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Abstract

This thesis explores the innovative intersection of autonomous drones with wildlife
monitoring, specifically focusing on herd monitoring through a decentralized k-
coverage approach, aiming for a significant improvement in the quality and scope
of ecological data collection. The work includes an in-depth analysis of drone-
captured footage telemetry, enabling the reconstruction of animal dynamics and
drone engagement. Reproducing this complex situation involved enhancing the
existing herd behavior model and implementing it using the Alchemist simulator
environment to model multiple sophisticated scenarios and conditions.

The significant contribution of this research lies in adapting aggregate algo-
rithms for the Online Multi-Object k-Coverage (OMOkC) problem to the drone-
based herd tracking scenario. The focus is on adopting a hierarchical clustering
technique that optimizes target definition and assignment in a distributed network
of drones while observing a highly dynamic environment. Through comprehensive
simulations, the thesis assesses the performance of these algorithms, exploring
the impact of clustering improvements and the effect of an adaptive hierarchical
clustering algorithm.

The implications of this work extend beyond the immediate application to
herd monitoring, suggesting a paradigm shift in how we approach biodiversity
conservation and ecosystem management in the era of autonomous systems.
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Chapter 1

Introduction

1.1 In Situ Imageomics

The in situ imageomics [KSBW+23] represents a novel method for investigating

ecological, biological, and evolutionary systems. This approach involves the col-

lection of extensive image and video datasets in natural environments, with subse-

quent utilization of machine learning techniques to deduce biological characteristics

of individual organisms, animal social groups, species, and entire ecosystems.

The utilization of in situ imageomics facilitates the monitoring of biological

traits across vast areas and extended periods, opening opportunities for data-

driven strategies in wildlife conservation, biodiversity, and sustainable ecosystem

management.

The primary focus of this approach is the examination of organisms within

the context of their natural environment, emphasizing an “in situ” perspective.

To comprehend the collective dynamics of individual and group behaviors, as well

as their responses to habitat and environmental conditions, observation of fine-

grained details at both individual and population scales is essential. This involves

tracking movements over potentially large distances and changing habitats.

1.1.1 Autonomous UAVs

For an imagomics application designed to automatically extract behavioral traits

from videos, modern machine learning and computer vision techniques are es-
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1.1. IN SITU IMAGEOMICS

sential. However, these techniques require exceptionally large and high-quality

datasets, surpassing the amount of data typically collected for biological studies.

While camera traps and unmanned aerial vehicle (UAV) generate substantial

data, they face challenges in tracking individuals over large areas, capturing social

dynamics, and dealing with issues like poor lighting and unfavorable view angles

in images.

In contrast, small unmanned aerial systems (sUAS) consisting of one or more

UAVs and control systems like those from DJI and Parrot, offer dynamic animal

tracking and efficient traversal of remote terrain. This surpasses the limitations

of heavy-duty sport utility vehicles (SUVs) often used in fieldwork, enabling the

capture of fine-grained details, such as animal behaviors within their social and

environmental context.

As commercial UAVs become cheaper and more readily available, more often

they are employed for the capture of video and photo data in animal ecology,

conservation, and agriculture applications.

However, these missions necessitate trained pilots capable of manual operation

tailored to specific geographic regions and species. Utilizing autonomously con-

trolled sUAS in ecological research presents a significant advantage over manual

approaches that are associated with challenges such as high costs for hiring expert

pilots, limited availability in certain areas, potential human errors, and difficulties

in ensuring consistent data collection. Automating missions not only addresses

these issues but also proves to be more cost-effective, safer, and provides better

spatial accuracy compared to manually piloted flights, as evidenced by previous

studies [BCSK19]. Furthermore, manual piloting introduces significant coordi-

nation difficulties, particularly as the scale of sUAS operations increases. This

complexity amplifies with each additional sUAS introduced into the operation,

making efficient large-scale manual organization challenging.

1.1.2 Nadir and Non-Nadir Views

The tracking of animals using UAVs commonly relies on two types of perspectives:

nadir (or bird’s eye view) [KSBW+23] and non-nadir [KDK+23] (illustrated in

Figure 1.1). While nadir-angle photography allows for the individual identification
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Figure 1.1: Visualizzation of Nadir and Non-Nadir views

of animals of interest, it may not be suitable for all species, such as zebras and

giraffes, because animals’ distinguishing markings on the hip and shoulder are not

visible, and behavior is difficult to identify. Notably, the most valuable ecological

data for animal ecology from sUASs is gathered through off-nadir views, where

the UAV is positioned high enough to avoid surface-level obstructions, such as

vegetation, as shown in Figure 1.2. However, nadir missions (see Figure 1.3) are

generally much easier to plan and execute using existing methods compared to

non-nadir missions.

1.2 Field of View Projection

The Field of View (FoV) of an UAV or an animal, when projected in two

dimensions, can be characterized by the triple V = ⟨Θ, R, β
2
⟩, where:

• Θ represents the orientation of the view relative to a fixed reference system;
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Figure 1.2: Example of Non-Nadir view, from data collected at the Mpala Research
Centre in Laikipia County, Kenya. Behavior and distinguishing markings are easily
seen [KSBW+23].

Figure 1.3: Nadir-view, animals’ distinguishing markings on hip & shoulder not
visible and behavior difficult to identify [KSBW+23].
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• R denotes the range of view, indicating the maximum distance at which the

targets can be detected;

• β
2
signifies half of the view angle, defining the width of the FoV beyond which

blind spots exist. The FoV is assumed to be symmetric.

A scheme of the FoV projection is illustrated in Figure 3.1.

1.3 Computer Simulation

The computer simulations can accurately replicate complex environments and sce-

narios, they become particularly advantageous for designing and evaluating diverse

algorithms for autonomous UAV missions aimed at collecting in situ imageomics

data. A computer simulation can be formally defined as “the use of a mathemati-

cal/logical model as an experimental vehicle to answer questions about a referent

system” [PN94]. Computer simulation models find extensive applications in var-

ious domains such as cancer treatment, crowd dynamic movements, city traffic,

financial markets, and numerous other fields. Over time, computer simulation has

demonstrated benefits for [LTF+18]:

1. Visualizing complex interactions in dynamic systems;

2. Providing results much faster than would be possible in real-time; and

3. Allowing “what if” analysis when changes to an actual system are difficult

to implement, costly, or impractical.

These capabilities enable researchers to design, develop, and assess complex sys-

tems more efficiently, cost-effectively, and safely than experimenting with actual

systems.

1.4 Alchemist Simulator

The Alchemist1 is an open-source general-purpose simulation framework designed

for modeling complex multi-agent systems [PMV13]. Alchemist, as a stochastic

1https://alchemistsimulator.github.io/index.html
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simulator, employs probability theory to model the unpredictability and variability

inherent in chemical and biological systems. Unlike deterministic models that

rely on precise initial conditions and interactions, it incorporates randomness and

fluctuations due to molecular interactions, environmental changes, and biological

variability, enhancing the modeling of complex systems.

The Alchemist simulator has been enhanced with smart camera capabilities,

enabling it to simulate and assess algorithms aimed at solving the Online Multi-

object k-coverage (OMOkC) problem [PPCE22], detailed in Section 3.1.1.

Combining simplicity and extendibility, Alchemist emerges as the optimal platform

for adapting and testing sUAS coordination algorithms within the context of herd

tracking. It provides a robust environment for the development and evaluation of

complex coverage algorithms.

1.4.1 The Alchemist Meta-Model

The namings of Alchemist’s entities derive from its beginning: “The core of Al-

chemist is an event-based engine derived from chemistry-oriented simulators, and

its computational meta-model in part reflects these origins” [PPCE22]. The world

of Alchemist, that is illustrated on Figure 1.4, is composed of the following enti-

ties2:

• Molecule: Represents the name of variable (name of data item);

• Concentration: Quantifies the value associated to a particular molecule;

• Reaction: Defines how changes occur within the simulation. A reaction is

modeled as a set of conditions on the state of the system, which triggers the

execution of a set of actions ;

• Condition: Dictate the prerequisites for reactions to occur;

• Action: Models a change in the environment;

• Node: Acts as the container for molecules and reactions ;

2https://alchemistsimulator.github.io/explanation/metamodel/index.html
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• Environment : The space in which nodes are placed and move;

• Linking rule: A function of the current status of the environment that asso-

ciates to each node a neighborhood ;

• Neighborhood : An entity composed of a node (center) and a set of nodes

(neighbors).

Incarnation is a crucial concept, providing a customizable layer that specifies

the types of molecules, reactions, and conditions applicable in a simulation, adapt-

ing the framework to specific domains or research needs. Currently, the Alchemist

distribution includes four Incarnations:

• Protelis3 [PVB15] - Aimed at simulating networks of devices running an

aggregate program that is written in protelis programming language, as de-

scribed in Section 1.5.1;

• SAPERE [ZOA+15] - Models a distributed computing system inspired by

natural ecosystems;

• Biochemistry - The first incarnation of Alchemist, designed to model bio-

chemical reactions in multicellular environments;

• ScaFi [CVAP22] - Designed for the simulation of device networks running

programs that utilize ScaFi, a Scala-based framework for Aggregate Pro-

gramming.

1.5 Aggregate Programming

One of the main features of Alchemist is its native and first-class support for ag-

gregate programming (limited to the Protelis and ScaFi implementations). This

paradigm is founded on the observation that in the development of distributed

systems, conventional device-centric programming languages compel programmers

to focus on individual devices and their communication protocols. As a result,

3https://protelis.github.io
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Reaction
A proactive behaviour

Linking Rule
A function of the environment

that decides wether or not
two nodes are connected

Molecule
token representing a

chunk of data
(think of it as a pointer)

Concentration
Actual data associated

with a "molecule"

Environment
Riemannian manifold

where nodes live

Node
A container of reactions
and molecules situated

in the environment

Figure 1.4: The alchemist metamodel

the design of device interaction and coordination becomes entangled with the ap-

plication’s implementation, leading to a fusion of various aspects of a distributed

system. These aspects include the effectiveness and reliability of communications,

coordination in the face of changes and failures, and the composition of behav-

iors across different devices and regions. This composition makes it difficult to

effectively design, debug, maintain, and compose complex distributed applica-

tions [PVB15].

Aggregate programming aims to resolve this issue by offering composable ab-

stractions that distinctively separate the global behavior from the implementation

specifics [PVB15]:

• Communication between devices is generally made implicit, with higher-level

abstractions for controlling efficiency/robustness trade-offs;

• Methods for distributed coordination are encapsulated within aggregate-level

operations (e.g., measuring distance from an area, spreading a value by gos-

sip, sampling a collection of sensors at a certain resolution in space and time);

and
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• The system as a whole is defined through the composition of aggregate-level

operations. This high-level specification is subsequently translated into a

comprehensive distributed implementation through an appropriate mapping

process.

The computation in this paradigm is achieved through the manipulation of dis-

tributed data structures known as computational fields (or simply fields), which

represent a global, distributed map from computational devices to computational

objects (data values of any sort). For example: a collection of temperature sen-

sors produces a field of ambient temperatures, a smartphone application produces a

field of notification and a group of drones produces a field of visible objects. In this

approach, the designer’s focus shifts from individual devices and communication

protocols to the evolution and composition of fields. The responsibility of translat-

ing these high-level abstractions into appropriate local interactions to achieve the

desired global behavior falls to the language’s interpreter (or compiler) [PPCE22].

1.5.1 Protelis

Protelis is a purely functional aggregate programming language with C-like syntax,

that has full interoperability with Java type-system and API [PVB15]. Protelis is

based on the field calculus a tiny functional language providing basic constructs to

work with fields [AVD+19]. Fields are built and manipulated using four program

constructs [BPV15]:

• Functions : b(ei, ..., en) applies a stateless function b to arguments ei...en;

• Dynamics : rep(x ← v){s1; ...; sn} define a local state variable x initialized

with value v and at each computational round, it is updated with the result

of executing its body statement {s1; ...; sn}. This constructs a field that

evolved;

• Interaction: nbr(s) gathers a field from all neighbors (including the device

itself) to the latest value from computing s. A build-in “under the hood”

functions can then summarize such maps: for example, minHood(m) finds

the minimum value in map m;

CHAPTER 1. INTRODUCTION 9
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Listing 1.1: Example of network partition by if construct in Protelis.�
1 // Assumption: we have 10 interconnected devices with ids 0..9

2 // the call self.getDeviceUID ().getId () returns id of a device (integer >= 0)

3 rep (v <- self.getDeviceUID ().getId ()) { // inizialize v with device id

4 if (self.getDeviceUID ().getId () < 5) {

5 maxHood(nbr(v)) // the first five devices will get 4 as a result

6 } else {

7 maxHood(nbr(v)) // the second five devices will get 9 as a result

8 }

9 }
� �
• Restriction: if(e){s1; ...; sn} else {s′1; ...; s′m} partitions the network into

two regions: where the condition e is true s1; ...; sn is computed; elsewhere,

s′1; ...; s
′
m is computed instead.

It’s important to note that in aggregate programming, the use of if has different

consequences than in traditional languages. Rather than serving as a “flow control”

instruction, it acts as a domain restriction instruction, effectively dividing devices

into two non-communicating domains. This makes devices get separated into two,

non-communicating domains. An example of this division based on device ID is

illustrated in Listing 1.1.

While if serves as an exclusive branching construct, the mux(e){s1; ...; sn}
else {s′1; ...; s′m} construct functions as an inclusive multiplexing branch. It evalu-

ates both branches and selects one of them for return, avoiding network partition.

1.6 Clustering

Clustering is a technique in unsupervised learning that aims to categorize a col-

lection of objects into clusters, ensuring that objects within the same cluster are

more similar to each other than objects from different clusters. It is a crucial

method in data mining, aiming to achieve optimal partitioning of data without

prior knowledge.

Clustering is widely applied across various domains; it facilitates statistical data

analysis in fields such as machine learning, data mining, pattern recognition, image

analysis, and bioinformatics [PE14]. Particularly, in the context of animal tracking

by UAVs, clustering methods can be employed to organize sets of individuals into

CHAPTER 1. INTRODUCTION 10
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groups. This organization can be leveraged to facilitate the assignment of each

group to a specific UAV, aiming to diminish coverage overlap and enhance tracking

efficiency.

To address the clustering problem from multiple angles, several clustering tech-

niques have been developed [PE14]:

• Partitional Clustering : Divides the dataset into distinct non-overlapping

subsets or clusters without any hierarchical structure. Partitioning clus-

tering methods are useful for applications where a fixed number of clusters

are required;

• Density-Based Clustering : Identifies clusters based on the density of data

points in a region, allowing for the discovery of clusters with arbitrary shapes

and the ability to handle noise and outliers;

• Hierarchical Clustering : Divide or merge a dataset into a sequence of nested

partitions, often visualized as a dendrogram (see Figure 1.5), which allows

for intuitive analysis of data at different levels of granularity.

Figure 1.5: A hierarchical clustering dendrogram visualization5. Selecting a spe-
cific clustering distance allows cutting the hierarchy at the desired level, producing
clusters of the intended granularity.

5Source: https://towardsdatascience.com/hierarchical-clustering-explained-e59b13846da8
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1.7. STRUCTURE OF THE THESIS

1.7 Structure of the Thesis

The primary goal of this study is to establish a robust framework that supports

the testing and evaluation of UAVs navigation algorithms, specifically tailored for

herd tracking. Additionally, this project attempts to adjust existing OMOKC

algorithms for their application within this novel context. The ultimate objective

is to contribute to the improvement of the collection of high-quality biological data

in large-scale scenarios.

The structure of this thesis is organized as follows:

• Chapter 2 investigate the telemetry data from manually piloted UAV mis-

sions and explore various methodologies for modeling herd behavior within

simulations;

• Chapter 3 is dedicated to introducing and adapting existing aggregate algo-

rithms to address the specific requirements of the herd tracking problem;

• Finally, Chapter 4 combines the adapted algorithms with diverse herd com-

position scenarios to measure their performance across a range of conditions.

This evaluation aims to identify the strengths and limitations of each algo-

rithmic approach under various circumstances.

CHAPTER 1. INTRODUCTION 12



Chapter 2

Herd Movement Model

2.1 Analysis and related work

Deploying and maintaining networks of UAVs in the real world is generally cum-

bersome, time-intensive, and requires manual labor. Experimenting with new

methodologies in real networks can be costly and problematic—as experiments

often cannot be reproduced precisely [PPCE22]. Given these constraints, simula-

tions emerge as a viable solution. However, simulating herd tracking algorithms

necessitates an accurate representation of herds, achievable through two primary

methods:

• Replicating real-world herd movements within the simulator, as discussed in

Section 2.1.1 and Section 2.1.2;

• Implementing a mathematical model of herd movement within the simulator,

as examined in Section 2.1.3 and Section 2.1.4.

2.1.1 KABR dataset

The dataset, known as the Kenyan Animal Behavior Recognition (KABR), has

been gathered directly from drone-captured footage to enrich the available re-

sources for studying animal behavior [KKR+24]. This dataset is focused on the

wildlife of Kenya, including the behaviors of giraffes, plains zebras, and Grevy’s
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Figure 2.1: A mini-scene is a sub-image cropped from the drone video footage,
centered on and surrounding a single animal. The KABR dataset consists of mini-
scenes and their frame-by-frame behavior annotation [KKR+24].

zebras. These species were chosen due to their ecological significance and conser-

vation status within the region. A novel technique introduced in this work involves

detecting and tracking each animal across the high-resolution videos, subsequently

linking the results into tracklets. For every tracklet generated, a separate video

segment, referred to as a mini-scene (see Figure 2.1), is created by extracting a

sub-image centered on each detection in a video frame.

KABR-telemetry analysis

The KABR-telemetry dataset [HDR24] complements the KABR dataset by pro-

viding telemetry data from the drone (DJI Mavic 2S) during its observational mis-

sions. This telemetry data includes critical details about the drone’s operational

status, such as its location and altitude, as well as the bounding box dimensions of

observed wildlife within the video frame and annotations of their behaviors. How-

ever, the dataset lacks two crucial pieces of information necessary for the accurate

reconstruction of animal positions: the compass direction of the drone and the

gimbal pitch, which indicates the camera’s vertical angle.

Despite this omission, for this work, an additional sample of data contain-
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ing the missing drone telemetry was requested and subsequently obtained. This

supplementary data enables the reconstruction of animal movements from the

KABR-telemetry dataset.

2.1.2 Herd movement reconstruction from UAV flight data

To estimate the relative distance between a target and an UAV, a geometrical

approach based on the UAV’s camera perspective can be utilized. Firstly, δ is

considered as the vertical angle from the UAV’s altitude line to the optical center

line of the UAV’s camera. To determine the angle between the camera center and

the target, the offset of the target’s bounding box center within the camera’s FoV

can be calculated, as illustrated in Figure 2.2. Here, ∆w and ∆h represent the

horizontal and vertical offsets, respectively, with w and h denoting the width and

height of the image.

The angles of interest can be determined using the following formulas:

θ =
∆w

w
ψw, α =

∆h

h
ψh

where ψw and ψh are the camera’s horizontal and vertical FoV angles. The angles

θ and α represent the relative horizontal and vertical angles between the camera

center and the target. Furthermore, the angle γ is calculated as:

γ = δ + α

This angle γ represents the combined vertical angle from the UAV’s altitude line

to the target’s position, as illustrated in Figure 2.3.

In certain research, the distance from the camera to the target is approximated

using the proportional relationship [LWHH19]:

f/l = m/M, l =Mf/m

where l is the distance between the target and the camera, f is the camera’s focal

length, M represents the actual height of the target, and m is the height of the

target as captured on the camera’s sensor. However, this approach faces two main
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Figure 2.2: Position of a target’s bounding box in the image [LWHH19].

challenges. Firstly, the precise height of animals, crucial for this calculation, cannot

always be accurately determined from the available data. Secondly, the sizes of

bounding boxes in the KABR-telemetry dataset can vary significantly from one

frame to another, leading to abrupt changes in the estimated position of the target.

To address these issues, an alternative method is employed, leveraging the

known value of the camera’s altitude z from the dataset, along with the calculated

angles θ and γ. These elements enable the estimation of the distance d from the

camera to its optical center projection on the ground through the following formula

(see Figure 2.3):

d =
z

cos(θ)
, x = tan(θ) · z, y = tan(γ) · d

Here, x and y represent the relative distances on the ground from the drone to

the target. By integrating these distances with the drone’s location and compass

direction, it is possible to create estimated trajectories of animal movements.

2.1.3 Models of self-organized collective behavior

Group dynamics models are categorized into two main types: Eulerian and La-

grangian [GLR96]. Eulerian models overlook individual identities, focusing in-

stead on the number of individuals within a given unit of area or volume, often

treating this space as a continuum. This method models population dynamics
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Figure 2.3: Graphical representation of estimating the relative distance from a
drone to its target.

through a density function, employing equations to track changes in this density

over time. Although effective for modeling the collective movement of densely

packed, smaller organisms like bacteria, insects, and krill, the Eulerian perspective

is less suitable for larger species such as fish, birds, and mammals. These larger

species typically form groups (schools, flocks, herds) comprising only dozens or

hundreds of individuals and typical spacing is relatively large in terms of body

lengths.

In contrast, Lagrangian (or agent-based) models offer a more appropriate rep-

resentation of these scenarios. Unlike their Eulerian counterparts, agent-based

models of animal grouping assume behavioral rules at the level of the individual.

Each agent follows a set of rules that dictate its behavior, including movement

and interaction with other individuals, thereby capturing the complex dynamics

of group cohesion and dispersion. In these agent-based models, collective behav-

ior results from three simple and general behavioral rules followed by individuals

[Gia08]:

• Alignment, which makes neighboring animals move in the same direction;
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• Attraction, which ensures no animal remains isolated;

• Short-range repulsion, which prevents dangerous proximity.

At the group level, these three components should grant the directional polarity

(alignment) and cohesion of the aggregation (attraction), preserving individual

integrity (short-range repulsion).

The agent-based model can be interpreted as a variation of the n-body dynam-

ics problem, where the movement of each agent is governed by Newton’s second

law. This movement is determined through the integration of Newton’s equation

[GLR96]:

miẍi =
∑
k

Fik = Fi for i = 1, 2, ..., n

Where xi is the position of individual i, ẍi is the second derivative of xi to time

(represent acceleration) and mi denotes the mass of the individual. Here, Fi sig-

nifies the sum of forces acting upon individual i (as attraction, repulsion and

alignment), and n represents the total number of individuals.

2.1.4 The Dynamics of Herds Model

The article “The Dynamics of Herds: From Individuals to Aggregations” of Gueron

et al. (1996) [GLR96] introduces a two-dimensional discrete stochastic agent-based

model that describes the self-organized collective behavior of herds. Despite its

age, this model establishes rules that can provide a foundation for the simulation

of interactions between UAVs and herds.

This study presents the following assumptions and definitions: For i = 1...n,

ri(t) = (xi(t), yi(t)) indicates the location of the i-th individual at time t. The

model conforms to the general class of n-body problems mentioned above where

each individual is subject to only two forces:

• wi1: The intrinsic velocity vector of individual i;

• wi2: The velocity adjustment of individual i due to interactions with other

individuals.
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Thus, the total force summation can be expressed as:

ṙi = wi1 +wi2 for i = 1, 2..., n,

where ṙi denotes the velocity of individual i, that represents the first derivative

of ri with respect to time, and n is the number of individuals in the herd.

The dimensions of each individual are defined by a body length l and a body

width w, for which the ratio w = l/2 is applied, reflecting proportions typical of

grazing mammals.

Intrinsic behavior

In the absence of neighbors, it is assumed that each individual can move in one of

three directions at any given time step:

• left : negative x axis direction;

• forward : positive y axis direction; or to the

• right : positive x axis direction.

With the respective probabilities p0, p1, and p2 (p0 + p1 + p2 = 1). In an

idealized scenario where the animal is precisely aware of the target location and

can respond perfectly, p1 would be set to 1, indicating a direct forward movement,

while p0 and p2 would be reduced to 0, eliminating lateral movements.

The intrinsic movement vector wi1 is constituted by two components: intrinsic

forward velocity vi, and intrinsic lateral velocity ui.

Influence zones and interactions with neighbors

The behavior of individuals is significantly influenced by the presence of neighbors

within spatial zones (Figure 2.4) that are defined as rectangular regions [a, b]×[c, d],
where the notation [a, b] represents an interval. Each zone is characterized by

specific reactions:

1. Stress Zone (SZ) is defined as [xi − a1, xi + a1] × [yi − b1, yi + b1]. The

presence in this zone triggers avoidance behaviors, varying according to the

neighbor’s position relative to individual i:
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• In front leads to a speed reduction to a fraction q1;

• A lateral presence prompts i to move in the opposite lateral direction;

• Neighbors behind and to one side also cause i to move laterally in the

opposite direction but do not affect speed;

• Neighbors behind on both sides result in i being pushed forward, in-

creasing its speed by a fraction q1.

2. Neutral Zone (NZ) is delineated as [xi − a2, xi + a2] × [yi, yi + b2] − SZ,
where a2 > a1 and b2 > b1. This zone’s interactions are predicated on

reducing predation risk: when all neighbors are on the same side, i displays

selfishness by moving towards them without altering speed.

3. Attraction Zone (AZ) is outlined as [xi−a3, xi+a3]×[yi, yi+b3]−SZ−NZ,
with a3 > a2 and b3 > b2. Interactions within this zone aim at maintaining

group cohesion:

• Neighbors only on one side cause i to accelerate to a multiple q2 of its

intrinsic speed and move towards the neighbors;

• Neighbors on both sides drive i to increase its speed to a fraction q2

without changing direction.

4. Rear Zone (RZ) is characterized as [xi−a4, xi+a4]×[yi−b4, yi]−SZ, where
a4 > a1 and b4 > b1. The presence of neighbors in this zone distinguishes

between leaders and trailers:

• If there are no neighbors in the first three zones but there are in the

rear zone, i is considered a leader, potentially reducing its speed to a

fraction q3 with a probability s1;

• Conversely, trailers accelerate to a multiple q4 with a probability s2.

The first three zones are mutually exclusive, and their influence on behavior

determination follows a specific hierarchical procedure (Figure 2.5). The presence

of neighbors in any one zone negates the influence of the others. For example,

if neighbors are identified within the stress zone, only the effects of this zone are

acknowledged, completely excluding the impact of the other two zones.
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Figure 2.4: Idealized stress, neutral, attraction and rear zones for an individ-
ual [GLR96].

no yes

no yes

no yesno yes

no yes

Stress zone?

Neutral zone?

Attraction zone?

Rear zone?

Repulsion

Attraction

One side?

Continue Selfishness

Trailer Leader

Figure 2.5: Flowchart of the hierarchical decision algorithm for an individ-
ual [GLR96].
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The model flaw

The model developed by Gueron et al. (1996) incorporates essential behavioral

rules for attraction and short-range repulsion. However, it lacks the individual

alignment rules necessary for ensuring that neighboring animals move in the same

direction. The absence of such rules means that individuals never change their

direction, which may yield unrepresentative outcomes during the evaluation of

UAV algorithms. An extension to this model, introducing alignment rules, is

proposed in section 2.2.1, aiming to enhance the applicability of the model.

2.2 Design

2.2.1 Enhancements to the Model

Zone Geometry Transformation

A significant modification from the Gueron et al. (1996) model involves transi-

tioning the geometry of behavioral zones from rectangular to circular sectors. This

adjustment is motivated by two principal considerations:

1. The circular representation of behavior zones can be observed in more recent

research of self-organized collective behavior [Gia08];

2. The implementation of directionality for zones’ geometry is more straight-

forward with circular sectors compared to rectangles.

A circular sector zone can be conceptualized as a Field of View (FoV) V , detailed
in Section 1.2. It is characterized by a triple Vz = ⟨Θ, R, α2 ⟩, with z serving as the

zone type identifier. A zone characterized by a full circular range with α = 360◦ can

assume an elliptical shape. To accurately describe this geometry, we introduce an

additional parameter, k, representing the ratio of the ellipse’s length to its width.

Employing this framework, we can improve the zone delineations posited by

Gueron et al. (1996) as follows:

• Stress Zone is delineated as VSZ = ⟨θ1, r1, α1

2
⟩. Typical setup for this zone

is α = 360◦ with ellipse ratio k = 2;
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• Neutral Zone is delineated as VNZ = ⟨θ1, r2, α2

2
⟩ − VSZ , with r2 > r1 and

α = 180◦;

• Attraction Zone is delineated as VAZ = ⟨θ1, r3, α2

2
⟩ − VSZ − VNZ , where

r3 > r2 and α = 180◦;

• Rear Zone is characterized by VRZ = ⟨θ2, r4, α2

2
⟩ − VSZ , where α = 180◦,

θ2 = θ1 + 180◦ and r4 > r1.

This geometric transformation enables a more intuitive and practical implementa-

tion of the model.

Trailer redefinition

In the original model, an individual is considered as a trailer exclusively under

conditions of complete isolation, indicated by the absence of neighbors across all

zones. This scenario also implies that a leader may become a trailer if it will

move faster than the rest of the herd. To address this issue, we apply the trailer

acceleration parameter q4, which probability s2 to any individual lacking neighbors

in the rear zone, regardless of the presence of neighbors in other zones. The only

exceptions are single individuals who do not receive any acceleration boost and

move only with their intrinsic velocity.

Herd direction alignment

The heading of an individual is defined as its orientation in degrees relative to

a fixed reference system, represented by a vector h⃗curr. The heading angle of

individual i, denoted as Θi, aligns with the orientation of the stress, neutral, and

attraction zones. Any adjustment to the individual’s heading angle results in a

corresponding shift in the orientation of all zones.

The canonical velocity vectors for movement (left, forward, right) are retained

but are adjusted to align with the individual’s heading, ensuring that movements

are accurately directed relative to the individual’s orientation in the environment.

Individuals have a static preference for turning direction, choosing either to

increase or decrease their current direction angle Θi. The right to change direction

is reserved for leaders or solitary individuals. Each one aligns its heading vector
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with the average of the heading vectors h⃗ngb of neighbors located within the neutral

zone. The formula for calculating the new aligned heading vector h⃗new is as follows:

h⃗new = ϵ · h⃗curr + (1− ϵ) · h⃗ngb

where ϵ ∈ [0; 1] is a constant that represents the importance of the individual’s

current direction.

To limit the simulation space, a circle with radius l defines the desired world

boundary. Individuals within this radius may adjust their direction by γ1 degrees

with probability s3, in their preferred turning direction. This mechanism ensures

a unique movement trajectory for the herd.

If a herd exits beyond the designated world borders the following rules are

applied: (I) the turning angle γ1 is increased by an additional fraction γ2; (II)

individual turning preferences are overridden, compelling all to turn towards the

direction that minimizes the angle between their heading and the vector pointing

from their position to the world’s origin. These rules in a natural way make the

herd return to the desired simulation borders.

The Table 2.1 summarizes most of the relevant notation of this section.

Multiple herd support

To facilitate simulations involving multiple herds that remain distinct without in-

termixing, each individual is assigned exclusively to a single herd. Attraction and

alignment forces are applied solely among individuals belonging to the same herd,

ensuring cohesive movement and orientation within each group. Conversely, repul-

sion forces are universally applied across all individuals, regardless of their herd

affiliation. This approach allows for the maintenance of separation and avoidance

behaviors between different herds.

2.2.2 Desing of herd behavior action in Alchemist

Alchemist provides various environments that have different properties and di-

mensions. To model herd behavior the ContinuousPhysics2DEnvironment is uti-

lized. This environment provides an unbounded 2D Euclidean space, enriched with
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Table 2.1: Summary of notations for herd movement model [GLR96].

Symbol Description

Vz = ⟨θ, r, α2 ⟩ field of view zone definition
r1 stress zone radius
r2 neutral zone radius
r3 attraction zone radius
r4 rear zone radius
θ1 orientation of stress, neutral and attraction zones
θ2 orientation of rear zone
α1 stress zone circular sector angle (360°)
α2 neutral, attraction and rear sector angle (180°)

p1 : p2 : p3 intrinsic directionality
u, v intrinsic velocity coordinates
q1 slowing-down factor for repulsion
q2 speeding-up factor for attraction
s1 leaders’ probability to “wait”
s2 trailers’ probability to “accelerate”
q3 leaders’ relative velocity
q4 trailers’ relative velocity
n group size

h⃗ heading vector of an individual
l prefered radius of the simulation world
γ1 base individual direction turning angle
γ2 additional individual direction turning angle
s3 probability to change direction

physics capabilities and node shapes.

To integrate our model logic within Alchemist’s framework, we introduce a new

action, HerdBehavior. This action is designed to encapsulate all Zones, with key

responsibilities including:

• Computing all forces affecting the node;

• Updating the node’s position based on these forces;

• Aligning the node’s direction with that of its neighbors in the neutral zone;

• Handling changes in the node’s direction.
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The integration of HerdBehavior with other components of Alchemist’s archi-

tecture, crucial for the simulation, is depicted in Figure 2.6.

1

*

output

1

*

has attribute

1

*

HerdBehavior

zones List<Zone>

«Abstract»
AbstractAction

**from Alchemist**

«Interface»
Action

**from Alchemist**

«Interface»
Zone

«Interface»
Molecule

**from Alchemist**

«Interface»
Reaction

**from Alchemist**

«Interface»
Node

**from Alchemist**

RectangularArea

**from Alchemist**

«Interface»
ContinuousPhysics2DEnvironment

**from Alchemist**

Figure 2.6: Class diagram illustrating the integration of HerdBehavior within
Alchemist’s architecture.

Figure 2.7 offers a detailed view of the zone hierarchy structure. The

AbstractZone class implements common methods shared across all zones, while

individual zone classes are tasked with executing their unique logic through

getNextMovement(). Additionally, StressZone overrides the nodes filter to be

able to repulse all nearby individuals, and RearZone overrides the default heading

definition.
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«Interface»
Zone

zoneShape ZoneShape<Euclidean2DShape>

areNodesInZone() : Boolean
getNodesInZone() : List<Node>
getNextMovement() : Position

«Abstract»
AbstractZone

areNodesInZone() : Boolean
getNodesInZone() : List<Node>
#filterOtherHerds(nodes List<Node>) : List<Node>
#getHeading() : Position
#getAngleFromHeadingToNeighbour(p: Position) : Double

StressZone

getNextMovement() : Position
filterOtherHerds(n List<Node>) : List<Node>

NeutralZone

getNextMovement() : Position

AttractionZone

getNextMovement() : Position

RearZone

getNextMovement() : Position
getHeading() : Position

Figure 2.7: Class diagram detailing the zone hierarchy structure. Position is
defined as an alias for Euclidean2DPosition.

2.3 Implementation Details

2.3.1 Implementing Herd Movement Reconstruction

Datasets merging

In the process of approximating animal movement, merging two datasets presents a

significant challenge: the KABR-telemetry dataset (Dv) and an additional dataset

(Da) that includes the UAV’s compass direction and gimbal pitch data. Dataset

Da contains records registered at a frequency of 10 records per second, whereas

Dv shows that the video was captured at 30 frames per second. Each frame in

Dv corresponds to one record for every detected animal within that frame. If no

animals were detected in certain frames, this leads to missing records for those

frames in the Dv dataset. Therefore, for each record in Da, there can be from zero

to three corresponding frames in Dv, with the number of records for each frame

equal to the number of animals detected.

Due to the lack of unique identifiers that could facilitate a straightforward

merging of these datasets, they are combined using an approximate join based
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on three attributes: longitude, latitude, and altitude. Although this ap-

proximate merging method does not guarantee perfect accuracy, it can produce a

completely merged dataset (Dm) from the available data sample.

Movement reconstruction results

Given the DJI Mavic 2S specifications1 and the merged dataset Dm, the method-

ology outlined in Section 2.1.2 is applied to each record. This approach enables

the estimation of the location of individuals at each frame, and by combining these

estimates, the complete movement trace of the animals can be constructed.

This process encounters a second significant challenge: when the UAV makes

rapid directional changes (turning left/right) or adjusts the gimbal pitch angle,

a desynchronization occurs between video frame data and telemetry data. Such

desynchronization leads to positional ”jumps” of the individuals’ position projec-

tions, which, after a few steps, return to their original location. This issue may

partly arise from the imperfections in the approximated dataset joining method.

However, the relatively prolonged duration of these ”jumps” suggests a potential

initial telemetry desynchronization. Nonetheless, the brief nature of these occur-

rences allows for their effects to be mitigated with data smoothing, represented by

the formula:

µi = ϵ · µi−1 + (1− ϵ) · xi

Here, ϵ is a smoothing hyperparameter, typically set to 0.98, µi represents the

smoothed drone telemetry value at time i, and xi is the actual UAV telemetry

value at time i. Although this smoothing approach may slightly reduce the final

precision of the localization, it significantly improves the smoothness of the re-

sulting movement traces, making the overall analysis more coherent and visually

consistent.

Conclusion

The current approach to reconstructing herd movements has several limitations,

the primary one being the inability to evaluate the precision of computed local-

1https://web.archive.org/web/20240229133723/https://www.dji.com/air-2s/specs
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izations based on the available data. Given these constraints, the reconstructed

movement data are not suitable for evaluating UAV navigation algorithms in their

present form. Despite this limitation, the processed results can still offer valuable

insights, particularly regarding the behavior and responses of animals to UAV

presence. This information is crucial for designing drone operations algorithms

that minimize disturbance to wildlife.

Moreover, analyzing scenarios where animals’ bounding boxes disappear from

view, attributed to limitations of neural network-based detection systems under

poor visibility or technical issues, is valuable for developing more sophisticated

environmental models for simulating drone navigation algorithms. Additionally,

this approach can be useful for gaining a better understanding of the dynamics

of multiple drone missions, enabling a comparison of real-world operations with

simulations.

2.3.2 Defining Simulations with YAML in Alchemist

Alchemist enables the definition and configuration of simulations via YAML files2,

adhering to the Alchemist meta-model outlined in Section 1.4.1. Listing 2.1 show-

cases the YAML configuration for simulating herd behavior: Initially, the configu-

ration specifies the incarnation and the simulation environment type. To enhance

readability and minimize repetition we introduce a long list of variables that es-

tablishes nearly all parameters for herd configuration. These parameters, detailed

in Table 2.1, are aggregated under the variable herd parameters for input into

the HerdBehavior action.

The deployments construct facilitates the stochastic placement of nodes

within the environment. While Alchemist supports various deployment strate-

gies, this project necessitated the development of a new deployment type,

GroupsDeployment. This strategy randomly positions each node within a cir-

cle, ensuring that nodes belonging to the same group are positioned proximally.

The assignment of nodes to groups is determined by the modulo operation:

group id = node id % number of groups

2https://alchemistsimulator.github.io/reference/yaml/index.html
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generating a balanced distribution of group members.

The contents parameter requires only a single molecule, zebra, which aids in

differentiating animal nodes from UAV nodes. The programs’ key establishes the

HerdBehavior action, and the properties key assigns a rectangular shape to the

node.

2.3.3 Global Herd Behavior Logic

The construction of the simulation model for herd behavior incorporates the

HerdBehavior class, a part of it is illustrated in Listing 2.2. The primary function-

ality of any action within this model is encapsulated by the execute() method,

which is inherited from the AbstractAction class. This method implementation

combines individual directional alignment via alignDirection() and calculating

the node’s movement through getNextPosition().

Within getNextPosition(), the process involves iterating through an ordered

sequence of Zones, ranging from the stress zone to the rear zone. The iteration

seeks to determine if any zone contains neighbors. Upon encountering neighbors

within a zone, the method calculates the subsequent movement and interrupts

further iteration. Conversely, in scenarios where no zones possess neighbors, the

node is considered as a single trailer. Consequently, it proceeds to move in a

random direction, adhering to predefined intrinsic movement probabilities.

2.3.4 Extension of the Alchemist GUI

The Alchemist Swing-based Graphical User Interface (GUI) features the capability

for users to select and apply a visual effect from a list of available effects to the

ongoing simulation. The framework’s extensibility facilitates the straightforward

incorporation of new effects by developers. The DrawZones effect was developed,

enabling the visualization of nodes’ zones within the simulation environment. The

application of this effect significantly aids in understanding the spatial dynamics

and interactions of individuals within simulated environments. An illustration of

the DrawZones effect in action is presented in Figure 2.8, showcasing the delineation

of individual zones.
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Listing 2.1: Definition of Alchemist simulation for herd behavior�
1 incarnation: protelis

2 environment:

3 type: ContinuousPhysics2DEnvironment

4 variables:

5 ...

6

7 _herdParameters: &herdParameters

8 - *zonesRadii

9 - *velocities

10 - *movementProbabilities

11 - *stressRepulsionFactor

12 - *attractionSpeedUpFactor

13 - *leaderSeedChange

14 - *trailerSeedChange

15 - *NumberOfHerds

16

17 deployments:

18 - type: GroupsDeployment

19 parameters: [*ndividualsNumber, 0, 0, *worldRadius, *

NumberOfHerds]

20 contents:

21 - molecule: zebra

22 concentration: true

23 programs:

24 - time -distribution: 1

25 type: Event

26 actions:

27 type: HerdBehavior

28 parameters: *herdParameters

29 properties:

30 - type: RectangularArea

31 parameters: [ *bodyLen, *bodyWidth ]
� �
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Listing 2.2: Implementation of movement logic of a herd individual�
1 class HerdBehavior(node: Node <Any >, ...) : AbstractAction <Any >(node) {

2 ...

3 override fun execute () {

4 alignDirection ()

5 environment.moveNode(node , getNextPosition ())

6 }

7

8 private fun getNextPosition (): Euclidean2DPosition {

9 for (zone in zones) {

10 if (zone.areNodesInZone ()) {

11 if (zone == rearZone) turning () // Leader

12 var movement = zone.getNextMovement ()

13 if (! rearZone.areNodesInZone ()

14 && nodeRandomizer.nextDouble () <= trailersSpeedUpProbability) {

15 movement *= trailersSpeedUpFactor

16 }

17 return rotateVector(movement , getAngle(environment.getHeading(node)))

18 }

19 }

20 // Single trailer

21 turning ()

22 val movement = movementProvider.getRandomMovement ()

23 return rotateVector(movement , getAngle(environment.getHeading(node)))

24 }

25 ...

26 }
� �

Figure 2.8: An extension to the Alchemist GUI showcasing the drawing of indi-
vidual zones. Legend: (1) stress zone; (2) neutral zone; (3) attraction zone; and
(4) rear zone. The rectangle within the stress zone indicates the individual’s body
shape.
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Chapter 3

Aggregate algorithms for

UAV-based herd tracking

3.1 Analysis and related work

3.1.1 Online Multi-Object k-Coverage with Mobile Smart

Cameras

Approaches that track groups of animals from various perspectives using multi-

ple autonomous UAVs, such as in situ imageomics, require sophisticated commu-

nication and coordination strategies. In the literature, this challenge is recog-

nized as the Cooperative Multi-Robot Observation of Multiple Moving

Targets (CMOMMT) problem [PE97], where multiple mobile robots, such as

drones equipped with vision sensors, collaboratively observe and cover objects of

interest, also known as targets. The specific instantiation of this problem is re-

ferred to as the OMOkC problem [EL17], where the number of cooperative robots

and targets is unknown and potentially dynamic. The main objective is to effi-

ciently operate the system to maximize the number of mobile targets covered by

at least k robots (k-covered) over time while minimizing the associated costs. In

the literature, various algorithms have been proposed for addressing the OMOkC

problem [EL17, PPCE22] and have been evaluated through simulation.
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Figure 3.1: Illustration of an object oa inside the FoV Vi of camera ci [PPCE22].

OMOkC problem definition

The problem considers a set of n autonomous mobile robots as C = {c1, c2, ..., cn},
equipped with vision sensors and capable of analyzing their FoV. These robots

are assumed to have communication capabilities with other robots in the environ-

ment. The communication is based on a logical neighboring relationship, a few

communication strategies outlined in Section 3.1.2.

The set of mobile objects is represented as O = {o1, o2, ..., om}. The original

problem defines a subset P ⊆ O containing important objects, but for herd moni-

toring, we will assume that all “objects” are important. Thus, all identified objects

are considered targets.

The state of each robot equipped with vision sensors, operating under the

assumption of a constant altitude, is modeled by a 4-tuple representation ci =

⟨x⃗i, v⃗i, ωi,Vi⟩. Where: Location, represented as x⃗i = (xi, yi), indicating the robot’s

position; Velocity, expressed as v⃗i = (vXi , v
Y
i ) =

(
dxi

dt
, dyi

dt

)
; Angular Velocity, de-

noted by ωi, describing the rate of rotation; and the Field of View (FoV) of robot’s

camera ci, symbolized by Vi and is characterized by the triple ⟨Θi, Ri,
βi

2
⟩, as de-
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tailed in Section 1.2.

An object oa is considered covered at a specific time t if the object is geomet-

rically within the field of view Vi of a camera ci, as illustrated in Figure 3.1. A

target is k-covered if k or more cameras cover this object at the same moment.

Perfect localization is assumed.

The global objective is to maximize the number of important targets detected

by the set of cameras. Consequently, achieving coverage of each target with pre-

cisely k cameras emerges as the predominant strategy for the collective, given that

cameras not tracking known targets are available to explore and identify new tar-

gets. In a scenario where the ratio between the number of targets and sensors

is less than k, it is automatically preferable to sacrifice some targets and achieve

k-coverage in others rather than attempting to monitor all of them.

In the context of herd monitoring, where multiple animals tend to be and

move near each other, to mitigate redundancy, the definition of a target should

be reformulated from a single “object” to a group of objects. This introduces a

new challenge: how to partition the partially covered collection of objects into

distinct groups in a manner that allows each camera to cover a separate group,

thus increasing the global coverage of individual objects.

3.1.2 Coordination Algorithms for OMOkC

In this study, we delve into the coordination algorithms presented in the related

work “A Collective Adaptive Approach to Decentralised k-Coverage in Multi-robot

Systems” [PPCE22]. The evaluation of these algorithms is based on the following

parameters:

• Exploration strategy : outlines the base behavior of robots when the response

model does not identify a target to follow;

• Communication strategy : specifies the criteria for selecting a subset of neigh-

bors that each robot will communicate with;

• Response model : defines the approach a robot adopts in reaction to the data

it receives and subsequent actions.
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Table 3.1: Summary of notations for OMOkC problem [PPCE22].

Symbol Description

C set of cameras
O set of objects
n number of robots with cameras
m number of objects

ci = ⟨x⃗i, v⃗i, ωi,Vi⟩ i-th camera/robot
oi i-th object

x⃗i = (xi, yi) i-th robot’s location vector
v⃗i i-th robot’s velocity vector
ωi i-th camera’s angular velocity

Vi = ⟨Θi, Ri,
βi

2
⟩ i-th camera’s field of view

Ri range of the i-th camera’s field of view
Θi orientation of the i-th camera’s field of view
βi angle of the i-th camera’s field of view
αij angle of the j-th object w.r.t. the i-th camera’s field of view
dij distance of the j-th object w.r.t. the i-th robot

Exploration Strategy

For the exploration strategy, the force field (FF) exploration approach is adopted

based on findings from prior research, which indicate that “Data shows that force

field-based exploration outperforms the baseline ZigZag algorithm [EL17] during

the bootstrap phase, however, this edge gets lower and lower with time. Data

shows that force field exploration is a valid companion for any response model

compared to the baseline” [PPCE22]. The FF algorithm is inspired by the concept

of attraction and repulsion fields, where each robot emanates a repulsive force field

ϕ. To prevent the system from becoming stuck in a static situation, an additional

concept, termed willpower (denoted as W ), is used. This allows robots to adhere

to their prior decisions despite the prevailing force fields. The force fields are

formulated as functions of the distance (d) between entities, delineated as follows:

ϕ(d) =
W

2
· (2VR)2

max(1, d)2
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where VR is the distance of the field of view. This algorithm represents a co-

ordinated method of exploration that can be efficiently implemented within the

framework of aggregate computing.

Additionally, robots are programmed to rotate at maximum angular velocity

ω to increase the probability of intercepting a target.

Communication Strategy

For the communication strategies of our algorithms, we will explore the following

approaches:

• no communication (NoComm), where robots function autonomously

without any form of interaction with other robots;

• neighborhood broadcast (BC), which enables a robot to communicate

with all other robots within its communication range;

• smooth (SM), a strategy that restricts communication based on a “spa-

tiotemporal closeness” metric. This metric measures how long robots within

communication range have been close to each other for long periods. Robots

are considered close if they observe identical objects simultaneously. Con-

versely, when robots no longer observe the same objects, they forget their

connections, resulting in a decrease in the measured closeness [EL17].

Response model

The comparison of response models focuses on the robots’ behavior in reaction to

requests received from other robots. We focus on four algorithms:

• Linear Programming-based Algorithm (LinPro): This method de-

rived from the concept of “... continuously solving multiple local linear pro-

gramming problems defining the target selection strategy to minimize the

robots’ movements while attaining coverage” [PPCE22]. It involves robots

sharing their fields of view with neighbors, and then each robot locally solves

a classic optimization problem. Although it does not guarantee a globally

optimal solution, it facilitates effective local behavior;
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• LinPro Fair : This variant of the LinPro algorithm aims to distribute the

cameras fairly among the detected targets. The “fairness” should prevent the

situation where k robots follow the same target at the cost of other targets

having inadequate coverage [PPCE22];

• Available (AV): In this method, a robot, if and only if it is not already busy

following a target, attempts to cover the most recently requested target from

another robot; If faced with multiple requests, the nearest target is selected

based on the newest-nearest approach [EL17];

• Received calls (RE) A robot currently not following a target will provision

the target with the least number of requests, as this corresponds to a small

number of robots currently observing it [EL17].

Given the intrinsic requirement for communication within each response model,

the NoComm communication strategy does not adopt a particular response model,

illustrating a scenario where robots function completely autonomously.

3.1.3 Groups clustering

The primary limitation of algorithms tailored to the original OMOkC problem

formulation lies in their conceptualization of the target as a singular object. This

approach becomes problematic in scenarios involving animal herds, where indi-

viduals are frequently nearby. Such granularity in target definition may lead to

considerable redundancy, as numerous robots may end up tracking different in-

dividuals within the same herd. Consequently, while one individual may receive

excessive coverage, other herds might remain unmonitored.

To address this issue, it is proposed to shift the target concept from individual

objects to groups of objects. Clustering, a method for identifying natural groups

based on data similarity (introduced in Section 1.6), emerges as a viable solution.

The core strategy involves employing a clustering algorithm to aggregate nearby

individuals into the same cluster. However, the effectiveness of this approach

depends on the appropriate sizing of clusters. Excessively small clusters could

continue the initial problem of redundant coverage, whereas too many large clus-

ters might exceed a single robot’s coverage capacity, thus diminishing the overall
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coverage effectiveness. Ideally, a perfect clustering approach would generate clus-

ters that a single robot can fully cover, minimizing the overlap of clusters within

the robots’ FoVs.

Considering this perspective, the k-coverage process does not gain any modi-

fication. The only distinction lies in the objective that k robots aim to achieve:

instead of covering a singular object, they should collectively cover the same group

of objects.

Requirements for Clustering

To select an appropriate clustering algorithm from the wide variety of available

approaches, it is essential to establish a set of specific requirements dictated by

the current problem:

• Dynamic determination of cluster numbers is required: A fixed number of

clusters may lead to excessive partitioning of the initially detected herd and

neglecting the potential discovery of other animal groups;

• The number of clusters may not reflect original herd membership: Animals

in proximity, despite belonging to different species, may be considered as a

single target;

• Clustering should be complete: Each individual must be assigned to a cluster;

• Clusters can be heterogeneous: Clusters may vary significantly in size, shape,

and density;

• The clustering algorithm must be lightweight: Given the high dynamics of

the environment and the need for real-time navigation decisions, the algo-

rithm’s computational complexity must be manageable.

Hierarchical clustering

Hierarchical clustering can be a potentially more suitable solution for the problem

at hand, primarily due to its natural flexibility that facilitates splitting clusters at

any granularity level. Unlike partitional clustering algorithms, which typically ne-

cessitate pre-determining the number of clusters and struggle with heterogeneous
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clusters, and density-based clustering algorithms, which are primarily focused on

outlier detection — a feature that, in the context of animal tracking, might com-

pletely ignore the outliers that potentially have significant observational value —

hierarchical clustering offers a versatile approach.

By nature, hierarchical clustering doesn’t support varying density cluster di-

visions. However, this limitation can be effectively bypassed. Different groups of

robots, tasked with monitoring herds of varying densities, can adjust differently

their hierarchical clustering slitting distance, in this way fitting their analysis to

the specific density of each animal group.

Despite the numerous advantages of hierarchical clustering, it may not be the

best fit for datasets with a large number of elements due to its excessive com-

putational complexity, which reaches O(n3) for Agglomerative Hierarchical Clus-

tering [PE14]. In scenarios involving the observation of numerous individuals, a

workaround may be required. For example, initially can be convenient to par-

tition all individuals into larger clusters using faster clustering algorithms such

as K-means. Subsequently, each robot could perform more detailed, fine-grained

hierarchical clustering on one of these pre-calculated clusters, allowing efficient

processing while maintaining the benefits of hierarchical analysis.

3.2 Design

3.2.1 Adaptive clustering

The primary distinction among various agglomerative hierarchical clustering im-

plementations lies in the methods used to calculate the distance between clusters.

This metric determines the ordering in which elements and clusters are merged

throughout the hierarchy construction process. Among the methods are:

• Single-link : Considers the shortest distance between any two points in the

two clusters;

• Complete-link : Looks at the longest distance between any two points in the

two clusters;
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• Average-link : Calculates the average distance between all pairs of points in

the two clusters;

• Centroid distance: Measures the distance between the centroids of two clus-

ters;

• Ward’s Method : The similarity between two clusters is given by the increase

in quadratic error when the two clusters are merged.

Each similarity measuring method significantly influences the resulting cluster

shapes. For instance, single-link clustering permits the formation of non-spherical

clusters but is highly sensitive to outliers, whereas complete-link clustering is less

affected by outliers but tends to produce spherical-shaped clusters. Choosing the

optimal hierarchical clustering measure necessitates a thorough evaluation. In our

analysis, we will focus on the average-link method, which is expected to offer a

balanced compromise between the characteristics of single-link and complete-link

clustering methods.

Clustering distance

When selecting a clustering similarity measurement method, it’s necessary to spec-

ify a distance value that will determine the number and granularity of the clusters.

A typical approach to address this issue includes testing various distance values

across different scenarios and then selecting a single static clustering distance value

that shows the best performance. However, this strategy has drawbacks such as a

lack of adaptability to environmental changes and the necessity to select a specific

distance value for each hierarchical clustering method, given that each employs

different units of reference.

In addition, an alternative approach is proposed: a distributed, Adaptive Hi-

erarchical Clustering Distance Selection (AHCDS) algorithm. This method is de-

signed to help a group of robots automatically adjust their clustering distance in

real time, responding dynamically to changes in the environment.

In the LinPro response model, predicting neighbors’ behavior necessitates that

each device maintains a view of the world as similar as possible to that of its

neighbors. This similarity ensures that each device can perform nearly identical
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computations, resulting in the same device-to-target assignments on each device.

To meet this requirement we should maintain a uniform clustering distance value

across neighbors.

The algorithm description

The AHCDS is primarily designed for algorithms implementing the LinPro-based

response model. This model facilitates the explicit assignment of targets to specific

robots, enabling each robot to distinguish between nodes within assigned clusters

and those outside. Conversely, other response models, such as AV (Available)

and RE (Received Calls), require model extensions to accommodate the notion of

assigned targets. Additionally, the term extraneous nodes refers to nodes that are

visible to a camera but do not belong to the camera’s target cluster.

The core principle of the AHCDS algorithm is to dynamically adjust the clus-

tering distance in each computational round, following one of three options:

• Increment distance: Aims to expand clusters and is applicable in two

scenarios:

– When a robot successfully covers its target as well as numerous unas-

signed nodes, it indicates an excess of clusters relative to the number

of available robots and suggests that the clusters are sufficiently small

to be covered by a single camera;

– When a camera captures a large number of extraneous nodes, signifying

substantial overlap between clusters in the FoV.

• Decrement distance: Reduce the size of clusters. This strategy is intended

to be employed when all nodes covered by camera c belong to the target clus-

ter a, and a significant number of nodes of a are detected by other cameras

but not by c.

• Adapt distance: Balance the clustering distance among neighboring de-

vices, ensuring a uniform adjustment across the network.

A detailed explanation of the clustering distance adaptation process is depicted

in Figure 3.2.
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Figure 3.2: Flowchart of the hierarchical decision algorithm for the update of
clustering distance value.

The principal downside of this algorithm is its difficulty in reducing cluster

sizes. Such a reduction in clustering distance mainly occurs when a camera (c1)

is exploring the area around another camera (c2) and detects new target nodes

assigned to c2 which c2 fails to cover. Conversely, without additional exploration

behavior, the clustering distance tends to not decrease.

3.2.2 Non-Nadir View Blind Spot Extension

The current implementations of smart cameras within Alchemist do not consider

the UAV blind spot caused by non-nadir observational angles, which results in the

terrain directly below the UAV being obscured from view. In a 2D model, this

blind spot is represented as a circular sector with radius Vb within a FoV that has

a radius VR, where Vb < VR. For a more comprehensive 3D model, the blind spot

would need to be dynamically calculated based on several factors, including the

UAV’s altitude, the vertical FoV angle, and the gimbal pitch angle, to accurately

reflect the obscured area below the UAV.
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3.3 Implementation Details

3.3.1 Algorithms Adaptation

The coordination algorithms for OMOkC were previously developed and integrated

with the Alchemist simulator in the work of Pianini et al. (2022) [PPCE22], with

the entire codebase made accessible through a public repository1. However, to en-

sure compatibility with the latest Alchemist API, some modifications to the code

are necessary. These algorithms utilize a combination of Kotlin and Protelis pro-

gramming languages. Specifically, the Kotlin segment is tasked with solving the

simplex problem, whereas the Protelis portion is responsible for device coordina-

tion.

To adapt the existing code for the problem of herd tracking, a revised version

of each algorithm is necessary, incorporating the clustering of visible nodes into

the codebase. Since a robot cannot track an entire cluster simultaneously, the

implemented solution involves following the cluster’s centroid, which is the mean

position of all points within a cluster. Future works could explore the use of

a medoid (the most centrally located data point in a cluster), which may offer

different results.

The original version of the avoidCameraCollision() function, designed to

facilitate the coordination of robots in observing the same target from various

angles, cannot work correctly with centroids, as a centroid represents a point in

space rather than an actual object. A workaround for this issue involves rounding

each centroid’s coordinates to the nearest rounding point, ensuring that centroids

nearby are rounded to the same coordinate.

For the clustering functionality, the Smile2 library is employed. Smile is a

comprehensive machine-learning library that provides a straightforward API for

JVM (Java Virtual Machine) systems.

The original implementation of the LinPro algorithm is delineated in List-

ing 3.1, illustrating its initial configuration and operational logic. In contrast, the

enhanced version, which incorporates clustering capabilities, is presented in List-

ing 3.2. This upgraded version includes the option of updating device clustering

1https://github.com/DanySK/Experiment-2019-Smartcam
2https://haifengl.github.io
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Listing 3.1: Protelis code for LinPro response model algorithm. This code polls
the neighboring robots for information about their position and the nodes they
have in sight. The information is collected and sent to a local process in charge of
solving the linear programming problem [PPCE22].�

1 rep(solver <- getLinproSolver ()) {

2 let targets = foldUnion(nbr(localTargets ()))

3 let cameras = nbr(getCenterOfFov ())

4 let myTarget = solver.solve(cameras , targets , getMaxCamerasPerTarget (), false)

5 .getOrDefault(getUID (), noTarget ())

6 followOrExplore(myTarget , fieldExploration)

7 avoidCameraCollision(myTarget , localTargets)

8 solver

9 }
� �
distance with getNewClusteringDistance() function. It is important to note

that the foldUnion() operator serves as an equivalent to the deprecated built-in

unionHood operator introduced in Section 1.5.1.

3.3.2 Extension of the Alchemist GUI

The Alchemist GUI has been enhanced with two additional visualization effects:

• FoV blind spot visualization: This effect delimitates the sector within

the field of view that remains invisible to the UAV due to its viewing angle.

• Coloring individuals based on their cluster: This visualization shows

how drones categorize visible individuals into clusters. It is important to

understand that this effect displays clustering from the perspective of a single

robot. Given that each robot conducts clustering at different times and under

varying initial conditions, the precise clustering outcome may differ from one

robot to another.

The robots in action, along with the implemented effects, are showcased in

Figure 3.3.

CHAPTER 3. AGGREGATE ALGORITHMS FOR UAV-BASED HERD
TRACKING

45



3.3. IMPLEMENTATION DETAILS

Listing 3.2: Protelis code for the clustering-enhanced version of the LinPro re-
sponse model algorithm. The linpro() function parameters facilitate algorithm
configuration by enabling the selection of an exploration strategy, the option to
employ a fair version of the algorithm and the activation of adaptive clustering.�

1

2 public def linpro(isFair , isClusteringAdaptive , explorationStrategy) =

3 rep(solver <- getLinproClusterSolver ()) {

4 let localVisibleNodes = getLocalTargets ()

5 let allVisible = foldUnion(nbr(localVisibleNodes))

6 let cameras = nbr(getCenterOfFov ())

7

8 let clusters = getClusters(allVisible , getClusteringDistance ())

9 let assignedClusters = solver.solve(cameras , clusters ,

getMaxCamerasPerTarget (), isFair)

10 let myCluster = assignedClusters.getOrDefault(getUID (), emptyCluster ())

11

12 followOrExploreCluster(myCluster , explorationStrategy)

13 avoidCameraCollisionForClusters(myCluster)

14

15 if(isClusteringAdaptive){

16 let assignedNodes = getAssignedNodes(assignedClusters , clusters)

17 let newDistance = getNewClusteringDistance(myCluster ,

localVisibleNodes , assignedNodes)

18 setClusteringDistance(newDistance)

19 }else{ 0 }

20 solver

21 }
� �
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Figure 3.3: Visualization of an Alchemist GUI extension showcasing (I) UAVs
blind spots; (II) the coloring of individuals based on their cluster membership,
with white indicating individuals that do not belong to any cluster due to lack of
coverage.
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Chapter 4

Evaluation

4.1 Experimental Setup

Referring to Table 4.1, within a Euclidean two-dimensional environment, a set of

zebras z is evenly distributed acrossm herds. These herds are randomly positioned

within an area defined by a radius L, with n robots positioned at the center of

this area. This setup simulates the k-coverage problem within a dynamic context,

where each zebra, as a member of the herds, moves by following the rules of the

herd behavior model introduced upon in Chapter 2, with specific configuration

parameters detailed in Table 4.2. It should be noted that the quantity of m herds,

especially in simulations involving larger-sized herds, may increase over time. This

increase is resulting from the nature of the herd movement model used, which does

not guarantee the integrity of the herds, potentially resulting in the splitting of a

herd into smaller groups.

The configuration of each robot model is aligned with the specifications of the

DJI Mavic 2S1, detailed as follows:

• Moves with speed v⃗c: Given the lack of specific data on the optimal speed for

detecting animals, the drone’s speed is derived as the mean of its maximum

speed in normal mode (15 m/s) and cinematic mode (5 m/s);

• Rotates with angular velocity ω: The maximum cinematic mode angular

1https://web.archive.org/web/20240229133723/https://www.dji.com/air-2s/specs
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velocity of the drone, 60°/s, is adopted;

• The depth of the field of view, VR: A selected depth of 100 m is used, ap-

proximating the 70-80 m distances estimated by using the KABR-telemetry

dataset in the absence of precise measurements;

• The horizontal field of view angle, Vβ: The nominal FoV of the DJI Mavic 2S

is expressed as a visual angle FOVd across the diagonal of the screen, with

an aspect ratio. Thus, the horizontal and vertical fields of view, FOVh = Vβ
and FOVv, are calculated as follows [SBK+11]:

FOVh = 2 · atan

tan(FOVd/2)√
1 + 1

ratio2



FOVv = 2 · atan
(
tan(FOVd/2)√

1 + ratio2

)
• To calculate the depth of the blind spot, Vb: Assuming the drone operates

at a fixed altitude of 16 m, close to the median altitude found in the KABR-

telemetry dataset, and a typical gimbal pitch angle of -16° combining with

drone’s FOVv angle, the depth of the blind spot is approximated to be 18 m

using the method outlined in Section 2.1.2.

Robots are tasked with achieving k-coverage and operate by executing an ag-

gregate algorithm at a predefined frequency f . Each robot can communicate with

others within a certain distance, denoted as the communication range R. The

assumption of perfect localization and communication is applied, with idealized

settings assuming that real-world inaccuracies, such as localization errors or com-

munication disruptions, do not affect the robot’s performance. All variables are

documented in a summary table Table 4.1.

The simulation is conducted over T = 1800 seconds. For every possible combi-

nation of variable values, representing the Cartesian product of the possible values

for each variable, a total of 20 simulation runs with different seeds are performed

to ensure statistical significance.
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The algorithms utilized in the simulations are detailed in Table 4.3, includ-

ing their communication and response strategies. Notably, algorithms enhanced

with clustering functionalities employ hierarchical clustering with the average-link

method.

The data generated during these simulations is analyzed using the xarray li-

brary [HH17]. For the visualization of results, matplotlib [Hun07] is utilized, en-

abling the creation of detailed visual reports that illustrate the performance and

outcomes of the simulation.

Table 4.1: List of the variables and their values for the simulations

Symbol Description Values

z animal count 100
n robot count -
m minimum herd count 2, 4, 6, 8
n/m robots/herd ratio 0.5, 1.0, 1.5, 2.0
v̄c robot linear velocity 10 m/s
ω robot’s camera angular velocity π

3
rad/s

VR FOV depth 100 m
Vb FOV blind spot depth 18 m
Vβ FOV angle 80°
k desired maximum coverage 2
L environment arena radius 1000 m
R robots’ communication range 2000 m
f round frequency 1 Hz
T simulation end time 1800 s
W Willpower for force field exploration strategy 40
− hierarchical clustering method average-link

4.2 Results

In Section 4.2.1, various static clustering distances are evaluated, with a more

significant value selected for use in Section 4.2.2, where the original OMOkC al-

gorithms are compared against their enhanced versions. Finally, the performance

and effectiveness of the adaptive clustering algorithm are explored in Section 4.2.3.
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Table 4.2: List of the herd configuration variables and their values for the simula-
tions

Symbol Description Values

- individual body length 2 m
- individual body width 1 m
r1 stress zone radius 3 m
r2 neutral zone radius 20 m
r3 attraction zone radius 40 m
r4 rear zone radius 40 m

p1 : p2 : p3 intrinsic directionality 1:2:1
v intrinsic forward velocity 2 m/s
u intrinsic lateral velocity 1 m/s
q1 slowing-down factor for repulsion 0.5
q2 speeding-up factor for attraction 1.5
s1 leaders’ probability to “wait” 80%
s2 trailers’ probability to “accelerate” 40%
q3 leaders’ slowing-down factor 0.7
q4 trailers’ speeding-up factor 2.0
l prefered radius of the simulation world 1000 m
γ1 base individual direction turning angle 1-3°
γ2 additional individual direction turning angle 5°
s3 probability to change direction 10%

4.2.1 Static Clustering Distances Evaluation

Initially, a comparative analysis of various clustering distances for average-link hi-

erarchical clustering was conducted to identify a distance that provides optimal

coverage results. The evaluated distances were [10, 30, 50, 70, 90], with Figure 4.1

illustrating the mean coverage evolution over the simulation period. This compar-

ison reveals the distinct impacts of clustering distances on different algorithms,

with LinPro algorithms being more significantly affected, whereas BC-RE algo-

rithms show the least impact. Clustering distances of 10 and 30 are considered

too low, leading to notably lower coverage, whereas distances in the range of 50 to

70 exhibit optimal performance. An increase in distance from 70 to 90 does not

show any significant impact on performance.

Notably, LinPro and Fair LinPro algorithms demonstrate nearly identical re-
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Table 4.3: Algorithms considered in evaluations, described by component. All
algorithms use force field exploration strategy.

Name Communication Response Clustering
FF-LinPro Neighborhood Broadcast LinPro None
FF-LinPro-C Neighborhood Broadcast LinPro Static
FF-LinPro-AC Neighborhood Broadcast LinPro Adaptive
FF-LinProF Neighborhood Broadcast Fair LinPro None
FF-LinProF-C Neighborhood Broadcast Fair LinPro Static
FF-NoComm None None None
FF-NoComm-C None None Static
SM-AV Smooth Available None
SM-AV-C Smooth Available Static
BC-RE Neighborhood Broadcast Received Calls None
BC-RE-C Neighborhood Broadcast Received Calls Static

sults, suggesting that their differences are negligible for the current configuration

of the problem. Consequently, the Fair LinPro algorithm can be excluded from

further evaluations as redundant.

4.2.2 Algorithms’ Clustering Improvement

Following the analysis in Section 4.2.1, a clustering distance of 60 was established

for the algorithms that incorporated clustering capabilities. The data visualized

in Figure 4.2 depict the average k-coverage levels achieved for k = 1 and k = 2

across the simulations. This analysis reveals that, except for the LinPro algorithm,

general coverage trends among most algorithms remain consistent across different

simulation setups. However, LinPro’s strategy of balanced target distribution

across the network, when each animal is considered a target, leads to inefficiency

because all robots tend to track only a single herd or even a part of a larger herd,

resulting in overall unproductive coordination.

Figure 4.3 provides a comparative analysis of the average coverage results of

the algorithms, highlighting that the versions enhanced with clustering capabilities

outperform their original counterparts under various conditions. Among these, the

FF-LinPro-C algorithm emerges as the most effective, particularly for its scalabil-

ity. It demonstrates exceptional efficiency in managing multiple small herds and
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expertly distributing a large number of robots. Conversely, in situations charac-

terized by large herds and a limited number of drones, the BC-RE-C algorithm

has notable results. However, it struggles to adapt to other conditions, limiting

its versatility compared to LinPro.

4.2.3 Adaptive Clustering Evaluation

The final analysis, illustrated in Figure 4.4, compares the performance over time

between LinPro algorithms utilizing an adaptive clustering approach (detailed in

Section 3.2.1) and those that do not incorporate this feature. The simulation

parameters from the initial experiment are reused here, testing various starting

clustering distances [10, 30, 50, 70, 400]. The resulting coverage progression, as de-

picted in Figure 4.4, highlights the adaptive algorithm’s ability to compensate for

the initialization of too-low clustering distances. However, as expected, the algo-

rithm encounters difficulties when dealing with excessively high initial clustering

distances.

When properly initialized, static hierarchical clustering significantly outper-

forms the proposed implementation of distributed adaptive clustering. Despite

this, the overall approach still exhibits its utility and potential efficacy in adapt-

ing to and effectively responding to changes within the observed environment.

This indicates that, with further refinement and optimization, adaptive clustering

techniques could offer valuable solutions for dynamic and complex scenarios.
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Figure 4.1: Mean coverage observed for different average-link clustering distances
(in meters) over a simulation duration of 1800 seconds, sampled at 5-second inter-
vals, with a fixed number of 6 herds. The results indicate that excessively short
clustering distances lead to reduced coverage.
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Figure 4.2: Compact representation of the performance of the algorithms under
test varying the robots/herds ratio n

m
and the number of herds m. Blue surfaces

are the 1-coverage levels, green surfaces are 2-coverage.
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Figure 4.3: Comparison of algorithm coverage with a fixed ratio n
m

= 1.0. The
error bars indicate the standard deviation. The results demonstrate that algo-
rithms enhanced with clustering capabilities surpass the outcomes of their original
versions.
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Figure 4.4: Mean coverage observed for different average-link clustering distances
(in meters) over a simulation duration of 1800 seconds, sampled at 5-second in-
tervals, with a fixed number of 8 herds. The results demonstrate the adaptive
clustering algorithm’s ability to mitigate coverage gaps for clustering distances
initialized too low.
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Chapter 5

Conclusion

In this thesis, we explore how UAVs can be utilized to autonomously track and

monitor herds by applying advanced aggregate algorithms and simulation tech-

niques. The significant contributions of this thesis include:

• Development of a geometric approach for reconstructing animal

movement paths: This included an extensive analysis of KABR-telemetry

data, implementing an approximate join technique to include missed data,

and mitigating the challenge of reconstructed location jumps with a smooth-

ing technique;

• Development of a Herd Movement Model: The thesis introduced a

detailed model for simulating herd movements, incorporating enhancements

to the existing model by adding alignment rules and transforming zone ge-

ometries for more realistic simulations;

• Adaptation of Aggregate Algorithms for Herd Tracking: It adapted

existing OMOkC aggregate algorithms to the specific requirements of UAV-

based herd tracking, focusing on optimizing the coverage of moving herds;

• Evaluation of Algorithms through Simulation: An extensive evalu-

ation was conducted to compare the performance of the algorithms under

various conditions, using the Alchemist simulation environment. This in-

cluded testing different exploration, communication, and response strategies

to determine the most effective approaches for UAV-based herd tracking;
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• Implementation of Adaptive Clustering: To address the challenge of

tracking groups of animals in a dynamic environment;

• Extension of the Alchemist GUI: Enhancements were made to the Al-

chemist graphical user interface to more comprehensively visualize herd be-

havior and UAV coordination.

5.1 Future works

This project makes a significant step forward in the development of distributed

UAV-based herd tracking algorithms, yet there is substantial room for enhance-

ment and refinement. Key areas for future development could include:

• Simulation of animal responses to UAV presence: The disturbance

caused by the proximity of noisy devices to animals is a critical factor. Ac-

curately simulating the impact of UAVs necessitates a comprehensive anal-

ysis of real-world interactions between animals and drones to model animal

responses accurately. It will then be essential to develop algorithms that

minimize disturbance by avoiding close contact with animals;

• Incorporating errors in individual localization: Given that localization

algorithms can only approximate target locations, their potential inaccura-

cies must be accounted for, especially in distributed systems where consensus

on the observed environment is crucial for effective coordination;

• Accounting for errors in individual detection: Object detection algo-

rithms may face challenges in identifying animals under suboptimal visibility

conditions. The environmental model needs to incorporate obstructions (like

trees or other animals) that impede visibility, as well as to consider the tech-

nical limitations of cameras;

• Introducing altitude dimensionality: Properly modeling the animals’

response to UAVs, as well as accommodating different scenarios involving

various altitudes and camera angles, necessitates incorporating the dimen-

sionality of drone altitude into the model;
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• Exploring new clustering approaches: While the project currently fo-

cuses on implementing and evaluating the hierarchical clustering average-link

method, this is not the only viable solution. Investigating alternative clus-

tering methods may produce improved outcomes for the task at hand.
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