
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea Magistrale in Informatica

Exploring the Effectiveness of AWS
Lambda and Knative in a Serverless Web

Crawler: A Comparative Study

Relatore:
Chiar.mo Prof.
Gianluigi Zavattaro

Correlatori:
Ing. Emanuele Casadio
Dott. Matteo Trentin

Presentata da:
Davide Pruscini

sessione III - terzo appello
Anno Accademico 2022-2023

Here is my source code.
Run it on the Cloud for me.
I do not care how.

Onsi Haiku Test by
Onsi Fakhouri

Abstract

The Internet has become a key resource for accessing and sharing information.
However, not all content found on it can be considered legitimate, and using tools
such as web crawlers can help search for violations. In this thesis, carried out
in collaboration with Kopjra, we aim to develop a web crawler application capa-
ble of automatically visiting a website, extracting URLs and indexing the HTML
documents of its web pages, so as to enable keyword searches. We decided to
compare two serverless implementations based on AWS Lamba and Knative, with
a third microservice-based one that exploits the resources made available by Ku-
bernetes. It is also possible to choose between two search methodologies: HTTP
requests or Browser automation. To support the application, two microservices
were developed, comprising the backend and frontend, as well as the deployment
of an Elasticsearch cluster, which is necessary for proper ingestion of the content
of web pages. Thanks to a series of tests, it is possible to compare the different
implementations and understand the critical issues of each.

Keywords : Cloud Computing, FaaS, Serverless, Kubernetes, AWS Lambda, AWS
SQS, AWS SNS, Knative, RabbitMQ, CloudEvents, Web Crawler, Browser Au-
tomation, Puppeteer, Elasticsearch, Amazon CloudWatch, Prometheus, Grafana,
InfluxDB, Telegraf.

v

Sommario

Questa tesi descrive il lavoro svolto durante il tirocinio presso Kopjra Srl [63],
società bolognese che si occupa di investigazioni online, OSINT e network forensics.
L’attività è stata svolta con la supervisione dell’ Ing. Emanuele Casadio, CTO e
cofondatore dell’azienda, e la collaborazione del Dott. Matteo Trentin, studente
Unibo al secondo anno di dottorato in "Computer Science and Engineering".

L’elaborato mira a valutare l’efficacia dell’approccio serverless per un applica-
tivo web crawler.

L’idea nasce dalla necessità dell’azienda di raccogliere informazioni su siti web
che potrebbero contenere violazioni della reputazione, della proprietà intellettuale
o industriale. La visita di pagine web è quindi volta all’estrazione di URL e all’in-
dicizzazione dell’HTML contenuto in esse, così da poter effettuare, in un secondo
momento, ricerche per parole chiave.

Nel corso del tirocinio, ho approfondito la letteratura relativa al web crawling e
valutato le diverse metodologie adottate per la sua realizzazione. Al fine di garan-
tire costi d’infrastruttura minimi e massima scalabilità, si è scelto di utilizzare il
paradigma serverless, già consolidato all’interno dell’azienda per altri prodotti. So-
no state quindi confrontate le implementazioni basate su AWS Lambda e Knative,
con la rispettiva implementazione a microservizio che sfrutta l’API di Kubernetes.
È inoltre possibile scegliere tra due modalità di ricerca, l’automazione del browser,
dove si interagisce direttamente con il DOM, oppure l’invio di richieste HTTP, più
efficiente in termini di risorse e velocità.

A supporto dell’applicativo, ho sviluppato due microservizi: uno per la gestio-
ne delle ricerche (backend) e uno mirato a migliorare l’usabilità dell’applicazione,
consentendo agli utenti di interagire in modo intuitivo con l’interfaccia (frontend).
Inoltre, ho effettuato il deployment di un cluster Elasticsearch mediante l’appo-
sito operatore di Kubernetes e creato un indice personalizzato per garantire una
corretta elaborazione dei documenti HTML.

La validità delle soluzioni proposte è supportata da una serie di test che hanno
permesso la raccolta di varie metriche, facilitando un confronto tra di esse. Infine,
questa analisi ha permesso di rilevare i vantaggi e gli svantaggi di ciascuna varian-
te, individuando contestualmente le relative limitazioni e le aree che richiedono
miglioramenti.

vii

Contents

Sommario vii

1 Introduction 1
1.1 The Cloud Era . 1

1.1.1 Cloud Service Models . 2
1.2 Serverless Computing . 5

1.2.1 Open Source Solutions . 7
1.3 Web Crawler . 8

1.3.1 Web Crawling Strategies . 9
1.3.2 Legal Concerns . 9

1.4 Objective of the Thesis . 10
1.4.1 Contributions . 11

1.5 Structure of the Thesis . 11

2 Background 13
2.1 AWS Lambda . 13
2.2 Knative . 14

2.2.1 Serving . 15
2.2.2 Eventing . 18
2.2.3 Function . 21

2.3 Puppeteer . 22
2.3.1 Stealth plugin . 24

2.4 Elasticsearch . 24
2.4.1 Elastic Cloud on Kubernetes 26

3 Literature Review 29

4 Methodology 33
4.1 System Architecture . 33

4.1.1 Indexing . 34
4.1.2 Core . 36
4.1.3 Backend . 39
4.1.4 Frontend . 42

4.2 Implementations . 42
4.2.1 krawler on AWS Lambda 42
4.2.2 kn-krawler on Knative . 44

ix

x Contents

4.2.3 krawler-pod on Kubernetes 47

5 Performance Analysis 49
5.1 Monitoring Stack . 49
5.2 Test Design . 51

5.2.1 Metrics . 51
5.2.2 Cluster configurations . 52

5.3 Experimental Results . 52

6 Conclusions 59
6.1 Future works . 60

Bibliography 61

Sitography 65

Glossary 69

Acronyms 77

A Screenshots 81

B Configurations 83
B.1 Knative . 83
B.2 Monitoring . 91

List of Figures

1.1 Interest over time for "Cloud Computing" searches on Google . . . 2
1.2 Levels of abstraction of the different cloud service models 3
1.3 Development process within a serverless platform 6
1.4 CNCF serverless landscape . 7
1.5 Open-source serverless frameworks 8

2.1 Lambda execution environment . 14
2.2 Lambda execution environment lifecycle 14
2.3 Primary resources in the Knative Serving API 16
2.4 Knative Serving architecture components 17
2.5 Event-driven workflow examples . 18
2.6 Event mesh diagram . 20
2.7 Schema of the new Headless Chrome implementation 22
2.8 Puppeteer architecture overview . 23
2.9 ELK Stack overview . 24
2.10 Elasticsearch backend components 26

3.1 Example of cloud-based web scraper architecture 30
3.2 Example of serverless web crawler architecture 31

4.1 High-level web crawlers architecture 34
4.2 Elasticsearch cluster configuration 35
4.3 Core module workflow . 37
4.4 Filter URLs process workflow . 38
4.5 Backend architecture . 41
4.6 Frontend architecture . 42
4.7 AWS implementation . 43
4.8 Knative implementation . 45
4.9 Kubernetes implementation . 47

5.1 Monitoring stack architectures. 50
5.2 Results on search duration - HTTP 53
5.3 Results on search duration - Browser 54
5.4 Results on size of messages - HTTP 55
5.5 Results on size of messages - Browser 56
5.6 Results on error count - HTTP . 57
5.7 Results on error count - Browser . 57

xi

xii List of Figures

A.1 Dashboard screen . 81
A.2 New search creation screen . 82
A.3 View and filter results screen . 82

Chapter 1

Introduction

This chapter provides an overview of the thesis and the topics covered, from the
origin of the term cloud computing to modern-day cloud computing, focusing on
the serverless paradigm. Also the web crawling process will be analysed, and the
ingestion phase will be studied concerning the chosen search engine.

Section 1.1 defines the cloud and describes its five essential characteristics; some
service models that have emerged over time are also included. In Section 1.2, the
serverless paradigm will be analysed, considering its characteristics, advantages
and issues. Section 1.3 explains a general web crawler architecture and how it can
be implemented according to requirements. It uses browser automation to interact
with the web browser and exploits Elasticsearch [23] as a search engine to index
the scraped HTML documents. Section 1.4 presents the objectives of this thesis
and Section 1.5 explains how it is structured.

1.1 The Cloud Era

The idea of computing in a "cloud" traces back to the origins of utility comput-
ing, a concept publicly proposed in 1961 by John McCarthy, a computer scientist
considered a pioneer in the field of AI [2]. He compared future computers with the
telephone system. He said that someday the computing process might be organised
as a public utility, where users share resources and have access to different services
[44].

After a few decades, that the computational model had existed, it was named
cloud computing. It revolutionised the world from a technological and commercial
point of view, enabling companies to move away from the need for large centralised
mainframes and to have on-demand computing resources made available via the
Internet with consumption-based pricing. Cloud computing has become an in-
dustry game-changer, and people realise the potential of combining and sharing
computing resources instead of building and maintaining them [44].

Nowadays, one of the most widely used definitions of cloud computing is given
by NIST [28] that provides five essential characteristics:

1

2 1. Introduction

• On-demand self-service: a consumer can automatically access computing re-
sources without needing human interaction with the service provider;

• Broad network access : capabilities are network-accessible through standard
mechanisms, facilitating use on various client platforms;

• Resource pooling : provider pools computing resources, dynamically allocates
them according to demand and offers location-independent access (e.g. stor-
age, processing, memory and network bandwidth);

• Rapid elasticity : capabilities can be dynamically allocated and deallocated
to match demand, often seeming limitless to the consumer;

• Measured service: cloud systems automatically manage and optimise the use
of resources, offering transparency to service providers and consumers.

Interest in this topic has grown over the years, and the trend shown in Figure 1.1
demonstrates this. It is a new technology that has established itself in modern
society and contributes benefits to other fields of computer science.

Figure 1.1: Interest over time for "Cloud Computing" searches on Google, from 2007 to
2023. The scale is normalised from 0 to 100, with 0 representing the least popular search
term and 100 representing the most popular search term. Picture from Google Trends.

1.1.1 Cloud Service Models

Numerous cloud services are now available, each providing varying computing re-
sources and capabilities, as shown in Figure 1.2. The three fundamental models
are discussed by NIST in [28] and then clarified in [60]. In addition, new models
have been introduced in recent years, which will be analysed.

Infrastructure as a Service

The first abstraction layer gives customers instant access to cloud-based computing
infrastructure such as servers, storage capacity, and networking resources. Users
can configure and use them just like they would with on-premises hardware. The
main difference is that the Cloud Service Provider (CSP) is responsible for hosting,
managing, and maintaining the data centre’s hardware and computing resources.
IaaS customers can access the hardware through an internet connection and pay
for their usage via a subscription or pay-as-you-go model.

Typical end users include developers and other IT professionals who require
direct control over their computational resources. Some examples of IaaS are Elas-

https://www.google.com/trends

1.1 The Cloud Era 3

tic Compute Cloud from Amazon Web Services (AWS) and Compute Engine from
Google Cloud Platform (GCP).

Platform as a Service

The second abstraction layer is built over IaaS and gives customers a ready-to-
use cloud platform to develop and deploy software without the complexities of
managing the underlying infrastructure. Users can create, run and manage their
applications using a software platform provided by another party. The provider has
to take care not only of their physical resources but also of middleware, database
systems, operating systems, and other supplementary services essential for the con-
sumer application, leaving the end user in sole control of the deployed applications
and their data.

Typical professional roles include developers who want to make their apps easily
available. Some examples of PaaS are Elastic Beanstalk from AWS, App Engine
from GCP and OpenShift from RedHat.

Software as a Service

The final fundamental layer at the top of the pyramid is SaaS, which provides
access to applications running on a cloud infrastructure. These applications are
usually accessible from various client devices using a program interface or a web
browser. They can be intended as computer programs that enable the user to
perform coordinated functions, tasks, or activities.

The last few decades have seen an increase in SaaS applications, such as Google
Workspace (Gmail, Drive, Calendar, etc.), Slack and Netflix, which are increasingly
becoming part of our daily lives.

Figure 1.2: A diagram of the different levels of abstraction in cloud service models,
depicting how IaaS, PaaS, and SaaS shift management and operation obligations from
the end user to the cloud provider. Picture from ByteByteGo.

https://blog.bytebytego.com/i/54898662/what-is-iaaspaassaas

4 1. Introduction

The following three service models aren’t described by NIST in [60]; they emerged
in later years and helped address specific challenges and trends in software develop-
ment and deployment. Cloud Native Computing Foundation (CNCF) introduces
these trends in [29] to better understand them and all their components.

Container as a Service

The CaaS model allows users to maintain complete control over infrastructure and
get maximum portability. They can utilise container orchestration tools like Ku-
bernetes [9, 69], Docker Swarm and Apache Mesos to develop and launch portable
and easily-configured applications. These tools provide flexibility and control over
the app’s configuration, allowing it to run on various environments without needing
reconfiguration or redeployment.

Thanks to its less-opinionated application deployment model, users can enjoy
maximum control, flexibility, re-usability, and ease of bringing containerised apps
into the cloud. In comparison, developers have significantly more responsibility for
the operating systems, load balancing, capacity management, scaling, logging and
monitoring.

Backend as a Service

The BaaS model provides similar services to PaaS but also handles the typical
components of an application. It simplifies the management of servers, setting up
authentication, data storage, APIs and other backend components by abstracting
their complexities. The developers must primarily focus on frontend development
and application logic: the framework manages all third-party services.

Two of the most used BaaS platforms are Firebase from Google and Amplify
from AWS.

Function as a Service

According to [68], the FaaS model differs from fundamentals such as IaaS and
PaaS, and has significant differences to more recent models such as microservices.

It is closely related to the notion of cloud function execution, defined in [66] as
“a small, stateless, on-demand service with a single functional responsibility that
implements specific business logic, depending on the goal of the application”. They
also identify three main characteristics for them:

• Short-lived : each function takes in a typically small input and, after a typi-
cally short amount of time, produces the output;

• Devoid of operational logic: the platform layer takes care of all operational
matters, which allows the cloud functions to be platform-independent;

• Context-agnostic: is unaware of how or why it is used.

The Function as a Service model exploits these cloud functions to enable developers
with minimal experience to create, monitor and invoke them. This paradigm can

1.2 Serverless Computing 5

be seen as serverless computing in which the cloud provider manages the resources,
lifecycle, and event-driven execution of user-provided functions [36].

In Section 1.2, the characteristics of this emerging paradigm will be explored in
detail. Some examples of FaaS are Lambda from AWS, Cloud Functions from GCP
and Knative, initially created by Google with contributions from over 50 different
companies [42].

1.2 Serverless Computing

The traditional cloud computing service models have pros, but each has some cons
that a software developer can perceive as complex. To ease this complexity, the
cloud providers introduced a paradigm similar to PaaS, named serverless, hiding
all management tasks about underlying servers for developers and allowing them
more control over applications [70].

Serverless computing describes a finer-grained deployment model that bundles
applications into one or more cloud functions and uploads them to a platform which
deals with the execution, scaling and billing in response to the requested demand.

With this new paradigm, consumers don’t have to spend time and resources
on server provisioning, maintenance, updates, scaling and capacity planning: a
serverless platform takes care of all the necessary tasks and capabilities rather than
being handled by individual developers or IT/operations teams. This abstraction
allows developers to concentrate on writing their application’s business logic while
freeing up operations engineers to focus on more critical tasks for business [29].

There are two principal actors in the serverless scenario:

• Developer : writes cloud functions and benefits from the advantages of a
serverless platform;

• Provider : deploys the serverless platform for an internal or external client.

Although "serverless" implies that there is no need for servers, servers are still
required to run a serverless platform. The platform provider manages the servers,
be it virtual machines or Containers. It’s worth noting that the provider will incur
some cost for the running of the platform, even if there is no activity. Additionally,
a self-hosted system can still be considered serverless. In this case, one team will
act as the provider, while another will serve as the developer.

Usually, serverless is seen as cloud function execution, packaged as FaaS, rep-
resenting the core of serverless computing. Moreover, cloud platforms also provide
specialised serverless frameworks that meet specific application requirements, such
as BaaS. In simple terms serverless = FaaS +BaaS [50].

As shown in Figure 1.3, serverless functions are designed to be triggered by
specific events like HTTP requests, data updates in cloud-based storage or simple
notifications. These requirements concern developers who can define the rules for
binding serverless functions to events. When events occur, serverless functions are

6 1. Introduction

triggered, and the serverless platform will automatically prepare the runtime en-
vironments. The instance initialisation, application transmission, and application
code loading are all preparation processes in the runtime environments called func-
tion instances. At the end of the execution, the serverless platform automatically
recycles function instances and releases corresponding resources.

Figure 1.3: A diagram illustrating the development process within a serverless comput-
ing platform. Picture from [70].

To better understand serverless computing, the main features shown by the
authors of “Rise of the Planet of Serverless Computing: A Systematic Review” [70]
are described below.

• Functionality and no operations : developers can easily create applications on
serverless platforms by choosing the language they are most familiar with and
that suits the use case (e.g., Python, JavaScript, Java, etc.). When deploying
serverless applications, developers only need to upload their application code
or Container to the serverless platform, and the platform takes care of the
rest;

• Auto-scaling : serverless platforms can automatically adjust the number of
function instances depending on the application workload dynamics. This
operation is called scaling, and it allows new function instances to be started
up or running occurrences to be recycled. After a request is completed, the
corresponding function instances and allocated resources are stored in the
memory for a short time. This prepares them to be reused by subsequent
requests of the same function. Without subsequent requests, the serverless
platform will scale to zero by automatically recycling these instances and
resources. However, scaling down to zero creates a problem called "cold
start" for new incoming requests. This is because preparing the required
runtime environments from scratch takes a long time;

• Utilisation-based billing : serverless computing is a pay-per-use model where
software developers only pay for the resources allocated or consumed by the
serverless application at the execution level. As we already said, serverless

1.2 Serverless Computing 7

functions are event-driven and only run when triggered, allowing developers
to avoid charges for idle resources. This is why the serverless paradigm is
more cost-effective than traditional cloud computing, where resources need
to be continuously rented;

• Separation of computation and storage: the separation mode of computation
and storage is adopted by serverless computing to allow the auto-scaling and
the effective handling of intensive workloads;

• Additional limitations : cloud providers impose additional restrictions on
serverless functions to ensure the critical auto-scaling feature of serverless
platforms. These limitations typically include function execution timeout,
deployment package size, local disk size and maximum memory allocation.
Moreover, different cloud providers have various rules concerning their server-
less platforms.

In general, a serverless approach should be considered the best choice when
there are processes that are easy to parallelize in independent work units and that
have sporadic demand with significant, unpredictable variance in scaling require-
ments. Last but not least, the development time is significantly reduced to support
one’s evolving business.

Serverless architectures offer a new development and deployment option for
cloud-native workloads that require careful consideration in the initial stages.
Companies will have a high speed of change in terms of development and can
handle unpredictable capacity and infrastructure requirements. Figure 1.4 reports
an overview of the serverless landscape that gives us an idea of how many realities
are available and ready to use today.

Figure 1.4: Overview of all serverless platforms, frameworks and tools categorised by
Cloud Native Computing Foundation (CNCF). Grey-coloured logos indicate non-open-
source projects. Picture from CNCF.

1.2.1 Open Source Solutions

Many CSPs offer event-driven serverless platforms on their public clouds, such as
AWS Lambda [54]. These platforms allow deployment in any supported language

https://landscape.cncf.io/serverless

8 1. Introduction

and execute on-demand as Docker [46] Containers.

The authors of “Analyzing Open-Source Serverless Platforms: Characteristics
and Performance” [40] analyse the problem of using public serverless platforms that
may result in vendor lock-in risk. To avoid this risk, more and more open-source
serverless platforms, which allow developers to deploy and manage functions on
their self-hosted clouds, have emerged. Even so, building cloud functions requires
a lot of expertise, and in order to not affect performance, an in-depth understanding
of platform frameworks is necessary.

It becomes a challenge for a service developer to distinguish and select the
appropriate serverless platform in different scenarios.

As shown in Figure 1.5, all these solutions are based on Kubernetes [9, 69], a
portable and extensible open-source platform that allows for the automated de-
ployment and management of containerised workloads through declarative config-
uration. Many open-source serverless platforms use it to orchestrate and manage
function Pods, the atomic deployable units within Kubernetes [9, 69].

Figure 1.5: Open-source serverless frameworks and underlying Kubernetes services.
Picture from [40].

The services in the blue box are necessary for configuration management, service
discovery, auto-scaling, Pod scheduling, traffic load balancing, network routing, and
service roll-out and roll-back.

1.3 Web Crawler
The World Wide Web (WWW) provides abundant data in the form of HTML
documents. This data does not have a well-defined structure and, if site owners do
not make APIs available, web scraping or web crawling are the fastest and most
effective methods for collecting information [37, 59].

It is necessary to distinguish between the two processes:

1.3 Web Crawler 9

• Web crawling : given a seed URL it downloads that web page and extracts
all hyperlinks. They are needed to continue the crawling process and each
visited web page is indexed to a search engine for future retrieves [61];

• Web scraping : it enables the extraction of unstructured data from websites
and transforms it into structured data, suitable for storage in a database and
further analysis [37].

Usually, they are used together to discover new web pages and extract infor-
mation from them.

1.3.1 Web Crawling Strategies

According to requirements, there are different strategies for implementing a web
crawler. In [19, 61], these strategies are described and highlights are provided for
each of them:

• General Purpose Crawling : a web crawler fetches pages from a set of URLs
and links. It can slow down the network speed as it fetches all pages;

• Focused Crawling : a focused crawler collects documents on a specific topic,
reducing network traffic. It selectively looks for pages relevant to a predefined
set of matters, leading to significant savings in resources;

• Incremental Crawling : an incremental crawler frequently refreshes the exist-
ing collection of pages based upon the estimate as to how often pages change.
It replaces less important pages with new ones that are more important, con-
serving network bandwidth and enriching data;

• Distributed Crawling : a distributed crawler uses multiple processes to crawl
and download web pages. It allows scalability based on demand;

• Parallel Crawling : a parallel crawler uses multiple processes in parallel to
maximize the download rate, minimize parallelization overhead, and avoid
repeated downloads.

All these strategies can be performed using both libraries that send HTTP
requests (e.g. curl, wget, etc.) or full-featured web browser (e.g. Chrome, Firefox,
etc.) that interacts directly with the DOM.

1.3.2 Legal Concerns

The process of automatically extracting data from websites has become increas-
ingly popular in both corporate and academic research projects. Web crawling
and web scraping have become more accessible to perform thanks to the develop-
ment of various tools and technologies. However, it is crucial to consider the legal
and ethical implications of using these tools for data collection, which are rarely
respected.

In “Web Scraping or Web Crawling: State of Art, Techniques, Approaches
and Application” [37], a review of the legal literature is conducted, as well as the

10 1. Introduction

literature on ethics and privacy, to identify areas of concern and specific issues that
scholars and practitioners should address. Reflecting on these issues and concerns
can help researchers reduce the risk of ethical and legal conflicts.

The legality of web crawling and scraping is still a developing area, and courts
are only now beginning to handle disputes that arise from them for analytic pur-
poses. Additionally, deciding whether web crawling or scraping for analytics raises
legal issues is a highly specific determination that depends on the facts of each
case. Other matters concerning the extraction of data from websites that should
be addressed are described below:

• It is essential to understand the language used in the service agreement or
terms of use before using a website. It is important to check whether the
terms allow automated access to the website, the usage of any data collected
through such means, and the use of the website for purposes other than
non-commercial and personal use;

• To use a website, users must agree to its terms. The enforceability of these
terms depends on how they are presented, either through a click-wrap agree-
ment or a prominent link to the terms-of-use page on each website;

• To prevent unauthorized web scraping and establish crawl rates, the robots
exclusion standard protocol should be used;

• If the website content data is protected by copyright or not;

• If the website owner intends to allow or license the use of the content.

Given the rapid technological advancements in web scraping and crawling, web-
site owners and users of these technologies must stay up-to-date regarding the law
in this area.

1.4 Objective of the Thesis
The primary purpose of this thesis is to develop a web crawler that indexes HTML
documents. The company Kopjra Srl [63], where the author did his internship,
was interested in collecting website information that might contain violations of
reputation, intellectual or industrial property. One interesting implementation
that matches both the company’s and the Professor’s consensus was the serverless
paradigm. For this reason, testing the effectiveness of this paradigm on a web
crawler application was decided upon.

Two different serverless platforms were analysed and compared: AWS Lambda
[54] and Knative [15]. The first is provided by AWS while the latter is an open-
source alternative trusted by various companies like RedHat, Google, VMWare,
IBM, etc. Thanks to the horizontal scalability of this paradigm, it should be
possible to reduce the execution time of each search, which is split into several
concurrent cloud functions.

The third implementation follows the microservices pattern and uses the Ku-
bernetes API [9, 69] to create a Job that deploys a Pod for each new search. In this

1.5 Structure of the Thesis 11

case, the cloud function is represented by the Container inside the Pod resource
and manages the web crawling from start to end.

Following these implementations, the author exported metrics from each plat-
form to facilitate performance comparison.

1.4.1 Contributions

The thesis outlines its main contributions in Chapter 4, which are summarised as
follows:

• Three web crawlers implementations that support both browser automation
and HTTP requests;

• The deployment of an Elasticsearch [21, 23] cluster and the configuration of
an index for the ingestion of web pages to enable keyword searches;

• The implementation of backend and frontend services enabling search man-
agement (i.e. creation, deletion, visualization, query);

• The definition of a test suite to compare the two serverless platforms and the
implementation exploiting Kubernetes [9, 69] resources.

The latest implementation allows greater flexibility than the others, so the
additional feature to perform web crawling on The Onion Router (TOR) network
[32] has only been developed in this one.

1.5 Structure of the Thesis
The first chapter was necessary to introduce serverless computing and web crawling,
the two central topics of this thesis.

Chapter 2 illustrates the technologies required to realise the application at both
the architectural and development levels.

Chapter 3 presents a review of web crawling applications implemented using
the serverless paradigm, referring mainly to AWS Lambda [54] and Knative [15]
platforms.

Chapter 4 presents the contributions of this thesis: the three proposed imple-
mentations will be analysed in detail, as well as the document ingestion, backend,
and frontend services.

Chapter 5 illustrates the design of the test suite for each implementation and
explains which metrics were collected. These metrics made it possible to compare
results and draw performance conclusions.

The final chapter includes the conclusions of the thesis and potential future
works, aiming to add new features and improve the performance side.

Chapter 2

Background

This chapter provides an explanation of the main technologies involved in the
thesis. It illustrates the chosen serverless solutions, the NodeJS library for headless
browser automation and the platform to perform data ingestion and searching. A
note should be made on containerization and orchestration processes performed
with Docker and Kubernetes, respectively. Due to the popularity of these two
tools, it has been decided to not describe them in this chapter and to consider
them as already known.

Section 2.1 describes the serverless computing platform provided by AWS, Sec-
tion 2.2 analyzes the open-source serverless application layer incubated and sup-
ported by CNCF. Section 2.3 explains how the browser automation happens and
what can be achieved using the library. Finally, Section 2.4 introduces some his-
tory of the tool chosen to perform data ingestion and searching, from its origins to
its more technical aspects such as an installation example.

2.1 AWS Lambda
AWS Lambda is a serverless compute service provided by Amazon Web Services
which allows code to be executed without provisioning or managing servers. All of
the administration of the compute resources, including server and operating system
maintenance, capacity provisioning, automatic scaling, and logging is performed
on a high-availability compute infrastructure. As a serverless service, Lambda only
runs functions when an event occurs with a pay-as-you-go billing model [55]. It
integrates seamlessly with other AWS services to invoke functions or perform other
actions, exploiting previously configured triggers or event source mapping. Some
examples of well-connected services are API Gateway, S3, SQS, SNS, Dynamo DB,
etc.

Lambda uses a secure and isolated execution environment that manages the re-
sources required to execute the function, the latter also provides lifecycle support
for the function’s runtime and any external extensions associated with it. Fig-
ure 2.1 and 2.2 show the components of this isolated environment, and illustrate
the runtime phases of the function.

13

14 2. Background

Figure 2.1: The function’s runtime communicates with Lambda using the Runtime
API. Extensions communicate with Lambda using the Extensions API and they can also
receive log messages and other telemetry from the function by using the Telemetry API.
Picture from AWS Lambda.

Figure 2.2: The Lambda execution environment lifecycle is composed of three phases:
Init, Invoke and Shutdown. During the Init phase, the environment is prepared for the
invocation of the Lambda function (download code, init extensions and runtime envi-
ronments, load code). The Invoke phase occurs when the function is invoked, and the
Shutdown phase freezes the execution environment when the runtime and extensions have
completed their tasks. Picture from AWS Lambda.

The code downloaded and executed inside a function is composed of scripts or
compiled programs with their dependencies. There are two available options that
Lambda supports to deploy these files:

• Container images, includes the base operating system, the runtime, Lambda
extensions, application code and its dependencies;

• .zip archives, include an application code and its dependencies; it is created
by default when a Lambda console or a toolkit is used.

In our case, the Container image was chosen as the deployment package because
the dependencies exceeded the size allowed by the zip archive. In addition, using
the Container image enables a static vulnerability analysis to be performed on the
code.

2.2 Knative
Knative is a layer over Kubernetes that solves common problems of deploying,
upgrading and observing software, connecting disparate systems together, routing
traffic, and scaling automatically [15].

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html

2.2 Knative 15

Its implementation was originally started by Google but is maintained by the
community, which includes people from companies like Red Hat, Google, IBM and
VMware. As mentioned, this project was accepted by the CNCF at the incubation
maturity level on 2 March 2022 and recently, a graduation proposal was made by
Knative Steering Committee [38].

In short, it can be defined as a platform-agnostic solution for running serverless
deployments or, in more detail with the following quote: “Knative is a developer-
focused serverless application layer which is a great complement to the existing Ku-
bernetes application constructs. Knative consists of three components: an HTTP-
triggered autoscaling container runtime called Knative Serving, a CloudEvents-
over-HTTP asynchronous routing layer called Knative Eventing, and a developer-
focused function framework which leverages the Serving and Eventing components,
called Knative Functions” [8].

There are several methods to install Knative in a cluster, and each was adapted
to specific use cases and implementation scenarios.

• quickstart plugin: an easy-to-use plugin in which you can specify Minikube
or Kind1 to create a local Kubernetes cluster, which includes the installation
of a simplified version of Knative, only for development purposes;

• YAML-based installation: a more comprehensive option for deploying Kna-
tive in production environments, which involves applying YAML files using
kubectl CLI to establish Knative’s main components and extensions;

• operator: an automated and managed installation process for the Knative
components in a production environment.

In our case, the quickstart plugin was used during the development, and the
YAML-based installation was chosen in the production environment.

At this point, it is possible to interact with the cluster and Knative components
in a classical way using kubectl. Another method is to use kn[13] CLI, which
provides a simple and fast interface for creating Knative resources and simplifies
completing otherwise complex procedures such as autoscaling and traffic splitting.

2.2.1 Serving

Knative Serving defines a set of objects, such as Kubernetes Custom Resource Def-
initions, to control the behaviour of serverless workloads on the cluster. Figure 2.3
shows how these resources interact with each other, providing many simplifications
for the user, when managing deployment or maintenance. A description of each is
given below:

1Minikube and Kind are two tools that allow the creation of Kubernetes clusters locally, so
you can have a local development environment. See https://kubernetes.io/docs/tasks/tools/ for
more details.

https://kubernetes.io/docs/tasks/tools/

16 2. Background

Figure 2.3: Diagram showing the primary resources of Knative Serving API and how
they interact with each other. Picture from Knative.

Service Automatically manages the entire workload lifecycle and checks if all
the necessary resources (route, configuration, revision) are up and running without
problems. It is possible to define to which revision the traffic should be directed.

Route Maps a network endpoint to one or more revisions, making it possible
to split traffic and create named routes.

Configuration Maintains the desired state of the deployment and provides a
clean separation between code and configuration, following the Twelve-Factor App2

methodology. When a configuration is changed, a new revision is automatically
created.

Revision Represents an immutable snapshot of the application code and con-
figuration. It can be scaled up and down automatically according to incoming
traffic and enables progressive roll-out and roll-back of application changes. If idle
for a certain period of time, it is automatically cleaned up by garbage collection,
thus freeing cluster resources.

The logical components involved in creating a Knative Service were presented
and illustrated. Figure 2.4 is intended to describe all components of the architecture
that manage the serverless workflow.

2The Twelve-Factor App methodology is a set of best practices that can help in build-
ing modern, cloud-native applications that are scalable, reliable, and maintainable. See
https://12factor.net/ for more details.

https://knative.dev/docs/serving/architecture/#diagram
https://12factor.net/

2.2 Knative 17

Figure 2.4: High-level architecture components of Knative Serving. Picture from Kna-
tive.

Activator Is responsible for queueing incoming requests when a Knative Ser-
vice is scaled to zero. It communicates directly with the autoscaler to reactivate
services scaled to zero and forward queued requests. It can also act as a request
buffer to handle traffic bursts.

Autoscaler Receives the request metrics and enables a suitable number of Pods
for the correct handling of this load.

Controller Watches the state of Knative resources within the cluster, manages
the lifecycle of dependent resources, and updates the resource state.

Queue-Proxy Is a side-car Container in front of the user-container, collecting
metrics and enforcing the desired concurrency when forwarding requests. When
necessary, it can also act as a queue, similar to the Activator.

Webhooks They are responsible for the validation and mutation of Knative
Resources.

A note must be made about the Ingress component. It does not refer to the
Kubernetes Ingress Resource but to the concept of exposing external access to a
resource on the cluster. This is possible thanks to the Ingress resource and the
three layers of network abstraction available and supported by the community:
Kourier, Contour and Istio.

https://knative.dev/docs/serving/architecture/#diagram
https://knative.dev/docs/serving/architecture/#diagram

18 2. Background

Knative Pod Autoscaler (KPA)

The Knative Serving module provides an automatic scaling of revisions to meet
incoming demand. By default, the KPA is active and supports different metrics
such as concurrency, requests-per-second, CPU and memory. In particular, the
concurrency metric allows you to specify a soft constraint and a hard constraint,
so you have more control over the number of running Pods based on the use case.

The Horizontal Pod Autoscaler (HPA) provided by Kubernetes is not part of
the Knative Serving core. If you wish to use it, you must add it as an extension
after installing Knative Serving.

2.2.2 Eventing

Knative Eventing is a collection of APIs that enables developers to easily follow
an event-driven architecture with their applications. The Eventing module com-
ponents allow events to be routed from producers (referred to as Sources) to
consumers (referred to as Sinks) without worrying about the event format be-
cause it is consistent with the CloudEvents specification, a useful CNCF project
to standardize communication, which will be described below.

(a) Event producers send events to a Broker by POSTing the event, then the Broker
uses Triggers for event delivery.

(b) Event producers exploit Channel to fan out received events via Subscriptions.

Figure 2.5: Examples of event-driven workflow using different architectures and re-
sources. Pictures from Knative (a)(b).

Diagrams of possible applications using Knative Eventing can be seen in Fig-
ure 2.5. The main components are described below:

https://knative.dev/docs/eventing/brokers/
https://knative.dev/docs/eventing/channels/

2.2 Knative 19

Sources Any Kubernetes object that generates or imports an event and trans-
mits it to another endpoint on the cluster via CloudEvents. The resource that
receives the event is an Addressable (e.g. Sink, Broker, etc.). Only a few of the
various types available are listed:

• APIServerSource, produces a new event each time a Kubernetes resource is
created, updated or deleted, bringing the Kubernetes API into Knative;

• PinSource, allows events production with fixed payload based on a specified
Cron3 schedule;

• GitHub, produces a new event for selected GitHub event types, bringing
GitHub events into Knative;

• RabbitMQ, brings RabbitMQ messages into Knative.

Broker Accumulates a pool of events defining an event mesh. It uses Triggers
for event delivery and manages the delivery failures.

Triggers When an event is taken into account by the Broker, it can be for-
warded to subscribers using this resource. They allow events to be filtered by
attributes so that events with particular attributes can be sent to Subscribers
that have registered interest in events with those attributes.

Subscribers Represents any URL or Addressable resources. They can also
reply to an active request from the Broker and can respond with a new event that
is sent back to the Broker.

Channel Defines a single event forwarding and persistence layer. There are
various types available:

• InMemoryChannel, the best effort was provided using an in-memory channel,
not suitable for a production environment;

• KafkaChannel, backed by Apache Kafka topics;

• NatssChannel, backed by NATSS Streaming.

Sinks It is an Addressable or a Callable resource that can receive incoming
events from other resources.

• Addressable Receives and acknowledges an event delivered over HTTP to
an address defined in their status.address.url field. As a special case, the
core Kubernetes Service object also fulfils the Addressable interface.

• Callable Receives an event sent via HTTP and processes it, returning 0
or 1 new event in the HTTP response. This returned event can be further
processed in the same way as events from an external event source.

All these resources make it possible to achieve a mixed infrastructure, with
different Sources producing events which are processed and forwarded, as shown
in Figure 2.6.

3Cron is a daemon software that runs continuously in the background and wakes up to handle
periodic service requests when required. See https://en.wikipedia.org/wiki/Cron for more details.

https://en.wikipedia.org/wiki/Cron

20 2. Background

Figure 2.6: Diagram showing event mesh mechanism, defined by Broker and Triggers
APIs. Picture from Knative.

CloudEvents

Nowadays, there isn’t a common way of describing events; developers have to
write new event-handling logic for each event source. This lack of a common event
format also results in the absence of uniform libraries, tools, and infrastructure for
transmitting event data across different environments.

CloudEvents [12] is a specification for describing event data in common formats
in order to provide interoperability across services, platforms and systems and
wants to fill this gap by offering SDKs for various programming languages (e.g.
Go, JavaScript, Java, C#, Ruby, PHP, PowerShell, Rust, and Python). These
libraries can be used to build event routes, tracing systems, and other related
tools, thus addressing the challenges posed by the absence of a common event
format.

The Listing 2.1 shows a CloudEvent example, where id, source, specversion
and type are required fields; meanwhile, the others are optional4.

{
"specversion" : "1.0",
"type" : "com.example.type",
"source" : "/ example/source",

4See https://github.com/cloudevents/spec/blob/v1.0.2/cloudevents/spec.md for more de-
tails.

https://knative.dev/docs/eventing/event-mesh/
https://github.com/cloudevents/spec/blob/v1.0.2/cloudevents/spec.md

2.2 Knative 21

"id" : "82C32673 -0C78",
"time" : "2020 -04 -10 T01 :00:05+00:00" ,
"datacontenttype" : "application/json",
"data" : {

"foo": "foo"
}

} �
Listing 2.1: Example of a CloudEvent in JSON format, with all necessary fields and
the payload, defined by the data object.

2.2.3 Function

Knative Function offers a simple programming model for using functions on Kna-
tive, eliminating the need for in-depth knowledge of Knative, Kubernetes, Con-
tainers or Dockerfiles. Developers can easily create, build, and deploy stateless,
event-driven functions as Knative Services by using the func [13] CLI.

When a function is built or executed, it automatically generates a Container
image in Open Container Initiative (OCI) [26] format, which is stored in a container
registry5. Subsequently, each time the code is updated and the function is executed
or deployed, the Container image is updated to reflect the changes. It also simplifies
the project creation by providing templates for different languages (e.g. Python,
Go, Java, TypeScript, etc.) and invocation formats (HTTP or CloudEvent).

The Listing 2.2 shows how to install the func plugin and how the creation,
execution and deployment of a function example works.

#!/bin/bash

Install func plugin
brew tap knative -extensions/kn-plugins
brew install func

Create hello function
func create --language go --template cloudevents hello
cd hello

Build and push
func build --registry <registry > --push

Deploy on the current context
func deploy �
Listing 2.2: An example of how to install the func plugin and use it to create, build,
push and deploy a simple function.

5A container registry is a repository or collection of repositories, used to store and access con-
tainer images. See https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-
registry for more details.

https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry
https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry

22 2. Background

2.3 Puppeteer
Puppeteer is a Node library which provides a high-level API to control headless
Chrome or Chromium over the DevTools Protocol [43, 65], which enables instru-
mentation, inspection, debugging, and profiling in some Blink-based6 browsers.
The instrumentation is categorized into different domains (e.g., DOM, Debugger,
Network, etc.), each defining supported commands and generated events, both of
which are serialized as fixed-structure JSON objects.

The headless attribute specifies a way to run the Chrome browser in a headless
environment, essentially without its graphical user interface. All the modern web
platform features provided by Chromium and the Blink rendering engine are avail-
able by CLI and are useful for different web automation tasks, while also reducing
resource usage. In December 2023, Chrome’s Headless mode was updated due to
the old implementation that was separated from the Headfull one and shipped as
part of the same Chrome binary [39]. It was challenging to keep both implementa-
tions up-to-date, each with its own bugs and features; for these reasons, as shown
in Figure 2.7, Chrome developers unified Headless and Headfull browsers in one
code-base only.

Figure 2.7: Schema of the new Headless Chrome implementation. The old Headless
Chrome was unified with the Headfull one. Picture from Chrome for developers.

Puppeteer was quickly updated to support this new Headless mode and in ad-
dition to the features it introduced, there are a lot of actions that can be performed
using this library, for example:

• generate screenshots and PDFs of pages;

• crawl a Single-page Application and generate pre-rendered content;

6Blink is a browser engine forked from the WebCore component of WebKit. See
https://www.chromium.org/blink/ for more details.

https://developer.chrome.com/static/docs/chromium/new-headless/image/the-chrome-headless-is-7ec2038d11f0b.svg
https://www.chromium.org/blink/

2.3 Puppeteer 23

• automate actions such as form submission, UI testing and keyboard input;

• create an up-to-date, automated testing environment to directly run tests in
the latest version of Chrome using the latest JavaScript and browser features;

• capture a timeline trace of your site to help diagnose performance issues;

• intercept and manipulate network requests;

• test Chrome extensions.

The Chrome Browser Automation team oversees maintenance, but being open-
source actively encourages and welcomes community support and contributions.
Users can choose which of the two available packages to install: puppeteer or
puppeteer-core. The first includes, by default, the download of a recent version
of Chrome for Testing7 while the latter doesn’t.

Figure 2.8 shows an overview of the library architecture with all the basic
components that make the operations described above possible.

Figure 2.8: Overview of the Puppeteer library architecture. Picture from GitHub.

7Chrome for Testing has been created purely for browser automation and testing purposes and
is not suitable for daily browsing. See https://developer.chrome.com/blog/chrome-for-testing/
for more details.

https://raw.githubusercontent.com/puppeteer/puppeteer/main/docs/assets/overview.png
https://developer.chrome.com/blog/chrome-for-testing/

24 2. Background

2.3.1 Stealth plugin

Although Puppeteer is a robust library, it has limitations regarding extensibility
and customization. For these reasons, a German developer named berstend on
GitHub created a modular plugin framework built on top of Puppeteer called
Puppeteer-Extra [5].

One of the most widely used is puppeteer-extra-plugin-stealth [6], which
deals with applying various evasion techniques to make the detection of puppeteers
harder. It’s probably impossible to prevent all ways to detect Headless Chromium,
but it should be possible to make it so complicated that it becomes cost-prohibitive
or triggers too many false positives to be feasible. Other relevant plugins are:

• puppeteer-extra-plugin-recaptcha, solves reCAPTCHAs8 automatically,
using a single line of code;

• puppeteer-extra-plugin-adblocker, very fast and efficient blocker for ads
and trackers that reduces bandwidth and load times;

• puppeteer-extra-plugin-anonymize-ua, anonymizes the user-agent on all
pages using dynamic replacing, so the browser version stays intact and recent.

2.4 Elasticsearch
Elasticsearch is a distributed search and analysis engine at the heart of Elastic
Stack. Together with Kibana, Beats and Logstash, they form the ELK Stack: a
product that allows reliable and secure data to be taken from any source and any
format, with the aim of searching, analyzing and visualizing it.

Figure 2.9: Overview of the Elastic Stack and its components. Picture from Medium.

As briefly illustrated in Figure 2.9, each module has its own purpose and can
be used separately. In particular, the Elasticsearch tool is built on top of Apache
Lucene, a historical library with the same objective. It was developed due to the
complexity of Lucene and it hides the hard Java integration behind a simple and
coherent RESTful API [71].

8reCAPTCHA is a free service from Google that helps protect websites from spam and abuse.
See https://www.google.com/recaptcha/about/ for more details.

https://miro.medium.com/v2/1*BR2dtNq9wkvZZdg4L4GbwQ.png
https://www.google.com/recaptcha/about/

2.4 Elasticsearch 25

Since its first release, it has been distributed with open-source Apache License
2.0. However, in January 2021, with the release of Elasticsearch 7.11, the Elastic
company decided to change the licence of Elasticsearch and Kibana to a dual,
not open-source license: Elastic License and Server Side Public License (SSPL).
This choice was made to prevent Amazon, and other companies, from providing
Elasticsearch and Kibana as a service without collaborating with Elastic [4, 24].

To understand the functionality of Elasticsearch better and to discover its ben-
efits, it is useful to describe what an index is. The index concept in Elasticsearch
can be compared to an optimized collection of documents, each document is a com-
pilation of fields represented as key-value pairs. By default, Elasticsearch indexes
all data in each field and each indexed field has a dedicated and optimized data
structure (e.g. text fields are stored in inverted indices, numeric and geoinforma-
tion fields are stored in BKD trees, etc.). This approach enables the efficient and
specialized handling of different types of data, contributing to the platform’s effec-
tiveness in managing and retrieving various forms of information in near real-time
[20]. When the document is actually stored, searches can be directly performed
using the REST API or the Elasticsearch client available in different programming
languages; both support structured queries, full-text queries and complex queries
combining the two.

In addition to the index concept, it is essential to understand the fundamen-
tal components that make up the Elasticsearch backend. These components are
depicted in Figure 2.10 and include:

• a cluster, defined as a group of one or more node instances that are connected
together;

• one or more nodes, each representing a single server that stores data and
participates in the cluster’s indexing and search capabilities;

• shards, each representing a subset of the data stored in an index, are ex-
tremely useful for distributing the workload across multiple nodes;

• documents, as described above, are the basic unit of information and consist
of a JSON object with key-value pairs that represent the data to be stored
and indexed.

26 2. Background

Figure 2.10: Architecture of an Elasticsearch installation, with all key components.
Picture from Miracle.

It is important to specify that there are different types of nodes, such as mas-
ter nodes, data nodes, ingest nodes and others, each with a specific role in the
cluster. Furthermore, it is necessary to have at least one master node and three
master-eligible nodes to keep the cluster healthy and enable the platform to operate
properly, even in the event of failures.

2.4.1 Elastic Cloud on Kubernetes

There are different ways to install Elasticsearch. You can use the hosted service,
manually install it, use package managers, run it on Containers with Docker, deploy
it with Helm charts, or use Elastic Cloud on Kubernetes (ECK). The latter, in our
scenario, is the most interesting way.

In May 2019, Elastic announced this new orchestration product based on the
Kubernetes Operator pattern9 that allows users to make available, manage and
operate Elasticsearch clusters on Kubernetes [22]. It was called ECK and focuses
not only on simplifying the task of deploying Elasticsearch and Kibana but also on
streamlining critical operations such as managing and monitoring multiple clus-
ters, upgrading to new stack versions, scaling cluster capacity, changing cluster
configuration, dynamically scaling local storage, and scheduling backups.

A step-by-step guide for installing the ECK operator and deploying an Elastic-
search cluster is given in Listing 2.3 and 2.4.

#!/bin/bash
ECK=" h t tp s : / / download . e l a s t i c . co / downloads / eck / 2 . 1 1 . 0 "

9Operators are software extensions to Kubernetes that make use of custom resources
to manage applications and their components following Kubernetes principles. See
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/ for more details.

https://blog.miraclesoft.com/wp-content/uploads/2023/08/xelasticsearch-image-1-1024x643.png.pagespeed.ic.DhHOg8eTFd.webp
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

2.4 Elasticsearch 27

Install custom resource definitions (CRDs)
kubectl create -f "${ECK}/ c rd s . yaml"

Install the operator with RBAC rules
kubectl apply -f "${ECK}/ ope r a t o r . yaml" �

Listing 2.3: Install ECK operator with its CRDs and RBAC rules.

apiVersion: elasticsearch.k8s.elastic.co/v1
kind: Elasticsearch
metadata:

name: quickstart
spec:

version: 8.12.0
nodeSets:
- name: default

count: 1
config:

node.store.allow_mmap: false �
Listing 2.4: Elasticsearch cluster specification to deploy one Elasticsearch node.

Chapter 3

Literature Review

Serverless frameworks and the web crawling process are continuously growing ar-
eas of research. The latter is a more mature field: the first web crawlers appeared
in 1994 [49], and they have taken advantage of the latest technologies. On the
other hand, the serverless paradigm is a relatively younger technology: the first
serverless platform was introduced at the end of 2014 by AWS and it was called
AWS Lambda [58]. Both fields are characterized by many publications document-
ing issues, challenges and innovations. This section will describe some examples of
publications about these two topics.

Hongfei Yan et al. designed and evaluated an efficient web crawling system
[41] where they implemented a fully distributed web crawler, a URL allocation
algorithm and a method to ensure the scalability of the system. It includes a We-
bGather Server Registry (WSR) that manages several main controllers; each main
controller coordinates its own collector, which performs the crawling process. To
improve communication performance, only URLs are shared. Another similar sys-
tem is shown in [67], where the authors implemented a scalable and fully distributed
web crawler using the Java programming language. Thanks to this choice, the soft-
ware can be platform-independent. It consists of multiple identically programmed
agents that communicate with each other to crawl the web, ensuring dynamic and
decentralized coordination between them. To avoid overloading individual agents,
the amount of URL to be handled by each of them is equally distributed.

Two cloud-based web crawlers are discussed in [72] and [59], where services pro-
vided by Azure and AWS are used respectively. The first exploits the MapReduce
programming paradigm and uses distributed agents, each of which stores what
it finds on Azure Tables or Blobs1. The second makes use of various AWS ser-
vices such as EC2, Dynamo DB, SQS and S3 to perform on-demand web scraping
for big data applications. To understand better how this last solution works, the
architecture is shown in Figure 3.1.

1Azure Table is a NoSQL store of key-values for rapid development while Azure
Blob allows massive storage of unstructured data. Both are storage services pro-
vided by Azure. See https://azure.microsoft.com/en-us/products/storage/tables and
https://azure.microsoft.com/en-us/products/storage/blobs for more details.

29

https://azure.microsoft.com/en-us/products/storage/tables
https://azure.microsoft.com/en-us/products/storage/blobs

30 3. Literature Review

(a) Ecosystem. (b) Engine.

Figure 3.1: Diagrams show the architecture and logic workflow of a cloud-based web
scraper. Users request the scraping service through a UI, providing URLs and configura-
tions. These are stored in a database in JSON format, and a request is generated in SQS
by Scrapehub. The engine reads the URLs and configuration from the JSON file, checks
the validity of the URLs, renders the valid ones using a Selenium Renderer, and stores
the extracted content in the database after parsing and filtering. Pictures from “Cloud
Based Web Scraping for Big Data Applications” [59].

Other solutions that aim to implement a web crawler/scraper exploiting AWS
Lambda serverless service are illustrated in [45] and [64]. In the first, some con-
siderations are made regarding the different implementations that can be put in
place to implement a web scraper, from an on-premises-like solution to a serverless
solution.

• Use an EC2 instance to have full control of the infrastructure. It requires
manual operations, such as setting up the environment, completing security
tasks and monitoring the health status over time;

• Containerise the application and deploy it on Elastic Container Service. The
biggest advantage of this is the platform independence;

• Use a Lambda serverless service, which allows a very lean infrastructure to
be created on demand and scales continuously, with a generous free monthly
tier. The main constraint of this is that the execution time of each individual
function is limited to 15 minutes.

In the second, a serverless web crawler with a search engine was developed not
only using AWS Lambda but also Dynamo DB, Step Functions, S3 and Kendra
services. Figure 3.2 shows how these components interact, making it possible to

31

run several crawlers simultaneously that store the title text and HTML text of the
processed pages, with the aim of performing keyword searches on Kendra.

(a) Architecture.

(b) State machine defining web crawler algorithm.

Figure 3.2: Diagrams show the architecture and logic workflow of a serverless web
crawler with a search engine. It is important to note in (b) how each step can be executed
in a Lambda function dealing with a specific task so as to bypass the Lambda timeout of
15 minutes. Pictures from Scaling up a Serverless Web Crawler and Search Engine [64].

32 3. Literature Review

Several articles from the literature were illustrated, starting with classical web
crawler solutions and ending with serverless web crawlers. Looking at Knative,
there is no implementation of this type of application; the few articles mainly deal
with modifying the KPA autoscaling algorithm and reducing the cold start time
[27, 31].

Chapter 4

Methodology

This chapter introduces the main contributions of the thesis, first describing the
components that constitute the solution, common to all implementations. Since
the final objective of this work is to evaluate three different web crawler implemen-
tations and to understand whether it is appropriate to use the serverless paradigm
in this use case, the chapter is divided into two main sections:

• Section 4.1 describes the main components common to all implementations,
it analyses the operations performed by each component and illustrates the
technology stack of our applications;

• Section 4.2 comprises three subsections, each of which aims to describe in
depth the underlying infrastructure of each implementation; in addition, the
changes made to the code bases are explained.

4.1 System Architecture

As mentioned earlier, it is necessary to describe the architecture used at a high
level, which underlies the three web crawling applications, in order to understand
how the framework works. Figure 4.1 illustrates the essential modules and the two
types of memorization used to store search information and HTML documents.

33

34 4. Methodology

Figure 4.1: High-level architecture common to all web crawler implementations. Each
component is shown, and the technology stack used is specified for our modules.

The frontend module provides a UI for users to interact with. It incorporates
Open Authorization (OAuth 2.0) to ensure secure access to the platform and allows
logged-in users to perform actions such as creating, analysing and deleting crawl
searches. In order to start the web crawling process, users must provide a seed
URL for the specific site they wish to explore, specify the number of pages to
crawl, name the search with a brief description, and decide whether to use browser
automation or HTTP requests.

The backend makes sure that the data entered are valid before creating a new
document inherent to the search within the NoSQL database. It also initiates the
search by forwarding the seed URL and a unique identifier to the core module.

The latter loads the web page according to the chosen method, scrapes all the
links in it, filters and validates them, and extracts the HTML body to load the
document into the Elasticsearch index. As a response, it sends the filtered links in
batch to the backend, which is responsible for continuing the search or stopping it,
based on the current number of visited URLs that is tracked in the database.

4.1.1 Indexing

One key aspect of this application is the ability to index the HTML body of visited
web pages, so as to enable keyword searching. In order to create a high-availability
cluster suitable for production, the smallest possible configuration comprising two
nodes with a tiebreaker was chosen [25]: a particular node that resolves deadlocks or
ties when decisions require a majority vote in Quorum-based System. As explained
in 2.4, it was decided to deploy the ECK operator to enable easy installation of
the Elasticsearch module. Figure 4.2 illustrates some of the resources required for
proper operation.

4.1 System Architecture 35

Figure 4.2: The smallest possible Elasticsearch cluster configuration that is suitable for
production deployments. It ensures high availability and resiliency to the failure of an
individual node.

The three Pods inside the elasticsearch Namespace compose the cluster1, each
node has one or more roles to play during the execution, in particular:

• Node 1 and Node 2 have master and data roles, they interact directly with
the persistent storage to index and query the uploaded documents. Since
Elasticsearch is a Quorum-based System, it is necessary for there to be mul-
tiple master or voting_only nodes within the cluster;

• Tiebreaker, has only master and voting_only roles, it is necessary to per-
form election also with one node failure and it doesn’t interact with the
persistent storage. It intervenes when the leading nodes are evenly divided
or cannot reach a consensus due to network problems.

The installation includes an internal Service by default, and with a simple

1Any time that you start an instance of Elasticsearch, you are start-
ing a node. A collection of connected nodes is called a cluster. See
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html for more
details.

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html

36 4. Methodology

change to the configuration YAML file, an external Service can be added. The
latter exposes a virtual IP address that was linked to a DNS name through Amazon
Route 53. In both internal and external connections, the Elasticsearch module
requires API token authentication.

Once the deployment is done, it is possible to create a new index that will store
the scraped HTML body of the visited web pages. Thanks to the text analysis
process, Elasticsearch provide a simple way of converting unstructured text into
a structured format that is optimized for search. In our case, the documents
indexed by the platform include three fields: crawl_search_id, url and html.
The first is necessary to understand what search that page refers to; the others
contain actual information about the web page. During the ingestion or search
phase, tokenization and normalization are essential, together with the analyzer
package, they define the rules to perform a full-text search. Specifically, the two
custom analyzers html_analyzer and html_search were defined, which perform
respectively the following operations:

1. strips HTML elements, removes punctuation and white spaces, casts all to
lowercase, converts outlier characters to their ASCII equivalent when possible
and removes stop words of different alphabets (ingestion phase);

2. the same above, without the strip of HTML elements (search phase).

Once the index is populated, it will be possible to search one or more keywords:
the response will show all URLs that in the html field contain those words or,
depending on the parameters chosen in the query, at least one of them.

4.1.2 Core

The core module is the beating heart of the application. It receives messages from
the backend and starts the web crawling process, which is divided into several
stages. Both implementations that exploit the serverless paradigm operate follow-
ing this workflow; on the other hand, the microservices variant will be analyzed
separately in Subsection 4.2.3.

An example of an initial message is shown in Listing 4.1, you can specify an
optional fourth field within the JSON object called credentials, which is needed
in case you have to perform automatic login to the site you want to crawl (n.b. it
is a limited feature, working only in certain types of sites that contain standard
authentication forms). Figure 4.3 illustrates all the intermediate steps of a search,
according to the method chosen by the user.

[
{

"id":"65 d5f46d7a848e6e8bf41bb3",
"url":" https :// tg24.sky.it/",
"browserAutomation ":" true"

}
] �

Listing 4.1: Example of an initial message received by the core module.

4.1 System Architecture 37

Figure 4.3: Diagram describing the operations performed by the core module, in the
two serverless implementations.

38 4. Methodology

Functions can process a maximum of 5 messages at a time. After receiving an
array in input, it is filtered to separate messages according to the browserAutomation
field. The differences between the two methods will now be analyzed.

HTTP request For each message inside the filtered array with the browserAutomation
field equal to false, get the url field and perform an HTTP request using the Got
Scraping library [3]. If the response status code is 200 OK, retrieve the HTML
body of the web page and scrape all the a[href] selectors using Cheerio library
[7]. Once the href attributes have been extracted from the a selectors and a set is
created with them, the process of filtering URLs is carried out.

Browser automation If there is any message inside the filtered array with the
browserAutomation field equal to true, start the Chromium browser in headless
mode, get the url field and open a new tab (n.b. Puppeteer calls it page) for
each of them. In these new tabs, the request interceptor is enabled so that image,
media and font resources are not loaded and redirects do not exceed two-hop limits.
Also, if dialog boxes are present, they are closed. When the DOMContentLoaded
event is fired, it is possible to retrieve the HTML body of the web page and scrape
all the a[href] selectors using directly Puppeteer. Once the href attributes have
been extracted from the a selectors and a set is created with them, the same
URL filtering process used in the previous method and illustrated in Figure 4.4 is
performed.

Figure 4.4: Diagram describing the steps performed to filter URLs.

Given the array containing all the raw links, it is necessary to filter them as
follows:

1. Check the type of URI, discarding those not of interest with a regex (e.g.

4.1 System Architecture 39

mailto,tel, javascript, etc.);

2. Check the MIME resource type according to the allowed types (e.g. text,
html, application/x-httpd-php etc.);

3. If both conditions are met, check whether the URL is absolute or relative.
In the first case, it will be sufficient to verify that the host of the seed URL
is contained therein; in the latter, it is necessary to reconstruct the absolute
URL;

4. The filtered URL can be added to the set, which will then be output by the
function in the form of an array.

Finally, the filtered URLs inside the array are sent to the backend in batches
of 20 as shown in Listing 4.2 and the HTML documents are uploaded in bulk to
the Elasticsearch index along with the source url and the id to link the search.

{
"id":"65 d5f46d7a848e6e8bf41bb3",
"batch ":[

"https :// tg24.sky.it/edizioni -locali",
"https :// tg24.sky.it/salute -e-benessere/alimentazione",
etc.

]
} �

Listing 4.2: Example of a response message sent by the core.

With these two search methods available, we offer users the flexibility to choose
according to their needs, allowing each person to decide which method to use: more
realistic browsing that takes advantage of browser automation and loads the DOM
of each web page, or using HTTP requests that are certainly faster but with possible
limitations imposed by web site administrators.

4.1.3 Backend

The backend module is needed to manage the creation, interaction, and deletion
of searches and, in particular, allows the web crawling process to continue once it
has started. It was developed according to the principles of Hexagonal Architec-
ture, taking advantage of a scaffolder used in Kopjra as a basic project structure
generator.

It connects to a MongoDB NoSQL Database and interacts with three collections
defined as follows:

• crawlsearches, where all the information about searches is stored, it is
necessary to keep track of the crawling status and the number of URLs vis-
ited so far, two useful timestamps related to creation and last update are
also tracked. Some important fields in this collection are seed, visitedUrls,
maxVisitedUrls, and status ;

40 4. Methodology

• results, stores all URLs obtained through the core module and keeps track
of those visited; a timestamp related to the creation is also tracked. Some
important fields in this collection are url, visited, and crawlSearchId ;

• users, manages all stuff related to the user, such as credentials, OAuth 2.0
token, etc. It is fundamental during the authentication stage.

As a backend application, it offers all CRUD operations on the first two col-
lections. Still, we will focus mainly on the paths of interest that manage the flow
of creating a search up to its completion and allow you to search in the results
obtained.

POST /crawls Listing 4.3 shows an example of a valid payload to use on this
route. Once the body has been validated, an object within the crawlsearches
and results collections is created, where the visited field is set to true for the
seed URL. Based on the implementation, a first message is sent to the core module
through SQS or RabbitMQ broker.

{
"seed ":" https :// tg24.sky.it/",
"name ":" tg24 sky news",
"maxVisitedUrls ":100,
"browserAutomation ":true

} �
Listing 4.3: Example of a valid payload message to create a new search.

POST /internal/results The same payload illustrated in Listing 4.2 is used
on this route. When the core module starts sending data, the data does not go
directly to the backend; instead, SNS or RabbitMQ is exploited, depending on the
implementation. Once the message is forwarded by one of the previous technologies
and received by the backend, it creates many objects inside the results collection
based on the number of URLs in the batch field, setting them all to unvisited.
Now, the current crawl search identified by the id can continue or not, there may
be several scenarios:

• the search has already reached the finished status due to previous calls on
the same internal route;

• the search has not yet reached the finished status, so the backend needs to
check if the current number of visitedUrls has not exceeded the maxVisite-
dUrls. If this condition is verified, it increments the number of visitedUrls,
retrieves a new unvisited URL from the results collection and sends it to
SQS;

• the search has not yet reached the finished status but the current number
of visitedUrls has reached the maxVisitedUrls value, so the search status is
updated to finished;

• the search has not yet reached the finished status nor the maxVisitedUrls
value, but there are no more visitable URLs within the results collection,
so the search status is updated to finished.

4.1 System Architecture 41

GET /crawls/crawlSearchId/results During the crawling process, as we al-
ready said, the HTML body of each visited URL is indexed. This route allows
keyword searches within the URL string and inside the index managed by Elastic-
search, which contains the HTML body of the web pages visited. Just specify the
url parameter for the first type of search, and the htmlQuery and strictHtmlQuery
parameters for the second. In particular, strictHtmlQuery is a boolean that spec-
ifies whether the keywords must all be present in the document or at least one is
sufficient.

Having explained the backend’s role in creating and completing a search as well
as keyword searching in the results, let us now turn to its architecture, illustrated
in Figure 4.5.

Figure 4.5: Backend architecture.

Docker was used to define a multi-stage build, which, together with a node:alpine
base image, allowed us to optimize our Container. The CircleCI tool builds and
pushes the Docker image, and then leverages the Kustomize configuration files to
deploy in a standard way our backend application on Google Kubernetes Engine
(GKE). Several resources have been defined in the Kubernetes files, such as Con-
figMap, Secret, Deployment, Service and Ingress. The latter manages the external
access to the backend so that the frontend can query it directly from the DNS
name specified in Amazon Route 53 service.

A note on why a clock Pod was also deployed: it checks every 10 minutes if,
for some reason, a search crashes and does not reach the finished state, updating
it to a general error state if the last change was within 5 minutes.

42 4. Methodology

4.1.4 Frontend

The frontend module makes life easier for users who want to use this application.
It is a SPA written in React and deployed inside an S3 bucket, according to [30].
Again, a scaffolder provided by Kopjra was used to create a base project structure
and start the development.

The architecture is illustrated in Figure 4.6, mainly leveraging AWS services
such as S3, Cloudfront, ACM and Route 53. In addition, the deployment is per-
formed using CircleCI’s aws-s3 orb2, which allows us to synchronize and copy all
files inside our repository to an S3 bucket.

Figure 4.6: Frontend architecture.

The ability to authenticate with your Google account by leveraging OAuth 2.0
is given, so one does not have to create an additional user account.

Some screenshots are given in Appendix A so that the various scenarios can be
better understood.

4.2 Implementations
The various modules that make up the web crawling application were described so
as to get an overview of the behaviour of each of them. In this section, we want
to take an in-depth look at the three proposed implementations, dwelling on the
configuration of the core module of each. Similar architectures to the previous ones
will then be shown, with some variations highlighted in orange.

4.2.1 krawler on AWS Lambda

In this scenario, the core module is deployed in a Lambda function, and the I/O
communications are managed by SQS and SNS services respectively. The first
challenge was to install a browser inside the latest NodeJS image3 provided by

2See https://circleci.com/developer/orbs/orb/circleci/aws-s3 for more details.
3See https://gallery.ecr.aws/lambda/nodejs for more details.

https://circleci.com/developer/orbs/orb/circleci/aws-s3
https://gallery.ecr.aws/lambda/nodejs

4.2 Implementations 43

AWS. One simple method would be installing Google Chrome directly, as ex-
plained in [53], but unfortunately, it significantly enlarges image size. Using
chrome-aws-lambda [1] could have been an option thanks to the small size of
the binary and the updates made a few days after Puppeteer’s, but it is no longer
maintained. The solution chosen involves the use of a fork of the latter, called
chromium [62], which is no longer tied directly to Puppeteer but works perfectly
with it and weighs a few megabytes more. It was then installed as a dependency
along with puppeteer-core, without additional instructions within the Docker-
file. Again, a multi-stage build was defined to optimize our Container. Figure 4.7
illustrates the specific architecture of this implementation.

Figure 4.7: Application on AWS.

44 4. Methodology

The deployment was managed by CircleCI, which handles the image building
process, pushes the Container image into a registry, and uses the AWS CLI to
update the Lambda function, previously configured with 1280MB of memory and
60s of timeout. It is not possible to explicitly state the computational capacity
because it varies according to the allocated memory (1769MB of memory has the
equivalent of one vCPU [57]) and the timeout was useful in case some web pages
took too long to load.

SQS is used as a trigger for our Lambda function. Through it, we were able
to choose the number of messages contained in each batch, and processed by the
function at each invocation. The parameters set are described below with their
corresponding value :

• Batch size defines the maximum number of messages to send to the function
and was set to 5;

• Batch window specifies the maximum amount of time to gather messages
before invoking the function. It was set to 20 seconds;

• Maximum concurrency represents the maximum number of concurrent func-
tions that the event source can invoke. Since we had to perform a series of
tests with the other implementations as well, it was decided to set it to 100.

During its execution, the core sends batch results to SNS, which acts as a
deliverer and is responsible for notifying the registered endpoint. The latter points
to the /results/internal route of the backend, made accessible by the DNS name
previously registered in Route 53.

To recap, the backend module receives a new crawl search request and forwards
it to SQS using the specific TypeScript SDK. Next, SQS sends this message to
Lambda which is responsible for processing them and sends batches of URLs to
SNS and HTML documents to Elasticsearch. Finally, SNS forwards the backend
module with the results, which may or may not continue the crawling process.

4.2.2 kn-krawler on Knative

In this scenario, the core module and backend have been deployed using Knative,
while I/O communications are handled by a RabbitMQ broker [17] that is respon-
sible for routing all the events, represented by the CloudEvents [12] specification.
The choice was made to use RabbitMQ [51] instead of Apache Kafka as the message
deliverer because it is lighter and requires fewer computational resources; in addi-
tion, when this thesis work was started the integration of Apache Kafka within the
Knative Eventing ecosystem was still in beta. In this case, the browser installation
was easier, the latest NodeJS Alpine image was used, and thanks to its package
manager, it was possible to install Chromium from the community repository. The
faas-js-runtime framework [52] was used to handle requests on the core mod-
ule and a multi-stage build was defined to further optimize the Container image,
ensuring the highest efficiency level.

Some preliminary steps to install Knative components and RabbitMQ operator

4.2 Implementations 45

are given in Listing B.1. Then, you must deploy a RabbitMQ cluster as defined
in Listing B.2, allowing the broker we will configure in Listing B.3 to function
properly. Figure 4.8 shows the specific architecture of this implementation.

Figure 4.8: Application on Knative.

You can immediately notice an additional Pod called Event Display. It is used
as a message viewer for the Dead Letter Sink (DLS) of the broker and for general
logging, it scales up from zero when there is any message. Its Knative deployment
is described by Listing B.4.

The backend module was also deployed using Knative as described in List-
ing B.5, with a minimum scale attribute equal to 1. It communicates with the
broker leveraging the CloudEvents SDK [10] for TypeScript and receives CloudE-
vents on the internal route. One lacking feature, compared to the previous imple-
mentation, is the ability to specify a batch_size; in fact, changes were made by

46 4. Methodology

the backend to send, within a single CloudEvent, a list of messages of maximum
length 5. An example of a message it sends is shown in Listing 4.4.

{
"type ":"dev.kapturer.crawls",
"source ":"kn-kapturer -be",
"datacontenttype ":" application/json",
"data ":[

{
"id":"65 d5f46d7a848e6e8bf41bb3",
"url":" https :// tg24.sky.it/",
"browserAutomation ":false

}
]

} �
Listing 4.4: Example of search start message on Knative from backend module. The
mandatory fields that CloudEvents must have were not reported.

The core module takes advantage of the scale-to-zero feature, enabling it to
automatically terminate idle replicas that have remained inactive for a designated
duration. The Knative deployment configuration for this service is detailed in List-
ing B.6. The various autoscaling annotations show that the metric chosen to scale
up this service is concurrency, which determines the number of simultaneous re-
quests that can be processed by each replica of an application at any given time. A
cap of 100 concurrent functions has been set, which controls the maximum number
of replicas that each revision should have. Knative will attempt to never have more
than this number of replicas running or in the process of being created at any one
point in time. Also, it is possible to specify a soft or hard limit, which represents
a targeted threshold and an enforced upper bound on concurrency, respectively.
The containerConcurrency field defines a hard limit of 1; this value defines the
exact number of requests that can be sent to a replica at any time. The concur-
rency value can be further adjusted using the target-utilization-percentage
attribute, which explains the percentage of the previously specified target that the
autoscaler must actually achieve. In other words, it will create a new replica as
soon as any concurrent request is detected. This means that the autoscaler will
initiate a new replica to handle potential additional requests even with just one
concurrent request.

When the RabbitMQ broker receives an event, it then takes care of routing it
according to the subscribers to that event type. Therefore, communications to the
backend and core modules, occur via two triggers that filter events based on the
source and type fields of the CloudEvent, as can be seen from their definition in
Listing B.7. The parallelism attribute helps to define the number of workers the
trigger creates to consume messages off the queue and dispatch them to the sink.

4.2 Implementations 47

4.2.3 krawler-pod on Kubernetes

The previous implementations follow the serverless paradigm, either delivered via
service from a cloud provider such as AWS or managed in-house through the deploy-
ment of Knative, an open-source serverless solution. In this last implementation,
we want to use the resources provided by Kubernetes, leveraging the microservices
paradigm.

A lot of responsibilities regarding search management are taken away from the
backend module. It still handles CRUD operations, but it is no longer concerned
with the termination of searches. As can be seen from Figure 4.9, when the backend
receives a request to create a search, a new Job resource is added to the cluster.
The latter creates a Pod that handles the entire search to completion, visiting the
number of web pages specified by the maxVisitedUrls field.

Figure 4.9: Application on Kubernetes.

In more detail, the backend after creating the search document within the
crawlsearch collection, leverages the Kubernetes API client [11] to programmat-

48 4. Methodology

ically define a comprehensive set of resources, including Container, Pod and Job.
These resources are encapsulated sequentially, akin to a matryoshka doll, and they
compose the object that will be submitted to the cluster. The operation of sub-
mitting a Job without permission cannot be performed, which is why a Role-based
access control (RBAC) policy was added through the definition of ServiceAccount,
Role and RoleBinding resources.

All useful search information is passed to the core via environment variables
injected into the Container so that it can handle the search autonomously since
it connects directly to the database. The definition of Dockerfile is the same as
that used in the Knative core, so the browser was installed the same way using
APK. Due to the fact that this implementation has no concurrency, it was decided
to visit 10 URLs at a time instead of 5 to speed up searches, slightly increasing
the computational capacity and leaving the memory limit at 1280MB. In addition,
thanks to the behaviour of this architecture, it was possible to add two interesting
features:

1. stop and resume searches that have been started but not yet finished;

2. possibility of performing web crawling on .onion sites when the browser au-
tomation method is chosen, thanks to the optional use of a Sidecar Container
that acts as a TOR proxy.

Analyzing the serverless implementations, surely stopping a search for which
invocation requests have already been sent is not feasible by paradigm, since there
is no storage of information and the overall status of the search is unknown. Also,
injecting a Sidecar Container inside a function would only slow its execution,
considering the proxy tor startup time, which is on the order of a few minutes.
A microservices-oriented implementation strategy involves maintaining a continu-
ously running Pod serving as a proxy tor. In the context of Knative, individual
concurrent functions can specify the Pod’s cluster domain name as proxy URL to
perform web crawling on .onion websites.

Both Container’s sources have been placed for convenience in the same GitHub
repository, in different folders. For each commit, the eventual build and submission
image to the registry is handled by CircleCI using path-filtering orb4. Changing
even a single file within the folder will determine whether or not the pipeline will
continue in that folder.

4See https://circleci.com/developer/orbs/orb/circleci/path-filtering for more details.

https://circleci.com/developer/orbs/orb/circleci/path-filtering

Chapter 5

Performance Analysis

This chapter describes the tests carried out to evaluate the effectiveness of the
different web crawler implementations deployed for this thesis. The first section
introduces the monitoring stack that allowed the gathering, visualization and stor-
age of the metrics needed to compare the performance of the proposed architec-
tures. The second section illustrates these tests, the motivation behind the choice
of target URL and the cluster configuration for each variant. Finally, the results
are reported in the last section and significant plots are shown.

5.1 Monitoring Stack

The usage of auxiliary technologies was necessary to collect, visualize and store
the metrics exposed during the test executions. For these reasons, we based our
monitoring stack on well-known tools such as Prometheus Stack [18], InfluxDB
[33], Telegraf [35] and CloudWatch [56], which was provided by AWS and only
useful for the implementation that exploits Lambda service. All other tools are
open-source and have been deployed using Helm Charts.

Prometheus Stack, also known as kube-prometheus stack, is a collection of
Kubernetes manifests, Grafana dashboards and Prometheus rules, as well as docu-
mentation and scripts, which enables easy end-to-end monitoring of the Kubernetes
cluster using Prometheus Operator.

• Prometheus is the heart of the stack and provides a monitoring platform that
collects metrics from the monitored targets by scraping the HTTP endpoints
made available on those targets;

• Grafana enables the analysis and visualization of metrics from various sources,
including databases, applications and monitoring systems such as Prometheus;

• kube-state-metrics listens to the Kubernetes API server and generates metrics
about the state of the objects (e.g. Deployments, Pods, Jobs, etc.);

• Other components included in the stack but not useful for our tests are node-
exporter and Alertmanager.

49

50 5. Performance Analysis

InfluxDB is a time series database designed to handle high write and query
loads for efficient monitoring and analysis of time data such as metrics and events.

Telegraf is a plugin-driven server agent used to collect metrics from various
sources and then send this data to various data stores or visualization platforms
for monitoring and analysis.

CloudWatch is an AWS service that monitors and collects real-time metrics, log
files, and events from AWS resources and on-premises servers. It enables users to
set alarms, analyze data and create custom dashboards.

Figure 5.1 shows both architectures used by the different cloud providers.

(a) On AWS.

(b) On GKE.

Figure 5.1: Monitoring stack architectures.

5.2 Test Design 51

Regarding AWS (Figure 5.1a), using CloudWatch doesn’t require configura-
tions; the services employed automatically send metrics to it. We had only to
familiarise ourselves with the UI to easily view pre-defined dashboards based on
the selected service and download data points in CSV format.

Instead, several steps were required to configure the chosen monitoring system
on GKE. The two guides provided by Knative [14] and InfluxData [34] were fol-
lowed and the setup configurations were reported on Section B.2. Summarizing,
Prometheus collects all metrics from the monitored targets and forwards them to
Telegraf using the remote_write API. Telegraf receives input metrics every 10
seconds and sends them as output to the designated bucket on InfluxDB for per-
manent storage. This allows us to analyse saved time series data directly from
InfluxDB using the Flux1 language. Alternatively, we can use Grafana, which
provides pre-configured dashboards for Kubernetes, Knative and RabbitMQ.

5.2 Test Design
The test suite aims to analyse the performance of the three implementations, con-
sidering both the available web crawling methods, HTTP requests and browser
automation. For every one of the six test configurations, we will vary the maxVis-
itedUrls parameter across values of [250, 1000, 4000], determining the maximum
number of web pages to be visited by the crawler.

Eighteen executions in total will therefore be carried out, each of which will be
repeated only once, due to the high cost of the infrastructure for the Knative-based
implementation.

The target URL chosen to run these tests was https://apkpure.net/it/, a web-
site where you can download open-source Android applications that, however, does
not have strict verification procedures like Google Play and could therefore con-
tain malware. ApkPure is legal, but sometimes it’s possible that the platform may
host unauthorized content like cracked or pirated apps, meaning there is a risk of
encountering illegal material if you decide to explore it [47, 48]. For this reason, it
could be a specific use case for the application presented in this thesis.

5.2.1 Metrics

In all test configurations, the following metrics were considered:

• search duration (time between the start of a search and its completion with
the last result, in the format hh:mm:ss,ms)

• cumulative size of messages in bytes (amount of data handled during com-
munications)

• cumulative error count

1Flux is InfluxData’s functional data scripting language designed for querying, analyzing,
and acting on data. See https://docs.influxdata.com/influxdb/cloud/query-data/get-started/ for
more details.

https://apkpure.net/it/
https://docs.influxdata.com/influxdb/cloud/query-data/get-started/

52 5. Performance Analysis

5.2.2 Cluster configurations

In order to execute the tests, we first set up the cluster for the AWS implementation.
A three-node cluster was created on GKE with 6 vCPUs and 20 GB of memory,
necessary to deploy the monitoring stack, Elasticsearch cluster and the backend’s
Deployments.

The second implementation based on Kubernetes used the same cluster; the
backend’s Deployments were updated and the necessary manifests to authenticate
the Kubernetes client were added. There was no need to increase resources because
only one search was carried out at a time.

The final implementation, using Knative, required more resources due to the
additional components and the need to provide 100 concurrent functions. For
these reasons, a new pool of three nodes with 92 vCPU and 384GB of memory was
created to replace the previous one.

5.3 Experimental Results
The following sections contain the results of the different implementations. A table
and a plot will be shown for the first two metrics, search duration and cumulative
size of messages. Instead, the third metric will only be shown through a plot.

All of them require the rental of a cluster via a cloud provider, but the difference
in resources required for Knative, compared to the managed version that follows
the same serverless paradigm, provided by AWS Lambda, is considerable.

5.3 Experimental Results 53

Figure 5.2 illustrates the search duration of each configuration. We can notice
an increase in times as more URLs are visited, the Knative implementation is the
one that performed best, followed by AWS and finally Kubernetes. These results
were expected as the serverless paradigm is more performance-oriented due to more
concurrent executions, with Knative having the advantage over AWS due to the
ability to manage autoscaling as desired, as well as not having to communicate
with services outside the cluster (e.g. SQS, SNS).

HTTP Request
Implementations

Num. URLs Knative AWS Kubernetes
250 00:00:20,103 00:02:44,066 00:01:04,241
1000 00:00:39,495 00:02:03,878 00:04:34,639
4000 00:02:02,620 00:05:33,763 00:14:45,958

Figure 5.2: Results on search duration with HTTP request method.

54 5. Performance Analysis

Figure 5.3 shows the same trend as before, with obviously longer duration due
to browser management. It is interesting to notice the last Kubernetes test with
4000 URLs, which reached a duration of over 4 hours. This could be due to using
the same browser for a large number of web pages.

Browser Automation
Implementations

Num. URLs Knative AWS Kubernetes
250 00:01:42,815 00:04:35,153 00:14:41,554
1000 00:03:13,657 00:06:02,608 00:59:49,047
4000 00:08:08,082 00:10:39,026 04:10:34,170

Figure 5.3: Results on search duration with Browser Automation method.

5.3 Experimental Results 55

Figure 5.4 displays the results of the cumulative size of messages metric. As
we saw in the previous chapter, the Kubernetes implementation does not exploit
any queuing or notification mechanism, so we tracked the size of the response object
that the client used to create a Job. It is invariant across the different numbers of
URLs because it is taken directly from the database; we submitted the same object
with the same environment variables. For these reasons, it is the implementation
with the lowest value. AWS and Knative have similar results, with the latter
remaining slightly lower but tending to increase probably for two reasons:

• the overhead generated by the return messages of the various functions, used
for logging purposes;

• The higher throughput of HTTP requests compared to browser automation
causes more CloudEvents to contain less than five URLs, as the requests do
not get queued up. This increases the amount of messages sent when using
HTTP request, while having no effect when using browser automation.

HTTP Request
Implementations

Num. URLs Knative AWS Kubernetes
250 49052 1642277 7708
1000 3571312 7080464 7708
4000 67007627 32316143 7708

Figure 5.4: Results on cumulative size of messages with HTTP request method.

56 5. Performance Analysis

Figure 5.5 follows a similar pattern, the Knative implementation using the
browser method can better manage the number of requests stored within each
CloudEvents, which is why we have lower values than the other method.

Browser Automation
Implementations

Num. URLs Knative AWS Kubernetes
250 101059 1782075 7708
1000 678352 8624444 7708
4000 7755194 28512443 7708

Figure 5.5: Results on cumulative size of messages with Browser Automation method.

5.3 Experimental Results 57

Finally, in Figure 5.6 and 5.7, it can be seen that only the AWS implementation
reported errors during testing. This could be due to the timeout set to 60s on the
Lambda or some rate limit implementing the visited website for the AWS IPs.

Figure 5.6: Results on error count with HTTP request method.

Figure 5.7: Results on error count with Browser Automation method.

Chapter 6

Conclusions

All three web crawler implementations presented in this thesis were able to collect
and index information about web pages. The tests performed and the metrics
recorded made it possible to understand the advantages and disadvantages of each
platform, both from a performance and economic point of view.

As expected, the two platforms exploiting the serverless paradigm proved faster
in executing the crawl due to the concurrent execution of multiple functions. Using
queuing or notification services, the latter generated an average of 40MB for all 6
experiments performed on AWS and Knative respectively.

On the other hand, using Kubernetes resources to create a Job that deploys a
Pod for each new search, doesn’t introduce any overhead due to communication
but has lower performance in terms of crawl duration, especially as the number of
URLs increases.

A fundamental difference in AWS, but not in Knative, concerns the possibility
of specifying the batch size. As mentioned, this lack has been fixed on the develop-
ment side of the backend and core modules. The community has been asked about
this issue, and for now, a GitHub issue [16] mentions the problem.

Cluster configurations already provide at first glance an idea of which imple-
mentation is the most expensive. Knative is the platform where tests performed
best for this specific use case, but we must consider that to set up a cluster of that
value and maintain it requires a considerable portfolio, especially if we assume a
maximum limit of a thousand concurrent functions, so as to match normal AWS
Lambda behaviour. Other implementations also require an underlying infrastruc-
ture, at a minimum for the backend, but we are talking about considerably fewer
resources because the pod has a few more resources than a Knative function and
handles all the search, whereas AWS manages Lambda, you are going to pay for
just the actual usage.

59

60 6. Conclusions

6.1 Future works
The work discussed in this thesis can be improved from several points of view,
which concern both the application and architectural side:

• the test results showed that the Kubernetes implementation could have some
problems with the browser on searches with more than a thousand of URLs,
so it would be interesting to investigate and repeat the tests;

• in AWS Lambda, it might be useful to increase the timeout to check whether
errors remain by repeating the experiments;

• new features could be added to the general core implementation, such as au-
tomatic bypassing of reCAPTCHAs, the possibility of using residential prox-
ies to avoid the rare problems with CDNs, and the possibility of automatic
authentication even in those websites that do not use the classic forms;

• defines a hybrid architecture that uses AWS as main and, in case of saturated
concurrent functions, routes subsequent messages to a Knative cluster;

• deploy a Pod that is always up and allows to service a TOR proxy so that
serverless implementations can also use this functionality.

Bibliography

[2] Andresen, S.L. “John McCarthy: Father of AI”. In: IEEE Intelligent Systems
17.5 (2002), pp. 84–85. doi: 10.1109/MIS.2002.1039837 (cit. on p. 1).

[19] Udapure, Trupti; Kale, Ravindra; Dharmik, Rajesh. “Study of Web Crawler
and its Different Types”. In: IOSR Journal of Computer Engineering 16 (Jan.
2014), pp. 01–05. doi: 10.9790/0661-16160105 (cit. on p. 9).

[27] Lin, Ping-Min; Glikson, Alex. “Mitigating Cold Starts in Serverless Plat-
forms: A Pool-Based Approach”. In: CoRR abs/1903.12221 (2019). doi: 10.
48550/arXiv.1903.12221 (cit. on p. 32).

[28] Mell, Peter; Grance, Tim. “The NIST Definition of Cloud Computing”. In:
NIST Special Publications 800.145 (2011). doi: 10.6028/NIST.SP.800-145
(cit. on pp. 1, 2).

[31] Fan, Dayong; He, Dongzhi. “Knative Autoscaler Optimize Based on Dou-
ble Exponential Smoothing”. In: 2020 IEEE 5th Information Technology and
Mechatronics Engineering Conference (ITOEC). 2020, pp. 614–617. doi: 10.
1109/ITOEC49072.2020.9141858 (cit. on p. 32).

[36] Van Eyk, Erwin; Toader, Lucian; Talluri, Sacheendra; Versluis, Laurens; Ut,ă,
Alexandru; Iosup, Alexandru. “Serverless is More: From PaaS to Present
Cloud Computing”. In: IEEE Internet Computing 22.5 (2018), pp. 8–17. doi:
10.1109/MIC.2018.053681358 (cit. on p. 5).

[37] Khder, Moaiad. “Web Scraping or Web Crawling: State of Art, Techniques,
Approaches and Application”. In: International Journal of Advances in Soft
Computing and its Applications 13 (Dec. 2021), pp. 145–168. doi: 10.15849/
IJASCA.211128.11 (cit. on pp. 8, 9).

[40] Li, Junfeng; Kulkarni, Sameer G.; Ramakrishnan, K. K.; Li, Dan. “Ana-
lyzing Open-Source Serverless Platforms: Characteristics and Performance”.
In: Proceedings of the 33rd International Conference on Software Engineer-
ing and Knowledge Engineering. KSI Research Inc., 2021. doi: 10.18293/
SEKE2021-129 (cit. on p. 8).

[41] Hongfei, Yan; Jianyong, Wang; Xiaoming, Li; Lin, Guo. “Architectural design
and evaluation of an efficient Web-crawling system”. In: Journal of Systems
and Software 60.3 (2002), pp. 185–193. issn: 0164-1212. doi: 10 . 1016 /
S0164-1212(01)00091-7 (cit. on p. 29).

[44] Erl, Thomas; Puttini, Ricardo; Mahmood, Zaigham. Cloud Computing: Con-
cepts, Technology & Architecture. 1st. Pearson Education, 2014. isbn: 9789332535923.
url: https://dl.acm.org/doi/abs/10.5555/2500934 (cit. on p. 1).

61

https://doi.org/10.1109/MIS.2002.1039837
https://doi.org/10.9790/0661-16160105
https://doi.org/10.48550/arXiv.1903.12221
https://doi.org/10.48550/arXiv.1903.12221
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1109/ITOEC49072.2020.9141858
https://doi.org/10.1109/ITOEC49072.2020.9141858
https://doi.org/10.1109/MIC.2018.053681358
https://doi.org/10.15849/IJASCA.211128.11
https://doi.org/10.15849/IJASCA.211128.11
https://doi.org/10.18293/SEKE2021-129
https://doi.org/10.18293/SEKE2021-129
https://doi.org/10.1016/S0164-1212(01)00091-7
https://doi.org/10.1016/S0164-1212(01)00091-7
https://dl.acm.org/doi/abs/10.5555/2500934

62 Bibliography

[46] Merkel, Dirk. “Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment”. In: Linux J. 2014.239 (2014). doi: 10 . 5555 /
2600239.2600241 (cit. on p. 8).

[49] Mirtaheri, Seyed; Dinçktürk, Mustafa; Hooshmand, Salman; Bochmann, Gre-
gor; Jourdan, Guy-Vincent; Onut, Iosif-Viorel. “A Brief History of Web Crawlers”.
In: (2014). doi: 10.48550/arXiv.1405.0749 (cit. on p. 29).

[50] Jonas, Eric; Schleier-Smith, Johann; Sreekanti, Vikram; Tsai, Chia-Che; Khan-
delwal, Anurag; Pu, Qifan; Shankar, Vaishaal; Carreira, Joao; Krauth, Karl;
Yadwadkar, Neeraja; Gonzalez, Joseph; Popa, Raluca Ada; Stoica, Ion; Pat-
terson, David. “Cloud Programming Simplified: A Berkeley View on Server-
less Computing”. In: (2019). doi: https://doi.org/10.48550/arXiv.
1902.03383 (cit. on p. 5).

[59] Chaulagain, Ram Sharan;Pandey, Santosh;Basnet, Sadhu Ram; Shakya, Sub-
arna. “Cloud Based Web Scraping for Big Data Applications”. In: 2017 IEEE
International Conference on Smart Cloud. 2017, pp. 138–143. doi: 10.1109/
SmartCloud.2017.28 (cit. on pp. 8, 29, 30).

[60] Simmon, Eric D. “Evaluation of Cloud Computing Services Based on NIST
SP 800-145”. In: NIST Special Publications 500.322 (2018). doi: 10.6028/
NIST.SP.500-322 (cit. on pp. 2, 4).

[61] Abu Kausar, Mohammad; Dhaka, Vijaypal; Singh, Sanjeev. “Web Crawler: A
Review”. In: International Journal of Computer Applications 63 (Feb. 2013),
pp. 31–36. doi: 10.5120/10440-5125 (cit. on p. 9).

[66] Van Eyk, Erwin; Iosup, Alexandru; Seif, Simon; Thömmes, Markus. “The
SPEC cloud group’s research vision on FaaS and serverless architectures”.
In: Proceedings of the 2nd International Workshop on Serverless Computing
(2017). doi: 10.1145/3154847.3154848 (cit. on p. 4).

[67] Boldi, Paolo; Codenotti, Bruno; Santini, Massimo; Vigna, Sebastiano. “Ubi-
Crawler: A Scalable Fully Distributed Web Crawler”. In: Softw. Pract. Exper.
34.8 (2004), pp. 711–726. issn: 0038-0644. doi: 10.1002/spe.587 (cit. on
p. 29).

[68] Shahrad, Mohammad; Balkind, Jonathan; Wentzlaff, David. “Architectural
Implications of Function-as-a-Service Computing”. In: Proceedings of the 52Nd
Annual IEEE/ACM International Symposium on Microarchitecture. MICRO
’52. ACM, 2019, pp. 1063–1075. isbn: 978-1-4503-6938-1. doi: 10.1145/
3352460.3358296 (cit. on p. 4).

[69] Brendan, Burns; Grant, Brian; Oppenheimer, David; Brewer, Eric; Wilkes,
John. “Borg, Omega, and Kubernetes”. In: ACM Queue 14 (2016), pp. 70–93.
url: http://queue.acm.org/detail.cfm?id=2898444 (cit. on pp. 4, 8,
10, 11).

[70] Jinfeng, Wen; Zhenpeng, Chen; Xin, Jin; Xuanzhe, Liu. “Rise of the Planet
of Serverless Computing: A Systematic Review”. In: ACM Trans. Softw. Eng.
Methodol. 32.5 (2023). doi: 10.1145/3579643 (cit. on pp. 5, 6).

[71] Clinton, Gormley; Zachary, Tong. Elasticsearch: The Definitive Guide. 1st.
O’Reilly Media, Inc., 2015. isbn: 1449358543. url: https://stmarysguntur.
com/wp-content/uploads/2019/04/1021302647.pdf (cit. on p. 24).

[72] Bahrami, Mehdi; Singhal, Mukesh; Zhuang, Zixuan. “A Cloud-based Web
Crawler Architecture”. In: 2015 18th International Conference on Intelligence

https://doi.org/10.5555/2600239.2600241
https://doi.org/10.5555/2600239.2600241
https://doi.org/10.48550/arXiv.1405.0749
https://doi.org/https://doi.org/10.48550/arXiv.1902.03383
https://doi.org/https://doi.org/10.48550/arXiv.1902.03383
https://doi.org/10.1109/SmartCloud.2017.28
https://doi.org/10.1109/SmartCloud.2017.28
https://doi.org/10.6028/NIST.SP.500-322
https://doi.org/10.6028/NIST.SP.500-322
https://doi.org/10.5120/10440-5125
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1002/spe.587
https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1145/3352460.3358296
http://queue.acm.org/detail.cfm?id=2898444
https://doi.org/10.1145/3579643
https://stmarysguntur.com/wp-content/uploads/2019/04/1021302647.pdf
https://stmarysguntur.com/wp-content/uploads/2019/04/1021302647.pdf

Bibliography 63

in Next Generation Networks. 2015, pp. 216–223. doi: 10.1109/ICIN.2015.
7073834 (cit. on p. 29).

https://doi.org/10.1109/ICIN.2015.7073834
https://doi.org/10.1109/ICIN.2015.7073834

Sitography

[1] alixaxel. Repository chrome-aws-lambda. url: https://github.com/alixaxel/
chrome-aws-lambda (cit. on p. 43).

[3] Apify. Repository got-scraping. url: https://github.com/apify/got-
scraping (cit. on p. 38).

[4] Banon, Shay. Amazon: NOT OK - why we had to change Elastic licensing.
url: https://www.elastic.co/blog/why-license-change-aws (cit. on
p. 25).

[5] berstend. Puppeteer-Extra Wiki. 2018. url: https://github.com/berstend/
puppeteer-extra/wiki (cit. on p. 24).

[6] berstend. Repository puppeteer-extra-plugin-stealth. 2018. url: https : / /
github . com / berstend / puppeteer - extra / tree / master / packages /
puppeteer-extra-plugin-stealth (cit. on p. 24).

[7] CheerioJS. Repository cheerio. url: https://github.com/cheeriojs/
cheerio (cit. on p. 38).

[8] CNCF. Knative. url: https://www.cncf.io/projects/knative/ (cit. on
p. 15).

[9] CNCF. Kubernetes. url: https://kubernetes.io/ (cit. on pp. 4, 8, 10,
11).

[10] CNCF. Respository cloudevents/sdk-javascript. url: https://github.com/
cloudevents/sdk-javascript (cit. on p. 45).

[11] CNCF. Respository kubernetes-client/javascript. url: https : / / github .
com/kubernetes-client/javascript (cit. on p. 47).

[12] CloudEvents Community. CloudEvents. url: https://cloudevents.io/
(cit. on pp. 20, 44).

[13] Knative Community. CLI tools. url: https://knative.dev/development/
client/ (cit. on pp. 15, 21).

[14] Knative Community. Collecting Metrics in Knative. url: https://knative.
dev/docs/serving/observability/metrics/collecting-metrics/ (cit.
on p. 51).

[15] Knative Community. Knative. url: https://knative.dev/ (cit. on pp. 10,
11, 14).

[16] Knative Community. QP request batcher. 2023. url: https://github.com/
knative/serving/issues/13691 (cit. on p. 59).

[17] Knative Community. Respository eventing-rabbimq. url: https://github.
com/knative-extensions/eventing-rabbitmq (cit. on p. 44).

65

https://github.com/alixaxel/chrome-aws-lambda
https://github.com/alixaxel/chrome-aws-lambda
https://github.com/apify/got-scraping
https://github.com/apify/got-scraping
https://www.elastic.co/blog/why-license-change-aws
https://github.com/berstend/puppeteer-extra/wiki
https://github.com/berstend/puppeteer-extra/wiki
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://www.cncf.io/projects/knative/
https://kubernetes.io/
https://github.com/cloudevents/sdk-javascript
https://github.com/cloudevents/sdk-javascript
https://github.com/kubernetes-client/javascript
https://github.com/kubernetes-client/javascript
https://cloudevents.io/
https://knative.dev/development/client/
https://knative.dev/development/client/
https://knative.dev/docs/serving/observability/metrics/collecting-metrics/
https://knative.dev/docs/serving/observability/metrics/collecting-metrics/
https://knative.dev/
https://github.com/knative/serving/issues/13691
https://github.com/knative/serving/issues/13691
https://github.com/knative-extensions/eventing-rabbitmq
https://github.com/knative-extensions/eventing-rabbitmq

66 Sitography

[18] Prometheus Community. Kube Prometheus Stack. url: https://github.
com/prometheus- community/helm- charts/tree/main/charts/kube-
prometheus-stack (cit. on p. 49).

[20] Elastic. Data in: documents and indices. url: https://www.elastic.co/
guide/en/elasticsearch/reference/current/documents-indices.html
(cit. on p. 25).

[21] Elastic. Elastic Cloud on Kubernetes. url: https://www.elastic.co/
guide/en/cloud-on-k8s/current/k8s-quickstart.html (cit. on p. 11).

[22] Elastic. Elasticsearch on Kubernetes: A new chapter begins. url: https:
//www.elastic.co/blog/introducing-elastic-cloud-on-kubernetes-
the-elasticsearch-operator-and-beyond (cit. on p. 26).

[23] Elastic. Elasticsearch Platform. url: https://www.elastic.co/ (cit. on
pp. 1, 11).

[24] Elastic. FAQ on 2021 License Change. url: https://www.elastic.co/
pricing/faq/licensing (cit. on p. 25).

[25] Elastic. Resilience in small clusters. url: https://www.elastic.co/guide/
en/elasticsearch/reference/current/high-availability-cluster-
small-clusters.html (cit. on p. 34).

[26] Linux Foundation. About the Open Container Initiative. url: https : / /
opencontainers.org/about/overview/ (cit. on p. 21).

[29] CNCF Serverless Working Group. CNCF Serverless Whitepaper. 2018. url:
https://github.com/cncf/wg-serverless/blob/master/whitepapers/
serverless-overview/cncf_serverless_whitepaper_v1.0.pdf (cit. on
pp. 4, 5).

[30] Jean-Baptiste Guillois. Deploy a React-based single-page application to Ama-
zon S3 and CloudFront. url: https://docs.aws.amazon.com/prescriptive-
guidance/latest/patterns/deploy- a- react- based- single- page-
application-to-amazon-s3-and-cloudfront.html (cit. on p. 42).

[32] The Tor Project Inc. Tor Project. url: https://www.torproject.org/
(cit. on p. 11).

[33] InfluxData. InfluxDB v2. url: https://github.com/influxdata/helm-
charts/tree/master/charts/influxdb2 (cit. on p. 49).

[34] InfluxData. Prometheus Remote Write Support with InfluxDB 2.0. url: https:
//www.influxdata.com/blog/prometheus- remote- write- support-
with-influxdb-2-0/ (cit. on p. 51).

[35] InfluxData. Telegraf. url: https://github.com/influxdata/helm-charts/
tree/master/charts/telegraf (cit. on p. 49).

[38] Knative Steering Committee. Knative graduation proposal. url: https://
github.com/cncf/toc/pull/1245 (cit. on p. 15).

[39] Bynens, Mathias; Kvitek, Peter. Chrome’s Headless mode gets an upgrade:
introducing –headless=new. 2023. url: https://developer.chrome.com/
docs/chromium/new-headless (cit. on p. 22).

[42] Google LLC. Knative. url: https://cloud.google.com/knative (cit. on
p. 5).

[43] Google LLC. Overview of Puppeteer. 2018. url: https : / / developer .
chrome.com/docs/puppeteer/ (cit. on p. 22).

https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-indices.html
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-quickstart.html
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-quickstart.html
https://www.elastic.co/blog/introducing-elastic-cloud-on-kubernetes-the-elasticsearch-operator-and-beyond
https://www.elastic.co/blog/introducing-elastic-cloud-on-kubernetes-the-elasticsearch-operator-and-beyond
https://www.elastic.co/blog/introducing-elastic-cloud-on-kubernetes-the-elasticsearch-operator-and-beyond
https://www.elastic.co/
https://www.elastic.co/pricing/faq/licensing
https://www.elastic.co/pricing/faq/licensing
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability-cluster-small-clusters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability-cluster-small-clusters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability-cluster-small-clusters.html
https://opencontainers.org/about/overview/
https://opencontainers.org/about/overview/
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/deploy-a-react-based-single-page-application-to-amazon-s3-and-cloudfront.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/deploy-a-react-based-single-page-application-to-amazon-s3-and-cloudfront.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/deploy-a-react-based-single-page-application-to-amazon-s3-and-cloudfront.html
https://www.torproject.org/
https://github.com/influxdata/helm-charts/tree/master/charts/influxdb2
https://github.com/influxdata/helm-charts/tree/master/charts/influxdb2
https://www.influxdata.com/blog/prometheus-remote-write-support-with-influxdb-2-0/
https://www.influxdata.com/blog/prometheus-remote-write-support-with-influxdb-2-0/
https://www.influxdata.com/blog/prometheus-remote-write-support-with-influxdb-2-0/
https://github.com/influxdata/helm-charts/tree/master/charts/telegraf
https://github.com/influxdata/helm-charts/tree/master/charts/telegraf
https://github.com/cncf/toc/pull/1245
https://github.com/cncf/toc/pull/1245
https://developer.chrome.com/docs/chromium/new-headless
https://developer.chrome.com/docs/chromium/new-headless
https://cloud.google.com/knative
https://developer.chrome.com/docs/puppeteer/
https://developer.chrome.com/docs/puppeteer/

Sitography 67

[45] Martinaitis, Dzidas. Serverless Architecture for a Web Scraping Solution.
2020. url: https://aws.amazon.com/blogs/architecture/serverless-
architecture-for-a-web-scraping-solution/ (cit. on p. 30).

[47] NordVPN. A Guide to APKPure: Is It Legal and Is It Safe? 2023. url:
https://www.avast.com/c-is-apkpure-safe (cit. on p. 51).

[48] NordVPN. Is APKPure safe to use? 2022. url: https://nordvpn.com/
blog/is-apkpure-safe/ (cit. on p. 51).

[51] RabbbitMQ. RabbitMQ 3.13. url: https://www.rabbitmq.com/ (cit. on
p. 44).

[52] NodeShift by Red Hat. Respository faas-js-runtime. url: https://github.
com/nodeshift/faas-js-runtime (cit. on p. 44).

[53] Evan Sangaline. Installing Google Chrome on CentOS, Amazon Linux, or
RHEL. url: http://intoli.com/blog/installing-google-chrome-on-
centos/ (cit. on p. 43).

[54] Amazon Web Services. AWS Lambda. url: https://aws.amazon.com/
lambda/ (cit. on pp. 7, 10, 11).

[55] Amazon Web Services. AWS Lambda Documentation. url: https://docs.
aws.amazon.com/lambda/ (cit. on p. 13).

[56] Amazon Web Services. CloudWatch Documentation. url: https://docs.
aws.amazon.com/cloudwatch/ (cit. on p. 49).

[57] Amazon Web Services. Configuring Lambda function options. url: https:
//docs.aws.amazon.com/lambda/latest/dg/configuration-function-
common.html#configuration-memory-console (cit. on p. 44).

[58] Amazon Web Services. Introducing AWS Lambda. 2014. url: https://aws.
amazon.com/about- aws/whats- new/2014/11/13/introducing- aws-
lambda/ (cit. on p. 29).

[62] Sparticuz. Repository chromium. url: https://github.com/Sparticuz/
chromium (cit. on p. 43).

[63] Kopjra Srl. Kopjra. url: https://www.kopjra.com/ (cit. on pp. vii, 10).
[64] Stevenson, Jack. Scaling up a Serverless Web Crawler and Search Engine.

2021. url: https://aws.amazon.com/blogs/architecture/scaling-up-
a-serverless-web-crawler-and-search-engine/ (cit. on pp. 30, 31).

[65] Chrome DevTools team. Puppeteer. url: https://pptr.dev/ (cit. on p. 22).

https://aws.amazon.com/blogs/architecture/serverless-architecture-for-a-web-scraping-solution/
https://aws.amazon.com/blogs/architecture/serverless-architecture-for-a-web-scraping-solution/
https://www.avast.com/c-is-apkpure-safe
https://nordvpn.com/blog/is-apkpure-safe/
https://nordvpn.com/blog/is-apkpure-safe/
https://www.rabbitmq.com/
https://github.com/nodeshift/faas-js-runtime
https://github.com/nodeshift/faas-js-runtime
http://intoli.com/blog/installing-google-chrome-on-centos/
http://intoli.com/blog/installing-google-chrome-on-centos/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-memory-console
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-memory-console
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-memory-console
https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://github.com/Sparticuz/chromium
https://github.com/Sparticuz/chromium
https://www.kopjra.com/
https://aws.amazon.com/blogs/architecture/scaling-up-a-serverless-web-crawler-and-search-engine/
https://aws.amazon.com/blogs/architecture/scaling-up-a-serverless-web-crawler-and-search-engine/
https://pptr.dev/

Glossary

ACM It is a service that handles the complexity of creating, storing, and renewing
public and private SSL/TLS X.509 certificates and keys that protect your
AWS websites and applications. 77

AI It is the science and engineering of making intelligent machines, especially
intelligent computer programs. It is related to the similar task of using
computers to understand human intelligence. 77

API The set of defined rules that enable different applications to communicate
with each other. 77

APK It is the package manager of the Alpine Linux distribution. It is used to
manage the system packages and the primary method for installing additional
software. 77

ASCII It is the most common character encoding format for text data in com-
puters and on the internet. 77

AWS It is a comprehensive and widely-used cloud computing platform provided
by Amazon. 77

CDN It is a geographically distributed group of servers that caches content close
to end users. A CDN allows for the quick transfer of assets needed for loading
Internet content, including HTML pages, JavaScript files, stylesheets, images,
and videos. 77

Cheerio It is a fast, flexible, and elegant library for parsing and manipulating
HTML and XML. 38, 69

CircleCI It is a continuous integration and delivery platform that helps the de-
velopment teams to release code rapidly and automate the build, test, and
deploy. 41, 42, 44, 48, 69

CLI It is a text-based interface where you can input commands that interact with
a computer’s software. 77

Cloudfront It is a web service that speeds up distribution of your static and
dynamic web content, such as .html, .css, .js, and image files, to your users.
42, 69

69

70 Glossary

CNCF It is an open-source software foundation that promotes the adoption of
cloud-native computing. 77

ConfigMap It is an API object used to store non-confidential data in key-value
pairs. Pods can consume ConfigMaps as environment variables, command-
line arguments, or as configuration files in a volume. 41, 70

Container It is a standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one computing
environment to another. 5, 6, 8, 11, 14, 17, 21, 26, 41, 43, 44, 48, 70

CRD It enables the introduction of unique objects or types into Kubernetes clus-
ters to meet the needs of developers. 77

CRUD It describes the four essential operations for creating and managing per-
sistent data elements, mainly in relational and NoSQL databases. 77

CSP It is a third-party company that provides scalable computing resources that
businesses can access on demand over a network, including cloud-based com-
puting, storage, platform, and application services. 77

CSV It is a text file format that uses commas to separate values, and newlines
to separate records. A CSV file stores tabular data (numbers and text) in
plain text, where each line of the file typically represents one data record.
Each record consists of the same number of fields, and these are separated
by commas in the CSV file. 77

Deployment It provides declarative updates for Pods and ReplicaSets. 41, 49,
52, 70

DLS It is a Knative construct that allows the user to configure a destination for
events that would otherwise be dropped due to some delivery failure. This
is useful for scenarios where you want to ensure that events are not lost due
to a failure in the underlying system. 77

DNS It translates human-readable domain names to machine-readable IP ad-
dresses. 77

Docker It is an open platform for developing, shipping, and running applications.
Docker enables you to separate your applications from your infrastructure so
you can deliver software quickly. 8, 13, 26, 41, 70

Dockerfile Docker can build images automatically by reading the instructions
from a Dockerfile. It is a text document that contains all the commands a
user could call on the command line to assemble an image. 21, 43, 48, 70

DOM The data representation of the objects that comprise the structure and
content of a document on the web. 77

DOMContentLoaded It is an event fired when the HTML document has been
fully parsed and all deferred scripts have been downloaded and executed. See
PuppeteerLifeCycleEvent for more details. 38, 70

https://pptr.dev/api/puppeteer.puppeteerlifecycleevent

Glossary 71

Dynamo DB It is a fully managed NoSQL database service that provides fast
and predictable performance with seamless scalability. 13, 29, 30, 71

EC2 It provides on-demand, scalable computing capacity in the Amazon Web
Services Cloud. 77

ECK It is the official operator by Elastic for automating the deployment, pro-
visioning, management, and orchestration of Elasticsearch, Kibana, APM
Server, Beats, Enterprise Search, Elastic Agent, Elastic Maps Server, and
Logstash on Kubernetes. 77

ECS It is a fully managed container orchestration service that helps you easily
deploy, manage, and scale containerized applications. 77

ELK It is a stack that comprises three popular projects: Elasticsearch, Logstash,
and Kibana. Often referred to as Elasticsearch, the ELK stack gives you the
ability to aggregate logs from all your systems and applications, analyze these
logs, and create visualizations for application and infrastructure monitoring,
faster troubleshooting, security analytics, and more. 77

GCP It is a suite of cloud computing services offered by Google. 77

GKE It is a Google-managed implementation of the Kubernetes open source con-
tainer orchestration platform. 78

GotScraping It is a small but powerful got extension with the purpose of sending
browser-like requests out of the box. This is very essential in the web scraping
industry to blend in with the website traffic. 38, 71

Helm Chart It allows you to manage Kubernetes manifests without using the
Kubernetes CLI or remembering complicated Kubernetes commands to con-
trol the cluster. 49, 71

Hexagonal Architecture It is an architectural pattern used in software design.
It aims to create loosely coupled application components that can be easily
connected to their software environment through ports and adapters. This
makes components exchangeable at any level and facilitates test automation.
39, 71

HPA The default scaling method in Kubernetes cluster. 78

HTML The markup language for the web that defines the structure of web pages.
78

HTTP The communications protocol used to connect to web servers on the In-
ternet. 78

Ingress It is an API object that manages external access to the services in a
cluster, typically HTTP. It may provide load balancing, SSL termination
and name-based virtual hosting. 41, 71

https://github.com/sindresorhus/got

72 Glossary

IP It is the unique identifying number assigned to every device connected to the
internet. An IP address definition is a numeric label assigned to devices that
use the internet to communicate. 78

Job It is a Kubernetes resource that creates one or more Pods and will continue
to retry execution of the Pods until a specified number of them successfully
terminate. As Pods successfully complete, the Job tracks the successful com-
pletions. When a specified number of successful completions is reached, the
task (i.e. Job) is complete. Deleting a Job will clean up the Pods it created.
Suspending a Job will delete its active Pods until the Job is resumed again.
10, 47, 48, 49, 55, 59, 72

JSON It is a standard text-based format for representing structured data based
on JavaScript object syntax. 78

Kubernetes It is a portable, extensible, open-source platform for managing con-
tainerized workloads and services that facilitates both declarative configura-
tion and automation. vii, 4, 8, 10, 11, 13, 14, 15, 17, 18, 19, 21, 26, 41, 47,
49, 51, 52, 53, 54, 55, 59, 60, 72

Apache Kafka It is an open-source distributed event streaming platform used
by thousands of companies for high-performance data pipelines, streaming
analytics, data integration, and mission-critical applications.. 44, 72

Kendra It is an intelligent search service that uses natural language process-
ing and advanced machine learning algorithms to return specific answers to
search questions from your data. 30, 31, 72

KPA The default automatic scaling method inside Knative Serving. It allows the
scale to zero and it works with different metrics. 78

Kustomize It is a Kubernetes configuration transformation tool that enables you
to customize untemplated YAML files, leaving the original files untouched.
41, 72

MIME It indicates the nature and format of a document, file, or assortment of
bytes. See MIME types for more details. 78

NIST It is a United States government agency responsible for developing and
promoting measurement standards and technology advancements to enhance
innovation and industrial competitiveness. 78

NoSQL Database They are non-tabular databases and store data differently
than relational tables. They come in a variety of types based on their data
model. The main types are document, key-value, wide-column, and graph.
They provide flexible schemas and scale easily with large amounts of data
and high user loads. 39, 72

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

Glossary 73

Namespace It provides a mechanism for isolating groups of resources within a
single cluster. Names of resources need to be unique within a namespace,
but not across namespaces. 35, 73

OAuth 2.0 It is a standard designed to allow a website or application to access
resources hosted by other web apps on behalf of a user. 78

OCI It is an open governance structure for the express purpose of creating open
industry standards around container formats and runtimes. 78

OSINT It is the act of gathering and analyzing publicly available data for intel-
ligence purposes. 78

Pod It is the smallest deployable unit of computing that you can create and man-
age in Kubernetes. A Pod is a group of one or more containers, with shared
storage and network resources, and a specification for how to run the con-
tainers. 8, 10, 11, 17, 18, 35, 41, 45, 47, 48, 49, 59, 60, 73

Quorum-based System It is a mechanism by which decisions are made regard-
ing data consistency and availability in a distributed environment. A quorum
represents the minimum number of nodes that must agree on an operation
to be successful. This ensures that data operations maintain consistency and
resilience, even in the presence of node failures or network partitions. 34, 35,
73

RabbitMQ It is an open-source message-broker software that originally imple-
mented the Advanced Message Queuing Protocol (AMQP) and has since
been extended with a plug-in architecture to support Streaming Text Ori-
ented Messaging Protocol (STOMP), MQ Telemetry Transport (MQTT),
and other protocols. 40, 44, 45, 46, 73

RBAC It is a method of regulating access to computer or network resources based
on the roles of individual users within your organization. 78

reCAPTCHA It is a free service from Google that helps protect websites from
spam and abuse. 60, 73

REST It is an architectural style for designing networked applications. It is based
on a stateless, client-server communication protocol, typically the HTTP
protocol and it is commonly used in web services development. 78

Role It is a collection of permissions that allow users to perform specific actions
on a defined set of Kubernetes resource types. 48, 73

Role Binding It grants the permissions defined by roles to the relevant user or
user group. 48, 73

Route 53 It is a highly available and scalable DNS web service which allows
domain registration, DNS routing, and health checking. 36, 41, 42, 44, 73

74 Glossary

S3 It is an object storage service provided by Amazon that offers industry-leading
scalability, data availability, security, and performance. 78

SDK It is a tool for third-party developers to use in producing applications using
a particular framework or platform. 78

Secret It is an object that contains a small amount of sensitive data such as a
password, a token, or a key. Such information might otherwise be put in a
Pod specification or in a container image.. 41, 74

Sidecar Container It is the secondary container that runs along with the main
application container within the same Pod. These containers are used to
enhance or extend the functionality of the main application container by
providing additional services or functionality, such as logging, monitoring,
security, or data synchronization, without directly altering the primary ap-
plication code. 48, 74

SNS It is a managed service that provides message delivery from publishers to
subscribers. Publishers communicate asynchronously with subscribers by
sending messages to a topic, which is a logical access point and communica-
tion channel. Clients can subscribe to the SNS topic and receive published
messages using a supported endpoint type, such as Amazon Kinesis Data
Firehose, Amazon SQS, AWS Lambda, HTTP, email, mobile push notifica-
tions, and mobile text messages (SMS). 78

SPA It is a web application or website that interacts with the user by dynamically
rewriting the current web page with new data from the web server, instead
of the default method of a web browser loading entire new pages. 78

SQS It is a fully managed message queuing service that makes it easy to decou-
ple and scale microservices, distributed systems, and serverless applications.
It moves data between distributed application components and helps you
decouple these components. 78

SSPL It is a source-available software license introduced by MongoDB Inc. in
2018. 78

Step Functions It is a serverless orchestration service that lets you integrate with
AWS Lambda functions and other AWS services to build business-critical
applications. 30, 74

Service It is a method for exposing a network application that is running as one
or more Pods in your cluster. The three most important service types are
ClusterIP, NodePort and LoadBalancer. 35, 36, 41, 74

Service Account It provides an identity for processes that run in a Pod. 48, 74

TOR It is free and open-source software for enabling anonymous communication
and directs Internet traffic via a free, worldwide, volunteer overlay network
comprising more than seven thousand relays. 78

Glossary 75

UI It is the point of human-computer interaction and communication in a device.
This can include display screens, keyboards, a mouse and the appearance of
a desktop. 78

URI It is a character sequence that identifies a logical or physical resource, usually
connected to the internet. It distinguishes one resource from another. 78

URL It is a unique identifier used to locate a resource on the Internet. It consists
of multiple parts, including a protocol and domain name, that tell a web
browser how and where to retrieve a resource. 78

WSR It is a coordinator module within the WebGather system. It serves as a
central storage unit for essential information, including the IPs and ports of
all registered main controllers in the system. 78

WWW It refers to all websites or public pages that users can access from their lo-
cal computers and other devices via the Internet. These pages and documents
are interconnected by means of hyperlinks that users click on to obtain infor-
mation. This information can be in different formats, including text, images,
audio and video. 79

YAML It is a human-readable data serialization language that is often used for
writing configuration files. 79

Acronyms

ACM AWS Certificate Manager. 42, 69

AI Artificial Intelligence. 1, 69

API Application Programming Interface. vii, xi, 4, 8, 10, 14, 16, 18, 19, 20, 22,
24, 25, 36, 47, 49, 51, 69

APK Alpine Package Keeper. 48, 69

ASCII American Standard Code for Information Interchange. 36, 69

AWS Amazon Web Services. vii, 3, 4, 5, 7, 10, 11, 13, 29, 30, 42, 43, 44, 47, 49,
50, 51, 52, 53, 57, 59, 60, 69

CDN Content Delivery Network. 60, 69

CLI Command Line Interface. 15, 21, 22, 44, 69, 71

CNCF Cloud Native Computing Foundation. xi, 4, 7, 13, 15, 18, 70

CRD Custom Resource Definition. 15, 27, 70

CRUD CREATE, READ, UPDATE and DELETE. 40, 47, 70

CSP Cloud Service Provider. 2, 7, 70

CSV Comma-separated values. 51, 70

DLS Dead Letter Sink. 45, 70

DNS Domain Name System. 36, 41, 44, 70

DOM Document Object Model. vii, 9, 22, 39, 70

EC2 Elastic Compute Cloud. 2, 29, 30, 71

ECK Elastic Cloud on Kubernetes. 26, 34, 71

ECS Elastic Container Service. 30, 71

ELK Elasticsearch Logstash Kibana. xi, 71

GCP Google Cloud Platform. 3, 5, 71

77

78 Acronyms

GKE Google Kubernetes Engine. 41, 50, 51, 52, 71

HPA Horizontal Pod Autoscaler. 18, 71

HTML Hypertext Markup Language. vii, 8, 10, 31, 33, 34, 36, 38, 39, 41, 44, 71

HTTP Hypertext Transfer Protocol. vii, 5, 9, 11, 19, 21, 34, 38, 39, 49, 51, 53,
55, 57, 71, 73

IP Internet Protocol. 36, 57, 72

JSON JavaScript Object Notation. 22, 25, 30, 36, 72

KPA Knative Pod Autoscaler. 18, 32, 72

MIME Multipurpose Internet Mail Extensions. 39, 72

NIST National Institute of Standards and Technology. 1, 2, 4, 72

OAuth 2.0 Open Authorization. 34, 40, 42, 73

OCI Open Container Initiative. 21, 73

OSINT Open Source Intelligence. vii, 73

RBAC Role-based access control. 48, 73

REST Representational State Transfer. 24, 25, 73

S3 Simple Storage Service. 13, 29, 30, 42, 74

SDK Software Development Kit. 20, 44, 45, 74

SNS Simple Notification Service. 13, 40, 42, 44, 53, 74

SPA Single-page Application. 22, 42, 74

SQS Simple Queue Service. 13, 29, 30, 40, 42, 44, 53, 74

SSPL Server Side Public License. 25, 74

TOR The Onion Router. 11, 48, 60, 74

UI User Interface. 30, 34, 51, 75

URI Uniform Resource Identifier. 38, 75

URL Uniform Resource Locator. vii, xi, 9, 19, 29, 30, 34, 36, 38, 39, 40, 41, 44,
48, 49, 51, 53, 54, 55, 59, 60, 75

WSR WebGather Server Registry. 29, 75

Acronyms 79

WWW World Wide Web. 8, 75

YAML Yet Another Markup Language. 15, 36, 75, 83

Appendix A

Screenshots

The frontend module provides three screens, each with specific tasks:

Figure A.1 allows the creation of new searches and the display of previous ones.

Figure A.2 shows an overlay card that allows parameters to be entered for a
new search.

Figure A.3 allows all results of a specific search to be displayed and provides
options for filtering them. As has already been mentioned, it will suffice to enter the
keywords of interest within the HTML box to search them into the Elasticsearch
index.

Figure A.1: Dashboard.

81

82 A. Screenshots

Figure A.2: Create a new search.

Figure A.3: View and filter results of a specified search.

Appendix B

Configurations

B.1 Knative
The Knative implementation includes many commands to run and resources to
deploy; therefore, all have been reported in this chapter.

In the YAML files, a placeholder will be inserted when referring to the names-
pace field, which must be replaced at your convenience.

#!/bin/bash

export KNATIVE_VERSION="v1 . 1 3 . 1 "
export KOURIER_VERSION="v1 . 1 3 . 0 "
export BROKER_VERSION="v1 . 1 3 . 0 "

echo " S e t t i n g up Se rv ing "
kubectl apply -f https :// github.com/knative/serving/releases/

download/knative -${KNATIVE_VERSION }/serving -crds.yaml
kubectl apply -f https :// github.com/knative/serving/releases/

download/knative -${KNATIVE_VERSION }/serving -core.yaml
kubectl patch -n knative -serving configmap/config -autoscaler

--type merge --patch ’ {" data " : { " s c a l e −to−zero−grace−pe r i od
" : "10 s " , " a l low−zero−i n i t i a l −s c a l e " : " t ru e "}} ’

echo " S e t t i n g up Kour i e r "
kubectl apply -f https :// github.com/knative/net -kourier/

releases/download/knative -${KOURIER_VERSION }/ kourier.yaml
kubectl patch configmap/config -network -n knative -serving --

type merge --patch ’ {" data " : { " i n g r e s s −c l a s s " : " k o u r i e r .
i n g r e s s . ne twork ing . kna t i v e . dev "}} ’

echo " S e t t i n g up DNS"
kubectl apply -f https :// github.com/knative/serving/releases/

download/knative -${KNATIVE_VERSION }/serving -default -domain
.yaml

83

84 B. Configurations

echo " S e t t i n g up Event ing "
kubectl apply -f https :// github.com/knative/eventing/releases

/download/knative -${KNATIVE_VERSION }/eventing -crds.yaml
kubectl apply -f https :// github.com/knative/eventing/releases

/download/knative -${KNATIVE_VERSION }/eventing -core.yaml

echo " S e t t i n g up RabbitMQ"
kubectl apply -f https :// github.com/cert -manager/cert -manager

/releases/download/v1.5.4/cert -manager.yaml
echo "Wait f o r c e r t −manager "
sleep 120
kubectl apply -f https :// github.com/rabbitmq/messaging -

topology -operator/releases/latest/download/messaging -
topology -operator -with -certmanager.yaml

kubectl apply -f https :// github.com/rabbitmq/cluster -operator
/releases/latest/download/cluster -operator.yml

kubectl apply -f https :// github.com/knative -extensions/
eventing -rabbitmq/releases/download/knative -${
BROKER_VERSION }/rabbitmq -broker.yaml

echo " A l l done ! " �
Listing B.1: Bash script used to deploy Knative Serving, Eventing and RabbitMQ
components.

apiVersion: rabbitmq.com/v1beta1
kind: RabbitmqCluster
metadata:

name: rabbitmq
namespace: NAMESPACE

spec:
replicas: 1
resources:

requests:
cpu: 500m
memory: 500Mi

limits:
cpu: 2000m
memory: 2Gi

override:
statefulSet:

spec:
template:

spec:
containers:
- name: rabbitmq

env:
- name: ERL_MAX_PORTS

value: "4096" �
Listing B.2: How to deploy a RabbitMQ cluster.

B.1 Knative 85

apiVersion: eventing.knative.dev/v1alpha1
kind: RabbitmqBrokerConfig
metadata:

name: kopjra -config
namespace: NAMESPACE

spec:
rabbitmqClusterReference:

name: rabbitmq
namespace: NAMESPACE

queueType: quorum

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:

name: kopjra
namespace: NAMESPACE
annotations:

eventing.knative.dev/broker.class: RabbitMQBroker
rabbitmq.eventing.knative.dev/cpu -request: 500m
rabbitmq.eventing.knative.dev/memory -request: 512Mi
rabbitmq.eventing.knative.dev/cpu -limit: 1000m
rabbitmq.eventing.knative.dev/memory -limit: 1024Mi

spec:
config:

apiVersion: eventing.knative.dev/v1alpha1
kind: RabbitmqBrokerConfig
name: kopjra -config

delivery:
deadLetterSink:

ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event -display
namespace: NAMESPACE

backoffDelay: PT1S
backoffPolicy: exponential
retry: 3 �

Listing B.3: How to deploy a RabbitMQ broker with its configuration.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

name: event -display
namespace: NAMESPACE

spec:
template:

metadata:
annotations:

autoscaling.knative.dev/initial -scale: "0"

86 B. Configurations

spec:
containers:

- image: gcr.io/knative -releases/knative.dev/eventing/
cmd/event_display
securityContext:

allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
runAsNonRoot: true
capabilities:

drop:
- ALL

seccompProfile:
type: RuntimeDefault �

Listing B.4: Knative Service of event-display utility.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

labels:
app: kn-kapturer -be
env: dev

name: kn -kapturer -be
namespace: NAMESPACE

spec:
template:

metadata:
annotations:

autoscaling.knative.dev/min -scale: "1"
spec:

containers:
- env:

- name: ENTRYPOINT
value: ./dist/index.js

envFrom:
- configMapRef:

name: kabe -conf -dev -xxx
- secretRef:

name: kabe -secret -dev -xxx
name: kn -kapturer -be
image: eu.gcr.io/REGISTRY/kn-kapturer -backend:v1.0.0
imagePullPolicy: IfNotPresent
ports:

- containerPort: 8080
protocol: TCP

securityContext:
seccompProfile:

type: RuntimeDefault
allowPrivilegeEscalation: false
capabilities:

B.1 Knative 87

drop:
- ALL

readOnlyRootFilesystem: true
runAsNonRoot: true

resources:
requests:

memory: 500Mi
cpu: 800m

limits:
memory: 1000Mi
cpu: 1500m

livenessProbe:
httpGet:

path: /v1
port: 8080

initialDelaySeconds: 30
periodSeconds: 60
failureThreshold: 5

readinessProbe:
httpGet:

path: /v1
port: 8080

initialDelaySeconds: 30
periodSeconds: 60
failureThreshold: 5

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

labels:
app: kn-kapturer -clk
env: dev

name: kn -kapturer -clk
namespace: NAMESPACE

spec:
template:

metadata:
annotations:

autoscaling.knative.dev/min -scale: "1"
spec:

containers:
- env:

- name: ENTRYPOINT
value: ./dist/index -clk.js

envFrom:
- configMapRef:

name: kabe -conf -dev -xxx
- secretRef:

name: kabe -secret -dev -xxx
name: kn-kapturer -clk

88 B. Configurations

image: eu.gcr.io/REGISTRY/kn-kapturer -backend:v1.0.0
imagePullPolicy: IfNotPresent
ports:

- containerPort: 8080
protocol: TCP

securityContext:
seccompProfile:

type: RuntimeDefault
allowPrivilegeEscalation: false
capabilities:

drop:
- ALL

readOnlyRootFilesystem: true
runAsNonRoot: true

resources:
requests:

memory: 64Mi
cpu: 50m

limits:
memory: 128Mi
cpu: 100m �

Listing B.5: Knative Services of the backend module.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

labels:
app: kn-krawler
env: dev

name: kn -krawler
namespace: NAMESPACE

spec:
template:

metadata:
annotations:

autoscaling.knative.dev/target -utilization -percentage
: "100"

autoscaling.knative.dev/class: kpa.autoscaling.knative
.dev

autoscaling.knative.dev/metric: concurrency
autoscaling.knative.dev/min -scale: "0"
autoscaling.knative.dev/max -scale: "100"

spec:
containerConcurrency: 1
containers:

- name: kn-krawler
image: eu.gcr.io/REGISTRY/kn-krawler:v1.0.1
imagePullPolicy: IfNotPresent
envFrom:

B.1 Knative 89

- configMapRef:
name: kabe -conf -dev -xxx

- secretRef:
name: kabe -secret -dev -xxx

env:
- name: FUNC_LOG_LEVEL

value: "info"
- name: CHROMIUM_PATH

value: "/usr/bin/chromium -browser"
securityContext:

seccompProfile:
type: RuntimeDefault

allowPrivilegeEscalation: false
capabilities:

drop:
- ALL

readOnlyRootFilesystem: true
runAsNonRoot: true

resources:
requests:

memory: 1000Mi
cpu: 500m

limits:
memory: 1280Mi
cpu: 750m �

Listing B.6: Knative Services of the core module.

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

name: crawls -trigger
namespace: NAMESPACE
annotations:

rabbitmq.eventing.knative.dev/cpu -request: 100m
rabbitmq.eventing.knative.dev/memory -request: 100Mi
rabbitmq.eventing.knative.dev/cpu -limit: 300m
rabbitmq.eventing.knative.dev/memory -limit: 300Mi
rabbitmq.eventing.knative.dev/parallelism: "100"

spec:
broker: kopjra
filter:

attributes:
type: dev.kapturer.crawls
source: kn-kapturer -be

subscriber:
ref:

apiVersion: serving.knative.dev/v1
kind: Service
name: kn -krawler

90 B. Configurations

namespace: NAMESPACE

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

name: results -trigger
namespace: NAMESPACE
annotations:

rabbitmq.eventing.knative.dev/cpu -request: 100m
rabbitmq.eventing.knative.dev/memory -request: 100Mi
rabbitmq.eventing.knative.dev/cpu -limit: 300m
rabbitmq.eventing.knative.dev/memory -limit: 300Mi
rabbitmq.eventing.knative.dev/parallelism: "100"

spec:
broker: kopjra
filter:

attributes:
type: dev.krawler.results
source: kn-krawler

subscriber:
ref:

apiVersion: serving.knative.dev/v1
kind: Service
name: kn -kapturer -be
namespace: NAMESPACE

uri: /v1/internal/results

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

name: response -trigger
namespace: NAMESPACE
annotations:

rabbitmq.eventing.knative.dev/cpu -request: 100m
rabbitmq.eventing.knative.dev/memory -request: 100Mi
rabbitmq.eventing.knative.dev/cpu -limit: 300m
rabbitmq.eventing.knative.dev/memory -limit: 300Mi
rabbitmq.eventing.knative.dev/parallelism: "100"

spec:
broker: kopjra
filter:

attributes:
type: dev.krawler.response
source: kn-krawler

subscriber:
ref:

apiVersion: serving.knative.dev/v1
kind: Service
name: event -display
namespace: NAMESPACE

B.2 Monitoring 91

�
Listing B.7: Trigger definitions to subscribe event to a sink.

B.2 Monitoring

The collection and storage of metrics generated during the various tests was made
possible by the monitoring platform, which includes several applications. The
commands required for deploying and configuring the latter are listed below.

A complete reading of the configuration files is recommended before running
any commands.

#!/bin/bash

kubectl create namespace metrics

Deploy Prometheus Stack
helm repo add prometheus -community https :// prometheus -

community.github.io/helm -charts
helm repo update
helm install prometheus prometheus -community/kube -prometheus -

stack -n metrics -f prom -values.yaml
Expose the services
kubectl port -forward -n metrics svc/prometheus -kube -

prometheus -prometheus 9090:9090
kubectl port -forward -n metrics svc/prometheus -grafana

3000:80
Grafana credentials: {"user ":" admin", "password ":"prom -

operator "}

Deploy Knative and RabbitMQ monitoring stuff
kubectl apply -f https ://raw.githubusercontent.com/knative -

extensions/monitoring/main/servicemonitor.yaml
kubectl apply -f https ://raw.githubusercontent.com/knative -

extensions/monitoring/main/grafana/dashboards.yaml
kubectl apply -f https ://raw.githubusercontent.com/rabbitmq/

cluster -operator/main/observability/prometheus/monitors/
rabbitmq -servicemonitor.yml

kubectl apply -f https ://raw.githubusercontent.com/rabbitmq/
cluster -operator/main/observability/prometheus/monitors/
rabbitmq -cluster -operator -podmonitor.yml

Manual import of the following dashboards about RabbitMQ
10991
11340

Deploy InfluxDB
helm repo add influxdata https :// helm.influxdata.com/

92 B. Configurations

helm upgrade -i influxdb influxdata/influxdb2 -n metrics -f
inf -values.yaml

Copy the password that the previous command provides
InfluxDB credentials: {"user ":" admin", "password ":"the

password copied before "}
Expose the service
kubectl port -forward -n metrics svc/influxdb -influxdb2

8086:80
Create a bucket
Create a custom API Token following https :// docs.

influxdata.com/influxdb/cloud/admin/tokens/create -token/
with WRITE to the created bucket and READ from telegraf
agent permissions

Create another API Token with only read access permission
to all buckets

Follow https :// grafana.com/docs/grafana/latest/datasources
/influxdb/ to create InfluxDB data source on Grafana

export API_TOKEN=""
export BUCKET_NAME=""

Deploy Telegraf
helm repo add telegraf https :// helm.influxdata.com/
helm upgrade -i telegraf influxdata/telegraf -n metrics -f

tel -values.yaml �
Listing B.8: How to deploy Prometheus Stack, InfluxDB and Telegraf.

kube -state -metrics:
metricLabelsAllowlist:
- jobs=[*]
- pods=[*]
- deployments=[app.kubernetes.io/name ,app.kubernetes.io/

component ,app.kubernetes.io/instance]
prometheus:

prometheusSpec:
serviceMonitorSelectorNilUsesHelmValues: false
podMonitorSelectorNilUsesHelmValues: false
remoteWrite:

- url: "http :// telegraf.metrics.svc :8080/ telegraf"
grafana:

sidecar:
dashboards:

enabled: true
searchNamespace: ALL �

Listing B.9: prom-values.yaml

resources:
limits:

cpu: 4000m

B.2 Monitoring 93

memory: 8Gi
requests:

cpu: 2000m
memory: 6Gi �

Listing B.10: inf-values.yaml

resources:
requests:

memory: 500Mi
cpu: 500m

limits:
memory: 1Gi
cpu: 1000m

config:
agent:

interval: "10s"
round_interval: true
metric_batch_size: 50000
metric_buffer_limit: 100000
collection_jitter: "0s"
flush_interval: "10s"
flush_jitter: "0s"
precision: ""
debug: false
quiet: false
logfile: ""
hostname: "$HOSTNAME"
omit_hostname: false

inputs:
- http_listener_v2:

service_address: ":8080"
paths: ["/telegraf"]
data_format: "prometheusremotewrite"

outputs:
- influxdb_v2:

urls:
- "http :// influxdb -influxdb2.metrics.svc :80/"

token: "$API_TOKEN"
bucket: "$BUCKET_NAME"
organization: "influxdata"
timeout: "5s"
insecure_skip_verify: false

metrics:
health:

enabled: true
service_address: "http ://:8888"
threshold: 5000

internal:
enabled: false

94 B. Configurations

collect_memstats: false �
Listing B.11: tel-values.yaml

	Aphorism
	Abstract
	Sommario
	Contents
	List of Figures
	1 Introduction
	1.1 The Cloud Era
	1.1.1 Cloud Service Models

	1.2 Serverless Computing
	1.2.1 Open Source Solutions

	1.3 Web Crawler
	1.3.1 Web Crawling Strategies
	1.3.2 Legal Concerns

	1.4 Objective of the Thesis
	1.4.1 Contributions

	1.5 Structure of the Thesis

	2 Background
	2.1 AWS Lambda
	2.2 Knative
	2.2.1 Serving
	2.2.2 Eventing
	2.2.3 Function

	2.3 Puppeteer
	2.3.1 Stealth plugin

	2.4 Elasticsearch
	2.4.1 Elastic Cloud on Kubernetes

	3 Literature Review
	4 Methodology
	4.1 System Architecture
	4.1.1 Indexing
	4.1.2 Core
	4.1.3 Backend
	4.1.4 Frontend

	4.2 Implementations
	4.2.1 krawler on AWS Lambda
	4.2.2 kn-krawler on Knative
	4.2.3 krawler-pod on Kubernetes

	5 Performance Analysis
	5.1 Monitoring Stack
	5.2 Test Design
	5.2.1 Metrics
	5.2.2 Cluster configurations

	5.3 Experimental Results

	6 Conclusions
	6.1 Future works

	Bibliography
	Sitography
	Glossary
	Acronyms
	A Screenshots
	B Configurations
	B.1 Knative
	B.2 Monitoring

