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Abstract

This master’s thesis delves into the development and implementation

of a precise dynamic model, a fine-tuned flight controller and sev-

eral optimized guidance algorithms tailored explicitly for quadcopter

drones, with a specific focus on their application in intercepting targets

(specifically high-performance drones), indicative of potential military

purposes. Drawing inspiration from established algorithms designed

for missile interception, the study explores the adaptation and op-

timization of these algorithms to suit the unique dynamics of quad-

copter systems. The primary guidance algorithms under consideration

include Proportional Navigation (PN), Augmented Proportional Nav-

igation (APN), Optimal Guidance Law (OGL), and PID Guidance.

In the contemporary landscape dominated by unmanned aerial vehi-

cles, quadcopter drones have emerged as integral contributors across

diverse sectors, including surveillance and delivery services. In the con-

text of this thesis, Simulink has been employed, a versatile modeling

tool, to design and implement robust control systems for quadcopter

drones, specifically tailored for intercepting targets.

Acknowledging the sensitive nature of the application, the study con-

siders the intricacies of modeling both the quadcopter drone and the

target. The objective extends beyond mere emulation of quadcopter

dynamics, aiming to contribute substantively to the broader applica-

tions of aerial technology in military contexts.
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Chapter 1

Introduction

The journey into unmanned aerial vehicles (UAVs) and Autonomous

Pilotless Reconnaissance Aircraft (APR) dates back to 1849 when the

Austrians utilized explosive balloons in the assault on Venice. Fast

forward to World War I, the ”Aerial Target” in 1916 was a significant

development, controlled via radiofrequency. In that same year, the

Hewitt-Sperry automatic airplane showcased the concept of unmanned

flight, operated through internal gyroscopes.

Post-World War I, technological progress enabled the conversion of

aircraft into APRs. Notably, Reginald Denny’s Radioplane Company

produced over 15,000 remotely piloted helicopters during World War

II for anti-aircraft artillery testing. The Italian Army embraced UAVs

in the 1960s, employing models like the CL-89. Subsequent advance-

ments include the Mirach 20, FQM 151 A Pointer, and Raven RQ

1A and 1B, reflecting a shift from remote camera reconnaissance to

real-time video surveillance with remote piloting capabilities.

Since their inception, initially designed exclusively for military pur-

poses, drones have catalyzed significant strides in terms of miniatur-

ization and accessibility of these technologies to the general public.

They have proliferated to such an extent that they have seamlessly

integrated into the fabric of daily life, their proliferation has marked

a true democratization of these systems. This democratization has

reached a point where individuals can readily access high-performance

drones, capable of achieving remarkable feats. This accessibility stems
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from a notable reduction in both the cost and dimensions of drones

over the years, making them increasingly available to the masses.

While this accessibility presents opportunities for diverse applications,

such as reconnaissance and precision agriculture, it simultaneously

poses a potential threat. The prospect of a criminal obtaining these

technologies raises serious concerns for the security of localities and

even entire nations, especially when considering the possibility of an

armed group acquiring a swarm of explosive drones.

To safeguard the social and political stability of nations vulnerable to

such terrorist attacks, there is an undeniable imperative to develop a

system or device capable of intercepting and neutralizing these evolv-

ing threats. A case in point, widely recognized in contemporary de-

fense strategies, is the Iron Dome (Fig: 1.1)—a formidable anti-missile

system developed by Israel.

Figure 1.1: Iron Dome launches interceptor missile

Engineered to intercept and neutralize short-range missile threats, the

Iron Dome has demonstrated its efficacy in real conflict scenarios.

However, its large size and, notably, the substantial cost associated

with each battery equipped with Tamir missiles (approximately 50

million dollars) present challenges that necessitate exploration of al-

ternative solutions. Various alternative concepts have been introduced
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for the interception of missiles, one notable proposal involves the uti-

lization of drones equipped with nets (Fig: 1.2) designed to ensnare

the selected target [10].

Figure 1.2: Model of the UAV system carrying a net

This brings forth the primary focus of this thesis: the development

of an innovative antidrone system based on armed, high-performance

drones equipped with explosive charges.

The proposed system aims to address the identified limitations of

existing defenses, providing a dynamic and cost-effective solution to

counter evolving threats posed by drone technology. The envisioned

drone-based system will be tasked not only with intercepting potential

threats but also with meeting a critical requirement—obliterating the

target in the shortest possible time. This dual emphasis on effective-

ness and efficiency is crucial to neutralizing impending dangers before

they can strike, thus contributing to a more robust and adaptive se-

curity infrastructure.

Throughout the following chapters, this thesis will delve into the con-

ceptualization, development, and comprehensive evaluation of the pro-

posed drone-based antidrone system based on existing missile-based

interception algorithm, such as: Proportional Navigation (PN), Aug-

mented Proportional Navigation (APN), Optimal Guidance Law (OGL),

and PID Guidance algorithms, shedding light on its potential as a

strategic asset in the evolving landscape of security challenges.
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Chapter 2

Dynamic model

Within this chapter, the non-linear mathematical model of a multi-

rotor is delineated (Fig: 2.1), commencing with the formulation of

general equations governing the kinematics and dynamics of a rigid

body. It is imperative to acknowledge that the resultant mathemati-

cal model serves as an approximation of actual multirotor dynamics.

This approximation is notably influenced by the inherent challenges in

comprehensively understanding and accurately modeling certain aero-

dynamic effects.
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Figure 2.1: Dynamic model developed
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2.1 Translational dynamics

The Newton’s law applied to the translational motion is:

F = m
dV (t)

dti
(2.1)

where m is the mass of the drone, V is the velocity vector, d
dt is

the inertial time derivative and F is the total force applied to the

multirotor. The preceding equation can be extended in its generalized

form, termed the Coriolis equation (2.2), wherein due consideration

is given to the non-inertial nature of the body-fixed reference system

concerning the NED reference system.

F = m
dV (t)

dti
= m(

dV (t)

dtb
+ Ωb/i × V ) (2.2)

in which d
dtb

is the time derivative in the body fixed frame, Ωb/i =

[p; q; r] is the angular velocity of the body fixed frame with respect to

the NED frame.

Finally, the formula governing translational dynamics of the drone is

as follows:  u̇v̇
ẇ

 =

rv − qw

pw − ru

qu− pv

+
1

m

(
Fp + Fg + Fa

)
(2.3)

On the left-hand side, the diverse accelerations along the x, y, and z

directions are evident. Conversely, the right side incorporates the gy-

roscopic contribution arising from the non-inertial nature of the body

axis reference system, coupled with external forces such as the propul-

sive Fp, gravitational Fg, and aerodynamic Fa forces. Comprehending

these forces is imperative for the design of an efficient control system

and the establishment of stable and controlled flight.
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Thrust Force

The thrust force is generated by the quadcopter’s rotors. It acts in

the upward direction, opposing the force of gravity. This force is

responsible for lifting the quadcopter off the ground and controlling

its altitude.

Fi = K1δpwm(i) (2.4)

In which K1 is a constant that have to be determined experimentally

(K1 = 0.0033), δpwm is the motor command signal and Fi denotes the

thrust force generated by the i-th motor.

The final thrust component is:

Fp =

 0

0

−(F1 + F2 + F3 + F4)

 (2.5)

Below is presented an excerpt of the block architecture designed for

computing the propulsive force acting on the drone.

Figure 2.2: Computation of the propulsion force component
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Gravitational Force

The weight is the gravitational force acting on the mass of the quad-

copter. It acts vertically downward, towards the zenith. Weight is a

critical force that influences altitude control and must be counteracted

by the thrust force for stable flight. In the calculation of the weight

component, it is imperative to factor in the orientation of the body

axis in relation to the NED (North-East-Down) frame, as below:

Fg =

 −mgsin(θ)
mgcos(θ)sin(ϕ)

mgcos(θ)cos(ϕ)

 (2.6)

Where m is the drone’s mass (set equal to 2 [kg]), g is the gravity

acceleration, θ is the pitch attitude angle and ϕ is the roll attitude

angle. Below is presented an excerpt of the block architecture designed

for computing the gravitational force acting on the drone.

Figure 2.3: Computation of the gravitational force component
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Drag Force

As the quadcopter moves through the air, it encounters air resistance,

resulting in a drag force. This force acts opposite to the direction of

motion and contributes to slowing down the quadcopter’s translational

motion:

Fa = −1

2
ρCD

Axu|u|Ayv|v|
Azw|w|

 (2.7)

Where ρ is the air density, CD is the drone’s drag coefficient (CD =

0.5), Ax, Ay and Az are respectively the frontal area, lateral area,

overhead view of the drone (respectively fixed at 0.023, 0.023 and

0.106 [m2]) and u, v and w are the x, y, z components of the True

Airspeed without the contribution of the wind speed. Below is pre-

sented an excerpt of the block architecture designed for computing the

aerodynamic forces acting on the drone.

-0.5*u[1]*Az*u[5]*u[4]*abs(u(4))

Drag_z	

1
rho

2
TAS

-0.5*u[1]*Ax*u[5]*u[2]*abs(u(2))

Drag_x

-0.5*u[1]*Ax*u[5]*u[3]*abs(u(3))

Drag_y3
Cd

1

2

3

Figure 2.4: Computation of the aerodynamic force component
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2.2 Rotational dynamics

The rotational dynamics of a drone presume the complex interaction

of torques and angular velocities, dictating its changes in orientation

around the three principal axes: roll, pitch, and yaw. These rotational

dynamics are intricately linked to the application of moments and

the principles of angular motion. So, in order to obtain the formula

governing the rotational dynamics, it is required to start the discussion

from the Newton’s law applied to the rotational motion:

M =
dh

dti
(2.8)

where h is the angular momentum andM is the overall applied torque.

From the equation of Coriolis, the previous one becomes:

M =
dh

dti
= (

dh

dtb
+ Ωb/i × h) (2.9)

By setting h = JΩb/i:

M = J
dΩb/i

dtb
+ Ωb/i × (JΩb/i) (2.10)

dΩb/i

dtb
= J−1(M − Ωb/i × (JΩb/i) (2.11)

Under the assumption of the multirotor’s symmetry across all three

axes, the constant inertia matrix J can be expressed as:

J =

Jx 0 0

0 Jy 0

0 0 Jz

 (2.12)

where, Jx = 0.0319[m2], Jy = 0.0287[m2], Jz = 0.0633[m2].

The formula governing rotational dynamics is as follows:
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ṗq̇
ṙ

 =


Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq

+


1
Jx
l
√
2
2

(
F1 − F2 − F3 + F4

)
1
Jy
l
√
2
2

(
F1 + F2 − F3 − F4

)
1
Jz
l
√
2
2

(
τ1 − τ2 + τ3 − τ4

)
 (2.13)

The formula above features angular accelerations on the left-hand side

and, on the right-hand side, the gyroscopic component due to the

non-inertiality of the frame, along with external moment components

resulting from propulsive forces (2.4). In quadrotors, as one might

anticipate, the moments around the x and y axes arise from an asym-

metry in thrust among individual rotors. As for the yaw axis, the

resulting external moment is generated by the overall moment pro-

duced by the individual blades, which, in pairs, rotate in opposite

directions.

The roll dynamics of a drone, denoted by the symbol τϕ , are influ-

enced by the asymmetric distribution of thrust across the left and

right rotors. When the drone experiences a difference in thrust be-

tween these rotors, a torque is generated, causing the drone to roll

about its longitudinal axis. The greater the asymmetry in thrust, the

more pronounced the roll motion.

τϕ = l

√
2

2
(F1 − F2 − F3 + F4) (2.14)

Where l (fixed at 0.225 [m]) is the distance between CG and the ap-

plied forces Fi generated by each rotor blade. Similarly, the pitch

dynamics τθ result from imbalances in thrust between the front and

rear rotors. This discrepancy creates a torque that induces the drone

to pitch about its lateral axis. The pitch motion is contingent upon

the magnitude of the thrust asymmetry.

τθ = l

√
2

2
(F1 + F2 − F3 − F4) (2.15)

Yaw dynamics τψ, responsible for the drone’s rotation around its ver-

tical axis, arise from differences in torque produced by the clockwise
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and counterclockwise rotating rotors. Changes in rotor speeds cre-

ate opposing torques, leading to a yawing motion. Precise control of

these rotational dynamics is crucial for stable and responsive drone

operation.

τψ = τ1 − τ2 + τ3 − τ4 (2.16)

The following formula is applied to calculate the torque component

for each individual motor:

τ(i) = K2δpwm(i) (2.17)

Where alsoK2 is determined experimentally and fixed atK2 = 3.2689e-

04.Below is presented an excerpt of the block architecture designed for

computing the rotational dynamics acting on the drone.

1
M_tot

1
F_i

(b*sqrt(2)*(u(1)-u(2)-u(3)+u(4)))/2

M_x

(b*sqrt(2)*(u(1)+u(2)-u(3)-u(4)))/2

M_y

u(1)-u(2)+u(3)-u(4)

M_z

2
Tau_i

Figure 2.5: Computation of the rotational dynamics acting on the
drone
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Chapter 3

Flight Controller

Figure 3.1: Simulink block of the flight controller

Flight controllers serve as the pivotal processing stage within the

software framework. The prevalent use of the Proportional-Integral-

Derivative (PID) control technique in multirotor applications, owing

to its feasibility and simplicity, is noteworthy. This section systemat-

ically outlines the structure of the software’s flight controllers, orga-

nized in a cascade control system [3]. Typically, this architecture in-

corporates a primary controller and primary dynamics as constituents

of the outer loop, with a secondary controller loop integrated as part of

this outer loop. The inner loop’s set-points are calculated by the outer
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tau_psi

4
tau_Ftot

5
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Figure 3.2: Internal architecture of the flight controller

loop, thus earning the nomenclature ”cascade control”. To optimize

performance, the inner loop should exhibit considerably faster dynam-

ics compared to the outer loop, mitigating potential interactions and

enhancing stability characteristics. Thanks to the application of a cas-

cade control structure, the PID control strategy can be adapted for

controlling complex dynamics like rotary-wing aerial vehicles.

In the following sections is showed the detailed design and function-

ality of each controller, highlighting the strategic approach taken to

ensure precise and efficient control in diverse flight scenarios.

3.1 Vertical speed controller

The vertical speed controller allows the user to control multirotor ver-

tical speed and/or vertical acceleration acting on the total force ap-

plied by motors. Within the vertical speed controller Fig: 3.3, the

inputs are the desired velocity Vdes, as commanded by the guidance

subsystem, the measured velocity in the north-east-down (NED) co-
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ordinates Vbe, and the inertial acceleration in NED coordinates Abe.

In this controller, the focus lies on the vertical velocity component

ż. Therefore, initially, only the z-component is extracted from the re-

spective inputs. The primary objective is to generate an error between

the target velocity and the current measured velocity.

eż = ˙zdes − ż (3.1)

Subsequently, this error is multiplied by an appropriate gain Kpż to

obtain the desired vertical acceleration ¨zdes.

¨zdes = Kpżeż (3.2)

Furthermore, an error is calculated between the desired and measured

accelerations.

ez̈ = ¨zdes − z̈ (3.3)

Subsequently, a fine tuned PID controller produces an output delta,

τFtot
= KP z̈ez̈ −KDz̈e ...z +KI z̈

∫ t

0
ez̈ dx+ τhovering (3.4)

which is added to the hovering condition, where it is assumed that the

pilot is not actively commanding any signals to the drone (untouched

condition). It must be considered that the output τFtot
lies in a range

between 0 (no thrust) and 1 (maximum thrust), the value of τFtot
=

0.5 assigned to the hovering condition.

1
tau_Ftot

1
Ve	NED

2
V_des

+−

3
A_be

+− ++PID(s)
z_dot_des

e_zdot z_dotdot_des e_z_dotdot

z_dotdotz_dot

Figure 3.3: Vertical speed controller block diagram
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3.2 Velocity controller

An effective approach to controlling Unmanned Aerial Vehicles (UAVs)

involves employing speed commands. This section delineates the mod-

eling of the velocity controller within the flight control software for

rotary-wing UAVs. Positioned within the primary cascade control

scheme, this controller is formulated as a feedback proportional con-

troller. It receives forward/right velocity references, denoted as vfdes,

and subsequently generates desired roll/pitch angles for the inner con-

trol loop, namely ϕdes and θdes. In the velocity controller designed

Fig: 3.4, the inputs are the desired velocity, the measured Euler an-

gles, and the velocity measured in inertial coordinates. These inputs

are processed within a ”MATLAB function” block to calculate the

respective velocity errors in the forward-right-downward coordinates

evf , evr which is the similar to the vehicle frame but rotated by the

heading angle ψ. This approach is justified by the intuitive nature

of commanding the drone with instructions like forward/backward or

right/left, making the control process more user-friendly. Within this

block, the fundamental calculation involves the following:

[
evf
evr

]
=

[
cosψ sinψ

−sinψ cosψ

][
udes − u

vdes − v

]
=

[
vfdes − vf
vrdes − vr

]
(3.5)

To the left of the equality sign, there are the respective errors along the

forward and right directions. In the middle, is possible to find the dif-

ferences in errors for the corresponding velocity components along the

x and y axes in inertial coordinates. These differences are then multi-

plied by a rotation matrix, transforming them into the forward-right-

downward coordinate system. On the right, the velocity differences

directly expressed in the abovementioned coordinates. Subsequently,

each component is multiplied by pure gains, which yield the desired
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acceleration along the forward and right directions (3.6).

[
af des
ardes

]
=

[
Kvfevf
Kvrevr

]
(3.6)

Following this, the obtained accelerations are utilized to calculate the

respective θdes and ϕdes according to the formula:

θdes = −arctan(
af des
g

) (3.7)

ϕdes = arctan(
ardescosθdes

g
) (3.8)

1
V	desired

3
Velocity	NED

2
Euler	measured

V_des

euler

Ve

e_Vf

e_Vr

af_des

ar_des

grav

theta_des

phi_des

1
theta_des

2
phi_des

Figure 3.4: Velocity controller block diagram
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3.3 Attitude controller

The attitude controller constitutes the innermost layer of the con-

trol hierarchy within the software, governing the fundamental piloting

aspects of the multirotor vehicle. Consistent with the overarching phi-

losophy employed in the system, the attitude controller is structured

as a cascade control system. The outer loop of the attitude controller

relies on Euler angles ϕ and θ, leveraging attitude measurements ob-

tained from the dynamic model in two separate controllers, namely

”Roll controller” and ”Pitch controller”. In this context, a simplified

proportional gain is employed. Meanwhile, the inner loop is dedicated

to managing angular velocities through a PID control system. Con-

sidering the symmetrical nature of the drone along the pitch and roll

channels, it is evident that the respective controllers (roll and pitch

controllers which constitutes the Attitude controller) share an almost

identical architecture. The only difference lies in the input variables;

in fact, these are the measured Euler angles, measured angular rates,

and, respectively, the θdes for pitch controller (Fig: 3.5) and ϕdes for

the roll controller (Fig: 3.6). These desired values are, in fact, the

outputs from the velocity controller. The desired Euler angle input

is multiplied by a pure gain, which takes into account the maximum

value attainable by the drone—specifically, ϕmax and θmax, both set

to a maximum of 20° for safety reasons. In this scenario as well, the

respective error between the desired and measured values is calculated.

eϕ = ϕdes − ϕ (3.9)

eθ = θdes − θ (3.10)

Subsequently, another gain Kpϕ and Kpθ are applied to obtain the

desired angular velocity (pdes for the roll controller, qdes for the pitch

controller).

pdes = Kpϕeϕ (3.11)
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qdes = Kpθeθ (3.12)

Once the error is generated with the measured angular velocity, this

error is passed through a tuned PID controller, providing the respec-

tive τϕ and τθ values.

τϕ = KP pep −KDpeṗ +KIp

∫ t

0
ep dx (3.13)

τθ = KP qeq −KDqeq̇ +KIq

∫ t

0
eq dx (3.14)

+−

2
Euler	measured

3
pqr	measured

1
tau_theta

1
theta_des

PID(s)+−e_theta e_qq	desired

Figure 3.5: Pitch controller block diagram

+− +−

Max	Roll	angle	achievable

2
Euler	measured

3
pqr	measured

1
tau_phi

PID(s)1
phi_des

p	desirederror_phi

Figure 3.6: Roll controller block diagram
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3.4 Heading hold controller

The heading hold controller Fig: 3.7 features a much simpler design.

In fact, the initial step involves calculating the difference between the

initial yaw rate rini and the measured yaw rate, which is provided

as input to the controller. Once the error is calculated, it is directly

passed to the PID controller, which then produces the necessary out-

put τψ to control the yaw channel.

er = rini − r (3.15)

τψ = KP rer −KDqeṙ +KIr

∫ t

0
er dx (3.16)

+−

1
pqr	measured

1
tau_psi

PID(s)

Figure 3.7: Heading hold controller block diagram

3.5 Tuning

The iterative tuning process, conducted through a systematic trial-

and-error approach, was initiated with a focus on the vertical speed

controller, considering its limited influence on the pitch and roll chan-

nels of the drone. Following the confirmation of functionality and a

reliable response to external disturbances, attention was then directed

towards parameter acquisition for the heading hold controller. Once

these controllers were optimized, the tuning process transitioned to the

pitch channel. Significantly, the acquisition of coefficients for the pitch
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channel facilitated a straightforward copy-and-paste methodology for

the roll channel controller, capitalizing on the inherent symmetry of

the quadcopter, resulting in identical behavior on both channels.

Subsequent to obtaining pure gains for the velocity controller, a Simulink

model was meticulously constructed to accurately represent both the

plant and the controller. The initial configuration involved setting up a

PID Controller block, with parameters strategically determined based

on preliminary estimates or default values. Navigating through the

PID Tuner, a suite of tools and visualizations was employed, guided

by a comprehensive open-loop analysis.

The iterative tuning process unfolded dynamically, with continual ad-

justments to proportional, integral, and derivative gains based on in-

sights gained into the system’s behavior. Transient response analyses,

facilitated by the PID Tuner, played a pivotal role in refining the con-

troller’s performance and optimizing transient dynamics. Robustness

analysis emerged as a cornerstone in ensuring stability under varying

conditions. Through interactive engagement with tuning sliders, gains

were fine-tuned to strike a delicate balance between responsiveness,

stability, and robustness.

Validation, conducted through extensive simulations incorporating di-

verse input scenarios and disturbances, became imperative. This val-

idation process led to the transfer of tuned parameters back to the

Simulink model, ensuring the effectiveness of the refined controller in

real-world scenarios.

Here is a list with the coefficient values implemented in each controller:

• Velocity controller: Kvf = 15, Kvr = 15

• Vertical speed controller: Kpż = 10, KP z̈ = -1, KI z̈ = -0.82, KD
...
z

= 0.0038, Nz = 33.7

• Pitch controller: KP θ = 8, KP q = 10, KDq = 0, KIq = 0.2, Nq =

100

• Roll controller: KPϕ = 8, KP p = 10, KDp = 0, KIp = 0.2, Np =

100

• Heading hold controller: KP r = 1, KDr = -0.01, KIr = 0.01, Nr

= 1.72
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3.6 Motor mixing

Matrix
Multiply

MatrixMultiply

Motor	mixer

++

F_tot_throttle1

1
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2
tau_phi

3
tau_psi

1
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2
d_pwm2

3
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4
d_pwm44

tau_Ftot

Figure 3.8: Motor mixing procedure within the Simulink environment

However, before sending these signals (τϕ, τθ, τψ and τFtot
) to the dy-

namic model, it is essential to perform the operation known as ”Motor

Mixing” (Fig: 3.8). This operation involves controlling the individ-

ual motor speeds to obtain the desired flight characteristics. In such

systems, the ability to independently adjust the speed of each motor

enables the vehicle to modify its orientation, stabilize, and execute

various maneuvers. Basically, the motor mixing consists into a simple

matrix multiplication:
δpwm1

δpwm2

δpwm3

δpwm4

 =


1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1



τϕ
τθ
τψ
τFtot

 (3.17)

As evident from the above equation, the motor mixing matrix multi-

plies various contributions to obtain the different delta δpwm values.

The matrix is constructed by taking into account the rotation di-

rections of individual blades, each of which distinctly influences the

behavior of the drone. The concept of δpwm can be described as a

method of encoding analog information in a digital signal. In the con-

text of quadcopters, PWM is often used to control the speed of the
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motors. It works by varying the width of pulses in a train of digital

pulses. The average voltage is determined by the duty cycle, which is

the ratio of the pulse width to the total time period of the signal. Af-

ter obtaining the PWM values through the motor mixing procedure,

they can be utilized within the model as inputs for the translational

and rotational blocks.

3.7 Testing

To individually assess each controller, a straightforward methodology

was employed. Each controller under evaluation was isolated from the

others, and an arbitrary input value was systematically assigned to

observe their respective responses to a step change. As evident from

the ensuing graphs, the controllers exhibited consistently satisfactory

outcomes.
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Figure 3.9: Response of theVertical speed controller to step change
of Vzdes = 3ms vs time

Figure 3.10: Response of the Pitch controller to step change of
θdes = 2 vs time
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Figure 3.11: Response of the Roll controller to step change of ϕdes =
2 vs time

Figure 3.12: Response of the Heading hold controller to step
change of rdes = 1s vs time
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Figure 3.13: Response of the Velocity controller to step change of
Vdes = [1; 2; 0]ms vs time

Overall flight control system response

To comprehensively assess the developed flight controller, testing was

conducted using a holistic approach. The input to the controller en-

compassed not only all the measured values from the dynamic system

but also a velocity expressed in the NED frame. This velocity input

originates from the guidance system since it is an output of the lat-

ter. Consequently, to evaluate the effectiveness and efficiency of the

flight controller, arbitrary velocity commands were arbitrarily issued.

This process involved bypassing the input from the guidance system,

aiming to ascertain whether the drone could autonomously attain the

specified velocity conditions.

In this testing phase, the flight controller was presented with a prede-

fined desired velocity, denoted as Vdes = [1; 2; 3]ms , to observe and ana-

lyze its ability to guide the drone autonomously towards the specified

speed conditions. This methodological approach allowed for a thor-

ough examination of the flight controller’s performance in response to
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user-defined velocity inputs, facilitating insights into its capacity to

effectively navigate and regulate the drone’s movement.

Figure 3.14: Response of the entire system to step change of Vdes =
[1; 2; 3]ms vs time
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Chapter 4

Guidance controllers

In the ensuing sections of this chapter, a comprehensive exploration of

the diverse methodologies underpinning the development of the guid-

ance controller for the interceptor drone will be undertaken. The

intricate nature of a guidance system is underscored by its pivotal

role in issuing precise commands to the flight controller, thereby or-

chestrating a nuanced adjustment of the drone’s orientation. This

orchestration is further complemented by the reception of pertinent

information applicable to the targeted entity.

It is imperative to recognize that the guidance system operates as an

integral subsystem within the drone, serving as the conduit through

which commands are judiciously disseminated in accordance with the

dynamic state of the target being pursued. In essence, the efficacy of

the guidance system is paramount in dictating the drone’s responsive-

ness and adaptability to the evolving conditions of the mission.

In the subsequent discussion, a meticulous dissection of the four dis-

tinct guidance systems, will be undertaken. The following paradigms

will be scrutinized: Proportional Navigation, Augmented Proportional

Navigation, Optimal Guidance Law, and PID Guidance. Within this

analytical framework, an in-depth examination of the original algo-

rithms integral to missile guidance, which serve as the foundational

inspiration for these respective technologies, will be conducted.

Moreover, an in-depth analysis on the assumptions intrinsic to these

algorithms will ensue, shedding light on the underlying principles that
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govern their functionality. This comprehensive analysis will culminate

in a detailed delineation of the systematic progression from the very

early stages of each technology’s original algorithm to the final, oper-

ational iteration effectively implemented on the drone. The ensuing

synthesis aims to provide a profound understanding of the intricacies

involved in adapting missile guidance algorithms to the unique oper-

ational capabilities of the interceptor drone.

4.1 Origins of PN Guidance

Proportional navigation, though recognized by the Germans at

Peenemünde during World War II, saw no reported applications on

Hs. 298 or R-1 missiles utilizing this guidance principle. The pioneer-

ing implementation of proportional navigation occurred with the Lark

missile, achieving its first successful test in December 1950. Subse-

quently, proportional navigation guidance has been ubiquitously em-

ployed in the guidance systems of tactical radar, infrared (IR), and

television (TV) guided missiles worldwide [1]. The widespread adop-

tion of this interceptor guidance law is attributed to its inherent sim-

plicity, effectiveness, and ease of implementation.

Notably, the initial study of proportional navigation is credited to

C. Yuan and others at the RCA Laboratories during World War II,

conducted under the auspices of the U.S. Navy [8]. The guidance

law was conceptualized based on physical reasoning and the available

equipment at that time. Extensive research on proportional naviga-

tion was carried out at Hughes Aircraft Company [2], where it was

implemented in a tactical missile employing a pulsed radar system.

Further development occurred at Raytheon, leading to the implemen-

tation of proportional navigation in a tactical continuous-wave radar

homing missile [5].

Post-World War II, the U.S. work on proportional navigation was de-

classified and first appeared in the Journal of Applied Physics [13].

Mathematical derivations affirming the ”optimality” of proportional

navigation emerged more than 20 years later [11]. In alignment with
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the historical context of proportional navigation’s origins, this chapter

refrains from presenting mathematical proofs in deriving the guidance

law. Instead, the focus will be on demonstrating to the reader the

efficacy of the guidance technique. Subsequently, an exploration of

certain properties of the guidance law will be undertaken, both ob-

served and derived. Finally, the chapter will elucidate how this clas-

sical guidance law serves as the foundational basis for more advanced

techniques in interceptor guidance.

The studied algorithms are developed for the interception of generic

targets using ballistic missiles. These algorithms rely on several strin-

gent assumptions, such as a missile possessing a non-zero velocity

vector and significantly outperforming the target. Consequently, the

magnitude of the missile’s velocity will be greater than that of the

target.

4.2 PN Guidance Law

Theoretically, the proportional navigation guidance law dictates accel-

eration commands that are perpendicular to the instantaneous line-

of-sight between the missile and the target. These commands are

proportionally determined by the line-of-sight rate and closing veloc-

ity. In mathematical terms, the guidance law is articulated as follows

[14]:

nc = N ′Vcλ̇ (4.1)

where:

• nc denotes the acceleration command (in m/s),

• N represents a unitless designer-chosen gain (typically in the range

of 3–5), known as the effective navigation ratio,

• Vc signifies the closing velocity between the missile and the target

(in m/s),

• λ̇ indicates the line-of-sight rate (in rad/s).

In the context of tactical radar homing missiles employing proportional

31



navigation guidance, the seeker provides an effective measurement of

the line-of-sight rate, while closing velocity information is obtained

from a Doppler radar. For tactical infrared missile applications utiliz-

ing proportional navigation guidance, the line-of-sight rate is directly

measured, whereas the closing velocity required by the guidance law

is approximated. In the case of tactical endoatmospheric missiles, the

implementation of proportional navigation guidance commands typ-

ically involves the manipulation of fins or other control surfaces to

generate the necessary lift. Exoatmospheric strategic interceptors uti-

lize thrust vector control, lateral divert engines, or squibs to achieve

the desired acceleration levels.

In elucidating the overall PN algorithm, it is considered the 2D case

to better understand how the PN algorithm works, as showed in Fig:

4.1

Figure 4.1: Sketch of the 2D missile-target engagement scenario

In this inertial coordinate system fixed to a flat-Earth model, the

1-axis aligns with the downrange direction, and the 2-axis may rep-

resent either altitude or crossrange. Utilizing the inertial coordinate

system of Fig: 4.1 enables the integration of acceleration and veloc-

ity components along the 1 (abscissa) and 2 (ordinate axis) directions

without introducing additional terms due to the Coriolis effect. The

model assumes constant velocity for both the missile and target, with

gravitational and drag effects neglected for simplicity. In Fig: 4.1, the

32



missile, with velocity magnitude VM , is oriented at an angle of L+HE

relative to the line of sight, where L denotes the missile lead angle,

representing the theoretically correct angle for the missile to form a

collision triangle with the target. The angle HE is identified as the

heading error, representing the initial deviation of the missile from the

collision triangle. The line connecting the missile and target in Fig:

4.1 is termed the line of sight, making an angle of λ with respect to

the fixed reference. The length of the line of sight, denoted as RTM ,

signifies the instantaneous separation between the missile and target.

From a guidance standpoint, the objective is to minimize the range

between the missile and target at the expected intercept time. The

closest point of approach is referred to as the miss distance. The clos-

ing velocity Vc is defined as the negative rate of change of the distance

between the missile and the target.

Vc = − ˙RTM (4.2)

Hence, at the end of the engagement, when the missile and target are

closest, the sign of Vc changes. The desired acceleration command nc,

derived from the proportional navigation guidance law, is perpendicu-

lar to the instantaneous line of sight. In the engagement model of Fig:

4.1, the target can maneuver evasively with acceleration magnitude

nT . The angular velocity of the target can be expressed as

β =
nT
VT

(4.3)

where VT is the magnitude of the target velocity.

The components of the target velocity vector in the Earth or inertial

coordinate system can be determined by integrating the differential

equation for the target’s flight-path angle β and substituting in the

following formula:

VT1 = −VT cos(β) (4.4)

VT2 = VT sin(β) (4.5)
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Target position components in the Earth fixed coordinate system are

found by directly integrating the target velocity components.

˙RT1 = VT1 (4.6)

˙RT2 = VT2 (4.7)

Similarly, the missile’s velocity and position differential equations,

with components aM1 and aM2 representing the missile acceleration

in Earth coordinates, are provided by the respective formulas.

˙VM1 = aM1 (4.8)

˙VM2 = aM2 (4.9)

˙RM1 = VM1 (4.10)

˙RM2 = VM2 (4.11)

To find the missile acceleration components, the components of the

relative missile-target separation must be defined first.

RTM1 = RT1 −RM1 (4.12)

RTM2 = RT2 −RM2 (4.13)

The line-of-sight angle, obtained using trigonometry in terms of the

relative separation components, can be expressed using the formula:

λ = atan
RTM2

RTM1
(4.14)

The relative velocity components in Earth coordinates are defined,

VTM1 = VT1 − VM1 (4.15)

VTM2 = VT2 − VM2 (4.16)

and the line-of-sight rate is calculated through direct differentiation:
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λ̇ =
RTM1VTM2 −RTM2VTM1

R2
TM

(4.17)

The relative separation RTM is expressed in terms of its inertial com-

ponents using the distance formula,

RTM =
√
R2
TM1 +R2

TM2 (4.18)

differentiating the (4.18), the closing velocity formula is obtained:

Vc = − ˙RTM =
RTM1VTM1 +RTM2VTM2

RTM
(4.19)

The magnitude of the missile guidance command nc is determined

from the definition of proportional navigation:

nc = N ′Vcλ̇ (4.20)

Since the acceleration command is perpendicular to the instantaneous

line of sight, the missile acceleration components in Earth coordinates

are obtained through trigonometry, as given by the provided formula:

aM1 = −ncsin(λ) (4.21)

aM2 = nccos(λ) (4.22)

All the necessary differential equations for modeling a complete missile-

target engagement in two dimensions have been listed. However, addi-

tional equations for the initial conditions on the differential equations

are required to complete the engagement model. A missile employing

proportional navigation guidance is not directed at the target but is

fired in a direction to lead the target. The initial angle of the missile

velocity vector with respect to the line of sight, known as the missile

lead angle L, is determined by the law of sines.

L = asin
VT sin(β + λ)

VM
(4.23)

In practice, the missile is usually not launched exactly on a collision
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triangle due to uncertainties in predicting the expected intercept point.

Any initial angular deviation of the missile from the collision triangle

is termed a heading error HE. The initial missile velocity components

can be expressed in terms of the theoretical lead angle L and actual

heading error HE, as presented in the formula.

VM1(0) = VMcos(L+HE + λ) (4.24)

VM2(0) = VMsin(L+HE + λ) (4.25)

4.2.1 Linearization

To date, insights into the effectiveness of proportional navigation have

been derived exclusively from numerical simulations of the two-dimensional

engagement model. In the interest of analytical analysis, comprehen-

sion, and the formulation of design relationships, it becomes essen-

tial to temporarily deviate from the nonlinear missile-target simula-

tion and establish a simplified model. The linearization of the two-

dimensional engagement model is pursued to deepen our understand-

ing.

It is noteworthy that the introduction of the linearized model does

not entail the abandonment of the nonlinear engagement model. On

the contrary, the nonlinear engagement model will consistently serve

as a benchmark to validate insights generated by robust analytical

techniques applied to the linearized model.

The linearization process of the missile-target geometry can be seam-

lessly executed through the definition of new relative quantities, as

delineated in Figure 2.6. Here, y signifies the relative separation be-

tween the missile and target perpendicular to the fixed reference. The

representation of relative acceleration, denoting the disparity between

missile and target acceleration, is elucidated through examination of

Fig: 4.2.

ÿ = nT cos(β)− nccos(λ) (4.26)

36



In the case of small angle approximation the 4.26 becomes:

ÿ = nT − nc (4.27)

The expression for the line-of-sight angle λ can also be linearized using

the small-angle approximation, yielding

λ =
y

RTM
(4.28)

Therefore, in the context of a linearized analysis, the closing velocity

is considered a positive constant. Given that the closing velocity is

defined as the negative derivative of the range from the missile to the

target, and acknowledging that the range must converge to zero at the

conclusion of the flight, the range equation can be linearized with the

time-varying relationship.

RTM = Vc(tF − t) = Vctgo (4.29)

Here, t denotes the current time, and tF represents the total flight

time for the engagement which is now regarded as a constant, and tgo
which is the time to go until intercept. The quantity tF–t signifies the

time remaining until the end of the flight. Consequently, the range

from the missile to the target is expressed as the product of the closing

velocity and the time remaining until intercept.

In light of the range diminishing to zero at the flight’s conclusion, a

reevaluation of the miss distance definition is imperative. The lin-

earized miss distance is defined as the relative separation between the

missile and the target y at the termination of the flight, as indicated

in the formula.

MISS = y(tF ) (4.30)

It is noteworthy that the linearized miss distance, derived in this man-

ner, is an approximation to the actual miss, as it does not adhere to

the distance formula. However, it will become evident shortly that

this approximation for the miss distance proves to be highly accurate.
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Figure 4.2: Engagement model for linearization

4.3 Early iterations

In this section, a comprehensive exploration unfolds, delving into the

iterative journey undertaken during the developmental phases of the

algorithm. The objective is to meticulously dissect each stage, scru-

tinizing the assumptions made, identifying encountered errors, and

delineating the evolutionary steps that ultimately culminated in the

refined and finalized code. The genesis of this process was rooted in a

commitment to validate theoretical principles and assumptions drawn

from authoritative sources such as the [14] book.

The initial impetus behind this endeavor was to subject the algorithm

to rigorous testing, a crucial step in ensuring its theoretical sound-

ness and practical efficacy. As a strategic approach, the translation

of the algorithm into Simulink served as a practical bridge between

conceptualization and implementation. The intricate interplay of the-

oretical constructs and algorithmic assumptions laid the groundwork

for subsequent iterations.
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4.3.1 First iteration

As mentioned initially, to conduct experiments and thoroughly assess

the theory presented in [14], with a particular focus on the assump-

tions made to define the algorithm, the approach adopted involved a

direct translation of the algorithm into Simulink. In Fig: 4.3, there is a

depiction of the developed code. This strategy was chosen to facilitate

rigorous testing and validation, ensuring that the theoretical founda-

tions and algorithmic assumptions could be effectively examined in a

simulated environment.

The translation process aimed at capturing the essence of the algo-

rithm, preserving its key principles while adapting it for implementa-

tion within the Simulink framework. This methodological choice not

only facilitates a systematic exploration of the theoretical constructs

but also provides a practical avenue for verifying the algorithm’s per-

formance under various conditions.

Figure 4.3: Simulink block of the PN Guidance subsystem (first iter-
ation)

As evident from the illustration, the inputs to the block consist of

several parameters:

• The timestep δt, generated by Simulink, assumes a crucial role

for the integration process within the block, it has been computed
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according to the Fig: 4.4

• the measured velocity (V edrone) of the drone in the NED frame,

• the measured position (Xedrone) of the drone in the NED frame,

• the measured velocity (V etarget) of the drone in the NED frame,

• the measured position (Xetarget) of the drone in the NED frame.

Figure 4.4: Computation of δt

Finally, the output of the commanded velocity (Vdes) in NED frame

which will be introduced within the controller. Upon detailing the in-

puts and outputs of the block, an intricate examination of its internal

structure becomes imperative. The visual representation in the Fig:

4.5 underscores a notable complexity in the developed code, presenting

a potential challenge for a programmer unfamiliar with its intricacies.

This observation underscores an initial error in the design – the uti-

lization of an excessive number of inputs for each block. A noteworthy

discrepancy is revealed, where the number of inputs provided in a sin-

gle MATLAB Simulink block surpassed 15. This abundance of inputs

not only contributes to the overall code’s convolution but also raises

concerns regarding its accessibility and comprehensibility, particularly

for programmers who may encounter the code for the first time. This

initial misstep highlights the importance of a streamlined and trans-

parent coding structure to enhance the code’s readability and facilitate

a more straightforward understanding, ultimately contributing to the

efficiency of the overall implementation.
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Figure 4.5: Internal architecture of the PN Guidance
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The primary task at hand involved the adaptation of the initially

proposed algorithm in a two-dimensional (2D) context for ballistic

missiles to a three-dimensional (3D) framework. According to [6],

the prescribed course of action was to systematically partition the 2D

problem into three distinct 2D sub-problems, each corresponding to

a specific plane in the xyz coordinate system—namely, the Sxy, Sxz,

and Syz planes (Fig: 4.6).

Figure 4.6: 3D problem
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Figure 4.7: The projections of drone’s M and target’s T relative mo-
tion onto 3 planes, reprinted from [7]

From a mathematical perspective, the algorithm becomes as follows.

Maintaining the notation seen in [14], the relative distance RTM be-

tween interceptor and target becomes:

RTM =
√
R2
TMX +R2

TMY +R2
TMZ (4.31)

The calculation of relative distances in each direction is feasible:

RTMX = RTX −RMX (4.32)

RTMY = RTY −RMY (4.33)

RTMZ = RTZ −RMZ (4.34)

The LOS angles are:
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λXY = atan
RTMY

RTMX
(4.35)

λXZ = atan
RTMZ

RTMX
(4.36)

λY Z = atan
RTMZ

RTMY
(4.37)

Target velocity vector projections onto Sxy, Sxz, and Syz planes are:

VTMX = VTX − VMX (4.38)

VTMY = VTY − VMY (4.39)

VTMZ = VTZ − VMZ (4.40)

The LOS rate projections onto each plane are:

˙λXY =
RTMXVTMY −RTMY VTMX

R2
TM

(4.41)

˙λXZ =
RTMXVTMZ −RTMZVTMX

R2
TM

(4.42)

˙λY Z =
RTMY VTMZ −RTMZVTMY

R2
TM

(4.43)

The closing velocity Vc:

VCXY = − ˙RTMXY =
RTMXVTMX +RTMY VTMY√

R2
TMX +R2

TMY

(4.44)

VCXZ = − ˙RTMXZ =
RTMXVTMX +RTMZVTMZ√

R2
TMX +R2

TMZ

(4.45)

VCY Z = − ˙RTMY Z =
RTMY VTMY +RTMZVTMZ√

R2
TMY +R2

TMZ

(4.46)

Hence, the commanded missile accelerations onto each plane from the

PN guidance law are:
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nCXY
= N ′VCXY ˙λXY (4.47)

nCXZ
= N ′VCXZ ˙λXZ (4.48)

nCY Z
= N ′VCY Z ˙λY Z (4.49)

Missile acceleration components for x, y, and z-axis are generated by

combining two acceleration commands sharing the same axis. Fig: 4.7

suggests that the acceleration component of a particular axis interacts

with the acceleration commands of two planes. Through the applica-

tion of trigonometric functions, the unified acceleration components

of the missile along the x, y and z axes can be computed as follows

(Fig: 4.8):

aMX = aXxy
+ aXxz

= −nCXY
sin(λXY )− nCXZ

sin(λXZ) (4.50)

aMY = aYxy
+ aYyz

= nCXY
cos(λXY )− nCY Z

sin(λY Z) (4.51)

aMZ = aZxz
+ aZyz

= nCXZ
cos(λXZ) + nCY Z

cos(λY Z) (4.52)

Figure 4.8: Computation of aMX (The calculus of the other compo-
nents relies according to the formulas 4.51 and 4.52)
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After computing the respective acceleration components, the subse-

quent step involved the implementation of second-order Runge-Kutta.

The rationale behind this step is rooted in the fact that the flight con-

troller is commanded in velocity, compelling the calculation of the

velocity component associated with the given acceleration.

Following the computation of velocity, verification blocks were intro-

duced, as depicted in Fig: 4.9, to halt the simulation upon the drone

reaching the target. This condition was established by setting the

closing velocity in each of its components equal to zero. Naturally, in

numerical terms, setting Vc equal to zero is not feasible; therefore, it

was arbitrarily defined the simulation to cease when each component

of Vc became less than zero.

Figure 4.9: Stop condition for the simulation

Following the integration of the subsystem with other components of

the complete model, the subsequent phase involved the execution of

simulations to assess the algorithm’s feasibility. However, this under-

taking was accompanied by several challenges, notably a pronounced

slowness in simulations due to the code’s intricate complexity and

the substantial volume of inputs supplied to each MATLAB function

block.

The observed impediments, encompassing both the protracted simu-

lation duration and the lack of code clarity, prompted a critical eval-

uation of the existing codebase. It became apparent that the code’s

inefficiency and lack of readability hindered its utility. This realization

underscored the potential for the development of a more streamlined

and comprehensible code structure, one that would facilitate a more
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seamless comprehension for programmers approaching the code for the

first time.

4.3.2 Second iteration

Therefore, upon recognizing the aforementioned challenges within the

code, the subsequent iteration focused on the refinement of the code-

base to address these issues. Specifically, the emphasis was placed

on developing a code structure that would enhance readability for

programmers, all while ensuring a certain degree of continuity and

resemblance to the initially proposed code outlined in the previous

section.

Figure 4.10: Simulink block of the PN Guidance subsystem (second
iteration)

In Fig: 4.10 is possible to appreciate that the inputs and outputs of

the proposed code are the same.

Within this block, the Simulink code developed can be observed in

Fig: 4.11, exhibiting a notable enhancement in conciseness and com-

prehensibility for the reader. The Simulink implementation, by de-

sign, embodies a more streamlined structure that facilitates a clearer

understanding of its intricacies.
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As mentioned earlier, the computations performed meticulously ad-

here to the previously articulated theoretical framework. Indeed, Fig:

4.12 elucidates the dedicated block responsible for the computation of

Line-of-Sight (LOS) within their respective planes Sxy, Sxz, and Syz.

The visual representation in Fig: 4.12 serves as a testament to the

rigorous alignment of the executed calculations with the established

theoretical principles outlined earlier.

Figure 4.12: Simulink blocks employed for the LOS calculation (second
iteration)

The closing velocity and LOS rate Simulink blocks Fig: 4.13; it can be

observed that the fourth output of the ”Closing velocity calculation”

block also yields the total closing velocity Vc:

VC =
√
V 2
CXY + V 2

CXZ + V 2
CY Z (4.53)

which serves as a termination criterion for the simulation upon reach-

ing negative values, as articulated in the initial iteration.
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Figure 4.13: Simulink block employed for the λ̇ and Vc calculation
(second iteration)

The subsequent step involved the computation of the respective com-

manded acceleration components nCXY
, nCXZY

and nCY Z
, as specified

in formulas 4.47, 4.48, and 4.49. Subsequently, these components were

decomposed and aggregated along the corresponding x, y, and z (ac-

cording to 4.50, 4.51, and 4.52) axes within the NED frame Fig: 4.14.
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Figure 4.14: Portion of the Simulink code employed for the respective
acceleration along the x, y and z directions in NED (second iteration)

The next phase of the process closely resembles the initial iteration,

but with a distinct optimization approach. Specifically, efforts were

made to streamline and improve the efficiency of the code by reducing

the number of integration blocks. Instead of utilizing a second-order

Runge-Kutta method, a more computationally efficient yet effective

numerical integration method, namely the Euler method, was imple-

mented, as depicted in the accompanying Fig: 4.15.
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Figure 4.15: Implementation of the Euler integration method (second
iteration)

4.3.3 Third iteration

Figure 4.16: Simulink block of the PN Guidance subsystem (third
iteration)

In this instance, an alternative approach was chosen, drawing inspi-

ration from the architecture outlined in reference [9]. Grounded in a

linearized problem, this architecture ensures a more streamlined and

comprehensible framework. The subsystem illustrated in the figure

corresponds to the Sxy, plane (those relevant to the Sxz, and Syz planes

remain identical, with the only distinction being the components em-
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ployed). In this context, the subsystem takes as inputs, alongside

the previously mentioned parameters—drone position, target position,

and drone velocity—the drone’s acceleration in NED axes Abe, the in-

ertial acceleration of the target Abet, time t, and time step δt.

As evident from Fig: 4.17,

the architecture now exhibits a more streamlined and straightforward

design. Additionally, the underlying algorithm has undergone a no-

table transformation. In this instance, a PN guidance law is employed,

grounded in the concept of time-to-go tgo. The total flight time of the

engagement tF has been arbitrarily set to 10 seconds.

tgo = tF − t (4.54)

This concept has proven crucial in determining the respective gains,

namely Kv, Kr, which represent the gains associated with relative ve-

locity and relative position, respectively (calculated following the table

in Fig: 4.29). These gains are subsequently multiplied by their re-

spective x and ẋ values (relative distance and relative velocity), these

values have been computed through a double integration of the ac-

celeration difference between target and drone, this information has

been calculated within the MATLAB function block labeled ”ACCEL-

ERATION MAGNITUDE DIFFERENCE” in Fig: 4.18. Within this

block, the inputs consist of the corresponding inertial axis accelera-

tions Abe and Abet.

Upon the calculation of the commanded acceleration, the subsequent

step involves determining the Line-of-Sight and applying the Euler

method (Fig: 4.19), as previously discussed in the preceding section.
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Figure 4.18: Simulink block employed for the δa in terms of magnitude
(third iteration)

Figure 4.19: MATLAB function blocks employed for the calculation of
the LOS and the subsequent integration through Euler method (third
iteration)
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4.4 Review of the original assumptions

Before introducing the final version of the Proportional Navigation

(PN) algorithm, it is necessary to engage in a discussion regarding the

assumptions proposed in the original algorithm. Indeed, with a more

refined eye, one can identify the assumptions made. This contem-

plation arises from the observation that the codes presented earlier,

once executed, yielded perplexing results and were entirely incapable

of reaching the target, let alone intercepting it. Initially, the pre-

sumption was that the issue lay in an incorrect implementation of the

algorithm. However, upon a thorough review of the theory, it became

apparent that the assumptions made by the original missile algorithm

were not pertinent to the specific scenario for which the guidance sub-

system for drones was being developed. This realization prompted a

critical examination of the foundational assumptions, which, when in-

congruent with the characteristics of drone guidance, posed significant

challenges to achieving the intended objectives. Therefore, a nuanced

consideration of these assumptions became imperative for the refine-

ment of the guidance algorithms tailored for drone applications.

The assumptions made are indeed suitable for an interceptor missile;

however, they do not hold for a drone.

The identified assumptions include the premise that the missile can-

not have zero velocity—a reasonable assertion for intercepting missiles

powered by solid propellants. Once initiated, such missiles cannot

come to a halt; their sole objective is to impact the target. Moreover,

the assumption stipulating that the interceptor must possess superior

performance in terms of velocity magnitude and propulsive thrust is

closely linked to the third and most robust assumption. This third

assumption asserts that the commanded acceleration, denoted as nc,

does not aim to alter the missile’s velocity magnitude, a parameter

predetermined by the thrust profile and the propellant regression rate.

Instead, its sole purpose is to induce a change in the missile’s trajec-

tory, positioning it for an impact scenario commonly referred to as the

collision triangle (Fig: 4.20).
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Figure 4.20: Collision triangle representation [4]

To underscore the inadequacy of this assumption, an example is pre-

sented—one that reveals a singularity rendering interception impossi-

ble for the drone. This underscores the critical need to reassess and

refine these assumptions for the development of a guidance subsystem

tailored explicitly for drone applications.

The guided missile’s control system, as illustrated in Fig: 4.1, man-

dates that the commanded acceleration is consistently perpendicular

to the relative distance between the missile and the target. In the

specific scenario of an interceptor drone and target, consider a hypo-

thetical condition where the target is positioned at a relative distance

with a non-zero component solely along the x-direction RTMX (with

RTMY and RTMZ components being zero). Furthermore, assume that

both entities share identical magnitudes of velocity along the x direc-

tion (both velocities along the y and z directions are null), resulting in

a relative velocity VTMX of zero. In such a case, the acceleration vec-

tor nc would indeed be perpendicular to the relative distance, as per

theoretical expectations. However, it would also be perpendicular to

the velocity vector, failing to ensure any increase in the velocity mag-

nitude. This contradicts the intended functionality of the guidance
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algorithm, which should ideally facilitate such velocity increments in

this particular scenario.

Given this analysis, it becomes imperative to reformulate the algo-

rithm to address this specific challenge in the interceptor-drone and

target scenario. The algorithm must be adapted to ensure align-

ment with the unique dynamics and requirements of this particular

situation. This necessitates a nuanced revision of the guidance algo-

rithm, optimizing it specifically to the interception conditions involv-

ing drones and targets.

Consequently, the algorithm’s realignment is crucial for achieving the

desired outcomes and enhancing the overall effectiveness of the guid-

ance system in scenarios characterized by varying relative distances

and velocities.
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4.5 PN controller

Following the comprehensive examination of the assumptions embed-

ded in the original algorithm, the next phase entails the practical

implementation of the code, considering the previously elucidated as-

sumptions. Throughout the code development process, a concerted

effort has been made to closely align theoretical principles with prac-

tical considerations, ensuring that modifications to the original algo-

rithm are judicious and essential. Striking a balance between theoret-

ical foundation and real-world applicability, the code has been refined

with precision, adhering strictly to what is indispensably necessary.

It is noteworthy that certain assumptions, pivotal in rendering the ini-

tial iterations ineffective, had to be selectively disregarded. However,

this deliberate omission was confined to aspects directly influencing

the efficacy of the algorithm, leaving the section concerning the defi-

nition of relevant gains untouched. This strategic decision stems from

the recognition of the significance of maintaining continuity in certain

foundational elements, such as gain definitions, while adapting others

to enhance the algorithm’s operational effectiveness.

Below in Fig: 4.21, the Proportional Navigation subsystem is visually

depicted. The inputs showcased in the illustration encompass the

respective positions of the target along the North-East-Down (NED)

axes, the drone’s position in inertial axes, and the inertial acceleration

of the target.

In Fig: 4.22, the internal structure is presented, characterized by its

streamlined and easily comprehensible design. Each directional com-

ponent necessitates a dedicated channel within the algorithm, under-

scoring its ability to independently manage commands along the x,

y, and z directions. This meticulous allocation of channels ensures a

modular and efficient organization, allowing for the nuanced control

of each axis without undue complexity.

Taking the x-component as an illustrative sample, identical in internal

structure to the others, as depicted in Fig: 4.23, the development of

this code drew inspiration from Source [9].
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Figure 4.21: Simulink block of the PN Guidance subsystem
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Figure 4.22: Internal architecture of the PN Guidance subsystem

Before delving into the intricacies of the code development, it is per-

tinent to briefly elucidate the role of Time-to-Go (tgo), as it proves

to be a fundamental element in the algorithms devised. A succinct
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understanding of tgo, as expounded in (4.54), is pivotal for compre-

hending the developed algorithms. tgo’s definition, as derived from the

definition of the total flight time of the engagement (tF ), hinges on the

time required to intercept the target without necessitating additional

maneuvers.

In accordance with [9], tgo has to be estimated separately. The initial

assumption guiding this endeavor was to define tgo as t, a choice con-

sistent with the dynamics of the considered gains. Additionally, this

assumption aligns logically with the simulation’s initial stages, where

one can reasonably anticipate high gains that gradually diminish as

the drone approaches the target. This logic stems from the fact that

the gains, namely Kr and Kv, are functions of
1
t2go

and 1
tgo

respectively

(according to Fig: 4.29), reflecting a natural reduction in their values

as the intercepting drone draws closer to the target.

Another crucial aspect is the strategic approach taken to circumvent

singularities that may arise during the computation of gains. This

challenge becomes particularly pronounced when the gains are func-

tions involving 1
tgo

and 1
tgo2

, as these expressions become undefined

when tgo equals zero, leading to computational errors. To address

this, a standardized time offset of 0.1 has been systematically intro-

duced across simulations for the Optimal Guidance Law (OGL), Pro-

portional Navigation (PN), and Augmanted Proportional Navigation

(APN).

Furthermore, it is imperative to note that the aforementioned assump-

tion will also be taken into account in the algorithms of Augmented

Proportional Navigation (APN) and Optimal Guidance Law (OGL).

As depicted in the figure, the initial step involves the computation

of the error between the respective acceleration components Abet and

nc. Subsequently, this delta is processed through an integrator block,

yielding the relative velocity ẋ between the target and the drone along

the x-component. It is paramount to meticulously configure the initial

conditions within this block to ensure the accuracy of the launched

simulations.

Simultaneously, in conjunction with this branch, the calculation of
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Figure 4.23: Simulink internal architecture of the x-component PN
Guidance subsystem

relative position x unfolds. These computed values are then multiplied

by their respective gains for relative velocity and relative position.

• Kr, the position-relative gain,

Kr =
N ′

t2go
(4.55)

• Kv, the velocity-relative gain,

Kv =
N ′

tgo
(4.56)

Where, the Effective Navigation Ratio N ′ has been set equal to 3.

This interconnected process underscores the intricate dynamics in-

volved in the algorithm, where the precise determination of initial

conditions plays a pivotal role in ensuring the fidelity and reliability

of simulations.

Subsequently, the respective components are aggregated to derive the

commanded acceleration nc.

nc =
N ′

t2go
(x+ ẋtgo) (4.57)

As a judicious measure, a saturator has been arbitrarily configured

with saturation limits set at 2G and -2G. This deliberate choice aims
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to align the algorithm with the realistic operational capabilities of the

drone in which the guidance code is intended to be deployed. By

imposing these constraints, the algorithm is tailored to adhere closely

to the physical constraints of the specific drone system.

The integration of acceleration is meticulously executed, with due con-

sideration to the initial conditions. This integration process yields the

desired velocity component along the x-axis (Vdesx), a pivotal param-

eter within the broader guidance framework. Notably, this computed

velocity component is then transmitted directly to the controller, signi-

fying a seamless integration of the algorithmic outputs into the control

architecture.

Externally to the considered subsystem, a termination block has been

incorporated to govern the simulation cessation (Fig: 4.24). In initial

iterations, the stopping condition was embedded within the guidance

subsystem, dictating simulation halt when the closing velocity’s mod-

ulus fell below 0. However, in the current configuration, this condition

is external, predicated simply on the relative distance between the tar-

get and the drone. The simulation halts once the distance becomes

as an arbitrarily set threshold. The decision to set the threshold at

1 [m] is arbitrary, chosen to represent a distance at which the drone,

armed with an explosive charge, is capable of effectively neutralizing

the pursued target.

This modification in the stopping condition’s placement external to

the guidance subsystem reflects an intentional shift in strategy. It

introduces a more generalized criterion for simulation termination, fo-

cusing on the overarching goal of achieving a specific relative distance

rather than the intricacies of closing velocity. The threshold, though

arbitrary, aligns with practical considerations, emphasizing the drone’s

capability to engage and neutralize the target within the defined spa-

tial proximity. This strategic refinement enhances the versatility and

applicability of the simulation, catering to a broader spectrum of in-

terception scenarios.

In summary, as evident from both the illustrative figure and the afore-

mentioned explanation, the segment concerning the decomposition of
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Figure 4.24: Simulink block delved to halt the simulation once the
target is reached

the commanded acceleration (nc) through a dedicated block for LOS

calculation, followed by subsequent projection along the x, y, and z

axes into their respective components, is notably absent. This ab-

sence arises from the direct utilization of acceleration and position

components at the outset of the code. Importantly, it assumes that

the commanded acceleration is not constrained to be perpendicular to

the relative distance. Instead, it can assume any direction depending

on the operational scenario in which the drone is deployed. Therefore,

the commanded acceleration (nc) serves not only to alter the direction

of velocity but also the magnitude of the velocity itself.

This strategic departure from the conventional assumption of perpen-

dicularity broadens the applicability of the algorithm, allowing it to

adapt to diverse operational contexts where the directional influence

of the commanded acceleration extends beyond a strict perpendicular

orientation. This nuanced consideration of the acceleration’s role in-

troduces a versatile element to the algorithm, providing the flexibility

needed to navigate varied scenarios effectively.
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Furthermore, it is crucial to emphasize that this code does not pre-

suppose a constant drone velocity strictly greater than zero. This ac-

knowledgment of diverse velocity scenarios aligns the algorithm with

the practical realities of drone operations, where velocity conditions

may vary dynamically. Additionally, the intricate integration pro-

cesses involving Euler’s method or second-order Runge-Kutta have

been supplanted by a simplified integrator, reinforcing the algorithm’s

computational efficiency without compromising accuracy or reliabil-

ity. This streamlined approach contributes to the algorithm’s agility

and adaptability in addressing the complexities inherent in diverse

operational environments.

4.6 APN Guidance Law

The Augmented Proportional Navigation Guidance Law is deduced

from the linearized PN algorithm, in fact the line-of-sight λ is defined

as:

λ =
y

RTM
=

y

Vc(tF − t)
(4.58)

We can find the line-of-sight rate by taking the derivative of the pre-

ceding expression,

λ̇ =
y + ẏtgo
Vct2go

(4.59)

Therefore, it is possible to highlight the expression of the commanded

acceleration

nc = N ′Vcλ̇ = N ′y + ẏtgo
t2go

(4.60)

The content within the parentheses of the preceding equation denotes

the anticipated separation between the missile and the target in future

instances. In simpler terms, this expression, enclosed in parentheses,

quantifies the miss distance that would ensue if the missile were to
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refrain from further corrective acceleration and the target abstained

from maneuvering. This expression is commonly referred to as the

zero effort miss ZEM . Consequently, Proportional Navigation can

be conceptualized as a guidance law wherein acceleration commands

are inversely proportional to the square of the time remaining until

intercept and directly proportional to the zero effort miss.

In the event of target maneuvers, the zero effort miss necessitates aug-

mentation by an additional term. The updated equation for the zero

effort miss, accounting for a constant target maneuver, is succinctly

expressed as follows:

ZEM = y + ẏtgo + 0.5nT t
2
go (4.61)

where nT is the target maneuver acceleration. Then, the nc formula

is displayed:

nc =
N ′ZEM

t2go
= N ′Vcλ̇+ 0.5N ′nT (4.62)

It is possible to appreciate that the augmented proportional naviga-

tion, is basically a proportional navigation law with an extra term to

account for the maneuvering target (Fig: 4.25).

Figure 4.25: Augmented proportional navigation block architecture
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4.7 APN Controller

In the course of developing the Augmented Proportional Navigation

(APN) controller, a deliberate decision was made to adhere to the

same conceptual framework expounded upon during the elucidation

of the final model crafted for the Proportional Navigation (PN) con-

troller. In parallel fashion, the assumptions delineated in the earlier

discussion—those for instance, concerning the requisite perpendicu-

lar orientation of the commanded acceleration concerning the target-

drone vector—were intentionally set aside. Instead, the focus shifted

towards the novel assumptions introduced in the dedicated section.

Figure 4.26: Simulink block of the APN Guidance subsystem

So, building upon the insights derived from the preceding section on

PN controller development, the evolution of APN in Fig: 4.26 and

Fig: 4.27 adheres to the same conceptual framework articulated ear-

lier. In essence, the assumptions inherent in the PN subsystem form

the foundational basis for the APN subsystem (as explained in the

specific paragraph). Consequently, the key distinction between a PN

subsystem and an APN subsystem lies in the singular utilization of

the target’s acceleration nT in the computation of commanded accel-

eration nc (Fig: 4.28):
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Figure 4.27: Simulink architecture of the APN Guidance subsystem

nc =
N ′

t2go
(x+ ẋtgo + 0.5nT t

2
go) (4.63)

Where, considering an Effective Navigation Ratio N ′ equal to 3, the

computed gains are:

• Kr, the position-relative gain,

Kr =
N ′

t2go
(4.64)

• Kv, the velocity-relative gain,

Kv =
N ′

tgo
(4.65)
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• Kat, the acceleration gain for the target,

Kat =
N ′

2
(4.66)
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Figure 4.28: Simulink internal architecture of the x-component APN
Guidance subsystem

By extending the principles established in PN, the augmentation in

APN lies in the enhanced consideration of target dynamics. The in-

corporation of the target’s acceleration as a pivotal parameter infuses

an additional layer of sophistication into the guidance algorithm. This

augmentation acknowledges and capitalizes on the evolving dynamics

of the target, allowing the guidance system to dynamically adapt its

response in light of the target’s acceleration profile.

It is imperative to underscore that the fundamental assumptions, gov-

erning principles, and mathematical foundations set forth in the PN

paradigm remain integral to the APN framework. The continuity in

approach ensures a seamless transition from one subsystem to the

other, facilitating a coherent and unified guidance strategy. The de-

liberate choice to augment the guidance algorithm with the target’s

acceleration introduces a nuanced responsiveness that aligns with the

intricacies of dynamic target scenarios.

In essence, the development of the APN subsystem is an evolution-

ary step forward, leveraging the established principles of PN while
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strategically incorporating the target’s acceleration to enhance the al-

gorithm’s adaptability and efficacy. This nuanced integration under-

scores a methodical approach to guidance algorithm evolution, wherein

each augmentation is rooted in a meticulous understanding of the un-

derlying dynamics and operational exigencies.

4.8 Optimal Guidance Law

In the following section, an algorithm is expounded upon, showcas-

ing a method to intercept targets with even greater efficiency through

the deployment of missiles. The algorithm, meticulously detailed, ac-

counts for the inherent lag resulting from the dynamics of the system, a

factor that significantly influences the actual acceleration implemented

in practice.

The utilization of target acceleration information has proven to be

instrumental in the derivation of a guidance law aimed at mitigating

missile acceleration requirements. It has been established that miss

distance is intricately linked to guidance system lags, with larger guid-

ance system time constants (T ) generally corresponding to augmented

miss distances. This correlation, although subject to certain parasitic

effects and specific types of noise disturbances, underscores the criti-

cal role of minimizing guidance system lags for enhanced interception

efficiency.

According to this, a more pragmatic assumption is introduced, where

the missile is considered to respond to an acceleration command through

a first-order lag transfer function [9].

nM
nc

=
1

Ts+ 1
(4.67)

where nM is the effective missile acceleration. Consequently, the allu-

sion to a non-ideal missile response is established. The time constant,

denoted as T , serves as a composite (roll-up) function derived from

the missile’s response under a particular flight condition. It predom-

inantly relies on the aerodynamic characteristics of the missile and
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the design of its flight control system. Before commencing the LQ

optimization problem, it is necessary to define the state vector x:

x⃗ =


y

ẏ

nT
nM

 (4.68)

The input vector has been defined as:

u⃗ = nM (4.69)

So, once the input and state vector have been defined, it is possible

to set the LQ optimization problem, by defining the cost function J

which must be minimized in order to achieve the final goal (y(tF ) = 0

subject to minimizing (
∫ tF
t0
u2 dt)).

minJ(x⃗0(t0), u⃗0(t0), x0) = 0.5∥x⃗(tF )∥2 + 0.5

∫ tF

t0

u(t)2 dt (4.70)

The derivative of the state vector x⃗ is as following:

⃗̇x = Ax⃗+Bu⃗ (4.71)

˙⃗x =


0 1 0 0

0 0 1 −1

0 0 0 0

0 0 0 − 1
T

 x⃗+

0

0

0
1
T

 u⃗ (4.72)

In this context, in adherence to [9], a terminal velocity penalty is omit-

ted to streamline the overall complexity of the guidance law. This

choice results in the formation of the terminal penalty matrix denoted

as QF = diag[b, 0, 0, 0]. However, the role of this matrix will be eluci-

dated later in the following paragraph, where an in-depth analysis of

the function of this parameter, denoted as b, will be undertaken. This

exploration aims to provide a comprehensive understanding of the ma-
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trix’s significance within the broader context of the discussed subject

matter. However, before obtaining the generalized optimal guidance

law, it is possible to appreciate that in the case of zero lag between

the commanded and effective missile acceleration (nc = nM ), the op-

timal guidance law becomes exactly as the APN law with a value of

the navigation constant N ′ = 3.

ZEMOPT = y + ẏtgo + 0.5nT t
2
go − T 2(

tgo
T

+ e
−tgo
T − 1)nM (4.73)

Which is:

ZEMOPT = ZEMAPN − T 2(
tgo
T

+ e
−tgo
T − 1)nM (4.74)

Instead, in the context of a Non-Ideal Missile Response Assumption,

the generalized optimal guidance law is time-varying:

nc =
N ′

t2go
(y + ẏtgo + 0.5nT t

2
go − T 2(z + e−z − 1)nM ) (4.75)

N ′ =
6z2(e−z − 1 + z)

2z3 + 3 + 6z − 6z2 − 12ze−z − 3e−2z
(4.76)

Where z =
tgo
T .

Hereafter on the left, a summarizing diagram is presented, illustrat-

ing the implementation of the various architectures explained thus

far in a conventional block diagram. On the right, a summary table

is provided, encompassing all the gains associated with the different

guidance laws.
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Figure 4.29: The feedback structure of the PN, APN, and OGL guid-
ance laws.
The varying complexity of these guidance laws becomes evident as ad-
ditional assumptions are introduced concerning engagement and mis-
sile response characteristics. The diagram underscores the notable
escalation in complexity when transitioning from ideal to non-ideal
interceptor response assumptions.

4.9 OGL Controller

The formulation of code based on the Optimal Guidance Law (OGL)

has presented a considerable degree of difficulty. This complexity has

been notably pronounced in discerning the specific roles of various

parameters and their subsequent impact on the drone’s behavior post-

implementation.

To commence our exploration, Fig: 4.30 visually encapsulates the cod-

ing block, delineating the inputs and outputs. Strikingly, these param-

eters closely echo those observed in preceding guidance subsystems.

However, navigating through the intricacies of the OGL algorithm de-

manded a nuanced understanding of the unique parameters and their

intricate relationships.

Here in Fig: 4.31, an implementation of the Optimal Guidance Law

algorithm is observed for each axis - x, y, and z. The assumptions

previously articulated remain pertinent to the development of this

code.
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Figure 4.30: Simulink block of the OGL subsystem

In this context, the algorithm is instantiated separately for each axis,

addressing the distinctive dynamics associated with motion along x,

y, and z. This tailored approach acknowledges the unique character-

istics and requirements of each spatial dimension, contributing to a

more precise and effective application of the OGL algorithm within

the multidimensional framework.

During the implementation, a concerted effort has been made to ad-

here closely to the theoretical framework outlined in [9]. Fig: 4.32

illustrates the proposed internal architecture, focusing exclusively on

the x-component, as the other components mirror the one depicted.

Commencing from the top, the inertial acceleration input Abet from the

target is considered, specifically focusing on the x-component within

the relevant block.

Subsequently, the error is computed between the x-component of the

target’s inertial acceleration and the actual acceleration of the drone

nd. The latter takes into account the dynamic response times of the

drone, recognizing that the commanded acceleration nc will not be

instantaneously executed but will rather be subject to a certain delay

(as showed in 4.77).
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Figure 4.31: Internal architecture of the OGL subsystem

nd
nc

=
1

Ts+ 1
(4.77)

This delay is represented by the constant T , arbitrarily set at 0.01.

This value appears acceptable, given the assumed context of a highly

responsive drone, poised to operate with targets capable of executing

potentially abrupt maneuvers.

It is noteworthy that the temporal dynamics inherent in the drone’s

response are critical considerations in the formulation of the control

strategy. The introduction of the delay constant T accounts for the

realistic dynamics of the drone’s actuation, contributing to a more ac-

curate representation of the control system’s behavior. This temporal

aspect becomes particularly significant in scenarios where the drone

needs to respond promptly to dynamic changes in the target’s motion.

Following the computation of the error, it undergoes integration through
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Figure 4.32: Internal architecture of the x-component OGL subsystem

an integrator, facilitating the derivation of the relative velocity ẋ be-

tween the target and the drone. In conjunction with this branch, an

additional Simulink branch takes input from the positions of the tar-

get and drone in the NED frame. Within this subsystem, the error

between the two positions is calculated, resulting in the determination

of the relative position x.

Figure 4.33: MATLAB function block employed in the calculation of
the Effective Navigation Ratio

Meanwhile, the computation of the Effective Navigation Ratio N ′ co-

efficient takes place within a dedicated MATLAB Simulink block (Fig:
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4.33), as evident from Formula (4.78),

N ′ =
6z2(e−z − 1 + z)

2z3 + 3 + 6z − 6z2 − 12ze−z − 3e−2z + 6
bT 3

(4.78)

z =
tgo
T

(4.79)

revealing its clear dependence on time. When the original Opti-

mal Guidance Law (OGL) for missile guidance was expounded upon

in the dedicated chapter, the formula for calculating the navigation

coefficient featured a parameter b belonging to the penalty matrix

QF = diag[b; 0; 0; 0].

According to Source [9], this parameter was made to tend towards

infinity in order to achieve, in theory, the definitive OGL, which is:

N ′ =
6z2(e−z − 1 + z)

2z3 + 3 + 6z − 6z2 − 12ze−z − 3e−2z
(4.80)

Consequently, in the initial iteration of this algorithm, the parame-

ter b was set to tend towards infinity to align with the theoretical

underpinnings.

However, the role of this parameter will be thoroughly examined in a

subsequent paragraph, specifically underscoring its significance during

the optimization process of the pertinent guidance subsystem. This

nuanced exploration will shed light on the theoretical motivations be-

hind the initial infinity tendency of b and, in turn, elucidate its prac-

tical implications for the optimization dynamics.

Subsequent to the determination of the effective navigation ratio, the

calculation of gains is computed as follows:

• Kat, the acceleration gain for the target,

Kat =
N ′

2
(4.81)
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• Kr, the position-relative gain,

Kr =
N ′

t2go
(4.82)

• Kv, the velocity-relative gain,

Kv =
N ′

tgo
(4.83)

• Kam, the acceleration gain for the actual drone motion,

Kam =
N ′T 2

t2go
(
tgo
T

+ e−
tgo
T − 1) (4.84)

Once these gains have been computed, the desired commanded accel-

eration is:

nc =
6z2(e−z − 1 + z)

t2go

(x+ ẋtgo + 0.5nT t
2
go − T 2(z + e−z − 1)nd)

(2z3 + 3 + 6z − 6z2 − 12ze−z − 3e−2z) + 6
bT 3

(4.85)

z =
tgo
T

(4.86)

In the provided context, x represents the relative distance between the

target and the drone along the x direction, ẋ denotes the relative ve-

locity, nT signifies the acceleration of the target, and nd characterizes

the actual acceleration of the drone.

It is noteworthy that the formula expressing the commanded acceler-

ation is presented in its generalized form, wherein the parameter b is

explicitly featured. It is important to recall that, in the initial itera-

tions, the parameter b was initially considered to tend towards infinity,

aligning with the theoretical proposition outlined in reference [9].

Upon the computation of the commanded acceleration, a saturator was

introduced with an upper limit set at 2G and a lower limit set at -2G.

Subsequently, this acceleration was integrated to derive the desired
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velocity component along the x-axis Vdesx, which is then forwarded to

the controller.

4.9.1 Optimization

As mentioned previously, the initial approach was guided by the prin-

ciples outlined in [9], which advocates for the parameter b within the

penalty matrix QF to tend towards infinity. Consequently, simula-

tions were initiated with the theoretical optimal value of the effective

navigation ratio N ′ (4.80). Upon launching the simulation, it became

apparent that the drone successfully reached the target. This assess-

ment was conducted through a comprehensive visualization process,

involving plots of the x, y, and z components of both the target and

the drone. Each component was displayed in a separate scope (Fig:

4.34), enabling a clear assessment not only of the target’s attainment

but also of the drone’s trajectory.

Figure 4.34: Scope blocks to visualize each position component (x, y,
z) of the target in comparison to the drone’s position

Upon scrutiny, it was observed that, considering the parameter b tend-
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ing towards infinity, the x and y components performed commendably,

efficiently reaching the target as showed in Fig: 4.35.

Figure 4.35: Plot illustrating the fixed x and y-components of the
target at 10 [m], contrasted with the drone’s position

However, an intriguing observation surfaced with the z component.

While effective in achieving the target, as indicated by the fulfillment

of the task, an excessive overshoot was noted when examining the

drone’s altitude during the simulation (Fig: 4.36). This phenomenon

significantly compromised a crucial aspect—the efficiency of the algo-

rithm.
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Figure 4.36: Plot illustrating the fixed z-component of the target at
an altitude of 10 [m], contrasted with the drone’s position and the
corresponding time needed to reach the target

The efficiency of the algorithm is integral to meeting specific require-

ments, particularly the imperative to reach the target in the shortest

possible time. The observed overshoot phenomenon undeniably ex-

tended interception times, contravening the objective of minimizing

the time required for target acquisition.

This realization prompted a reassessment of the initial inclination to-

wards an infinite value for b, as the harmful impact on efficiency be-

came apparent.

In the subsequent phases of simulation iterations, an exhaustive explo-

ration of diverse values for the parameter b was undertaken through
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a meticulous trial-and-error procedure. This iterative tuning process

aimed to strike a delicate equilibrium, rectifying the overshooting is-

sue while remaining closely aligned with theoretical principles. Within

this ongoing refinement, the final selected value for b settled at 0.1.

The determination of this specific value represented a conscientious

choice, informed by a dual objective. On one hand, the value of 0.1

was sufficiently diminutive to notably curtail overshooting tendencies,

addressing a critical concern identified in prior simulations. On the

other hand, it was imperative to ensure that the chosen value did not

excessively compromise the time required to reach the target, thus

safeguarding the algorithm’s overall efficiency.

Hereafter is presented the plot in Fig: 4.37 depicting the positional re-

lationship between the target and the drone in the ultimate iteration of

the algorithm, following the optimization process. As discernible, the

time required to reach the target has been notably reduced, and there

is an absence of overshooting, indicative of the enhanced performance

achieved through the optimization endeavors.

The final rendition of the algorithm stands as a testament to the iter-

ative refinement process, where meticulous adjustments, particularly

concerning the parameter b and associated gains, have yielded a more

expedient and precise trajectory tracking. The visual representation of

the target-drone positions showcases a harmonized convergence with-

out the lingering oscillations seen in earlier versions.
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Figure 4.37: Plot illustrating the fixed z-component of the target at
an altitude of 10 [m], contrasted with the drone’s position and the
corresponding time needed to reach the target (after the optimization)
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4.10 PID Guidance Controller

Ultimately, there was a deliberate endeavor to develop a guidance code

from scratch, indicating the initiation of the coding process without re-

liance on external sources. The objective was to conceive a functional

and efficient code, entirely conceived without recourse to existing ref-

erences or frameworks and to compare the relative results associated

with the corresponding of the PN, APN and OGL guidance controllers.

The employed strategy relies on a Proportional-Integral-Derivative

(PID) control strategy. Essentially, the fundamental concept is de-

rived from the interception nature of the drone, aiming to strike a

target with arbitrary initial conditions. It is logical, therefore, to uti-

lize the respective positions of the target and the interceptor drone as

input data. Consequently, whenever there exists a relative distance

between the drone and the target, the controller will not receive null

commands.

Figure 4.38: Simulink block of the PID Guidance subsystem

As evident from the Fig: 4.38, the output aligns with the anticipated

outcome, namely the desired velocity Vdes. The internal architecture

in Fig: 4.39 is notably straightforward and streamlined. Following

the decomposition of the position vectors for both the target and
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the drone, the subsequent step involves computing the relative error,

which is then fed directly into the PID controller in order to obtain

the desired velocity.

1
V_des

1
Xe_target

2
Xe_drone

+−

+−

+−

PID(s)

PID	y

PID(s)

PID	x

PID(s)

PID	z

Figure 4.39: Internal architecture of the PID Guidance subsystem

4.10.1 Tuning

The optimization of the PID guidance subsystem necessitated a metic-

ulous tuning process, wherein all the Proportional-Integral-Derivative

gains were manually adjusted through a trial-and-error procedure.

This tuning endeavor is imperative to ensure the effectiveness and

stability of the guidance system. The fine-tuning of these gains in-

volves striking a delicate balance to achieve optimal performance in

response to variations and disturbances while maintaining the sys-

tem’s robustness. A judicious selection of PID gains is paramount

in minimizing overshooting, reducing settling time, and enhancing the

overall responsiveness of the guidance subsystem. The tuning process,

grounded in a rigorous analytical approach, contributes to the preci-

sion and reliability of the guidance algorithm, aligning the system with

the desired specifications and operational requirements. Furthermore,

this calibration endeavor is undertaken in accordance with established

principles of control theory, emphasizing the significance of achieving

an optimal trade-off between responsiveness and stability within the

85



PID guidance subsystem.

Here is a list with the obtained coefficient values:

• X-channel: Kpx = 2, Kix = 0.1, Kdx = 1.5. Nx = 60,

• Y-channel: Kpy = 1.5, Kiy = 0.1, Kdy = 1.5, Ny = 60,

• Z-channel: Kpz = 0.9, Kiz = 0.1, Kdz = 1.2, Nz = 60.
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Chapter 5

Results

The present chapter delves into the outcomes derived from an ex-

tensive series of simulations conducted to rigorously assess the effi-

cacy of the developed guidance algorithms. The algorithms under

scrutiny encompass Proportional Navigation (PN), Augmented Pro-

portional Navigation (APN), Optimal Guidance Law (OGL), and PID

Guidance. The simulations encompass diverse scenarios, namely in-

tercepting a static target, pursuing a moving target, and a meticulous

comparative analysis of their respective performances. This empir-

ical exploration endeavors to objectively examine and quantify the

algorithms’ capabilities across varied operational conditions. The en-

suing sections will elucidate the nuanced dynamics revealed in the

simulations, providing a comprehensive insight into the comparative

effectiveness and adaptability of the distinct guidance algorithms in

addressing different target interception scenarios.

Before specifying the different results in these several scenarios for

both the target and the drone, meticulous attention was devoted to

defining the initial conditions for the North-East-Down (NED) ref-

erence system. It is noteworthy that these NED reference system

parameters remain consistent across all simulations for various guid-

ance subsystems. Thus, the parameters of latitude, longitude, and

altitude for the origin were meticulously specified as follows: Latref =

44.200626, Lonref = 12.063822, href = 0.
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5.1 Static target

The initial phase of testing involved simulating a scenario where the

target remains static and is positioned at a specific distance from the

interceptor drone. The objective of this test, conducted across various

guidance systems, is to assess the effectiveness of the drone in inter-

cepting a target situated at a designated distance. Additionally, the

test aims to observe the interception times, facilitating a comparative

analysis among different guidance controllers. The initial conditions

of the target were arbitrarily set, corresponding to:

• Initial velocity in NED frame, V0t = [0; 0; 0]ms ,

• Initial position in NED frame, Xe0t = [10; 20; 30]m,

• Initial attitude, Euler0t = [0; 0; 0]rad,

• Initial angular velocity, ω0t = [0; 0; 0]rads ,

The initial conditions of the drone were:

• Initial velocity in NED frame, V0 = [0; 0; 0]ms ,

• Initial position in NED frame, Xe0 = [0; 0; 0]m,

• Initial attitude, Euler0 = [0; 0; 0]rad,

• Initial angular velocity, ω0 = [0; 0; 0]rads ,

Proportional Navigation

It is imperative to underscore that, concerning the Proportional Nav-

igation (PN) algorithm, once the code was established, simulations

were conducted without undergoing any form of optimization. This

deliberate decision aimed to maintain a practical adherence to theo-

retical concepts, refraining from extensive code modifications. This

approach was not only grounded in the desire to uphold a practical

fidelity to theory but was also influenced by the limited number of

parameters available for arbitrary adjustments within the PN algo-

rithm. A notable contrast can be drawn with the Optimal Guidance

Law code, where a dedicated optimization process, as expounded in

the ”Optimization” paragraph, was undertaken, driven by the pres-

ence of discernible parameters, such as the b parameter.

A potential avenue for tuning can be identified in adjusting the Time-
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to-Go (tgo) with a more pronounced offset, specifically, 1 second. How-

ever, it is crucial to discern that establishing the initial simulation time

offset at 1 second entails a fundamentally different concept than the

offset discussed in preceding chapters. Unlike the 0.1 second offset,

which exclusively aimed to eliminate the singularity associated with

tgo = 0, setting the initial tgo to 1 second effectively employs this value

as a tuning parameter.

Simulations conducted with an initial offset of 1 second yielded note-

worthy outcomes, notably the reduction of the characteristic over-

shooting inherent in the original algorithm. This overshooting, at-

tributed to the substantial values of gains during the initial phases of

interception, is visibly decreased, as depicted in Fig: 5.1.

The discernible absence of overshooting in these simulations under-

scores the efficacy of the tuning strategy associated with the 1-second

offset. However, as emphasized earlier, a deliberate decision was made

to adhere to a standard of fidelity to the assumptions posited in pre-

ceding chapters. Consequently, despite the demonstrable reduction in

overshooting achieved with an initial tgo offset of 1 second, the chosen

approach retained the 0.1-second offset. This decision, although lead-

ing to a conspicuous overshooting effect, aligns with the commitment

to maintaining consistency with the initial premise, where the primary

intent of the 0.1-second offset was singularly focused on nullifying the

singularity at tgo = 0.

After this necessary discussion concerning the role of tgo, which ex-

tends to the Augmented Proportional Navigation and Optimal Guid-

ance Law algorithms as they are also dependent on tgo, we can proceed

to evaluate the performance of the Proportional Navigation code in

simulating the previously outlined static scenario. As depicted in Fig:

5.2, the results are highly satisfactory, with the target reached in a

relatively short time. However, as mentioned earlier and evident in

the discussed plot, there is a noticeable overshooting attributed to the

elevated values of the gains during the initial phases of interception.
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Figure 5.1: Plot illustrating the reduction of the overshooting due to
a more pronounced offset of the tgo
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Figure 5.2: Plot illustrating the response of the drone equipped with
a Proportional Navigation controller as it pursues a stationary target
located at a designated distance Xe0t, along with the associated time
required to reach the target
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Augmented Proportional Navigarion

The same considerations apply to the simulation of the model’s behav-

ior with the Augmented Proportional Navigation (APN) controller im-

plemented. In this instance, the discussions regarding tgo in the para-

graph concerning the simulation of a static target with Proportional

Navigation remain applicable. As evident from the plot (Fig: 5.3), in

this case as well, there is a notable overshooting, significantly impact-

ing the performance in terms of target interception times. Contrary

to intuition, the interception time for the Augmented Proportional

Navigation controller is identical to its Proportional Navigation coun-

terpart. The rationale behind this lies in the fact that the commanded

acceleration in the case of APN is essentially a PN commanded accel-

eration with the addition of a contribution arising from the target’s

acceleration, which, in the scenario of a static target, is zero. There-

fore, in the case of a static target, the APN controller and the PN

controller are equivalent in terms of performance.
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Figure 5.3: Plot illustrating the response of the drone equipped with
an Augmented Proportional Navigation controller as it pursues a sta-
tionary target located at a designated distance Xe0t, along with the
associated time required to reach the target
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Optimal Guidance Law

Regarding the performance analysis of the Optimal Guidance Law

(OGL) controller (Fig: 5.4), the situation is markedly different. In-

deed, while maintaining the considerations regarding tgo made earlier,

the performance of this controller surpasses those observed previously

with the first two. Through the optimization implemented, the tar-

get is reached in approximately one twelfth of the time required by

the Augmented Proportional Navigation and Proportional Navigation

controllers. Additionally, the drone’s trajectory during interception

is significantly improved, eliminating the typical overshooting that,

understandably, compromises overall performance.
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Figure 5.4: Plot illustrating the response of the drone equipped with
an Optimal Guidance Law controller as it pursues a stationary target
located at a designated distance Xe0t, along with the associated time
required to reach the target
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PID Guidance

Finally, the assessment of the performance of the guidance controller

based on a PID control strategy is conducted. As observed, the tuning

procedure employed enables the controller to efficiently intercept the

target in a relatively short time. Nevertheless, particularly concerning

the z-component, an excessive overshooting is observed. Despite the

optimization conducted, this overshooting persists, albeit significantly

reduced through the optimization procedure.
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Figure 5.5: Plot illustrating the response of the drone equipped with
an PID guidance controller as it pursues a stationary target located at
a designated distance Xe0t, along with the associated time required
to reach the target
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5.2 Moving target

Subsequently, the performance of the various guidance controllers was

tested in the case of a moving target. The results, as depicted in the

subsequent graphs, indicate the successful interception of the target,

with the simulation halting as expected when the relative distance

between the target and the drone reaches 1 meter. This distance

is deemed sufficiently minimal to ensure a secure obliteration of the

target when the interceptor drone activates the explosive charge. A

MATLAB script has been devised to generate random initial condi-

tions for the target, encompassing both position and velocity. This

approach aims to facilitate an examination of the drone’s behavior

within a wholly randomized scenario. The initial conditions specified

for the target are as follows:

• Initial velocity in NED frame, V0t = [12.8344; 5.8090; 0.1785]ms ,

• Initial position in NED frame, Xe0t = [9.4417; 12.1738; 2.5397]m,

• Initial attitude, Euler0t = [0; 0; 0]rad,

• Initial angular velocity, ω0t = [0; 0; 0]rads ,

The initial conditions of the drone were:

• Initial velocity in NED frame, V0 = [0; 0; 0]ms ,

• Initial position in NED frame, Xe0 = [0; 0; 0]m,

• Initial attitude, Euler0 = [0; 0; 0]rad,

• Initial angular velocity, ω0 = [0; 0; 0]rads ,

Proportional Navigation

As evident from the graph (Fig: 5.7), the drone efficiently intercepts

the target. It is noteworthy to observe the consistent overshooting

along the z-component of the trajectory in Fig: 5.6. It is also note-

worthy that the generated overshooting causes the drone to assume an

altitude very close to the ground or, in any case, the launch altitude,

presumably where the simulation commences. Nevertheless, no singu-

larities have been identified due to the assumption of negative altitude

values by the drone, thus rendering the simulation more faithful to re-

ality.Nevertheless, despite this phenomenon, the target is successfully
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Figure 5.6: Plot illustrating the response of the drone, equipped with
a Proportional Navigation controller, in pursuit of a moving target
along the z-component, depicting the generated overshooting

obliterated.
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Figure 5.7: Plot illustrating the response of the drone equipped with
a Proportional Navigation controller as it pursues a moving target,
along with the associated time required to reach the target
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Augmented Proportional Navigation

In the case of a drone equipped with an Augmented Proportional Nav-

igation (APN) controller, an observation revealed behavior precisely

identical to that of the Proportional Navigation case. This aligns

with expectations, as the APN controller essentially functions as a PN

controller with the additional element of target acceleration. Conse-

quently, similar to the static case, no discernible difference in efficiency

was noted between the two, as the target in this scenario was modeled

to maintain a constant velocity directly set in the initial conditions.

Figure 5.8: Plot illustrating the response of the drone equipped with a
Augmented Proportional Navigation controller as it pursues a moving
target, along with the associated time required to reach the target
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Optimal Guidance Law

As anticipated, this algorithm demonstrated superior performance,

attributed to the optimization process undertaken. The interception

time is significantly lower compared to that observed in all other algo-

rithms, achieving target interception in approximately half the time

and without experiencing overshooting.

Figure 5.9: Plot illustrating the response of the drone equipped with a
Optimal Guidance Law controller as it pursues a moving target, along
with the associated time required to reach the target
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PID Guidance

Regarding the final guidance algorithm (Fig: 5.11), the PID guidance

controller exhibited a significant improvement compared to the pro-

portional controllers (APN and PN), albeit to a lesser extent than the

OGL. This improvement stems from effective tuning, optimizing the

PID-based controller to extract the maximum performance inherent

in the PID technology. In this instance, substantial overshooting was

also observed (Fig: 5.10), albeit considerably reduced in comparison

to APN and PN controllers.

Figure 5.10: Plot illustrating the response of the drone, equipped with
a PID controller, in pursuit of a moving target along the z-component,
depicting the generated overshooting
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Figure 5.11: Plot illustrating the response of the drone equipped with
a PID guidance controller as it pursues a moving target, along with
the associated time required to reach the target

104



5.3 Limitations

The studied algorithms have yielded highly compelling results, with

simulations providing a comprehensive insight into their behaviors and

performance. Furthermore, an examination of the outcomes of opti-

mizations applied to the developed guidance controllers has been in-

sightful. However, upon conducting more in-depth tests, certain limi-

tations within some algorithms became apparent. Specifically, the PN

and APN algorithms demonstrated less accuracy in scenarios involving

targets with a high magnitude of velocity.

Through extensive testing, a discernible threshold for ensuring com-

plete and efficient target interception was identified, approximately at

speeds of 55/60 km/h (15.2778/16.6667 m/s). Following numerous

simulations, hypotheses, and trial demonstrations, the cause of this

apparent inefficiency—contrary to theoretical expectations—was de-

termined to stem from the lack of optimization in the PN and APN

algorithms. In contrast, the PID controller maintained high efficacy

standards due to optimization (Fig: 5.12).

Regarding the OGL controller, it was observed that to uphold a high

standard of efficacy in scenarios involving targets with notably high

velocities, a slight adjustment to the interception threshold was nec-

essary, setting it at 1.5. In the illustrated scenario (refer to Fig: 5.13),

the target exhibited velocities of Vt = [10; 20; 10], corresponding to a

magnitude of approximately 90 km/h, which is relatively high. De-

spite the elevated target speed, the OGL controller efficiently achieved

interception within a considerably brief time frame. This adjustment

in the interception threshold showcases the adaptability of the OGL

algorithm to varied scenarios, thereby contributing to its robust per-

formance across a spectrum of target velocities.

To substantiate the claim expressed previously for the PN and APN

controllers, a reevaluation of the assumptions made about Time to Go

was conducted. Previous chapters highlighted that introducing a more

pronounced offset to tgo could enhance interception effectiveness and

efficiency, effectively utilizing tgo as a tuning parameter. However,
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to adhere faithfully to missile interception theory and the initially

assumed conditions, the initial tgo was kept at 0.1.

To demonstrate this, simulations were performed with an initial tgo
set to 1 second. As evident in the Fig: 5.14, this singularity was

eliminated, and a notable increase in the efficiency of the APN and

PN algorithms became apparent (only one graph is presented since,

as previously observed, the APN and PN algorithms yielded identical

results).

In summary, the developed algorithms have showcased excellent inter-

ception capabilities and notable efficiency. However, these attributes

are not assured for high target velocities, unless potential modifica-

tions to the original algorithm and, possibly, the underlying assump-

tions—beyond the scope of this thesis—are implemented. Therefore,

to maintain consistency with these findings, it is advised against em-

ploying the aforementioned algorithms for scenarios involving very

high target velocities, as effective and efficient interception cannot

be guaranteed.
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Figure 5.12: Plot illustrating the behavior of the interceptor drone
equipped with the PID controller with a high-speed target (||Vt|| =
83kmh ), along with the associated time required to reach the target
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Figure 5.13: Plot illustrating the behavior of the interceptor drone
equipped with the OGL controller with a high-speed target (||Vt|| =
88kmh ), along with the associated time required to reach the target
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Figure 5.14: Plot illustrating the behavior of the interceptor drone
equipped with the PN controller with a high-speed target (||Vt|| =
83kmh ), along with the associated time required to reach the target
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5.4 3D Simulations

Upon completion of the comparative analysis of diverse guidance con-

trollers, a series of simulations was conducted to evaluate the drone’s

capacity for intercepting another drone under randomly generated

flight conditions. The chosen scenario, within which the initial condi-

tions for the target were generated for testing, represents a standard

situation where the interception system identifies a mobile object (a

hostile drone) operating in a pseudo-cruising flight state. This state

is typified by a negligible vertical velocity component relative to its

horizontal progression in the Sxy plane.

The rationale for selecting the target’s cruising flight condition is

rooted in the commonly observed practice of deploying a standard in-

terception system to engage a target during its cruise phase, typically

launched at a safe distance from the hostile group. The deliberate de-

cision to maintain a non-zero vertical velocity, typically absent during

normal cruising conditions, aims to scrutinize the interceptor drone’s

behavior along the vertical axis when exposed to a non-zero vertical

velocity.

To achieve this objective, a specialized script was developed to ran-

domly generate initial conditions for the target to be intercepted, while

the interceptor maintains the aforementioned observed initial condi-

tions:

• Initial velocity in NED frame, V0 = [0; 0; 0]ms ,

• Initial position in NED frame, Xe0 = [0; 0; 0]m,

• Initial attitude, Euler0 = [0; 0; 0]rad,

• Initial angular velocity, ω0 = [0; 0; 0]rads ,
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Proportional Navigation

Figure 5.15: Plot illustrating the behavior of the interceptor drone
equipped with the PN controller in various randomly generated inter-
ception scenarios.
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Augmented Proportional Navigation

Figure 5.16: Plot illustrating the behavior of the interceptor drone
equipped with the APN controller in various randomly generated in-
terception scenarios.
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Optimal Guidance Law

Figure 5.17: Plot illustrating the behavior of the interceptor drone
equipped with the OGL controller in various randomly generated in-
terception scenarios.
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PID Guidance

Figure 5.18: Plot illustrating the behavior of the interceptor drone
equipped with the PID controller in various randomly generated in-
terception scenarios.
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Conclusions

In conclusion, this thesis aimed to enhance airspace safety by metic-

ulously developing the dynamic model of the drone in all its facets,

encompassing aspects such as rotational and translational dynamics.

The focus extended to the development of a flight controller tasked

with precisely instructing the dynamic system based on measurements

obtained from the drone’s sensors. The controller then compares these

measurements with the commands received from various guidance sys-

tems. Notably, the development and evaluation of four distinct guid-

ance subsystems—Proportional Navigation (PN), Augmented Propor-

tional Navigation (APN), Optimal Guidance Law (OGL), and PID

Guidance—have been pivotal in unraveling the intricacies of navigat-

ing dynamic target scenarios.

A notable aspect of this research lies in the deliberate reconsideration

and adjustment of assumptions within the algorithmic frameworks.

By deviating from conventional assumptions, the resulting guidance

subsystems exhibit enhanced adaptability and effectiveness. The re-

calibration of assumptions serves as a testament to the meticulous

refinement and evolution of the guidance algorithms presented herein.

The empirical results derived from extensive simulations underscore

the efficacy of each guidance subsystem, affirming their utility in di-

verse operational contexts. The comparative analysis between the

four subsystems reveals nuanced strengths and considerations for each.

Significantly, the Optimal Guidance Law emerges as the standout per-

former, demonstrating remarkable effectiveness in achieving intercep-

tion objectives.

The optimization process and fine-tuning of parameters within the
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Optimal Guidance Law have yielded astonishing results, surpassing

the performance of the other guidance codes. This underscores the

importance of a nuanced and optimized approach in algorithmic design

for achieving optimal outcomes.

In summary, this thesis contributes to the field of guidance algorithms

for drone interception by presenting a meticulous exploration of di-

verse subsystems and their comparative evaluations. The adaptation

of assumptions, coupled with a rigorous examination of results, posi-

tions these algorithms as valuable assets in navigating complex and

dynamic interception scenarios. The findings not only affirm the ef-

fectiveness of the developed guidance subsystems but also underscore

the critical role of optimization in achieving optimal outcomes in drone

interception applications.
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Figure 5.19: All the constructed guidance subsystems.
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Appendix A

Target modeling
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Figure A.1: Simulink architecture of the developed target model

In this appendix, an in-depth examination is conducted into the mod-

eling of the target (Fig: A.1) to be intercepted. As outlined in the

introduction, the ultimate goal pursued is the interception of a high-

performance drone potentially utilized by a criminal group, employing

an equally high-performance interceptor drone. Typically, target iden-

tification is delegated to a system continuously tracking its speed and

position, such as a radar. Alternatively, the interceptor drone, sup-

ported by a radar, may utilize a camera for visual target identification.

It is crucial to note that this aspect remains beyond the scope of this

thesis and is not under consideration.

To obtain data related to the target’s position, velocity, and acceler-

ation, a deliberate choice was made to adopt a comprehensive target
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modeling approach. Given the conceptual and dynamic similarity be-

tween the target and the interceptor, the decision was made to model

the target precisely like the interceptor drone. This choice is rooted in

the thesis’s primary focus on developing the guidance controller, flight

controller, and dynamic model of the interceptor drone, diverting at-

tention from the modeling intricacies of the target.

To execute this approach, a MATLAB script was developed, encap-

sulating the dynamic parameters and block structure of the target,

following analogous procedures employed for the interceptor drone.

By aligning the modeling framework between the target and the in-

terceptor, a cohesive and consistent development process is ensured,

allowing seamless integration into the overall interception system.

Therefore, considering that the developed target model incorporates

only the dynamic model and flight controller, it is evident that the

target is commanded in velocity. This velocity is maintained at a

constant value arbitrarily set by the programmer, who inputs this

velocity expressed in the NED frame directly into the flight controller.

For the sake of convenience and simplicity, this velocity is aligned with

the initial velocity, denoted as V0t, streamlining the setup process for

various simulations to be conducted.

The deliberate choice to command the target’s velocity allows for con-

trolled and systematic simulations, enabling a thorough evaluation of

the interceptor drone’s guidance and control systems under different

scenarios such as static target and moving target. The arbitrary yet

consistent velocity setup, aligned with the initial velocity V0t, ensures

a standardized and efficient approach across simulations, allowing for

a nuanced analysis of the interceptor drone’s performance in intercept-

ing a target with varying dynamic characteristics.

This deliberate modeling strategy ensures a concentrated effort on

the key aspects of the thesis while maintaining a clear and purposeful

separation between the interceptor drone and the target in terms of

modeling intricacies.
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più bui, accogliendomi sempre a braccia aperte nella loro casa. Voglio

ringraziare mia nonna, che con i suoi gravioli, ha sempre riempito la

pancia e il cuore ogni volta che tornavo a casa. Voglio ringraziare un

amico, un fratello, Alessio, che mi ha aiutato immensamente in questi

anni. Grazie a te, studiare e vivere nel Tempio è stato memorabile.
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