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Abstract

In this dissertation we investigate the utilization of Large Language Mod-

els (LLMs) to enhance the effectiveness of Extreme Programming (XP) prac-

tices in agile software development. The study delves into various XP prac-

tices through a mixed-methods approach combining quantitative and quali-

tative analysis. The overarching aim is to discern how LLMs can augment

human developers’ capabilities within agile practices, examining aspects such

as efficiency, collaboration dynamics, code quality, and overall productivity.

Our study reveals that the practices that tend to work better with LLMs in-

clude those that involve repetitive tasks and require extensive code generation

or manipulation, such as Test-Driven Development (TDD) and collaborative

programming scenarios. Despite the need for human validation, LLMs can

significantly enhance productivity in these contexts. Conversely, practices

relying heavily on human judgment, such as user story and use case evalu-

ation, may not benefit as much from LLM integration. We conclude with

recommendations for future research such as improving LLMs prompts, and

addressing security issues.
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Chapter 1

Introduction

In recent years, the field of Natural Language Processing (NLP) has de-

veloped a significant transformation with the development of Large Language

Models (LLMs) [48]. These models, built upon advanced deep learning archi-

tectures, have demonstrated remarkable capabilities in understanding, gener-

ating, and manipulating both human language and formal notations. Led by

breakthroughs such as OpenAI’s GPT (Generative Pre-trained Transformer),

LLMs have achieved unprecedented levels of performance across a wide range

of tasks, including code generation and elaboration.

1.1 Context and Relevance: Role of LLMs in

Software Engineering

The impact of LLMs extends beyond traditional NLP domains and into

the realm of software engineering. Software development is inherently a

linguistic activity, involving the creation and manipulation of code arti-

facts, documentation, and communication among team members. LLMs offer

unique opportunities to improve and simplify various aspects of the software

development lifecycle by taking advantage of their language understanding

and generation capabilities.

The integration of LLMs into software development practices holds promise

1



2 1. Introduction

for enhancing productivity, code quality, and collaboration among developers

[19], [32]. By harnessing the power of LLMs, developers can automate repet-

itive tasks, generate code snippets, provide natural language explanations,

and assist in debugging and testing activities. Moreover, LLMs can facilitate

knowledge sharing, code reviews, and documentation efforts, leading to more

efficient and transparent development processes. We aim to provide a com-

prehensive evaluation that not only highlights the advantages but also sheds

light on areas where improvements or alternative strategies may be necessary

to optimize the effectiveness of LLMs in agile software development contexts

[13].

1.2 Research Questions

In this context, our research endeavors to assess the feasibility and effec-

tiveness of integrating LLMs to assist human developers within the context

of Extreme Programming practices. As a result, the following research ques-

tions arise:

RQ1 How can LLMs be effectively integrated into agile software develop-

ment practices to improve productivity, code quality, and collaboration

among developers?

RQ2 What are the potential challenges and limitations associated with the

adoption of LLMs in agile software engineering contexts, and how can

they be mitigated?

1.3 Methodology Employed

To investigate these research questions, a mixed-methods approach will be

employed, combining quantitative analysis of software development reposito-

ries with qualitative analysis based on established criteria, as well as surveys

conducted with software developers. This combined methodology ensures a
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comprehensive exploration of both objective metrics and subjective experi-

ences related to the integration of LLMs in software development practices,

offering valuable insights for future research.

We will conduct a thorough quantitative analysis of software development

repositories to examine the usage patterns of LLMs in some projects. This

quantitative analysis will provide valuable insights into the extent to which

LLMs are utilized, the types of tasks they are employed for, and their impact

on productivity and code quality.

In addition to quantitative analysis, we will conduct qualitative analysis. Ini-

tially, we will establish criteria developed by our team or inspired by existing

research for evaluating various aspects of the data. Additionally, we will en-

gage developers through surveys to capture their subjective assessments and

insights to introduce an additional criterion for evaluation.

1.4 Structure of the Thesis

In this thesis, Chapter 2 presents and provides an evaluation of some Ex-

treme Programming practices when integrated with LLMs, offering a distinct

analysis for each practice. Chapter 3 offers a comprehensive discussion while

Chapter 4 summarizes the study’s findings.





Chapter 2

Extreme Programming

In this chapter, we delve into the realm of eXtreme Programming (XP),

an agile software development methodology known for its emphasis on best

practices for flexibility, collaboration, and responsiveness to change [8]. An

image illustrating the XP practices, as envisioned by one of its co-creators,

Ron Jeffries, can be seen in Figure 2.1 [22].

Figure 2.1: XP Practices from [22]

5



6 2. Extreme Programming

While XP encompasses a wide array of practices, our attention is directed

towards key methodologies within this framework. Specifically, we empha-

size practices that are not only fundamental but also highly practical. These

practices include Test-Driven Development (TDD), Pair Programming, Code

Refactoring, Code Quality Assurance, Continuous Integration (CI), and the

formulation and implementation of Use Cases and User Stories, along with

the pivotal role of Unit Tests.

The rationale behind this selective analysis arises from the significance and

impact of these practices on the overall agile software development process.

TDD, for instance, revolutionizes the approach to writing code by prioritiz-

ing test creation before implementation, ensuring robustness and functional-

ity from the outset. Pair Programming fosters collaboration and knowledge

sharing, enhancing code quality and reducing errors. Similarly, Code Refac-

toring and Quality Assurance practices ensure that the codebase remains

maintainable, scalable, and adheres to established standards. Continuous

Integration plays a vital role in ensuring that code changes are continuously

integrated into the main codebase, facilitating early detection of conflicts

and errors. Moreover, the formulation and refinement of Use Cases and User

Stories provide a structured approach to understanding and addressing user

requirements, guiding development efforts towards delivering value.

By leveraging the capabilities of LLMs, we aim to investigate their potential

applications in the context of agile software engineering, with a particu-

lar emphasis on software testing and quality assurance. Through empirical

analysis and experimentation, we attempt to evaluate the efficacy of LLMs

in supporting XP principles and facilitating agile development processes.

2.1 Test Driven Development

Test Driven Development (TDD) is a development methodology aiming

to improve software quality [34]. As the name suggests, the tests drive the

development process, as first the tests and then the software are written. If
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the software passes all test cases we can now refactor the code then create

a new test and repeat the cycle. In his book ’Test Driven Development: By

Example’, Kent Beck, to whom TDD is attributed, outlines two fundamental

rules for using TDD: ’write a failing automated test before you write any

code’ and ’remove duplication’ [9]. Thanks to those two rules, we can gain

an understanding of how TDD works. The efficiency of TDD for improving

software source code generation using the LLMs has been recently studied in

[29], however, we intend to perform a separate and indipendent investigation.

2.1.1 The Tasks

In order to compare how helpful can LLMs be during the process of writ-

ing tests and code using a TDD approach, the same three tasks have been

assigned to both human and AI for comparing the results in terms of time.

The chosen tasks span a spectrum of difficulty, ranging from a fundamental

implementation of some string manipulation functionality to the develop-

ment of a basic authentication system.

The tasks assigned consisted of developing a string manipulation utility, a

user registration scenario, and an authentication system. These scenarios

cover basic string manipulation, user interaction, and security aspects, pro-

viding a varied set of challenges to assess the performance of both human

and AI developers in different software development tasks. It is crucial to

note that there is a tight correlation between the second and the third task;

the reason for this will be explained later in Section 2.1.4.

2.1.2 Human-driven TDD

A diverse group of 8 skilled programmers with varying levels of experi-

ence participated in the experiment. Each participant was provided with

detailed task descriptions. The participants were asked to independently

implementing the assigned scenarios using Python on their preferred devel-

opment environments. All the human participants completed successfully the
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assigned tasks, it is crucial to clarify that the recorded completion times were

measured from the moment each individual understood the task and started

writing tests and code. This approach ensured a consistent evaluation of

their performance.

2.1.3 AI-driven TDD

In conducting our evaluation, the model employed for generating re-

sponses to the given prompts was GPT-3.5. Below, in Figure 2.2, we show

the prompt utilized to evaluate the performance of AI systems in TDD (in

the case of the string manipulation utility): To better understand how the

Figure 2.2: TDD Prompt

evaluation of the AI was done, it is crucial to note that all the prompts were

phrased as natural language descriptions or instructions specifying the task

to be performed. Our approach involved initially presenting contextual in-

formation related to the TDD experiment to GPT-3.5. Subsequently, precise

sequences of instructions that specify the desired outcome were constructed,

followed by the details of the task. This format aimed to guide the AI in

generating responses useful for the desired result.

The responses to all the tasks were generated within ten minutes, and it ex-

hibited impeccable accuracy if it wasn’t for a little misunderstanding in the

way the time was going to be recorded. GPT-3.5 placed the monitoring of

the time in the code snippet provided, while the scope of the experiment was

to monitor from the moment the prompt was given to the moment a correct
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output was received, since the intention was to monitor the AI’s processing

time comprehensively, as a result, the prompt was given back to ChatGPT

removing the part about the purpose. As a consequence, the result changed

from this:

def test_concatenate_strings(self):

start_time = time.time()

result = concatenate_strings("Hello", "World")

end_time = time.time()

print("Time taken to concatenate strings:", end_time -

start_time)

self.assertEqual(result, "HelloWorld")

To this:

def test_concatenate_strings(self):

# Test if concatenate_strings function concatenates tw

o strings correctly

self.assertEqual(concatenate_strings("hello", "world")

, "helloworld")

2.1.4 Evaluation

After recording the results of the experiment it is possible to provide valu-

able insights and a deeper understanding of the outcomes achieved during

the experimental process. Below in Table 2.1 we show a graphical represen-

tation of the average time taken by human participants and AI to complete

each task.

In the experiment, subjects executed the following steps: read the task

specifications, write a test case, implement source code that pass the test

and repeat these steps until the task is completed.
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Table 2.1: Average Implementation Time in TDD

Method Task 1 Task 2 Task 3

Human 6m21s 13m39s 4m21s

AI 36s 2m27s 2m49s

2.1.4.1 Evaluation of Implementation Time

As shown in Table 2.1, overall the data suggests that the AI consistently

performed faster than human developers across all tasks. The time for the

implementation step in TDD was reduced by 95% for easier tasks like Task

1 and by 58% for harder tasks such as Task 2 and Task 3. The results align

with findings from [29], where a 94% decrease in implementation time for

easier tasks and a 56% reduction for more challenging ones was reported.

This congruence between our findings and their research underscores the po-

tential of AI to simplify development processes in TDD.

In Task 3, we observed only a 34% reduction in implementation time. The

measure decreased compared to it’s very similar task, Task 2 being completed

82% faster compared to the corresponding human-developed implementation,

this can be attributed to a congruency with the challenges encountered in the

second task. Such similarity enabled human developers to adapt more effec-

tively, resulting in improved performance despite the complexities presented

in Task 3.

2.1.4.2 Evaluation of the Source Code

During the experiment, AI’s generated source code was in most of the

cases correct and accurate. However, in certain instances, the produced code

did not pass the testing. Generating incorrect source code increases developer

effort and development time [29]. A more comprehensive study is warranted,

considering not only correctness but also robustness in the face of varying

testing scenarios.
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2.2 Pair Programming

”Pair programming is a software development technique where two pro-

grammers work together at one workstation” [47]. In this collaborative

approach the one who uses mouse and keyboard and writes code is called

”driver” and he has a short-term perspective, while the other one called

”observer” or ”navigator” continuously observes the work of the driver, sug-

gesting improvements, helping catching errors, he notes the missing tests and

possible code refactoring during development, he focuses on the long term.

These roles can be traded in order to improve software quality.

It is imperative to conduct a thorough evaluation of human-AI pair program-

ming, given the limited understanding of its potential benefits and drawbacks,

as highlighted in [27].

The experiment involved two computer science students collaborating, while

in the human-AI pair programming scenario, one student collaborated with

the AI assistant. Their primary objective was to collaboratively develop,

implement and subsequently test some functionalities for React components.

2.2.1 Human-Human Pair Programming

Pair programming with a human partner offers numerous advantages in a

collaborative software development setting, the constant exchange of knowl-

edge between team members stimulates a rich learning environment, allowing

developers to share techniques and best practices. Furthermore having two

sets of eyes on the code serves as an effective mechanism for error prevention,

this continuous feedback not only reduces the expectation of bugs but also

improves the overall quality of the code produced.

2.2.2 Human-AI Pair Programming

”AI pair programming is a technique that involves the use of AI to assist a

developer in writing code” [7]. This experiment investigates the effectiveness

of pair programming with an AI-powered code completion assistant called
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Tabnine1, an alternative to GitHub Copilot.

It’s essential to note that unlike traditional prompts provided to AI models,

Tabnine operates by offering coding suggestions and completions without the

necessity of explicit prompts. As depicted in Figure 2.3, these suggestions are

presented to the programmer for consideration. It’s worth mentioning that

Tabnine provides multiple completion options, allowing the programmer to

choose among them. However, it’s important to acknowledge that while

Tabnine’s completions can be valuable, they may not always align with the

programmer’s intentions, leading to potential inaccuracies or inconsistencies

in the suggested code.

Figure 2.3: Pair Programming Prompt

(The code in gray is the code suggested by Tabnine)

Our results suggests that AI pair programming can result in generating

additional lines of code within a shorter timeframe compared to human pair-

programming. However the price for this is a regression in code quality,

moreover it can lead to inaccuracy and cause more errors and tests to fail.

This findings align quite well with a GitHub Copilot study, which states:

”although programming with Copilot helps generate more lines of code than

1https://www.tabnine.com
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human pair-programming in the same period of time, the quality of code

generated by Copilot appears to be lower” [20]. In any case, it is especially

useful for repetitive tasks, so developers can focus on more complicated tasks

and solving problems [7].

2.2.3 Evaluation

We observed distinctive patterns in productivity and code quality. The

evaluation comprehend multiple aspects, including efficiency, collaboration

dynamics, and the reliability of the generated code. We encountered a 97%

accuracy for the human-human part and an 88% for the human-AI one.

Figure 2.4: Lines of Code over Time

2.2.3.1 Evaluation of Efficiency

In terms of efficiency the human-AI pair programming exhibited a notable

advantage, thanks to the code generation and autocomplete capabilities the

coding process accelerated, resulting in a higher volume of code produced as

shown in Figure 2.4. This increased productivity is indicative of the effec-

tiveness of human-AI collaboration in software development.
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2.2.3.2 Evaluation of Collaboration Dynamics

Collaboration dynamics in human-human pair programming were char-

acterized by an effective communication, the collaborative approach between

driver and navigator allowed a shared problem-solving, facilitating the code

development. On the other side the human-AI pair programming the hu-

man developer collaborated with Tabnine mainly through code suggestions

and autocompletions. The observed increase in the number of failed tests

in human-AI pair programming scenarios, despite the higher productivity in

terms of lines of code produced, may likely be attributed to two primary fac-

tors: firstly, as indicated in Figure 2.4, the dynamics of a more individualized

coding experience could play a significant role and secondly, the limitations

inherent in AI paired programming, due to its training data limitations [11].

2.2.3.3 Evaluation of Code Quality

The code produced through human-human pair programming presented

a balance between quality and quantity, as evidenced by a 97% accuracy

rate in Section 2.2.3. With two developers working together, the code is

continuously reviewed and refined, resulting in a higher standard of quality

[2]. Contrastingly, the code generated with Tabnine showed a propensity for

higher inaccuracy and lower quality. The rapid code generation and autocom-

plete features contributed to increased output, nevertheless it’s important to

be cautious about maintaining accuracy and quality in the code generated

by human-AI collaboration.

2.3 Code Refactoring

Refactoring is a systematic process to improve internal code by making

many small changes without altering the code’s external behaviour. Or ac-

cording to the definition by Fowler et al., ”the process of changing a software

system in such a way that it does not alter the external behavior of the code

yet improves its internal structure” [16].
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There are several reasons why code refactoring is crucial in software engineer-

ing, such as keeping your code clean and readable, improve the performance

of your application by removing unnecessary lines of code, make bugs easier

to find. Moreover not doing so can have bad consequences for example the

technical debt may increase and in the future not having a clean code may

make it harder to implement new features due to code smells.

2.3.1 Human and AI Refactoring: Pro and Cons

”Most code refactoring tasks are performed manually by developers based

on experience and best practices” [30]. This manual process requires a deep

understanding of the code, including its underlying logic and structure. The

process of refactoring often consumes a significant amount of time for devel-

opers, time that could otherwise be allocated to implementing new features

or functionality. Yet, it is necessary for long-term maintainability, as software

systems need to go under modifications, improvements and enhancements in

order to cope with evolving requirements [41].

On the other side AI refactoring often demonstrates superior speed, par-

ticularly when dealing with straightforward refactoring tasks. However, its

efficiency may diminish when faced with more complex scenarios or technical

intricacies.

One of the primary benefits of AI refactoring is its ability to meticulously

comment all the code that have been refactored. This remarkable documen-

tation ensures that every adjustment and improvement made to the codebase

is clearly annotated, providing a detailed record of the changes implemented

during the refactoring process.

2.3.2 Contextual Code Refactoring

The evaluation of both human and AI refactoring experiments was con-

ducted by refactoring components of a React website, specifically a social

media platform, to assess whether all functionalities remained intact and
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operational. This involved a systematic revision of the code to improve its

structure, readability, and maintainability while ensuring that no existing

features were compromised or rendered dysfunctional due to the refactoring

process.

It is necessary to specify that the developer tasked with refactoring is the

original author of the code being optimized. This ensures that the developer

not only comprehends how the code operates but also recognizes areas for po-

tential enhancement. On the AI-side, the refactoring was done by GPT-3.5,

with a simple prompt:

Figure 2.5: Refactoring Prompt

(The corresponding code can be found in the appendix)

2.3.3 Evaluation

Below in Table 2.2 is a comparison of code refactoring performance be-

tween AI and human developers. The table presents data on the total number

of lines reduced, the percentage reduction, the average rate of lines refactored

per second and per minute, and the average time taken for the refactoring

process.

Following, Figure 2.6 provides a overview of the code refactoring activi-

ties performed by GPT-3.5. It presents various metrics and statistics related

to code changes aimed at improving code quality, readability, and maintain-

ability.

It’s necessary to note that the AI was unable to refactor a component of

approximately 500 lines, a significant portion compared to the total number

of lines which was 827, hence those lines were not included in Table 2.2 and

Figure 2.6 calculations. Additionally, it’s worth mentioning that the human
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Table 2.2: Comparison of Code Refactoring Performance

AI Human

Total lines reduced 137 57

Percentage of lines reduced 16.5% 6.89%

Lines per second 0.706l/s 0.095l/s

Lines per minute 42.36l/m 5.7l/m

Average Time per Refactoring 34s 1m40s

developer assigned a predetermined time of 10 minutes for the refactoring

task, which is roughly three times the duration taken by the AI for all the

refactoring activities. After the designed time, the human developer ceased

coding.

2.3.3.1 Evaluation of Efficiency

The AI demonstrated superior performance in terms of refactoring effi-

ciency, as evidenced by the higher number of lines reduced per unit of time

compared to the human counterpart. However, it’s important to note that a

significant portion of the refactoring process involved small code segments.

For instance, functions displayed in just three lines, often comprising a single

instruction, were transformed into inline functions, while the human devel-

oper did not optimize these functions and left them in their original three-line

format. This restructuring resulted in a reduction of two lines of code for

each function of this type. Furthermore, it’s noteworthy that the reduction in

lines of code was also attributed to the removal of commented logging state-

ments for debug and multiple empty lines as seen in Figure 2.6. While these

operations contributed to the overall reduction in lines of code, it also high-

lights the AI’s ability to automate repetitive and straightforward refactoring

tasks efficiently.
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Figure 2.6: AI Refactoring Summary

2.3.3.2 Evaluation of Performance

The performance of AI in refactoring small portions of code is commend-

able. For concise functions or code snippets, the AI demonstrated efficiency,

swiftly identifying and implementing optimizations. However, as the volume

of code increases, the reliability of the AI decreases in comparison to human

intervention. This suggests that AI refactoring may not be as useful when

handling big projects with several lines of code. As highlighted in [42], AI

remains far from securely modify existing code without human supervision.

One approach to enhance efficiency when dealing with large codebases is

to divide the code into smaller, more manageable sections for AI refactor-

ing. After refactoring each section individually, the code can be merged

back together. However, this process might be time-consuming, and manual

refactoring could potentially be more efficient. Additionally, providing the

AI with a few-shot example before the refactoring process, as explored in

[39], can improve the quality of the outcomes.
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2.4 Code Quality

”Code quality refers to the overall standard and excellence of a software

program’s source code, it encompasses various aspects that contribute to the

code’s readability, maintainability, efficiency, and robustness” [23].

However code quality is a concept that often defies precise definition. Its

interpretation can vary significantly among different teams, influenced by

contextual factors, project requirements, and individual developer perspec-

tives [10], [31].

2.4.1 Evaluation Metrics

With the groundwork laid in previous sections, we now turn our attention

to a detailed analysis of code quality. While our earlier investigations delved

into various aspects of test driven development, pair programming and code

refactoring, a comprehensive assessment of code quality was deferred until

now. Taking advantage of the data collected from the previous examinations,

we will now examine the quality of the code produced by LLMs.

Before delving into the analysis of results, it is imperative to establish the

criteria utilized for assessing the quality of code. This criteria includes a spec-

trum of metrics designed to evaluate various dimensions of code quality, each

playing a vital role in shaping the overall efficacy and reliability of software

systems. Additionally, we will utilize SonarQube2, a widely-used platform

for continuous inspection of code quality. SonarQube offers a range of static

code analysis tools that evaluate code against a set of predefined rules to

detect issues such as bugs, vulnerabilities, and code smells. By leveraging

both the criteria explained before and SonarQube, we aim to gain a complete

understanding of the code quality, considering both qualitative metrics and

the technical insights offered by SonarQube’s static code analysis.

In the succeeding passages, we will provide an overview of the evaluation

2https://www.sonarsource.com/
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metrics adopted, encompassing dimensions such as reliability, maintainabil-

ity, portability, and reusability. By exploring these qualitative metrics and

seizing their importance throughout the software development lifecycle, we

establish the foundation for a thorough evaluation of the codebase’s quality.

Reliability

Reliability is the probability that a system will operate without failure over

a specific period of time. It measures the stability of the software.

Maintainability

Maintainability measures how easily software can be maintained. There are

several metrics that defines maintainability, such as size, structure and com-

plexity of the codebase.

Portability

Portability measures how usable the same software would be in different en-

vironments.

Reusability

Reusability measures wether existing piece of codes such as functions can be

used again in the codebase, in other words if the code is modular.

2.4.2 Qualitative Evaluation

2.4.2.1 Evaluation of Reliability

In terms of reliability, it’s notable that code generated or refactored by

AI can occasionally crash after testing certain functionalities. Additionally,

despite being less common, it may crash directly after execution, often due

to static errors.

Figure 2.7 illustrates the percentage of prompts required before a reliable

code solution was received from the AI. The analysis reveals that in the vast
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Figure 2.7: AI Code Reliability Analysis

majority of instances, approximately 95% of the time, the AI effectively de-

livers a reliable code solution. This suggests an adequate level of performance

and reliability in generating accurate code outputs. However, there exists a

distinct subset, constituting about 5% of cases, where the AI’s performance

falls short in providing a satisfactory solution. This discrepancy could be

attributed to various factors, including the intricacy or extensive nature of

the code under consideration.

2.4.2.2 Evaluation of Maintainability

When it comes to maintainability, the AI demonstrates a commitment to

adhering to the best practices in software development. It excels in breaking

down code into manageable and modular components. By embracing these

principles, the AI not only enhances the readability and understandability

of the codebase but also lays a solid foundation for future maintenance and

scalability efforts. While advancements have been made in evaluating code
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generated by LLMs, it’s important to note that this field is still in its early

stages of development and requires more extensive research and exploration

[45].

2.4.2.3 Evaluation of Portability

In terms of portability the solutions generated by LLMs were able to main-

tain functionality and performance across various platforms and devices. The

AI’s proficiency in this regard becomes particularly evident when tasked with

refactoring or editing React components, which often involve considerations

for mobile rendering and cross-platform compatibility.

2.4.2.4 Evaluation of Reusability

When assessing the reusability of AI-generated code, it’s essential to eval-

uate the modularity, coherence, and flexibility of the codebase. The AI’s ap-

proach to code generation often involves breaking down complex tasks into

smaller and reusable code structures. The AI’s output may consist of well-

defined functions, classes, or modules that encapsulate specific functionality

or logic which can be easily incorporated into other projects or extended to

accommodate new requirements without necessitating significant modifica-

tions to the existing codebase.

2.4.3 SonarQube Evaluation

The SonarQube evaluation utilized the standard SonarQube rules avail-

able within the Community Edition of SonarQube. These rules are designed

to provide comprehensive insights into various aspects of code quality, includ-

ing reliability, security, maintainability, and test coverage. The evaluation

reveals several areas for improvement in our codebase (Figure 2.8).
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Figure 2.8: SonarQube Code Quality Analysis

2.4.3.1 Evaluation of Reliability

In terms of reliability, our codebase exhibits 7 bugs, classified as class

C according to the SonarQube analysis. In SonarQube’s classification sys-

tem3, class C indicates the presence of at least 1 Major Bug. These findings

highlight areas where our software may be susceptible to significant quality

flaws that could highly impact the developer’s productivity, such as uncov-

ered pieces of code, duplicated blocks, or unused parameters. The reason

SonarQube reliability evaluation revealed a class C rating, is primarily due

to a major bug, wherein a React hook was not properly called. However, it’s

worth noting that all other identified bugs were categorized as minor issues.

2.4.3.2 Evaluation of Security

Regarding security, the SonarQube evaluation uncovered two vulnerabil-

ities: one related to authentication, specifying that admin authentication

3https://docs.sonarsource.com/sonarqube/latest/user-guide/metric-definitions/
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should be restricted to specific IP addresses, and another concerning file

upload, which should ideally be restricted. Despite these findings, both vul-

nerabilities were classified as minor issues, contributing to the class B rating.

However, it’s noteworthy to mention that these security issues were not re-

viewed nor fixed, resulting in a class E designation for the security review.

Class E indicates that less than 30% of Security Hotspots were reviewed,

reflecting a need for further attention to security vulnerabilities.

2.4.3.3 Evaluation of Maintainability

In terms of maintainability, SonarQube flagged 36 code smells, resulting in

a technical debt of 1 hour and 20 minutes. Despite this, the maintainability

aspect was classified as class A. This classification was attributed to the

technical debt being lower than 5% of the time that has already gone into

the application, as determined by SonarQube. This result is particularly

noteworthy and indicates a relatively high level of maintainability achieved

with AI assistance.

2.4.3.4 Evaluation of Duplications

Regarding duplication, SonarQube detected the presence of 8 duplicated

blocks within the codebase. These blocks amounted to a total of 268 dupli-

cated lines. When considering the entirety of the codebase (excluding com-

ments), this duplication constituted approximately 10% of the total lines.

The presence of duplicated lines, particularly when generated with the as-

sistance of AI, raises questions about the effectiveness of the AI model in

avoiding redundancy and promoting code modularity.

2.4.3.5 Evaluation of Test Coverage

While in our experiment, TDD sessions resulted in full test coverage,

during pair programming and refactoring sessions instead, the test coverage

was reduced, consequently lowering the overall percentage of code covered



2.5 Continuous Integration 25

by tests to only 76.2%. However, it’s crucial to highlight the remarkable

ability of AI in generating tests. Despite the challenges posed by dynamically

generated code, AI showed promise in creating tests.

2.4.4 Overall Evaluation

We can infer that the combined efforts of human developers and AI as-

sistance in code generation led to a relatively stable codebase, as indicated

by the low severity of identified issues across various dimensions such as re-

liability, security, and maintainability. Despite the presence of some bugs,

vulnerabilities, and code smells, the overall impact on the system’s quality

appears to be minimal, especially considering the classification of these issues

by SonarQube.

The qualitative evaluation, along with SonarQube analysis, yielded congru-

ent findings across various dimensions, particularly in reliability and main-

tainability. However, divergent results were observed in terms of reusability,

notably regarding the presence of duplicated lines identified through Sonar-

Qube analysis. This discrepancy in reusability underscores the importance

of utilizing multiple evaluation techniques for comprehensive insights into

software quality.

Employing multiple evaluation techniques is crucial as each method offers

unique insights into software quality. By combining qualitative assessments

with automated analysis tools like SonarQube, we gain a more comprehen-

sive understanding of the strengths and weaknesses of the software. This

approach enables cross-validation, confirmation of findings, and ensures that

no critical aspects of quality are overlooked, ultimately leading to more in-

formed decisions and higher-quality software products.

2.5 Continuous Integration

”Continuous Integration (CI) is a software development practice where

team members regularly integrate their code changes into a shared reposi-
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tory” [5], often occurring multiple times throughout the day [38].

The advantages of this practice are several, such as easier and quicker error

detecting, faster software testing and of course it helps deliver updates faster

and more frequently. There are historical reasons for the implementation of

CI in software development, that reason is that in the past, developers often

operated in isolation, working independently for an extended period of time

before merging their changes, this approach led to challenges in merging all

the code produced by every team member, consuming considerable time and

effort. Additionally, this allowed bugs to accumulate for a long time without

correction, retarding the delivery of updates to customers [3], [14], [25].

2.5.1 Experiment Setup

For this experiment, we utilized Visual Studio Code as our Integrated De-

velopment Environment (IDE), where we configured GitHub Actions4 as our

CI platform, coupled with Tabnine as a pair programming assistant. To set

up the CI pipeline, we defined workflows using YAML files stored within the

repository. These workflow files specify the sequence of steps to be executed

automatically in response to specific events, such as code pushes or pull re-

quests. Within the workflow files, we configured individual jobs to perform

specific tasks necessary for our CI process. These tasks included building the

code and running tests. Each job was tailored to execute a particular set of

tasks efficiently. The pipeline visualized in Figure 2.9 outlines the continuous

integration process described. The experiment was conducted by a single in-

dividual, who evaluated their performance in CI both with and without the

assistance of AI.

2.5.2 Error Detection and Correction

The application of AI in error detection and correction demonstrated

remarkable efficacy, particularly when subjected to a process of incremental

4https://github.com/features/actions
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Figure 2.9: Continuous Integration Pipeline

integration. By breaking down the development process into multiple smaller

merges before assembling the full code, the AI exhibited a robust capacity

to detect errors at various stages of integration. Moreover, due to the gran-

ularity of these smaller merges, it was notably easier to identify and correct

errors, leading to expedited debugging and refinement of the codebase.

Figure 2.10: Error Detection and Correction in CI
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As depicted in Figure 2.10, during CI the error detection rate was sig-

nificantly higher, with all errors being detected (100%), compared to when

providing the final solution, where only 90% of errors were detected. Inter-

estingly, when it comes to error correction, both scenarios showed similar

performance. This discrepancy in error detection rates can be attributed to

the proactive nature of CI, where errors are identified and addressed at an

earlier stage of development, leading to more comprehensive error detection

and easier debugging.

2.5.3 Developer Productivity and Test Case

Figure 2.11: CI Evaluation: Human vs AI

In terms of developer productivity and test case outcomes, it’s noteworthy

that while CI showed a slight regression in productivity compared to the final

solution, there was a marked improvement in test and build success rates with

CI, irrespective of whether the coding was done by humans or AI. In the Final
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Solution scenario, only 2 out of 3 builds were successful, and the test pass rate

with AI was at 80%, a similar result was observed with human developers.

These findings underscore the advantages of CI as demonstrated in Table

2.11. Furthermore, there’s a perceptible improvement with AI assistance.

2.5.4 Impact on Software Quality

The analysis of CI implementation reveals a notable impact on software

quality. The comparison between CI and the final solution indicates that CI

leads to higher rates of test case and build success, also the detection of errors

is notably higher compared to the final solution (Figure 2.10), demonstrating

its efficacy in ensuring the stability and reliability of the software product.

Despite a slightly lower developer productivity observed in CI (Figure 2.11),

the improvement in test and build success rates outweighs this drawback,

highlighting CI’s overall positive impact on software quality. Moreover, the

incorporation of AI assistance, particularly in pair programming scenarios,

showcases a small enhancement in software quality.

2.6 Use Case and User Story

Use cases and user stories are both techniques used in software develop-

ment to capture requirements and describe how a system will be used from

an end-user perspective, but they serve different purposes and have distinct

characteristics [15], [44]. Usually when the costumer meets the development

team he presents the requirements in the form of user stories or use cases, the

team then estimates the stories and make a plan to cover all the requested

functionalities.

Even thought they are quite similar there is difference in the two practices,

user stories are concise, informal descriptions of a feature, it is an XP prac-

tice that prioritize conversation over documentation and focus on the ”who,”

”what,” and ”why” of a feature rather than detailed specifications. They are

often written following a simple template:
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”As a [user], I want [goal], so that [benefit].”

Use cases, instead, provide a more structured and detailed representation of

system behavior. A use case describes a sequence of interactions between

an actor (typically a user) and the system to achieve a specific goal. It

specifies every step of the implementation, including preconditions, postcon-

ditions, and alternative paths, providing a deeper understanding of system

functionality. While both serve to understand user requirements and guide

development efforts, they diverge in their level of detail and technicality. The

reason why we involved the study of use case in this chapter is due to its

detailed and structured representation of system behavior, which can offer

insights that are particularly valuable for our study’s objectives.

2.6.1 User Story

As said before, a user story is an informal, general explanation of a fea-

ture written by the end-user or customer. In this section we evaluate the

capacity of AI in assessing user stories, we conducted a comparative analysis

against the evaluations provided by a group of 8 Computer Science students.

This approach enabled us to evaluate the AI’s effectiveness in estimating user

stories compared to human and to understand the efficiency of AI-driven eval-

uations in terms of time management. Moreover recent studies demonstrated

that ”The quality of user stories is crucial to the success of a development

project as they impact the quality of the system design which, in turn, af-

fects the final product” [36], [4]. Moreover a well-written user story can be

submitted to LLMs to generate the corresponding code necessary to fulfill

the requirements outlined in the story [17].

The evaluation of each user story was done by following the guidelines of the

INVEST criteria [28], which examines how independent, negotiable, valu-

able, estimable, small and testable the story is. This evaluation criteria was

also given to GPT-3.5 in it’s prompt, as depicted in Figure 2.12.
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Figure 2.12: User Story Prompt

2.6.1.1 User Story Evaluation

From Table 2.3 and Figure 2.13, we can observe several trends and differ-

ences between the AI evaluations and human evaluations of the user stories.

While both representations convey the same data, Figure 2.13 provides a

clearer visualization of the disparities between human and AI evaluations for

each user story. The visual depiction enhances the understanding of how

human and AI assessments diverge across various aspects of the stories. In

general, the AI evaluations tend to rate user stories higher in terms of inde-

pendence and negotiability compared to human evaluations. This suggests

that the AI may be more inclined to view user stories as independent and

negotiable, potentially due to its algorithmic nature and lack of subjective

biases. Since most of the user stories were correlated, as part of the same

react component, the evaluations provided by students regarding the inde-

pendence criterion were consistently low. Considering that the user stories
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were extracted from a university project specification, it’s important to note

that the concept of negotiability may not have been applicable in this con-

text. As such, the lower scores in negotiability provided by students could

be attributed to the constraints of the project requirements rather than a

reflection of the user stories’ negotiability.

The evaluations for the criteria of valuable, estimable, testable, and small

exhibited relatively similar scores across both AI and human evaluations,

indicating a consistent perception of these aspects of the user stories even

thought there were a few exceptions where discrepancies were observed. The

observed similarity in the assessment of these criteria may be attributed to

the more technical nature of the evaluation process for these aspects com-

pared, for example, to the negotiability.

Table 2.3: User Story Evaluations

Story Evaluation Independent Negotiable Valuable Estimable Small Testable

1 AI Evaluation 9 8 10 9 7 8

Human Evaluation 5 2 8 7 6 8

2 AI Evaluation 9 8 10 9 8 9

Human Evaluation 2 1 9 7 7 9

3 AI Evaluation 9 8 10 9 8 9

Human Evaluation 4 8 6 4 8 8

4 AI Evaluation 8 7 9 8 8 9

Human Evaluation 5 2 7 8 4 8

5 AI Evaluation 6 8 5 7 4 6

Human Evaluation 3 3 9 9 2 9

6 AI Evaluation 7 9 8 8 6 7

Human Evaluation 1 4 8 7 7 7

7 AI Evaluation 8 9 7 8 8 7

Human Evaluation 1 1 8 7 6 7

The average difference between human and AI evaluations was calculated

in Figure 2.14 using the following formula:

Average Difference =

∑n
i=1 |AIi − Humani|

n

Where for each parameter:
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Figure 2.13: User Story Evaluation Plot

• AIi is the AI evaluation score for user story i,

• Humani is the human evaluation score for user story i,

• n is the total number of user stories.

2.6.2 Use Case

In this section, we delve into a more technical aspect of software develop-

ment, use cases. Use cases are a structured way of defining the interactions

between users and a system to achieve specific goals. Unlike user stories,

which are often expressed in a more narrative form and focus on user needs,

use cases are more detailed and provide a step-by-step description of how

users interact with the system.

The evaluation of the use cases will be conducted through a structured pro-

cess. Initially, the AI will be provided with project requirements of a react
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Figure 2.14: User Story Evaluation Plot (AVG)

website and tasked with decomposing them into individual use cases. The

prompt used is the following Figure:

Figure 2.15: Use Case Prompt

These use cases will then be evaluated according to the criteria outlined

in a recent research study [12], which includes factors such as completeness,

correctness and clarity of the basic flow, alternative flows, actor descriptions,

preconditions, postconditions, and error handling. The results of the evalua-

tion can be observed in Figure 2.16, while Figure 2.17 illustrates the average

evaluation score for each criterion, allowing for easy comparison and analysis

of each use case’s performance against the defined criteria.
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Figure 2.16: Use Cases Evaluations

Figure 2.17: Use Cases Evaluations (AVG)



36 2. Extreme Programming

2.6.2.1 Use Case Evaluation

From Figure 2.17, it’s evident that AI performed exceptionally well in

terms of clarity, with each criterion surpassing a score of 4 (out of 5) in the

evaluation. This indicates that the use cases generated by AI were written in

a clear and understandable manner, facilitating effective communication of

system interactions and requirements. Clarity is a crucial aspect of use case

documentation as it ensures that stakeholders can easily comprehend the in-

tended functionality and behavior of the system. The consistently high scores

across all clarity-related criteria reflect the effectiveness of AI in producing

use cases that are coherent, concise, and comprehensible, thereby contribut-

ing to better project understanding and collaboration among stakeholders.

In addition to clarity, AI also demonstrated excellence in actor descriptions,

as indicated by the high scores across all related criteria in Figure 2.17. Actor

descriptions play a pivotal role in use case documentation as they define the

roles and responsibilities of various system users or entities involved in the

interaction. The robustness of AI-generated actor descriptions suggests that

the system accurately identified and delineated the roles of different actors.

While AI exhibited strength in clarity and actor descriptions, it faced chal-

lenges in ensuring the correctness of both the basic and alternative flows.

The correctness of these flows is crucial for ensuring that the system behaves

as intended and handles various scenarios effectively. The lower scores in

correctness for both basic and alternative flows indicate potential discrepan-

cies or inaccuracies in how the AI-generated use cases depict the sequence

of actions and decision points. These inaccuracies could lead to misunder-

standings or misinterpretations during the development process, potentially

resulting in errors or unintended behavior in the implemented system.

Furthermore, the performance of AI in error handling, was also improvable.

Error handling is a critical aspect of software systems, as it determines how

effectively the system detects, reports, and recovers from unexpected or er-

roneous situations. The lower scores in error handling suggest that the AI-

generated use cases may not adequately address potential errors or excep-
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tions that could occur during system operation. Insufficient error handling

can lead to situations where the system fails to provide meaningful feedback

to users when errors occur, resulting in frustration or confusion.

2.7 Unit Tests

Unit tests are a fundamental aspect of software development [43] aimed at

verifying the correctness of individual units or components of a software [6].

These tests focus on examining the behavior of small, isolated parts of the

software, such as functions, methods, or classes. The purpose of unit tests

is to ensure that each unit of code performs its intended function correctly

under various conditions and inputs [40]. Unit tests are typically automated,

meaning they can be executed automatically without manual intervention.

They are often written by developers alongside the code they are testing and

are executed frequently, typically as part of CI. Given the labor-intensive

nature of manually creating unit tests, as highlighted by previous research

[37], we will study the use of LLMs to generate these tests.

2.7.1 Unit Test Generation

For our study, we employed GPT-3.5 to generate unit tests aimed at

evaluating their correctness. It’s crucial to emphasize that all the code sub-

jected to these tests was fully functional and thoroughly tested beforehand.

The primary objective of this experiment was to assess the AI’s capability

to produce accurate and beneficial unit tests, rather than to validate the

correctness of the existing codebase. This distinction underscores the focus

on evaluating the AI’s effectiveness in generating tests that contribute to the

overall quality and reliability of the software.
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Figure 2.18 shows the prompt used to generate unit tests:

Figure 2.18: Unit Test Prompt

(The corresponding code can be found in the appendix)

Table 2.4 will showcase various aspects, including the types and the num-

ber of the tests, the number of tests that passed successfully, and the count

of comments provided for each file.

Table 2.4: Unit Tests Evaluation Table

File Function Tests Rendering Tests Other Tests Total Tests Passed Tests (%) No. Of Comments

Form.js 19 11 9 39 24 (61%) 197

Auth.js 8 8 5 21 20 (95%) 83

Menu.js 15 4 5 24 19 (79%) 87

PostDetails.js 6 6 3 15 14 (93%) 45

SelectSMM.js 5 3 3 11 11 (100%) 28

Settings.js 8 5 3 16 13 (81%) 21

2.7.2 Unit Test Evaluation

Our tests delivered satisfactory performance, with an overall passing rate

of 85%. This indicates that a significant majority of our tests (101 out of

the 126 generated) executed successfully. Although an 85% pass rate on unit

tests may seem satisfactory, it does not fully reflect the AI’s capability to

consistently generate accurate tests. While the majority of tests may pass,

the accuracy and correctness of the generated tests are essential for assessing

the AI’s proficiency in this task. As illustrated in Table 2.4, the AI demon-

strated exemplary performance in providing explanations for each unit test,

as evidenced by the comprehensive commenting accompanying each test. In

fact, the strength of the AI lies in its meticulous approach to commenting on

every individual unit test with remarkable precision, with an average of over
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three comments per test (Table 2.5), it demonstrates a commitment to thor-

ough and detailed documentation, enhancing the clarity and understanding

of the tests.

Table 2.5: Summary of Test Results

Total Tests Passed Tests Passed Tests (%) AVG Comment Count per Test

126 101 85.09% 3.247





Chapter 3

Discussion

In this chapter, we delve into a comprehensive analysis of the findings ob-

tained from our study, addressing the research questions posed earlier. We

critically evaluate the performance of LLMs in the context of agile software

engineering practices, highlighting their impact on productivity, code quality,

and collaboration among developers. Additionally, we explore the challenges

and limitations associated with the adoption of LLMs in agile environments,

shedding light on potential areas for improvement and future research direc-

tions. Through an examination of both the strengths and weaknesses of LLM

integration, we aim to provide valuable insights into the effective utilization

of these powerful AI tools in agile software development.

3.1 Analysis of Findings

In analyzing the findings of this study, it becomes evident that the in-

tegration of LLMs into agile software engineering practices has yielded a

predominantly positive impact. Additionally, other studies have highlighted

the potential for integrating LLMs (ChatGPT) into the software engineer-

ing workflow [1]. These investigations sustain our findings and underscore

the broader applicability of LLMs in enhancing various aspects of software

development processes. One of the most notable advantages observed in our

41
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study is the significant enhancement of productivity, particularly evident in

Test-Driven Development and pair programming scenarios. Moreover, LLMs

have played a key role in automating tasks sometimes perceived as repetitive

and time-consuming, such as code refactoring and testing.

Through our investigation, we discovered a key strategy for harnessing the

capabilities of LLMs effectively: dividing requests into smaller, more man-

ageable tasks rather than inundating the model with numerous operations

simultaneously. This approach was decisive in optimizing the performance

and response accuracy of LLMs within the context of agile software engineer-

ing practices.

By breaking down requests into smaller tasks, developers can mitigate the

risk of overwhelming the model and ensure that it can devote adequate at-

tention and resources to each operation. Moreover, dividing requests into

smaller tasks aligns with agile development principles, facilitating a more it-

erative and incremental approach to problem-solving. It allows developers to

address specific aspects of a problem or task incrementally, iteratively refin-

ing and adjusting their approach based on feedback and intermediate results.

While our analysis revealed significant improvements across various aspects

of XP, particularly in areas such as test generation, code refactoring, and the

quality of generated code, our analysis also revealed areas for improvement

and potential challenges that need to be addressed.

In the domain of unit testing, we observed that while LLMs were proficient

in generating test cases, there was a notable discrepancy in the effective-

ness of these tests. Specifically, our findings indicated that only 85% of the

generated tests were functioning correctly, highlighting the need for further

refinement and validation of test cases to ensure comprehensive coverage and

accuracy.

Similarly, our analysis of code quality revealed that code generated by LLMs

exhibited lower quality compared to human-written code, particularly when

evaluated against a predefined set of criteria. Additionally, it’s important

to highlight that the generated code frequently requires human validation to
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guarantee it’s functionality, a point highlighted in previous studies such as

[33].

Furthermore, in the domain of code refactoring, we encountered instances

where automated refactoring performed by LLMs resulted in unintended con-

sequences, such as changes to functionality or even code breakages. This phe-

nomenon contradicts the fundamental principles of refactoring, which aim to

improve code structure and design without altering external behavior [16].

3.2 Research Answers

3.2.1 RQ1: How can LLMs be effectively integrated

into agile software development practices to im-

prove productivity, code quality, and collabora-

tion among developers?

To answer RQ1, our study offers several key insights and recommenda-

tions based on our findings.

Task Segmentation

Our research underscores the importance of breaking down development tasks

into smaller, manageable units to leverage the capabilities of LLMs effectively.

By dividing tasks and focusing on specific operations, developers can opti-

mize the utilization of LLMs and minimize the risk of errors or inefficiencies.

Automation of Repetitive Tasks

LLMs can be very effective in automating repetitive and time-consuming

tasks, such as test case generation and documentation. Integrating LLMs

into agile workflows can streamline these processes, freeing up developers’

time to focus on higher-level design and problem-solving activities.

Collaborative Development Environment
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By leveraging LLMs as virtual teammates, developers can enhance their col-

laborative problem-solving sessions. Here, AI assistants contribute insights,

suggest solutions, and provide real-time feedback on code implementations,

thus significantly boosting productivity.

3.2.2 RQ2: What are the potential challenges and lim-

itations associated with the adoption of LLMs in

agile software engineering contexts, and how can

they be mitigated?

To answer RQ2, we must acknowledge several potential challenges and

limitations associated with the adoption of LLMs in agile software engineer-

ing contexts:

Quality Assurance

One prominent challenge is ensuring the quality and reliability of code gener-

ated by LLMs. As highlighted in our findings, there is a notable discrepancy

between human-generated code and AI-generated code in terms of quality.

Mitigating this challenge requires implementing robust quality assurance pro-

cesses or even refining LLM training methodologies to produce higher-quality

outputs.

Functional Changes during Refactoring

Another significant limitation observed is the risk of unintended functional

changes or code breakages during the refactoring process. This poses a funda-

mental challenge to the definition of refactoring and undermines its purpose.

Test Reliability

Our research uncovered that not all of the generated unit tests produced

by LLMs were functioning correctly. This highlights a crucial challenge in

ensuring the reliability and effectiveness of test suites generated by AI. To
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mitigate this limitation, comprehensive testing protocols and continuous val-

idation processes should be established to verify the accuracy and coverage

of generated tests.

Adaptation to Specific Contexts

LLMs may struggle to adapt effectively to the specific contexts and require-

ments of individual software projects. This lack of adaptability can impede

their usefulness and effectiveness in certain scenarios.

3.3 Open Problems, Limitations and Future

Work

It is essential to acknowledge that while the benefits of LLM integration

inside an agile development team are considerable, challenges and limita-

tions exist. In this context, two significant challenges warrant attention: the

security implications of AI-generated code and the phenomenon of halluci-

nation in language models. While these issues have not been thoroughly

explored in this study, they represent important areas for further investi-

gation and refinement. The security of AI-generated code raises concerns

regarding vulnerabilities and potential exploits that may arise from auto-

mated code generation processes. Recent studies, such as [19], [24], [26] and

[35], have highlighted various vulnerabilities and security risks associated

with code generated by LLMs. These findings underscore the importance of

addressing security considerations in the adoption of LLMs in agile software

development practices.

Additionally, the problem of hallucination pertains to instances where lan-

guage models produce erroneous or misleading outputs, which could pose

risks in critical software development contexts, as highlighted in recent stud-

ies [48], [13].

Furthermore, the issues of data privacy, misinformation, and ownership now

come to the forefront. The reliance on vast amounts of data raises concerns
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about user privacy and the potential for data misuse and the proliferation

of AI-generated content raises the risk of misinformation dissemination as

studied in [21]. Moreover, questions surrounding intellectual property rights

and ownership arise when AI systems generate code or content based on pro-

prietary data or algorithms [32]. Addressing these challenges is essential for

ensuring ethical and responsible use of AI technologies in software engineer-

ing.

In addition, it is important to acknowledge the limitation of the relatively

small number of human developers we have involved in our experiments. A

wider range of participants with diverse backgrounds and expertise levels

could potentially yield varied results, offering a more comprehensive under-

standing of the implications of LLM integration across different contexts.

Future research could explore this aspect by involving a more extensive and

diverse pool of human developers, allowing for a more significant analysis

of the effectiveness and challenges associated with LLM integration in agile

software development.

In conclusion, an additional area for future research lies in refining the

prompts provided to LLMs to enhance their performance in agile software

development. Recent studies, such as [46], suggest that optimizing prompt

quality could lead to significant improvements in LLMs’ effectiveness in this

domain. Thus, exploring strategies to enhance prompt design and utilization

represents a promising avenue for advancing the integration of LLMs into

agile practices.
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Conclusion

In this thesis, our primary objective was to explore the integration of

Large Language Models (LLMs) into agile software engineering practices and

evaluate their potential impact on eXtreme Programming (XP). Now, having

examined the results of our research, we can delve into the key findings and

implications of our study.

Our analysis of the integration of LLMs into agile software engineering prac-

tices underscores the significant potential for advancements in productivity

and code quality, aligning with the findings presented in a recent thesis work

[18]. Through a mixed-methods approach combining quantitative and qual-

itative analysis, we have gained valuable insights into the benefits and chal-

lenges associated with LLM integration in this context. Our study highlights

promising advancements, particularly in Test-Driven Development and col-

laborative programming scenarios, where LLMs demonstrate efficacy in au-

tomating repetitive tasks and enhancing efficiency. However, we recognize

the importance of addressing challenges such as the need for human valida-

tion of LLM-generated code to ensure accuracy and reliability, as evidenced

by instances of code quality discrepancies compared to human-written code.

Despite these challenges, the overall impact of LLMs on agile software devel-

opment appears positive, with the potential to drive significant improvements

in efficiency, collaboration, and code quality. Moving forward, it is imper-
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ative for researchers and practitioners to continue refining LLMs prompts,

addressing security concerns, and exploring innovative ways to harness the

full potential of LLMs in agile development environments. Ultimately, our

research contributes to advancing the understanding of how LLMs can aug-

ment human developers’ capabilities within agile practices, offering valuable

insights for future research and practical implementation in software devel-

opment contexts.
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Unit Test Generation Code

This code snippet serves as an illustrative example provided to the AI for

the purpose of unit test generation.

import React, { useState, useEffect } from ’react’;

import { Container, Grow, Grid, Paper, AppBar, TextField, Button,

Typography } from ’@material-ui/core’;

import { useDispatch } from ’react-redux’;

import Select from ’react-select’;

import { getSMMs, setSMM, getMySMM } from ’../../actions/auth’;

import { ToastContainer, toast } from ’react-toastify’;

import ’react-toastify/dist/ReactToastify.css’;

import useStyles from ’../styles’;

function SelectSmm() {

const classes = useStyles();

const user = JSON.parse(localStorage.getItem(’profile’));

const dispatch = useDispatch();

const [smms, setSmms] = useState([]);

const [smm, setSmm] = useState(’’);

const handleSelectUsers = (selectedOption, actionMeta) => {

49
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setSmm(selectedOption);

}

const clearSMM = () => {

setSmm(’’);

}

const handleSubmitSMM = async (e) => {

e.preventDefault();

dispatch(setSMM(user.result._id, (smm.value ? smm.value

: ’’)));

toast("Done!", { type: "success" });

getSMM();

}

const getSMM = async () => {

await dispatch(getSMMs()).then((res) => {

setSmms(res);

});

}

const getMySmm = async () => {

await dispatch(getMySMM(user.result._id)).then((res) => {

setSmm(res);

});

}

useEffect(() => {

if (user?.result?.role !== ’vip’) window.location.href =
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window.location.origin + ’/react’;

if (user) {

getMySmm();

getSMM();

//setSmms(smms.concat(smm));

//console.log(smm);

}

//console.log(user?.result);

}, []);

return (

<Container maxWidth="sm">

<Paper className={classes.paper} elevation={6}>

<form autoComplete="off" noValidate className=

{‘${classes.root} ${classes.form}‘} onSubmit=

{handleSubmitSMM}>

<Typography variant="h6">Select SMM

</Typography>

<Select className={classes.fileInput}

options={smms} value={smm} fullWidth onChange=

{handleSelectUsers} />

<Button className={classes.buttonSubmit}

variant="contained" color="primary"

size="large" type="submit"

fullWidth>Confirm</Button>

<Button variant="contained" color="secondary"

size="small" onClick={clearSMM} fullWidth

>Remove SMM</Button>

<ToastContainer autoClose={1000}

hideProgressBar={true} />
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</form>

</Paper>

</Container>

);

}

export default SelectSmm;

Refactoring Code

This code snippet serves as an illustrative example provided to the AI for

the purpose of code refactoring.

import React, { useState, useRef } from ’react’;

import { Avatar, Button as Butt, Paper, Grid, Typography, Container }

from ’@material-ui/core’;

import LockOutlinedIcon from ’@material-ui/icons/LockOutlined’;

import { useDispatch } from ’react-redux’;

import { useNavigate } from ’react-router-dom’;

import useStyles from ’./styles’;

import Input from ’../Auth/Input’;

//import Icon from ’./icon’;

import { ConfirmDialog, confirmDialog } from

’primereact/confirmdialog’;

import { Button } from ’primereact/button’;

import { Toast } from ’primereact/toast’;

import { ToastContainer, toast } from ’react-toastify’;

import { updatePassword, deleteAccount } from ’../../actions/auth’;

import ’primeicons/primeicons.css’;

//theme

import "primereact/resources/themes/lara-light-indigo/theme.css";
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//core

import "primereact/resources/primereact.min.css";

const initialState = { oldPassword: ’’, newPassword: ’’,

confirmPassword: ’’ };

const Settings = () => {

const [user, setUser] = useState(JSON.parse(

localStorage.getItem(’profile’)));

const classes = useStyles();

const [showPassword1, setShowPassword1] = useState(false);

const [showPassword2, setShowPassword2] = useState(false);

const [formData, setFormData] = useState(initialState);

const [deletingAccount, setDeletingAccount] = useState(false);

const toast = useRef(null);

const dispatch = useDispatch();

const navigate = useNavigate();

const handleShowPassword1 = () => setShowPassword1(

(prevShowPassword1) => !prevShowPassword1);

const handleShowPassword2 = () => setShowPassword2(

(prevShowPassword2) => !prevShowPassword2);

const handleSubmit = (e) => {

e.preventDefault();

if (formData.newPassword === formData.confirmPassword) {

dispatch(updatePassword(user?.result?._id, formData,

navigate));

toast.current.show({ severity: ’success’, summary:
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’Confirmed’, detail: ’Password Changed!’, life:

7000 });

//alert("Password Changed!", { type: "success" });

} else {

alert("Passwords don’t match");

}

};

const logout = () => {

dispatch({ type: ’LOGOUT’ });

setUser(null);

navigate(’/’);

}

const accept = () => {

toast.current.show({ severity: ’info’, summary: ’Confirmed’,

detail: ’Account Deleted!’, life: 3000 });

setDeletingAccount(true);

dispatch(deleteAccount({ _id: user?.result?._id }, navigate));

setTimeout(() => {

//dispatch(deleteAccount({ _id: user?.result?._id },

navigate));

logout();

}, 3000);

//logout();

}

const reject = () => {

toast.current.show({ severity: ’warn’, summary: ’Rejected’,
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detail: ’Operation Canceled’, life: 3000 });

}

const confirm2 = () => {

confirmDialog({

message: ’This operation is irreversible. Do you want

to proceed?’,

header: ’Delete Confirmation’,

icon: ’pi pi-exclamation-triangle’,

acceptClassName: ’p-button-danger’,

accept,

reject

});

};

const handleChange = (e) => {

setFormData({ ...formData, [e.target.name]: e.target.value });

};

return (

<Container component="main" maxWidth="xs">

<Paper className={classes.paper} elevation={3}>

<Toast ref={toast} />

{deletingAccount ? (

<>

<Typography style={{ marginBottom: ’40px’,

color: ’red’ }} variant="h4">Deleting account...

</Typography>

<i className="pi pi-spin pi-cog" style={{

fontSize: ’20rem’ }}></i>

</>
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) : (

<>

<Avatar className={classes.avatar}>

<LockOutlinedIcon />

</Avatar>

<Typography variant="h5">Password Change</Typography>

<form className={classes.form} onSubmit={handleSubmit}>

<Grid container spacing={2}>

<Input name="oldPassword" label="Old Password"

handleChange={handleChange} type={showPassword1 ?

"text" : "password"}

handleShowPassword={handleShowPassword1} />

<Input name="newPassword" label="New Password"

handleChange={handleChange} type={showPassword2 ?

"text" : "password"}

handleShowPassword={handleShowPassword2} />

<Input name="confirmPassword" label="Confirm

Password" handleChange={handleChange}

type={showPassword2 ? "text" : "password"} />

</Grid>

<Butt type="submit" fullWidth variant="contained"

color="primary" className={classes.submit} >

Change Password

</Butt>

<ToastContainer autoClose={1000}

hideProgressBar={true} />

</form>

<ConfirmDialog />

<div className="card flex flex-wrap gap-2
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justify-content-center">

<Button onClick={confirm2} icon="pi pi-times"

label="Delete Account" severity="danger"

outlined></Button>

</div>

</>

)}

</Paper >

</Container >

);

}

export default Settings;
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