
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Image-Specific Protection

Against Manipulation

Relatore:
Prof. Giuseppe Lisanti

Presentata da:
Filippo Bartolucci

Sessione II
Anno Accademico 2022/2023

Abstract

The rapid development of Generative Models (GMs) in image synthesis poses

challenges for accurately identifying manipulated images. Previous methods

exploited a finite set of templates to proactively counter image manipulation,

but this raises some concerns about potential vulnerabilities. A finite number

of templates can provide a predictable exploit for malicious attackers, allow-

ing them to reverse-engineer a template and evade detection by reapplying

it to the modified image.

This work presents a template-based detection system that integrates transformer-

based models to generate personalised templates for each image. Our ap-

proach enhances template protection while also improving the accuracy of

manipulation detection. Furthermore, the generated template is employed

to localize manipulated areas within an image, enabling the identification of

specific regions that have been altered.

Our solution achieves high detection accuracy and robust localization per-

formance on both trained attributes and previously unseen attributes, while

also outperforming existing solutions.

Contents

Abstract

1 Introduction 1

2 Related Works 5

2.1 Passive Detection . 5

2.2 Proactive Approach . 6

2.2.1 Disruption . 6

2.2.2 Image Tagging . 8

2.2.3 Detection . 9

2.2.4 Localization . 10

3 Method 13

3.1 A new template protection . 14

3.2 Encryption Module . 15

3.3 Localization Module . 18

3.4 Detection Module . 24

4 Experiments 29

4.1 Settings . 29

4.2 Evaluation Metrics . 30

4.3 Transformer Depth . 30

4.4 Image Degradation . 36

4.5 Evaluating Signal Diversity 38

i

CONTENTS CONTENTS

4.6 Assessing the usefulness of signals 41

4.7 Generalization across attributes 42

4.8 Baseline Comparison . 45

5 Conclusions 47

A Appendix 49

A.1 Convolutional Neural Networks 49

A.2 Transformers . 52

A.3 CNN Based Decoder . 58

A.4 Cosine Similarity . 58

A.5 Structural Similarity Index . 59

A.6 Learned Perceptual Similarity 60

Bibliography 63

ii

List of Figures

2.1 Comparison between passive and proactive approach 5

2.2 Example of disruption . 7

3.1 Our Architecture . 13

3.2 Architecture of Signal Encoder 17

3.3 Example of a fakeness map . 19

3.4 Architecture of Localization Module 20

3.5 Detection Module . 25

3.6 Architecture of Detection Module 26

4.1 Example of STGAN Manipulation 29

4.2 Results Visualization . 31

4.3 Signals generated by an encoder with depth 1 33

4.4 Signals generated by an encoder with depth 3 34

4.5 Signals generated by an encoder with depth 6 35

4.6 Detail of a protected Image 37

4.7 Comparison of real and protected images 38

4.8 Distibution of MSE across signals with depth 1 model 40

4.9 Distibution of MSE across signals with depth 3 model 40

4.10 Distibution of MSE across signals with depth 6 model 41

4.11 Results Visualization for “Bushy Eyebrows” attribute 44

A.1 Convolutional Operation in CNN 49

A.2 Stride Visualization . 51

iii

LIST OF FIGURES LIST OF FIGURES

A.3 CNN Architecture . 52

A.4 Scaled Dot Product Attention 53

A.5 Transformer Architecture . 55

A.6 Vision Transformer (ViT) . 56

A.7 Translation Equivariance . 57

iv

List of Tables

2.1 Summary of related works . 11

4.1 Loss hyperparameters . 30

4.2 Performance with different depth for Encoder/Decoder 32

4.3 Image degradation results . 36

4.4 Mean MSE for each model . 39

4.5 Performance without signal 42

4.6 Performance across different attributes 43

4.7 Baseline performance comparison 45

A.1 CNN Based Encoder Performance 58

v

1

Introduction

State-of-the-art generative models for image synthesis are constantly evolv-

ing, reshaping and revolutionizing the field of image creation. These models

demonstrate their versatility across various domains, especially excelling in

complex tasks like image-to-image translation and facilitating seamless tran-

sitions between different visual domains. However, the remarkable capability

of these models to generate highly realistic images prompts a fundamental

question: can we reliably determine whether an image has undergone manip-

ulation?

Fake image generation can be broadly classified into two categories: complete

image generation and partial image manipulation. In the former, entirely new

images are created by inputting noise into a generative model. In contrast,

the latter involves selectively modifying a real image. This partial manipu-

lation can significantly alter the semantics of genuine images and pose risks

to security and trust, particularly in the case of malicious exploitation.

With the increasing accessibility of generative models, the possibility of their

abuse increases, resulting in various problems such as dissemination of misin-

formation and falsification of evidence. The importance of countering these

models cannot be overstated.

One example of a counter tool is the use of detection models trained to dis-

tinguish manipulated images from real ones. Typically, they are trained by

analyzing both real and manipulated images. Yet, their performance and

1

1. Introduction

adaptability to new models or novel manipulations are limited, requiring

them to relearn specific artifacts in their detection process each time.

Recent advancements in the literature have brought forth notable improve-

ments in this challenging task through the introduction of a novel approach

based on template protection. An undetectable signal, known as the tem-

plate, is added to an image for encryption purposes. If the encrypted image

undergoes manipulation through generative models, the template serves as

verification to effectively distinguish between the encrypted image and its al-

tered version. Manipulation of a protected image results in an image with a

tampered template, effectively serving as an unambiguous indicator that the

image has undergone modification. This enhancement significantly empowers

the model, enabling more effective detection of various forms of manipulation

with increased accuracy and reliability.

Despite these advancements, there are still some limitations due to the lim-

ited number of templates used by current techniques. Indeed, an attacker

could reverse-engineer one of the templates used, exploiting the predictabil-

ity of a finite set. They could then use the reversed template to authenticate

manipulated images as real. This thesis aims to address this limitation by

improving the template creation process. Our new approach involves creat-

ing personalized templates for each image, thereby strengthening template

protection. Furthermore, the enhanced protection afforded by the use of

templates will be leveraged for a secondary task: manipulation localization.

This involves not only detecting manipulated images but also precisely iden-

tifying the regions within the image that have undergone manipulation. This

dual-purpose approach contributes to a robust and comprehensive solution

in the evolving landscape of image synthesis and manipulation detection.

The core technology enabling this work is the use of transformer-based mod-

els to generate a customized template for each image to be protected. We

2

1. Introduction

operate within an unsupervised learning scenario, due to the absence of any

ground truth template as a reference. Our goal is achieved by employing

distinct loss functions that are specifically designed to enforce key character-

istics throughout the training process.

In our study, we achieved a detection accuracy of 100% when tested on a

trained attribute and an accuracy of 99.90% on previously unseen attributes.

Moreover, the detection performance was robust, with a cosine similarity

value of 0.95 for the trained attribute and between 0.80 and 0.86 for the

unseen ones. Comparing our models with previous work, we outperformed

in both tasks using the same training attribute.

3

2

Related Works

In this chapter, we will explore some of the most recent advancements in

contrasting image manipulation orchestrated by GMs. These techniques can

be broadly categorized into two groups: passive and proactive methodologies.

In passive approaches, the model is restricted to analyzing the input image.

Conversely, proactive techniques add imperceptible templates to detect and

counteract GM manipulations.

Figure 2.1: Comparison between passive (a) and proactive (b) approach

2.1 Passive Detection

In literature, there exists a range of techniques dedicated to the detection

of image manipulation. These methods target various vulnerable aspects,

such as mouth movement [1], steganalysis features [2], and attention mech-

5

2.2 Proactive Approach 2. Related Works

anisms [3]. However, these methods are limited in their ability to analyze

the entire photo, because they rely solely on artifacts left by GMs. In [4],

the authors aim to uncover key characteristics that make manipulated im-

ages detectable. They employ shallow networks with limited receptive fields

to pinpoint specific manipulated areas within the image, ultimately arriving

at an overall prediction. This approach prioritizes local details over global

image semantics, highlighting the significance of focusing on specific regions

for effective manipulation detection.

These networks with limited receptive fields are used as patch-based clas-

sifiers to provide predictions on whether each patch is real or fake. These

predictions are then used to generate heatmaps, visually indicating areas

more likely to be genuine or manipulated. This approach has demonstrated

some adaptability across a spectrum of model parameters, generator architec-

tures, and datasets, but identifying differences between real and fake images

is an evolving challenge, sensitive to even minor preprocessing nuances. The

key insight gained from this is that, in the pursuit of effective manipulation

detection, prioritizing local details holds greater significance than focusing

solely on global image semantics.

2.2 Proactive Approach

Expanding the defense strategy beyond passive analysis, and instead adopt-

ing a proactive approach, opens up novel possibilities for effectively dealing

with image manipulation. In addition to detection methods [5] [6], research

has also explored techniques like deepfake disruption [7] and tagging [8].

2.2.1 Disruption

In [7], a proactive defense technique involving deliberate disruption of the

GM’s output is examined. This technique introduces imperceptible modifi-

cations to an image-alterations that escape human visual detection. However,

6

2. Related Works 2.2 Proactive Approach

when employed within a GM, these subtle adjustments render the GM output

unusable. The approach is based on the understanding that neural networks

are vulnerable to adversarial attacks [9]. The goal is to create a disruption

by introducing a human-imperceptible perturbation η to the input image x

resulting in the disrupted input image x̃. Given a generative model G, ỹ and

y represent the output images obtained from G(x̃) and G(x) respectively.

A successful disruption is one that introduces noticeable corruptions to ỹ,

indicating tampering, while preserving the original appearance of the image

x̃.

Figure 2.2: Example of disruption

[7] explores various established adversarial attack techniques, including Fast

Gradient Sign Method [9], Iterative Fast Gradient Sign Method, and Pro-

jected Gradient Descent. It is observed that a disruption for the data/class

pair (x, ci) is not guaranteed to transfer to the data/class pair (x, cj) when

i ̸= j. That’s why [7] introduces two disruption techniques, Iterative Class

Transferable Disruption and Joint Class Transferable Disruption, both mod-

ified versions of Iterative Fast Gradient Sign Method, capable of transfer-

ring disruption across different classes in a class-conditional GM. The results

demonstrate its effectiveness in disrupting prominent image translation ar-

chitectures (StarGAN, pix2pixHD, and CycleGAN) effectively highlighting

7

2.2 Proactive Approach 2. Related Works

alterations in the images and ensuring no unnoticed manipulations.

The limitation of this work is rooted in its operation in a ”gray-box scenario”

and ”white-box scenario” where researchers have full knowledge of the model

and its parameters.

The limitation of this study lies in its ”gray-box” and ”white box” settings.

In the gray-box scenario, researchers possess comprehensive knowledge of the

model and its parameters. In the white-box scenario, this knowledge extends

to include an understanding of the defense mechanisms in place, such as

blurring. This, however, does not align with typical real-world scenarios

where such comprehensive information is not readily available.

2.2.2 Image Tagging

In [8], a new defense technique against deepfakes based on image tagging is

presented. Image tagging refers to a technique that allows the concealment

of a hidden string within an image, rendering it imperceptible to the naked

eye. This technique can provide crucial insights for tracing the origin of a

deepfake. An illustrative example could involve empowering social networks

to swiftly block and track images by checking tags. The authors introduce

a novel tagging methodology named ”FakeTagger” which leverages image

tagging for deepfake forensic analysis and tracking. The process involves

a five-component pipeline: Message Generator, DNN-Based Encoder, GAN

Simulator, DNN-Based Message Decoder, and Channel Decoder.

The Message Generator produces a redundant message X ′, deliberately du-

plicated to account for potential loss during manipulation. The DNN-Based

Encoder then seamlessly incorporates X ′ into a facial image. The GAN Sim-

ulator manipulates the encoded images, and the Decoder aims to retrieve

the embedded message from the manipulated image. The Channel Decoder

processes the decoded message, producing the definitive message X. The

jointly trained DNN-based encoder and decoder play complementary roles in

8

2. Related Works 2.2 Proactive Approach

the process. The encoder embeds messages into facial images, ensuring per-

ceptual similarity, while the decoder retrieves the embedded message after

GAN-based transformations.

To ensure minimal error in the decoded message, two major losses were em-

ployed in model training: Message Loss and Image Loss. FakeTagger was

tested on a dataset of 30,000 facial images from the CelebA-HQ dataset,

demonstrating superior performance compared to a baseline approach. The

study highlights the effectiveness of FakeTagger in both white-box and black-

box settings for message retrieval across various DeepFake transformations.

Additionally, it emphasizes the significance of larger input image sizes and

reduced region manipulation. FakeTagger is also resilient against common

image perturbations encountered in DeepFake video production, such as com-

pression, resizing, blurring, and Gaussian noise. The results highlight Fake-

Tagger’s effectiveness in countering various forms of DeepFake manipulation.

2.2.3 Detection

In [5], a proactive defense approach for addressing image manipulation detec-

tion is introduced. Compared to traditional passive algorithms, this method

focuses on estimating a set of templates that, when applied to real images,

enhance the accuracy of manipulation detection. This template addition ef-

fectively serves as an encryption process, providing a means to distinguish

between genuine and manipulated versions of an image. When these en-

crypted images undergo manipulation by a GM, the algorithm can recover

the added template, enabling differentiation between the encrypted and ma-

nipulated versions. However, learning a set of templates presents challenges

due to the absence of an established ground truth template for supervision, as

well as the complexities of recovering the template from manipulated images.

The framework comprises two stages: image encryption and template re-

covery. The encryption stage involves the selection and addition of tem-

9

2.2 Proactive Approach 2. Related Works

plates, while the recovery stage focuses on retrieving the templates from

both encrypted real and manipulated images. Extensive evaluations were

conducted on images processed by unfamiliar GMs, demonstrating signifi-

cant improvements in performance compared to a pretrained model from a

previous study [10].

2.2.4 Localization

In [6], the authors present Manipulation Localization Using a Proactive

Scheme (MaLP), an advancement beyond their earlier work [5]. This time,

the focus extends beyond detection to include the introduction of manip-

ulation localization achieved through the use of templates. While recent

approaches in manipulation localization primarily operate passively by esti-

mating manipulation masks in face-swapped images, MaLP [6] takes a proac-

tive approach. It employs an optimized template to enhance manipulation

localization in real images, addressing potential alterations by unseen GMs.

The framework includes encryption, detection, and localization modules for

processing encrypted images, enabling effective localization and detection of

manipulations.

To optimize the template set in the encryption module, criteria such as low

magnitude, orthogonality, and high-frequency content are enforced as con-

straints. The localization module utilizes a two-branch architecture that

combines a shallow CNN network for high inference efficiency with a ViT

transformer to capture global information. The fakeness map estimation in-

volves maximizing cosine similarity and structural similarity index measure

for fake images while ensuring a zero map for encrypted images.

The proposed framework is equipped with distinct encryption, localization,

and detection modules, each with its respective loss function. Overall, an

image is encrypted by adding a template from the set, and the localization

module generates a fakeness map. This map is then used by the detection

10

2. Related Works 2.2 Proactive Approach

module to determine whether the image has been tampered with. MaLP

exhibits superior performance in localization and binary detection compared

to passive methods, demonstrating its adaptability to unseen attribute mod-

ifications.

Nevertheless, both Malp and [5] face limitations due to their reliance on a

fixed-size template set. This characteristic exposes them to potential vulner-

abilities from reverse engineering attempts on the templates.

In Table 2.1, is presented a summary of the previously discussed related

works.

Paper Scenario Category Used Techniques

[4] Passive Detection Patch-based Classification

[7] Proactive Disruption FGSM, I-FGSM, PGD

[8] Proactive Tagging U-Net Based Message En-

coder and Decoder

[5] Proactive Detection Set of learnable templates

[6] Proactive Detection and

localization

Set of learnable templates

Table 2.1: Summary of related works

11

2.2 Proactive Approach 2. Related Works

12

3

Method

In this chapter, we will present the architectural design of our framework and

provide insights into our implementation decisions.

Figure 3.1: Our Architecture

The objective of this framework is to detect and localize manipulation of

an image using a proactive approach. While different techniques in the lit-

erature address countering GMs manipulation, such as deepfake disruption

and tagging, we have chosen to focus on detection and localization. We be-

lieve this approach is the most effective way to combat manipulation, as also

shown in the literature.

The proposed architecture consists of three primary modules:

1. Encryption Module: This module is responsible for encrypting real

images.

13

3.1 A new template protection 3. Method

2. Localization Module: Module designed to estimate a map that high-

lights manipulated areas within images.

3. Detection Module: Binary detection for the encrypted and manipu-

lated images.

3.1 A new template protection

MaLP [6] demonstrated the efficacy of template-based image safeguarding

for detecting and localizing image manipulation. However, a notable limita-

tion lies in its use of a fixed set of templates, which represents a potential

vulnerability. An attacker could reverse engineer one of the predetermined

templates and exploit the system’s predictability to manipulate images and

authenticate them as real using the reversed template.

To address this concern, our work focus on refining the template protection

mechanism. We leverage transformer models renowned for their outstanding

performance in various computer vision tasks (refer to Appendix A.2). Our

aim is to enhance template protection by transitioning from a finite template

set to a per-image customized template approach.

In this advancement, we utilize a transformer model with learnable parame-

ters as source template. This template is then seamlessly integrated with the

image data. The outcome is a new uniquely tailored template for each spe-

cific image, ensuring a diverse and customized level of protection for every

individual image. This novel approach strengthens the system’s resilience

against protection counterattacks by introducing variability into the tem-

plate creation process, thus mitigating the predictability associated with a

fixed set of templates.

Another consideration in our work pertains to the operational aspects of

vision transformers. When a generative model modifies an image, only spe-

14

3. Method 3.2 Encryption Module

cific portions undergo alteration. The inherent patch-by-patch functionality

of transformer models makes them more intuitive for both generating and

analyzing templates. When an image is manipulated using a patch-based

template, only the patches within the manipulated area of the image are be-

ing compromised, meaning that it should be easier to locate the manipulated

area in the image by searching for the manipulated patch. This strategic ap-

plication should optimize the performance of our process, ensuring an effec-

tive safeguarding mechanism that works well, especially in accommodating

local changes within images.

3.2 Encryption Module

The initial stage in our architecture involves the encryption module, which

is responsible for safeguarding an image by incorporating an imperceptible

signal into it. This process is characterized by the application of a transfor-

mation denoted as τ to a real image IR, resulting in the generation of the

encrypted image τ(IR).

The fundamental concept here is that the signal applied by the transforma-

tion τ serves as a distinctive signature, enabling the verification of whether

an image has undergone any form of manipulation. In our framework, this

transformation is executed by adding to an image a special signal generated

by a transformer model.

The challenge of training a model to compute a meaningful signal is nontriv-

ial, given the absence of a definitive ground truth transformation for compar-

ison. This implies that the entire training process occurs in an unsupervised

manner, emphasizing the necessity for a set of custom losses, designed for

each module, that play a crucial role in effectively steering the process toward

our desired outcome. Defining effective losses for unsupervised training can

15

3.2 Encryption Module 3. Method

be challenging. The model tends to minimize the loss in unpredictable ways,

leading to unexpected results.

To eliminate ambiguity, we will specifically use the term ”template” to denote

the learnable parameters inside the Encryption Module model. Additionally,

we will use the term ”Image-Specific Signal” (sIS) ∈ Rc×m×n to represent the

original signal introduced during the encryption process. Signal Decoder SE

is the transformer model used to generate the sIS. One important factor is

that sIS needs to be optimized such that, it does not introduce any notice-

able visual artifact in the original image. This optimization is essential to

prevent any reduction in image quality, guaranteeing that the final images

remain usable.

The encryption process is defined as follows:

τ(IR) = IR +m× SE(I
R) (3.1)

where m is a fixed parameter used to control the strength of the added signal.

The Signal Decoder SE model is based on a visual transformer architecture.

As with all Visual Transformers, the model works by patching images, so

the first layer of the model reshapes the images into patches and projects

them linearly into the inner dimension of the model. Inside the model is the

learnable template, which is used as the basis for the generation of sIS. The

dimensions of the template match the dimensions of the linearly projected

images.

The model is made of a series transformer block which consists of a self-

attention layer, a cross-attention layer, and a feed-forward. The input to

the self-attention layer is the template, which is used as a query, key and

value in the calculation of attention. During self-attention, the images do

not contribute to the generation of the signal. The output of this layer is

used as input of the cross-attention layer and here the image patches are

16

3. Method 3.2 Encryption Module

used as context for cross-attention. This means that the template processed

by self-attention is used as a query, while the image patches are key and

value. In this way, it is calculated how much importance each element in the

key (image patches) should attach to the corresponding element in the query

(template). The result, after a sum weighted with the value (again the image

patches), is the output of the cross-attention.

In this process, the cross-attention mechanism assesses the relevance of dif-

ferent elements within the template by considering the content of the image.

This weighted attention ensures that the template adapts dynamically to

the characteristics of the image, providing a distinctive and tailored form of

protection.

Figure 3.2: Architecture of Signal Encoder(a) and Transformer Block (b)

The output generated by SE, denoted as sIS, is added to the image. Prior

to this addition, the signal is multiplied by a constant strength weighting

factor. In order to guide the training of the encryption module, we employ

a loss function defined as follows::

17

3.3 Localization Module 3. Method

L1 = λ1 × ∥sIS∥2 (3.2)

Here, λ1 serves as a hyperparameter that determines the relative importance

of this particular loss. This is essential as we will ultimately have multi-

ple losses, each with varying degrees of significance. This loss function is

designed to minimize the computed signal sIS, which is crucial for ensur-

ing that the protected image closely resembles the original. If the magnitude

of the generated signal is too strong the image quality might be compromised.

While this loss alone may not be sufficient to render the sGT meaningful, as

the only constraint imposed is related to the signal’s magnitude, it becomes

more significant when integrated with the subsequent Localization Module

architecture and losses.

3.3 Localization Module

This module is responsible for recovering the signal from protected images

and estimating a map indicating potential manipulated areas, referred to as

the ”Fakeness Map” (see Figure 3.3). In contrast to certain prior approaches

that rely on a threshold [11] to assess the difference between real and manip-

ulated images (an undesirable approach since threshold selection is highly

subjective and sensitive), we choose to adopt the definition of ”Fakeness

Map” derived in MaLP [6]. This definition involves utilizing a continuous

grayscale map to compute the ground truth fakeness map.

18

3. Method 3.3 Localization Module

Figure 3.3: Example of a fakeness map

Given the encryption transformation τ , the generative model G, and the real

image IR, we define the ground truth fakeness map for the manipulated im-

age G(τ(IR)) as:

MGT = Gray(|IR −G(τ(IR))|)/255 (3.3)

where Gray() is a function that converts a colored image to grayscale.

The objective of this module is to extract the added signal from an input im-

age, which could be either an original protected image or a modified version

of it. When provided with an unaltered image, its objective is to precisely

recover a distinctive signal closely resembling the original encryption signal

SIS that was encrypted with. Instead, when a manipulated image is given

as input, the module aims to retrieve a signal that is as diverse as possible

from the authentic signal, facilitating easy differentiation. The ability to dif-

ferentiate and recognize the two types of signal means that the model is able

to recognize when an image has been manipulated or not, which makes the

subsequent detection task easier.

This approach is chosen to maximize the distinction between the signal of a

genuine image and that of an altered image. If a portion of the image has

been altered, the signal in the manipulated image should be tampered with

19

3.3 Localization Module 3. Method

in such a way that the model should not be capable of recovering it. Mean-

while, an unaltered image should strive to preserve as much of the original

added signal as possible. The signal obtained from a protected image will be

referred to as real signal sR whereas the signal extracted from a manipulated

protected image will be called fake signal sF

In the MaLP framework [6], the Localization module for the encoder relied

on a basic CNN architecture that bifurcated into two branches: one pro-

cesses the signal while the other generates the fakeness map. However, in

our framework, this approach is no longer adequate. (See Appendix A.3).

Figure 3.4: Architecture of Localization Module (a) and CNN branch (b)

Since the sIS is now computed and applied per patch, a CNN alone falls short

in capturing the nuances of per-patch signal characteristics. To address this,

we chose to develop a transformer-based decoder, leveraging self-attention

layers, specifically designed for signal recovery.

Despite opting for a transformer-based approach for signal recovery, our mod-

ule still incorporates a parallel CNN branch. Our experiments demonstrated

20

3. Method 3.3 Localization Module

that relying solely on the transformer for estimating the fakeness map yielded

unconvincing results, as the generated fakeness maps were mere patches of

noise. For this reason, we introduced an additional, dedicated CNN branch

specifically designed for the fakeness map estimation task. The CNN com-

bines the recovered signal from an image with the protected image. Indeed,

during the fakeness map estimation process, the recovered signal provides

essential information to help the model differentiate between authentic, un-

altered images and manipulated ones. This dual-input approach enhances

the module’s capacity to make accurate predictions, thereby contributing to

the overall effectiveness of the framework in localizing image alterations.

In the training process, we employ the actual signal generated by the encryp-

tion module and the fakeness map, as defined in Equation 3.3. This map is

computed using both the unaltered image and a modified image generated

by STGAN [12], a reference generative model, which serves as the basis for

supervision.

As for the encryption module, we have defined specific loss for this model.

Our goal is for the real signal to approximate sIS, while conversely, we strive

for the fake signal to deviate as much as possible from sIS.

Regarding the fakeness map, our aim is for the estimated fakeness of ma-

nipulated images to closely correspond with the ground truth fakeness map.

While, for authentic protected images that have not undergone alterations,

we aim for the fakeness map to be as close to zero as possible, indicating that

the model does not detect any modified regions.

We will now introduce the notation used in the equations for the loss func-

tions. Let I represent the protected input image. When we apply the local-

ization module, referred to as Signal Decoder SD, to the input image I, it

21

3.3 Localization Module 3. Method

produces sReal and the corresponding localization map MReal:

sReal,MReal = SD(I) (3.4)

Similarly, for the manipulated image G(I) generated by the generative model

G, SD produces sFake along with its associated localization map MFake:

sFake,MFake = SD(G(I)) (3.5)

For this module, we have six loss functions that aim to maintain the charac-

teristics of the signal and fakeness map, as previously outlined.

Signal Losses: These losses play a crucial role in ensuring the adherence

of the recovered signal to specified properties. Here, CS represents the cosine

similarity function (see Appendix A.4). In Equation 3.6, minimizing the CS

allows us to reduce the similarity between sReal and sFake, making them as

discernible as possible.

L2 = λ2 × CS(sReal, sFake)) (3.6)

In contrast, Equation 3.8 serves the purpose of ensuring that sIS for distinct

images exhibits variation within the batch. This particular loss is crucial

because our experiments revealed a tendency of the SE to neglect the contri-

bution of input images over time. This behavior stems from the fact that the

SE has only one loss, which doesn’t impose any constraints on the signal’s

form apart from its magnitude.

Meanwhile, the SD has losses associated with recovering the signal and fak-

eness map. During training, this module forces the SE to discard the contri-

bution of the input images, as, in this case, it still minimizes all the losses

while facilitating its own task of retrieving the signal and fakeness map. The

consequence of this was that the SE started generating a fixed signal for all

images, rendering the model essentially useless.

22

3. Method 3.3 Localization Module

L3 = λ3 ×
N∑
i=1

N∑
j=i+1

CS(sIS[i], sIS[j]) (3.7)

To fix this issue, we introduced the new loss reported in Equation 3.7. This

loss is designed to enforce diversity among signals across different images.

Specifically, it achieves this by computing the cosine similarity between sIS

representations for pairs of images within the batch, thereby ensuring that

the signals evolve distinctly over various instances in the dataset.

Minimizing the cosine similarity alone proved insufficient. With cosine simi-

larity values ranging from 1 (indicating the same direction) to -1 (indicating

opposite directions), and 0 representing orthogonality, relying solely on co-

sine similarity, without clamping values below zero, led the model to learn

only two distinct signal types. Remarkably, these signals had a cosine simi-

larity of -1, meaning that they were opposite signals. This outcome occurred

because learning only two opposite signals was the most straightforward way

for the model to minimize the loss.

L3 = λ3 ×
N∑
i=1

N∑
j=i+1

Max(CS(sIS[i], sIS[j]), 0) (3.8)

When calculating the loss in equation 3.8 within a batch containing these

two signals, the mean cosine similarity within the batch tended to approach

zero. This was due to the compensatory effect of the values of 1 for one

signal being balanced by the values of -1 for the other signal in the batch.

By applying a clamp (as in Equation3.8) to restrict negative values to 0, we

effectively eliminated the contribution to the loss from signals with negative

directions. This forced all signals to be orthogonal to each other as the only

way to minimize this loss.

Map Losses: These losses are employed to enforce properties for fake-

ness map estimation. Equations 3.9 and 3.10 ensure that the estimation of

23

3.4 Detection Module 3. Method

MapReal is as close as possible to a black image (indicative of no changed

pixels in the image) and that MapReal and MapGT are as dissimilar as pos-

sible.

L4 = λ4 × ||MReal||2 (3.9)

L5 = λ5 × CS(MGT ,MReal) (3.10)

Equations 3.11 and 3.12 try to maximize the similarity between MapFake and

MapGT . The structural similarity loss (appendix A.5) is denoted as SSIM .

L6 = λ6 × (1− CS(MGT ,MFake)) (3.11)

L7 = λ7 × (1− SSIM(MGT ,MFake) (3.12)

3.4 Detection Module

The final component of the framework is the detection module, responsible

for determining whether an image has been manipulated. Given the defined

loss functions, this task is now relatively straightforward. Thanks to the

map losses, we have clear distinctions between MFake, which resembles MGT ,

and MReal, which is designed to be as close to a completely black image as

possible.

24

3. Method 3.4 Detection Module

Figure 3.5: Detection Module

This distinction is not only achieved through the fakeness map, but also

due to the added signal incorporated in all the previous modules. Ideally,

the localization module should leverage the recovered signal to enhance the

differentiation between real and manipulated images. When it successfully

recovers a signal indicative of a real image, its contribution should transform

the fake map into a completely black representation.

With this understanding, it’s clear that the final detection task is simpler

compared to passive detection methods, where the model must learn to rec-

ognize imperfections left by the generative model.

25

3.4 Detection Module 3. Method

Figure 3.6: Architecture of Detection Module

We chose to retain the same detection architecture as MaLP [6], as we deemed

the specific design of this module less critical compared to others. This ar-

chitecture was still considered sufficient for the task. This detection module

receives an estimated fakeness map from the localization module as input and

produces a prediction indicating whether the image is real or manipulated.

Therefore, the detection model utilizes a simple classification loss, such as

the binary cross entropy, defined as:

26

3. Method 3.4 Detection Module

L8 = λ8 ×
N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (3.13)

where:

• yi is the true label for sample i (0 or 1)

• ŷi is the predicted probability that the sample i belongs to class 1.

All modules are trained collectively in an end-to-end manner, with the total

loss computed as the sum of individual components:

L = L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8 (3.14)

As a side note, during the initial epochs of training, the estimated fakeness

maps are not well-defined. Consequently, the training of the detection module

begins after a warm-up period for the other modules. This warm-up spans

the first 50 iterations. After that, the entire model is trained end-to-end.

27

3.4 Detection Module 3. Method

28

4

Experiments

In the following chapter, we will present all the experiments conducted and

their results.

4.1 Settings

In our experiments, we used the CelebA dataset, comprising 202,599 im-

ages featuring celebrity faces. For training, we employed the initial 182,000

images, while images numbered from 182,001 to 182,637 were allocated for

validation. The remaining 19,962 images were used in the test set. All faces

in the dataset were cropped, aligned, and resized to a resolution of 128x128.

All experiments were performed on an RTX 3090 with 24GB of VRAM with

a batch size of 32.

Figure 4.1: Example of STGAN Manipulation of facial attribute ”Bald”

We opted to employ STGAN as our generative model, a choice aligned with

MaLP [6]. This decision was made in order to establish a meaningful baseline

for comparison. STGAN is a pre-trained GM for the task of facial attribute

29

4.2 Evaluation Metrics 4. Experiments

manipulation, i.e., it allows the manipulation of specific facial features. In

our experiments, we will clearly specify both the facial attribute on which

the model was trained and the attribute on which it was tested.

These values have been selected following the settings from MaLP [6]. 4.1.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

80 20 2 25 25 25 50 70

Table 4.1: Loss hyperparameters

4.2 Evaluation Metrics

We will use specific metrics tailored to each task for evaluation. To assess bi-

nary detection, we will employ the accuracy score. For the Localization task,

we will measure the similarity between the generated map and the ground

truth map using cosine similarity. To quantify the degree of image alteration

following the addition of the signal sIS, we will use two image distance met-

rics: Learned perceptual image patch similarity (LPIPS) and mean squared

error (MSE). We selected these two metrics for evaluating image quality

because they measure image degradation from different perspectives. MSE

measures pixel distance, while LPIPS measures the difference in perceptual

similarity, capturing how we perceive an image.

4.3 Transformer Depth

We will begin by presenting results on our model, specifically examining

the impact of varying transformer depths in both Signal Encoder SE and

Signal Decoder SD. Our goal is to determine the optimal model in terms of

encoder-decoder architectural depth and how varying the complexity of the

transformer-based models can affect signal generation.

30

4. Experiments 4.3 Transformer Depth

Figure 4.2: Results Visualization: (a) original image, (b) encrypted image,

(c) manipulated image, (d) ground truth fake map, (e) estimated fake map

for the manipulated image, (f) estimated fake map for the protected image.

31

4.3 Transformer Depth 4. Experiments

Across our experiments, we explored encoders and decoders with depths of

transformer layers 1,3 and 6 maintaining the same depth values for both

models. During both training and testing, we utilized “Bald” as the attribute

for STGAN manipulation.

Depth Fakeness Map CS Accuracy

1 0.951839 0.999975

3 0.950642 0.999975

6 0.951260 1.0

Table 4.2: Performance with different depth for Encoder/Decoder

The results presented in Table 4.2 indicate that all models exhibit nearly

identical performance in both localization and detection tasks. This can be

attributed to the shared CNN architecture among all models. Similarly, the

consistency in detection accuracy arises from the unchanged detection ar-

chitecture across all experiments. In Figure 4.2 are shown some samples of

outputs generated by the depth 6 model.

Even with a depth of 1, the models can easily detect the added signal. How-

ever, the effect of varying the depth of the transformer block becomes clear

in the signal generation and recovery process. The key difference is in the

type of signal generated. The following figures illustrate samples of generated

signals for each model depth: Figure 4.3 for depth 1, Figure 4.4 for depth 3

and Figure 4.5 for depth 6.

32

4. Experiments 4.3 Transformer Depth

Figure 4.3: Signals generated by an encoder with depth 1

33

4.3 Transformer Depth 4. Experiments

Figure 4.4: Signals generated by an encoder with depth 3

34

4. Experiments 4.3 Transformer Depth

Figure 4.5: Signals generated by an encoder with depth 6

35

4.4 Image Degradation 4. Experiments

From these figures, it is possible to appreciate that deeper models create

more complex and diverse signals across multiple images. Such complexity

arises from the greater number of layers in deeper models, which enables more

complex signal generation. All signals exhibit a similar patch-based aesthetic,

resulting from the use of a vision transformer. The signal generated by the

depth 1 model has a simple and less diverse patch pattern compared to bigger

models like 3 and 6. Although a small model may achieve high performance

in both tasks, we cannot expect it to provide the same degree of protection

as with larger models.

4.4 Image Degradation

In this section, we will show how much an image is degraded by the addition

of sIS. A too strong and distinguishable signal would render the images

unusable, so this aspect is crucial in order to be able to use this framework

in real-world contexts. Table 4.3 presents the MSE and LPIPS values for

different tested models.

Model MSE LPIPS

Depth 1 0.000105 0.000353

Depth 3 0.000105 0.001034

Depth 6 0.000101 0.001894

Table 4.3: Image degradation results

Regardless of the depth, the table results indicate that all models generate

a signal with minimal effect on image quality, both in terms of pixel level

(MSE) and perception level (LPIPS). This outcome is achieved by using the

parameter m to control the magnitude of the signal in combination with the

loss L1 (Equation 3.2).

36

4. Experiments 4.4 Image Degradation

Figure 4.6: Detail of a protected image. Above the real image, below the

protected image

To better understand the effect of the added signal, Figure 4.6 shows a detail

of a face with a comparison between the real image and the protected image.

There are no discernible differences in terms of colour or structure between

the two images. However, the visual impact of the signal can be attributed

to the greater amount of noise present in the protected image. This noise is

37

4.5 Evaluating Signal Diversity 4. Experiments

more noticeable in the brighter regions of the image.

Figure 4.7: Comparison of real (a) and protected images (b)

These results confirm that adding the signal to the original image sIS causes

minimal degradation that does not affect the visual appearance.

4.5 Evaluating Signal Diversity

A critical aspect of our framework revolves around the customization of indi-

vidual signals for each image. To this end, we compute the average distance

between signals across various images, utilizing MSE as the metric. This

metric is preferred because it directly considers pixels in the distance calcula-

tion, effectively highlighting significant pixel-level deviations between signals.

38

4. Experiments 4.5 Evaluating Signal Diversity

We avoid using the cosine similarity metric due to its potential ambiguity in

specific situations. For instance, if the model learned to generate only two

types of signals that are opposite to each other, and a batch consists solely of

these two signals, the average cosine similarity would be 0. This is analogous

to what we observed with loss 3 (Equation 3.8) without the max operation.

Conversely, if all the signals were orthogonal to each other, the average co-

sine similarity would also be zero. Using cosine similarity does not allow for

a distinction to be made between these two scenarios. This highlights the

potential for misinterpretations when using cosine similarity, making MSE a

more robust choice in this context.

Previous findings indicated that more complex patterns were associated with

more complex generated signals. For each of the aforementioned SE sets,

100 batches of 32 signals were generated. The MSE was then calculated

between every two signals in each batch, resulting in a total number of unique

comparisons of 24800.

Model Mean MSE

Depth 1 57.805305

Depth 3 98.524712

Depth 6 98.204061

Table 4.4: Mean MSE for each model

The actual MSE distributions for the depth 1 (Figure 4.8), depth 3 (Figure

4.9) and depth 6 (Figure 4.10) models are shown below.

39

4.5 Evaluating Signal Diversity 4. Experiments

Figure 4.8: Distibution of MSE across signals with depth 1 model

Figure 4.9: Distibution of MSE across signals with depth 3 model

40

4. Experiments 4.6 Assessing the usefulness of signals

Figure 4.10: Distibution of MSE across signals with depth 6 model

Upon examination of the signal produced, it is clear that the depth 1 model

is inadequate in generating a diverse range of signals. This conclusion is

supported by the distribution of its MSE (Figure 4.8), which has a mean

of 57.805305 and is skewed towards zero, indicating that the generated sig-

nals are exceedingly similar to one another. In comparison, the two other

models exhibit comparable distributions, with mean values of 98.524712 and

98.204061 for depths 3 and 6, correspondingly. These values deviate signifi-

cantly from zero, revealing the ability in generating a wider range of signals.

4.6 Assessing the usefulness of signals

Our current goal is to determine the actual usefulness of the signal in our

framework. To achieve this, we conducted a test with a trained model that

omitted the use of the encryption module. This means that all input images

received by the localisation module have no applied signal. The rationale

for this decision is to eliminate the signal’s impact as much as possible, in

41

4.7 Generalization across attributes 4. Experiments

order to determine the level of its contribution. The testing attribute used

was ’Bushy Eyebrows’ to ensure the model relies solely on the signal in the

detection process.

Model Signal Fakeness Map CS Detection Accuracy

1 Without 0.801142 0.550979

1 With 0.804666 0.992761

3 Without 0.817571 0.702652

3 With 0.826790 0.99975

6 Without 0.800226 0.842961

6 With 0.808187 0.990332

Table 4.5: Performance without signal

As shown in Table 4.5, it is evident that all the models experience a decline

in performance when presented with images without a signal. This confirms

that the signal is indeed employed for detection.

In addition, it appears that the larger models (3 and 6) experience a notable,

but less pronounced, drop in performance in the absence of signal compared

to the smaller model. This implies that, in terms of detection, these models

depend not only on the reconstructed signal but also on the image itself.

This behaviour might be caused by the artifacts left by STGAN, the GM we

used during training. These artifacts might be big enough to be spotted by

a bigger transformer that learns to exploit the artifacts left by the GM, in

addition to relying on the signal.

4.7 Generalization across attributes

Until now, the models have been tested on the same ’bald’ attribute that was

used during training. We are now interested in observing the performance

42

4. Experiments 4.7 Generalization across attributes

with novel attributes, previously not seen during training, to establish how

well the models are able to generalise to new types of manipulation. This

is a critical point as we cannot predict the type of image manipulation in

a real world scenario, so it is important to understand how well the model

generalises to new, unseen manipulations.

The table displays the results of evaluating the models based on an attribute

that was not encountered during training.

Model Test Attribute Fakeness Map CS Detection

1 Bushy Eyebrows 0.804666 0.992761

3 Bushy Eyebrows 0.826790 0.999750

6 Bushy Eyebrows 0.808187 0.990332

1 Mouth Slightly Open 0.863566 0.990983

3 Mouth Slightly Open 0.867282 0.999040

6 Mouth Slightly Open 0.864114 0.999048

Table 4.6: Performance across different attributes

All models were trained with the attribute “Bald” and evaluated with “Bushy

Eyebrows” and ’Mouth Slightly Open’. Table 4.6 shows that regardless of

complexity, the models achieve outstanding detection performance and a sat-

isfactory localisation outcome. These outcomes indicate that image manip-

ulation is detected regardless of the type of alteration, enabling the models

to generalise to unseen alterations. On the other hand, the localisation task

is not as easy to generalise, probably due to its greater complexity, but the

model still manages to perform well on an attribute that was never seen dur-

ing training. In Figure 4.11 are shown some samples of outputs generated

by the depth 3 model using the attribute “Bushy Eyebrows”.

43

4.7 Generalization across attributes 4. Experiments

Figure 4.11: Results Visualization for ”Bushy Eyebrows” attribute using

depth 3 model: (a) original image, (b) encrypted image, (c) manipulated

image, (d) ground truth fake map, (e) fake map for the manipulated image,

(f) fake map for the protected image.

44

4. Experiments 4.8 Baseline Comparison

The model with depth 6 performs slightly worse than the model with depth

3, despite being more complex. This behaviour can be explained by looking

at the results of table 4.5, where it can be seen that model 6 manages to

perform detection, albeit with significantly lower performance, using only

the image, indicating that for this model the contribution of the signal is

used, but in combination with the artifacts left on the manipulated image.

This behaviour may be due to two factors. Firstly, the loss function in

equation 3.6 may not be strict enough to constrain such complex models.

Secondly, the GM models used may generate many subtle artifacts that the

transformer can distinguish, causing the model to rely less on the signal.

4.8 Baseline Comparison

In this section, we will compare our models with MaLP across localisation

and detection. All the models will be evaluated with the “Bald” attribute,

as this is the attribute on which they were all trained using STGAN.

The results are presented in Table 4.7, where we assess the performance of

different models based on Fakeness Map CS and accuracy.

Model Fakeness Map CS Detection Acccuracy

MaLP 0.924732 0.980206

Depth 1 0.951839 0.999975

Depth 3 0.950642 0.999975

Depth 6 0.953754 1.0

Table 4.7: Baseline performance comparison

As shown in Table 4.7, our models outperform the MaLP consistently in

both detection and localisation tasks. The Depth 1, Depth 3, and Depth 6

models demonstrate superior performance compared to MaLP in Fakeness

Map CS, and in Detection Accuracy, all three depth models surpass MaLP,

45

4.8 Baseline Comparison 4. Experiments

with Depth 6 achieving a flawless score. These outcomes emphasise the

improved capabilities of our models in effectively countering manipulation

by a GM.

46

5

Conclusions

This thesis focus on detecting image manipulation performed by generative

models. We introduced a novel approach for detecting and localising manip-

ulated images with a particular focus on improving image protection through

the implementation of a unique per-image signal protection mechanism. A

vision transformer is utilised to adapt a learnable source template to each

input image, creating a tailored signal for each image as protection. We

deploy an additional vision transformer to extract the augmentations from

authentic as well as manipulated images. The vision transformer output is

then combined with CNN layers to detect and locate image manipulation.

This entirely unsupervised process is guided by personalized losses for each

model during training. Our findings outperform previous work, while having

stronger protection capabilities, as other work relies on a fixed size template

set. We have demonstrated the satisfying performance of our model on pre-

viously unseen manipulations. Additionally, we highlighted the significance

of the signal for our models and their capacity to generate novel and diverse

signals.

One limitation of this work is that it is restricted to the use of only one

GM due to resource and time constraints. Conducting further evaluations

on various GMs could provide greater insights into the models’ generalisa-

tion capabilities. Another area for improvement is the use of transformer

models. Currently, some models incorporate CNN, but it would be worth-

while to investigate the possibility of creating transformer-exclusive models

for localization and detection tasks.

47

A

Appendix

A.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have significantly impacted com-

puter vision by efficiently capturing spatial hierarchies and learning intri-

cate features within images. Unlike traditional feed-forward neural networks,

CNNs use convolutional layers to discern patterns, making them particularly

suited at image-related tasks such as pattern recognition, object classifica-

tion, detection, and image segmentation.

In CNNs, the core operation is the convolutional layer, which involves con-

volving input data with a set of learnable filters. These filters scan the input

image to detect various features, such as edges, textures, or more complex

patterns, producing feature maps that highlight the presence and location of

these features within the input.

Figure A.1: Convolutional Operation in CNN

49

A.1 Convolutional Neural Networks A. Appendix

Mathematics of Convolution: The convolutional operation of a CNN

layer is mathematically defined as the element-wise multiplication and sum-

mation of the input data and a set of learnable filters [13]. Given an input

matrix I and a filter matrix H, the convolutional operation with output O

is computed as follows:

O(i, j) =
M−1∑
m=0

N−1∑
n=0

I(m,n) ·H(i+m, j + n) (A.1)

Here, M and N represent the dimensions of the filter matrix H, and i, j are

the indices of the output feature map O. The filter is applied one step at a

time to overlapping regions of the input matrix, and the outcomes are added

up to create each element of the output feature map.

The operation described in Equation A.1 is technically a cross-correlation,

not a convolution, as per signal theory. This distinction is due to the ab-

sence of a necessity to ”flip” the kernel in relation to the input during cross-

correlation (see Equation A.2) . Despite this, it’s worth noting that in the

realm of machine learning libraries, the term ”convolution” is commonly used

to refer to this operation in CNNs. For consistency, we will adhere to this

convention in when referring to CNN in our models.

O(i, j) =
M−1∑
m=0

N−1∑
n=0

I(m,n) ·H(i−m, j − n) (A.2)

Strides and Padding: Convolutional layers use strides and padding to

control the spatial dimensions of the output feature maps. Strides determine

the step size of the filter movement, influencing the spatial resolution of the

output. Padding involves adding extra border pixels to the input to prevent

a reduction in spatial dimensions and retain more information.

50

A. Appendix A.1 Convolutional Neural Networks

Figure A.2: Stride Visualization

The output size Osize for a given input size Isize, filter size Hsize, stride S,

and padding P is calculated as:

Osize =
Isize −Hsize + 2P

S
+ 1 (A.3)

Architecture: Following the convolutional operation, an activation func-

tion is typically applied element-wise to introduce non-linearity into the

model. Commonly used activation functions include Rectified Linear Unit

(ReLU), which sets negative values to zero:

ReLU(x) = max(0, x) (A.4)

Non-linearities help the CNN model capture complex relationships within

the data.

Additionally, pooling layers are often interspersed with convolutional layers

to downsample feature maps. Pooling, commonly in the form of max pooling

or average pooling, reduces the spatial dimensions of the feature maps, focus-

ing on the most salient information and enhancing computational efficiency.

In max pooling, a kernel traverses the feature map, selecting the maximum

value from a group of neighboring pixels. This process emphasizes the most

prominent features in a given region. Similarly, in average pooling, the kernel

computes the average value within the same context.

51

A.2 Transformers A. Appendix

Figure A.3: CNN Architecture

A typical CNN architecture(as seen in Figure A.3) consists of multiple con-

volutional layers followed by activation functions and pooling layers. These

layers are usually followed by one or more fully connected layers for clas-

sification or regression tasks. The hierarchical arrangement of these layers

allows the network to learn progressively abstract and complex features from

the input data.

A.2 Transformers

Transformers, as introduced in [14], have gained significant popularity, es-

pecially in the realms of natural language processing and computer vision

tasks. They have emerged as a compelling alternative to models like LSTM,

primarily due to their ability to address scalability issues associated with

sequential processing.

Renowned for their parallelization capabilities, transformers excel in captur-

ing long-range dependencies in data. In contrast, LSTM, which relies on

sequential processing, encounters challenges in parallelization. This limita-

tion arises because LSTM processes input data sequentially, making it less

efficient in handling tasks that could benefit from simultaneous computation.

52

A. Appendix A.2 Transformers

Transformers, on the other hand, leverage attention mechanisms to efficiently

process input data. This unique reliance on attention mechanisms enables

the model to selectively focus on different parts of the input, a crucial fea-

ture for tasks that require a nuanced understanding of relationships between

various elements in the data.

Attention: In the context of transformers, attention is computed using

three linear transformations: Query (Q), Key (K), and Value (V). These

transformations are applied to the input data to produce query, key, and

value matrices. The attention score is calculated by taking the dot product of

Q and K matrices, followed by scaling and applying a softmax function. This

product is a measure of the similarity or relevance between different elements

in Q and K. It quantifies how much attention should be given to each element

in relation to every other element in the sequence. The resulting attention

weights are then used to compute a weighted sum of the value matrix, which

forms the output of the attention mechanism.

Figure A.4: Scaled Dot Product Attention

The attention formula can be represented as:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (A.5)

53

A.2 Transformers A. Appendix

Here, dk is the dimension of the key vectors. The square root of dkis intro-

duced in the denominator for scaling purposes. This scaling helps stabilize

the gradients during the training process.

Transformers employ two types of attention mechanisms: self-attention and

cross-attention.

In self-attention, the same input acts as both Q, K, and V. This mechanism

assesses relationships within the input sequence, enabling the model to dis-

cern the relative significance of different elements within the same sequence

in input.

Meanwhile the cross-attention involves using an external context as K and

V, while the input acts as Q. This means that the model assesses the input

with respect to information from an external source. This enables the model

to consider the relevance of elements in the input sequence in the broader

context provided by the external information. Cross-attention is vital for

tasks involving interactions between input elements and external context,

like in machine translation or image captioning. It enables the model to align

elements from diverse sources, facilitating more accurate and contextually-

aware predictions.

Architecture: A transformer consists of a series of attention blocks, each

followed by a feed-forward layer. The initial embedding layer provides the

input for the first block, while subsequent blocks receive the output of the

preceding block as their input. This iterative process allows the transformer

to progressively refine its understanding of the data.

54

A. Appendix A.2 Transformers

Figure A.5: Transformer Architecture

In the absence of recurrence and convolution, transformers need a method

to account for sequence order. To address this, positional encodings were

introduced in the input embeddings of both the encoder and decoder. These

encodings, sharing dimensions with the embeddings, are summed for seam-

less integration. Sine and cosine functions with different frequencies were

chosen among various options for positional encodings. This augmentation

enables the model to discern relative or absolute positions of tokens within

a sequence.

Vision Transformers: Transformers have proven effective in computer vi-

sion through architectures like Vision Transformers (ViT). ViT breaks down

an image into fixed-size patches, linearly embedding them to create a se-

quence for transformer processing. This enables the model to capture both

55

A.2 Transformers A. Appendix

global and local features simultaneously, leveraging the attention mechanism

to understand spatial relationships between patches.

Figure A.6: Vision Transformer (ViT)

In ViT, the nature of the model poses a challenge in conveying the spatial

arrangement of patches. This problem is solved by introducing positional

embeddings, learnable parameters that are added to the patches, allowing

the model to distinguish the relative positions of different patches within the

image. Through the injection of positional embeddings, the model acquires

an understanding of spatial layout, preserving crucial spatial information, ac-

curately capturing relationships between patches and enhancing the model’s

interpretation of complex spatial structures in visual data.

Limitations: ViT exhibits certain inherent limitations when compared to

traditional CNNs used in computer vision, notably lacking key inductive bi-

ases such as translation equivariance and locality.

56

A. Appendix A.2 Transformers

Translation equivariance, a characteristic of traditional CNNs, ensures that

a shift in input data corresponds to a corresponding shift in the model’s out-

put, providing robustness to variations in feature positions within an image

(see Figure A.7). In contrast, ViT may struggle to capture patterns under-

going spatial shifts due to the absence of inherent translation equivariance.

Figure A.7: Translation Equivariance

Locality in computer vision denotes that nearby pixels in an image are likely

related and share information. Traditional CNNs use local receptive fields to

capture these spatial relationships effectively. ViT, however, processes the

entire image as a sequence of tokens, potentially neglecting crucial local in-

teractions among pixels.

The absence of translation equivariance in ViT can present challenges for

effective generalization, especially with limited training data. In contrast,

CNNs, with their convolution operations and max pooling/striding, exhibit

translation invariance, contributing to their robust performance. However,

it’s noteworthy that Transformers, such as ViT, can overcome these gener-

alization challenges when trained on more extensive datasets, ranging from

57

A.3 CNN Based Decoder A. Appendix

14 million to 300 million images. The increased dataset size allows ViT to

learn and capture diverse patterns, compensating for its initial limitations in

handling spatial shifts.

A.3 CNN Based Decoder

During the initial phase of this study, we sought to adopt the architecture

of MaLP [6], with the sole alteration being the substitution of the encryp-

tion module with a transformer. While maintaining a CNN-based structure

for the localization module, this configuration ultimately proved ineffective,

leading to unsatisfactory model performance.

Challenges emerged in both signal recovery and localization tasks. The fake-

ness map of real images did not yield blank outcomes, indicating the model’s

difficulty in distinguishing and reconstructing the authentic signal from the

manipulated one. Only the detection aspect appeared to be operational,

albeit with performance levels comparable to previous passive works. This

suggests that the model was neglecting the added signal.

The performance of this initial experiment is summarized in the table below:

Metric Value

Detection Accuracy 0.938734

Map Fake Similarity 0.602581

Table A.1: CNN Based Encoder Performance

A.4 Cosine Similarity

Cosine similarity serves as a metric for measuring the similarity between two

non-zero vectors within an inner product space.

58

A. Appendix A.5 Structural Similarity Index

Given two vectors, A and B, the cosine similarity (cosine of the angle θ

between them) is defined as:

CS(A,B) =
A ·B

∥A∥∥B∥
(A.6)

The numerator quantifies the shared directional components of the vectors,

while the denominator normalizes the result based on their magnitudes.

Cosine similarity is particularly beneficial when the emphasis lies on the

directional alignment of vectors rather than their absolute magnitudes. Ge-

ometrically, it assesses the cosine of the angle between vectors in a multidi-

mensional space, reflecting the similarity in their directional trends. A cosine

similarity of 1 indicates perfect alignment, where vectors point in the same

direction, while a value of 0 signifies orthogonality (perpendicularity), and

-1 implies perfect misalignment, where vectors point in exactly opposite di-

rections.

It’s essential to note that while cosine similarity excels in scenarios where the

magnitude of vectors is less critical, there may be instances where considering

both direction and magnitude is necessary.

A.5 Structural Similarity Index

The Structural Similarity Index (SSIM) is a metric used to quantitatively

assess the similarity between two images. It takes into account luminance,

contrast, and structure, providing a more comprehensive evaluation com-

pared to pixel-wise metrics like Mean Squared Error (MSE).

The SSIM is calculated using the following formula:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(A.7)

where:

59

A.6 Learned Perceptual Similarity A. Appendix

• x, y represent the compared images

• µx, µy are the mean luminance values of x and y, respectively

• σxy denotes the covariance between x and y

• σ2
x and σ2

y are the variances of x and y

• C1 and C2 are constants introduced to stabilize the division with a

weak denominator, typically taking small values (e.g., 0.01)

The SSIM ranges between -1 and 1, where 1 indicates perfect similarity be-

tween the images. A higher SSIM value implies a closer resemblance between

the compared images. This metric not only considers pixel values but also

their spatial arrangements and structural information, proving to be a more

accurate measure of image similarity, especially in cases where slight struc-

tural differences may be imperceptible to the human eye.

A.6 Learned Perceptual Similarity

Learned Perceptual Image Patch Similarity (LPIPS) [15] measures the per-

ceptual similarity between two images, focusing on local patches rather than

global structures. Valuable in computer vision and image processing, LPIPS

provides insights into how humans perceive image differences.

Unlike metrics relying solely on pixel-wise or global features, LPIPS consid-

ers the perceptual significance of image patches, evaluating similarity at a

granular level.

LPIPS computes similarity by comparing activations of two image patches

for a pre-defined network, matching human perception well. A low LPIPS

score indicates perceptual similarity.

60

A. Appendix A.6 Learned Perceptual Similarity

The metric assesses local image patches based on factors like color, texture,

and structure, using features extracted from deep neural networks trained on

large datasets. The LPIPS score ranges between 0 and 1, with 0 implying

perfect patch-level similarity. It’s advantageous where absolute pixel-wise

differences may not align with human perception; for example, two images

with different pixel values but similar visual content may receive a low LPIPS

score, indicating higher perceptual similarity.

61

Bibliography

[1] Andreas Rossler et al. FaceForensics++: Learning to Detect Manipu-

lated Facial Images. 2019. arXiv: 1901.08971 [cs.CV].

[2] Xi Wu et al. “SSTNet: Detecting Manipulated Faces Through Spatial,

Steganalysis and Temporal Features”. In: May 2020, pp. 2952–2956.

doi: 10.1109/ICASSP40776.2020.9053969.

[3] Hao Dang et al. On the Detection of Digital Face Manipulation. 2020.

arXiv: 1910.01717 [cs.CV].

[4] Lucy Chai et al. What makes fake images detectable? Understanding

properties that generalize. 2020. arXiv: 2008.10588 [cs.CV].

[5] Vishal Asnani et al. Proactive Image Manipulation Detection. 2022.

arXiv: 2203.15880 [cs.CV].

[6] Vishal Asnani et al. MaLP: Manipulation Localization Using a Proac-

tive Scheme. 2023. arXiv: 2303.16976 [cs.CV].

[7] Nataniel Ruiz, Sarah Adel Bargal, and Stan Sclaroff. Disrupting Deep-

fakes: Adversarial Attacks Against Conditional Image Translation Net-

works and Facial Manipulation Systems. 2020. arXiv: 2003 . 01279

[cs.CV].

[8] Run Wang et al. FakeTagger: Robust Safeguards against DeepFake Dis-

semination via Provenance Tracking. 2021. arXiv: 2009.09869 [cs.CR].

[9] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explain-

ing and Harnessing Adversarial Examples. 2015. arXiv: 1412 . 6572

[stat.ML].

[10] Sheng-Yu Wang et al. CNN-generated images are surprisingly easy to

spot... for now. 2020. arXiv: 1912.11035 [cs.CV].

63

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Hao Dang et al. On the Detection of Digital Face Manipulation. 2020.

arXiv: 1910.01717 [cs.CV].

[12] Ming Liu et al. STGAN: A Unified Selective Transfer Network for Ar-

bitrary Image Attribute Editing. 2019. arXiv: 1904.09709 [cs.CV].

[13] Piotr Skalski. Gentle Dive into Math Behind Convolutional Neural Net-

works. Accessed on: 11/11/23. 2019. url: https://towardsdatascience.

com/gentle- dive- into- math- behind- convolutional- neural-

networks-79a07dd44cf9.

[14] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.

03762 [cs.CL].

[15] Richard Zhang et al. The Unreasonable Effectiveness of Deep Features

as a Perceptual Metric. 2018. arXiv: 1801.03924 [cs.CV].

64

