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Abstract

Humans are capable of executing a wide variety of complex tasks, based on prior
experience. Often, they accomplish them by breaking them down into minor ac-
tions that are composed together one after the other to achieve the goal. These
actions are not always learned directly but adapted from previous similar experi-
ences to the current context.

In this study, we propose a computational model that is biologically inspired
and aims to integrate into robotics the human ability to adapt movements and
combine them to achieve high-level skills.

A novel approach to high-level skill synthesis is explored by leveraging move-
ment primitives learned through Conditional Neural Motion Planning (CNMP)
models.

The research introduces two methods for generating and composing new ac-
tions based on demonstrated ones. In the first approach, trajectories are blended
by utilizing the task interpolation capabilities of the neural network and a de-
veloped mathematical system for parameterization. Additionally, two alternative
architectures for the CNMP model are proposed, both achieving results compara-
ble to the original model while accommodating partial information. The second
approach achieves action synthesis through the concatenation of primitives, spatial
interpolation, and the network’s ability to encode multidimensional data to embed
the environment representation.

Both proposed methods are finally showcased in several experiments with real
robots.
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Chapter 1

Introduction

1.1 Overview

Humans have a remarkable ability to achieve complex goals in a wide variety of
tasks. A person is usually exposed to different scenarios during the day, starting
from the home environment to the commute, work, mealtime, and so on. The
versatility of our species is a key factor, and the human cognitive flexibility has
been appointed as a major driver in evolution [8], [27]. Some situations are more
complicated than others; nevertheless, regardless of their difference, humans excel
in meeting the different demands to solve the tasks desired.

All these scenarios present different small challenges to solve in order to ac-
complish the desired high-level goal. Humans switch contexts in a really flexible
and natural way and constantly take care of the multitude of these small prob-
lems that are faced to complete the desired objective. For example, a general task
can be divided into subtasks, which can then be further divided into smaller ones
[33]. The strategy of breaking down intricate objectives into smaller, manageable,
simpler activities is the most widely used heuristic to solve problems [10].

Many of these sub-challenges require an interaction with one or more objects.
For example, the action of opening involves a door to pass through it while moving
or to access the fridge for cooking. The reaching action can imply an object
like a pen in the office to write or a glass of water to drink. To push as an
action often implies a button to enable a device in the workplace, or to turn on
a car to commute, or the stove to heat a meal. Objects have undoubtedly strong
importance in the small actions performed to achieve a goal, and their affordance
is still the object of research in humans [35], [38] and machines [15].

As seen, many different movements and sub-actions, often involving objects,
are executed in daily life. Furthermore, they are also adapted to accomplish the
current desired goals. The adaptation can involve a simple difference of position

1



2 CHAPTER 1. INTRODUCTION

with respect to the previous location, both of the object or the executor, or can
involve a completely different context to which the action learned is transferred.
These skills are learned and discovered at the beginning, and then the knowledge
of the action is abstracted and adapted to different purposes.

Moreover, a person builds sequences of actions naturally to achieve the ob-
jective and, as discussed, adapts them to the environment. The skills are often
combined together one after the other, based on the scenario but also based on the
result and position of the previous execution. Occasionally, it can happen that part
of an action is used and part of another action, mixing previously learned move-
ments if the situation requires it. This results in the creation of new combinations
and compositions of previously known activities.

Lastly, dissecting complex challenges requires also decision-making under un-
certainty, which is essential for achieving high-level goals since the sequence of
activities is not always clear in advance. Often, the goal changes mid-way in re-
sponse to the environment, or the initial assessment is sub-optimal or incorrect,
forcing a change in planning and a new decision on what subsequent action to take.
So it’s worth noting that online decision under dynamic circumstances and change
of skill executed allows a person to navigate the complexities of daily scenarios
with success.

The human mind’s capacity for abstraction, planning, and execution is still a
remote objective for robotics [32]. This level of adaptation to the environment and
building of compounded behaviors is still a hard challenge to solve nowadays.

For this reason, robots currently are not pervasive in society like other technolo-
gies. Humanoid robots have little if no presence and, despite the potential different
uses, are relegated to mainly interaction and exhibition duties. The majority of
robots work in a controlled environment, like factories, where the surroundings
are specifically designed for them. The actions taken are repetitive, fixed, and in
contact with a simple, defined set of objects.

Furthermore, even if some robots are able to integrate into semi-structured
environments (for example, the robotic vacuum cleaners for homes or lawnmowers
for gardens), they are specialized to a single task in a single scenario. Multi-
purpose robots require a more human-compatible design and a higher degree of
intelligent behavior [9], but versatile humanoid robots are still not pervasive in the
current status of society.

In this study, we propose a computational model that is biologically inspired.
Our approach consists in the use of mathematics and artificial intelligence to em-
ulate human abstraction and adaptation capabilities in the execution of a series
of primitive actions. We want to prove how demonstrating basic movements to a
robot and composing them together with flexibility may lead to achieving com-
plex tasks of various natures. Specifically, movement primitives are reused and
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combined differently for different goals, avoiding explicit teaching of multiple ob-
jectives. The trajectories for the skills learned are adapted to the environment
and partially composed thanks to the interpolation abilities of Conditional Neu-
ral Movement Primitives (CNMP) networks [53]. Lastly, the approach has been
implemented and tested on an anthropomorphic robot and on an industrial col-
laborative robot.

1.2 Challenges

Robotics dominates many fields, but as discussed, often the environment is con-
trolled, designed to help the robot in its task, and not human-friendly. If the
purpose is to integrate robots into the human environment, robots must adapt to
humans, not vice-versa. All environments in which humans are present are not
organized or predictable, and this means one issue is that robots have to accom-
modate for these conditions. A challenge is definitely to introduce the machine to
an unstructured environment, and this implies many sub-issues.

Having surroundings that might change forces the machines to have a great
amount of perception. The system has to be extremely aware of the objects and
people around it to operate in a safe and meaningful way. This translates into
equipping many sensors and using real-time data from all available sources. More-
over, the machine cannot rely on these detection instruments mounted on the
external world since a humanoid robot is expected to be mobile. Having a multi-
purpose system that can act in different scenarios implies, indeed, a self-contained
arrangement of sensors.

The perception brings, in cascade, the necessity of storing this information and
creating an internal copy of the surroundings that works as a base for planning and
future predictions. Creating a digital twin for the environment is not essential for
all the actions since some of them can be executed in real-time, but it is required to
plan their effects and combine results together. For example, if a sponge is needed
to clean a table, it would be faster to have the knowledge of its last position,
but it can also be researched on demand and used while observing the effects in
real-time till the table is clean. On the other hand, complex actions that combine
multiple primitives need a future prediction of their effects on the environment, so
its internal representation is required.

With changing surroundings, it is possible also that the expected position of
objects is no longer consistent with the representation. This forces the system to
find an alternative or explore the environment till the object is found. Other kinds
of exploration possible are the exploration of the action space to infer new actions
and results, or the exploration of objects’ capabilities to learn new affordances and
usages. [1]
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Another factor worth taking into consideration is the subject of planning. Plans
have to be structured in a meaningful way otherwise an incorrect sequence won’t
just produce an incorrect result but might bring the system further away from the
final goal. The combinations of actions generated usually have importance in the
order of execution, so the product of the skills has to be considered carefully.

Furthermore, objects and tools are usually designed for humans, so their capa-
bilities might vary depending on the machine used and might influence the actions
in the planning phase. Giving meanings to the objects, both in terms of affor-
dances and representations, is still a tricky challenge in robotics [24] and partially
involves the previously investigated challenges of planning and exploration.

Also, obstacle avoidance, whenever there is an object in the trajectory of move-
ment, is a factor to take into consideration. The robot is required to be aware of
the surroundings and itself, not to collide, hurt, damage them, or just fail the
designated goal. Humans adapt previously known actions whenever an obstacle
or an impediment is present.

Part of the adaptation challenge is also being able to transfer the skills known
to new locations and scenarios. For example, learning how to turn a key for the
door and use the action for the key of the car or the knob to turn on the stove.
This is an essential capability that is difficult to implement in a machine.

Another more hidden challenge is how the actions are merged among them.
Usually, humans, when they pass from one action to another, apply a smooth
transition. This means that the movements don’t have to fully start and end as
they are learned, or the result will be artificial and sub-optimal.

Furthermore, object handling, grasping, and manipulation present some issues
that are the object of research. How to pick the item desired, where, with which
grasp, and with which force intensity are issues that can undermine the final result.

Lastly, another challenge that will be encountered is the recognition when the
action is completed. Being aware of the right final state is essential for successfully
matching the expectations for the goal requested.

These challenges discussed are crucial aspects to consider, but not all of them
will be addressed in this project, and some will also be simplified. Nevertheless,
it’s worth noting the scope and limitations of this work and the boundaries within
which the research operates.

1.3 Objectives

The aim of this research is to investigate novel skill generation by combining pre-
viously taught ones with the use of CNMPs [53]. The research aims to be applied
to robotics scenarios involving trajectories for object manipulation and high-level
goal achievement. The generation of new combinations of skills will be performed
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by connecting skill segments that the robot learned by demonstration. The amount
of demonstrations given should be reasonable for the system to be applied in real
life by a human. The combination of actions will be investigated in both the con-
catenation of trajectories end-to-end and the use of parts of them. The ultimate
goal is to create a system that allows a robot, given some demonstrations, to reuse
the skills acquired to complete different objectives whose trajectories were never
taught explicitly. Furthermore, the adaptation should be acceptable in different
configurations of the environment and, ideally, in different scenarios.

1.4 Thesis Structure

Accordingly, the remainder of this thesis is structured as follows.
Chapter 2 discusses the background of the topic, the current advancements in

the field, and the related research with a literature review.
In chapter 3 the instruments and frameworks used in this research are listed

and analyzed to be able to understand the initial setup and replicate the results.
The chapter 4 explains the design and architecture of the proposed method.

In order to understand the logic, the conceptual passages and mathematical back-
ground.

The chapter 5 analyzes the key points of the implemented solution through the
explanation of the most important passages in the code developed.

The chapter 6 shows the final results and the testing on real-life robotic plat-
forms.

Finally, Chapter 7 concludes this thesis by summarising its main contribution
and future work.
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Chapter 2

Related Work

In this chapter, we will proceed with the literature analysis and state-of-the-art
methods related to the topic. Furthermore, some basic notions regarding the
previous research relied upon will be explained.

Trajectory generation for robotics is a topic closely related to manipulation
and navigation. Every movement can be described as a trajectory, defined as
the composition of the path taken by an agent (or its joints) in time [4]. In this
discussion, we will focus more on the manipulation part, being the most clear
example of how combining different trajectories can produce novel robotic skills.
Manipulation is one of the most distinctive capabilities of robots, since their main
objective is to perform physical tasks in the real world. Any process that presents
the necessity of a human to engage with a physical object meaningfully can solely
be automated by robot manipulation. [47]

Creating robots capable of directly interacting with the world around them is
still a key challenge in robotics, and manipulation is central to this. [33] Neverthe-
less, the ability to solve high-level goals in robots is increasing [14], [54] thanks to
the recent advances in artificial intelligence. Some approaches may follow natural
language instructions to achieve complex sequences of actions [16], but according
to the research objective, a certain degree of autonomy is desired. This implies
typically giving only the final goal and not the step-by-step instructions.

Recently, a lot of research has invested in deep reinforcement learning to map
sensor inputs of a robot directly to motor torques [28]. These approaches provide
independence, due to not hard-coded behaviors, and versatility by leveraging re-
cent advancements in training deep networks. However, they encounter difficulties
because of the demand for a huge amount of samples and underlying complexity.
Reinforcement learning embraces the full complexity of these problems by requir-
ing both interactive, sequential prediction as in ”learning from demonstration”
(LfD) and complex reward structures with only “bandit” style feedback on the
actions chosen [30]. For this reason, recent research aims to minimize what must

7
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be learned and to support sequential composition [47]. However, the collection of
trajectory samples in the real world requires too much time, so a framework for
robotic simulation is often used to simplify the setting.

A commonly used technique in robotics is Learning from Demonstration (LfD)
[3] [50], and then [43]. It allows for solving a wide variety of robotics problems
by imitating an external agent. The demonstrator, often a human or another
system, provides examples (expert demonstrations) of how to perform a task, and
the learning agent generalizes from these demonstrations to acquire the ability to
perform the task later independently.

Famous learning from demonstration research includes statistical modeling [5],
dynamic systems [51], and their union in [56]. In Dynamic Movement Primitives
(DMPs) [51] [22], a trajectory is represented with a set of differential equations
and learned with as little as one shot. DMPs demonstrated a good capability in
learning a remarkable variety of dynamic behaviors [36]. Thanks to the ”point
attractor” mechanism, it guarantees reaching a point even under perturbations.
DMPs have successfully been utilized in difficult manipulation tasks such as in-
hand manipulation and flipping boxes using chopsticks [40]. On the other hand,
additional tuning is needed to determine the number of basis functions. Moreover,
the motor learning problems that are most intriguing often involve a high number
of dimensions [31], and DMPs still struggle to be integrated with high-dimensional,
multi-modal data [49]. Finally, their approach is not designed to learn from mul-
tiple trajectories and, therefore, cannot encode the important parts of multiple
demonstrations [53].

In the Probabilistic Movement Primitives (ProMP) [39], instead, the distribu-
tion of basis functions is often represented using a probabilistic framework, typi-
cally a Gaussian Mixture Model (GMM) or a similar probabilistic model. Proba-
bilistic models allow to capture the variability across demonstrations and different
Degrees of Freedom and, furthermore, enable variable conditioning in which pre-
dictions can be refined through new observations.

Historically, Gaussian Mixture Models [37] have been prominent among various
probabilistic approaches since they provide adaptable solutions to the challenge
of modeling trajectories. On the other hand, GMMs involve estimating many
parameters, especially when dealing with high-dimensional data or a large number
of components. This can make training and inference computationally expensive,
particularly when the dataset is extensive, and if not done correctly, can lead to
some failures, Figure 2.1.

Another probabilistic model, like GMMs, often used in statistical modeling
techniques is Hidden Markov Models (HMMs) [34]. HMMs were successfully ap-
plied to learn multi-modal models from temperature, pressure, and fingertip infor-
mation for exploratory object classification tasks [6].
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Figure 2.1: In ProMPs the distribution of basis functions is often represented using
a probabilistic framework, but can lead to some failures.

A recent model developed in robotics called Conditional Neural Movement
Primitives (CNMP) [53] also learns from demonstrations, but instead of using
GMMs, they use neural networks to model the mapping from conditions to tra-
jectories directly. Neural networks allow the model to scale better and offer ro-
bust data approximation via gradient descent. Until recently, neural networks
in deep learning were trained to approximate a single-output function. However,
when data is a distribution, the single function cannot approximate the underly-
ing model. So, the network can be modeled as a probabilistic approximator that
can predict the distribution parameters, mean, and variance. This makes CN-
MPs well-suited for tasks with complex, high-dimensional state spaces. It allows
one to learn skills in tens, rather than thousands, of real-world interactions and
interpolate among them.

Based on the above-mentioned observations, the proposal is as follows. In the
following research, the ability of CNMPs to interpolate the trajectories demon-
strated is exploited to synthesize new complex skills. The model is based on
Gaussian Processes (GP) [52], Neural Processes (NPs) [12], and Conditional Neu-
ral Processes (CNPs) [11]. For context, an explanation in detail of these above-
mentioned methods will follow.
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Figure 2.2: Gaussian Processes are probabilistic models that define a distribution
over functions.

2.1 Gaussian Processes

Gaussian Processes [52] are probabilistic models that define a distribution over
functions, Figure 2.2. This means that they leverage pre-existing knowledge about
a set of functions and infer during test-time specific functions that fit the data
provided. Given a set of observed points, there are infinite possible functions that
pass through them.

Gaussian processes provide an elegant solution to this challenge by assigning
a probability to each of these potential functions. The mean of this probability
distribution then represents the most probable characterization of the data given
the observation points [23].

This is called regression and is used, for example, in robotics or time series
forecasting. Gaussian processes are not limited to regression, and they can also be
extended to classification and clustering tasks [26] [29]. Many supervised learning
problems can be seen as function approximations since a dataset of observations
{xi, yi}n−1

i=0 is basically a number n of evaluations yi = f(xi) of an unknown function
f . A supervised learning algorithm returns an approximated function g. The goal
is to minimize the loss between the real function f and the predicted one g. The
evaluation is carried out on unlabelled data points xj.

On the other hand, the disadvantages of Gaussian Processes are prior selection
and training time for large datasets. Scaling issues with GPs have been addressed
in [55]. The limited expressivity from functional restriction was addressed with
DeepGPs in [7] [48].

Overcoming these issues and attempting to combine Deep Learning (DL) with
GPs was proposed in [59], but the approach remains close to GPs since the network
is used to learn more expressive kernels to use with GPs.
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Figure 2.3: The structure of a CNP network, with three main blocks: Encoder,
Aggregator, and Decoder.

2.2 Conditional Neural Processes

In [11], the authors propose a novel research in which the inference potential of
Gaussian Processes and the performance of neural networks are blended together.
Neural networks are extensively employed as approximators of functions and have
demonstrated considerable efficacy but often require large datasets for training.
In CNPs, the prior knowledge is directly derived from the data, allowing them
to infer the underlying function distribution based on observations. CNPs are
built with three main blocks: Encoder, Aggregator, and Decoder. Encoder E and
Decoder Q are typically Multi-layer perceptrons. The model structure is shown in
Figure 2.3. The model scales with complexity O(n+m) for making m predictions
from n observations, while GPs scale with O(n + m)3. CNPs don’t require the
specification of a kernel cause they learn it from the data provided in training. The
tradeoff is that the representations of the observations have fixed dimensionality.

The work is based on the previous research of Neural Processes (NPs) [12].
NPs are suggested as a means to manage the substantial computational demands
of GPs while leveraging their flexibility and efficiency with data. NPs help create
different predictions by learning a shared hidden representation. However, they
have trouble with long sequences because they automatically pick certain points.
Building on NPs, Conditional Neural Processes (CNPs) are strong models that
make training more efficient by allowing explicit conditioning. The approach al-
lows precise predictions for targets sampled from a distribution conditioned with
observations, Figure 2.4. Given a varying number of observations O, a neural
network E is utilized as an encoder to generate a fixed-size representation ri.

Observations fed to the network don’t have an order, following the stochastic
processes, because subsequently, they are aggregated with the average operation to
obtain a single representation r. Any commutative operation is valid and usable.
The resulting representation r contains the conditioning information and is fed
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Figure 2.4: CNP allows precise predictions for targets sampled from a distribution
conditioned with observations

to a decoder network Q along with the desired target xj to query. The decoder
network Q has parameters θ. For all the targets xj ∈ T the decoder outputs the
mean and standard deviation.

The formulation of the encoding of each observation is:

ri = Eϕ(xi, yi), ∀(xi, yi) ∈ O (2.1)

and the following commutative operation between the encodings to create a single
one:

r = r1 ⊕ r2 ⊕ ...⊕ ri, (2.2)

The commutative operation expressed by ⊕, can be summation, average, product,
and so on.

The vector generated is concatenated with the target variables. The merged
representation is passed to the decoder to obtain the output as:

ϕj = Qθ(xj, r), ∀xj ∈ T (2.3)

Where the output is:
ϕj = (µj, σ

2
j ) (2.4)

which are the mean and the standard deviation of the output variable.
In summary, the CNP model, with averaging operation, can be formulated as:

µj, σ
2
j = Qθ

(
xj ⊕

∑n
i Eϕ((xi, yi))

n

)
(2.5)
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Figure 2.5: CNMP model, it is conceived to work with temporal relations between
sensorimotor data and different task parameters

2.3 Conditional Neural Movement Primitives

Finally, in [53], Conditional Neural Movement Primitives are proposed as a model.
CNMPs, as the name suggests, are an extension of CNPs and are particularly
well suited for the robotics domain. The model illustration can be seen in Figure
2.5, from [53]. The ”learning from demonstration” framework can learn non-linear
relationships between trajectories and reproduce them in joint or task space. In
this case, a trajectory is formally defined as a temporal function, τ = τ(t), where
the sensorimotor data in time describes how a robot moves. So, each trajectory τ
is a list of ordered sensorimotor values:

τ = {SM(t1), SM(t2), ..., SM(tT )} (2.6)

where SM(ti) is the sensorimotor data at an instant of time ti. So, the challenge
of trajectory generation becomes figuring out a series of commands SM(ti) that
creates the movement desired [13]. Finally, with a set of observations O, the
model has to learn the function τ = f(t|O), using N expert demonstrations,
D = {τ1, τ2, ..., τN}.

CNMPs are conceived to work with temporal relations t and different task
parameters γ. CNMPs maintain the permutation invariance of CNPs over obser-
vations O and queries T . Furthermore, to make the model time-invariant, the
sensorimotor trajectories are often scaled in the interval [0,1]. The task param-
eter γ effectively adds one or more dimensionalities to the network’s input, and
it’s passed to both the encoder and the decoder. An observation becomes the
concatenation of SM(ti), ti, and γ. The dimensionality of SM(ti) depends on
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factors like the Degrees of Freedom of the robot joints and the number of variables
corresponding to the actuators. For the aggregation of the representations, the
averaging operation has been chosen. During training, a random trajectory τi is
selected from the D set of expert demonstrations. Next, a random number n of
random observation points are selected from the trajectory τi. The encoder takes
the n observations and produces n representations. The final representation is
obtained by averaging the representations produced by the encoder fed with all
the observation points. The target data is predicted using the representation and
the query time t concatenated to the task parameter γ

The encoder and the decoder are trained jointly with the error calculated from
the following loss function:

L(θ, ϕ) = −logP (yi|µi, softmax(σj)) (2.7)

using both mean and standard deviation produced by the network. As a note, the
uncertainty of the prediction provided by the variance is useful for the model’s
active exploration to choose wisely where the next observations are needed. More-
over, the capacity of CNMPs to deal with high-dimensionality input can also be
used to input images in the model. Image completion indeed can be seen as a re-
gression task. Leveraging the interpolation capabilities of CNMPs, our approach
will investigate novel synthesis by combining and concatenating previously taught
ones.



Chapter 3

Platforms

In this chapter, all the physical and digital platforms utilized will be explained to
give a proper understanding of the initial architecture and a more comprehensive
idea of the environment of the experiments. The first part will state the devices
and their setup, capabilities, and configuration used. Subsequently, the frameworks
and libraries employed will be listed and described.

3.1 Baxter Robot

The Baxter robot is an industrial robot built by Rethink Robotics in 2011 [58].
The platform [Fig. 3.1] has two robotic arms with interchangeable grippers at the
wrist (End Effectors). The robot is 180cm tall and, with its pedestal, weighs 140
kg. The arms have 7 degrees of freedom (DOF), which implies they have seven
joints each. This makes it kinematic redundant, meaning that for some points
reached in space, multiple pose configurations of the arms are possible. These two
factors combined allow the robot to have an impressive capability in manipulation.
The robot can be equipped with suction caps or two-jaw parallel grippers; we chose
the last ones in our configuration. The gripper, in addition to its position, also
offers information regarding the force applied while grasping an object.

The robot was designed with attention to collaborative tasks with humans. For
this reason, it eases teaching by demonstration by having integrated two touch sen-
sors in the wrists that unlock the motors of the arms, allowing the user to move
them easily and record the trajectories executed. The robot helps the movement
with a feature called ”Zero-g mode”, in which the weight of the joints is neu-
tralized actively by the motors. This enables the teaching expert to demonstrate
movements in a similar environment without gravity, without having to carry the
instrumentation load in time constantly. Furthermore, the robot has many input
buttons and LEDs, they are present on the hands, arms, and chest, and they allow

15
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Figure 3.1: Baxter Robot platform

the programming of custom behaviors. They are especially useful in retrieving
and giving instructions to the robot without reaching a computer, like closing
the gripper at the desired moment, getting feedback, or starting the trajectory
recordings.

Another feature worth mentioning is the increased safety of operating around
humans. Thanks to active and passive safety systems equipped in the platform,
it doesn’t require a cage for protection. On the other hand, making the robot less
hazardous comes with the cost of precision. A motor driving a spring that drives
Baxter’s arm instead of just a direct motor impacts the precision of movements,
sometimes in terms of centimeters. This doesn’t make the robot perfectly suit-
able for industrial applications, but especially appropriate for research and for the
adaptability in our project.

The head of the robot includes a ring of sonar sensors for people detection, a
wide-angle camera, and a movable display that acts like a face. Another benefit of
the robot lies at the end of both hands. Immediately next to the attachment for
the tools, an infrared (IR) sensor provides data on the distance from a solid object
(i.e., a table) and an inertial measurement unit (IMU). Moreover, an embedded
RGB camera is also present, allowing to see closely the object approached or to
change the point of view on it without additional external cameras.
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Figure 3.2: UR10 Robot platform

3.2 UR10 Robot

UR10 is a single industrial robot arm that shines in reliability and precision [Fig.
3.2]. It has been manufactured by Universal Robots and combines long reach with
a high payload [57]. It is intended for medium-duty tasks, so it’s compact in its
overall dimensions compared to a fully intended industrial robot. It can reach an
impressive height of 2.3m on its pedestal. In our experiments, it was mounted on
a pedestal 0.85m tall to increase the reachability at table level.

The arm has a reaching radius of 1,3m from the mounting point, which implies
a workspace of approximately 5,3 square meters at the base level. The robot has
6 Degrees of Freedom, with six rotating joints. It is able to reach any point in its
reaching radius but has no kinematics redundancy, meaning only one position is
possible for any given point. The total payload that can be carried is 10 kg.

Like the previous robot, this one is designed to work collaboratively with hu-
mans. It features built-in safety features, such as force/torque sensors, to detect
and respond to external forces or unexpected events. A button to release the mo-
tor breaks is present on the floating touch screen and allows the robot’s motion by
hand. This robot also doesn’t require a safety cage around for protection, but the
emergency stop button always has to be within easy reach.

The robot design emphasizes modularity, making it easier for users to customize
and adapt it for different tasks or use various end effectors. We coupled it with a
three-finger gripper described in the next paragraph.
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Figure 3.3: 3F Robotiq Gripper platform

3.3 3F Robotiq Gripper

At the end of the UR10 Robotic Arm, a Robotiq 3-Finger Adaptive Robot Grip-
per was mounted [Fig. 3.3]. The gripper has a human-inspired design and has
three fingers with three joints each [44]. The physical platform was chosen for its
precision and safety, and it pairs well with the UR10 capabilities. The gripper
offers different grip modes; the ones available are: ”basic”, ”wide”, ”scissor” and
”pinch”. Each is appropriate for distinctive objects to grip; the basic one is the
most versatile, but the wide one has more stability for big or long objects, and
the pinch one is the best for small objects. The ”scissor mode” closes together the
two fingers on the same side, for high-precision manipulation. We mainly used the
”pinch” setting.

The gripper has a mass of 2.3 kg in contrast with a grip payload of 10 kg. The
grip force applied can range from 30 to 70 N, depending on the grip mode selected.
The precision declared is up to 0.05 mm.

This platform was designed as well for collaborative robotic applications, al-
lowing it to work safely alongside human operators. It incorporates safety features
to detect and respond to external forces, stopping in case of high forces applied.
The torque and speed of gripping data are available and exposed through a dedi-
cated ROS topic. Speed and torque are also adjustable for the intended use. It is
possible to control and retrieve data for each finger individually.
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Figure 3.4: FT 300-S Force Torque Sensor

3.4 FT 300-S Force Torque Sensor

Between the UR10 robot and the 3F Finger Gripper, an FT 300-S Force Torque
Sensor [Fig. 3.4] was mounted to increase precision and repeatability.

The sensor offers high-resolution real-time measurements regarding the force
and torque applied to the three space dimensions and improves the capabilities of
the robot. This device makes the UR10 able to detect the payload carried or the
amount of pressure between the object or gripper and the static environment (i.e.,
the table).

The device was built for compatibility with the Universal Robot series and
has an IP65 rating. It also enables precise object placement such as alignment,
indexing, and insertion [45].

It exposes the six readings of the forces and torques in the three axes through a
port opened in the computer connected to it. In our setup, it has been connected
straight to the UR10 computer, allowing any user to retrieve the necessary data.

The FT 300-S is commonly used in tasks where force and torque sensing are
critical, but we used it to increase the reliability of the payload measurements and
the safety of the operations.
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3.5 Frameworks

ROS The Robot Operating System (ROS) [46] is a framework to standardize
the deployment of robot applications. The system is a set of software libraries
and tools that combine the state-of-the-art drivers for the most common robot
interfaces and contain the most used algorithms for robotics.

Since robotics programming is a complex challenge, the idea behind ROS is to
use the ”divide et impera” approach and split it into multiple sub-problems. This
division requires a distributed strategy, and distribution implies communication
among parts. One of ROS’s main objectives is to standardize communication.
For this reason, ROS acts like a middleware framework, allowing the ease of the
dialog between software and the robotic hardware. It is widely used in research
and industry, from mobile robots to manipulators. In our research, we used ROS
version 1.

It’s platform-independent and open source, so it is possible to create a cus-
tom robotics device compatible with it, and it’s possible to develop personalized
libraries. Its modular architecture allows the creation or use of a series of exe-
cutable pieces of code called nodes, which run on a single or even on many com-
puters. The nodes communicate among themselves with messages in the form of
data structures previously defined. The distributed system allows to decuple the
computation of heavy tasks, like vision, 3D reconstruction, and navigation, from
the robot’s hardware.

Communication occurs through ”topics” and ”services”. Nodes running on any
computer ping the ”master node” designated to retrieve all the possible topics and
services exposed from other nodes in the network. A node can be a ”publisher”
or ”subscriber” to a topic, sending messages to it or receiving messages from it.
Communication with topics is not blocking and it is many-to-many: multiple nodes
can publish, and simultaneously, multiple nodes can subscribe to a topic. Services
work in a similar way, but the communication blocks the computation till the data
requested is retrieved. Their mechanism is analogous to Remote Procedure Calls
(RPCs).

ROS is available with two commonly used programming languages: Python and
C++. We used the Python version with the ”rospy” package in the experiments
with both robots.

Pytorch Pytorch is a Deep Learning framework [41] that focuses on speed and
usability with an imperative and Pythonic programming style. The Python library
[42] offers a wide variety of models and building blocks for constructing neural
networks. By design, it eases the debugging for the user with a rich ecosystem of
dedicated tools. It works on the CPU and on hardware accelerators like GPUs.
For this reason, PyTorch provides a multi-dimensional array called a tensor, which
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is similar to NumPy arrays. Conversions among both of them will be present in
the code implementation.

Jupyter Notebook Jupyter Notebook is an open-source interactive web appli-
cation [25]. It supports multiple programming languages and offers a cell-based
environment where code and description/graphical results can be blended. Jupyter
Notebook integrates seamlessly with popular Python libraries, such as NumPy,
Pandas, Matplotlib, and scikit-learn; some of them will be described later. It was
used occasionally in our experiments to provide a fast and interactive coding ex-
perience with Python. The notebooks can be easily shared, and the process is
clearly visualized. It was specifically useful in plotting multiple graphs during the
training stages of neural networks or debugging operations on multi-dimensional
arrays.

Anaconda and Python Libraries Anaconda is an open-source software that
contains open-source tools and packages for data science, machine learning, and
scientific computing [2]. It has been used to track the packages utilized in the
robotic platforms and in the models’ development and training. The Conda pack-
age manager was the most used tool to easily install, update, and manage various
software packages and dependencies. Some of the most important libraries are
listed below.

MatplotLib Matplotlib is a comprehensive 2D plotting library for Python
that generates high-quality charts, plots, and visualizations. It has been widely
used to double-check the quality of the training or plot the trajectories recorded
with the robots.

Numpy NumPy is a package for numerical computing in Python. It supports
large, multi-dimensional arrays and matrices and a collection of mathematical func-
tions to operate on these arrays. It has been used for array slicing, normalization,
and smoothing data.
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Chapter 4

Design

In the previous chapters, it has been presented the necessary knowledge about the
background research (chapter 2) and the platforms utilized in this work (chap-
ter 3). This chapter discusses the conducted research from the design perspective,
giving the main points and emphasizing the key ideas without going into the im-
plementation details as the next chapter (chapter 5).

As analyzed in the Intro (chapter 1), humans have remarkable cognitive flex-
ibility and use it to achieve complex goals across various daily scenarios. These
goals are often broken down into smaller sub-tasks (skills), and this is one objec-
tive of this research. This combination of trajectories also requires an appropriate
shift among them, in both cases, the combination being end-to-end or partial.

Being biologically inspired, this research aims to emulate this human flexibility
in skill execution and task composition with the previously explained CNMP net-
works. Movement primitives that define skills are combined differently for different
goals and are adapted to the environment and context thanks to the interpolation
abilities of CNMP networks.

The following discussion will proceed with analyzing before the partial skill
composition with CNMPs, modeling how it is possible to go from one movement
primitive to the other. The motivation of this order is that this part enables the
partial combination and is used as well in the transition moment of end-to-end
skill concatenation.

Next, it will be analyzed how it is possible to concatenate them one after the
other to achieve meaningful execution in order to reach the final goal position or
even goal-state.

23
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Figure 4.1: Trajectories for two different skills demonstrated, in different colors.
The generated ones in grey color, from the black conditioning points.

4.1 Partial Skill Combination

In order to synthesize a new skill by combining parts of others, it is required to
teach the model at least two different types of movement primitives. Subsequently,
the robot has to be able to pass from one action (skill) to the other.

The moment of this transition has to be arbitrarily decided according to the
necessities and not specifically crafted at teaching time.

The challenge of this apparently straightforward problem resides in the moment
of the transition, because it has to be executed in a meaningful, natural, and safe
way. These simple three requirements will lead the following examination through
different approaches till the one designed.

For the purpose of a better understanding of the design and its steps, from now
on, a simplistic example (fig. 4.1) will be used to further clarify the explanations
given. Nevertheless, the simplification doesn’t exclude the possibility of more
elaborate tasks that require complex movements or sensorimotor data.

The two actions discussed will be a simple movement upwards and a similar
movement downwards. They can represent, for example, a trajectory in real life,
a manipulator movement, or a joint trajectory. This allows a discussion that
starts from a single 1D dimension and keeps the understanding manageable at the
subsequent introduction of new dimensions.

Some demonstration trajectories are given for both skills, in the fig. 4.1 are
visible as the three colorful thinner lines ascending and three colorful thinner lines
descending. The two triplets differ to some extent, so the network has enough
knowledge to create as well new trajectories never seen. This will prove later that
the method designed also works with newly generated movement primitives.

The thicker points in the fig. 4.1 are the conditions, these force the model to
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Figure 4.2: Examples of failing approaches with stitching in CNMPs. On the
left, simple combination of parts. On the right, stitching the right part using a
conditioning point at the end of the left part.

generate a trajectory that passes through that state. The movement primitive
created is denoted as the grey line passing through the condition point, along with
the uncertainty of the prediction in every timestep as its width.

The shift can not be abrupt, so it’s not sufficient to directly stitch together
two parts of the trajectories collected. The simplest solution of executing one
trajectory till a certain desired timestep and executing the second one after that
moment will create an abrupt jump in the execution for the majority of timesteps
where the trajectories don’t perfectly intersect (fig. 4.2). A jump in the movement
primitive will lead to an unnatural fast change of pace and position of the robot
during the execution, which is not clearly referable to human behavior. Moreover,
moving from one position to a completely different one in the next moment is an
unsafe behavior. It might lead to damage to the robot itself and its surroundings,
harm to people, or activate the safety stop measures of the robot due to the high
speed and torque applied.

Being able through the CNMP model to generate trajectories from previous
demonstrations allows a certain flexibility, so a second approach might suggest
generating a second trajectory starting from the end points of the first one. This
solution only delays the problem subsequently because the condition point(s) on
the second trajectory will be dependent on the first one, requiring further calcu-
lation, and won’t be solely used for the effective purpose of making a trajectory
reach the desired state. In fig. 4.2, right plot, the first part of the trajectory is gen-
erated with the left-most condition (time = 0.3). Subsequently, the second part
is generated using a conditioning point at the end of the left part plus the desired
one. These two conditioning points will likely not be on the same trajectory gener-
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Figure 4.3: CNMP modeling uncertainty for a condition. In the parametrized
CNMP, uncertainty is solved, and skills are encoded with task parameters 1 for
ascending and 2 for descending.

ated: let’s recall the robot arms generally have 6 or 7 DoF, chapter 3, and even the
cartesian space has three dimensions plus the 4D quaternion for the orientation,
so the probability of trajectories intersecting in spaces of at least six dimensions is
minimal. This will lead the CNMP model to average the two trajectories obtained
by the two conditions on different points. In fig. 4.2, right plot, we see the second
trajectory part passing in the middle of the two right-most observations that would
generate independently two different movement primitives. To pass from one to
another of these last two trajectories, a shift will still be required, and this raises
again the same problem. So, even using conditioning points, there is a tradeoff
between jumping and not meeting the conditions for the second trajectory.

Since the stitching of parts is not a feasible option, the approach selected implies
giving the same network the two skills and obtaining a coherent output.

The CNMP model is capable of storing different movement primitives of differ-
ent skills without requiring multiple networks. The selection of the right trajectory
is due to the conditioning points (observations) previously explained. The obser-
vations are indeed useful for both finding the interpolated trajectory from the
demonstrations passing in a new state and also for identifying the correct skill.
In fig. 4.1, the conditioning points identified uniquely the trajectory to generate.
However, as it happens in fig. 4.3, the conditions might be uncertain, so the stan-
dard CNMP model averages the outputs, creating a misleading trajectory.

To eliminate uncertainty, a task parameter γ (TP) can be included in both
the input and the query of the network, as in fig. 2.5. The task parameter is a
full-fledged new dimension of the network, like input time t and the output value.
In the case of the task parameters, the dimension added is an input dimension,
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Figure 4.4: Plot of the interpolation abilities of CNMPs also in the task-parameter
dimension.

which excludes uncertainty. Now, the network, given a condition, can uniquely
identify the movement primitive.

How adding a dimension to the input is interpreted by the networks and what’s
in between the two parameters has been researched to understand better how to
shift among them. In order to do this, a 3D plot is required. This is achieved by
leveraging the previously considered weakness of the model of having uncertain
conditions. These points are shared by parameters among and maintain the same
other dimensions while the external parameter γ varies. This doesn’t introduce
any bias while the condition changes.

The visualization of a continuous change between different task parameters is
present in fig. 4.4. As it’s possible to observe, the network interpolates nicely
among the functions also in the tasks-parameter space. The movement of the
conditioning point in time is depicted in the 3D plot with a red line ending in its
final position.

It is worth noting that to obtain the graph in fig. 4.4, both task parameters in
the observations and in the query had to vary together. As visible in fig. 2.5, the
original network design of CNMPs implies the presence of this parameter (as γ)
for the conditioning points and for the query t.
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Figure 4.5: Influence of task parameter from the conditioning points and from
the queries.

Successively, the difference in variating only one at a time has been researched.
In the first place, for all the time steps, only the task parameter of the condition was
changed, maintaining the task parameter of the query constant. Next, the opposite
was performed to understand how they influence the network result differently.

The plots comparison is visible in fig. 4.5. On the top row, for task parameter 2,
the first graph shows how the result changes according to the variation of the task
parameter in the condition. Meanwhile, the second graph shows how, for every
time queried, keeping the parameter fixed to 2 in the conditions and changing it
in the query doesn’t produce a significant variation in the output. The second row
repeats the procedure with the other task parameter to crosscheck the results. It
is clearly emerging how the parameter in the observation seems to have a stronger
influence than the one in the query, which doesn’t seem to contribute significantly.

The following subsections will investigate the structure of the network and the
design of two different architectures. This work proposes before a network with
task parameters only in condition and, next, the model with task parameters only
in the query. These two architectures are respectively built and examined below.
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Figure 4.6: Architecture of the CNMP model proposed without the original task
parameter in the queries.

4.1.1 CNMP model with task-parameter only in condition

This part investigates the architecture of the CNMP model altered to be able
to infer the results having the task parameters (TPs) only in the input of the
conditions. This design allows querying afterward the network only with the time
t. This architectural choice is motivated by the previous analysis in which the task
parameter in the query seemed to have little if no importance for the results. This
also feels naturally more sensible for constant tasks as the request is only for the
value at a time step, and the task parameter would remain constant anyway.

In fig. 4.6, the design changes can be compared to the original model. The
neural network now feeds the decoder only with the time value to query and the
constant representation of the conditions. As a result, the decoder has an input
dimension less than the original model.

Table 4.1: Comparison Table of errors of original CNMP
vs CNMP with TP only in condition

MSE Error TP CNMP CNMP TP condition
on demonstrated

trajectory
1 2.200240773631327e-06 0.0005239668753240399
2 2.852831969051669e-08 3.317327413240996e-05

on interpolated
trajectory

1 2.8834989373212024e-06 0.0004749418782444545
2 2.598636844065303e-07 3.6395583963202646e-06

The new model has been trained on the same dataset and verified with the
same validation set.
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Figure 4.7: Interpolation comparison of CNMP model vs CNMP model with TP
only in the condition.

The quantitative comparison results in table 4.1 show the average mean square
errors (MSE) for every task on demonstrated trajectories and interpolated trajec-
tories. The performance of the modified architecture exhibits an increase in the
errors that, while present, is not significantly detrimental, suggesting a promising
level of robustness in its overall functionality.

The qualitative results of the interpolation can be seen in fig. 4.7, and although
some interpolation differences are visible, they still clearly maintain a sufficient
degree of correctness.

The new network architecture maintains the same interpolation capabilities,
but allows the user to query only the time, without worrying about the task
parameter, which will be inferred constant from the observations.
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Figure 4.8: Architecture of the CNMP model proposed without the original task
parameter in the observations.

4.1.2 CNMP model with task-parameter only in query

This subsection analyses the opposite alternative to the previous investigation.
The architecture of the CNMP model is altered to generate the results using the
task parameters (TPs) only in the input of the query.

This design allows having conditioning points that are parameter-less and
querying the network subsequently with the time t and the task parameter γ.

This architectural choice seems to be more appropriate for possible changes at
run-time of skill by the model. However, it’s clearly more challenging since the
information is provided later in the pipeline.

Moreover, conditioning points are responsible for the final position at every
time t, and feeding the network only subsequently with the task forces it to infer
the γ of the conditions.

In fig. 4.8, the design changes can be compared to the original model. The
neural network now feeds the encoder with observations that don’t have any pa-
rameter, delaying the γ inference to the decoder. As a result, the encoder has an
input dimension less than the original model.

The second new model has been trained on the same dataset and verified with
the same validation set as the previously discussed ones.
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Figure 4.9: Interpolation comparison of CNMP model vs CNMP model with TP
only in the query.

Table 4.2: Comparison Table of errors of original CNMP
vs CNMP with TP only in query

MSE Error TP CNMP CNMP TP query
on demonstrated

trajectory
1 2.200240773631327e-06 0.00015134105003480186
2 2.852831969051669e-08 1.5758800492775196e-05

on interpolated
trajectory

1 2.8834989373212024e-06 0.0008166800702431865
2 2.598636844065303e-07 0.0002007523980230904

The quantitative comparison results in table 4.2 show the average mean square
errors (MSE) for every task on demonstrated trajectories and interpolated trajec-
tories. The modified architecture again demonstrates a rise in errors compared to
the original model, but these errors, though now noticeable, do not compromise
the usability of the model. Not the same can be said for the qualitative results
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of the interpolation. The comparison that can be seen in fig. 4.9 shows a remark-
able drop in the values in the interpolated area between the two functions. This
will clearly impact the correctness of a transition among them. The inaccuracy is
probably due to the fact that the parameter information goes through an inferior
network depth compared to the full model. Nevertheless, these results leave room
for further research on how to condition with one state parameterless and let the
network, queried with different tasks, pass through that state.

4.1.3 Comparison of the previous models

A comparison of the three previously discussed models is presented below to bet-
ter evaluate the most capable and cross-validate the results. A different dataset
was built with different parametric functions: linear, parabolic, and sinusoidal.
This also implies the presence of three different tasks to feed to a single CNMP
network. For each skill, different trajectories are present in the dataset to enable
new trajectory generation for conditioning points of unseen values.

Moreover, the transition among all tasks is now represented with three values,
so the first task is encoded as [1][0][0], the second as [0][1][0], the third as [0][0][1].
This avoids passing through the middle one as in the case of a single parameter
[1..2..3] encoded network. The transition is performed by decreasing one value and
increasing the other simultaneously.

Table 4.3: Full Comparison Table of errors of CNMP vs
CNMP with TP only in condition vs CNMP with TP
only in query

MSE Error
on

TP CNMP
CNMP

TP condition
CNMP

TP query
demonstrated
trajectory

1 2.200240773e-06 0.0005239668753 0.00015134105003
2 2.852831969e-08 3.317327413e-05 1.5758800492e-05

interpolated
trajectory

1 2.8834989373e-06 0.0004749418782 0.0008166800702
2 2.598636844e-07 3.6395583963e-06 0.0002007523980

In fig. 4.10, it is possible to observe all the possible combinations for inter-
polating the different tasks on which the network has been trained. Even with
more than two tasks and three dimensions added to the input the CNMP model
performs sufficiently well in all three skills.
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Figure 4.10: Interpolation comparison of the 3 CNMP models analyzed for a
different dataset and multiple tasks.
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Figure 4.11: Transition in time of task through task parameter shifting

4.1.4 CNMP changing task in time with one conditioning
point

Analyzed the interpolation capabilities of the CNMP networks also on the task
dimension, a possible method to shift the execution of a skill in time is proposed
below.

In order to build the interpolation visualizations, the network was always
queried for every time-step with a constant γ. However, since the queries are
independent, it’s possible to query the time and parameter singularly as required.

Moreover, from the previously constructed plots, it is evident how it is possible
to change tasks in time via querying the network with TPs linearly changing with
time.

In fig. 4.11, the path of the queries of time and γ is depicted in yellow. As
time goes on, left to right, the action moves from descending (back of the graph)
to ascending (front of the graph). This achieves a smooth change between task
parameters using the interpolation space provided by the model.

In this case, math leverages the neural network’s hidden capabilities to wisely
input the required parameters to generate the desired output.

It’s worth noting that this method works with any CNMP model variation
previously discussed, as long as the interpolation space is built correctly. Further
research could include better training to improve the results in the interpolation
dimensions.

The mixing of the two different skills is indeed performed through time, and
in this case, the change is linear. Different functions analyzed produced different
results, among them the most famous ones like sigmoid, logarithmic, and oth-
ers. The model is capable of different transition speeds and periods depending on
the selected function. The linear function is selected given that it produces the
smoothest transitions since inclination is minimal in all the timesteps.
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Figure 4.12: Different functions for changing task parameter in the CNMP net-
work

On the opposite, a sharper function, like a step function in fig. 4.12, produces
a shift that is immediate and full-fledged a stitch among two parts.

In fig. 4.11, it is possible to see that the final trajectory result is not passing
through the conditioning point. This occurs since, at that moment t = 0.5, the
transition between two different task parameters is halfway (γ = 1.5) and not fully
on one γ. The interpolated space varies in quality depending on the network and
its training, and this means the error would be higher compared to the values on
γ on which the model was trained.

Surprisingly, it’s not actually a problem because the conditioning point is noth-
ing else than a point that symbolizes the transition between two conditioning
points with different γ located on different positions. The conditioning point is
just a point that allows the transition without introducing any bias because it’s
part of both trajectories. In fig. 4.13, it is possible to see the red conditioning point
emulating two different conditions with different TP, respectively descending for
the left one and ascending for the right one.

This means that the conditioning point for transition is not meant to be any-
where, but it has to be at the intersection of the two desired functions with different
TPs. This will grant the resulting function to pass at the initial time through the
first conditioning point, since its TP is not mixed, and at the final time through
the second condition for the same reason.

In the example fig. 4.13, at time t = 0, the function passes through the first
point because the task parameter is fully descending. This is guaranteed because
the red observation chosen is on the line produced by that initial point. In the
same way, at time t = 1, it’s guaranteed to pass through the rightmost point
because the observation is also on the function that is produced by that condition.
For this reason, the observation point is not meant to be independent but derived
from the two points to emulate.
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Figure 4.13: A conditioning point that varies task parameter emulates two dif-
ferent conditioning points of different task parameters.

The best strategy to find the conditioning point for the transition among two
conditions of different γ seems to place it on the intersection of the two trajectories
generated by these conditions. However, it is not always granted that the trajecto-
ries will intersect. As discussed above, in multidimensional spaces, the probability
of this event decreases significantly.

When two functions don’t intersect, the best possible solution to not bias the
interpolation is, while changing the γ, to shift as well the position of the condition
in time. In the series of queries to the network, instead of giving the same context
point and changing its task parameter, the position also changes. The optimal
change of position is from a point on the first function generated by the first con-
dition to the closest point on the function generated by the second condition. This
guarantees the series of points will stay on the interpolation of the two functions
and generate the desired interpolation surface area.

Extending the concept, the algorithm defined looks for the closest points among
the two functions, and it transitions among them. The closest couple of points
is looked only in the time span in which the network was trained, since it is a
computation of cost t2. If there is an intersection, the change on the conditioning
point will be only on the task parameter. If there is no intersection, the change of
the conditioning point will also be a change in position from the closest point of
the first function to the closest of the second one.
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Figure 4.14: Procedure to individuate multiple conditions for multiple shifts in
the task parameters.

4.1.5 CNMP changing task in time with multiple condi-
tioning points

The system developed enables a single transition using a single conditioning point.
The shift occurs completely from an initial time that is t = 0 to the final time of
the network training.

It’s a remarkable success because the bare normal CNMP model is completely
incapable of changing the task coherently and continuously among its predictions.
If fed with two conditions of different TP, the network outputs a completely un-
usable trajectory. This trajectory is a rough average of all the different ones
generated by the conditioning points. This is due to the fact that the model, by
definition, doesn’t have an attention mechanism and doesn’t lose the conditioning
power in time.

However, this research extends the method further to multiple conditions with
different task parameters. This enables the full control and customization of the
predicted output.

Furthermore, it achieves the shift among the observations in a desired time
span not restricted to the full training time length.

Once the interpolated surface is built, the time constraints are resolved with a
fast transition from the first condition timestep to the second condition timestep.
The resulting output sequence will still reside on the interpolated surface but,
having less time, will be faster.

The multiple transitions are achieved by coupling them one by one in temporal
order, so the first one determines the task parameter till its time. Then, between
the first and the second one, the task is shifted. At the second observation, the
task parameter will be fully on its task, but subsequently, will start to be merged
with the third one, and so on. This guarantees that at the observation’s times,
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Figure 4.15: Graph and full path in time of the condition point used to transition
multiple tasks parameters

the output function will pass through them, but in between, the task change will
occur.

In fig. 4.14, it is possible to view the initial observations of different parameters,
two green conditioning points for the descending task and one blue in the middle
for the ascending task. The first couple in temporal order is selected. At this
point, the two functions each condition will independently create are generated.
Those are visible in the fig. 4.14 in the second plot.

The closest points between these functions are selected, the absolute distance
among the points is plotted as the green line at the bottom of the plot. In this
case, since there is an intersection, the couple selected has the same starting and
ending position, which only differs for the γ parameter. During the shift time,
the conditioning point of the network will transition from the first identified to
the other one, changing TP. If the two closest points were in different locations, it
would also change location, along with task parameter. The network is queried at
the appropriate time with the condition designated.

The process repeats for the second couple and so on to find the conditioning
points to feed the network to obtain the desired result. The final full path of the
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conditioning point is visible in fig. 4.15 where it changes position in time according
to the place where it will not bias the current transition. Meanwhile, the changing
of the TP will occur during the time span designated.

It’s worth noting that the conditioning point will also change its time, inde-
pendently from the time queried. For this reason, in the 3D graph in fig. 4.15
the fourth dimension is introduced as color. The x axes of the graph corresponds
now to the time of the condition, while the time of the queries corresponds to the
change in color.

Finally, the results shown in fig. 4.16 demonstrate how this method can achieve
trajectory predictions that are coherent across multiple shifts of tasks. The normal
CNMP model with the same conditioning points is reported aside for comparison.
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Figure 4.16: Final results of multiple tasks transition and comparison with tra-
ditional CNMP network.
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Figure 4.17: Artificial dataset of different skills to concatenate. On the left, there
are the demonstrations. On the right, there is the validation.

4.2 End-To-End Skill Concatenation

The proposed method in the previous chapter would be really limited if not coupled
with the ability to compose the skills in succession. Being able to combine parts
is indeed useful, but it will eventually end in the time span of one action, even if
we use parts of other ones. To really enhance the potentiality of the network and
exponentially enlarge the capacities of the robot, a way to join the skills end-to-end
is required.

In this part, a method is proposed with which it is possible to concatenate skills
one after the other to achieve a goal or reach the final target position or desired
state.

In order to synthesize a series of actions, the demonstrations have to be initially
collected. Subsequently, the method presented will combine them end-to-end to
reach a desired objective.

An immediate challenge presented consists of the concatenation of the move-
ment primitives without incurring in jumps when passing from one to the other.
Abrupt jumps in the final movement execution, as previously analyzed, can be
dangerous and look unnatural.

The requirements, also for this research subpart, are indeed that the motions
have to be executed with meaning, they have to seem natural, and they have to
be safe.

Another challenge to face is the different lengths of the actions in time and
space. Some actions might be faster than others because they are more easily
executable, for example, picking an object compared to pouring water. Further-
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Figure 4.18: An example of failing concatenation of skills due to abrupt jumps.

more, the same actions might last less if performed in different points of space, for
example, placing an object in a container next to it or further away.

Another possible challenge is choosing the right action sequence to perform.
Having all the possibilities from a starting point means that a meaningful choice
has to be made. Every action has an effect on the environment, and some of them
have a specific order that can not be permutated. Deciding the right order is a
complication to solve,

For simplicity, the example that will follow will refer to a simple dataset fig. 4.17
that eases the comprehension of the concepts. Nevertheless, this method can still
be extended to multiple dimensions and more complex scenarios.

In the dataset artificially generated, two trajectories are provided for each skill.
They can resemble any task or movement in time, for example, push or shake an
object or move to a position. This dataset enables a clear visualization later on.
More realistic but more difficult-to-understand data can be found in the chapter 6.

The different skills, in this case, are given to the same network with the task-
parameter option seen in the previous chapter, but it’s not necessary. The task
parameters are, this time, three, one for each task, and they are boolean, so it’s
clearly visible which task is queried to the network. The task parameters are
visible in the legend of the fig. 4.17.

As mentioned in the previous chapter, for every skill, not one but multiple dif-
ferent trajectories are collected. This is not mandatory, as the network can learn
with as little as one demonstration. However, having multiple expert demonstra-
tions allows the network to generate new unseen ones from interpolation. This
extra capability is fundamental since it allows the extension of the effectiveness of
the actions from a single point to a whole area or volume. Furthermore, having a
network that generates new unseen trajectories will allow the method proposed to
be validated later for these cases.

The interpolation abilities of the network are validated on the trajectories vis-
ible in the right plot. These trajectories enable the code to verify if the movement
primitives generated by the network have a minimum error or not.
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Figure 4.19: An example of using interpolation with CNMP model to generate
new consecutive smooth trajectories.

The joining of multiple trajectories can’t be a simple stitch of the previously
recorded ones since it will also create abrupt jumps, fig. 4.18. We want to avoid
this event for the safety and human-like movements as required but also for a
deeper further reason.

Since the network can deal easily with multidimensionality, some dimensions
might be added in the future to represent the state of the world. Jumps in the final
trajectory must be avoided because the network would allow unmotivated internal
world representation changes without being the author of them. However, this is
an option that we will explore at the end of this chapter.

4.2.1 CNMP for skill concatenation

To overcome part of the concatenation abrupt changes problem, the ability of
CNMP of interpolation is used again. Once the final point of an action is reached,
the model is queried to generate the next skills with a conditioning starting point
matching it. The model, conditioned on that initial position, will generate the
actions required that start from that state, avoiding big discrepancies in the final
trajectory generated.

In fig. 4.19, it is possible to see that the first trajectory is the result of the
interpolation of the two sinusoidal demonstrations of the dataset depicted in grey.
Furthermore, the end of the first trajectory is used as a condition to generate
the second one. The second is the interpolation of the two linear functions, also
depicted in the background.

It’s worth noting that in the example, the output is monodimensional, and the
interpolation is simple, but in multidimensional inputs, the CNMPs can interpolate
and generate output primitives that are able to interpolate in the whole 3D or
joint space. This means that the trajectories of every joint, or 3D axis, won’t have
abrupt jumps.

Using a real-life example, if the final position of an action is reached and no
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Figure 4.20: An example of a recursive concatenation of movement primitives
using interpolation abilities of CNMPs.

other action demonstrated starts from there, the model will use the demonstrated
trajectories that start from other points and combine them to generate a skill that
starts from that position.

At this point, given a starting point, the method proposed recursively builds
the graph of all the possible actions, fig. 4.20. This means that all the actions
are evaluated from the starting position, then for all the positions reached, all the
actions are generated, and so on.

The cost of this action is exponential with time; the cost is O(nd
a), where na is

the number of actions available and nt is the depth number of subsequent actions.
The cost is high but can be easily reduced since the network can be queried only
for the prediction of the final step, and the queries take milliseconds.

Furthermore, mechanisms for pruning the tree if a jump is detected can signif-
icantly reduce the number of possibilities. Moreover, the building of the tree can
stop once a viable sequence is found to reach the final goal. Lastly, more informed
research is possible with heuristic algorithms that can reduce the steps to find
a desired goal. However, the scope of this research remains to demonstrate the
validity of the method, so the optimizations are left for future work.

Even with the interpolation ability, the graph still contains some jumps, and
we want to avoid them for the reasons explained previously. This is due to the
fact that repeating some actions over and over again will bring the state out of the
demonstration range provided to the network.

The CNMP model shines in the interpolation but lacks the ability to extrapo-
late from demonstrations. So, if a conditioning point is positioned out of the area
between expert demonstrations, the network will simply output the demonstration
that is the closest to that point without going further.

This problem actually helps to find the actions that are simply not feasible. For
the sake of safety and meaningfulness, it is not actually reasonable to extrapolate
the actions demonstrated to the whole space around the agent. For example,
concatenating too many push actions might, in real life, exceed the reachability
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Figure 4.21: An example of filtering the skills generated based on extrapolation
limitations.

area of the robot or its arm length.

For this step the assumption taken is that the expert gives demonstrations that
are at the limits of the capacity of the robot. This allows the method to derive
what is feasible and what is not.

Consequently, to remove the actions that are not feasible from the option set,
it is sufficient to leverage the limitations of the model and just look for big data
variations in the sequences generated. After finding them, it’s possible to prune
the tree from these unfeasible action concatenations.

In fig. 4.21 are presented the selected trajectories generated by the network,
with interpolation to avoid jumps, but without extrapolation to avoid the im-
practical ones. As it is possible to see in the picture, among the four trajectories
chosen, it’s also present in red the one previously shown in fig. 4.19 and created
using interpolation.

All the actions presented in the example have the same temporal length. This is
not mandatory but a choice for the sake of simplicity. An extension of this research
could include skills that have different durations. Overall, since the majority of
movement primitives are simple actions and last a few seconds, this complication
was not addressed.

4.2.2 CNMP embedding environment representation

Trajectories generated in this way are executable and this means that the method
works for spatial concatenation. On the other hand, the final goal in this way can
be only a position in space or a joint state. Although it is really useful to make the
robot or the agent reach new places using the previous knowledge, this is limited
to the device or, at maximum, the object it can carry.

Upon observation, it’s clear that many movement primitives involve an external
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object or the interaction with the environment around them. Another step in
complexity is to develop the method for goals that are not only as a point in time
or robot position but also related to the external world.

The external world introduces a whole new degree of complication because it
requires having a degree of knowledge about it. Without this internal represen-
tation of the environment, the robot would execute actions that are possible but
not meaningful. For example, picking an object that is not present or placing a
lid before the pot.

Since the CNMP model can deal with multidimensional data, the solution
proposed is to embed the state changes of the environment in the network. Given
a representation of the world, the network can learn how the actions performed
change it and the final outcome. The representation can be as simple as a single
x, y position of an object manipulated or the whole image of the environment.

Furthermore, the network’s ability to interpolate will make it adaptable to new
states, as long as they can be interpolated from demonstrations, and it will be able
to predict the outcome of the actions on them.

Table 4.4: Example of CNMP ability to embed environ-
ment representations

left arm right arm
move arm to center [0,1,2] → [1,1,2] [0,1,2] → [0,1,1]
move arm to its side [1,1,2] → [0,1,2] [0,1,1] → [0,1,2]
pick and place from side to center [0,0,2] → [1,1,2] [0,2,2] → [0,1,1]
pick and place from center to side [1,1,2] → [0,0,2] [0,1,1] → [0,2,2]

A simplistic example is reported. The CNMP model can be trained on both
arms of a robot and enable the movement of an object from a position that is reach-
able only from the left arm to a position that is reachable only to the right arm.
This action requires the internal knowledge of the position of the object to find the
right sequence and not to execute actions that are possible but not meaningful if
the object is not in the desired position. The object position is encoded with a state
[1, 2, 3] depending on its position from left to right. We assume the left position is
only reachable from the left arm, the central position from both arms and the right
position from the right arm. The arms’ positions are encoded in the same way, but
by definition, the left arm can reach only the first two and the right arm only the
last two. In a real-world scenario, the position of the arm will not be monodimen-
sional but probably multidimensional, but the example is still valid. The world
representation is finally [PositionLeftArm, PositionObject, PositionRightArm].
The CNMP model will learn the changes in time of both the arms and the en-
vironment representation. The possible demonstrations are depicted in table 4.4,
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where pick and place means close the gripper, move to a position, and open the
gripper.

Given a condition on the initial state where the object is on the left [0, 0, 2],
the method proposed will build the whole graph of possible actions and resultant
environment states. At this point, the sequence for bringing the object from left
to right, final state [0, 2, 2] is:

1. [0, 0, 2] → [1, 1, 2] left arm pick and place from side to center

2. [1, 1, 2] → [0, 1, 2] left arm move arm to its side

3. [0, 1, 2] → [0, 1, 1] right arm move arm to center

4. [0, 1, 1] → [0, 2, 2] right arm pick and place from center to side

It’s worth noting that the method doesn’t require additional data structures,
but it’s all embedded in the network.

This method extension means adding the dimensions normally to the network’s
input and output. In this way, it’s still possible to use the previously presented
method to discard the actions that don’t bring to a valid state. In the example, it
is impossible to move one arm in the center while the other is there so the arms
won’t collide.

Moreover, the action possibilities can still be filtered by analyzing abrupt
changes in the world representation to understand when an action’s output will
lead to a state where further actions are not possible. In the example, the object
must be in the center to be picked and placed on the side. If not, the generated
action will show an abrupt initial change in the environment representation.

While the presented method works out of the box for reaching goals in space,
a possible extension for meaningful executions is presented here. Nevertheless, the
scope of this work is not action planning, which is a complex topic in robotics
beyond the scope of this work.



Chapter 5

Implementation

This chapter gives a more in-depth view of the implementation of the methods
discussed before. This doesn’t mean other implementations are not possible or the
method designed can’t be built in other programming languages and frameworks.

The platforms and tools presented in the chapter 3 are used. Python was
chosen as a programming language for its ability to deal with data and machine
learning but it can as well be used for robotics thanks to the ”rospy” package.

The most important passages in the code developed and only the key points of
the solution implemented will be explained below. They can be used as a reference
for clarification, for another implementation, or for further improvements.

This code is available in a GitHub public repository, [19].
Following the structure of the chapter 4, this chapter is divided into two main

subsections.
The first subsection explains the implementation of the partial skill combina-

tion. The parts of this section follow the previous chapter; the first is relative
to the implementation of the CNMP model with the task parameter only in con-
dition, and the second is relative to the CNMP model with the task-parameter
only in query. The third part is a comparison of all three models. Lastly, the
last two parts will explain how CNMP changing task executed in time with one
conditioning or multiple conditions are developed.

The second subsection shows the implementation of the previously explained
End-To-End Skill Concatenation method.

Since the CNMP model has been used in both subsections, the structure is
briefly reported in listing 5.1. The encoder and the decoder networks are multilayer
perceptions consisting of three fully connected layers with the non-linear ReLU
activation function. The dimensionality is fixed to 128 dimensions except for the
first and last layers.

The encoder’s first layer has a dimensionality equal to the sum of the input and
output ones, since the observations have both of them. It will output the latent
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Listing 5.1: CNMP model code�
1 import torch

2 class CNMP(nn.Module):

3

4 def __init__(self):

5 super(CNMP , self).__init__ ()

6

7 # Encoder takes observations which are (X,Y)

tuples and produces latent representations

for each of them

8 self.encoder = nn.Sequential(

9 nn.Linear(d_x+d_y ,128),nn.ReLU(),

10 nn.Linear (128 ,128),nn.ReLU(),

11 nn.Linear (128 ,128)

12 )

13

14 #Decoder takes the (r_mean , target_t) tuple and

produces mean and std values for each

dimension of the output

15 self.decoder = nn.Sequential(

16 nn.Linear (128+d_x ,128),nn.ReLU(),

17 nn.Linear (128 ,128),nn.ReLU(),

18 nn.Linear (128 ,2* d_y)

19 )
� �
representations to aggregate together with position-independent operations, as in
equation 2.2.

The first layer of the decoder has a dimensionality equal to 128 for the latent
representation plus the input query desired to concatenate. The decoder outputs
double the output dimensions since for each one is returned the mean and standard
deviation.

The forward function built in listing 5.2 passes the observations provided to
the encoder, then generates the mean of all the 128 latent representations created.
For all the queries, the representation is concatenated to them and passed to the
decoder. The decoder produces the mean and the standard deviation for each
target queried.

Lastly, the loss function implemented is visible in listing 5.3 is the implementa-
tion of the log probability loss explained in the chapter 2. The standard deviation
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Listing 5.2: CNMP model forward function�
1 def forward(self ,observations ,target_t):

2 r = self.encoder(observations) # Generating

observations

3 r_mean = torch.mean(r,dim =0) # Taking mean and

generating the general representation

4 r_mean = r_mean.repeat(target_t.shape [0],1) #

Duplicating general representation for every

target_t

5 concat = torch.cat((r_mean ,target_t),dim=-1) #

Concatenating each target_t with general

representation

6 output = self.decoder(concat) # Producing mean

and std values for each target_t

7 return output
� �
Listing 5.3: CNMP model loss function for trainig�

1 def log_prob_loss(output , target):

2 mean , sigma = output.chunk(2, dim = -1)

3 sigma = F.softplus(sigma)

4 dist = D.Independent(D.Normal(loc=mean , scale=sigma)

, 1)

5 return -torch.mean(dist.log_prob(target))
� �
values σ (”sigma” in the code at line 3 ) are passed through the Softplus activation
function. Softplus is a smooth approximation of the ReLU function and ensures
that the standard deviation remains positive.

The following line creates a PyTorch distribution object. It specifies that the
distribution, with independent axes, is Normal with mean mean and standard
deviation sigma.

Finally, the negative log-likelihood of the target values given the distribution
(dist) is computed. This is used for backpropagation in network training.
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Listing 5.4: CNMP model architecture change for TP only in conditions�
1 #Decoder takes the (r_mean , target_t) tuple and

produces mean and std values for each

dimension of the output

2 self.decoder = nn.Sequential(

3 nn.Linear (128+d_x -d_TP ,128),nn.ReLU(), #edited

here to pass only x without tp

4 nn.Linear (128 ,128),nn.ReLU(),

5 nn.Linear (128 ,2* d_y)

6 )
� �
5.1 Partial Skill Combination

In this section, the concept of task parameters was introduced. At the implemen-
tation level, it doesn’t change the previously explained network structure since the
dimension of the input will be increased, for example by one: d x = 2, and the
code will adapt the network structure.

An example of input for a query will be:

tensor([[0.1357, 1.0]], dtype = torch.float64).

Finally, an observation will be in the form of [0.6], [1.0], [0.45], where the two
dimensions of the input (note the 1.0 as TP) are concatenated with the output
desired.

Another crucial passage in the chapter 4 was to vary independently the two task
parameters of the observations and the queries in order to build the visualization
of their influence in fig. 4.5.

To achieve this, a simple matrix of observations and queries was built, where
each row contains observations and a time query to the network. Subsequently, the
matrix was edited with constant task parameters in the observations, letting the
TP vary in the queries, in order to build the plot. The opposite was implemented
in order to build the plot where the task parameters vary in the observations and
are constant in the queries.

5.1.1 CNMP model with task-parameter only in condition

In this part, a new architecture is implemented, as proposed in chapter 4, based
on the previously explained CNMP model.

Among the edits in the code, one of the most important ones is the change of
the model itself in the definition seen previously in listing 5.1.
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Listing 5.5: CNMP training code change for TP only in conditions�
1 predicted_Y ,predicted_std = predict_model(np.array([np.

concatenate ((v_X[i,0],v_Y[i,0]))]), np.delete(v_X[i],

-d_TP , axis =1), plot= False) #edited here to pass

v_X only with first element and not tp
� �
As is visible in the listing 5.4, while the encoder stays the same, the decoder

has input dimensions reduced. The subtraction is at line 3, after the concatenation
of the latent representation’s 128 dimensions and the d x input dimensions, where
d TP is the number of dimensions of the task parameters.

Another fundamental change in the process is the input at the prediction time.
The listing 5.5, taken from the prediction during training, shows the normal con-
ditions in the first part of the function. In the second argument, the queries are
passed. These are in the form of a matrix with inputs and task parameters in the
columns, and the rows are the times.

In the new version, it is possible to see how the matrix is deprived by the last
d x columns containing the task parameters. The input passed to the network
corresponds indeed to the dimensionality of the decoder designed before in the
model.

This allows to query the network simply with an array of times t desired.

5.1.2 CNMP model with task-parameter only in query

In this part, another new architecture is proposed based on the previously ex-
plained CNMP model, as the opposite of the one presented in the previous part.

To maintain the comparison between all the code developed, the most impor-
tant changes presented here will follow in parallel the previous part.

One of the most important changes is again the model architecture itself, seen
previously in listing 5.1.

As it is possible to see in listing 5.6, the decoder this time was untouched, but
the encoder was modified to accommodate different dimensions in his input. The
dimensionality of the first layer of the network was reduced by the number of task
parameter dimensions. At line 3, the dimensions of the task parameter d TP are
subtracted from the dimensions of the observations d x+ d y.

Similarly to the previous architecture, another fundamental change in the pro-
cess is the input at the prediction time. The listing 5.7, taken from the prediction
during training, shows this time the normal queries vX [i] in the second part of the
function. In the first argument, though, the observations are passed in a differ-
ent way. These are also in the form of a vector with inputs, outputs, and task
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Listing 5.6: CNMP model architecture change for TP only in query�
1 # Encoder takes observations which are (X,Y)

tuples and produces latent representations

for each of them

2 self.encoder = nn.Sequential(

3 nn.Linear(d_x -d_TP+d_y ,128),nn.ReLU(), #edited

here to pass only x without tp

4 nn.Linear (128 ,128),nn.ReLU(),

5 nn.Linear (128 ,128)

6 )
� �
Listing 5.7: CNMP training code change for TP only in query�

1 predicted_Y ,predicted_std = predict_model(np.array([np.

concatenate ((np.delete(v_X[i,0], -d_TP , axis =0),v_Y[i

,0]))]), v_X[i], plot= False) #edited here to pass

only with first element and not tp
� �
parameters concatenated in order.

In the model implemented, the observations are deprived of the last d x columns
of the input relative to their task parameters. Now, the observations passed to the
network correspond to the dimensionality of the first layer of the decoder designed.

This allows conditioning the network simply with conditions that are parame-
terless.

5.1.3 Comparison of the previous models

For the comparisons among models developed, a brief extract of code is reported in
listing 5.8. Using the numpy library, the real values are compared to the predicted
ones.

Different metrics have been used. Initially, the Mean Squared Error (MSE)
is calculated. It measures the average squared difference between the actual
(real values) and predicted values (predicted Y ). It penalizes larger errors more
severely due to the squaring operation. Since the errors produced were minimal,
this is the metric chosen and reported in table 4.3.

Subsequently, also the Mean Absolute Error (MAE) is computed at line 3. It
provides the average absolute difference between the actual and predicted values.

Lastly, the Root Mean Squared Error (RMSE) is calculated on the basis of this
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Listing 5.8: Extract of code for comparison of models�
1 import numpy as np

2 mse = np.mean(( real_values - predicted_Y)**2)

3 mae = np.mean(np.abs(real_values - predicted_Y))

4 rmse = np.sqrt(mse)
� �
one since it is the square root of the Mean Absolute Error. These metrics were
chosen as they are the most commonly used in regression analysis.

5.1.4 CNMP changing task in time with one conditioning
point

In this part is present a possible implementation of the method proposed to shift
the execution of a skill in time.

For the sake of simplicity, the model used was the proposed CNMP without
task parameters in the query. This does not imply that the method does not work
with the other CNMP architectures analyzed.

The method is a mathematical way to feed the model with the right conditions,
so it is possible to implement it on other networks for custom needs or for better
performance.

Implementations for the other architectures were also developed but, for sim-
plicity and avoiding repetitions, only one will be explained.

As depicted in fig. 4.11, the shift implemented is linear, and, given an observa-
tion, goes from one task parameter to the other. In listing 5.9, a matrix of times
linearly changing task parameters and values is created. The values column is
empty and will be filled later.

Subsequently, the model is queried for every timestep, with the TP changing
line 7. Finally, values predicted are inserted in the third column of the matrix for
every time step at line 10.

At the end, the resulting matrix will have all the data required. The plotting
process visible on the right in fig. 4.11 will not be described here cause it is not
necessary, but it was achieved using the Matplotlib python library.

5.1.5 CNMP changing task in time with multiple condi-
tioning points

Below are proposed key parts of the final implementation for changing multiple
times tasks in the same prediction time span.



56 CHAPTER 5. IMPLEMENTATION

Listing 5.9: Extract of code for task shift with one observation�
1 mixed_tp=graph [0]. copy() #first column time

2 mixed_tp [: ,1]=np.linspace (2,1, mixed_tp.shape [0]) #second

column tp changing

3

4 for index , el in enumerate(mixed_tp):

5 with torch.no_grad ():

6 print("now time %f and TP %f"%(el[0], el[1]))

7 pred_y = model( torch.from_numpy(np.array([np.

concatenate (([0.5] ,[el [1]] ,[0.6]))])) ,

8 torch.from_numpy(np.array ([[el [0]]])) ).numpy()

9 print(pred_y [0][0]) # value returned

10 mixed_tp[index ,2]= pred_y [0][0] # fill 3rd column

11 print(mixed_tp)
� �
There are two key functions for achieving this result: the first is dedicated to

building a matrix of data, and the second one has as duty the use of this matrix
to generate the predictions.

Building the matrix of timestep and observation for the timesteps.
The first key part is building a matrix that defines how the conditioning point will
move in time and task space. This function is responsible for the results visible in
the fig. 4.14 and fig. 4.15.

The function receives the observation list, with time as the first dimension,
and returns the matrix with the observation for every timestep. Initially, the
observations are sorted based on their time. The matrix is defined with queries of
time (in the first position) concatenated to only one observation at that specific
time. The matrix has dimensions 1 + d X + d Y , recalling that d X includes the
d TP dimensionality of the task parameters.

Subsequently, the action will be repeated for every timestep. The loop also
keeps track of the current and next observation in time, starting from the first.
Some optimizations were performed not to calculate the same couples of closest
points every time, but won’t be reported here for shortness.

If the current time is less than the observation time or this is the last ob-
servation, the function fills the current timestep of the matrix with the current
observation. This takes care of the initial and final periods.

If the timestep is in between two observations, the core part happens. The code
implementation should check the whole predictions in time of the two observations,
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Listing 5.10: Extract of code for task shift with multiple observations, couple of
observation finding�

1 pred_1ob = model( torch.from_numpy(np.array ([

observations[curr_obs_num ,:]])) , torch.from_numpy(

times_array.reshape (200 ,1)) ).numpy ()

2 pred_2ob = model( torch.from_numpy(np.array ([

observations[next_obs_num ,:]])) , torch.from_numpy(

times_array.reshape (200 ,1)) ).numpy ()

3 diff = abs(pred_1ob [:,0]- pred_2ob [:,0]) #computes the

couples distances on the y predicted

4 index_min=np.argmin(diff) # saves the closest couple
� �
Listing 5.11: Extract of code for task shift with multiple observations, couple of
observation interpolating�

1 # calculate the fraction of interpolation

2 fraction = (curr_time - observations[curr_obs_num ,0]) /

(observations[next_obs_num ,0] - observations[

curr_obs_num ,0])

3 #interpolated_param = start_param + fraction * (

end_param - start_param)

4 observation_timestep_matrix[time_index ,1+i]= start_param[

i]+ fraction * (end_param[i] - start_param[i])
� �
finding the two closest points. In the code extract, this part is visible in listing 5.10.
This operation can be done once per couple of observations.

Once the closest couple of points is found in the trajectories, the points among
them will not bias the task parameter change. For this reason, the start and
end obtained will be interpolated in the time period of the transition. The final
interpolated point obtained for this timestep is the desired observation with the
non-biasing position and the mixed TP. In the listing 5.11, it is possible to see how,
in the current timestep, the interpolation is executed among the two previously
defined points. The resulting conditioning point is inserted in the matrix after the
current timestep.

The plottings of the matrix depicted in fig. 4.14 and fig. 4.15 are achieved
again with the Matplotlib python library. The relative code will not be reported
as well because it’s not necessary for the sake of the result but only to visualize
the correctness of the procedure.
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Listing 5.12: Extract of code for task shift with multiple observations, using the
matrix obtained�

1 for time_index , time in enumerate(matrix_times):

2 prediction = model( torch.from_numpy(np.array ([

matrix_observations[time_index] ])) , torch.

from_numpy(np.array ([[ time ]])) ).numpy()

3 predicted_Y[time_index] = prediction [:,:d_y]

4 predicted_std[time_index] = np.log (1+np.exp(

prediction [:,d_y:]))
� �
Building the function to query the network with the matrix obtained.
The second key part uses the matrix built before to query the network at every

timestep with the changing observations. It is responsible for the final results
obtained and visualized in fig. 4.16.

This part, instead of passing to the network the array of multiple observations,
passes the computed array with a single observation of every time step. In the
listing 5.12, it is possible to see how the model is fed with the observation at
time index and the current time. The matrix previously built is split in the array
matirx time (first column of the matrix), and the matrix of observations for every
time step matrix observations.

The predicted output value is saved in an array and plotted, as in the results
in fig. 4.16.
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Listing 5.13: Extract of code for building the graph of skills concatenated�
1 num_traj=len(params_array)**( max_depth +1)

2 lengh_time=time_steps *( max_depth +1)

3 full_graph = np.zeros((0, lengh_time)) # initially empty
� �
5.2 End-To-End Skill Concatenation

In this section, the key parts of the implementation for concatenating trajectories
are introduced. The training of the network on the actions performed has already
been explained, so it will be skipped.

There are two important parts worth highlighting: the first one is the construc-
tion of the graph of all possible actions, and the second one is the filtering of the
ones that are not executable.

5.2.1 Building the graph of concatenated trajectories

The first key part is building the graph of the whole possible trajectories obtained
from a starting point and combining multiple skills. This code is responsible for
the visualization of the results in the fig. 4.20.

Initially, as it is possible to see in the listing 5.13, the empty structure is defined,
and row by row will be added later. The final number of trajectories is calculated
as explained in chapter 4 elevating the number of actions available to the power
of the number of times they can be concatenated. This will also determine the
full-time length of the execution.

Next, the recursive function will take care of filling the graph for each step.
It’s possible to see the most important lines in the listing 5.14.

The model is queried for every action given a conditioning point based on
the result of the previous one. The starting point and end point of the actions
predicted are visualized, and then the predictions are added at the end of the new
line to add to the graph. Finally, for every action, the function will call itself again.
The parameter new line this time now has all the action predictions in the end.

If the end time is reached, the new line containing the newly generated tra-
jectory is added to the graph. No more recursive calls will be performed in this
case.

5.2.2 Pruning the graph of concatenated trajectories

The second important part of the method is to remove the movement primitives
that are unfeasible or not meaningful. To remove these trajectories, the jumps in
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Listing 5.14: Extract of code for filling the graph of skills concatenated�
1 # prevision , given a starting point

2 predicted_Ys ,predicted_std=predict_model(np.array ([np.

concatenate (([0.0] , params_array[i],[ starting_pt ]))]),

time_queries)

3 print("%.2f to %.2f"%( predicted_Ys [0], predicted_Ys [-1]))

4 print("filling form %i to %i"%( current_depth*

time_queries.shape [0],( current_depth +1)*time_queries.

shape [0]))

5 #modify line

6 new_line[ 0, current_depth*time_queries.shape [0]:(

current_depth +1)*time_queries.shape [0] ] =

predicted_Ys.T

7 #recursive call to further modify

8 full_graph=add_trajectories(predicted_Ys [-1,0],

current_depth +1, max_depth , full_graph , new_line)
� �
Listing 5.15: Extract of code for filling the graph of skills concatenated�

1 def remove_sequences_with_large_jumps(graph , threshold):

2 valid_sequences = []

3 for sequence in graph:

4 diffs = np.abs(np.diff(sequence))

5 if not np.any(diffs > threshold):

6 valid_sequences.append(sequence)
� �
the trajectories that exceed a certain threshold will make the trajectory discarded.

In listing 5.15, it is possible to see how the graph is passed to the function and
a new empty one is built. For each sequence in the original graph, the differences
among the elements are computed as an array.

Next, the array is converted to positive values with the absolute function.
If none of these differences exceed the threshold desired, the sequence is added

to the graph of valid sequences.



Chapter 6

Validation and Testing

This chapter presents the validation and testing of the methods that were before
designed and then implemented in this research. The accuracy of the results has
already been discussed with the error comparison tables in the chapter 4. To
demonstrate the applicability of this research, instead, the methods are tested on
real-life robots, chapter 3.

To achieve these results, some minor adaptations had to be made. For example,
the number of input or output dimensions of the network changed to accommodate
the joint space of the robots since the monodimensional example given in the design
is not enough.

Furthermore, the time scale for the movement primitives has been changed to
a longer time period. The trajectories generated if in cartesian space, were passed
to an inverse kinematic algorithm to retrieve the joint space.

Overall, these variations don’t impact what has been discussed and imple-
mented before.

61
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6.1 Partial Skill Combination

To test the capabilities of the method developed, the robot selected is the UR10.
It is worth noting that the research is not designed specifically for this robot and
can be applied to any robot with different specifications.

The UR10 robot in the setup described in the chapter 3 has two main parts:
the robot arm that executes the movements and the gripper that grasps the desired
object.

UR10 robot interface For the sake of completeness, this paragraph briefly de-
scribes the Python interface developed to simplify the use of the robot in general
and enable this experiment. This interface is available in a GitHub public reposi-
tory [21]. The interface acts as a bridge between the user commands and the ROS
topics exposed by the robot’s computer.

It implements a series of ROS Subscribers to retrieve the desired data published
by the robot and save it into buffer variables. Some functions are present to get
the variables about the current status of the robot, this makes the read operations
fast and not blocking.

Also, some ROS Publisher nodes are implemented to send commands and in-
formation to the robot. These nodes publish data to the robot’s defined topics in
order to move the device or set the desired settings. Functions are also present here
to simplify the calls and send the ROS messages through the nodes implemented.

3F Gripper interface Another codebase repository used in this experiment has
been developed to easily interface the gripper to the user and ease its operation.

This interface is available in a GitHub public repository [20]. The code has been
developed separately since the gripper is a different entity from the robot and has
its own ROS services and IP address. The interface also acts as a connecting
link between the Python commands and the ROS services made available by the
gripper integrated circuit.

In this case, since the gripper doesn’t offer topics but services (see chapter 3)
some ServiceProxies are implemented to simplify the operation of this last. The
interface offers functions that ease the call of these services to open, close, set the
aperture or force of the gripper, get the position, and so on.

Trajectories recorder and playback Finally, these two interfaces were used
to build a code that allows recording the trajectory in time of the robot’s joint po-
sitions. Furthermore, the trajectory recorded allows the recording of the cartesian
position of the end effector and the gripper aperture.

https://github.com/igor-lirussi/UR10_robot_interface
https://github.com/igor-lirussi/UR10_robot_interface
https://github.com/igor-lirussi/Gripper3F_interface
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Figure 6.1: Some moments from learn by demonstration. On the left, action to
overcome obstacles. On the right, action to pass under a tunnel.

Moreover, for our experiment, also the code for playing back these trajectories
has been written. This work allows the testing in real life of the trajectories
generated by the CNMPs architectures developed before.

Testing The robot was initially used to record some trajectories. This is part
of the initial teaching of the ”learn by demonstration” process. The trajectories
were recorded with the previous code repository developed.

In fig. 6.1, it is possible to see two moments of this process. On the left image,
the capture of an instant from the first action demonstration on how to overcome
obstacles. In the right image, another action is taught on how to pass under a
tunnel.

The UR10 robot has 6 Degrees of Freedom (DoF), so the network input is
expanded to 6 dimensions. The choice of joint space is motivated by not dealing
later with the inverse kinematics to reproduce trajectories from cartesian space.
The six dimensions, one for every joint, of the two trajectories recorded are visible
in fig. 6.2.

In the figure, the first action of passing over the obstacle is represented by the
blue line in the graphs, it indicates the movement of every joint in time. Similarly,
the action of passing through a tunnel is visible as the orange line for the same
joints in time.

After training the network with the two trajectories and obtaining a satisfactory
result, the method proposed is applied. The output trajectory generated is visible
in the grey line of every graph.

It is worth noting that it is not a simple linear transition, but the network
captures the non-linearity dependencies across the trajectories and interpolates
them accordingly. This results in a mixture of skills that is coherent and maintains
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Figure 6.2: The 6 dimensions of a recorded trajectory on a real robot and the
resulting mixed trajectory in grey generated by the network.
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Figure 6.3: Some instants from the playback of the trajectory generated where
the robot successfully completes the combination of the two actions.

the properties of the actions.
In the graph where the blue joint executes two curves, it is possible to notice this

behavior. The trajectory generated does not pass directly from one conditioning
point to the other. The final trajectory keeps the properties of the first blue one,
descending for a while and then mixing with the orange one.

Finally, the trajectory generated is reproduced with the playback code devel-
oped. The robot successfully combines the actions and brings the object to the
final destination without colliding with the environment. Some moments of the
executions are visible in the fig. 6.3. The robot initially overcomes the obstacles
with the first part of the action taught, then proceeds to successfully pass through
the tunnel, changing its position and orientation.
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6.2 End-To-End Skill Concatenation

For the End-To-End Skill Concatenation, the robot used for real-life testing is
Baxter Robot, chapter 3. It is crucial to highlight that the research is not exclusive
to this specific robot though. The platform has been used only to demonstrate the
real applicability and efficacy of the work presented.

Moreover, part of the choice to use this platform instead of UR10 is indeed to
prove that the models and methods developed are platform-independent and can
be implemented on any robot.

Baxter robot has a complete set of interaction and Learning from Demonstra-
tion capacities. Moreover, the manipulation capabilities, although limited by the
two-finger parallel grippers, are easier to integrate with the expert demonstrations
and trajectory recordings. The robot has two buttons on the hands that are easy
to press and link with the gripper position. The end effectors are light and simple
to move.

This part of the research implies the concatenation of primitives, so many
different demonstrations. Furthermore, the skills are related to the environment
and manipulation of objects, so it’s crucial to have a platform that is easy to
interact with. For this reason, the Baxter robot has been selected for this research
demonstration.

Baxter robot interface Another repository implemented along with the pre-
vious ones for the experiments in real life is the interface for the Baxter robot in
Python 3. This work was driven by the need for Python 3 compatible functions
since Baxter has an interface, but it is only Python 2, and it’s not compatible with
the majority of ML frameworks nowadays. This interface is available in a GitHub
public repository [18].

Baxter exposes a ROS system as well, with ROS topics and services. For this
reason, the interface uses nodes and ServiceProxies to send messages or call actions
in the robot. To speed up the reading process, there are buffer variables for the
data that the robot publishes. This has been especially useful in the recording
stage since it increased the resolution of the recordings from 10Hz to 100Hz.

The robot exposes plenty of options, being designed for collaborative tasks. It
has the possibility to set the joint position, to set the cartesian position of the end
effector, and to retrieve these last ones. Moreover, it’s possible to set and get the
gripper position or the display image, or read the data from the infrared sensors
and cameras in the hands.

All these options are available in the Python 3 interface developed. Moreover,
some examples are present of how to move the robot or control from the keyboard,
how to get the data from the sensors and cameras, and how to use the inverse
kinematic services and the grippers.

https://github.com/igor-lirussi/baxter-python3
https://github.com/igor-lirussi/baxter-python3
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Trajectories recorder and playback Lastly, in the interface developed previ-
ously, it is possible to find also the code to record the trajectories of the arms of
the robot and play them back.

The recorder waits for the pressing of a button and starts to save current time
and the position of the joints at the frequency desired. Moreover, the recorder also
saves the end effector cartesian position and orientation for later comparison.

The gripper position and force read are also saved in the data for every timestep.
This is useful for manipulation tasks that require handling objects.

Furthermore, a trajectory visualizer for cartesian and joint space has been
developed as well. The code enables the user to see the movement primitive in
3D and check the correctness of the data recorded or about to be played. The
3D visualization of the trajectory can be optionally surrounded by five graphs for
each individual dimension of the cartesian or joint space. The color of the points
in 3D corresponds to the gripper aperture.

Lastly, the complementary code for the playback of trajectories enables the
robot to move precisely from the data provided. The trajectories can be previously
recorded or generated with a network. For this reason, this code was especially
useful in testing this research.

Baxter detecting and reaching objects Another code repository was devel-
oped to complement the research done with a method that can bring the robot
actuator to the initial position. In the discussion presented, the robot arm has to
be in an initial state from which possible and meaningful actions are generated.
Here, we briefly propose a method that can reach the initial state. This will make
the demonstration more complete from the side of a spectator and independent
from an expert who has to guide the robot in the initial state.

The code and the neural network model weights are available in a GitHub
public repository [17].

The method developed consists of putting the robot arm in a pose from which
the cameras in the hands are leveraged to acquire the RGB image of the table
below. Subsequently, the objects present will be detected with the use of a neural
network for object detection, namely YOLO. The robot will use the given positions
of the objects to move the arm slightly toward the one desired. The inverse kine-
matics service of the robot takes care of computing the pose for the new cartesian
position. The process repeats till the infrared (IR) sensor of the hand detects the
distance of the object as ”graspable”. At this point, the gripper closes, and the
object is reached for further desired manipulation.

This code has been used in the research as a viable way to get to the initial pose
and the object. Many other more complicated approaches are possible. Reached
the initial state, then demonstrated the method presented are demonstrated.

https://github.com/igor-lirussi/Baxter-Robot-ObjDet
https://github.com/igor-lirussi/Baxter-Robot-ObjDet
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Figure 6.4: Teaching by demonstration three different actions. From left to
right: move from the ground to the green block, move on to the yellow block, and
overcome the blue obstacle.

Testing For testing the method, the trajectories are initially shown to the robot.
The recorder developed provided an easy way to save the data.

For this test, the choice was to record the trajectories in cartesian space. There
is no substantial difference since the network will learn multiple dimensions anyway,
but to demonstrate this method is valid also for cartesian space, this time, the
network got trained on those trajectories.

Furthermore, the three dimensions plus four dimensions for the orientation of
the hand sum up to the seven dimensions, and Baxter has 7 Degrees of Freedom
(DoF) as well.

For these reasons, the network input is expanded to 7 dimensions in both cases,
but using the cartesian space, the inverse kinematic service of the robot has to be
used.

The trajectories recorded are visible in fig. 6.4. On the left, it depicts an action
to move the box from a position on the table to the top of the green box. In
the center, there is a movement primitive that brings the red box from the green
one to the top of the yellow one. Lastly, on the right, there is a movement that
overcomes the blue box and reaches a new position.

It has to be highlighted that the actions are demonstrated separately, and they
are independently shown to the network.
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Figure 6.5: Results of the concatenation method given a starting point in front
of the blue box and end point on the yellow box

The proposed method is used after training the network and obtaining satis-
factory performance. Two examples are presented below to demonstrate that the
method is not bonded to time or a specific order of actions.

In the first example, in fig. 6.5, the robot reaches the red box. This is the
starting position and the condition of the network. Subsequently, all possible
actions are generated, and their end position is used to concatenate the next level
of possible actions. The process continues until one finds the final state requested,
which is the top of the yellow box.

The results are shown in fig. 6.5, the cartesian trajectories on the right are
combined together, and the fast jumps are not present. The relative 3D repre-
sentation is shown in the 3D plot. When executed with the trajectory playback,
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Figure 6.6: Results of the concatenation method given a starting point in the
back of the blue box and end point on the green box

the robot performs the action correctly and reaches the goal, combining the ones
learned.

In the second example, in fig. 6.6, another starting point and another goal is
given. The method performs the search, and the resulting combination of cartesian
trajectories is visible on the right part of the figure. The 3D trajectory is visible
in the plot.

In this case, the end and beginning of different actions also match without
abrupt jumps. Finally, the trajectories generated are reproduced. The robot
executes the combinations of actions to bring the box from the starting point to
the goal state.
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Conclusions

This thesis provides a possible approach to novel high-level skill generation by
combining movement primitives learned by CNMP models.

The main key findings of the study are two methods developed to synthesize
new actions from demonstrated ones.

In the first approach, parts of trajectories are blended thanks to the combi-
nation of the task interpolation ability of the neural network analyzed and the
mathematical system developed to pass the proper parameters to it.

Furthermore, two different architectural changes have been proposed to the
classic CNMP model. The two different architectures achieve similar results com-
pared to the original model, but they enable its use with partial information.

The second approach presented achieved action synthesis thanks to the con-
catenation of primitives combined with the spatial interpolation of the network
and the ability to encode multidimensional data.

The approaches are not free from limitations, the main ones discovered are the
need for an initial condition and the awareness of the environment.

Finally, the practical applications have been investigated, and both methods
proposed performed well on the tests on real-life robots.

7.1 Future work

Possible future works are multiple since the research touched extensively many
topics. This research leaves many challenges open to tackle, from planning to a
better world representation, perception, and grasping.

Another area in which the network output can be used is navigation. The
trajectories analyzed in this study focused on robotics manipulation but can also
be extended to robotic navigation.

A possible research in the CNMP with the task parameters only in query would
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be to condition it with one state without parameters and let the network, queried
with different tasks, pass through that state.

Further research is needed on the same network developed for better training
to improve the results in the interpolation dimensions. For example, conditioning
it with task parameters between the original ones during training. This will force
mixed task parameters trajectories to pass through the designated point.

Moreover, it’s possible to extend the research to use the task parameter chang-
ing capabilities to shift to another meaningful plan if one fails. The same abilities
could be used to change among continuous actions.

In the second part, some further optimization of the graph building can be
achieved. More intelligent methods of research and pruning could be developed.

Furthermore, actions of different time lengths in the concatenation procedure
can be integrated.

Finally, an excellent addition would be extending the simple low-dimensional
world representation given to the network in the second method with an environ-
ment image.
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