and is evaluated as follows:

1. the device computes the local value li of ei (the initial value);

2. it substitutes variable n with the nvalue (neighboring value) w of messages

received from the neighbors for this exchange, using li as default. The ex-

change returns the (neighboring or local) value vr from the evaluation of

er;

3. es evaluates to a nvalue ws consisting of local values to be sent to neighbor

devices δ′, that will use their corresponding ws (δ
′) as soon as they wake up

and perform their next execution round.

Often, expressions er and es coincide, hence we provide:

exchange(ei, (n) ⇒ retsend e)

as a shorthand for:

exchange(ei, (n) ⇒ (e,e))

Another common pattern is to access neighbors’ values, which we support via:

CHAPTER 2. BACKGROUND 19

2.3. AGGREGATE COMPUTING

nbr(ei, es) = exchange(ei, (n) ⇒ return n send es)

In nbr(ei, es), the value of expression es is sent to neighbors, and the values

received from them (gathered in n together with the default from ei) are returned

as a nvalue, thus providing a view on neighbors’ values of es. It is crucial for the

expressivity of XC that exchange (hence nbr) can send a different value to each

neighbor, to allow custom interaction.

2.3.4 Reactive and Proactive Models

Aggregate computing emerged as a prominent approach for programming self-

organization, with the benefits of formality, abstraction, compositionality, and

pragmatism. Formality stems from building the approach over field calculus with

well-defined language semantics.

Though conceptually simple, in the round-based model, discussed in [20], each

round of a device is alternated with some sleeping time during which it collects

information from neighboring devices. This way of managing computation can be

thought of as a proactive model since it is the device that decides when computation

should occur based on its internal scheduler.

The round-based model could be more efficient because it fully re-evaluates

the context and the whole program without tracking change. Though it might

be acceptable for predictable patterns of environmental change, this becomes

largely suboptimal for highly variable dynamics. Indeed, the round-based ap-

proach seems to be a legacy of imperative languages or solutions featuring limited

compositionality. Given this motivation, taking inspiration from the functional re-

active paradigm, in [16] a reactive self-organization programming language, called

FRASP, is proposed. This model enables the decoupling of program logic from its

scheduling; the details will be discussed more deeply in Chapter 3.

20 CHAPTER 2. BACKGROUND

Chapter 3

Analysis

This chapter delves into an in-depth examination of various state-of-the-art frame-

works and methodologies in the field (Section 3.1). It presents a comprehensive

overview of Protelis, ScaFi, FCPP, Collektive, and FRASP, analyzing their respec-

tive contributions. Through a comparative lens, this chapter aims to elucidate the

evolution of these technologies and their impact on the domain.

Following the exploration of existing frameworks, the chapter transitions into

the analysis of FRASP (Section 3.2) and Collektive (Section 3.3), shedding light

on their architecture and detailed design.

Furthermore, the chapter delves into the re-implementation of FRASP into

Collektive (Section 3.4), outlining possible issues and solutions designed to over-

come them. In particular, it evaluates the feasibility of reactive aggregate program-

ming in Kotlin, offering valuable perspectives on the re-implementation process

and its implications.

3.1 State of the Art

3.1.1 Protelis

Protelis [24] is based on field calculus and is closely related to Proto [25]. It in-

herits spatial computing features from the field calculus, which provides universal-

ity, consistency, and self-stabilization properties. However, Protelis improves over

Proto by offering a richer API through Java integration, support for code mobility

CHAPTER 3. ANALYSIS 21

3.1. STATE OF THE ART

Figure 3.1: Protelis abstract syntax.

through first-order functions, and a syntax inspired by C-family languages.

The syntax of Protelis (Figure 3.1) is presented in abstract form. It uses meta-

variables to represent names of user-defined functions (f), variables and function

arguments (x), literal values (l), built-in functions and operators (b), Java method

names (m), and aliases of static Java methods (#a). The syntax employs con-

ventions like comma-separated lists and semi-colon separators for sequences of

elements.

Protelis adopts a familiar C- or Java-like syntax, making it more accessible

and reducing barriers to adoption. Despite its syntactic similarity to imperative

languages, Protelis is purely functional. Programs consist of a sequence of function

definitions, followed by a main block of statements. Functions are defined with

curly brackets and can contain sequences of statements or expressions. Each state-

ment is an expression to be evaluated (e), possibly in the context of the creation

of a new variable (let x = e) or a re-assignment (x = e).

Example: Rendezvous at a Mass Event

In large public events, it can be challenging to meet with companions due to

crowded areas, inaccessible rendezvous points, or difficulty in accessing cloud-based

services.

Utilizing peer-to-peer geometric calculations across a network of devices to

22 CHAPTER 3. ANALYSIS

3.1. STATE OF THE ART

compute a rendezvous1 route is the proposed solution to the problem. The solution

is demonstrated in a simulated city center environment (Figure 3.2), using London

as an example, with devices distributed randomly across the city streets. Each

device has a communication range, and the goal is for two individuals (represented

by their devices) to meet at a specific location.

(a) Initial configuration. (b) Path begins to form.

(c) Path continues to extend. (d) Path computation complete.

Figure 3.2: Example of computing a rendezvous route for two people in a crowded
urban environment.

The implementation (Listing 3.1) involves injecting the environment of the

devices with properties representing their owners (e.g., Alice and Bob). The algo-

rithm measures the distance to one of the participants, creates a potential field,

and builds an optimal path from the other participant, descending the distance

potential field to reach the first participant at zero distance. The algorithm utilizes

two main functions: distanceTo and descend. distanceTo measures the distance

to one of the participants. Given a device and a potential field, descend builds a

path of devices connecting the device with the source of the potential field. The

1A meeting at an agreed time and place.

CHAPTER 3. ANALYSIS 23

3.1. STATE OF THE ART

Listing 3.1: Rendezvous implementation in Protelis.�
1 // Follow the gradient of a potential field down from a source

2 def descend(source ,potential) {

3 rep(path <- source) {

4 let nextStep = minHood(nbr([potential , self.getId()]));

5 if (nextStep.size() > 1) {

6 let candidates = nbr([nextStep.get(1), path]);

7 source || anyHood ([self.getId (), true] == candidates)

8 } else {

9 source

10 }

11 }

12 }

13

14 def rendezvous(person1 , person2) {

15 descend (person1 == owner , distanceTo(person2 == owner))

16 }

17

18 // Example of using rendezvous

19 rendezvous ("Alice", "Bob");
� �
algorithm elegantly compresses the entire process into a few lines of code, utilizing

the nbr operator to exchange required information without explicitly declaring any

communication protocol.

As Figure 3.2 shows, the simulation rapidly identifies a chain of devices (rep-

resented by red dots) that marks a sequence of waypoints for both device owners

to walk and meet in the middle. The algorithm dynamically adjusts the path if

one of the device owners moves in a different direction, ensuring it continues to

recommend the best path for rendezvous.

3.1.2 ScaFi

ScaFi [26] is a Scala2-based library and framework designed for aggregate program-

ming. It facilitates the development of distributed algorithms where computations

are performed by individual devices in a network, and the results are aggregated

across the network. The core concepts and constructs of ScaFi’s API are outlined

as follows:

Expression Evaluation An expression written using the ScaFi API is evaluated

by each device once per computation round.

2https://www.scala-lang.org/.

24 CHAPTER 3. ANALYSIS

https://www.scala-lang.org/

3.1. STATE OF THE ART

Fields Fields are represented as atomic values without any particular wrapper.

They indicate the value of the field at the device performing the computation.

Neighboring Field The concept of “neighboring field” from field calculus is

not explicitly represented (not reified). Spatial computation (nbr and nbrvar

constructs) is only available inside a special scope provided by the foldhood con-

struct.

Export The export for each iteration is constructed by the ScaFi engine. It

applies side effects to an internal data structure as the constructs are invoked,

thereby constructing the evaluation tree.

Constructs The semantics of the constructs defined in ScaFi are described be-

low:

• rep(init)(f): captures state evolution, starting from an init value that is

updated each round through f;

• nbr(e) captures communication, of the value computed from its e expression,

with neighbors; it is used only inside the argument expr of

foldhood(init)(acc)(expr), which supports neighborhood data aggrega-

tion, through a standard “fold” of functional programming with initial value

init, accumulator function acc, and the set of values to fold over obtained

by evaluating expr against all neighbors;

• branch(cond)(th)(el) captures domain partitioning (space-time branch-

ing): essentially, the devices for which cond evaluates to true will run sub-

computation th, while the others will run el;

• mid is a built-in sensor providing the identifier of devices;

• sense(sensorName) abstracts access to local sensors;

• nbrvar(sensorName) abstracts access to “neighboring sensors” that behave

similarly to nbr but are provided by the platform: i.e., such sensors provide

a value for each neighbor.

CHAPTER 3. ANALYSIS 25

3.1. STATE OF THE ART

Gradient Implementation in ScaFi

A (self-healing) gradient (Figure 3.3) is a distributed behavior that self-stabilizes,

in each device of the distributed system, to a value denoting its minimum distance

from the closest source node (for instance, computed by summing the neighbor-

to-neighbor distances along the shortest path to the source), adapting to changes

in the source set and distances. By following the neighbors of maximum decrease

(resp. increase) of the gradient value, i.e., by descending (resp. ascending) the

gradient, it is possible to implement efficient hop-by-hop information flows, that

can be useful for data propagation and collection.

Figure 3.3: A graphical representation of the gradient implementation in ScaFi
after stabilization. Each device of the network is labeled with its distance from
the source (in parenthesis) and its ID. The source device is the one with ID 1.
Note that devices that are not connected to the source are considered to be at an
infinite distance from it.

The implementation of a gradient using ScaFi is presented in Listing 3.2, the fol-

26 CHAPTER 3. ANALYSIS

3.1. STATE OF THE ART

lowing is a brief description of the program: The gradient value at each node is dy-

namically evolved using rep. This is necessary to allow a node to share its previous

gradient value with neighbors. The default value is Double.PositiveInfinity

since by default a node is at an infinite distance from a source (since it may

not be reachable in general). The mux(c)(th)(el) evaluates its expression th

and el and then uses the Boolean condition c to select either the former (when

c is true) or the latter (when c is false). If a node is a source (i.e., if sensing

the Boolean sensor source returns true), then its gradient value is 0 (by defini-

tion). If a node is not a source, then will take as its gradient value the output

of the expression minHoodPlus(nbr{distance} + nbrRange). minHoodPlus(e)

is a variant of foldhood which does not consider the device itself when folding

over the neighborhood. Namely, it selects the minimum value among those ob-

tained by evaluating e against the neighbors. The argument of minHoodPlus

is nbr{distance} + nbrRange(), which amounts to calculating, for each neigh-

bor, the sum of the neighbor’s most recent gradient value and the corresponding

distance to that neighbor (obtained by neighboring sensor nbrRange, which is

nbrvar[Double](‘‘nbrRange’’)).

Listing 3.2: Implementation of gradient in ScaFi.�
1 object MyAggregateProgram extends AggregateProgram {

2

3 override def main() = gradient(isSource)

4

5 def gradient(isSource: Boolean): Double =

6 rep(Double.PositiveInfinity)(distance =>

7 mux(isSource){

8 0.0

9 }{

10 minHoodPlus(nbr{distance} + nbrRange)

11 }

12)

13

14 def isSource = sense[Boolean]("source")

15 def nbrRange = nbrvar[Double]("nbrRange")

16 }
� �

CHAPTER 3. ANALYSIS 27

3.1. STATE OF THE ART

3.1.3 FCPP

FCPP [27] is a C++14 library implementing field calculus and providing tools for

distributed system simulation.

Its extensible component-based architecture allows customization for diverse

application scenarios, such as Internet-of-Things (IoT) deployments, simulations,

and self-organizing cloud applications, which require fine-grained parallelism to

scale and for which performance improvements translate into a cost reduction.

Users can add components tailored to specific functionalities, enhancing flexibil-

ity and applicability. The library incorporates compile-time optimizations and

supports parallel execution, enabling efficient simulation of both systems and self-

organizing cloud applications. Currently, FCPP focuses on distributed system

simulations but already significantly reduces simulation costs, accelerating the

development of new distributed algorithms. These features offer a path for a con-

venient extension to address previously ineffective scenarios.

Existing implementations often have high-performance requirements, unsuit-

able for resource-constrained microcontrollers. FCPP’s lightweight nature makes

it well-suited for these systems.

Self-organizing cloud applications necessitate fine-grained parallelism for scala-

bility, and performance improvements directly translate to cost reduction. FCPP’s

support for parallelism caters to this need.

Aggregate Program Example with FCPP

The example function provided in Listing 3.3 utilizes the Adaptive Bellman-Ford

algorithm to estimate distances from devices where the source parameter is true.

This function explicitly takes a node object as input, enabling access to its func-

tionalities, including the nbr dist()method. This method returns a field<double>

representing the estimated distances to neighboring nodes.

The call point parameter serves two purposes:

• Updating the node.stack trace (shared functionality across all aggregate

functions, as noted in the first line).

28 CHAPTER 3. ANALYSIS

3.1. STATE OF THE ART

Listing 3.3: Implementation of the Adaptive Bellman Ford algorithm in FCPP.�
1 template <class node_t >

2 double abf(node_t& node , trace_t call_point , bool source) {

3 trace_call trace_caller(node.stack_trace , call_point);

4 return nbr(node , 0, INF , [&] (field <double > d) {

5 double v = source ? 0.0 : INF;

6 return min_hood(node , 1, d + node.nbr_dist (), v);

7 });

8 }
� �
• Facilitating the aggregation of function calls (e.g., nbr and min hood) by

providing an incrementing index.

3.1.4 Collektive

Collektive3 provides the user with a DSL, implemented in Kotlin, that allows

to create aggregate programs transparently. It was designed with the following

principles in mind: transparency, minimality and portability.

Transparency refers to the clear and concise information it provides about how

the underlying system behaves, such as data processing, storage, and communica-

tion between nodes. Transparency helps to reduce complexity, making it easier to

understand and maintain large and complex systems.

Collektive is designed with the fewest possible constructs and abstractions while

still offering the required functionalities. This reduces the complexity of the sys-

tem, making it easier to maintain and debug, and lowers the overhead associated

with using the DSL, which is particularly important for systems that require high

performance and scalability.

Portability refers to its ability to run on various platforms and environments,

including different operating systems, cloud platforms, and hardware architectures.

This enables systems built with the DSL to be easily deployed and run in differ-

ent environments, which is crucial for systems requiring deployment in multiple

locations or scalability to meet changing demands.

Constructs implemented in Collektive are defined in Listing 3.4, while the se-

mantics are described below:

3https://github.com/Collektive/collektive.

CHAPTER 3. ANALYSIS 29

https://github.com/Collektive/collektive

3.1. STATE OF THE ART

Listing 3.4: Base constructs implemented in Collektive.�
1 interface Aggregate <ID : Any > {

2 fun <Initial > exchange(

3 initial: Initial ,

4 body: (Field <ID , Initial >) -> Field <ID, Initial >,

5): Field <ID , Initial >

6 fun <Initial , Return > exchanging(

7 initial: Initial ,

8 body: YieldingScope <Field <ID, Initial >, Field <ID, Return >>,

9): Field <ID , Return >

10 fun <Initial > repeat(initial: Initial , transform: (Initial) -> Initial):

Initial

11 fun <Initial , Return > repeating(initial: Initial , transform: YieldingScope <

Initial , Return >): Return

12 }
� �
• exchange: It manages the computation of values between neighbors in a

specific context. It computes a body function starting from the initial

value and the messages received from other neighbors, then sends the results

from the evaluation to specific neighbors or everyone, it is contingent upon

the origin of the calculated value, whether it was received from a neighbor

or if it constituted the initial value. The result of this function is a field with

as messages a map with as key the ID of the devices across the network and

the result of the computation passed as relative local values.

• exchanging: Same behavior of exchange but this function can yield a Field

of Return value.

• repeat: Iteratively updates the value computing the transform expression

at each device using the last computed value or the initial.

• repeating: Iteratively updates the value computing the transform expres-

sion from a YieldingContext at each device using the last computed value

or the initial.

Example of Gradient in Collektive

In the Listing 3.5, the implementation of the gradient in Collektive is presented. It

uses the share construct with POSITIVE INFINITY as the initial value. The when

30 CHAPTER 3. ANALYSIS

3.1. STATE OF THE ART

Listing 3.5: Gradient implementation in Collektive.�
1 fun Aggregate <Int >. gradient(source: Boolean): Double =

2 share(POSITIVE_INFINITY) {

3 val dist = distances ()

4 when {

5 source -> 0.0

6 else -> (it + dist).min(POSITIVE_INFINITY)

7 }

8 }
� �
construct is used to select the result of the expression based on the type of the

node:

• if the node is the source the result is 0.0;

• if the node is not the source it must consider the neighbor where the value

of the gradient is smallest and sum the distance from that neighbor.

3.1.5 FRASP

As said in Section 2.3.4, aggregate computing makes use of a round-based execu-

tion model, that can be defined as proactive. This approach is simple to reason

about but limited in terms of flexibility in scheduling and management of sub-

activities (and response to contextual changes). In [16] is proposed a reactive

self-organization programming approach, called FRASP, that enables the decou-

pling of the program logic from the scheduling of its sub-activities. This model

maintains the same expressiveness and benefits of aggregate programming while

enabling significant improvements in terms of scheduling controllability, flexibility

in the sensing/actuation model, and execution efficiency.

Reactive Model

FRASP is based on the functional reactive programming (FRP) paradigm and

considers continuous time, Time = {t ∈ R | t ≥ 0}. Time-varying values are

called cells and may be conceptually modeled by generic functions of type Cell

a: Time → a. Then, streams are discrete-time values and may be modeled by

generic functions of type Stream a: [Time] → [a], namely, mapping a sequence

CHAPTER 3. ANALYSIS 31

3.1. STATE OF THE ART

of (increasing) sample times to a sequence of corresponding values. While cells

model state, streams model state changes.

Abstractions and Primitives

One of the main differences between the proactive and reactive models is that the

latter allows the self-organizing collective computation to be expressed as a graph

of reactive sub-computations. Each sub-computation is called flow and represents

it programmatically through type Flow[T], where T is the type of the output of

the wrapped computation. A Flow is essentially a function that takes a Context

and returns a cell of Exports, possibly depending on the exports of other Flows,

recursively.

The details of the syntax and semantics of FRASP are discussed in detail in

Section III of [16] while in this section they are presented in a simplified manner:

• constant(e) returns a constant flow that always evaluates to the argument

that has been passed;

• sensor(name) returns the flow of values produced by the sensor with the

given name;

• mid() returns the constant flow of the device ID;

• mux(c){t}{e} is an expression that returns a flow with the same output of

flow t when the Boolean flow c is true and the output of flow e when c is

false;

• nbr(f) handles communication with neighbors in both directions at once, it

takes a flow f as a parameter;

• branch(c){t}{e} evaluates and returns the value of expression t when c

evaluates to true. This enables a form of distributed branching, where devices

that happen to execute t will not interact with those that executed e (and

vice versa);

• loop(init,ft) evolves a piece of state (initially, init) by applying function

ft mapping the previous state’s flow to the next state’s flow.

32 CHAPTER 3. ANALYSIS

3.1. STATE OF THE ART

Gradient Implementation in FRASP

Listing 3.6 provides the implementation of the gradient in FRASP. The function

takes the boolean src flow as input, denoting whether the executing node is the

source of the gradient or not. The external loop is used to progressively evolve

the current gradient value distance starting from an infinite value (as, initially,

devices do not know whether a source is reachable). Internally to the loop, mux

is used to select one of two values: if the node is a source, then its gradient value

is 0 (base case); otherwise, the gradient should be the minimum value among the

neighbors’ gradient values augmented by the distance (nbrRange) from that very

neighbor. Construct liftTwice is used to combine (using the sum: +) the two

flows nbrRange (distances to neighbors) and nbr(distance) (neighbors’ gradient

values).

Listing 3.6: Gradient implementation in FRASP.�
1 def gradient(src: Flow[Boolean]): Flow[Double] =

2 loop(Double.PositiveInfinity) { distance =>

3 mux(src) {

4 constant (0.0)

5 } {

6 liftTwice(nbrRange , nbr(distance))(_ + _).withoutSelf.min

7 }

8 }
� �

The reactive dataflow graph in Figure 3.4a corresponds to Listing 3.6. Fig-

ure 3.4a provides the local view of the computation for a single node (where the

layers denote different semantic kinds of dependencies), whereas Figure 3.4b shows

the distributed dependency graph. The arrows denote dependencies. The dashed

arrows denote dependencies based on platform-level scheduling and node interac-

tion; for instance, a red block depends on changes corresponding to neighbors’ red

blocks and is communicated via message passing.

CHAPTER 3. ANALYSIS 33

3.1. STATE OF THE ART

(a) Node view.

(b) Distributed view (with neighbor dependencies).

Figure 3.4: Dependencies between sub-computations in gradient program (List-
ing 3.6).

34 CHAPTER 3. ANALYSIS

3.2. DESIGN OF FRASP

3.2 Design of FRASP

3.2.1 Architecture

The architecture of FRASP is shown in Figure 3.5. The design is organized

into three packages: core, which includes basic type definitions (Core) as well

as the components for the DSL (Language for primitives and RichLanguage for

other built-ins) and its “virtual machine” (Semantics), overall captured by an

Incarnation; frp, which provides an interface to the FRP engine (FrpEngine),

possibly also decoupling from the specific FRP library adopted, as well as exten-

sions (FrpExtensions) useful for the definition of FRASP constructs; and simu-

lation, which provides basic simulation support.

Figure 3.5: FRASP architecture.

CHAPTER 3. ANALYSIS 35

3.2. DESIGN OF FRASP

NeighborField
T

neighborValues(): Map[DeviceId, T]
fold(seed: T, combine: (T, T) => T): T
lift[A, B, C](a: NeighborField[A], b: NeighborField[B], f: (A, B) => C): NeighborField[C]

Flow
T

run(path: Seq[Slot], context: Context): Cell[Export[T]]

Export
T

root(): T
children(): Map[Slot, Export[Any]]
followPath(path: Seq[Slot]): Option[Export[Any]]

Language

mid(): Flow[DeviceId]
constant[A](a: A): Flow[A]
sensor[A](id: LocalSensorId): Flow[A]
branch[A](cond: Flow[Boolean], th: Flow[A], el: Flow[A]): Flow[A]
mux[A](cond: Flow[Boolean], th: Flow[A], el: Flow[A]): Flow[A]
loop[A](init: A, f: Flow[A] => Flow[A]): Flow[A]
nbr[A](a: Flow[A]): Flow[NeighborField[A]]
nbrSensor[A](id: NeighborSensorId): Flow[NeighborField[A]]
lift[A, B, C](a: Flow[A], b: Flow[B], f: (A, B) => C): Flow[C]

NeighborState

sensor[A](id: NeighborSensorId): A
exported(): Export[Any]

Context

selfId(): DeviceId
neighbors(): Cell[Map[DeviceId, NeighborState]]
sensor[A](id: LocalSensorId): Cell[A]

Slot

Operand(index: Int)
Condition
Then
Else
Nbr
Key[T](value: T)

produces

produces

emits uses

Figure 3.6: Detailed design of FRASP.

36 CHAPTER 3. ANALYSIS

3.3. DESIGN OF COLLEKTIVE

3.2.2 Detailed Design

FRASP has been implemented in Scala, using Sodium4 as FRP library. Scala is

well known for its suitability as a host for embedded DSLs and aggregate comput-

ing embeddings as well. The design of the FRASP DSL is detailed in Figure 3.6.

Following the system/execution model described in Section 3.1.5, the input and

output of a (sub-)program are modeled through an interface Context, providing

access to local sensor data and neighbor data; and an interface Export, capturing

outputs and data that must be shared with neighbors. In particular, an Export is

modeled as a tree where each node is a Slot (corresponding to a particular lan-

guage construct) with an associated value, and can be located through a path of

slots—e.g., S1/S2/S3 identifies a node in the export tree, where S1 depends on S2

which depends in turn on S3 (so, a change in the output S3 will cause the expres-

sion corresponding to S2 to re-evaluate, and possibly S1 in turn). Flow is the type

of a reactive (sub-)computation, which takes a Context (providing its inputs), a

Seq[Slot] as path (indicating its position in the export tree), and returns Cell

(i.e. a time-varying value) of Export. Each Language construct returns a Flow:

therefore, the constructs do not immediately run upon evaluation, but rather an

executable, reactive object denoting a computation graph whose nodes will execute

as a response to change (Figure 3.4a). Access to neighbor-related data is medi-

ated by a NeighborField abstraction, which is the same provided by constructs

supporting interaction with neighbors, i.e., nbr and nbrSensor.

3.3 Design of Collektive

3.3.1 Architecture

Collektive has been developed as a Gradle project composed of three different

submodules. The cited submodules are, namely:

• plugin, that is divided into two submodules:

– gradle-plugin: the necessary plugin used by a gradle project to in-

clude the compiler plugin.

4https://github.com/SodiumFRP/sodium.

CHAPTER 3. ANALYSIS 37

https://github.com/SodiumFRP/sodium

3.3. DESIGN OF COLLEKTIVE

– compiler-plugin: the compiler plugin is used to modify the data struc-

ture which is responsible for keeping track of the stack at runtime. For

each aggregate function and branch construct, the stack data structure

is updated to allow alignment whenever necessary.

• dsl: the actual DSL implementation in Kotlin Multiplatform, where the logic

is implemented and that exposes the operators of the aggregate computing.

• alchemist-incarnation-collektive: allows to integrate Collektive simu-

lations in the Alchemist [28] simulator.

3.3.2 Detailed Design

The detailed design of Collektive is presented in Figure 3.7. The Collektive class

represents a device with a specific localId and a Network to manage incoming

and outgoing messages, it takes a function to apply within the AggregateContext.

Collektive implements two different execution strategies:

• cycle: it applies once the aggregate function to the parameters of the device,

then returns the result of the computation.

• cycleWhile: it applies the aggregate function to the parameters of the device

while the condition is satisfied, then returns the result of the computation.

cycle and cycleWhile implicitly use the aggregate function, which is the en-

try point of the aggregate program. It computes an iteration of a device (localId),

taking as parameters the previous state, the messages received from the neigh-

bors and the compute with AggregateContext object receiver that provides the

implementation of the aggregate constructs. Another version of the aggregate

function computes an iteration of a device, over a network of devices, optionally

from a previous state (previousState), running the compute aggregate program.

The aggregate function returns an AggregateResult, which is the result of the

aggregate computation. It represents the localId of the device, the result of the

computation, the messages to send (toSend) to other devices and the new state

(newState) of the device.

38 CHAPTER 3. ANALYSIS

3.3. DESIGN OF COLLEKTIVE

«interface»

Aggregate

ID

localId: ID

exchange(...): Field<ID, Init ial>
repeat(...): Init ial
exchanging(...): Field<ID, Return>
repeat ing(...): Return
alignedOn(...): R

AggregateContext
ID

newState(): Map<Path, Object>
messagesToSend(): OutboundMessage<ID>

AggregateResult
ID, R

toSend: OutboundMessage<ID>
newState: Map<Path, Object>
result : R
localId: ID

Collekt ive
ID, R

state: Map<Path, Object>
localId: ID

cycle(): R
cycleWhile(Function1<AggregateResult<ID, R>, Boolean>): R

Companion

aggregate(ID, Iterable<InboundMessage<ID>>, Map<Path, Object>, Function1<Aggregate<ID>, R>): AggregateResult<ID, R>
aggregate(ID, Network<ID>, Map<Path, Object>, Function1<Aggregate<ID>, R>): AggregateResult<ID, R>

«interface»

Stack

dealign(): Unit
alignRaw(Object?): Unit
currentPath(): Path

«interface»

Path

tokens(): List<Object>

«interface»

Field

ID, T

neighborsCount: Int
localValue: T
localId: ID

«interface»

Network

ID

read(): Collect ion<InboundMessage<ID>>
write(OutboundMessage<ID>): Unit

Figure 3.7: Detailed design of Collektive DSL.

CHAPTER 3. ANALYSIS 39

3.3. DESIGN OF COLLEKTIVE

The interface Aggregate models the minimal set of aggregate operations and

holds the localId of the device executing the aggregate program.

The alignOn function is used for the alignment, it pushes in the stack the

pivot, executes the body and pops the last element of the Stack after it is called,

finally returns the body’s return element.

The AggregateContext class represents the context for managing aggregate

computation. It encapsulates the localId of the device, the messages received

from the neighbors, and the previous state (previousState) of the device. The

actual implementation of the aggregate constructs is defined in this class.

3.3.3 Alignment Processing Strategy

The alignment processing pursues the following strategy: in the first instance, all

the function definitions are visited and the ones involving aggregate computation

will be subject to alignment processing. Then, for each candidate function, the

plugin visits all the call sites in the body of the function and checks if the call has

an aggregate reference or if it is involved in an aggregate computation. If so, the

plugin will align the expression call. During the visiting of the function definition,

branch conditions are also visited aligning only the branches that involve aggregate

computation. If a branch body does not involve aggregate computation, the plugin

will not align it. Aligning the branches in this way, by default all the branches

follow the branch semantics of aggregate computing. The alignment strategy is

formalized below:

1. Each function definition exhibiting the following characteristics is the target

of the alignment processing:

• The function has an extensionReceiver of type Aggregate or a sub-

type of it.

• The function has a dispatchReceiver of type Aggregate or a subtype

of it.

• One or more of the function’s parameters are of type Aggregate or a

subtype of it.

40 CHAPTER 3. ANALYSIS

3.4. RE-IMPLEMENTATION OF FRASP IN COLLEKTIVE

2. For each candidate function, it aligns the call expressions having an aggregate

reference or in-depth they involve an aggregate computation.

3.4 Re-implementation of FRASP in Collektive

Given the considerations regarding the proactive computational model made in

Section 2.3.4 and the solution proposed in [16] with the related results of the

evaluations performed, it is decided to introduce the FRASP model in Collektive.

Analysis of the architectures of FRASP and Collektive, defined in Section 3.2 and

Section 3.3, respectively, reveals substantial differences in technology and design

choices. This considerably complicates the process of implementing the reactive

model into Collektive. The possible issues identified during the analysis are de-

scribed in Section 3.4.1.

3.4.1 Implementation Issues

Differences between Scala and Kotlin

The Scala implementation of FRASP is extremely concise, even though it models

several aspects of aggregate programming. In addition, the DSL provided is partic-

ularly ergonomic, so the user can create aggregate programs easily and effectively.

These characteristics of FRASP are due in part to the flexibility of Scala, which

is given by the constructs that the language implements. The following are some

Scala features that are used in FRASP but are not available by Kotlin:

• Given instances and using clauses: functional programming tends to

express most dependencies as simple function parameterization. This is clean

and powerful, but it sometimes leads to functions that take many parameters

where the same value is passed over and over again in long call chains to many

functions. Context parameters can help here since they enable the compiler

to synthesize repetitive arguments instead of the programmer having to write

them explicitly. Given instances define “canonical” values of certain types

that serve for synthesizing arguments to context parameters.

CHAPTER 3. ANALYSIS 41

3.4. RE-IMPLEMENTATION OF FRASP IN COLLEKTIVE

• Traits and self-types: self-types are a way to declare that a trait must be

mixed into another trait, even though it does not directly extend it. That

makes the members of the dependency available without imports. A self-

type is a way to narrow the type of this or another identifier that aliases

this.

Differences in Paths and Exports Management

Typically, in aggregate computing implementations that respect the proactive

model, paths are modeled as lists of tokens, while exports are represented by

making use of maps that have the path as the key and the result of evaluating

the sub-expression related to the path as the value. In FRASP, these entities are

represented in a completely different way; this is due to the need to properly model

the dependencies of reactive sub-expressions. In particular, an export is modeled

as a tree (using a specially defined data structure) where each node is a token with

an associated value and can be located through a path of tokens.

Diversity of Implemented Constructs

FRASP implements a reactive version of the constructs defined by the field cal-

culus, this allows a sub-expression to be automatically re-evaluated as one of the

sub-expressions on which it depends changes. On the other hand, in addition to the

field calculus constructs, Collektive implements a proactive version of exchange

and share, so a reactive version of these two constructs must be provided.

Divergences between Reactive and Proactive Models

In the proactive model, at each round, the aggregate expression is reevaluated

entirely, taking into account the following parameters passed in as input: previous

state, neighbor messages, and sensors states. This behavior differs completely

from the reactive model, where it is necessary to think in terms of dependencies

between information flows instead of computational rounds. In other words, it is

necessary to revisit the design of Collektive by modifying some aspects of it. The

state, sensors, and messages of neighbors must be modeled as reactive entities,

of which the values change over time; furthermore, in addition to modeling the

42 CHAPTER 3. ANALYSIS

3.4. RE-IMPLEMENTATION OF FRASP IN COLLEKTIVE

aggregate constructs so that they are reactive, it is necessary to adequately define

the dependencies between them and the context (state, sensors and neighbors

messages) in which they are executed.

3.4.2 Feasibility of Reactive Aggregate Programming in

Kotlin

Even before addressing the problems presented in Section 3.4.1, it is necessary

to understand whether it is possible to create a Kotlin version of FRASP and, if

so, analyze the similarities and differences with the model implemented in Scala,

considering, in particular, the ergonomics of the DSL. In this regard, an imple-

mentation of FRASP in Kotlin that makes use of the Flow library is proposed

in the analysis phase to demonstrate the actual feasibility. Reactive values are

modeled by making use of StateFlow<T>, whose behavior is similar to that of a

Cell, described in Section 3.1.5.

Figure 3.8 shows the design of the Kotlin version of FRASP. The implementa-

tion5 includes only the subset of features from the Scala version of FRASP needed

to demonstrate the feasibility of reactive aggregate programming. An aggregate

expression is represented by a dedicated data structure (AggregateExpression)

that produces a StateFlow<ExportTree<T>>, its behavior is similar to Flow[T]

described in Section 3.1.5. The context of a device (Context) includes neigh-

boring states, self ID and the state of the local sensors. Exports are modeled

through a tree-like recursive data structure (ExportTree) holding data of type T.

It exposes methods for accessing the children and the root element of a node

and navigating through the tree using a path. Semantics implements field cal-

culus functions (plus others useful in the reactive context) for constructing an

AggregateExpression. These functions include branch, constant, loop, mux,

neighbor, selfID, and sense. The enum Slot defines different types of tokens

used within the ExportTree structure.

Given the proposed design in Figure 3.8 and its implementation, to demon-

strate the ergonomics of the related DSL, the implementation of the gradient is

provided in Listing 3.7. The results obtained demonstrate the actual feasibility of

5https://github.com/FilippoVissani/kotlin-distributed-frp

CHAPTER 3. ANALYSIS 43

https://github.com/FilippoVissani/kotlin-distributed-frp

3.4. RE-IMPLEMENTATION OF FRASP IN COLLEKTIVE

«interface»

AggregateExpression

T

compute(List<Slot>, Context): StateFlow<ExportTree<T>>

«interface»

Context

selfID: Int
sensorsStates: StateFlow<Map<String, ?>>
neighborsStates: StateFlow<Map<Int, ExportTree<?>>>

updateLocalSensor(Str ing, T): Unit
receiveExport(Int, ExportTree<?>): Unit

«interface»

ExportTree

T

root: T
children: Map<Slot, ExportTree<?>>

followPath(List<Slot>): ExportTree<?>?

Semantics

mux(AggregateExpression<Boolean>, AggregateExpression<T>, AggregateExpression<T>): AggregateExpression<T>
neighbor(AggregateExpression<T>): AggregateExpression<Map<Int, T>>
branch(AggregateExpression<Boolean>, AggregateExpression<T>, AggregateExpression<T>): AggregateExpression<T>
loop(T, (AggregateExpression<T>) -> AggregateExpression<T>): AggregateExpression<T>
selfID(): AggregateExpression<Int>

Slot

Condit ion
Then
Else
Neighbor

Key<T>(valure: T)
Operand(index: Int)

produces

usesemits

Figure 3.8: Detailed design of Kotlin Distributed FRP.

the solution, not only that, the DSL appears ergonomic and easy to use, just like

the one proposed in Scala (Listing 3.6).

3.4.3 Solutions Identified

The main goal is to introduce the reactive paradigm into Collektive, replacing it

with the proactive one. At the same time, we want to make sure that the resulting

DSL is ergonomic and thus it is easy for the user to understand and to use it. It

should be noted that, given the diversity of the two architectures, it is not possible

to implement the FRASP model directly in Collektive, so an intermediate solution

must be identified.

Given the results obtained from the analysis reported in Section 3.4.2 and tak-

ing into consideration the possible implementation issues identified in Section 3.4.1,

we propose two possible solutions for implementing the reactive paradigm into

44 CHAPTER 3. ANALYSIS

3.4. RE-IMPLEMENTATION OF FRASP IN COLLEKTIVE

Listing 3.7: Gradient implementation in Kotlin Distributed FRP.�
1 fun gradient (): AggregateExpression <Double > {

2 return loop(Double.POSITIVE_INFINITY) { distance ->

3 mux(

4 sense(Sensors.IS_SOURCE.sensorID),

5 constant (0.0),

6 neighbor(distance)

7 .withoutSelf ()

8 .min()

9 .map { it + 1 }

10)

11 }

12 }
� �
Collektive:

• RMSM: it consists of building the reactive model on top of the proactive

one. This can be achieved by making the messages and sensors reactive;

every time the value of one of these is changed the expression is re-evaluated

entirely, executing a round. This solution has the advantage that the Collek-

tive DSL remains identical to the current one. On the other hand, it is not

possible to exploit the partial updates of the sub-expressions proposed in

FRASP, this translates into lower efficiency.

• PRM: it consists of re-engineering all aggregate constructs and context

definitions in Collektive to be reactive. In this case, important changes must

be made to the current design of Collektive, making the implementation

more complicated than the first solution. Furthermore, it is not possible

to guarantee the ergonomics of the resulting DSL, as the definition of the

aggregate constructs needs to be revised. The advantage of this solution

is that, as in FRASP, it is possible to model the dependencies of the sub-

expressions so that the latter can be updated only when necessary.

CHAPTER 3. ANALYSIS 45

3.4. RE-IMPLEMENTATION OF FRASP IN COLLEKTIVE

46 CHAPTER 3. ANALYSIS

Chapter 4

Design

This chapter delves into the design of a reactive extension for the Collektive

framework. Collektive enables the execution of aggregate computations across

distributed devices. This chapter introduces two novel models that incorporate

reactive principles into Collektive’s design.

The chapter begins by providing an overview of the current Collektive ar-

chitecture. It then outlines the proposed reactive architecture, highlighting the

introduced components and their functionalities (Section 4.1).

Following the architectural overview, the chapter dives into the detailed design

of two reactive models proposed (Section 4.2).

4.1 Architecture

As mentioned in Section 3.3.1, Collektive consists of three main modules:

alchemist-incarnation-collektive It is responsible for enabling the integration

of Collektive simulations into Alchemist.

compiler-plugin It takes care of visiting the abstract syntax tree of the aggre-

gate expression and modifying the function call stack to correctly align the devices

that execute the aggregate program.

CHAPTER 4. DESIGN 47

4.1. ARCHITECTURE

dsl This module defines the following components:

• aggregate: deals with defining the context related to a device, the semantics

of aggregate constructs, and the data structures necessary for path definition

and device alignment;

• field: contains the definition of computational field and the related func-

tionalities for manipulating the latter;

• state: defines the association between the paths and the results of their

evaluations;

• path: defines the data structures necessary to represent the abstract syntax

tree relating to the aggregate expression;

• networking: defines the data structures necessary for distributed device

communication.

Given the solutions proposed in Section 3.4.3, in both cases, it is necessary to

review some of the entities present in Collektive so that it is possible to detect

and react to their changes. Regardless of the detailed solution chosen, given that

the Collektive design allows it, it is possible to introduce the necessary function-

alities as an extension of the current ones. The proposed architecture is shown

in Figure 4.1, the components in gray are part of the current Collektive archi-

tecture, and those in orange introduce the entities that enable reactive aggregate

programming. The component reactive extends aggregate to introduce a re-

active version of the entities described above and network to allow reactive dis-

tributed communication between devices. The component flow.extensions is

used to simplify some operations for combining and mapping flows. According

to this design choice, the other modules in the project (compiler-plugin and

alchemist-incarnation-collektive) are not altered; consequently, the reactive

model introduced continues to make use of the compiler plugin for the definition

of the paths.

48 CHAPTER 4. DESIGN

4.1. ARCHITECTURE

dsl

compiler-plugin

alchemist-incarnation-collektive

aggregate

f ield

networking

path

state

react ive

flow.extensions transformers

u t ils

visitors

alchem ist

collekt ive.alchemist.device

Figure 4.1: Architecture of the reactive model proposed. The gray-colored com-
ponents are part of the original Collektive architecture, while the orange-colored
components are used to introduce the reactive paradigm.

CHAPTER 4. DESIGN 49

4.2. DETAILED DESIGN

4.2 Detailed Design

4.2.1 Purely Reactive Model

The detailed design of the PRM is shown in Figure 4.2. Within the RCollektive

class, the methods for executing aggregate programs have been augmented to

accommodate reactive functionalities. The method execute now takes a

MutableStateFlow<List<InboundMessage<ID>>> as parameter, enabling the

system to react to incoming messages from neighboring devices. Similarly, the

execute method now also accepts a ReactiveNetwork<ID> parameter, facilitating

reactive communication among devices within the network. These additions signify

a departure from the static nature of traditional aggregate computations, allowing

for dynamic adjustments based on real-time changes in the environment.

In the PRM, the concept of expression result (RAggregateResult) is revis-

ited to imbue reactivity. This ensures that the aggregate expression’s result is

not static but rather dynamic, adapting to alterations in the underlying data or

environmental conditions. Moreover, the Aggregate interface undergoes modi-

fications to accommodate reactive versions of aggregate constructs. Parameters

within these constructs are bound to StateFlow, enabling reevaluation whenever

their inputs experience changes.

The RAggregateContext class extends the Aggregate interface, providing con-

crete implementations of reactive aggregate constructs. Additionally, it hosts

reactive data structures essential for managing outbound messages and states.

Leveraging StateFlow extensions (StateFlowExtensions), this class simplifies

the mapping and combining of hot flows, enhancing the efficiency and scalability

of the system.

Behavioral Characteristics

The PRM exhibits distinct behavioral characteristics that distinguish it from tra-

ditional static computation approaches:

• Reactive computations: computation occurs reactively in response to en-

vironmental changes, minimizing resource wastage and ensuring optimal re-

sponsiveness.

50 CHAPTER 4. DESIGN

4.2. DETAILED DESIGN

StateFlowExtensions

combineStates(Function0<T>, Flow<T>): StateFlow<T>
combineStates(StateFlow<T1>, StateFlow<T2>, Function2<T1, T2, R>): StateFlow<R>
combineStates(StateFlow<T1>, StateFlow<T2>, StateFlow<T3>, Function3<T1, T2, T3, R>): StateFlow<R>
flattenConcat(StateFlow<StateFlow<T>>): StateFlow<T>
mapStates(StateFlow<T>, Function1<T, R>): StateFlow<R>

«interface»

Aggregate

ID

rBranch(Function0<StateFlow<Boolean>>, Function0<StateFlow<T>>, Function0<StateFlow<T>>): StateFlow<T>
rExchange(T, Function1<StateFlow<Field<ID, T>>, StateFlow<Field<ID, T>>>): StateFlow<Field<ID, T>>
alignedOn(Object?, Function0<R>): R

RAggregateContext
ID

localId: ID

rOutboundMessages(): StateFlow<OutboundMessage<ID>>
rState(): StateFlow<Map<Path, Object>>

RAggregateResult
ID, R

result : StateFlow<R>
toSend: StateFlow<OutboundMessage<ID>>
state: StateFlow<Map<Path, Object>>
localId: ID

RCollekt ive
ID, R

localId: ID

«interface»

ReactiveNetwork

ID

read(): StateFlow<Collect ion<InboundMessage<ID>>>
write(OutboundMessage<ID>): Unit

Companion

aggregate(ID, MutableStateFlow<List<InboundMessage<ID>>>, Function1<Aggregate<ID>, StateFlow<R>>): RAggregateResult<ID, R>
aggregate(ID, ReactiveNetwork<ID>, Function1<Aggregate<ID>, R>): StateFlow<AggregateResult<ID, R>>

«interface»

Stack

dealign(): Unit
alignRaw(Object?): Unit
currentPath(): Path

«interface»

Path

tokens(): List<Object>

«interface»

Field

ID, T

neighborsCount: Int
localValue: T
localId: ID

Figure 4.2: Detailed design of the PRM proposed.

• Efficient message exchange: devices only broadcast messages when nec-

essary, reducing unnecessary communication.

• Selective reevaluation: sub-expressions are reevaluated only when their

CHAPTER 4. DESIGN 51

4.2. DETAILED DESIGN

dependencies change, optimizing computation efficiency and reducing redun-

dant processing.

By embodying these characteristics, the PRM enhances the scalability, and ro-

bustness of the Collektive framework, empowering it to effectively handle dynamic

and unpredictable environments.

4.2.2 Model with Reactive Messages and Sensors

The detailed design of the RMSM is shown in Figure 4.3. Similar to the PRM,

the Collektive class accommodates two new versions of the Aggregate method

to facilitate reactive functionalities. These methods accept either a

StateFlow<Iterable<InboundMessage<ID>>> or a ReactiveNetwork<ID> pa-

rameter, enabling dynamic adjustment of aggregate computations based on real-

time changes in message reception.

In this model, the Aggregate method encompasses the logic necessary for

reactive evaluation of the aggregate expression. Unlike the PRM, where the

RAggregateContext class handles reactive evaluation, here the evaluation logic is

embedded directly within the Aggregate method. Consequently, upon receiving a

message from a neighbor, the entire aggregate expression undergoes reevaluation,

resulting in a complete round of computation. While maintaining compatibility

with the original Collektive DSL, this approach sacrifices some performance due

to the exhaustive reevaluation process.

Behavioral Characteristics

The RMSM exhibits behavioral characteristics that align with its design principles:

• Compatibility: Retains compatibility with the original Collektive DSL,

ensuring seamless integration with existing codebase and workflows.

• Simplified Implementation: Implements reactive functionalities within

the Aggregate method, streamlining the implementation process and reduc-

ing complexity.

52 CHAPTER 4. DESIGN

4.2. DETAILED DESIGN

Collekt ive
ID, R

cycle(): R
cycleWhile(Function1<AggregateResult<ID, R>, Boolean>): R

Companion

aggregate(ID, StateFlow<Iterable<InboundMessage<ID>>>, Function1<Aggregate<ID>, R>): StateFlow<AggregateResult<ID, R>>
aggregate(ID, ReactiveNetwork<ID>, Function1<Aggregate<ID>, R>): StateFlow<AggregateResult<ID, R>>

«interface»

ReactiveNetwork

ID

read(): StateFlow<Collect ion<InboundMessage<ID>>>
write(OutboundMessage<ID>): Unit

StateFlowExtensions

combineStates(Function0<T>, Flow<T>): StateFlow<T>
combineStates(StateFlow<T1>, StateFlow<T2>, Function2<T1, T2, R>): StateFlow<R>
combineStates(StateFlow<T1>, StateFlow<T2>, StateFlow<T3>, Function3<T1, T2, T3, R>): StateFlow<R>
flattenConcat(StateFlow<StateFlow<T>>): StateFlow<T>
mapStates(StateFlow<T>, Function1<T, R>): StateFlow<R>

Figure 4.3: Detailed design of the RMSM proposed.

• Performance Trade-off : Sacrifices some performance for compatibility,

as the entire aggregate expression undergoes reevaluation upon receiving a

message, potentially leading to redundant processing.

Despite the performance trade-off, this model provides a pragmatic approach to

introducing reactivity into the Collektive framework, catering to scenarios where

compatibility and ease of integration are paramount.

In summary, both models offer distinct approaches to incorporating reactive

principles into the Collektive framework, each tailored to different use cases and

design priorities.

CHAPTER 4. DESIGN 53

4.2. DETAILED DESIGN

54 CHAPTER 4. DESIGN

Chapter 5

Implementation

This chapter delves into the implementation details of the PRM (Section 5.1) and

RMSM (Section 5.2) introduced for Collektive. Each section focuses on a specific

model, exploring its key components and implementation choices.

5.1 Purely Reactive Model

In this section, the implementation of some key components of the PRM is pro-

posed. The aggregate function (Listing 5.1) represents the entry point of the

aggregate program; this function takes as input the device ID, a flow relating

to inbound messages and an aggregate program whose result is bound to the

StateFlow<R> type. In the body of the function, a RAggregateContext is cre-

ated with the parameters passed as input and the aggregate program is executed

in the context relating to the newly created object. The result of the function

is a RAggregateResult, thanks to which it is possible to access the result of the

aggregate expression, the outbound messages and the state of the device. The

data structures within RAggregateResult are defined as flows, so it is possible

to subscribe to and react to their changing. In this way, it is easy to establish

the dependency between the inbound messages of one device and the outbound

messages of another, so that the first reacts to the change of the second state.

Listing 5.2 provides the implementation of the RAggregateContext class, which

is responsible for defining the context in which the aggregate expression is executed

CHAPTER 5. IMPLEMENTATION 55

5.1. PURELY REACTIVE MODEL

Listing 5.1: Implementation of the aggregate function in the PRM.�
1 fun <ID : Any , R> aggregate(

2 localId: ID ,

3 rInboundMessages: StateFlow <Iterable <InboundMessage <ID>>>,

4 compute: Aggregate <ID >.() -> StateFlow <R>,

5): RAggregateResult <ID, R> = RAggregateContext(localId , rInboundMessages).run

{

6 RAggregateResult(localId , compute (), rOutboundMessages (), rState ())

7 }

8

9 data class RAggregateResult <ID : Any , R>(

10 val localId: ID,

11 val result: StateFlow <R>,

12 val toSend: StateFlow <OutboundMessage <ID >>,

13 val state: StateFlow <State >,

14)
� �
and on which the result of the latter depends. Here the actual implementation of

the aggregate constructs is defined, which takes advantage of some utility functions:

• The rMessagesAt function takes care of returning inbound messages relating

to a path.

• The rStateAt function returns the result of the evaluation of the given path

using the default value if the result does not exist yet.

• The function alignedOn is used to define paths, it pushes on the stack the

given pivot, executes the body function and pops the first token on the

stack.

The functions passed as input to the aggregate constructs and the related result

of the latter are bound to the StateFlow type so that it is possible to react to

their changes.

The result of the rBranch construct (Listing 5.3) depends on:

• the result of the evaluation of the condition;

• the result of the evaluation of the th branch in the case that the condition

is true;

• the result of the evaluation of the el branch in the case that the condition

is false.

56 CHAPTER 5. IMPLEMENTATION

5.1. PURELY REACTIVE MODEL

Listing 5.2: Implementation of the RAggregateContext class in the PRM.�
1 class RAggregateContext <ID : Any >(

2 override val localId: ID ,

3 private val rInboundMessages: MutableStateFlow <List <InboundMessage <ID>>> =

MutableStateFlow(emptyList ()),

4) : Aggregate <ID> {

5

6 private val stack = Stack()

7 private val rState: MutableStateFlow <State > = MutableStateFlow(emptyMap ())

8 private val rOutboundMessages: MutableStateFlow <OutboundMessage <ID>> =

9 MutableStateFlow(OutboundMessage(localId , emptyMap ()))

10

11 fun rState (): StateFlow <State > = rState.asStateFlow ()

12

13 fun rOutboundMessages () = rOutboundMessages.asStateFlow ()

14

15 @OptIn(DelicateCoroutinesApi ::class)

16 override fun <T> rExchange(

17 initial: T,

18 body: (StateFlow <Field <ID , T>>) -> StateFlow <Field <ID , T>>,

19): StateFlow <Field <ID, T>> {...}

20

21 override fun <T> rBranch(

22 condition: () -> StateFlow <Boolean >,

23 th: () -> StateFlow <T>,

24 el: () -> StateFlow <T>,

25): StateFlow <T> {...}

26

27 private fun deleteOppositeBranch(condition: Boolean) {...}

28

29 private fun <T> newField(localValue: T, others: Map <ID , T>): Field <ID, T> =

Field(localId , localValue , others)

30

31 @Suppress("UNCHECKED_CAST")

32 private fun <T> rMessagesAt(path: Path): StateFlow <Map <ID, T>> = mapStates(

rInboundMessages) { messages ->

33 messages

34 .filter { it.messages.containsKey(path) }

35 .associate { it.senderId to it.messages[path] as T }

36 }

37

38 private fun <T> rStateAt(path: Path , default: T): StateFlow <T> = mapStates(

rState) { state ->

39 state.getTyped(path , default)

40 }

41

42 override fun <R> alignedOn(pivot: Any?, body: () -> R): R {

43 stack.alignRaw(pivot)

44 return body().also { stack.dealign () }

45 }

46 }
� �

CHAPTER 5. IMPLEMENTATION 57

5.2. MODEL WITH REACTIVE MESSAGES AND SENSORS

Listing 5.3: Implementation of the rBranch construct in the PRM.�
1 override fun <T> rBranch(

2 condition: () -> StateFlow <Boolean >,

3 th: () -> StateFlow <T>,

4 el: () -> StateFlow <T>,

5): StateFlow <T> {

6 val currentPath = stack.currentPath ()

7 return condition ().mapStates { newCondition ->

8 currentPath.tokens ().forEach { stack.alignRaw(it) }

9 val selectedBranch = if (newCondition) th else el

10 deleteOppositeBranch(newCondition)

11 alignedOn(newCondition) {

12 selectedBranch ()

13 }.also {

14 currentPath.tokens ().forEach { _ -> stack.dealign () }

15 }

16 }. flattenConcat ()

17 }
� �
Regardless of which branch is chosen, the result of the other branch is deleted

using the deleteOppositeBranch function, this is because otherwise, when the

condition changes, the devices would also remain aligned on the branch relating

to the previous condition. The implementation of the construct also highlights

that the alignedOn function is called explicitly when in reality it should be called

by the compiler plugin. This is because the compiler plugin only aligns calls

to aggregate functions, while within rBranch the mapStates function is called,

which is not an aggregate function. This behavior of the compiler plugin can be

considered a problem that needs to be resolved. With correct plugin behavior the

rBranch implementation would not need calls to the alignedOn, stack.dealign

and stack.alignRaw functions.

The rExchange construct (Listing 5.4) takes as input a body function whose

result depends on the previous state and the messages received; as the result of this

function changes, the outbound messages and the state of the device are updated.

5.2 Model with Reactive Messages and Sensors

The central component of the implementation with reactive messages and sen-

sors is the aggregate function (Listing 5.5). This function takes as input the

same parameters as the one defined in the PRM, the difference is that the re-

58 CHAPTER 5. IMPLEMENTATION

5.2. MODEL WITH REACTIVE MESSAGES AND SENSORS

Listing 5.4: Implementation of the rExchange construct in the PRM.�
1 @OptIn(DelicateCoroutinesApi ::class)

2 override fun <T> rExchange(

3 initial: T,

4 body: (StateFlow <Field <ID , T>>) -> StateFlow <Field <ID , T>>,

5): StateFlow <Field <ID , T>> {

6 val messages = rMessagesAt <T>(stack.currentPath ())

7 val previous = rStateAt(stack.currentPath (), initial)

8 val subject = messages.mapStates { m -> newField(previous.value , m) }

9 val alignmentPath = stack.currentPath ()

10 return body(subject).also { flow ->

11 flow.onEach { field ->

12 val message = SingleOutboundMessage(field.localValue , field.

excludeSelf ())

13 rOutboundMessages.update { it.copy(messages = it.messages + (

alignmentPath to message)) }

14 rState.update { it + (alignmentPath to field.localValue) }

15 }. launchIn(GlobalScope)

16 }

17 }
� �
sult of the aggregate program is not bound to the StateFlow type. The result

of aggregate is defined as StateFlow<AggregateResult<ID, R>>, this wrapping

allows us to avoid having to create specific data structures for managing the ag-

gregate result, which instead happens in the PRM. In the aggregate function,

an AggregateContext flow is created that depends on the inbound message and

state flows. The result of the aggregate expression depends on the flow of the

AggregateContext; as the result of the expression changes, the flow relating to

the state is updated.

CHAPTER 5. IMPLEMENTATION 59

5.2. MODEL WITH REACTIVE MESSAGES AND SENSORS

Listing 5.5: Implementation of the aggregate function in the RMSM.�
1 fun <ID : Any , R> aggregate(

2 localId: ID ,

3 inbound: StateFlow <Iterable <InboundMessage <ID>>>,

4 compute: Aggregate <ID >.() -> R,

5): StateFlow <AggregateResult <ID, R>> {

6 val states = MutableStateFlow <State >(emptyMap ())

7 val contextFlow = inbound.mapStates {

8 AggregateContext(localId , it, states.value)

9 }

10 return contextFlow.mapStates { aggregateContext ->

11 aggregateContext.run {

12 AggregateResult(localId , compute (), messagesToSend (), newState ()).also

{

13 states.update { this.newState () }

14 }

15 }

16 }

17 }
� �

60 CHAPTER 5. IMPLEMENTATION

Chapter 6

Validation

This chapter delves into the evaluation of the reactive extensions introduced into

the Collektive framework. The chapter is divided into two main sections:

• Section 6.1 details the unit testing strategy employed to ensure the correct-

ness of the implemented code. It highlights the chosen testing framework,

and the testing style adopted.

• Section 6.2 compares the usability of the DSL for implementing aggregate

programs in the two proposed reactive models. To facilitate the comparison,

an example program implementing the “gradient with obstacles” scenario is

presented in both DSLs. This allows for a concrete side-by-side assessment

of the strengths and weaknesses of each model from a usability perspective.

6.1 Testing

This section delves into the testing strategies employed, focusing on unit testing

methodologies.

The project adopts a rigorous approach to testing, leveraging the Kotest1

framework for automated testing in Kotlin. Kotest provides a robust testing en-

vironment conducive to comprehensive test suites. Among its testing styles, the

project opted for StringSpec due to its straightforward structure, which facilitates

1https://kotest.io/.

CHAPTER 6. VALIDATION 61

https://kotest.io/

6.1. TESTING

a behavior-driven approach to test composition. The most relevant tests within

the project are those that verify the behavior of the aggregate constructs.

Unit tests are designed to verify the behavior of the aggregate constructs,

ensuring they function as expected across various scenarios. Tests are crafted to

cover different aspects of the reactive functionality, ensuring the accurate alignment

of devices, the correctness of values exchanged and the correctness of aggregate

expressions’ results.

An example test case for the rExchange construct is presented in Listing 6.1

to illustrate the testing approach. The test case encompasses the following steps:

1. Definition of the test name and sequential execution within a coroutine.

2. Definition of the aggregate result based on the execution of the aggregate

program in a specific aggregate context.

3. Launching a concurrent job to execute the simulation.

4. Introduction of a delay and subsequent cancellation of the job.

5. Assertion of the expected results against the computed values.

The provided example test serves as a template for testing other reactive con-

structs, ensuring thorough validation of their behavior.

Listing 6.1: Part of the test suite related to the rExchange construct.�
1 "rExchange should return the initial value" {

2 runBlocking {

3 val aggregateResult0 = RCollektive.aggregate(id0) {

4 rExchange(initV1 , increaseOrDouble)

5 }

6 val job = launch(Dispatchers.Default) {

7 runSimulation(mapOf(aggregateResult0 to MutableStateFlow(emptyList ()))

)

8 }

9 delay (100)

10 job.cancelAndJoin ()

11 aggregateResult0.toSend.value.senderId shouldBe id0

12 aggregateResult0.toSend.value.messages.values shouldContain

SingleOutboundMessage(expected2 , emptyMap ())

13 }

14 }
� �
62 CHAPTER 6. VALIDATION

6.2. ANALYSIS OF THE ERGONOMICS OF THE PROPOSED MODELS

6.2 Analysis of the Ergonomics of the Proposed

Models

This section evaluates the usability and effectiveness of the proposed reactive mod-

els within the Collektive framework. The evaluation focuses on readability, main-

tainability, flexibility, and the learning curve associated with each model.

The aggregate program chosen to carry out this evaluation is the gradient with

obstacles, which maintains the properties of the classic gradient, but introduces

obstacles into the environment. Figure 6.1 shows a graphical representation of

what we want to achieve. There are three types of nodes in the environment:

sources (green), obstacles (red) and defaults (blue). The objective is to calculate

the distance of each node from the nearest source without considering the neighbors

who are defined as obstacles. The environment used in this case is a grid with five

columns and five rows, where each device is a neighbor of the nearest device in

each horizontal and vertical direction. In addition, the device with ID 0 is a source

node, while devices with ID 2, 7, and 12 are obstacles.

Listing 6.2 and Listing 6.3 present the implementation of the gradient with

obstacles in the PRM and in the RMSM, respectively. In both cases the node type

is defined as StateFlow<NodeType>, allowing to change sources and obstacles at

runtime. What changes is how this flow is managed: in the purely reactive case

it is used directly within the aggregate constructs, while in the other a specific

simulator must be created, which reevaluates the expression as the type of node

varies. As regards the use of aggregate constructs within the program, the RMSM

is equivalent to the proactive model, while in the PRM, the use of functions for

manipulating flows introduces greater complexity.

The differences between the two implementations are analyzed in detail below:

1. Initially, the if (RMSM) and rBranch (PRM) constructs are used to iso-

late obstacles from the rest of the nodes. Nodes identified as obstacles will

return the value -1.0 and will not execute the gradient function. In RMSM

the condition is verified directly, while in PRM it is necessary to use the

mapStates function to convert the node type into a boolean value. In the

PRM, since the return value is bound to the StateFlow type, to return the

CHAPTER 6. VALIDATION 63

6.2. ANALYSIS OF THE ERGONOMICS OF THE PROPOSED MODELS

Listing 6.2: Gradient with obstacles implementation in PRM.�
1 fun Aggregate <Int >. gradient(sourceFlow: StateFlow <Boolean >): StateFlow <Double > =

2 rShare(Double.POSITIVE_INFINITY) { fieldFlow ->

3 rMux(

4 { sourceFlow },

5 { MutableStateFlow (0.0) },

6 { fieldFlow.mapStates { it.plus (1.0).min(Double.POSITIVE_INFINITY) }

},

7)

8 }

9

10 fun Aggregate <Int >. gradientWithObstacles(nodeTypeFlow: StateFlow <NodeType >):

StateFlow <Double > =

11 rBranch(

12 { nodeTypeFlow.mapStates { it == NodeType.OBSTACLE } },

13 { MutableStateFlow (-1.0) },

14 { gradient(nodeTypeFlow.mapStates { it == NodeType.SOURCE }) },

15)
� �

Listing 6.3: Gradient with obstacles implementation in RMSM.�
1 fun Aggregate <Int >. gradient(source: Boolean): Double =

2 share(Double.POSITIVE_INFINITY) { field ->

3 when {

4 source -> 0.0

5 else -> (field + 1.0).min(Double.POSITIVE_INFINITY)

6 }

7 }

8

9 fun Aggregate <Int >. gradientWithObstacles(nodeType: NodeType): Double =

10 if (nodeType == NodeType.OBSTACLE) {

11 -1.0

12 } else {

13 gradient(nodeType == NodeType.SOURCE)

14 }
� �

64 CHAPTER 6. VALIDATION

6.2. ANALYSIS OF THE ERGONOMICS OF THE PROPOSED MODELS

SOURCE

OBSTACLE

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(a)

0.0 1.0 -1 9.0 10.0

1.0 2.0 -1 8.0 9.0

2.0 3.0 -1 7.0 8.0

3.0 4.0 5.0 6.0 7.0

4.0 5.0 6.0 7.0 8.0

(b)

Figure 6.1: Figure 6.1a presents the environment where the gradient with obstacles
was executed. The node highlighted in green represents the source, while those in
red represent the obstacles. Figure 6.1b presents the output field of the gradient
with obstacles after stabilization.

value -1.0 (if the condition is true) it is necessary to wrap the latter in a

MutableStateFlow. This constraint is not present in the RMSM, since the

return value does not have to be of type StateFlow.

2. If the node is not defined as an obstacle, the gradient is executed. The share

(RMSM) and rShare (PRM) constructs are used to capture the space-time

computation of the gradient. In this case, the way these two constructs are

used is very similar.

3. Internally to share and rShare the when (RMSM) and rMux (PRM) con-

structs are used, respectively. Both constructs serve to distinguish the source

from the rest of the nodes; given a node, if this is identified as the source

then the value 0.0 is returned (base case), otherwise, to calculate the return

value, the neighbor in which the gradient value is smaller is considered and

CHAPTER 6. VALIDATION 65

6.2. ANALYSIS OF THE ERGONOMICS OF THE PROPOSED MODELS

Listing 6.4: Gradient implementation in FRASP.�
1 def gradient(src: Flow[Boolean]): Flow[Double] =

2 loop(Double.PositiveInfinity) { distance =>

3 mux(src) {

4 constant (0.0)

5 } {

6 liftTwice(nbrRange , nbr(distance))(_ + _).withoutSelf.min

7 }

8 }
� �
Listing 6.5: Gradient implementation in Kotlin Distributed FRP.�

1 fun gradient (): AggregateExpression <Double > {

2 return loop(Double.POSITIVE_INFINITY) { distance ->

3 mux(

4 sense(Sensors.IS_SOURCE.sensorID),

5 constant (0.0),

6 neighbor(distance)

7 .withoutSelf ()

8 .min()

9 .map { it + 1 }

10)

11 }

12 }
� �
the distance (1.0) is added. From the two implementations, it appears that

the syntax of the when construct is less intricate and more understandable

than that used in the rMux construct. Furthermore, within rMux it is neces-

sary to wrap the result in a MutableStateFlow when the condition is true, or

use the functions to map flows when the condition is false; these operations

are not necessary for the when construct.

Listing 6.4 and Listing 6.5 again show the gradient implementations (with-

out obstacles) for FRASP and Kotlin Distributed FRP, respectively. Despite the

differences regarding the aggregate constructs, languages (Scala and Kotlin) and

the design of the frameworks used, there is some similarity in the four gradient

implementations provided.

Based on the results obtained, the following considerations arise: in the PRM,

the use of rShare, rMux, and rBranch might be less familiar to developers un-

familiar with this specific DSL. Understanding the syntax and purpose of these

functions requires additional learning. The RMSM utilizes familiar syntax like

share and conditional statements, potentially making it easier to read and under-

66 CHAPTER 6. VALIDATION

6.2. ANALYSIS OF THE ERGONOMICS OF THE PROPOSED MODELS

stand for developers with general programming experience. Composing complex

logic using nested functions like rMux and rBranch can lead to nested code struc-

tures, potentially impacting maintainability as the codebase grows. In the RMSM

conditional statements and function calls promote a more linear and explicit flow of

logic, potentially improving maintainability. The DSL of the PRM provides dedi-

cated functions for building reactive constructs, potentially offering more flexibility

for complex reactive patterns. While offering less specialized syntax, the RMSM

can still achieve various reactive behaviors. However, complex reactive patterns

might require more verbose code compared to the purely reactive approach. The

PRM requires learning the specific syntax and semantics of the DSL functions,

while the RMSM leverages familiar programming constructs, potentially reducing

the learning curve for developers with general programming experience.

CHAPTER 6. VALIDATION 67

6.2. ANALYSIS OF THE ERGONOMICS OF THE PROPOSED MODELS

68 CHAPTER 6. VALIDATION

Chapter 7

Conclusion

In this thesis, we have explored the feasibility and practicality of implementing

reactive aggregate programming in Kotlin for developing artificial self-organizing

systems. Our investigation has been guided by the overarching goal of crafting

a programming language that enables developers to express macro-level behavior

while abstracting away operational details, thus facilitating the self-organizing

behavior among a group of agents or devices.

We began by delving into the foundational concepts of functional programming,

reactive programming, and aggregate computing, elucidating their relevance and

implementations in Kotlin. This served as the foundation on which we built our

analyses and projects.

Through a critical assessment of existing frameworks such as Protelis, ScaFi,

FCPP, Collektive, and FRASP, we identified key insights and gaps in the current

state of the art. Subsequently, we detailed the design of FRASP and Collektive.

Our investigation into the re-implementation of FRASP into Collektive un-

veiled challenges, feasibility considerations, and proposed solutions, underscoring

the intricacies involved in harmonizing disparate programming paradigms within

a unified framework.

In the design phase, we delineated the architectural and detailed designs of the

proposed models, laying the groundwork for their practical implementation. This

implementation, divided into sections for the PRM and the RMSM, demonstrated

the tangible realization of our theoretical constructs.

CHAPTER 7. CONCLUSION 69

7.1. FUTURE WORK

In evaluating the proposed models, we subjected them to testing procedures

and analyzed their ergonomic aspects, providing valuable insights into their strengths

and weaknesses.

In conclusion, our exploration has not only demonstrated the feasibility of

reactive aggregate programming in Kotlin but has also contributed to advancing

the discourse surrounding programming languages for self-organizing systems. By

synthesizing our findings and encapsulating the contributions of this thesis, we pave

the way for future research endeavors aimed at further refining and extending the

capabilities of programming languages in facilitating the emergence of collective

intelligence.

7.1 Future Work

In future work, several areas could be explored to further enhance the capabilities

and usability of Collektive:

Support for Real-World Distributed Platforms Investigate ways to extend

the framework to support deployment and execution on real-world distributed

platforms. This could involve optimizations for distributed communication, fault

tolerance mechanisms, and integration with existing distributed computing frame-

works.

DSL Improvements Address the noise introduced in the API of the PRM due

to the necessity of reactive operators to work with flows instead of local values. Re-

search and develop a more streamlined and user-friendly API that abstracts away

the complexities of dealing with flows, reducing boilerplate code and improving

program transparency.

Timing Configuration Granularity Enhance the framework’s flexibility in

configuring the timing of computations beyond reacting solely to standard events.

Explore the possibility of supporting additional strategies for scheduling and rate

limiting, such as custom scheduling policies and per-construct configuration op-

tions. This could provide developers with finer control over the execution behavior

70 CHAPTER 7. CONCLUSION

7.1. FUTURE WORK

of their self-organizing systems, catering to diverse application requirements and

environments.

CHAPTER 7. CONCLUSION 71

7.1. FUTURE WORK

72 CHAPTER 7. CONCLUSION

Bibliography

[1] H. Van Dyke Parunak and Sven A. Brueckner. Software engineering for

self-organizing systems. The Knowledge Engineering Review, 30(4):419–434,

September 2015.

[2] Carlos Gershenson. Design and control of self-organizing systems. CopIt

Arxives, 2007.

[3] V. Singh, G. Singh, and S. Pande. Emergence, self-organization and collec-

tive intelligence – modeling the dynamics of complex collectives in social and

organizational settings. In 2013 UKSim 15th International Conference on

Computer Modelling and Simulation. IEEE, April 2013.

[4] Rocco De Nicola, Stefan Jähnichen, and Martin Wirsing. Rigorous engineer-

ing of collective adaptive systems: special section. International Journal on

Software Tools for Technology Transfer, 22(4):389–397, May 2020.

[5] Mikhail Prokopenko. Guided self-organization. 2009.

[6] Hartmut Schmeck, Christian Müller-Schloer, Emre undefinedakar, Moez Mnif,

and Urban Richter. Adaptivity and self-organization in organic computing

systems. ACM Transactions on Autonomous and Adaptive Systems, 5(3):1–

32, September 2010.

[7] Georg Martius and J. Michael Herrmann. Variants of guided self-organization

for robot control. Theory in Biosciences, 131(3):129–137, November 2011.

[8] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-Agent Reinforcement

Learning: A Selective Overview of Theories and Algorithms, pages 321–384.

Springer International Publishing, 2021.

BIBLIOGRAPHY 73

BIBLIOGRAPHY

[9] Tom De Wolf and Tom Holvoet. Designing self-organising emergent systems

based on information flows and feedback-loops. In First International Con-

ference on Self-Adaptive and Self-Organizing Systems (SASO 2007). IEEE,

July 2007.

[10] Roberto Casadei. Macroprogramming: Concepts, state of the art, and op-

portunities of macroscopic behaviour modelling. ACM Computing Surveys,

55(13s):1–37, July 2023.

[11] Iwens G. S. Júnior, Thalia S. de Santana, Renato de F. Bulcão-Neto, and

Barry F. Porter. The state of the art of macroprogramming in iot: An update.

Journal of Internet Services and Applications, 13(1):54–65, November 2022.

[12] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo.

Swarm robotics: a review from the swarm engineering perspective. Swarm

Intelligence, 7(1):1–41, January 2013.

[13] Luca Mottola and Gian Pietro Picco. Programming wireless sensor networks:

Fundamental concepts and state of the art. ACM Computing Surveys, 43(3):1–

51, April 2011.

[14] Joseph Noor, Hsiao-Yun Tseng, Luis Garcia, and Mani Srivastava. Ddflow:

visualized declarative programming for heterogeneous iot networks. In Pro-

ceedings of the International Conference on Internet of Things Design and

Implementation, IoTDI ’19. ACM, April 2019.

[15] Roberto Casadei, Danilo Pianini, Andrea Placuzzi, Mirko Viroli, and Danny

Weyns. Pulverization in cyber-physical systems: Engineering the self-

organizing logic separated from deployment. Future Internet, 12(11):203,

November 2020.

[16] Roberto Casadei, Francesco Dente, Gianluca Aguzzi, Danilo Pianini, and

Mirko Viroli. Self-organisation programming: A functional reactive macro

approach. In 2023 IEEE International Conference on Autonomic Computing

and Self-Organizing Systems (ACSOS). IEEE, September 2023.

74 BIBLIOGRAPHY

BIBLIOGRAPHY

[17] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn

Mostinckx, and Wolfgang de Meuter. A survey on reactive programming.

ACM Computing Surveys, 45(4):1–34, August 2013.

[18] Alois Ferscha. Collective adaptive systems. In Proceedings of the 2015 ACM

International Joint Conference on Pervasive and Ubiquitous Computing and

Proceedings of the 2015 ACM International Symposium on Wearable Com-

puters - UbiComp ’15, UbiComp ’15. ACM Press, 2015.

[19] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto

Casadei, and Danilo Pianini. From distributed coordination to field calcu-

lus and aggregate computing. Journal of Logical and Algebraic Methods in

Programming, 109:100486, December 2019.

[20] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo

Pianini. Engineering resilient collective adaptive systems by self-stabilisation.

ACM Transactions on Modeling and Computer Simulation, 28(2):1–28, March

2018.

[21] Mirko Viroli, Ferruccio Damiani, and Jacob Beal. A Calculus of Computa-

tional Fields, pages 1140–128. Springer Berlin Heidelberg, 2013.

[22] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. Space-

Time Universality of Field Calculus, pages 1–20. Springer International Pub-

lishing, 2018.

[23] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Salvaneschi,

and Mirko Viroli. Functional programming for distributed systems with xc.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[24] Danilo Pianini, Mirko Viroli, and Jacob Beal. Protelis: practical aggregate

programming. In Proceedings of the 30th Annual ACM Symposium on Applied

Computing, SAC 2015. ACM, April 2015.

[25] J. Beal and J. Bachrach. Infrastructure for engineered emergence on sen-

sor/actuator networks. IEEE Intelligent Systems, 21(2):10–19, March 2006.

BIBLIOGRAPHY 75

BIBLIOGRAPHY

[26] Roberto Casadei, Mirko Viroli, Gianluca Aguzzi, and Danilo Pianini. Scafi:

A scala dsl and toolkit for aggregate programming. SoftwareX, 20:101248,

December 2022.

[27] Giorgio Audrito. Fcpp: an efficient and extensible field calculus framework.

In 2020 IEEE International Conference on Autonomic Computing and Self-

Organizing Systems (ACSOS). IEEE, August 2020.

[28] D Pianini, S Montagna, and M Viroli. Chemical-oriented simulation of compu-

tational systems with alchemist. Journal of Simulation, 7(3):202–215, August

2013.

76 BIBLIOGRAPHY

	Abstract
	Introduction
	Background
	Functional Programming
	Concepts
	Functional Programming in Kotlin

	Reactive Programming
	Evaluation Model
	Reactive Operators
	Reactive Programming in Kotlin

	Aggregate Computing
	Abstractions
	Field Calculus
	Field Calculus Extensions
	Reactive and Proactive Models

	Analysis
	State of the Art
	Protelis
	ScaFi
	FCPP
	Collektive
	FRASP

	Design of FRASP
	Architecture
	Detailed Design

	Design of Collektive
	Architecture
	Detailed Design
	Alignment Processing Strategy

	Re-implementation of FRASP in Collektive
	Implementation Issues
	Feasibility of Reactive Aggregate Programming in Kotlin
	Solutions Identified

	Design
	Architecture
	Detailed Design
	Purely Reactive Model
	Model with Reactive Messages and Sensors

	Implementation
	Purely Reactive Model
	Model with Reactive Messages and Sensors

	Validation
	Testing
	Analysis of the Ergonomics of the Proposed Models

	Conclusion
	Future Work

	
	Bibliography

