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Abstract

The field of engineering self-organizing systems, encompassing realms such as robot
swarms, collectives of wearables, and distributed infrastructures, has witnessed ex-
tensive exploration through diverse methodologies. These approaches range from
deriving algorithms inspired by natural phenomena to leveraging design patterns,
utilizing learning techniques to synthesize behavior based on emergent expecta-
tions, and exposing pivotal mechanisms and abstractions at the programming lan-
guage level. Among these, a predominant focus has been on employing round-based
execution models in state-of-the-art languages for self-organization. While such
models offer simplicity in reasoning, they often exhibit limitations concerning flex-
ibility and granular management of sub-activities. Drawing inspiration from the
Functional Reactive Approach to Self-organisation Programming (FRASP) model
implemented in Scala, this thesis aims to showcase the feasibility of reactive ag-
gregate programming in Kotlin. Leveraging the Flow functional reactive library,
we demonstrate a functional reactive implementation of aggregate programming,
separating program logic from the scheduling of its sub-activities. The resulting
framework maintains the expressive power of aggregate scheduling while enhancing
scheduling controllability, flexibility in the sensing/actuation model, and execution
efficiency.

11



v



“A great adventure without success is far superior to a climb where everything
goes as planned.”
— Tommy Caldwell
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Chapter 1
Introduction

Developing artificial self-organizing systems with collective intelligence poses a
significant research challenge that spans multiple disciplines in science and en-
gineering [II, 2, B, 4]. A central problem involves guiding the self-organizing be-
havior among a group of agents or devices, a task often referred to as “guided
self-organization” [5] or “controlled self-organization” [6]. This challenge revolves
around defining the control program that each agent must execute [7]. Solutions
to this problem can be approached through automatic approaches such as multi-
agent reinforcement learning [8] or manual approaches [7] involving the definition
of control rules or designs in terms of patterns involving, e.g., information flows

and control loops [9].

This thesis focuses on leveraging programming languages for self-organizing
systems. Here, developers craft the self-organizing control program using a macro-
programming language [10), [11], which aims to express the system’s macro-level
behavior. This language may be general-purpose or domain-specific, tailored to
specific applications such as robotic swarms [12] or wireless sensor networks [13].
The overarching objective is to design a programming language that is expressive,
practical, and declarative. This language should enable programmers to abstract
away operational details, allowing the underlying platform to handle them auto-
matically [14] [15].

Existing languages often use a round-based execution model, where devices

repeatedly evaluate their context program cyclically or periodically. While this
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approach is simple, it lacks flexibility in scheduling and managing subtasks, espe-
cially in response to contextual changes. The primary objective of this thesis is
to demonstrate the feasibility of implementing reactive aggregate programming in
Kotlin and to analyze the ergonomics of the proposed language in comparison to
the proactive model, taking inspiration from the FRASP model [I6]. Specifically,
we aim to assess the suitability of Kotlin for developing self-organizing systems

using a reactive programming approach.

Thesis structure The structure of this thesis is designed to provide a compre-
hensive exploration of the topics, starting with an in-depth Background section
(Chapter . Here, we delve into functional programming, reactive programming,
and aggregate computing, elucidating their core concepts and implementations
in Kotlin, which serves as the foundation for the subsequent analyses. Moving
forward, the Analysis section (Chapter |3) evaluates the current state of the art,
examining notable frameworks for aggregate computing, such as Protelis, ScaFi,
FCPP, Collektive, and FRASP. Building upon this analysis, we proceed to detail
the design of FRASP and Collektive. At the end of the chapter, possible solu-
tions are identified to provide a re-implementation of FRASP within Collektive.
Chapter [d Design, delineates the architectural and detailed designs of the pro-
posed models, setting the stage for their Implementation (Chapter , where we
describe the practical realization of these models, divided into sections for the PRM
and the RMSM. Subsequently, the Validation section (Chapter @ examines the
testing procedures and evaluates the ergonomic aspects of the proposed models.
Finally, the Conclusion section (Chapter [7]) synthesizes our findings, encapsulating
the contributions of this thesis and suggesting avenues for future research in this

domain.
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Chapter 2
Background

This chapter establishes the essential theoretical foundation for the subsequent ex-
ploration undertaken in this thesis. We focus on three key programming paradigms:
functional programming (Section, reactive programming (Section, and ag-
gregate computing (Section [2.3)).

We begin by examining the core concepts of functional programming and its
practical implementation in Kotlin. This understanding underpins our exploration
of reactive programming, where we delve into its evaluation model, the reactive
operators, and their application in Kotlin. Finally, we explore the fundamental ab-
stractions of aggregate computing, including the field calculus and the contrasting

reactive and proactive computational models.

2.1 Functional Programming

The functional paradigm, in the context of computer science, involves building
programs through the application and composition of functions. It adopts a declar-
ative approach, where function definitions are represented as trees of expressions
mapping values to other values, rather than relying on a sequence of imperative

statements to update the program’s running state.
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2.1. FUNCTIONAL PROGRAMMING

2.1.1 Concepts

Functional programming is built upon a rich set of fundamental concepts that
serve as the foundation of its paradigm. This section aims to provide a comprehen-
sive understanding of these concepts, elucidating their significance and practical
implications in software development. From higher-order functions to referential
transparency, each concept plays a fundamental role in shaping the declarative

nature of the functional paradigm.

Higher-order functions higher-order functions possess the ability to either re-
ceive functions as arguments or produce them as results. The nuanced difference
lies in the mathematical concept denoted by “higher-order”, which involves func-
tions operating on other functions.

These functions facilitate partial application or currying, enabling a technique
where a function is applied to its arguments one at a time. With each application,
a new function is created to handle the next argument. This approach allows pro-
grammers to express ideas succinctly, such as representing the successor function

by partially applying the addition operator to the natural number one.

Purity pure functions, or expressions, lack side effects. This absence of side
effects endows pure functions with various advantageous properties, many of which
can be leveraged for code optimization. A pure function, to be defined as such,

must meet the following properties:

e If the result of a pure expression is not used, it can be removed without

influencing other expressions.

e If a pure function is invoked with arguments that do not introduce side
effects, the result remains constant concerning that set of arguments. Re-
peatedly calling the pure function with the same arguments yields identical

results.

Recursion functional languages typically employ recursion for iteration. Re-

cursive functions call themselves, allowing an operation to iterate until it meets
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2.1. FUNCTIONAL PROGRAMMING

the base case. Generally, recursion involves managing a stack, consuming space
proportional to the recursion depth. This characteristic might render recursion
less favorable compared to imperative loops due to potential space inefficiency.
Nonetheless, a specific type of recursion called tail recursion can be identified and
optimized by a compiler, producing code similar to that used for iteration in imper-
ative languages. Implementing tail recursion optimization involves transforming

the program using a continuous passing style during compilation.

Evaluation strategies in functional languages, various methods are commonly
provided for evaluating arguments during their passage to functions. Three pri-

mary approaches include:

e (Clall-by-value: This involves evaluating arguments before the function appli-

cation.

e (Clall-by-name: Here, arguments are assessed each time their value is needed

within the function body.

o Call-by-need: Also known as lazy evaluation, this approach involves evalu-
ating arguments only when their value is first required within the function
body.

Type systems functional programming languages have leaned towards employ-
ing typed lambda calculus. This approach involves rejecting all invalid programs at
compilation time, even at the risk of encountering false positive errors. In contrast,
untyped lambda calculus, accepts all valid programs at compilation time, running
the risk of false negative errors, as it rejects invalid programs only at runtime when
there is sufficient information to distinguish valid from invalid programs. The in-
corporation of algebraic data types enhances the ease of manipulating complex
data structures. Additionally, the robust compile-time type checking contributes
to program reliability, offering a level of assurance even in the absence of other
reliability techniques. Furthermore, type inference alleviates the need for manual

declaration of types by the programmer in most cases.
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2.1. FUNCTIONAL PROGRAMMING

Referential transparency in functional programming, there are no assignment
statements; once a variable is defined, its value remains constant throughout the
program’s execution. This characteristic eliminates the possibility of side effects
since any variable can be substituted with its actual value at any given point in
the program. Consequently, functional programs are characterized by referential

transparency.

Data structures purely functional data structures are often represented differ-
ently from their imperative counterparts. While arrays, providing constant access
and update times, are fundamental in most imperative languages, purely functional
alternatives might employ maps or random access lists. Although these alterna-
tives allow for a purely functional implementation, they come with logarithmic
access and update times. One distinguishing feature of purely functional data
structures is persistence, which involves maintaining unmodified previous versions

of the data structure.

2.1.2 Functional Programming in Kotlin

Kotlin[l, an open-source programming language characterized by static typing, ac-
commodates both object-oriented and functional programming paradigms. Vari-
ants of Kotlin are designed to target different platforms, including the Java Virtual
Machine (JVM), JavaScript, and native code.

In Kotlin, functions are treated as first-class entities, implying their ability
to be stored in variables and data structures. Additionally, they can be passed
as arguments to and returned from other higher-order functions. The operations
that can be performed on functions are equivalent to those applicable to other
non-function values.

To support these functionalities, Kotlin, being a statically typed programming
language, employs a family of function types to represent functions. Moreover, it
incorporates specialized language constructs, such as lambda expressions.

An illustrative instance of a higher-order function in Kotlin is the functional

programming idiom fold (Listing employed for collections. This function

"https://kotlinlang.org/.
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Listing 2.1: fold function.

(fun <T, R> Collection<T>.fold(
initial: R,
combine: (acc: R, nextElement: T) -> R
): R {
var accumulator: R = initial
for (element: T in this) {
accumulator = combine (accumulator, element)
}
return accumulator
}

\. y

receives an initial accumulator value and a combining function. Subsequently, it
constructs its return value by iteratively combining the current accumulator value
with each element in the collection. Importantly, the accumulator value is replaced
with each iteration.

the combine parameter has the function type (R,7) — R, so it accepts a
function that takes two arguments of types R and T and returns a value of type
R. Tt is invoked inside the for loop, and the return value is then assigned to
accumulator.

Kotlin uses function types, such as (Int) — String, for declarations that deal
with functions. Each function type in Kotlin is characterized by a parenthesized
list specifying the parameter types and a return type. For example, (A, B) — C
represents a type indicative of functions that accept two arguments of types A
and B, yielding a result of type C. The parameter list may be empty, denoted by
() = A. It is essential to note that the return type cannot exclude the declaration
of Unit. Function types have the option to include an additional receiver type,
indicated before the dot in the notation. For instance, the type A.(B) — C signifies
functions that can be invoked on a receiver object A, accepting a parameter B,

and producing a result of type C.

2.2 Reactive Programming

Reactive programming, as defined in [I7], is a programming paradigm centered
on the concept of continuous time-varying values and the seamless propagation

of changes. It streamlines the declarative creation of event-driven applications
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2.2. REACTIVE PROGRAMMING

by enabling developers to articulate programs in terms of desired actions, leaving
it to the language to autonomously handle the timing of execution. Within this
paradigm, alterations in the state are automatically and efficiently disseminated
throughout the network of interdependent computations by the intrinsic execution
model.

Consider the example of calculating the sum of two variables (Listing 2.2)). In
conventional sequential imperative programming, the value of the variable var3
will always contain 3, which is the sum of the initial values of variables varl and
var2 even when varl or var? is later assigned a new value (unless the programmer
explicitly assigns a new value to the variable var3). In reactive programming, the
value of the variable var3 is always kept up-to-date. In other words, the value of
var3 is automatically recomputed over time whenever the value of varl or var2
changes. This is the key notion of reactive programming. Values change over time
and when they change all dependent computations are automatically reexecuted.
In reactive programming terminology, the variable var3 is said to be dependent

on the variables varl and var?2.

Listing (2.2) Example of a program with reactive values.

1
2
varl + var2

varl
: var2
3 || var3

varl

a
«<

A
>

var3

var2

(a) Graphical representation of expression
dependencies in Listing
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2.2. REACTIVE PROGRAMMING

2.2.1 Evaluation Model

The evaluation model of a reactive programming language focuses on how changes
propagate across a dependency graph of values and computations. From the pro-
grammer’s perspective, the automatic propagation of changes is a fundamental
aspect of reactive programming. Essentially, any alteration in a value should be
automatically transmitted to all computations dependent on it. When an event
occurs at a source, computations reliant on that event should be notified of the

changes, potentially triggering a recomputation.

At the language level, a crucial design decision involves determining who initi-
ates the propagation of changes. This entails deciding whether the source should
push new data to its dependents (consumers) or if the dependents should pull data
from the event source (producer). In the pull-based model, the computation that
requires a value needs to “pull” it from the source. That is, propagation is driven
by the demand for new data. In the push-based model, when the source has new
data, it pushes the data to its dependent computations. That is, propagation is

driven by the availability of new data.

2.2.2 Reactive Operators

The primary advantage offered by libraries furnishing the reactive streams APIs
lies in the provision of operators. These operators are essentially functions ap-
plicable to a data stream, adept at solving problems related to the processing of
reactive streams, encompassing tasks such as filtering, mapping (Figure [2.2)), and
aggregating.

Furthermore, these operator functions are intentionally designed to be compos-
able, signifying their capability to be consecutively linked to construct processing

pipelines.

CHAPTER 2. BACKGROUND 9
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(1) () (9) N

-/ o/ / | 7
map(x => x * 2)

() ®) @1

O/ o/ —/ | 7

Figure 2.2: Map operator in reactive applications.

2.2.3 Reactive Programming in Kotlin

Kotlin FIOWE] is a part of the Kotlin Coroutines library, introduced to provide a
reactive programming model for asynchronous cold]| and hotf{] data streams.

A Flow is an asynchronous data stream that sequentially emits values and
completes normally or with an exception. Intermediate operators on the flow such
as map, filter, take and zip are functions that are applied to the upstream flow
or flows and return a downstream flow where further operators can be applied to.
Intermediate operations do not execute any code in the flow and are not suspending
functiong’] themselves. They only set up a chain of operations for future execution
and quickly return. This is known as a cold flow property. Terminal operators
on the flow are either suspending functions such as collect, single, reduce and
toList or launchIn operator that starts collection of the flow in the given scope.
They are applied to the upstream flow and trigger the execution of all operations.
Execution of the flow is also called “collecting the flow” and is always performed
in a suspending manner without actual blocking. Terminal operators complete
normally or exceptionally depending on the successful or failed execution of all the
flow operations in the upstream.

By default, flows are sequential and all flow operations are executed sequentially

’https://kotlinlang.org/docs/flow.html.

3A flow that emits values only when there is an active collector.

4A flow that produces values regardless of whether there are active collectors.
5A function that can be paused and resumed at a later time.
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in the same coroutineﬂ with an exception for a few operations specifically designed
to introduce concurrency into flow execution such as buffer and flatMapMerge.

The Flow interface does not carry information on whether a flow is a cold
stream that can be collected repeatedly and triggers execution of the same code
every time it is collected, or if it is a hot stream that emits different values from the
same running source on each collection. Usually flows represent cold streams, but
there is a SharedFlow subtype that represents hot streams. In addition to that,
any flow can be turned into a hot one by the stateIn and sharelIn operators, or

by converting the flow into a hot channel via the produceIn operator.

Listing (2.3) Kotlin Flow example.

fun simple(): Flow<Int> = flow { // flow builder
for (i in 1..3) {
delay (100) // this represents an operation that takes time
emit (i) // emit next value

fun main() = runBlocking<Unit> {
// Launch a concurrent coroutine to check if the main thread is blocked
launch {
for (k in 1..3) {
println("I’m not blocked $k")
delay (100)
}
}
// Collect the flow
simple () .collect { value -> println(value) 2}

Listing (2.4) Kotlin Flow example result.

I’m not blocked 1

I’m not blocked 2

I’m not blocked 3

The example Listing demonstrates the asynchronous nature of Kotlin Flow
and how it allows concurrent execution without blocking the main thread. The
simple function creates a flow using the flow builder. Inside the flow, it emits

values from 1 to 3 with a delay of one hundred milliseconds between each emission.

6A concurrency design pattern that allows to write asynchronous, non-blocking code in a
sequential style.

CHAPTER 2. BACKGROUND 11




2.3. AGGREGATE COMPUTING

The delay simulates an operation that takes time, such as network calls or disk I/O.
In the main function, a coroutine is launched using launch to run concurrently with
the main thread. This coroutine prints messages indicating that it is not blocked
and introduces delays between each message. As the flow is collected in the main
coroutine, the emitted values are printed and interleaved with the messages from
the concurrent coroutine (Listing[2.4). This demonstrates that the main thread is
not blocked during the execution of the flow, thanks to the asynchronous nature

of flows.

2.3 Aggregate Computing

Aggregate computing is a method for designing intricate coordinations in dis-
tributed systems, particularly for Collective Adaptive Systems (CAS) [18]. The
approach primarily centers on the notion that understanding system interactions
is more straightforward when viewed in the context of information flowing through
the system as a whole, as opposed to focusing on individual devices and their in-
teractions with peers and the environment [19].

Aggregate computing is especially suitable for scenarios where the problem at

hand involves a network of devices possessing the following characteristics:

e Openness, indicating that the surrounding environment where devices op-

erate can undergo unforeseen changes and faults.

e Large scale, involving a potentially extensive number of devices or agents

that necessitate effective abstractions for coordination.

e Intrinsic adaptiveness, signifying the capability to respond to significant

events to ensure the overall resilience of the system.

Addressing these considerations requires an approach grounded in self-organization,
where a cohesive and resilient coordination behavior arises from localized coordi-
nation abstractions. Another objective of aggregate computing is to provide de-
velopers with a means to articulate the behavior of distributed systems possessing

the aforementioned features in a composable and declarative manner. This enables

12 CHAPTER 2. BACKGROUND



2.3. AGGREGATE COMPUTING

the creation of diverse layers that progressively align with specific application do-
mains. This layered approach enhances scalability by effectively addressing the
complexities inherent in the domain.

Aggregate computing builds upon the principles of Field Calculus (FC) (Sec-
tion but adds abstraction layers to address scalability and resilience chal-
lenges (Figure . These layers hide the complexity of distributed coordination
and support efficient system engineering. The methodology ensures simplicity and
transparency in module composition, tailoring coordination mechanisms to differ-
ent subsystems based on varying requirements. Additionally, it abstracts away
intricate implementation details, enabling programmers to focus on high-level sys-
tem design rather than low-level intricacies. The introduction of “resilient coor-
dination operators” is fundamental in concealing complexity and ensuring system
robustness. By providing standardized ways to handle failures and adapt to chang-
ing conditions, these operators contribute to the overall efficiency and reliability

of distributed coordination systems.

2.3.1 Abstractions

Aggregate computing models a distributed system as a set D of devices, ranged
over by 6. On top of that, a reflexive |Z| neighboring relation indicates the devices
with which one can communicate (which is application-dependent and can be used
to describe logical or physical proximity). In addition, each device has a set of
sensors that enable the perception of the environment.

The primary abstraction introduced by aggregate computing is the computa-
tional field (or simply field), which is a function ¢ : D — L mapping each device
d € D to a local value [ € L [20]. A field evolution is a dynamically changing
field, and a field computation takes field evolutions as inputs and produces field
evolutions as outputs. These outputs are defined in such a way that they change
tracking input changes.

The key idea of aggregate computing is that any field computation (global in-
terpretation) can be mapped to a single-device behavior that is iteratively executed

by all the devices in the network (local interpretation). Each iteration executed

"Each device is a neighbor of itself.
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| Crowd Management . i
3 dangerousDensity crowdTracking Ap p "C'a tion !
} crowdWarning safeDispersal Code i
_________ ‘ _______________________*_____________________________________I
Collective Behavior
collectivePerception
collectiveSummary
managementRegions
= Developer
’ t ’
Perception|| Action State APIs
summarize ||distanceTo||timer
average breoadcast lowpass
regionMax ||partition ||recentTrue
| / f t 1 Resilient |
~ functions C G T  Coordination |
: Operators

Field Calculus
Constructs

Device

Figure 2.4: Aggregate programming abstraction layers. The software and hardware
capabilities of particular devices are used to implement aggregate-level field calcu-
lus constructs. These constructs are used to implement a limited set of building-
block coordination operations with provable resilience properties, which are then
wrapped and combined to produce a user-friendly API for developing situated IoT
systems.
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2.3. AGGREGATE COMPUTING

by a device is called a computation round and can be subdivided into three steps:

e sense: the device gathers information coming from its neighbors and local
sensors, which are collected to create its local context (or local state) for the

current round;

e eval: the computation defined by the behavior is evaluated against the local

context, producing an export;

e broadcast: the export is broadcasted to all the device’s neighbors, which in

turn collect and use this information in their future rounds.

2.3.2 Field Calculus

Aggregate computing builds from a foundation of the field calculus, a functional
programming model for the specification and composition of collective behaviors
with formally equivalent local and aggregate semantics.

The concept of field calculus was introduced in [2I] as a fundamental core
calculus designed to encapsulate the essential elements found in languages utiliz-
ing computational fields. These include functions operating over fields, functional
composition involving fields, the progression of fields over time, the creation of
fields of values based on neighboring elements, and the limitation of a field compu-
tation to a specific sub-region within the network. While its syntax, typing, and
semantics are deeply discussed in [19] and are omitted here for simplicity, a brief

description of its elements is presented below and in Figure 2.5

e a field calculus program P consists of a sequence of function declarations F

followed by the main expression e;
e an expression e can be:

— a variable x, e.g., a function parameter;
— a local value [, such as a boolean, number, string, pair, tuple, etc;

— a neighboring field value ¢, e.g., a map of neighbors to the distances to

those neighbors;
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P = Fe program
F = def 4(%) {e} function declaration
e = X | v ‘ f(é) ‘ if(e){e}{e} | expression
nbr{e} } rep(e){(x)=>e}
f o= d { b function name
v o= £ } [0 value
14 = C(Z) local value
¢ n= 4 neighbouring field value

Figure 2.5: Abstract syntax of the field calculus.

— a function call £(&) to a user-declared function or a built-in function,
such as a mathematical or logical operator, a data structure operation,

or a function returning the value of a sensor;

— a branching expression if(ej){es}{es} which splits computation into
isolated sub-regions, where devices belonging to one subregion cannot
communicate with those belonging to the other, resulting in e; where

and when e; evaluates to true, and in es otherwise;

— a nbr(e) construct, which creates a neighboring field value that maps

each neighbor to the latest result of evaluating e;

— arep(er){(x) = ea} construct, which models state evolution over time.
This construct retrieves the value v computed for the whole rep expres-
sion in the last evaluation round (the value produced by evaluating the
expression el is used at the first evaluation round) and updates it with
the value produced by evaluating the expression obtained from e2 by

replacing the occurrences of x by v.

To work properly, the semantics of nbr and rep require a way to access, respec-
tively, the last registered state of each neighbor and the last registered output of
the device itself. In addition, this process should be made in such a way that differ-
ent instances of rep and nbr cannot inadvertently “swap” their respective value.
This process is called alignment, and it has the consequence that two branches

of an if expression execute in isolation, meaning that two devices that execute
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different branches cannot communicate with each other inside their branches. In
practice, this process is done by carefully constructing the export of an expression
as an evaluation tree that represents the aggregate computation. The complete

semantics of export construction and alignment can be found in [20].

2.3.3 Field Calculus Extensions
The Share Operator

In recent research on the universality of the field calculus, a limitation in the
efficiency of information propagation has been identified [22]. This limitation
arises from the combination of time evolution and neighbor interaction operators
in the original field calculus, resulting in a delay that restricts the speed at which
information can be effectively propagated.

The delay stems from the separation between state sharing (nbr) and state
updates (rep). Specifically, when information is received through a neighbor op-
eration, it must be retained and remembered through a state update before it can
be shared onward during the subsequent execution of the neighbor operation. This
process is illustrated in Figure [2.6]

This delay in information propagation has implications for the efficiency and
effectiveness of systems or models built upon the field calculus framework. Re-
searchers may need to explore alternative approaches or optimizations to over-
come this limitation and enhance the speed of information dissemination within
such systems.

In [22] is proposed a solution to the limitation mentioned by introducing the
share construct as an extension to the field calculus. This extension is designed
to overcome the delay in information propagation by integrating time evolution
and neighbor interaction into a single atomic coordination primitive.

The share construct leverages the asynchronous protocol of the field calculus,

enabling it to perform several crucial operations simultaneously:

1. observation of neighbors’ values;

2. reduction to a single local value;
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rep rep rep

nbr nbr nbr

Device 1 Device 2 Device 3

share share share

Figure 2.6: Handling state sharing (nbr) and memory (rep) separately injects
a delay while information “loops around” to where it can be shared (top) while
combining state sharing and memory into the new share operator eliminates that
delay (bottom).

3. update of a local variable and sharing of the updated value.

By incorporating these functionalities into a single atomic operation, the share
construct enables the immediate sharing of information received from neighbors
as soon as it is integrated into the system’s state. This eliminates the need to wait
for the next computation round, effectively addressing the delay in information

propagation identified in the original field calculus framework.

The XC Language

Programming distributed systems presents significant challenges, primarily stem-
ming from issues such as concurrency, asynchronous execution, message loss, and
device failures. These complexities are particularly pronounced in homogeneous
distributed systems, wherein devices are similar and interact with neighboring
devices while executing identical programs.

XC is a programming language introduced in [23], tailored for the development
of homogeneous distributed systems. Within XC, developers craft a singular pro-

gram that each device executes, facilitating collective emergent behavior. The lan-
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guage’s framework abstracts away complexities such as concurrency, asynchronous
execution, message loss, and device failures. A minimalist approach is adopted,
incorporating a single declarative primitive responsible for communication, state
management, and connection oversight (exchange). The alignment mechanism
within XC enables developers to abstract over asynchronous execution while pre-
serving composability.

XC features a single communication primitive:

exchange(e;, (n) = return e, send ey)

which de-sugars to:

exchange(e;, (n) = (e,,e5))

and is evaluated as follows:

1. the device computes the local value [; of e; (the initial value);

2. it substitutes variable n with the nvalue (neighboring value) w of messages
received from the neighbors for this exchange, using I; as default. The ex-
change returns the (neighboring or local) value v, from the evaluation of

€r;

3. e evaluates to a nvalue w, consisting of local values to be sent to neighbor
devices ¢', that will use their corresponding w, (0’) as soon as they wake up

and perform their next execution round.

Often, expressions e, and e, coincide, hence we provide:

exchange(e;, (n) = retsend e)

as a shorthand for:

exchange(e;, (n) = (e,e))

Another common pattern is to access neighbors’ values, which we support via:
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nbr(e;, es) = exchange(e;, (n) = return n send eg)

In nbr(e;, es), the value of expression ey is sent to neighbors, and the values
received from them (gathered in n together with the default from e;) are returned
as a nvalue, thus providing a view on neighbors’ values of e,. It is crucial for the
expressivity of XC that exchange (hence nbr) can send a different value to each

neighbor, to allow custom interaction.

2.3.4 Reactive and Proactive Models

Aggregate computing emerged as a prominent approach for programming self-
organization, with the benefits of formality, abstraction, compositionality, and
pragmatism. Formality stems from building the approach over field calculus with
well-defined language semantics.

Though conceptually simple, in the round-based model, discussed in [20], each
round of a device is alternated with some sleeping time during which it collects
information from neighboring devices. This way of managing computation can be
thought of as a proactive model since it is the device that decides when computation
should occur based on its internal scheduler.

The round-based model could be more efficient because it fully re-evaluates
the context and the whole program without tracking change. Though it might
be acceptable for predictable patterns of environmental change, this becomes
largely suboptimal for highly variable dynamics. Indeed, the round-based ap-
proach seems to be a legacy of imperative languages or solutions featuring limited
compositionality. Given this motivation, taking inspiration from the functional re-
active paradigm, in [I6] a reactive self-organization programming language, called
FRASP; is proposed. This model enables the decoupling of program logic from its
scheduling; the details will be discussed more deeply in Chapter [3]
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Chapter 3
Analysis

This chapter delves into an in-depth examination of various state-of-the-art frame-
works and methodologies in the field (Section . It presents a comprehensive
overview of Protelis, ScaFi, FCPP, Collektive, and FRASP, analyzing their respec-
tive contributions. Through a comparative lens, this chapter aims to elucidate the
evolution of these technologies and their impact on the domain.

Following the exploration of existing frameworks, the chapter transitions into
the analysis of FRASP (Section and Collektive (Section [3.3), shedding light
on their architecture and detailed design.

Furthermore, the chapter delves into the re-implementation of FRASP into
Collektive (Section , outlining possible issues and solutions designed to over-
come them. In particular, it evaluates the feasibility of reactive aggregate program-
ming in Kotlin, offering valuable perspectives on the re-implementation process

and its implications.

3.1 State of the Art

3.1.1 Protelis

Protelis [24] is based on field calculus and is closely related to Proto [25]. It in-
herits spatial computing features from the field calculus, which provides universal-
ity, consistency, and self-stabilization properties. However, Protelis improves over

Proto by offering a richer API through Java integration, support for code mobility
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P :=IFs; :; Program
I = importm | import m.* ;; Java import
F = def £(x) {s;} - Function definition
s = e letx=¢e ‘ XxX=e ;; Statement
woi=zx |1 | [w] } f | (x)->{5;} ;; Variable/Value
e =W ;; Expression
b(e) | £(e) | e.apply(e) ;; Fun/Op Calls
e.n(e) | #a(e) ;; Method Calls
rep(x<-w) {s;} ;; Persistent state
if(e){s;}else{s’;} ;; Exclusive branch
mux(e){s;} else {s';} :; Inclusive branch
nbr{s;} ;; Neighborhood values

Figure 3.1: Protelis abstract syntax.

through first-order functions, and a syntax inspired by C-family languages.

The syntax of Protelis (Figure [3.1) is presented in abstract form. It uses meta-
variables to represent names of user-defined functions (f), variables and function
arguments (x), literal values (1), built-in functions and operators (b), Java method
names (m), and aliases of static Java methods (#a). The syntax employs con-
ventions like comma-separated lists and semi-colon separators for sequences of
elements.

Protelis adopts a familiar C- or Java-like syntax, making it more accessible
and reducing barriers to adoption. Despite its syntactic similarity to imperative
languages, Protelis is purely functional. Programs consist of a sequence of function
definitions, followed by a main block of statements. Functions are defined with
curly brackets and can contain sequences of statements or expressions. Each state-
ment is an expression to be evaluated (e), possibly in the context of the creation

of a new variable (let x = e) or a re-assignment (x = e).

Example: Rendezvous at a Mass Event

In large public events, it can be challenging to meet with companions due to
crowded areas, inaccessible rendezvous points, or difficulty in accessing cloud-based
services.

Utilizing peer-to-peer geometric calculations across a network of devices to
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compute a rendezvousEl route is the proposed solution to the problem. The solution
is demonstrated in a simulated city center environment (Figure , using London
as an example, with devices distributed randomly across the city streets. Each
device has a communication range, and the goal is for two individuals (represented

by their devices) to meet at a specific location.

LSRN =z

Initial configuration. ath begins to form.

¥ any - y ¢ 5 P~ G

/i‘;::‘?wh

(c) Path continues to extend. (d) Path computation complete.

Figure 3.2: Example of computing a rendezvous route for two people in a crowded
urban environment.

The implementation (Listing [3.1)) involves injecting the environment of the
devices with properties representing their owners (e.g., Alice and Bob). The algo-
rithm measures the distance to one of the participants, creates a potential field,
and builds an optimal path from the other participant, descending the distance
potential field to reach the first participant at zero distance. The algorithm utilizes
two main functions: distanceTo and descend. distanceTo measures the distance
to one of the participants. Given a device and a potential field, descend builds a

path of devices connecting the device with the source of the potential field. The

LA meeting at an agreed time and place.
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Listing 3.1: Rendezvous implementation in Protelis.

(// Follow the gradient of a potential field down from a source
def descend(source,potential) {
rep(path <- source) {
let nextStep = minHood(nbr ([potential, self.getId()1));
if (nextStep.size() > 1) {
let candidates = nbr([nextStep.get(1), pathl);
source || anyHood([self.getId(), true] == candidates)
} else {
source

}
}
def rendezvous(personl, person2) {
descend (personl == owner, distanceTo(person2 == owner))

}

// Example of using rendezvous
rendezvous ("Alice", "Bob");

algorithm elegantly compresses the entire process into a few lines of code, utilizing
the nbr operator to exchange required information without explicitly declaring any
communication protocol.

As Figure shows, the simulation rapidly identifies a chain of devices (rep-
resented by red dots) that marks a sequence of waypoints for both device owners
to walk and meet in the middle. The algorithm dynamically adjusts the path if
one of the device owners moves in a different direction, ensuring it continues to

recommend the best path for rendezvous.

3.1.2 ScaFi

ScaFi [26] is a Scalaﬂbased library and framework designed for aggregate program-
ming. It facilitates the development of distributed algorithms where computations
are performed by individual devices in a network, and the results are aggregated
across the network. The core concepts and constructs of ScaFi’s API are outlined

as follows:

Expression Evaluation An expression written using the ScaFi API is evaluated

by each device once per computation round.

’https://www.scala-lang.org/.
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Fields Fields are represented as atomic values without any particular wrapper.

They indicate the value of the field at the device performing the computation.

Neighboring Field The concept of “neighboring field” from field calculus is
not explicitly represented (not reified). Spatial computation (nbr and nbrvar
constructs) is only available inside a special scope provided by the foldhood con-

struct.

Export The export for each iteration is constructed by the ScaFi engine. It
applies side effects to an internal data structure as the constructs are invoked,

thereby constructing the evaluation tree.

Constructs The semantics of the constructs defined in ScaFi are described be-

low:

e rep(init) (£): captures state evolution, starting from an init value that is

updated each round through f;

e nbr(e) captures communication, of the value computed from its e expression,

with neighbors; it is used only inside the argument expr of

foldhood(init) (acc) (expr), which supports neighborhood data aggrega-
tion, through a standard “fold” of functional programming with initial value
init, accumulator function acc, and the set of values to fold over obtained

by evaluating expr against all neighbors;

e branch(cond) (th) (el) captures domain partitioning (space-time branch-
ing): essentially, the devices for which cond evaluates to true will run sub-

computation th, while the others will run el;
e mid is a built-in sensor providing the identifier of devices;
e sense(sensorName) abstracts access to local sensors;

e nbrvar (sensorName) abstracts access to “neighboring sensors” that behave
similarly to nbr but are provided by the platform: i.e., such sensors provide

a value for each neighbor.
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Gradient Implementation in ScaFi

A (self-healing) gradient (Figure is a distributed behavior that self-stabilizes,
in each device of the distributed system, to a value denoting its minimum distance
from the closest source node (for instance, computed by summing the neighbor-
to-neighbor distances along the shortest path to the source), adapting to changes
in the source set and distances. By following the neighbors of maximum decrease
(resp. increase) of the gradient value, i.e., by descending (resp. ascending) the
gradient, it is possible to implement efficient hop-by-hop information flows, that
can be useful for data propagation and collection.

144219)
3 (1 90,

‘-. (646.47) (675.0
va

Figure 3.3: A graphical representation of the gradient implementation in ScaFi
after stabilization. Each device of the network is labeled with its distance from
the source (in parenthesis) and its ID. The source device is the one with ID 1.
Note that devices that are not connected to the source are considered to be at an
infinite distance from it.

The implementation of a gradient using ScaFi is presented in Listing[3.2] the fol-
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lowing is a brief description of the program: The gradient value at each node is dy-
namically evolved using rep. This is necessary to allow a node to share its previous
gradient value with neighbors. The default value is Double.PositiveInfinity
since by default a node is at an infinite distance from a source (since it may
not be reachable in general). The mux(c) (th) (el) evaluates its expression th
and el and then uses the Boolean condition c to select either the former (when
c is true) or the latter (when c is false). If a node is a source (i.e., if sensing
the Boolean sensor source returns true), then its gradient value is 0 (by defini-
tion). If a node is not a source, then will take as its gradient value the output
of the expression minHoodPlus (nbr{distance} + nbrRange). minHoodPlus(e)
is a variant of foldhood which does not consider the device itself when folding
over the neighborhood. Namely, it selects the minimum value among those ob-
tained by evaluating e against the neighbors. The argument of minHoodPlus
is nbr{distance} + nbrRange(), which amounts to calculating, for each neigh-
bor, the sum of the neighbor’s most recent gradient value and the corresponding
distance to that neighbor (obtained by neighboring sensor nbrRange, which is
nbrvar [Double] (¢ ‘nbrRange’’)).

Listing 3.2: Implementation of gradient in ScaFi.

-
object MyAggregateProgram extends AggregateProgram {

override def main() = gradient(isSource)

def gradient(isSource: Boolean): Double =
rep(Double.PositiveInfinity) (distance =>
mux (isSource) {
0.0
H
minHoodPlus (nbr{distance} + nbrRange)
}
)

def isSource sense [Boolean] ("source")

def nbrRange = nbrvar [Double]("nbrRange")
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3.1.3 FCPP

FCPP [27] is a C++14 library implementing field calculus and providing tools for
distributed system simulation.

Its extensible component-based architecture allows customization for diverse
application scenarios, such as Internet-of-Things (IoT) deployments, simulations,
and self-organizing cloud applications, which require fine-grained parallelism to
scale and for which performance improvements translate into a cost reduction.
Users can add components tailored to specific functionalities, enhancing flexibil-
ity and applicability. The library incorporates compile-time optimizations and
supports parallel execution, enabling efficient simulation of both systems and self-
organizing cloud applications. Currently, FCPP focuses on distributed system
simulations but already significantly reduces simulation costs, accelerating the
development of new distributed algorithms. These features offer a path for a con-
venient extension to address previously ineffective scenarios.

Existing implementations often have high-performance requirements, unsuit-
able for resource-constrained microcontrollers. FCPP’s lightweight nature makes
it well-suited for these systems.

Self-organizing cloud applications necessitate fine-grained parallelism for scala-
bility, and performance improvements directly translate to cost reduction. FCPP’s

support for parallelism caters to this need.

Aggregate Program Example with FCPP

The example function provided in Listing utilizes the Adaptive Bellman-Ford
algorithm to estimate distances from devices where the source parameter is true.
This function explicitly takes a node object as input, enabling access to its func-
tionalities, including the nbr_dist () method. This method returns a field<double>
representing the estimated distances to neighboring nodes.

The call_point parameter serves two purposes:

e Updating the node.stack trace (shared functionality across all aggregate

functions, as noted in the first line).
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Listing 3.3: Implementation of the Adaptive Bellman Ford algorithm in FCPP.
~

template <class node_t>
double abf(node_t& node, trace_t call_point, bool source) {
trace_call trace_caller (node.stack_trace, call_point);
return nbr(node, 0, INF, [&] (field<double> d) {
double v = source ? 0.0 : INF;
return min_hood(node, 1, d + node.nbr_dist (), v);

P

L

e Facilitating the aggregation of function calls (e.g., nbr and min hood) by

providing an incrementing index.

3.1.4 Collektive

Collektiverf] provides the user with a DSL, implemented in Kotlin, that allows
to create aggregate programs transparently. It was designed with the following
principles in mind: transparency, minimality and portability.

Transparency refers to the clear and concise information it provides about how
the underlying system behaves, such as data processing, storage, and communica-
tion between nodes. Transparency helps to reduce complexity, making it easier to
understand and maintain large and complex systems.

Collektive is designed with the fewest possible constructs and abstractions while
still offering the required functionalities. This reduces the complexity of the sys-
tem, making it easier to maintain and debug, and lowers the overhead associated
with using the DSL, which is particularly important for systems that require high
performance and scalability.

Portability refers to its ability to run on various platforms and environments,
including different operating systems, cloud platforms, and hardware architectures.
This enables systems built with the DSL to be easily deployed and run in differ-
ent environments, which is crucial for systems requiring deployment in multiple
locations or scalability to meet changing demands.

Constructs implemented in Collektive are defined in Listing [3.4] while the se-

mantics are described below:

3https://github.com/Collektive/collektive
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Listing 3.4: Base constructs implemented in Collektive.

-
interface Aggregate<ID : Any> {

fun <Initial> exchange(
initial: Imnitial,
body: (Field<ID, Imnitial>) -> Field<ID, Imnitial>,

): Field<ID, Initial>

fun <Initial, Return> exchanging(
initial: Imnitial,
body: YieldingScope<Field<ID, Imnitial>, Field<ID, Return>>,

): Field<ID, Return>

fun <Initial> repeat(initial: Initial, transform: (Initial) -> Initial):
Initial

fun <Initial, Return> repeating(initial: Initial, transform: YieldingScope<
Initial, Return>): Return

=
-

e exchange: It manages the computation of values between neighbors in a
specific context. It computes a body function starting from the initial
value and the messages received from other neighbors, then sends the results
from the evaluation to specific neighbors or everyone, it is contingent upon
the origin of the calculated value, whether it was received from a neighbor
or if it constituted the initial value. The result of this function is a field with
as messages a map with as key the ID of the devices across the network and

the result of the computation passed as relative local values.

e exchanging: Same behavior of exchange but this function can yield a Field

of Return value.

e repeat: [teratively updates the value computing the transform expression

at each device using the last computed value or the initial.

e repeating: Iteratively updates the value computing the transform expres-
sion from a YieldingContext at each device using the last computed value

or the initial.

Example of Gradient in Collektive

In the Listing[3.5] the implementation of the gradient in Collektive is presented. It
uses the share construct with POSITIVE_INFINITY as the initial value. The when
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Listing 3.5: Gradient implementation in Collektive.

fun Aggregate<Int>.gradient (source: Boolean): Double =
share (POSITIVE_INFINITY) {
val dist = distances ()
when {
source -> 0.0
else -> (it + dist) .min(POSITIVE_INFINITY)

\S

construct is used to select the result of the expression based on the type of the

node:

e if the node is the source the result is 0.0;

e if the node is not the source it must consider the neighbor where the value

of the gradient is smallest and sum the distance from that neighbor.

3.1.5 FRASP

As said in Section [2.3.4] aggregate computing makes use of a round-based execu-
tion model, that can be defined as proactive. This approach is simple to reason
about but limited in terms of flexibility in scheduling and management of sub-
activities (and response to contextual changes). In [I6] is proposed a reactive
self-organization programming approach, called FRASP, that enables the decou-
pling of the program logic from the scheduling of its sub-activities. This model
maintains the same expressiveness and benefits of aggregate programming while
enabling significant improvements in terms of scheduling controllability, flexibility

in the sensing/actuation model, and execution efficiency.

Reactive Model

FRASP is based on the functional reactive programming (FRP) paradigm and
considers continuous time, Time = {t € R|t > 0}. Time-varying values are
called cells and may be conceptually modeled by generic functions of type Cell
a: Time — a. Then, streams are discrete-time values and may be modeled by

generic functions of type Stream a: [Time] — [a], namely, mapping a sequence
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of (increasing) sample times to a sequence of corresponding values. While cells

model state, streams model state changes.

Abstractions and Primitives

One of the main differences between the proactive and reactive models is that the
latter allows the self-organizing collective computation to be expressed as a graph
of reactive sub-computations. Each sub-computation is called flow and represents
it programmatically through type Flow[T], where T is the type of the output of
the wrapped computation. A Flow is essentially a function that takes a Context
and returns a cell of Exports, possibly depending on the exports of other Flows,
recursively.

The details of the syntax and semantics of FRASP are discussed in detail in

Section III of [16] while in this section they are presented in a simplified manner:

e constant(e) returns a constant flow that always evaluates to the argument

that has been passed;

e sensor (name) returns the flow of values produced by the sensor with the

given name;
e mid () returns the constant flow of the device ID;

e mux(c){t}{e} is an expression that returns a flow with the same output of
flow t when the Boolean flow c is true and the output of flow e when c is

false;

e nbr(f) handles communication with neighbors in both directions at once, it

takes a flow £ as a parameter;

e branch(c){t}{e} evaluates and returns the value of expression t when c
evaluates to true. This enables a form of distributed branching, where devices
that happen to execute t will not interact with those that executed e (and

vice versa);

e loop(init,ft) evolves a piece of state (initially, init) by applying function

ft mapping the previous state’s flow to the next state’s flow.
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Gradient Implementation in FRASP

Listing provides the implementation of the gradient in FRASP. The function
takes the boolean src flow as input, denoting whether the executing node is the
source of the gradient or not. The external loop is used to progressively evolve
the current gradient value distance starting from an infinite value (as, initially,
devices do not know whether a source is reachable). Internally to the loop, mux
is used to select one of two values: if the node is a source, then its gradient value
is 0 (base case); otherwise, the gradient should be the minimum value among the
neighbors’ gradient values augmented by the distance (nbrRange) from that very
neighbor. Construct 1iftTwice is used to combine (using the sum: _+_) the two
flows nbrRange (distances to neighbors) and nbr(distance) (neighbors’ gradient

values).

Listing 3.6: Gradient implementation in FRASP.

-
def gradient(src: Flow[Boolean]): Flow[Double] =

loop(Double.PositiveInfinity) { distance =>
mux (src) {
constant (0.0)
¥ A
liftTwice (nbrRange, nbr(distance))(_ + _).withoutSelf.min
}
}

The reactive dataflow graph in Figure corresponds to Listing Fig-
ure provides the local view of the computation for a single node (where the
layers denote different semantic kinds of dependencies), whereas Figure shows
the distributed dependency graph. The arrows denote dependencies. The dashed
arrows denote dependencies based on platform-level scheduling and node interac-
tion; for instance, a red block depends on changes corresponding to neighbors’ red

blocks and is communicated via message passing.
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3.2 Design of FRASP

3.2.1 Architecture

The architecture of FRASP is shown in Figure The design is organized
into three packages: core, which includes basic type definitions (Core) as well
as the components for the DSL (Language for primitives and RichLanguage for
other built-ins) and its “virtual machine” (Semantics), overall captured by an
Incarnation; frp, which provides an interface to the FRP engine (FrpEngine),
possibly also decoupling from the specific FRP library adopted, as well as exten-
sions (FrpExtensions) useful for the definition of FRASP constructs; and simu-

lation, which provides basic simulation support.

core) f_rp\

FrpExtensions FrpEngine

) )

v (o :
\ |simulation)

g1
AggregateProgramSimulator

g ]
Environment

RichLanguage Semantics

N

Incarnation
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Figure 3.5: FRASP architecture.
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@ NeighborField

o neighborValues(): Map[Deviceld, T]
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Figure 3.6: Detailed design of FRASP.
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3.2.2 Detailed Design

FRASP has been implemented in Scala, using Sodium{ as FRP library. Scala is
well known for its suitability as a host for embedded DSLs and aggregate comput-
ing embeddings as well. The design of the FRASP DSL is detailed in Figure [3.6]

Following the system /execution model described in Section , the input and
output of a (sub-)program are modeled through an interface Context, providing
access to local sensor data and neighbor data; and an interface Export, capturing
outputs and data that must be shared with neighbors. In particular, an Export is
modeled as a tree where each node is a Slot (corresponding to a particular lan-
guage construct) with an associated value, and can be located through a path of
slots—e.g., S1/52/83 identifies a node in the export tree, where S1 depends on S2
which depends in turn on 83 (so, a change in the output 83 will cause the expres-
sion corresponding to S2 to re-evaluate, and possibly S1 in turn). Flow is the type
of a reactive (sub-)computation, which takes a Context (providing its inputs), a
Seq[Slot] as path (indicating its position in the export tree), and returns Cell
(i.e. a time-varying value) of Export. Each Language construct returns a Flow:
therefore, the constructs do not immediately run upon evaluation, but rather an
executable, reactive object denoting a computation graph whose nodes will execute
as a response to change (Figure [3.4a). Access to neighbor-related data is medi-
ated by a NeighborField abstraction, which is the same provided by constructs

supporting interaction with neighbors, i.e., nbr and nbrSensor.

3.3 Design of Collektive

3.3.1 Architecture

Collektive has been developed as a Gradle project composed of three different

submodules. The cited submodules are, namely:

e plugin, that is divided into two submodules:

— gradle-plugin: the necessary plugin used by a gradle project to in-

clude the compiler plugin.

“https://github.com/SodiumFRP/sodium.
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— compiler-plugin: the compiler plugin is used to modify the data struc-
ture which is responsible for keeping track of the stack at runtime. For
each aggregate function and branch construct, the stack data structure

is updated to allow alignment whenever necessary.

e dsl: the actual DSL implementation in Kotlin Multiplatform, where the logic

is implemented and that exposes the operators of the aggregate computing.

e alchemist-incarnation-collektive: allows to integrate Collektive simu-

lations in the Alchemist [28] simulator.

3.3.2 Detailed Design

The detailed design of Collektive is presented in Figure 3.7 The Collektive class
represents a device with a specific localIld and a Network to manage incoming
and outgoing messages, it takes a function to apply within the AggregateContext.

Collektive implements two different execution strategies:

e cycle: it applies once the aggregate function to the parameters of the device,

then returns the result of the computation.

e cycleWhile: it applies the aggregate function to the parameters of the device

while the condition is satisfied, then returns the result of the computation.

cycle and cycleWhile implicitly use the aggregate function, which is the en-
try point of the aggregate program. It computes an iteration of a device (localld),
taking as parameters the previous state, the messages received from the neigh-
bors and the compute with AggregateContext object receiver that provides the
implementation of the aggregate constructs. Another version of the aggregate
function computes an iteration of a device, over a network of devices, optionally
from a previous state (previousState), running the compute aggregate program.
The aggregate function returns an AggregateResult, which is the result of the
aggregate computation. It represents the localld of the device, the result of the
computation, the messages to send (toSend) to other devices and the new state

(newState) of the device.
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«interface»
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)
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Figure 3.7: Detailed design of Collektive DSL.
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The interface Aggregate models the minimal set of aggregate operations and
holds the localld of the device executing the aggregate program.

The alignOn function is used for the alignment, it pushes in the stack the
pivot, executes the body and pops the last element of the Stack after it is called,
finally returns the body’s return element.

The AggregateContext class represents the context for managing aggregate
computation. It encapsulates the localld of the device, the messages received
from the neighbors, and the previous state (previousState) of the device. The

actual implementation of the aggregate constructs is defined in this class.

3.3.3 Alignment Processing Strategy

The alignment processing pursues the following strategy: in the first instance, all
the function definitions are visited and the ones involving aggregate computation
will be subject to alignment processing. Then, for each candidate function, the
plugin visits all the call sites in the body of the function and checks if the call has
an aggregate reference or if it is involved in an aggregate computation. If so, the
plugin will align the expression call. During the visiting of the function definition,
branch conditions are also visited aligning only the branches that involve aggregate
computation. If a branch body does not involve aggregate computation, the plugin
will not align it. Aligning the branches in this way, by default all the branches
follow the branch semantics of aggregate computing. The alignment strategy is

formalized below:

1. Each function definition exhibiting the following characteristics is the target

of the alignment processing;:
e The function has an extensionReceiver of type Aggregate or a sub-
type of it.

e The function has a dispatchReceiver of type Aggregate or a subtype
of it.

e Omne or more of the function’s parameters are of type Aggregate or a

subtype of it.
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2. For each candidate function, it aligns the call expressions having an aggregate

reference or in-depth they involve an aggregate computation.

3.4 Re-implementation of FRASP in Collektive

Given the considerations regarding the proactive computational model made in
Section and the solution proposed in [16] with the related results of the
evaluations performed, it is decided to introduce the FRASP model in Collektive.
Analysis of the architectures of FRASP and Collektive, defined in Section [3.2] and
Section respectively, reveals substantial differences in technology and design
choices. This considerably complicates the process of implementing the reactive
model into Collektive. The possible issues identified during the analysis are de-
scribed in Section B.4.1]

3.4.1 Implementation Issues
Differences between Scala and Kotlin

The Scala implementation of FRASP is extremely concise, even though it models
several aspects of aggregate programming. In addition, the DSL provided is partic-
ularly ergonomic, so the user can create aggregate programs easily and effectively.
These characteristics of FRASP are due in part to the flexibility of Scala, which
is given by the constructs that the language implements. The following are some
Scala features that are used in FRASP but are not available by Kotlin:

¢ Given instances and using clauses: functional programming tends to
express most dependencies as simple function parameterization. This is clean
and powerful, but it sometimes leads to functions that take many parameters
where the same value is passed over and over again in long call chains to many
functions. Context parameters can help here since they enable the compiler
to synthesize repetitive arguments instead of the programmer having to write
them explicitly. Given instances define “canonical” values of certain types

that serve for synthesizing arguments to context parameters.
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e Traits and self-types: self-types are a way to declare that a trait must be
mixed into another trait, even though it does not directly extend it. That
makes the members of the dependency available without imports. A self-
type is a way to narrow the type of this or another identifier that aliases

this.

Differences in Paths and Exports Management

Typically, in aggregate computing implementations that respect the proactive
model, paths are modeled as lists of tokens, while exports are represented by
making use of maps that have the path as the key and the result of evaluating
the sub-expression related to the path as the value. In FRASP, these entities are
represented in a completely different way; this is due to the need to properly model
the dependencies of reactive sub-expressions. In particular, an export is modeled
as a tree (using a specially defined data structure) where each node is a token with

an associated value and can be located through a path of tokens.

Diversity of Implemented Constructs

FRASP implements a reactive version of the constructs defined by the field cal-
culus, this allows a sub-expression to be automatically re-evaluated as one of the
sub-expressions on which it depends changes. On the other hand, in addition to the
field calculus constructs, Collektive implements a proactive version of exchange

and share, so a reactive version of these two constructs must be provided.

Divergences between Reactive and Proactive Models

In the proactive model, at each round, the aggregate expression is reevaluated
entirely, taking into account the following parameters passed in as input: previous
state, neighbor messages, and sensors states. This behavior differs completely
from the reactive model, where it is necessary to think in terms of dependencies
between information flows instead of computational rounds. In other words, it is
necessary to revisit the design of Collektive by modifying some aspects of it. The
state, sensors, and messages of neighbors must be modeled as reactive entities,

of which the values change over time; furthermore, in addition to modeling the
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aggregate constructs so that they are reactive, it is necessary to adequately define
the dependencies between them and the context (state, sensors and neighbors

messages) in which they are executed.

3.4.2 Feasibility of Reactive Aggregate Programming in
Kotlin

Even before addressing the problems presented in Section [3.4.1] it is necessary
to understand whether it is possible to create a Kotlin version of FRASP and, if
so, analyze the similarities and differences with the model implemented in Scala,
considering, in particular, the ergonomics of the DSL. In this regard, an imple-
mentation of FRASP i