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ABSTRACT

Recently, a diffusion model has been introduced to estimate Neurite Orientation Disper-
sion and Density Imaging (NODDI), a pivotal tool in neuroscience, offering insights into
the intricated microstructure of the brain, and in particular, a detailed view of the spatial
organization of microscopic neural components known as neurites. The NODDI model re-
veals the directional alignment of neurites, the degree of their dispersion or organization,
and the density of their distribution across distinct brain regions. The Bingham-NODDI
model extends the Watson-NODDI formalism to address its limitations in capturing com-
plex neurite structures such as the way they spread or bend, providing more advanced
and biologically relevant insights into neurological conditions such as Alzheimer’s disease
and Multiple Sclerosis. While the model demonstrates significant capabilities, it still is
undergoing testing across different MRI scanner systems to ascertain its robustness.

This study aims to evaluate the reliability and consistency of the model by validating it
using an MRI test object and in-vivo acquisitions, ensuring intra-site stability on each
scanner employing coefficient of variation analysis and inter-site comparability of the gen-
erated data. Phantom and in-vivo acquisitions were performed on 3T high-field scanner
systems (GE Signa Premier and Siemens MAGNETOM Prisma) and a 1.5T GE Artist.
The inter-site phantom study results show consistency across scanners for the tensor
model. Investigations into Mean Diffusivity values highlight a decrease with increasing
echo times, requiring future further investigation. Complementing the phantom study,
scans of healthy volunteers on GE Premier and Siemens Prisma affirm the Bingham-
NODDI model’s stability, with slight variations falling within acceptable margins of error
for key metrics. In-depth analyses of the Orientation Dispersion Index, Tissue Volume
Fraction, and Intra-neurite Volume Fraction underscore the model’s reliability.

The Bingham-NODDI model’s demonstrated reliability serves as a solid foundation for
detecting minor changes in brain microstructure over time, presenting a valuable tool for
clinicians in both neuroscience and clinical fields. This study contributes to advancing
multi-center studies by transcending individual equipment boundaries, paving the way for
collaborative research and clinical applications.
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INTRODUCTION

Magnetic Resonance Imaging (MRI) stands as a pivotal technology in the realm of medical
diagnostics, offering a non-invasive and highly detailed insight into the internal structures
of the human body. This technique exploits the principles of nuclear magnetic resonance
(NMR), harnessing the magnetic properties of certain atomic nuclei, notably hydrogen
protons, which abound in the human body due to the high water content of tissues [1, 2].
MRI is exceptionally versatile as it is able to produce detailed cross-sectional images of
soft tissues, organs, and musculoskeletal structures, rendering it a cornerstone in diagno-
sis and research. Unlike computed radiography (CT) scans, MRI does employ ionizing
radiation, making it a safer option for repeated imaging studies. This technique is also
able to provide rich contrast resolution, allowing to distinguish various tissue types based
on their distinct water content and molecular environment making it an invaluable tool
for elucidating abnormalities in the brain. Diffusion Weighted Imaging (DWI) is an MRI
technique that offers unique insights into the microstructural characteristics of tissues.
DWI capitalizes on the inherent mobility of water molecules in biological tissues, provid-
ing a sensitive means to probe the diffusion of water at the microscopic level. This imaging
technique has found widespread applications in both clinical and research settings due to
its ability to unveil subtle alterations in the tissue microstructure, being extremely useful
to depict diffusion properties of the water molecules in the brain.
The fundamental principle underlying DWI involves the application of strong magnetic
gradients during imaging, sensitizing the MRI signal to the random thermal motion of
water molecules causing a reduction of the total signal [3]. DWI is used to visualize and
analyze white matter tracts as water molecules tend to diffuse along axons in a prefer-
ential way hence representing a way of estimating the properties of white matter in the
brain.

Currently, the most used diffusion metrics used in DWI analysis are fractional anisotropy
(FA) and mean diffusivity (MD), also known as apparent diffusion coefficient (ADC).
These metrics offer quantitative information that reflects the degree of diffusion anisotropy
in the brain and the average magnitude of diffusion and are obtained from the diffusion
tensor model introduced by Basser et al. [4]. Given the restricted movement of water
molecules along the axonal fibers that constitute white matter, high FA values suggest a
more organized and coherent arrangement of neurites, providing information about the
structural integrity and orientation of white matter tracts. Changes in FA can be asso-
ciated with alterations in tissue microstructure, such as demyelination, axonal damage,
or changes in fiber density. Clinically, reduced FA is often observed in conditions like
neurodegenerative diseases, traumatic brain injury, or white matter disorders [3, 5, 6].
However, these markers are inherently non-specific. Notably, FA is also a relative mea-
sure, presenting in some cases potential pitfalls [7].

Zhang et al. [8] proposed a new model to address the limitations of the tensor model
and developed a clinically feasible technique for in vivo neurite orientation dispersion and
density imaging (NODDI). This technique combines a three-compartment tissue model
with a two-shell high-angular-resolution diffusion imaging (HARDI) protocol, which is
optimized for clinical feasibility, to map neurite orientation dispersion and density in vivo
[8]. NODDI divides the signal into three compartments: fast isotropic diffusion (e.g.,
cerebrospinal fluid (CSF)), anisotropic hindered diffusion (e.g., extracellular water), and
highly restricted anisotropic diffusion (e.g., intra-axonal compartments) [8]. From these
compartments, parameters such as the neurite density index (NDI) and the orientation
dispersion index (ODI) can be calculated. Regions with high ODI values are thought to
reflect highly dispersed neurites (a term referring to both dendrites and axons) and com-
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plex cytoarchitecture, for example in the gray matter, while lower ODI values are more
likely to correspond to more tightly organized structures, such as white matter tracts [8,
9]. Studies have shown complementary results regarding MD and NDI being impacted
by age-related differences in a healthy population at risk for Alzheimer’s disease, with
MD having a stronger association with age, while NDI being more predictive of Execu-
tive Function [10]. Therefore, DTI and NODDI metrics may provide complementary and
clinically relevant insight into white matter abnormalities hence demonstrating that there
is an added clinical value to further investigate the accuracy of the NODDI technique.
Notably, the NODDI model uses the Watson distribution as the orientation distribution
function of neurites, only allowing the dispersion around the dominant neurite orienta-
tion to be isotropic. This mathematical form is limited as it cannot accurately model
complex neurite configurations such as the bending and fanning of axons. In these fibre
configurations, the dispersion around the dominant orientation is higher in the plane of
fanning and bending, but lower in the plane perpendicular to it, causing anisotropic fibre
dispersion that cannot be captured by the Watson distribution.
In this framework, Tariq et al. [11] introduced the Bingham-NODDI model, an extension
of the NODDI model that uses the Bingham distribution instead of the Watson distribu-
tion. The new model estimated the extent of dispersion about the dominant orientation
separately along the primary and secondary dispersion orientations allowing to capture
anisotropic dispersion of the neurite configuration.
In summary, the Bingham-NODDI mode offers a more nuanced and detailed characteriza-
tion of tissue microstructure compared to traditional DTI measures. Its ability to handle
complex fiber configurations, provide biologically relevant metrics, and offer increased
sensitivity to subtle changes makes it a valuable tool for advancing our understanding of
tissue microarchitecture in both research and clinical settings.
However, the Bingham-NODDI model validation is still pending. In this framework, the
aim of this study is to evaluate the consistency and stability of the Bingham-NODDI
model metrics results across different MRI scanner systems. In particular, metrics of in-
terest are the Orientation Dispersion Index (ODI), the Tissue Volume Fraction, and the
Intra-Neurite Volume Fraction. These parameters serve as meaningful indicators of the
inherent microstructural characteristics of brain tissue, offering valuable insights into the
pathophysiological mechanisms associated with various neurological disorders. To assess
the repeatability of results across different MRI scanners, this study uses a DTI test ob-
ject, also known as ’phantom’.
Phantoms are valuable tools in MRI for several reasons:

• Standardization: Phantoms provide a standardized reference that ensures con-
sistent and comparable imaging across different MRI scanners. This is critical for
research and clinical applications, as it minimizes variations in image quality and
allows for meaningful comparisons.

• Quality Control: Phantoms serve as quality control tools, helping assess and
maintain the performance of MRI scanners. Regular phantom scans can detect
issues, such as signal drift, geometric distortion, or image artifacts, which might
affect data quality.

• Comparative Assessments: Phantoms provide a basis for comparative assess-
ments of MRI scanners. Researchers can use phantoms to evaluate and rank dif-
ferent scanners based on image quality, resolution, signal-to-noise ratio, and other
performance metrics.
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• Cross-Site Studies: In multicenter studies or studies involving multiple sites,
phantoms are invaluable for ensuring data consistency. They help harmonize imag-
ing between sites, making it easier to combine and analyze data from various loca-
tions.

• Calibration: Phantoms aid in the calibration of MRI scanners to ensure that
the measurements are accurate and reliable. This is especially important when
performing quantitative analyses or when comparing data across different scanners.

• Safety Testing: Phantoms can be used to assess the safety of MRI scanners,
particularly concerning issues like radiofrequency (RF) heating. Ensuring the safety
of MRI procedures is paramount in clinical practice.

Hence, phantoms are essential in MRI studies and scanner comparisons.
This study employed a DTI basic phantom that mimics restricted anisotropic diffusion in
the brain, in particular in white matter.
The phantom is scanned on three different 3T MRI scanners (GE Premier located at the
Oxford Centre for Magnetic Resonance - University of Oxford, GE Premier located at
the Churchill Hospital - Oxford Hospitals, and the Siemens Prisma with two different
acquisitions protocols, i.e. monopolar and bipolar gradient acquisitions) and a 1.5T MRI
scanner (GE Artist located at the Churchill Hospital) on multiple days. The phantom
data underwent fitting processes using both tensor and NODDI models, accounting for
variations in acquisitions across distinct MRI vendors. This involved the adaptation of
codes and appropriate correction for distortions in each case. Despite these adjustments,
a uniform pipeline of work was maintained to facilitate meaningful comparisons of the
results.

After evaluating the repeatability of the fits on the phantom, two healthy volunteers were
scanned twice on the GE Premier and Siemens Prisma to verify the consistency of results
across different MRI scanners. The volunteers are scanned using the same acquisition
protocol as the phantoms. Lastly, a final analysis was conducted on the basic phantom to
investigate the correlation between the echo time and the tensor model metrics, focusing
on the behavior of the MD values with increasing echo times.

This thesis is structured as follows:

• Chapter 1 provides a detailed overview of diffusion-weighted imaging, including an
in-depth explanation of the Diffusion Tensor Model, the DW sequences and the
process of acquiring diffusion-weighted images, and the gradient vector orientations
algorithm developed by Jones et al. The chapter also covers a detailed description
of the calculation of apparent diffusivities and the diffusion tensor model’s metrics.

• Chapter 2 offers an in-depth description of the models used for this study hence
describing briefly the NODDI model, its linear formulation in the AMICO-NODDI
model and the model that needs to be assessed, the Bingham-NODDI model.

• Chapter 3 offers a detailed description of the DTI phantom used in this study and
an overview of each scanner’s specifications as well as the acquisition parameters
used for the phantom and in-vivo acquisitions.

• Chapter 4 offers a detailed description of the how the models described in Chapter
2 were implemented in Python and proper adjustements to perform the analysis on
each scanner.
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• Chapter 5 describes how the acquired data are processed and the metrics of interest
are obtained. In particular, the last part of the chapter describes how the ROIs,
from which the metrics are extracted, are created.

• Chapter 6 shows phantom results providing a detailed discussion of the outcomes
as well as inter-site comparisons.

• Chapter 7 offers an investigation of the link between the echo time and b-values and
MD values, showing results and discussion of the outcomes.

• Finally Chapter 8 shows the in-vivo results obtained across different MRI scanners,
providing the quantitative maps for each model’s metric and a detailed discussion
of the outcomes as well as inter-site comparisons of the differences.
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Chapter 1

Diffusion Weighted Imaging

Diffusion-weighted imaging (DWI) is a powerful magnetic resonance imaging technique
that provides valuable insights into the movement of water molecules within tissues. It has
become an indispensable tool in medical imaging, particularly in the fields of neurology
and oncology. DWI offers a unique perspective on the microstructural characteristics
of biological tissues by exploiting the natural diffusion of water molecules. This non-
invasive imaging modality is widely used in clinical practice, aiding in the early detection
of diseases, guiding treatment decisions, and monitoring treatment responses. Therefore,
DWI plays an essential role in healthcare and in research in the field of medical imaging,
offering a deeper understanding of tissue microstructure and physiology.
Diffusion is a random transport phenomenon that characterizes the transfer of material
(e.g., water molecules) primarily due to random thermal fluctuations. In three dimensions,
the Einstein diffusion equation [12]:

D =
< ∆r2 >

2n∆t
(1.1)

states that the diffusion coefficient D (in mm2/s) is proportional to the mean squares
displacement < ∆r2 > divided by the number of dimensions n, and the diffusion time,
∆t. The diffusion coefficient of pure water at 20°C is roughly 2.0 × 10−3mm2/s and
increases at higher temperatures. In the absence of boundaries, the molecular water
displacement is described by a Gaussian probability density:

P (∆r,∆t) =
1√

(2π∆t)3
exp

(
−∆r2

4D∆t

)
(1.2)

The spread in this distribution increases with the diffusion time, ∆t, as illustrated in
Figure 1.1: The diffusion of water in biological tissues is strictly related to cellular struc-
tures. In addition to being influenced by thermal fluctuations, its behavior is also subject
to modulation through interactions with cellular membranes, subcellular components, and
organelles. In the case of the brain, the latter is made up of two main tissues: white mat-
ter and gray matter. Grey matter is made of neuronal cell bodies, indicating that cell
membranes constrain diffusion in this tissue type but remain isotropic. White matter
primarily consists of myelinated axons (see Figure 1.2) connecting with neurons in other
regions of the brain, leading to a constrained diffusion of water molecules. In particular,
water diffusion is relatively unimpeded in the direction parallel to the fibre orientation.
Conversely, water diffusion is highly restricted and hindered in directions perpendicular to
the fibers. Thus, the diffusion in fibrous tissues is anisotropic [3]. Early diffusion imaging
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Figure 1.1: Left: Illustration of the diffusion random walk for a single water molecule
from the green location to the red location. The displacement is indicated by the yellow
arrow. Right: Diffusion describes the probability of displacement with time for a group or
ensemble of water molecules. For short diffusion times, the predicted spread is compact
but increases with longer diffusion times. Image credit to ”Diffusion Tensor Imaging of
the Brain” [3]

experiments used measurements of parallel (D∥) and perpendicular (D⊥) diffusion com-
ponents to characterize the diffusion anisotropy [3]. As a result, white matter displays

Figure 1.2: A) Coronal cut through the brain showing in dark grey the different cell types
and layers of the grey matter and in light grey the white matter, which is composed of
neuronal fibre bundles (figure is modified, original figure from: www.brainmaps.org). B)
An exemplary neuronal fibre is shown. Image credit to [3]

anisotropy, showing a distinct tendency for diffusion to align with the orientations of
fibers, specifically aligning with axons. This feature is extremely valuable to infer struc-
tural information about the organization of neural fibers in the brain as well as allowing
for the mapping of white matter fiber tracts, assuming that the direction of the fastest
diffusion reflects the overall alignment of the fibre tracts [13].

1.1 DTI

Diffusion Tensor Model is an elegant model introduced by Basser et al. [14] according to
which diffusion is described by a Multivariate Normal Distribution, as shown in Eq. 1.3:

P (∆r⃗,∆t) =
1√

(4π∆t)3 |D|
exp

(
−∆r⃗ TD−1∆r⃗

4∆t

)
(1.3)
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Figure 1.3: Schematic representation of diffusion displacement distributions for the diffu-
sion tensor through ellipsoids. Image credit to [3].

where the diffusion tensor D is a 3 × 3 covariance matrix defined in Eq. 1.4

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.4)

describing the covariance of diffusion displacement on three dimensions normalized by the
diffusion time. The diagonal elements (Dii > 0) are the diffusion variances along the axes
x, y, and z, while the off-diagonal terms are the covariances and are symmetric about
the diagonal (Dij = Dji) [15]. Diagonalizing the diffusion tensor matrix produces the

eigenvalues (λ1, λ2, λ3) and their corresponding eigenvectors (V⃗1, V⃗2, V⃗3) which describe
the directions and apparent diffusivities along the axes of principal diffusion.
The diffusion tensor may be visualized as an ellipsoid, with the eigenvectors defining the
directions of the principal axes and the ellipsoidal radii defined by the eigenvalues (1.3).
Diffusion is considered isotropic when the eigenvalues are nearly equal (e.g. λ1 ≈ λ2 ≈ λ3)
whilst it is considered anisotropic when the eigenvalues are significantly different in mag-
nitude (e.g. λ1 > λ2 > λ3). The eigenvalue magnitudes are susceptible to changes in
local microstructures, hence the diffusion tensor model is a powerful tool for character-
izing both normal physiological changes (e.g., aging) and abnormal tissue microstructure
(e.g., tissue injury, disease). The diffusion is highly anisotropic on fibrous tissue as white
matter while it is isotropic in both gray matter and cerebrospinal fluid (CSF). The great-

est diffusion direction (V⃗1) is generally assumed to be parallel to the local direction of
homogeneous white matter. A diagram displaying the effects of tissue microstructure
on diffusion measurements is shown in Figure 1.4. In the case of isotropic diffusion, the

Figure 1.4: Diagram displaying tensors from different microstructure.

diffusion ellipsoid takes the form of a sphere because the Apparent Diffusion Coefficient
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is consistent in all directions. This aligns with our expectations for cerebrospinal fluid
(CSF), as it primarily consists of approximately 99% water and is predominantly found in
the ventricles, allowing molecules to diffuse freely. Larger sphere dimensions correspond
to greater eigenvalues, signifying a more significant magnitude of diffusion. Anisotropic
diffusion is represented by an elongated ellipsoid, which signifies an increased mean dif-
fusion distance along the longest axis of the ellipsoid. This is the characteristic behavior
observed in the diffusion tensor ellipsoid when describing a cohesive axonal bundle, such
as in white matter.

1.2 Diffusion-weighted Image acquisition

To generate FA and MD maps, the initial step involves the acquisition of diffusion-
weighted images. The most common diffusion-weighting imaging (DWI) approach is the
pulsed-gradient spin echo pulse sequence with a single-shot, echo-planar imaging (EPI)
readout. The acquisition protocol is shown in Figure 1.5. In the simplest configuration,

Figure 1.5: DW-SS-EPI pulse sequence where single-shot EPI acquisition is preceded by
a slice selective excitation of 90° flip angle and a diffusion-weighting module. Image credit
to [16].

this pulse sequence consists of a slice selection gradient during rf excitation, and then sub-
sequent phase and frequency encoding gradients to cover all of k-space in a single shot.
As shown in Figure 1.6, the first gradient pulse dephases the magnetization across the
sample (or voxel, in imaging); the second pulse rephases the magnetization. For nondif-
fusing molecules, the phases induced by both gradient pulses will completely cancel, the
magnetization will be maximally coherent, and there will be no signal attenuation from
diffusion. Conversely, for molecules diffusing in the direction of the applied gradient, the
bulk motion will cause the signal phase to change by different amounts for each phase;
thus, there will be a net phase difference, which is proportional to the displacement, the
area of the diffusion gradient pulses defined by the amplitude, G, the duration, δ, and the
spacing between the pulses, ∆. As a result, the introduction of diffusion gradients leads
to the accumulation of distinct phases for water molecules. MRI signals are directly re-
lated to the cumulative magnetization contributions of all water molecules within a voxel.
Consequently, the scattering of phases due to diffusion results in signal attenuation. For
simple isotropic Gaussian diffusion the signal attenuation for the diffusion gradient pulses
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1.2. DIFFUSION-WEIGHTED IMAGE ACQUISITION

Figure 1.6: Schematic illustration of the principle of diffusion-weighted sequence acqui-
sition, within high cell density tissue with restricted diffusion (top) and low cell density
tissue with less restricted areas (bottom). DWI is an adaptation of a routine T2W pulse
sequence with the application of two symmetric diffusion-sensitizing gradients (dephasing
vs. rephasing) before and after the 180° RF pulse. Within a restricted-diffusion area,
water protons do not move long distances. Hence, the rephasing cancels the phase shifts
produced by the dephasing gradient, and there is no net loss in T2 signal intensity leading
to a hyperintense signal on DWI. In contrast, water molecules move freely in areas with
unimpeded diffusion (low cellularity), and by the time rephasing occurs, the protons have
moved from their original location. This results in low signal intensity on DWI. DWI,
diffusion-weighted imaging; RF, radiofrequency. Image credit to [17]

in Figure 1.5 is described by Eq.(1.5):

S = S0 · e−bD (1.5)

where S represents the diffusion-weighted signal, S0 denotes the signal measurement ob-
tained without applying any diffusion gradient, D corresponds to the apparent diffusion
coefficient and b is the diffusion-weighting, referred to as the ”b-value”, described by the
properties of the pulse pair in Eq. (1.6) [18]:

b = (γGδ)2 ·
(
∆− δ

3

)
(1.6)

where γ is the gyromagnetic ration.
With the core DW pulse sequence defined as above, the following steps are automatically
performed to generate DW images and their associated maps:

• The DW pulse sequence is first run with the diffusion gradients turned off or set to
a very low value. This generates a set of b0 images and will serve as a baseline for
later calculated maps;
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CHAPTER 1. DIFFUSION WEIGHTED IMAGING

• The DW sequence is then run with the diffusion gradients turned on individually or
in combination and at various strengths. This produces DW source images sensitized
to diffusion in multiple different directions.

• Further advanced processing can be optionally performed, creating calculated image
sets for analysis (e.g., fractional anisotropy maps, principal diffusion direction maps,
mean diffusivity maps, etc.)

1.3 Calculation of Apparent Diffusivities and Diffu-

sion Tensor element maps

The first step in the calculation of the diffusivities maps, Di,app, for each encoding direc-
tion. Equation (1.5) has to be adjusted to describe the signal attenuation for anisotropic
diffusion with the diffusion tensor:

Si = S0e
−bĝiDi,app = S0e

−biDi,app (1.7)

where Si is the DW signal, the index i corresponds to a unique encoding direction, ĝi is
the unit vector describing the DW encoding direction, and bi is the amount of diffusion
weighting in (1.5). In the case of single diffusion weighting (b-value) and an image with
very little or no diffusion weighting (S0), the apparent diffusivity maps are estimated via
[3]

Di,app =
ln(Si)− ln(S0)

bi
(1.8)

Subsequently, the six independent elements of the diffusion tensor (Dxx, Dyy, Dzz, Dxy =
Dyx, Dxz = Dzx and Dyz = Dzy) may be estimated from the apparent diffusivities using
multiple linear squares methods [19, 20] or nonlinear modeling [21].

Diffusion imaging in Anisotropic systems, with diffusion-enconding gradients applied along
one axis results in rotationally variant image contrast. It is possible to obtain rotationally
invariant images by computing all elements of the diffusion tensor matrix in equation 1.4
and, displaying scalar rotationally invariant properties of the tensor, such as the trace,
denoted here as TR(D). It is possible to determine it by simply measuring the diffusivity
in three orthogonal directions and adding these three diffusivities:

Tr(D) = Dxx +Dyy +Dzz (1.9)

The minimum number of signal amplitude measurements required to estimate the trace
in this way in this way is four: one measurement without diffusion-weighting, and one
in each of three orthogonal directions. However, the number of measurements needs to
be increased when dealing with highly anisotropic tensors. In this case, it can be seen
that in the direction of least restriction, signal attenuation will be very high, while in
the direction of greatest restriction, there will be much less signal attenuation, as also
qualitatively explained above in the case of the different brain tissues. Given our lack of
prior knowledge regarding tissue anisotropy or the variation in principal axis orientation
across the image, optimizing measurements in individual directions becomes challenging.
However, any inherent directional bias arising from measurements in a fixed set of orthog-
onal directions can be minimized by distributing measurements across the 3-dimensional
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1.4. GRADIENT VECTOR ORIENTATIONS

gradient vector space [22]. Via this method, the total number of measurements (NTOT )
for trace estimation is:

NTOT = NL + 3Nsets (1.10)

where NL is the number of measurements made at the low (or zero) b-value and Nsets

is the number of three orthogonal gradient vectors. If more than one orthogonal set is
employed, the minimum value of NTOT is 7. This is also the number of measurements
required to estimate all elements of the diffusion tensor matrix [22]. However, if the trace
is the only measure of interest, it can be computed with much less computation, as it will
be explained in Section 1.5.

1.4 Gradient Vector Orientations

Without prior knowledge about the orientation of the tensor, to optimize the relative
orientations of sets of orthogonal gradient vectors, they should be uniformly distributed
in the 3-dimensional space. Jones et a. [22] developed an algorithm to find the optimal
arrangement of the N gradient vectors involving analogy with electrostatic repulsion.

The algorithm is explained as it follows: considers a model in which a line parallel to each
gradient vector passes through the center of a sphere and a unit electrical charge is placed
at both of the points where the line intersects the surface of the sphere. Each gradient
vector is represented by a pair of points in this way because a diffusion attenuation mea-
surement with the gradient in a positive direction could equally well have been performed
with the gradient in the opposite direction since the diffusion tensor is symmetric in the
absence of charged moieties.
The repulsive force between a pair of charges is, according to Coulomb’s law, inversely
proportional to the square of the distance between the charges. The algorithm used to
arrange the gradient vectors uniformly in the 3-dimensional space therefore adjusts the
orientations of the sets of orthogonal gradient vectors until the sum of the repulsive forces
between every possible pair of charges is minimized. This is accomplished using the down-
hill method of Nelder and Mead [23].
In Figure 1.7, the table suggests some suitable gradient vectors when using 1, 2, and 3
sets of orthogonal gradient vectors.

Figure 1.7: Gradient unit vectors recommended by Jones et al. [22] for Estimating the
Trace of the Diffusion Tensor using 1,2, and 3 sets of three orthogonal gradients.

1.5 Diffusion Tensor metrics

Visualizing and conveying tensor information in Diffusion Tensor imaging (DTI) is a sig-
nificant hurdle due to the data’s high dimensionality and intricate relationships within the
diffusion tensor domain. This complexity poses a notable challenge in creating intuitive
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CHAPTER 1. DIFFUSION WEIGHTED IMAGING

and easily comprehensible representations. Typical approaches consist of reducing the
dimensionality to one scalar (scalar indices) and to three dimensions (tractography). 2D
visualization of scalar maps is used due to its simplicity and instant visualization. The
two main diffusion indices, Mean Diffusivity (MD) and Fractional Anisotropy (FA) are
based on the eigenvalues, which represent the magnitude of the diffusion process.
MD, ADC, or trace can be calculated by the mean of the three eigenvalues as shown in
Equation (1.11).

MD =
Tr(D)

3
=

λ1 + λ2 + λ3

3
(1.11)

Mean diffusivity (MD) serves as an indicator of the collective magnitude of diffusion
within a voxel. It quantifies the average movement of water molecules in all orientations,
offering insights into the general diffusion properties, including the degree of restriction
or hindrance to diffusion. MD does not convey any details regarding anisotropy or the
preferred direction of diffusion. In order to describe the latter, FA is used. Fractional
Anisotropy (FA) is a relative measure of diffusion anisotropy within a given voxel or region
(see Eq. 1.12), which indicates the amount of diffusion in the principal direction compared
to the orthogonal two directions. The values of FA are therefore unitless and inherently
scaled between 0 (i.e., isotropic diffusion) and 1 (i.e., diffusion in only one direction).

FA =

√
3
∑3

i=1 (λi − ⟨λ⟩)2

2 (λ2
1 + λ2

2 + λ32)
(1.12)

It was initially introduced by Basser and Pierpaoli [24] and has gained wide recognition
in diffusion imaging studies. In practice, FA values consistently exhibit low values within
gray matter and high values in most white matter areas. Still, conversely, they tend to be
lower in specific white matter lesions [7]. It’s crucial to recognize that the interpretation
of FA values is intricate due to the presence of cerebral white matter voxels that contain
complex fiber geometries and multiple fiber bundles oriented differently (such as crossing
fibers, kissing fibers, etc) [7]. Besides that, a broad spectrum of other factors, including
image noise (both thermal and physiologic [25, 26]), artifacts (e.g, misregistration of DW
images from eddy currents or head motion) and partial volume averaging between tissues
in large voxels (e.g., signal mixing of gray matter, WM and CSF [27]).

Furthermore, FA may not be enough to characterize tissue changes. Additionally, it’s
important to note that FA does not provide a complete description of the entire tensor
shape or distribution. This is because different eigenvalue combinations can generate the
same values of FA [28]. The tensor shape can, however, be described completely using a
combination of spherical, linear, and planar shape measures [28, 29].

Despite these limitations, however, DTI is certainly a sensitive marker of neuropathology.
Hundreds of research studies have observed reduced FA in a broad spectrum of diseases,
with increases rarely reported. Furthermore, if the neuropathologic basis for a specific dis-
ease is understood, then results may be interpreted with greater specificity. For example,
demyelination might cause the radial diffusivity (Dr = λ2+λ3

2
) to increase, with minimal

influence on the axial diffusivity (Da = λ1). Increased water in edema will increase the
MD. Conversely, in complex diseases such as MS, brain regions may experience an unpre-
dictable combination of demyelination, axon loss, gliosis, and inflammation, which could
result in competing influences on the diffusion tensor [3].

Overall, FA and MD play a significant role in advancing our understanding of the brain’s
structure and function, providing complementary information on tissue microstructure.
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1.6. IMAGE DISTORTIONS

1.6 Image distortions

Implementing DTI studies also involves the understanding of specific MRI acquisition
artifacts, and how to deal with them. The artifacts in DWI datasets are mainly related
to the gradient system hardware, pulse sequence, acquisition strategy used, and subject
motion. In particular, even small amounts of the latter can lead to phase and amplitude
modulations in the acquired data and significant ghosting artifacts in the reconstructed
images. To reduce the influence of motion artifacts, the scan time can be reduced. This
makes the use of Single-shot Echo Planar Imaging (EPI) [30, 31] the typical strategy
employed to reduce this sensitivity because it is fast, efficient, and insensitive to small
motions besides being readily available on most clinical MRI scanners.

Although EPI is the most common acquisition method for DWI, the disadvantages can
be significant due to other artifacts related to EPI characteristics such as magnetic field
inhomogeneities and eddy currents. Magnetic field inhomogeneities, typically caused by
the susceptibility distribution of the subject’s head (known as a susceptibility-induced
off-resonance field) induce distortions in images if the anatomy of the brain, resulting in
nonlinear warping along the phase-encoding direction. These distortions are often more
pronounced in regions adjacent to interfaces between bone, air, and brain, such as the
skull base, prefrontal regions, and the inferior temporal lobe near the auditory canal.
The degree of this distortion is related to the local field variations, the echo spacing
or readout bandwidth of the sampling in the phase-encoding direction, the direction of
phase-encoding, and the field of view.

Susceptibility-induced distortions are proportional to the magnetic field strength. At 3T,
the distortions can be quite severe [3]. EPI uses much longer (rising and falling edges of
the gradients are separated in time) gradients; there might be perturbations of the local
magnetic field that result in current inductions in the diverse conducting surfaces of the
MRI scanner causing image distortions (contraction and/or overall shift and shear) that
are usually easy to detect visually. Eddy currents vary with the diffusion gradient applied
and, consequently, there will be misregistrations between successive images, which are
worse with stronger and longer gradient pulses [32]. To a certain degree, the eddy currents
may be reduced by exploiting strategies based on twice-refocused spin echo pulse, bipolar
gradients, field maps and may also be retrospectively corrected using image registration
methods [13, 33, 34].
Artifacts in DWI acquisitions lead to errors in tensor estimation and, consequently, in
diffusion maps (FA and MD). Therefore, it is essential to fine-tune diffusion imaging
sequences for greater data precision.

1.6.1 Protocol considerations

Protocols should be tailored to the specific research question, and distinct parameters
should be employed to optimize the analysis for that particular purpose. There is no con-
sensus on the optimal acquisition parameters because they vary according to MRI hard-
ware configuration, field strength, vendor, scanning time available, specific anatomic struc-
ture, and brain anatomic coverage needed. However, previous technical review [35])pro-
vides suggestions for parameters in a typical DTI acquisition.
Diffusion tensor estimation requires high b-values (e.g., 1000 s/mm2) along at least six
non-collinear diffusion encoding directions in addition to one minimally non-weighted b0
image (b = 0 s/mm2). Several sampling schemes have been suggested and it is argued
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CHAPTER 1. DIFFUSION WEIGHTED IMAGING

that the sampling vectors should be uniformly distributed in space so that the SNR is
also uniform with respect to the tensor orientation. Most DTI studies use high b-values in
the range of 700− 1000s/mm2, and the actual standard for clinical DWI is 1000 s/mm2

[35]. The spatial resolution is also important for DTI quality and when using isotropic
voxels (in-plane resolution and thickness with equal dimensions), typically, 2-2.5 mm are
recommended. Anisotropic voxels also introduce bias in the quantitative assessment of
fiber orientation and anisotropy and larger voxels are more likely to have more than one
fiber tract orientation [35]. Other characteristic parameters of DTI acquisitions are Field
of View (FOV) usually ranging from 240 to 256 mm and acquisition matrix 96 × 96 - 128
× 128. Echo Time (TE) and Repetition time (TR) may vary depending on the particular
analysis. High-quality DTI data with whole-brain coverage, 2.5-mm isotropic resolution,
and 64 diffusion encoding directions may be obtained in ≈ 15 minutes on clinical 1.5 T
scanners [36]. Similar DTI data quality may be achieved almost one-quarter of the time
at 3.0 T but the image distortions are roughly double [37].
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Chapter 2

NODDI models

In this chapter, the description of the main models used for this study is presented. In
particular, a brief introduction to the NODDI model is presented, followed by a detailed
theoretical description of the Bingham-NODDI model and of the AMICO-NODDI model,
which is the linear formulation of the NODDI model.

2.1 Bingham-NODDI model

Neurites are the extensions originating from the neuron’s cell body, serving as the struc-
tural foundation for various brain functions. Neurite morphology, quantified using histo-
logical analysis of postmortem tissue, is the most accurate and reliable means for under-
standing the development [38], aging [39], the function [40] and pathology [41] of the brain.
Accessing such information in vivo in humans has been of great interest as it can enable a
dynamic view of the brain function and development, in health and disease. In this frame,
diffusion magnetic resonance imaging (MRI) has become an essential tool, being able to
non-invasively probe the microstructure of neurite morphology. In fact, despite being the
standard diffusion MRI technique providing sensitivity to neurite morphology, DTI can
not quantify neurite-specific measures, such as their density and orientation dispersion.
Zhang et al. [8] enabled in vivo mapping of these measures with the development of the
neurite orientation dispersion and density imaging (NODDI) model. NODDI has been
tested in numerous clinical studies, showing the microstructure-specific indices provided
to be clinically relevant.
NODDI is underpinned by a two-level multi-compartment model, as shown in Figure 2.1,
where all compartments are assumed to be non-exchanging.
The total normalized signal, A, is modeled as the signal contribution from the tissue and
non-tissue compartments of the brain, weighted by their respective relaxation-weighted
volume fractions

A = (1− νiso)Atissue + νisoAiso (2.1)

The non-tissue compartment represents the free diffusing water in the brain (e.g., CSF)
and is modeled by free isotropic diffusion, with diffusivity diso. The volume fraction of
this compartment is denoted by νiso and that of the tissue compartment by (1− νiso).
The signal from the tissue compartment, Atissue, consists of the gray and white matter
(GM/WM). Atissue is the sum of the signal originating from inside the neurites (intra-
neurite) and that from the space outside them (extra-neurite), weighted by their respective
volume fractions

Atissue = νinAin + (1− νin)Aen (2.2)
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Figure 2.1: Breakdown of the total normalized diffusion MRI signal as modeled by
NODDI. The contributions of the tissue and non-tissue components of the brain are
modeled separately. The tissue signal is further broken down to account for the sig-
nal originating from the highly restricted neurites and the hindered space outside the
neurites. The non-tissue compartment is modeled by isotropic Gaussian diffusion. The
intra-neurite compartment models the neurites as orientationally dispersed sticks, while
the space around the neurites is described as an anisotropic diffusion model. Image credit
to ”Bingham–NODDI: Mapping anisotropic orientation dispersion of neurites using dif-
fusion MRI” [11].

where Ain and Aen are the normalised signals from the intra-neurite and extra-neurite
compartments, respectively. The intra-neurite volume fraction gives an estimate of the
neurites and it is indicated with νin while the extra-neurite volume fraction is (1−νin), by
construction. Specifically, neurites are modeled as sticks because in the typical time scale
of diffusion MRI experiments, the membrane of neurites restricts the water diffusion to be
along their length [42]. Therefore, the diffusion signal arising from a neurite in a specific
orientation n̂ is the reduction in signal strength caused by its unobstructed lengthwise
diffusion, aligned with the direction of the applied gradient, i.e. e−bdi(q̂·n̂)2 . Here, b is
the diffusion-weighting factor, q̂ the gradient direction, and di the intrinsic diffusivity
inside the neurites. To account for the orientational dispersion of neurites, we sum this
attenuation over all possible orientations, given a certain density of neurites along each
orientation, n̂. So

Ain

∫
S2

f(n̂)e−bdi(q̂·n̂)2 dn (2.3)

where f(n̂)dn̂ is the probability of neurites with orientations within dn̂. To account for
hindrance due to the presence of neurites, the extra-neurite signal Aen, is modeled as
signal attenuation due to anisotropic Gaussian diffusion [11], i.e.

Aen = eb
ˆqTDenq̂ (2.4)

where Den is the diffusion tensor representing the diffusion characteristics in the extra-
neurite space. The effect of orientationally dispersed neurites on Aen is modeled by taking
into account the following two observations:

• The dispersion of neurites has an effect on the diffusion in the extra-neurite space,
with the diffusion perpendicular to the dominant orientation of neurites being
greater if they have high dispersion
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• Neurites hinder diffusion in the surrounding space and this hindrance is greater if
the neurite density in that space is greater

The first observation implies that the extra- and intra- neurite spaces are coupled by the
orientation distribution of neurites f(n̂). Therefore

Den =

∫
S2

f(n̂)D(n̂) dn (2.5)

represents the diffusion tensor in the extra-neurite space in the presence of orientationally
dispersed neurites, where Dn̂ is a cylindrically symmetric tensor, with principal diffusion
orientation n̂, parallel diffusivity d∥ and perpendicular diffusivity, d⊥. Dn̂ represents the
standard configuration of parallel neurites along n̂, for which we assume that the intrinsic
diffusivity inside neurites is equal to that in the extra-neurite space, i.e. di = d∥. To
account for the second observation aforementioned, a tortuosity model [43] is used to
estimate d⊥, for a given neurite density, according to which d⊥ = d⊥(1− νin).
In its current form, NODDI cannot accurately model complex neurite configurations such
as those arising from fanning and bending axons (giving rise to anisotropic dispersion).
In fact, the orientation distribution of neurites is modeled using the Watson distribution,
which constrains the dispersion about the dominant orientation, µ̂1, to be isotropic (fig-
ure 2.2a). Tariq et al. proposed the Bingham-NODDI model, able to extend NODDI
formalism enabling the characterization of anisotropic orientation dispersion using Bing-
ham distribution to quantify the orientation distribution of neurites. The Bingham dis-

Figure 2.2: Schematic representations of Watson and Bingham distributions of sticks.
Watson models isotropic dispersion and is a particular case of Bingham when concentra-
tion parameters κ1 = κ2. In the Bingham distribution instead κ1 > κ2. Image credit to
”Advanced dMRI Signal Modeling for Tissue Microstructure Characterization”[11].

tribution is a parametric orientation distribution, which is the spherical analogue of a
two-dimensional Gaussian distribution. The probability density of orientation along n̂ for
the Bingham distribution is defined in terms of a 3× 3 symmetric matrix, B

f(n̂;B) =
1

cB
e(n̂

TBn̂) (2.6)

where cB, the normalisation constant, is determined by

cB =1 F
1
1

(
1

2
;
3

2
B

)
(2.7)
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where 1F
1
1 is the confluent hypergeometric function of the first kind.

A geometrically interpretable form of (2.6) can be obtained expressing B in terms of
eigendecomposition

B =
(
µ̂1 µ̂2 µ̂3

)
·

κ1 0 0
0 κ2 0
0 0 κ3

 ·

µ̂T
1

µ̂T
2

µ̂T
3

 (2.8)

In this equation, the diagonal terms reflect the concentrations of orientations about the
principal axes, µ̂1, µ̂2 and µ̂3, as shown in Figure 2.2, with κ1 > κ2 > κ3 [11]. The Bingham
distribution is invariant to the addition of an arbitrary constant to its eigenvalues [44]. By
choosing −κ3 as the arbitrary constant, Equation (2.6) can be rewritten as in Equation
(2.9), where κ = κ1 − κ3 and β = κ2 − κ3.

f(n̂;B) =
1

cB
exp

(
κ (µ̂1 · n̂)2 + β (µ̂2 · n̂)2

)
(2.9)

In the study by Tariq et al., a more straightforward explanation of the orientation distribu-
tion is achieved by reformulating Equation (2.6) to resemble a two-dimensional Gaussian
distribution. This results in the function expressed in Equation (2.10).

f(n̂;B) =
eκ

cB
exp

(
− (µ̂2 · n̂)2

1/ (κ− β)

)
exp

(
−(µ̂3 · n̂)2

1/κ

)
(2.10)

In the given equation, 1/ (κ− β) and 1/κ represent the dispersion about the dominant
orientation µ̂1, specifically along µ̂2 and µ̂3 respectively. These dispersion parameters can
be seen as analogous to the variance parameters in a Gaussian distribution, and they
are inversely proportional to the concentration parameters κ and β. Specifically, since
κ ≥ β, the dispersion along µ̂3 is either less than or equal to that along µ̂2, as visually
demonstrated in the density plot presented in Figure 2.2. Consequently, we refer to µ̂2 as
the primary dispersion orientation and µ̂3 as the secondary dispersion orientation [11].

Tarie et a., defined a way to quantify the dispersion characteristics of neurites through the
orientation dispersion index (ODI), specifically quantifying the dispersion extent along µ̂1

with the parameter

ODIP =
2

π
arctan

(
1

κ− β

)
(2.11)

and that along µ̂2

ODIS =
2

π
arctan

(
1

κ

)
(2.12)

As the value of β is increased for the same κ, resulting in an increase in anisotropic
dispersion, ODIP increases while ODIS remains constant. Thus, while their absolute
values indicate the level of dispersion, the relative values of ODIP and ODIS are an
indicator of dispersion anisotropy.
To estimate the overall orientation dispersion, Tariq et al. [11] observed that the overall
spread, or dispersion, of a multivariate normal distribution, can be quantified as the
determinant of its covariance matrix, thus defining the index in Equation (2.13),
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|ΣBing| =

√(
1

κ− β

)(
1

κ

)
(2.13)

which can be mapped to a finite range giving a measure of total dispersion:

ODI =
2

π
arctan (|ΣBing|) (2.14)

ODItot measures the overall dispersion of neurite orientations within a voxel. A lower
ODItot value indicates that neurite orientations are relatively aligned or coherent within
the voxel, suggesting a more organized and uniform structure. In contrast, a higher ODI-
tot value implies greater variability and dispersion in neurite orientations, indicating a
more complex and disorganized structure. In white matter regions, lower ODItot values
typically correspond to well-structured and densely packed axonal bundles, such as in the
corpus callosum, where axons are highly aligned. Conversely, in areas with complex fiber
geometries, like crossing or kissing fibers, you might observe higher ODItot values. In this
frame, ODItot can be clinically relevant for assessing white matter integrity in various
neurological conditions. Reduced ODItot values might indicate white matter damage or
axonal loss, while increased ODItot values could suggest abnormalities in fiber organiza-
tion, which may be related to neurodegenerative diseases or traumatic brain injuries.
In summary, ODItot values in the Bingham-NODDI model provide insights into the degree
of neurite orientation dispersion within a voxel. These values have implications for white
matter integrity, clinical diagnosis, and neuroscientific research, helping to characterize
brain microstructure and connectivity.

2.2 AMICO-NODDI model

NODDI has been proven to be a powerful tool to estimate microstructural indices agree-
ing very well with known anatomical patterns observed within histology [8]. However, the
non-linear routines usually employed to fit these models, as well as other diffusion modal-
ities, are computationally very intensive and may cause practical problems for their appli-
cation in clinical studies. Daducci et al., proposed the AMICO, standing for Accelerated
Microstructure Imaging via Convex Optimization model, to reformulate microstructure
imaging techniques as equivalent but in the convenient form of linear systems that can
be solved efficiently using very fast algorithms [45].
In classical spherical deconvolution methods, the dMRI signal E(q) in each voxel is mod-
eled as the convolution of a fiber orientation distribution (FOD) function with a response
function K(·, û) corresponding to the signal attenuation of a single fiber with orientation
û as shown in (2.15):

E(q) = E0

∫
S2

K(q, û)f(û) dû (2.15)

where E0 is the signal without diffusion weighting and the integration is performed over the
unit sphereS2. The FOD can be expressed as a linear combination of Nk basis functions,
also called atoms. When the response functions are known (or can be estimated) a priori,
the measurement process can be expressed as a system of linear equations, as follows:

y = Φx+ η (2.16)
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The variable, y, represents the measured signal. The second variable, Φ, is the linear
operator that explicitly models the convolution operation, also called dictionary, that
consists of pre-generated signals that can be combined in a linear manner to estimate the
measurement x. The third variable, η, accounts for any noise that may be present during
the acquisition process.

Daducci et al. proposed to decouple the reconstruction of the intra-voxel fiber geom-
etry, i.e. number and orientation of fiber populations, from the assessment of their mi-
crostructure properties, i.e., diameter and density as this allows for breaking down the
complexity of the original methods. In order to do so, the orientation of the major fiber
is estimated by exploiting DTI, as they are well known for providing very accurate and
robust reconstructions. Once the main orientation is known, it is possible to extend the
linear operator Φ in (2.16) to account for the distinct water pools that arise from axons
orientated in the main directions.
Specifically, in the NODDI model (as aforementioned), the anisotropy of the extra-cellular
compartment is dictated by the density and orientation dispersion of the intra-cellular
compartment; as a result Aen depends on both νin and κ, which are parameters to be es-
timated. This dependence makes it more complicated to formulate as a linear system. To
linearize NODDI model, Daducci et al. [45] partitioned the dictionary into the following
two blocks:

ΦN =
[
Φt

N |Φi
N

]
(2.17)

In Equation (2.17) Φi
N models the isotropic contribution to the signal, while Φt

N accounts
explicitly for the coupled intra- and extra-cellular compartments in the tissue. These
sub-directories are constructed as follows:

• Each column in Φt
N represents the signal attenuation that results from a micro-

environment with a unique density and orientation dispersion of the axons. In
the context of the AMICO-NODDI model, the dictionary terms ΦN are referred
to as ”atoms”. As in Zhang et al. [8], the Watson distribution [44] is used to
model the dispersion of white matter, and the longitudinal diffusivity is set to d∥ =
1.7 · 10−3mm2/s.

• Isotropic contributions are modeled setting intrinsic diffusivity to the standard in
vivo value of diso = 3.0 · 10−3mm2/s.

Once we establish the linear dictionary, NODDI can be expressed as a convex optimization
challenge:

argmin
x≥0

1

2

∥∥∥Φ̃Nx− y
∥∥∥2
2
+ λ

(
1

2
∥x∥22

)
+ γ (∥x∥1) (2.18)

Equation (2.18) shows that the classical Tikhonov regularization is used in conjunction
with the L1 norm to enhance problem stability.

Daducci et al. [45] developed an optimization strategy that follows three steps. First,
the volume fraction of the isotropic compartment νiso is estimated by solving Equation
(2.18) without regularization (i.e., λ = γ = 0). After that, the isotropic contribution to
the dMRI signal is removed by subtracting Φ̃i

Nνiso from y and solving Equation (2.18)
with regularization terms. This step identifies the smallest subset of atoms needed to
represent the signal, but the fitted coefficients x are not directly usable as they tend to
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be biased due to the underestimation by the L1 norm. The final step involves debiasing
the previously found solutions by solving Equation (2.18) again, without regularization,
over the set of solutions previously identified.

Once this procedure has been carried out, the NODDI model parameters can be extracted
using the following:

νic =

∑Nt

j=1 fjx
t
j∑Nt

j=1 x
t
j

(2.19)

κic =

∑Nt

j=1 κjx
t
j∑Nt

j=1 x
t
j

(2.20)

νiso =
Nt∑
j=1

xt
j (2.21)

The notation fj and kj is used to refer to the intra-cellular volume fraction and concen-
tration parameter of the j-th atom in Φt

N , for j ∈ {1, . . . , Nt}.
An example showing AMICO model metrics results and comparisons is shown in figure
2.3, as provided by Daducci et al., [45].
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Figure 2.3: NODDI evaluation on the in-vivo human dataset. The microstructure pa-
rameters OD, νin and νiso estimated with NODDIorig and NODDIamico, both with and
without regularization, are reported in two representative slices of the brain. The last
column shows the difference between the corresponding NODDIorig and NODDIamico

maps. FA and ADC maps extracted from standard DTI analysis are reported as refer-
ences.
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Chapter 3

DTI Phantom, subjects, MRI
scanner systems and sequences

In this chapter, we delve into a comprehensive examination of the materials used in
this study. Initially, we provide a detailed overview of the DTI phantom used in our
research. Furthermore, we discuss the acquisition of brain diffusion-weighted MRI (dMRI)
images for this study. Additionally, we present a comparative analysis of the technical
specifications of various MRI scanners utilized in our research, with a focus on highlighting
the key distinctions among them.

3.1 Phantom

Phantoms are essential in MRI studies and scanner comparisons to ensure data reliabil-
ity and provide a foundation for making informed decisions about MRI scanner selection
and optimization. For this study, in order to assess the consistency and reproducibility
of diffusion results over time, a DTI Phantom called ”basic phantom” has been used.
This object has been scanned multiple times in different MRI Scanner systems (GE Signa
Premier, GE Signa Artist, Siemens PRISMA). Specifically, the basic phantom has un-
dergone two rescans (one after another) on each scanner on multiple days to investigate
repeatability and/or noticeable differences of DTI model, Bingham-NODDI model and
AMICO-NODDI model metrics results.

The ”basic phantom” was manufactured by the German Cancer Research Center, Heidel-
berg (DKFZ) [46].
It is composed of a fibre ring with uniform anisotropy at each position, which is embedded
in a homogeneous medium. Specifically, the phantom is made by winding polyamide
fibres around an acrylic plastic spindle. The fibres are made of a synthetic, extremely fine
polyester fiberfill of diameter 15 µm. The polyfill is made of filament yarn, specifically
known as Filamentgarn TYPE 611. This type of yarn consists of continuous, long strands
of polyester fibres, with a linear mass density of 50 decitex (dtex), indicating that 10000
meters of this yarn weigh 50 grams. Trevira GmbH, a company based in Bobingen,
Germany, produces this polyfill. The fluid portion of the phantom is a mixture of distilled
water and an aqueous sodium chloride solution (83 g NaCl per kilogram of water). This
fluid constitution enables an orientation-independent and reliable use of DTI phantoms
for evaluation purposes [46].
In Figure 3.2, it can be observed that the outer fibre strand has a diameter of 60mm and a
thickness of 10mm. Water is present between the fibres to simulate restricted anisotropic
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(a) (b)

Figure 3.1: (a) Picture of the basic phantom that shows the part in which the fibre
bundle is contained and the liquid in which it is immersed. (b) Top vision of the DTI
basic phantom with a single fibre ring mimicking restricted anisotropic diffusion.

Figure 3.2: Detailed view of the plastic spindle, with the region of anisotropic diffusion
highlighted in blue inside the basic phantom. On the right DTI metrics maps that can
be obtained through phantom scans.

diffusion in the brain’s white matter. The polyamide fibres winded around the plastic
spindle are contained inside a cylindrical phantom container, shown in Figure 3.1a, of
diameter 150mm and height 150mm. According to the manufacturer’s information, [46],
the phantom was crafted using an automatic winding machine. This machine ensured
a constant rotation speed and controlled horizontal movement that resulted in an even
distribution of the thread over the spindle’s width. Additionally, a counter kept track of
the total amount of thread used. The achieved fractional anisotropy is 0.78± 0.02 [46].
The phantoms are scanned at the Oxford Centre for Clinical Magnetic Resonance Research
(OCMR) and at the Churchill Hospital - University of Oxford - using the locally available
21-channel head and neck coil (General Electric Healthcare, Waukesha, WI, USA). The
phantoms are positioned within the head coil with the cylinder’s axis aligned parallel to
the B0 field of the clinical scanner. Furthermore, the segment of the phantom housing
the fibers must be centered at the scanner’s isocenter.
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3.2 MRI Scanner Systems

Phantom and brain scans were acquired with three different MRI scanner systems: two
GE Signa systems, specifically GE Premier and GE Artist (General Electric Healthcare,
Waukesha, WI, USA), and a Siemens PRISMA (Siemens Healthineers, Erlangen, Ger-
many). For each MRI scanner, we obtained two sets of DWI image data. First, we
acquired a dataset using a single-shell protocol, which exploits a single diffusion weight-
ing value. Subsequently, we utilized a multi-shell protocol, involving multiple diffusion
weighting values (to provide a comprehensive view of the diffusion process), to acquire
another dataset.

3.2.1 GE Premier

Figure 3.3: Example of GE Premier 3 T scanner.

GE SIGNATM Premier (figure 3.3) is an ultra high-performance, 70 cm 3.0 T system.
This system features a compact, lightweight, superconducting magnet designed to provide
excellent homogeneity ensuring uniform signal and fat-suppression over a 50 cm FOV. GE
Premier has a 3.0 T operating magnetic field strength with active magnet shielding and
a cryogenic system for magnet cooling. It exploits a SuperG gradient coil which uses
a hollow conductor, a water-cooled design for all axes, and a force-balanced layout to
maximize overall gradient performance and minimize vibroacoustic effects on the patient.
The SuperG Gradient Amplifier outputs 2.4MW of power to maximize outcomes in highly
demanding cases. GE Premier gradient has Peak Amplitude = 80mT/m and Peak slew-
rate = 200T/m/s. At 3.0 T, precise control over the RF environment in a 70 cm patient
bore has been challenging until now. The GE Premier RF transmit architecture consists
of two liquid-cooled 15kW solid-state RF power amplifiers. By optimizing the phase and
amplitude of each RF amplifier output channel that is applied to GE’s 70 cm whole-body
RF transmit coil, the RF uniformity and signal homogeneity are improved regardless of
the patient’s shape, size, and/or body habitus. In the Echo Planar Imaging sequence, a
maximum of 320 diffusion gradient directions are available.
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3.2.2 Siemens PRISMA

Siemens MAGNETOMTM Prisma is a 3 T MRI scanner system. As the GE Premier, it
has a magnet characterized by Peak amplitude = 80mT/m and slew rate = 200T/m/s,
simultaneously, on all axes. It is designed to work on a FOV of 50×50×50cm and to deliver
quality and speed efficiently in MRI exploiting the combination of ”Tim 4G” integrated
coil technology and ”Dot”. The first is a RF system with 48 or 64 independent channels
for faster imaging and it guarantees extended coverage, meaning no need to reposition for
multiple exams, and more exams per day; the second is a system studied to adjust each
exam to the patient’s situation or clinical question at hand in order to reduce inter-subject
variability and to provide accurate intra-subject rescans for increased statistical power.

Figure 3.4: Example of Siemens PRISMA 3 T scanner.

3.2.3 GE Artist

The SIGNATM Artist 1.5 T MRI scanner, as depicted in Figure 3.5, boasts a compre-
hensive array of features. It provides complete 360-degree coil coverage, advanced RF
technology, and a direct digital interface equipped with an expanded number of channels.
This system is highlighted by its magnet with a peak amplitude of 44mT/m and a slew
rate of 200T/m/s. It includes an innovative AIRTM coil, which significantly reduces pa-
tient on-table time by 37% and streamlines patient setup by 59%. Additionally, the GE
Signa Artist MRI system incorporates independent analog-to-digital converters for digi-
tizing inputs from each of its 128 receive channels. This feature eliminates unnecessary
noise amplification and enhances signal-to-noise ratio (SNR) by up to 25%. Moreover,
the GE Artist magnet is engineered to reduce helium consumption by as much as 70%
over its lifecycle, all while maintaining consistent and dependable performance.

3.3 Acquisition Protocol

In the following section, acquisition protocols are presented for each scanner. For this
research, a DTI basic phantom and two healthy volunteers were scanned using two dif-
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Figure 3.5: Example of GE Signa Artist 1.5 T MRI scanner.

fusion acquisition protocols: single-shell and multi-shell protocols. In diffusion weighting
imaging (DWI) in MRI, single-shell acquisition involves acquiring data with diffusion gra-
dients applied along a single direction or in a single shell of directions.
Single-shell acquisitions are simpler to implement and quicker to acquire compared to
multi-shell acquisitions. They’re often used in clinical settings where rapid imaging is
crucial, such as in routine brain scans. Single-shell acquisitions can provide valuable in-
formation about diffusion. Multi-shell acquisitions involve acquiring data with diffusion
gradients applied along multiple shells of directions. This allows for a more comprehen-
sive assessment of tissue microstructure because different shells are sensitive to different
ranges of diffusion characteristics.

The basic phantom also underwent multiple acquisitions using different echo times and b-
values, to capture the correlation between TE and b-values with the tensor model metrics
values, i.e. MD and FA.

3.3.1 Phantom and In-vivo studies

GE PREMIER - OCMR

The DTI protocol for the phantom study on the GE Premier consists of a single-shot, spin
echo-based, and diffusion-weighted echo planar imaging sequence. The sequence includes
a single refocusing pulse (180◦ pulse) with a repetition time (TR) equal to 6000 ms to
allow for the acquisition of multiple slices during a single TR. For the single shell acquisi-
tion, the echo time (TE) has been set equal to 64.7 ms. Specifically, data acquisition was
performed along 32 directions with a b-value = 1000 mm/s2. In addition, one b = 0 image
has been acquired, for critical assessment of signal intensity in the absence of diffusion
weighting and the correction artifacts due to the B0 inhomogeneities, eddy currents, and
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subject motion. Regarding the multi-shell acquisition, the echo time was set equal to 76.9
ms. Data acquisition was performed on 90 distinct diffusion directions with two corre-
sponding b-values: 30 directions with a b-value = 1000 mm/s2 and 60 directions with a
b-value = 2600 mm/s2. In addition, 9 b = 0 images are randomly dispersed in between
the diffusion-weighted images, for the same reasons as aforementioned. All images have a
2.5 mm3 voxel resolution and the sequence used has been developed to reconstruct images
to a voxel matrix of 96 × 96. Finally, the sequence is adapted to output the reversed
polarity phase encode acquisition, a b = 0 volume acquired with the opposite phase en-
coding gradient direction compared to the diffusion-weighted volumes. This acquisition
is exploited in the susceptibility-induced off-resonance field distortion correction step.
Imaging protocol for healthy volunteers includes a T1-weighted and diffusion-weighted
scan. The subject left the scanner table at the end of each scanning session and then
repositioned to be scanned for the second time, with the same acquisition protocol as
the first scanning session. T1 weighted 3D volumes of the brain were acquired with a
Magnetization Prepared RApid Gradient Echo sequence (MP-RAGE) with the following
parameters for acquisitions of both healthy volunteers: TE/TR= 2.912/2584.12 ms, In-
version Time (IT) = 1058 ms, 0.79 number of averages, one Echo Train Length, pixel
bandwidth equal to 244.141, and 1 mm3 isotropic voxel resolution.
The diffusion-weighted sequence includes a single refocusing pulse with a repetition time
(TR) of 6000 ms and an echo time (TE) of 71 ms. Diffusion data is acquired along 90
different directions with distinct b-values: 30 directions with a b-value = 1000 mm/s2

and 60 directions with a b-value = 2600 mm/s2. In addition, 9 b = 0 images are ran-
domly dispersed in between the diffusion-weighted images. Just as for the phantoms,
the voxel matrix size is 96 × 96 and each image has an isotropic voxel resolution of 2.5
mm3. Furthermore, to enhance image quality, spectral fat saturation with non-spectral
selective excitation was included in the sequence. This technique selectively suppresses
fat signals, thus avoiding N/2 chemical shift ghosting artifacts which can cause the fat
signal to appear displaced from its actual location, creating a duplication of structures
and reducing image quality. Finally, for the brain acquisitions, the sequence was adapted
to output the integrated reverse polarity phase encode acquisition.

SIEMENS PRISMA

Each set of scans on the Siemens Prisma MRI system included a Monopolar single-shell
and a multi-shell acquisition, as well as a bipolar single-shell and multi-shell acquisition.
As mentioned in Section 1.6, one approach to minimizing distortion from eddy currents
is to modify the gradient pulse sequence by inserting additional gradients of opposite
polarity is that individual eddy current effects are counterbalanced [47]. Specifically, the
introduction of a second refocusing pulse to the conventional monopolar Stejskal and
Tanner sequence permits the splitting of the original pair of diffusion gradients into two
pairs of shorter pulses with opposite polarity, referred to as bipolar, as shown in Figure
3.6.
On the GE Premier MRI system, the bipolar sequence hasn’t been employed as it would
require large edits to the sequence to output the distortion uncorrected and the reversed
polarity images. Additionally, it results in less efficient diffusion weighting.
For the single shell acquisition, the echo time (TE) has been set equal to 58 ms. Specifi-
cally, data acquisition was performed along 30 directions with a b-value = 1000 mm/s2.
In addition, one b = 0 image has been acquired, for critical assessment of signal intensity
in the absence of diffusion weighting and the correction artifacts due to the B0 inho-
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Figure 3.6: Schematic pulse sequence for the a single-refocused (monopolar) and b twice-
refocused (bipolar) spin-echo diffusion-weighted experiments. Boxes represent motion-
probing gradient pulses of equal magnitude but different durations δ; The curves su-
perimposed on the boxes signify build-up/down of the gradient magnetic field, which is
responsible for the generation of eddy currents. The echo time (TE) in the bipolar se-
quence has to include the preparation time before the application of the gradient pulses
(tpr) and the readout time before the formation of the echo (tread). Image credit to [47].

mogeneities, eddy currents, and subject motion. Regarding the multi-shell acquisition,
TE/TR = 69/6000 ms (monopolar) and TE/TR = 81/6400 ms have been set. Data acqui-
sition was performed on 90 distinct diffusion directions with two corresponding b-values:
30 directions with a b-value = 1000 mm/s2 and 60 directions with a b-value = 2600 mm/s2.
In addition, 9 b = 0 images are randomly dispersed in between the diffusion-weighted im-
ages, for the same reasons as aforementioned. All images have a 2.5 mm3 voxel resolution
and the sequence used has been developed to reconstruct images to a voxel matrix of
96 × 96, this allows to avoid image data interpolation. Finally, the sequence is adapted
to output the reversed polarity phase encode acquisition, b = 0 volumes were acquired
with the opposite phase encoding gradient direction compared to the diffusion-weighted
volumes and the first volume has been selected with a script for the processing of the
data as it will be better explained in the next chapter regarding data analysis. This ac-
quisition is exploited in the susceptibility-induced off-resonance field distortion correction
step. Regarding in-vivo acquisitions, the MP-RAGE parameters set during the acquisi-
tions performed on both healthy volunteers were: TE/TR/IT = 4.73/2200/1110 ms, one
average, pixel bandwidth equal to 130, and 1 mm3 isotropic voxel resolution.
The diffusion acquisition protocol for in-vivo brain analysis is congruent with the one used
on the GE Premier as described in Subsection 3.3.1 as data were acquired along 90 dif-
ferent directions. For the in-vivo acquisition, the single-refocused (monopolar) spin-echo
sequence was used.

GE ARTIST

Acquisition were performed on a GE Artist scanner, located at the Churchill Hospital -
University of Oxford - to better compare results from two 3.0 T MRI scanner systems with
a 1.5 high-field MRI scanner system. The DTI protocol for the phantom study on the
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GE Artist consists of a single-shot, spin echo-based, and diffusion-weighted echo planar
imaging sequence. The sequence includes a single refocusing pulse (180◦ pulse) with a
repetition time (TR) equal to 6000 ms to allow for the acquisition of multiple slices during
a single TR. For the single shell acquisition, the echo time (TE) has been set equal to
83.5 ms. Specifically, data acquisition was performed along 32 directions with a b-value
= 1000 mm/s2. In addition, one b = 0 image has been acquired, for critical assessment
of signal intensity in the absence of diffusion weighting and the correction artifacts due
to the B0 inhomogeneities, eddy currents, and subject motion. Regarding the multi-shell
acquisition, the echo time was set equal to 105 ms. Data acquisition was performed on 90
distinct diffusion directions: 30 directions with a b-value = 1000 mm/s2 and 60 directions
with a b-value = 2600 mm/s2. In addition, 9 b = 0 images are randomly dispersed in
between the diffusion-weighted images, for the same reasons as aforementioned. All images
have a 2.5 mm3 voxel resolution and the sequence used has been developed to reconstruct
images to a voxel matrix of 96 × 96, this allows to avoid image data interpolation. Finally,
the sequence is adapted to output the reversed polarity phase encode acquisition, a b =
0 volume acquired with the opposite phase encoding gradient direction compared to the
diffusion-weighted 32 volumes. This acquisition is exploited in the susceptibility-induced
off-resonance field distortion correction step. Our in-vivo analysis exclusively utilized data
acquired from the GE Premier and Siemens Prisma MRI systems, without acquiring data
from the GE Artist system.

3.3.2 Multiple TE and b-values Phantom Study

Part of this study involved multiple echo time (TE) phantom acquisitions. In particular,
the DTI basic phantom underwent eight consecutive scans with different echo times,
spaced by 10 ms each, starting from a TE = 56.3 ms to a TE = 126 ms. For this study,
other imaging parameters set are: isotropic voxel resolution of 2.5mm3 and echo train
length equal to one. For each acquisition, one average was acquired and a single-shell
acquisition protocol was used, with a diffusion weighting equal to 1000 s/mm2.

The investigation proceeds with a set of acquisitions using a multi-slice (32 volumes)
single-shell and a multi-shell (298 volumes) protocol exploiting multiple b-values. In
particular, the b-values used for this study are: 100 s/mm2, 200 s/mm2, 400 s/mm2,
600 s/mm2, 800 s/mm2, 1000 s/mm2, 1500 s/mm2, 2000 s/mm2 and 2600 s/mm2. For
each b-value, 32 volumes were acquired. The acquired was then fitted to the tensor and
Bingham-NODDI model.

3.4 FSL

All data used in this study have been processed exploiting the features of FSL [48].
FSL is a comprehensive library of analysis tools for FMRI, MRI, and diffusion brain
imaging data developed in Oxford, UK. Because of its reliability, adaptability, and broad
range of capabilities, FSL is widely employed in the neuroscience and medical imaging
fields. Regarding image distortions, FSL includes the TOPUP and EDDY tools. The
TOPUP method is used to correct the susceptibility-induced off-resonance field. As
described in 1.6, is one of the most common artifacts affecting diffusion-weighted spin-echo
EPI images. To a first approximation, the susceptibility-induced field will be constant
for all acquired images, implying that the set of images will be internally consistent.
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It is a problem because it will result in a geometric mismatch between the structural
images (which are typically unaffected by distortions) and the diffusion image. TOPUP
estimates the susceptibility-induced off-resonance field using two images acquired with
different polarities of the phase-encoding gradient. In this way, the same field produces
distortions in opposite directions in the two acquisitions, as shown in figure 3.7.

(a) Phase Encoding gradient AP (b) Phase Encoding gradient PA

Figure 3.7: Example of DWI images exhibiting notable distortions due to B0 inhomo-
geneities. The image on the left displays compression of the frontal area, attributed to
the application of a phase encoding gradient directed from the Anterior to the Posterior
part of the brain. Conversely, the image on the right demonstrates elongation of the
frontal area due to the application of a phase encoding gradient directed from the Poste-
rior to the Anterior part of the brain.

TOPUP finds the field that, when applied to the two volumes, maximizes the similarity
of the unwarped images. The similarity is gauged by the sum-of-squared differences
between the unwarped images. This measure allows to use of Gauss-Newton for jointly
finding the field and any movement that may have occurred between the two acquisitions
[49]. To correct for eddy currents, the EDDY tool implemented in FSL can be used.

EDDY estimates the eddy current-induced distortions and movements on the image,
starting from the TOPUP fieldmap [50]. It also, optionally, performs outlier detection
to identify slices where signal has been lost as a consequence of subject movement during
the diffusion encoding. These slices are replaced by non-parametric predictions by the
Gaussian Process that is at the heart of EDDY.
Figure 3.8 shows a comparison between the original diffusion-weighted image (i.e., GE
Premier (OCMR) brain acquisition) and the final EDDY-corrected image. On the brain
study, an automated quality control assessment (QC) has been performed exploiting the
EDDY QC tool, implemented in FSL. This process is of great importance to detect data
acquisition and pre-processing issues. The automated EDDY QC framework allows to
assess dMRI data both at the single subject and group levels after the TOPUP and
EDDY correction stages have been performed. Using this framework it is possible to
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(a) (b) (c)

Figure 3.8: (a) Image of the original diffusion-weighted image of the brain (GE Premier),
in which it appears to be warped, notably along the phase encoding gradient direction.
(b) The TOPUP fieldmap. (c) The corrected DW-image.

distinguish between good and bad quality datasets and, importantly, identify subsets of
the data that may need careful visual inspection [51]. This tool produces a single-subject
quality control report.
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Models implementation

This chapter describes the practical implementation of the software tools used to process
and analyze MRI data acquired in this study.

First, the implementation of the tensor model to the DW-MRI data is explained. In
particular, to fit the tensor model, the function dtifit of the FMRIB Software Library
(FSL) [48] has been used, a well-known software suite in the neuroimaging community.
The implementation of this function has been done by integrating FSL into Python ex-
ploiting the flexibility features of the fslpy library.

Therefore, the implementation of the Bingham-NODDI model [11] is described. This has
been done by using the Dmipy library, an open-source Python program built to model and
analyze diffusion magnetic resonance data through multi-compartment modeling method-
ologies.

The final section describes the implementation of the AMICO-NODDi model [45] using
resources from the AMICO repository, publicly available on Github (https://github.
com/daducci/AMICO).

The codes used for this study have been developed previously in collaboration with the
University of Oxford (focused on analysis of data acquired on a single MRI scanner)
and properly adapted for this study, aiming at expanding our investigation to encompass
reliability of the Bingham-NODDI model on multiple MRI scanners.

4.1 Tensor model

The tensor model was applied through the utilization of the FMRIB Software Library
(FSL), a versatile and extensively adopted software suite tailored for the analysis of both
functional and structural neuroimaging data, with a particular emphasis on MRI tech-
niques [52, 53, 48]. As aforementioned in 3.4, FSL is largely used in the neuroscience
and medical imaging fields as it provides a variety of tools and utilities for processing
neuroimaging data, among which DW-MRI data.
To fit diffusion tensor on eddy-corrected diffusion-weighted MRI data, the dtifit com-
mand is used. This command estimates the diffusion tensor parameters, as described
in 1.1, that are the three eigenvalues λ1, λ2 and λ3 of the diffusion tensor matrix, cor-
responding to the magnitude of water diffusion in the tissue microstructure’s principal
directions and the three principal directions µ⃗1, µ⃗2 and µ⃗3. Once this has been done,
Mean Diffusivity (MD) and Fractional Anisotropy (FA) are computed, according to equa-
tions (1.11) and (1.12), with the ultimate goal of obtaining information about the tissue
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integrity through diffusion properties.

dtifit would be typically run on data that has been pre-processed and eddy current
corrected. As input, the command needs:

• Diffusion weighted data (data): Diffusion data is usually stored in 4D NIFTI (.nii)
file, where each volume is acquired with a different b-value and/or gradient orienta-
tion. This will include diffusion-weighted volumes and volume(s) with no diffusion
weighting.

• A brain/phantom mask: A single binarised volume in diffusion space containing
ones inside the brain and zeroes outside the brain.

• output basename: User specifies a basename that will be used to name outputs of
the dtifit.

• Gradient directions (bvecs): An ASCII text file containing a list of gradient direc-
tions applied during diffusion-weighted volumes.

• b values (bvals): An ASCII text file containing a list of b values applied during each
volume acquisition.

The outputs of dtifit are:

• < basename > V 1 - 1st eigenvector

• < basename > V 2 - 2nd eigenvector

• < basename > V 3 - 3rd eigenvector

• < basename > L1 - 1st eigenvalue

• < basename > L2 - 2nd eigenvalue

• < basename > L3 - 3rd eigenvalue

• < basename > MD - mean diffusivity

• < basename > FA - fractional anisotropy

• < basename > MO - mode of the anisotropy

• < basename > S0 - raw T2 signal with no diffusion weighting

FSL has been implemented in Python, exploiting the fslpy package. The fslpy project
is an FSL programming library written in Python. This package contains all the Python
functions which can be used to invoke FSL commands. FSL may thus be easily accessed
and integrated into the rest of the programming needed to analyze the collected data
using Python commands. The fslpy complete documentation can be found at https:
//open.win.ox.ac.uk/pages/fsl/fslpy/index.html#.
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4.2 Bingham-NODDI model

The first implementation of Neurite Orientation Dispersion and Density Imaging, also
known as Watson-NODDI, was accomplished through a package of functions called the
’NODDI toolbox’ inMATLAB, created by The Mathworks company in Natick, USA. The
toolbox can be accessed at http://mig.cs.ucl.ac.uk/index.php?n=Download.NODDI.
This toolbox allows users to select from a variety of biophysical models. The original
code was written in Matlab, for this work it has been adapted to Python. In this project,
collaborative Python scripts were developed through a partnership between the Univer-
sity of Bologna and the University of Oxford. These scripts were designed to process
and analyze Diffusion Weighted-Magnetic Resonance Imaging (DW-MRI) data obtained
at the Oxford Centre for Clinical Magnetic Resonance Research (OCMR) using various
MRI scanner systems.
Initially tailored for the 3T GE Premier scanner at OCMR, the scripts underwent modi-
fications to accommodate different MRI scanner systems, including Siemens Prisma and
GE Artist. This adaptation involved adjusting configuration files and meticulously fine-
tuning each step of the scripts. Detailed information on these adjustments is provided in
the subsequent sections.
The input diffusion-weighted images must be in the .nii format, and the b-values and
gradient directions must be provided in separate .bval and .bvec files. Additionally, a
binary brain mask in .nii format is required, and the user must specify the name of the
model to be fitted.

The Dmipy (Diffusion Microstructure Imaging in Python) software package facilitates the
reproducible estimation of diffusion MRI-based microstructure features. It does this by
taking a completely modular approach to Microstructure Imaging. Dmipy’s main features
include:

• Any combination of tissue models (e.g. Gaussian, Cylinder, Sphere) and axon bun-
dle representation (e.g. orientation-dispersed/diameter-distributed) can be com-
bined into a multi-compartment model.

• Any appropriate model can be orientation-dispersed and/or axon diameter-distributed.

• Any predefined or custom parameter constraints or relations can be imposed.

• Fit the spherical mean of any multi-compartment model to the spherical mean of
the data.

So Dmipy is a powerful tool with which any microstructure model can be assembled, as
shown in figure 4.1.
Dmipy is used for the implementation of the Bingham-NODDI model [11] using the fol-
lowing mathematical structure (4.1):

S = fCSF

Ball︷ ︸︸ ︷
Siso(·|DCSF)︸ ︷︷ ︸

CSF

+

Bingham︷ ︸︸ ︷
B(κ1, κ2,µi) ∗S2

fen Zeppelin︷ ︸︸ ︷
Sen(·|λtort

⊥ , λtort
∥ )︸ ︷︷ ︸

Hindered Extra-Axonal

+ fin

Stick︷ ︸︸ ︷
Sin(·|λ∥)︸ ︷︷ ︸

Intra-Axonal

 (4.1)

The total diffusion signal is implemented exploiting multiple models: CSF compartment
is represented using the Ball model, an isotropic Gaussian compartment whose signal at-
tenuation only depends on isotropic diffusivity λiso [48]. The extra-neurite compartment is
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Figure 4.1: A schematic representation of most biophysical models that are used in PGSE-
based Microstructure Imaging. Using different combinations of these “components,” any
microstructure model can be assembled using Dmipy. Image credit [54]

.

described as the Zeppelin component, an axially symmetric Gaussian distribution aligned
along orientation µ̂, with parallel and perpendicular diffusivity λ∥ ≥ λ⊥, often used to
describe the diffusion signal originating from the oriented, extra-axonal space [48]. Fi-
nally, the intra-neurite compartment is modelled as a Stick, a cylinder with a diameter
of zero. It has Gaussian diffusivity λ∥ along the cylinder’s axis and λ⊥ = 0 perpendicular
to the axis [48]. As already mentioned, the Bingham-NODDI model uses the Bingham
distribution to capture the orientation distribution of the tissue compartment, defined as
an anisotropic Gaussian distribution on the sphere with orientation µ and primary and
secondary concentration concentrations κ1 and κ2. The schematic representation of the
implementation of the Bingham-NODDI model as just described is shown in Figure 4.2.

Figure 4.2: Schematic representation of the Bingham-NODDI model Dmipy implementa-
tion.
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To describe the neurite concentration, the optimisation parameters ODI and β-fraction
are used. The ODI is defined in Equation (2.14), while the β-fraction is defined as follows:

κ2 = β · κ1 (4.2)

As described in Equation (4.2), β-fraction is used to characterise the degree of dispersion
in the secondary direction within the Bingham distribution.
To fit Bingham-NODDI model, th following inputs are required:

• Preprocessed Difussion-weighted data: NIFTI format files DW data

• Gradient directions (bvecs): An ASCII text file containing a list of gradient direc-
tions applied during diffusion-weighted volumes.

• b values (bvals): An ASCII text file containing a list of b values applied during
each volume acquisition usually supplied in s/mm2, but in this case they have to be
converted to s/m2.

• A brain/phantom mask: A single binarised volume in diffusion space containing
ones inside the brain and zeroes outside the brain.

As outputs, the Bingham-NODDI model fit produces a variety of quantitative maps: the
tissue volume fraction map, indicating the portion of tissue proportion within each voxel;
the intra-neurite volume fraction map, indicating the portion of voxel occupied by neurites.
The beta fraction map and the Orientation Dispersion Index (ODI) map, representing the
degree of dispersion or coherence of neurite orientations within each voxel. It also provides
the mean squared error (MSE) and the R2 maps are provided to assess the goodness of
the fit.

4.3 AMICO-NODDI model

Fitting the Bingham-NODDI model takes on average 13 hours. The process may be
reduced when fitting results using a binary mask from a specific region, like it has been
done in this study and explained in the next section. The AMICO-NODDI model is a
linearized version of the NODDI model and is publicly available (https://github.com/
daducci/AMICO). This model, in order to be fit, needs a precise folder structure, as shown
in figure 4.3.

Figure 4.3: AMICO assumed folder structure when fitting the model.

Subjects’ data acquisitions should be organized within the dataset’s root directory, with
each subject’s data allocated to a dedicated subfolder identified by their corresponding
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diffusion protocol. This scheme is necessary in order to improve computation efficiency.
For each diffusion weight (i.e., b-value), AMICO generates a large number of probable
dictionary terms known as ’kernels’ with high angular resolution, which are shared among
participants scanned with equal diffusion weighting, regardless of the number of DW
images acquired within the dataset. After generating the kernel, the set of synthetic signals
is resampled to align with the real gradient directions and can subsequently be utilized
for model fitting within the dictionary. This process ensures that patients participating
in the same study, who underwent scanning using the same diffusion protocol, will share
identical pre-computed kernels stored in memory. In this way, the fitting process is more
efficient since producing the kernels is the most computationally significant part.

Fitting AMICO-NODDI requires the following inputs:

• Preprocessed DW data in the .hdr / .img format

• Gradient directions (bvecs): An ASCII text file containing a list of gradient direc-
tions applied during diffusion-weighted volumes.

• b values (bvals): An ASCII text file containing a list of b values applied during each
volume acquisition

• A .hdr / .img format of the brain/phantom mask: A single binarised volume in
diffusion space containing ones inside the brain and zeroes outside the brain.

Fitting AMCIO-NODDI takes on average 5-10 minutes, dramatically reducing the time
required by the Bingham-NODDI model fit, and providing a useful tool to neuroscientists
and researchers.
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Chapter 5

Processing of data

This chapter provides a comprehensive exploration of the data pipeline, commencing with
the analysis of phantom data and proceeding to the examination of in-vivo brain data. For
this work, Python scripts were written by Mattia Ricchi to process and analyze DW-MRI
collected at the Oxford Centre for Clinical Magnetic Resonance Research (OCMR) with
the 3T GE Premier and adapted in this study to work with multiple MRI scanners. All
the in-house Python scripts used in this work for processing and analyzing the acquired
data can be found on the GitHub page Oxford Molecular Imaging.

In the first part of this chapter, the focus is on the steps required to process the DTI ’basic
phantom’ data collected on multiple scanners. The second part focuses on the processing
pipeline of the in-vivo brain data.

5.1 Phantom Study

For this work, a DTI ’basic phantom’ has been used, as described in Section 3. The phan-
tom underwent multiple MRI scans across various days, with two scans performed on each
occasion, to evaluate the consistency of both the Tensor model and the Bingham-NODDI
model outcomes across time and different MRI scanners. Prior to the fitting process,
data required preprocessing, and this task was efficiently accomplished in a single Python
script, thanks to the capabilities of the fslpy library.
Each acquisition comprised two subacquisitions: a singleshell acquisition and a multishell
acquisition, as detailed in the acquisition protocol Section 3.3. These subacquisitions un-
derwent separate processing. Specifically, the tensor model was fitted for both single shell
and multishell acquisitions, while the Bingham-NODDI and AMICO-NODDI models were
exclusively fitted to the multishell acquisitions. The subsequent pipeline was consistently
applied to datasets obtained from various MRI scanners, and any specific adjustments
will be comprehensively detailed.

The first step is the correction of the artefacts produced by the local inhomogeneities of
the B0 field. This is done by the TOPUP tool, as explained in section 1.6, available
in the fslpy library and called in the Pyhton script with the topup command. For
the correction to be performed, it needs to load the first volume of the DTI data and
of the reverse phase-encoded DTI data in a 4D array. Specifically, in certain instances,
the phantom data obtained on the Siemens Prisma differ from those acquired on the GE
Premier, as they are obtained in sets comprising more than one volume. As a result, a
Python script has been developed for this study to specifically extract the initial volume
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of the reverse phase-encoded data. TOPUP also required the use of a configuration file,
a text file containing some or all of the parameters that can be specified for topup. This
file had to be changed to process data acquired on Siemens Prisma, due to an odd matrix
of data, differently from data acquired on the GE Premier.
Then, a binary mask is created. This step is crucial for accurately positioning the phan-
tom within the image, particularly focusing on the anisotropic diffusion ring. It involves
processing the temporal mean of the topup-corrected NIFTI data, utilizing the capabili-
ties fslmaths. The binary mask is designed using a Python function that, given the 3D
picture provided by topup as input, iteratively calculates the mean noise value from a
subset of the input data, incrementally increasing the kernel size until a valid mean noise
value is found. This noise level is used to normalise the original input array, thereby
scaling it in relation to noise. The normalised data is then thresholded using the given
signal-to-noise ratio (SNR) threshold. Areas in the normalised data below the threshold
are assigned to 0 in the mask, indicating areas with a low signal-to-noise ratio, whilst
regions above the threshold are put to 1, indicating areas with sufficient signal intensity
compared to noise. Using the same reasoning, SNR maps were created for each acquisi-
tion.

The following step regards correcting distortions caused by eddy currents. This is done
exploiting the EDDY tool in FSL, as described in section 1.6 and using the Pyhton
command eddy. EDDY is the most time consuming step of the pipeline, taking from
2 to 4 hours to run. In order for EDDY to run, an acquisition parameters (specifying
information about the acquisition of the DTI data images) and an index (text file spec-
ifying the relationship between the DTI data images and the information in acquisition
parameters and in topup data) files were necessary. In particular, the index was adjusted
to accommodate the single shell acquisitions conducted on the Siemens Prisma, as the
DTI data acquired consisted of 31 total volumes, in contrast to the 33 volumes provided
by the GE Premier. Results of the preprocessing steps are shown in Figure 5.1.

Once the preprocessing steps have been done, the tensor model can be fitted to the
diffusion-weighted data to obtain the corresponding measures, i.e. the Fractional Anisotropy
(FA) and Mean Diffusivity (MD). This step requires an additional binary mask, a ring
mask, that allows us to select only the fibre ring region we’re interested in fitting the
tensor model’s metrics.
At this point, the fitting procedure can be carried out. The tensor model is fitted to the
eddy corrected data using the dtifit function in Pyhton and Fractional Anisotropy and
Mean Diffusivity quantitative maps are obtained. In order to extract from the fibre ring
the FA and MD mean and standard deviations values, the features of fslstats, provided
by fslpy, are used. To analyze the phantom data acquired with multiple echo time val-
ues, the mean and standard deviations values were also computed on the eigenvalues λ1,
λ2, λ3 quantitative maps provided by the dtifit function. The outcomes are saved in a
.txt file, available for the user to consult.

The 3D representation of the ring mask used for the DTI fits and its placement inside the
phantom are shown in Figure 5.2b.

For the multishell acquisitions, in addition to the tensor model, the Bingham-NODDI
model and the AMICO-NODDI model are fitted. The Bingham-NODDI model is fitted
as described in section 4.2 using the Dmipy Python module. As a first step, a .txt file
containing the information of the gradient directions applied during the acquisitions is
needed. At this point the mathematical implementation follows: first, the basic Ball,
Stick and Zeppelin components are called. Then, the BinghamDistributed instead of the
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(a) (b) (c)

Figure 5.1: (a) Image of the original diffusion-weighted image of the basic phantom, in
which it appears to be warped, notably along the phase encoding gradient direction. (b)
The binary mask constructed using the SNR threshold is displayed. (c) The corrected
DW-image.

(a) (b)

Figure 5.2: The binary mask has been created for the regions in the phantoms with fibre
bundles. The figure shows (a) a ring mask for the basic phantom and (b) 3D representation
of the basic phantom, the ring mask, placed inside, is coloured in orange.

WatsonDistributed model is called. The Bingham-NODDI’s parametesr assumptions are
then set: the tortuosity constraint, equal λ∥ between the Stick and Zeppelin, and fixing
the diffusivity to 1.7e-9 m2/s. The Bingham-dispersed Stick and Ball are then combined
in a multi-compartment model, and the isotropic diffusivity of the ball is set to free water
diffusivity.

The AMICO-NODDI model is implemented using the publicly accessible GitHub reposi-
torry, as described in section 4.3. The quantitative maps of interest for both models are
the tissue volume fraction, intra-neurite volume fraction, and ODI defined in Equation
(2.14), to characterise neurite dispersion. These results are extracted using the same ROIs
and procedure as the MD and FA values.
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For each intrasite acquisition, the Coefficient of Variation (CV) has been computed. This
is done to assess consistency and repeatability of the DTI fits. The Coefficient of Varia-
tion is a statiscal measure used to describe a datset’s relative variability or dispersion in
relation to its mean. It is defined as follows:

CV =
Standard deviation

Mean
· 100 (5.1)

where the standard deviationused is the Population Standard Deviation. A lower value
of the CV indicates less variability among the obtained metrics results. Viceversa, higher
values indicate more variability (hence less repeatability) of results on the same MRI
scanner.

Figure 5.3: Multi-shell acquisition work pipeline.

5.2 In-vivo Brain study

Regarding the In-vivo study, four healthy volunteer are scanned on the two 3T MRI
scanners: the GE Premier and the Siemens Prisma. The first scan was performed twice
on both scanners to assess intra-site consistency before comparing inter-site results. The
scanning process involves a structural T1-weighted scan (MP-RAGE) and a diffusion-
weighted scan.

The preprocessing steps’ pipeline is similar to the one performed for the phantom study.
The first step is to correct the B0 field inhomogeneities and eddy currents-induced dis-
tortions, exploiting the features of TOPUP and EDDY implemented in fslpy. It is
necessary to highlight that brain data acquired on the Siemens Prisma MRI scanner need
different configuration and acquisition parameters files, since images have been acquired
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from Left to Right (differently from GE Premier where the phase encoding direction goes
from Anterior to Posterior). The acqparams file is, in fact, used to inform EDDY what
direction the distortions are likely to go in. Each row consists of a vector (three values)
that specifies what the phase-encode (PE) axis is and also what direction along that
axis implies higher frequency. So, in the acquisition parameters file written for the data
acquired with the Siemens Prisma:

1 0 0 0.024 (5.2)

−1 0 0 0.024 (5.3)

have the vectors [1 0 0] and [−1 0 0] both implying that the PE is along the x-direction
and which further imply that for the first row [1 0 0] a higher frequency is associated
with a position higher up along the x-direction (i.e. positive blips) and the second [1 0 0]
implies that a lower frequency is associated with a position higher up (i.e. negative blips).
In-vivo data requires a binary brain mask for eddy correction, to define the the brain tis-
sue and distinguish it from non-brain structures (e.g., skull, scalp, etc.). The brain mask
is created exploiting the features of bet (Brain Extraction Tool) function, implemented
in fslpy. After images distortions have been corrected, the tensor model and the NODDI
models can be fitted to obtain the quantitative maps of each metrics.

In order for results to be extracted, the acquired maps must be registered to a standard
space: the MNI152. The MNI152 space is a well known coordinate system in the neuro-
science field and it is based on the Montreal Neurological Institute (MNI) reference brain,
a template produced by the average of 152 healthy brain scans. It used as a reference
when dealing with brain scans performed across different partecipants and studies.
This process of transforming different acquired images into one coordinate system is re-
ferred to as image registration and it involves the application of translation, rotations,
scaling, and shearing trasnformations to make images match. To perform the registration
of the acquired images to the MNI152, the first step that must be performed involves the
alignement of the non-diffusion weighted B0 image (b-value = 0) with the T1-weighted
scan. This is done exploiting the features of FLIRT (FMRIB’s Linear Image Registration
Tool) tool, implemented in FSL [55]. FLIRT is a fully automated robust and accurate
tool for linear (affine) intra- and inter- modal brain image registration. It employs a cost
function to assess the similarity of the source and reference images after the transforma-
tion. For this study, the cost function that showed the best similarity between the B0
scan and the T1-weighted is the mutual information with 6 degrees of freedom (DOF)
since images are from the same subject and hence should be registered using 6 DOF (rigid
body transformation).

The T1-weighted image must then be registered to the MNI152 space with a nonlinear
registration. To perform this operation, first a linear registration of the T1-weighted im-
age to the MNI152 space is done using FLIRT with 12 degrees of freedom, to get the
orientation and size of the image close enough for the nonlinear registration, as shown in
Figure 5.4a.
Then, using the linear registration matrix generated by executing FLIRT, a nonlinear
registration of the original (non-brain-extracted) T1 image to the MNI152 space can be
performed (Figure 5.4b). This is done exploiting the features of the FNIRT (FMRIB’s
Nonlinear Image Registration Tool) [48] FSL tool, a nonlinear image registration tool used
when the relation between two pictures (same modality of acquisition) involves comppli-
cated deformations that cannot be correctly represented by linear transformations. The
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(a) (b) (c)

Figure 5.4: (a) The non-diffusion weighted (T2-weighted) image aligned with the T1-
weighted image (rigid body transformation) (b) The T1-weighted image aligned to the
MNI152 space (c) The T1-weighted (non-brain extracted) image aligned to the MNI152
space.

FNIRT tool also provides a coefficient file containing the nonlinear spatial transforma-
tion used in each voxel to align the T1 to the MNI space, with the intensity value in each
voxel representing the amount that this voxel has been shifted by the transformation. In
addition to the T1, this warp file can be used to register other volumes to the MNI space
(Figure 5.4c). By using the FSL’s command applywarp, the quantitative maps of interest
can be aligned to the MNI152 space by applying the transformations contained in the
warp file generated by FNIRT.

5.2.1 Regions of Interest (ROIs)

To extract values from the quantitative maps, different Regions of Interest (ROIs) have
been created by extracting selected regions from the brain atlases available in FSL. In
particular, the ROIs used for this study are shown in Figure 5.5 and they were created in
the MNI space.
To extract values of Fractional Anisotropy (FA) and Mean Diffusivity (MD) one ROI for
each tissue type was created: Genu and Splenium of Corpus Callosum for White Matter,
Thalamus for Gray Matter, and Ventricles for CSF.

Regarding results to be extracted from the NODDI models fit, new ROIs were designed.
This is due to the CSF signal being suppressed in the NODDI model’s tissue volume
fraction. So, in addition to the previous ROIs used to extract results for White and
Gray Matter, these new ROIs were created: Caudate and Putamen for Gray Matter, and
the anterior and posterior limbs of the Internal Capsule for White Matter, as shown in
Figure 5.5. Overall, the Bingham-NODDI model metrics results were extracted from the
anterior and posterior limbs of IC and from Genu and Splenium for White Matter and
from Thalamus, Caudate and Putamen for Gray Matter.
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Figure 5.5: ROIs in the brain used to extract the tensor model and the NODDI model
metrics results. (A) Genu and Splenium of Corpus Callosum, (B) Thalamus, (D) Ventri-
cles, (E) Caudate, (E) Putamen, (F) Anterior and Posterior limbs of Internal Capsule.
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Figure 5.6: In-vivo brain data analysis pipeline

50



Results and Discussion





Chapter 6

PHANTOM STUDY

In this chapter, the results of the phantom data analysis are presented. Diffusion-weighted
phantom data was collected as described in section 3.3.
All acquired data was fitted to the DTI tensor model, the Bingham-NODDI and AMICO-
NODDI models after the preprocessing steps described in section 5.

The chapter is divided into three sections: the first delves into the results collected from
single-shell acquisitions on multiple MRI scanner systems, the second focuses on the
results of the analysis of the multi-shell acquisitions on multiple MRI scanner systems,
and the third presents results obtained from multiple acquisitions performed with different
echo times. In particular, for the first and second section, results are presented singularly
for each scan, to assess intra-site repeatability. Furthermore, inter-site comparisons of
results are shown, to assess the reliability and consistency of the model on multiple MRI
scanner systems.

In all sections, a detailed explanation of the achieved results is presented.

6.1 Single-Shell acquisitions

This analysis seeks to showcase the outcomes of fitting the tensor model to data obtained
from single-shell acquisitions across various MRI scanners. The primary goal is to assess
and compare the results across different imaging sites. Additionally, we aim to evaluate
the effectiveness of single-shell acquisitions in accurately capturing the water diffusion
properties of a DTI basic phantom for each scanner, considering the anticipated Fractional
Anisotropy (FA) values provided by the manufacturer.

6.1.1 Intra-site results

Two sets of phantom scans were acquired on the Siemens Prisma, and the GE Premier
- located at the OCMR - and on the GE Premier and the GE Artist (1.5T) - located
at the Churchill Hospital. The phantom used for the acquisition is described in Chapter
3 and illustrated in Figure 3.1a. The acquisitions were performed at the Oxford Centre
for Clinical Magnetic Resonance Research (OCMR) - University of Oxford and at the
Churchill Hospital - Oxford Hospitals.

As a first step, the original DW images were corrected from distortions, following the
procedure described in section 5. The binary masks needed to process the data have
different Signal-to-Noise-Rastio according to the specific acquisition. In particular, for
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the phantom scans acquired on the Siemens Prisma and on the GE Premier (OCMR)
the SNR has been set equal to 150. For the phantom scans acquired on the GE Premier
located at Churchill Hospital the SNR has been set equal to 50 whilst it has been set
equal to 30 for the phantom scans acquired on the GE Artist.

Figure 6.1 show the postprocessing of images acquired on the Siemens Prisma for the first
scan and the second scan.

Figure 6.1: Phantom single-shell scan 1 and scan 2 on 3T Siemens Prisma: (A) and (D)
Image of the original diffusion-weighted image of the basic phantom, in which it appears to
be warped, notably along the phase-encoding gradient direction, (B) and (E) the binary
mask constructed using an SNR = 150, as displayed, (C) and (F) The corrected DW-
image.

The images visually demonstrate the effectiveness of TOPUP and EDDY in the correc-
tion process. The original diffusion-weighted image undergoes distortion along the phase
encoding gradient direction, and the corrected output exhibits enhanced visual appeal.
The eddy current correction process took approximately 4-5 minutes to complete. This
suggests that these images acquired with a single-shell protocol on Siemens Prisma are
relatively less impacted by distortions caused by eddy currents compared to other sys-
tems. The acquired data was fitted with the Tensor model, extracting the mean and
standard deviation values of the Fractional Anisotropy (FA) and Mean Diffusivity (MD)
from the fibre ring using a binary mask, as shown in Figure 5.2a. Finally, the Coefficient
of Variation (CV) was computed to assess intra-site consistency on each scanner. Metrics
results for FA and MD of phantom scans acquired on Siemens Prisma are shown in table
6.1.
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Table 6.1: FA and MD results for the basic phantom to look for the consistency of Siemens
Prisma single-shell phantom acquisitions.

Tensor model
FA MD (·10−3mm2/s)

Scan 1 0.713± 0.083 0.957± 0.098
Scan 2 0.716± 0.078 0.940± 0.110

CV 0.22% 0.90%

Figure 6.2: Phantom single-shell scan 1 and scan 2 on 3T GE Premier (OCMR): (A)
and (D) Image of the original diffusion-weighted image of the basic phantom, in which
it appears to be warped, notably along the phase-encoding gradient direction, (B) and
(F) the binary mask constructed using an SNR = 150, as displayed, (C) and (E) The
corrected DW-image.

The intra-site coefficient of variation low values show how tensor model metrics results
obtained fitting data acquired on the Siemens Prisma with a single shell protocol are
consistent over time.

Regarding phantom scans acquired on the GE Premier located at the OCMR, results of
the correction process are shown in Figure 6.2.
The step of eddy currents-induced distortions correction, differently from the processing
of phantom data acquired on the Siemens Prisma, took an average of ≈ 2 hours. The
tensor model metrics results are presented in table 6.2.
As for the data acquired on the Siemens Prisma, coefficient of variation (CV) values
well below 5% indicate there is no notable variation in diffusion tensor metrics intra-
site consistency. Regarding phantom data acquired with the GE Premier located at the

55



CHAPTER 6. PHANTOM STUDY

Table 6.2: FA and MD results for the basic phantom to look for the consistency of GE
Premier (OCMR) single-shell phantom acquisitions.

Tensor model
FA MD (·10−3mm2/s)

Scan 1 0.722± 0.151 0.901± 0.240
Scan 2 0.716± 0.079 0.903± 0.094

CV 0.42% 0.11%

Churchill Hospital in Oxford, the original DW images and the post-processing corrected
images are shown in Figure 6.3.

Figure 6.3: Phantom single-shell scan 1 and scan 2 on 3T GE Premier (Churchill Hospital):
(A) and (D) Image of the original diffusion-weighted image of the basic phantom, in which
it appears to be warped, notably along the phase-encoding gradient direction, (B) and (F)
the binary mask constructed using an SNR = 50, as displayed, (C) and (E) The corrected
DW-image.

The tensor model metrics results are presented in table 6.3.
Despite the SNR set to create the binary mask is lower compared to single-shell acquisi-
tions on other scanners hence indicating images more affected by noise, the results show
intra-site consistency hence ensuring repeatability over time.
Similar considerations can be made for the phantom data acquired on the 1.5T GE Artist,
located at the Churchill Hospital, Oxford. In this case, the SNR has been set to 50 in
order to get a binary mask able to properly cover the whole fibre ring region. The original
DW images, the binary mask, and the post-processed corrected image are shown in Figure
6.4.
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Table 6.3: FA and MD results for the basic phantom to look for the consistency of GE
Premier (Churchill Hospital) single-shell phantom acquisitions.

Tensor model
FA MD (·10−3mm2/s)

Scan 1 0.731± 0.085 0.921± 0.092
Scan 2 0.738± 0.073 0.917± 0.080

CV 0.48% 0.22%

Figure 6.4: Phantom single-shell scan 1 and scan 2 on 1.5T GE Artist (Churchill Hospital):
(A) and (D) Image of the original diffusion-weighted image of the basic phantom, in which
it appears to be warped, notably along the phase-encoding gradient direction, (B) and (F)
the binary mask constructed using an SNR = 50, as displayed, (C) and (E) The corrected
DW-image.

The tensor metrics results are shown in Table 6.4. The diminished coefficients of variation
(CV) suggest a high degree of result stability, even when utilizing the 1.5T magnetic
resonance imaging (MRI) scanner.
For the purpose of facilitating comparisons, a single scan has been selected for each
scanner, given the observed consistency in results within the intra-site study. Results are
shown in Table 6.5.
Comparisons of fractional anisotropy (FA) and mean diffusivity (MD) outcomes reveal a
notable similarity in values obtained through the use of 3T MRI scanners, falling within
acceptable margins of error. Nevertheless, it is noteworthy that FA values remain be-
low the manufacturer-specified reference of 0.78 ± 0.02. This discrepancy suggests that
the singular use of a single-shell protocol is insufficient to adequately capture the diffu-
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Table 6.4: FA and MD results for the basic phantom to look for the consistency of GE
Artist (Churchill Hospital) single-shell phantom acquisitions.

Tensor model
FA MD (·10−3mm2/s)

Scan 1 0.757± 0.099 0.808± 0.065
Scan 2 0.759± 0.098 0.814± 0.109

CV 0.13% 0.37%

Table 6.5: Tensor model metrics results comparison for single-shell acquisitions on multi-
ple MRI scanners. FA and MD results of the first scan of each set acquired on: Siemens
Prisma, GE Premier (OCMR), GE Premier (Churchill Hospital), GE Artist.

Tensor model
SS acquisitions Prisma Premier(OCMR) Premier(Church) Artist

FA 0.713± 0.083 0.716± 0.079 0.731± 0.085 0.757± 0.099
MD (·10−3mm2/s) 0.957± 0.098 0.903± 0.094 0.921± 0.092 0.808± 0.065

sion properties of the fundamental diffusion tensor imaging (DTI) phantom. Moreover,
outcomes derived from the GE Artist exhibit elevated fractional anisotropy (FA) values
and reduced mean diffusivity (MD) values in contrast to those acquired using alternative
MRI scanners. This discrepancy could be attributed to the chosen echo time (TE) for
acquisition, particularly noteworthy as the GE Artist employed a prolonged TE of 83.5
ms, compared to the GE Premier (TE = 64.7 ms) and to the Siemens Prisma (TE = 58
ms). A more comprehensive examination of this phenomenon is undertaken in Section 7.1,
where acquisitions involve varied echo times to ascertain the extent to which decreasing
MD values correlate with increasing TE values.

The basic phantom’s FA quantitative maps obtained by fitting the tensor model to the
single-shell phantom data acquisitions are shown in Figure 6.5.
The phantom’s MD quantitative maps obtained by fitting the tensor model to the single-
shell phantom data acquisitions are shown in Figure 6.6.
The GE Premier (OCMR) FA map shows a greater range of values for each voxel of
the image. Overall, the maps reveal a consistent pattern wherein both mean diffusivity
(MD) and fractional anisotropy (FA) values remain almost constant across the entirety
of the fiber ring. This observation signifies a uniform distribution of diffusion properties
throughout the specified region.
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Figure 6.5: FA quantitative maps for single-shell acquisitions of the basic phantom for
(A) Siemens Prisma (B) GE Premier (OCMR) (C) GE Premier (Churchill Hospital (D)
GE Artist. he images show a uniform distribution of the tensor model parameters along
the whole fibre ring.

Figure 6.6: MD quantitative maps for single-shell acquisitions of the basic phantom for
(A) Siemens Prisma (B) GE Premier (OCMR) (C) GE Premier (Churchill Hospital), (D)
GE Artist. The images show a uniform distribution of the tensor model parameters along
the whole fibre ring.
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6.2 Multi-Shell acquisitions

Though useful, single-shell acquisitions have major limitations, as thoughtfully described
in the previous section. Furthermore, multi-shell acquisitions are necessary when dealing
with more complex diffusion characteristics. Multi-shell acquisitions involve acquiring
data with diffusion gradients applied along multiple shells of directions. This allows for
a more comprehensive assessment of tissue microstructure because different shells are
sensitive to different ranges of diffusion characteristics. Multi-shell acquisitions are ex-
tremely useful, compared to single-shell acquisitions, since they enable the application of
more advanced diffusion models, such as multi-compartment models, which can distin-
guish between different tissue compartments (e.g., intra- and extra-cellular spaces), more
accurately, such as the NODDI models. Multi-shell acquisitions are particularly useful
for characterizing white matter fiber orientation and crossing fibers, providing a more de-
tailed understanding of complex tissue structures, hence the use of this type of multi-shell
acquisitions datasets to fit the Bingham-NODDI model.

As done for the single-shell phantom acquisitions, original DW multi-shell phantom im-
ages, and post processed corrected images are shown for each MRI scanner. In particular,
as mentioned in section 3.3, multi-shell phantom acquisitions of Siemens Prisma were
made using both a spin-echo twice-refocused (Bipolar) and single-refocused applied gra-
dient (Monopolar). Images are shown in Figure 6.7 and Figure 6.8. In both cases, to
create the binary mask, an SNR = 150 was set.

Regarding multi-shell phantom acquisitions on the GE Premier located at the OCMR and
those acquired at the Churchill Hospital, images are shown in Figure 6.9 and in Figure
6.10.
Besides minor differences, images show similar features. Regarding multi-shell phantom
acquisitions made on the GE Artist 1.5T, original DW-images are more noisy, as it can
be seen by the necessity of setting the SNR equal to 10. Images are shown in Figure 6.11.
Once the tensor model was fitted to the multi-shell phantom data, the FA and MD values
are obtained. For each MRI scanner employed for this study, the tensor model metrics
results are shown in Table 6.6. Results show that the Coefficient of Variation (CV) has
values below 5%, indicating that multi-shell intra-site phantom acquisitions are consistent
over time. Also, multi-shell acquisitions performed on the Siemens Prisma with a single-
refocused gradient show a lower CV compared to that corresponding to the acquisitions
performed with a twice-refocused gradient.

Regarding the tensor model metrics results obtained fitting to the GE ARtist multi-shell
phantom data, FA and MD values are shown in Table 6.7. Results show intra-site stability,
as values are similar between scans within the margin of errors. Consistency of the tensor
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Figure 6.7: Phantom multi-shell Monopolar scan 1 and scan 2 on 3T Siemens Prisma: (A)
and (D) Image of the original diffusion-weighted image of the basic phantom, in which
it appears to be warped, notably along the phase-encoding gradient direction, (B) and
(F) the binary mask constructed using an SNR = 150, as displayed, (C) and (E) The
corrected DW-image.

Figure 6.8: Phantom multi-shell Bipolar scan 1 and scan 2 on 3T Siemens Prisma: (A)
and (D) Image of the original diffusion-weighted image of the basic phantom, in which
it appears to be warped, notably along the phase-encoding gradient direction, (B) and
(F) the binary mask constructed using an SNR = 150, as displayed, (C) and (E) The
corrected DW-image.

model metrics results is also confirmed by the low values of the Coefficient of Variation
(CV), especially the CV related to the Fractional Anisotropy measures.
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Figure 6.9: Phantom multi-shell scan 1 and scan 2 on 3T GE Premier (OCMR): (A)
and (D) Image of the original diffusion-weighted image of the basic phantom, in which
it appears to be warped, notably along the phase-encoding gradient direction, (B) and
(F) the binary mask constructed using an SNR = 150, as displayed, (C) and (E) The
corrected DW-image.

In Table 6.8, the FA and MD values computed fitting the tensor model to multi-shell
acquisitions on multiple MRI scanners are shown. In particular, having assessed intra-
site consistency (Table 6.6), in order to make comparisons, results of the fit performed
to the first scan data of each scanner acquisition were chosen. Comparing the metrics
results, it is possible to notice how values are similar within the margin of errors, ensuring
inter-site consistency hence the reliability of the tensor model. It’s interesting to notice
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Figure 6.10: Phantom multi-shell scan 1 and scan 2 on 3T GE Premier (Churchill Hospi-
tal): (A) and (D) Image of the original diffusion-weighted image of the basic phantom, in
which it appears to be warped, notably along the phase-encoding gradient direction, (B)
and (F) the binary mask constructed using an SNR = 50, as displayed, (C) and (E) The
corrected DW-image.

Figure 6.11: Phantom multi-shell scan 1 and scan 2 on 1.5T GE Artist: (A) and (D)
Image of the original diffusion-weighted image of the basic phantom, in which it appears
to be warped, notably along the phase-encoding gradient direction, (B) and (F) the binary
mask constructed using an SNR = 50, as displayed, (C) and (E) The corrected DW-image.

how the Fractional Anisotropy (FA) values obtained fitting to the GE Artist 1.5T scanner
multi-shell phantom data are still similar to the value provided by the manufacturer (0.78
± 0.02) while the Mean Diffusivity (MD) are lower compared to the results obtained on
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Table 6.6: FA and MD results for the basic phantom to look for the consistency of multi-
shell protocol acquisitions on the multiple MRI 3T scanners: Siemens Prisma Monopolar
and Bipolar, GE Premier (OCMR), GE Premier (Churchill Hospital).

Tensor Model
Siemens Prisma
MONOPOLAR

Siemens Prisma
BIPOLAR

GE Premier
(OCMR)

GE Premier
(Churchill H.)

FA
SCAN 1 0.7964 ± 0.0561 0.779 ± 0.075 0.7914 ± 0.0584 0.803 ± 0.057
SCAN 2 0.7954 ± 0.0584 0.785 ± 0.063 0.7912 ± 0.0576 0.801 ± 0.061
CV (%) 0.06% 0.39% 0.013% 0.09 %

MD (·10−3mm2/s)
SCAN 1 0.846 ± 0.067 0.861 ± 0.073 0.823 ± 0.065 0.831 ± 0.063
SCAN 2 0.844 ± 0.070 0.862 ± 0.073 0.824 ± 0.063 0.834 ± 0.069
CV (%) 0.12 % 0.12 % 0.06% 0.18 %

Table 6.7: FA and MD results for the basic phantom to look for the consistency of Siemens
Prisma multi-shell phantom acquisitions on the 1.5T GE Artist.

Tensor model
FA MD (·10−3mm2/s)

Scan 1 0.794± 0.072 0.661± 0.059
Scan 2 0.793± 0.078 0.677± 0.065

CV 0.08% 1.2%

the other scanners, as also seen for the single shell acquisition. One reason may be due to
the increased echo time necessary to be set for these acquisitions (TE = 105 ms) compared
to echo times set to acquire multi-shell phantom data on the other MRI scanners.

Table 6.8: Multi-shell acquisitions metrics results. The first scan of each acquisition has
been chosen to compare FA and MD results of phantom data acquired on the Siemens
Prisma Monopolar and Bipolar, GE Premier (OCMR), GE Premieri (Churchill Hospital)
and GE Artist.

Tensor Model
Siemens Prisma
MONOPOLAR

Siemens Prisma
BIPOLAR

GE Premier
(OCMR)

GE Premier
(Churchill H.)

GE Artist

TE = 69 ms TE = 81 ms TE = 76.9 ms TE = 72.1 ms TE = 105 ms
FA 0.796 ± 0.056 0.779 ± 0.0785 0.791 ± 0.058 0.803 ± 0.057 0.794 ± 0.072

MD (·10−3mm2/s) 0.846 ± 0.067 0.861 ± 0.073 0.823 ± 0.065 0.831 ± 0.063 0.661 ± 0.059

The quantitative maps of FA and MD of each scanner are compared in Figure 6.13 and
in Figure 6.12.
The FA and MD maps show how values remain constant throughout the entire fibre ring,
indicating a uniform distribution of the diffusion properties. All ring masks were created
using the tools provided by FSLeyes. To assess the impact of manual mask variations on
data acquired from the GE Artist, multiple masks were generated. The objective was to
investigate whether lower mean diffusivity (MD) values were associated with fluctuations
in manual mask creation. Subsequently, all masks underwent application in the dtifit

process, yielding consistent outcomes. Notably, an observed correlation emerged: aug-
menting the dimensions of the outer 3D layer of the ring mask resulted in a reduction
of fractional anisotropy (FA) values and an increase in MD. However, it is imperative to
acknowledge that expanding the ring mask’s dimensions would concurrently elevate noise
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Figure 6.12: Mean Diffusivity quantitive maps for the multi-shell acquisitions performed
on, in order, first row: Siemens Prisma Monopolar and Bipolar, GE Premier (OCMR);
second row: GE Premier (Churchill Hospital) and GE Artist.

Figure 6.13: Fractional Anisotropy quantitive maps for the multi-shell acquisitions per-
formed on, in order, first row: Siemens Prisma Monopolar and Bipolar, GE Premier
(OCMR); second row: GE Premier (Churchill Hospital) and GE Artist.

levels. This occurs as additional pixels, associated with lower FA values, influence the fi-
nal average FA value, thereby introducing inaccuracies and subsequently higher standard
deviations in the results.

In Table 6.9 the results of the Bingham-NODDI metrics for the acquisitions performed
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on the Siemens Prisma with a single-refocused applied gradient are shown. In Figure
6.14, all the quantitative maps given as output from the Bingham-NODDI fit are also
displayed, showing a uniform distribution of the parameter of interest within the selected
region, i.e. the fibre ring, except for the β-fraction. Within the spectrum of considered pa-
rameters, the characterization of the neurite orientation’s dispersion or spread relative to
the dominant neurite direction is encapsulated by the orientation dispersion index (ODI).
High ODI values signify a complex and disorganized configuration of neurites within a
voxel. Conversely, low ODI values indicate a more condensed and organized structure
of neuronal fibers, reflecting a relatively uniform alignment of neurites. This alignment
pattern aligns with the anticipated configuration outlined by the phantom manufacturing
specifications. Intra-site results for the Siemens Prisma Monopolar acquisition show a CV
of 0.13 %, indicating intra-site consistent repeatability of results over time.

The β-fraction parameter is linked with the concentration of neurites within a voxel. In
particular, it measures the proportion of volume of a voxel that is occupied by neurites
(i.e., axons and dendrites) in relation to the total volume. The higher the value, the higher
the concentration of neurites within a voxel. When the β-fraction is close to 1, it suggests
a significant presence of neurites within the voxel under consideration. Higher β-fraction
values imply a greater concentration of neurite orientations around a dominant direction,
indicating a more organized and coherent fiber structure. Lower β-fraction values sug-
gest a more dispersed or isotropic arrangement of neurites, indicating a less organized
structure. In the case of the Monopolar acquisitions performed on the Siemens Prisma,
the β-fraction values indicate there’s a greater concentration of neurites in voxels of the
fibre ring region compared to the rest of the phantom, as also displayed by the β-fraction
quantitative map in Figure 6.14(B). The CV of 4.06 % is still below the desired threshold
of the 5%.

Other important parameters to discuss are the tissue volume fraction and the intra-cellular
volume fraction. The tissue volume fraction measures the amount of brain tissue occupy-
ing the volume of a voxel, complementarily to the non-tissue volume fraction, measuring
the portion of the voxel occupied by the Cerebral Spinal Fluid (CSF) or other non-tissue
components. The values of tissue volume fraction are close to 1, as also shown in the
quantitative map in Figure 6.14(C), as the fibre ring region should mimic the brain tissue
hence excluding the CSF. The results obtained show a low CV equal to 0.02%, confirming
intra-site consistency.

The intra-cellular volume fraction refers to the portion of the volume of a voxel that is
occupied by neurites, specifically axons and dendrites. In the case of the Monopolar acqui-
sitions performed on the Siemens Prisma, the intra-cellular volume fraction is consistent
over time, with a CV equal to 0.11%, as also shown in Figure 6.14(D).

To evaluate the goodness of the fit, the Mean Square Error (MSE) and the R2 coefficient
are used. The Mean Square Error obtained values are low, indicating that the model
fits properly the data. The MSE quantitative map is also shown in Figure 6.14(F). The
R2 coefficient, also known as the coefficient of determination, is a statistical measure of
how well the observed values of a dependent variable (or response variable) are predicted
by a model. It is a value between 0 and 1, where R2 =0 indicates that the model does
not explain any of the variability in the dependent variable. Viceversa, R2 = 1 indicates
that the model perfectly explains the variability in the dependent variable. R2 is used to
determine the goodness of the fit, where higher values indicate a better fit. In the case of
the Monopolar acquisitions performed on the Siemens Prisma, the R2 is very close to 1,
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as also shown in Figure 6.14(E). The quite high CV for the MSE can be due to the very
low values of the MSE itself, in some cases also equal to its standard deviation.

Table 6.9: Bingham-NODDI model metrics results for a set of two acquisitions of phan-
tom data performed on the 3T Siemens Prisma with a single-refocused applied gradient
(monopolar acquisition).

Bingham-NODDI model
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

SCAN 1 0.0202 ± 0.0012 0.4096 ± 0.2562 0.969 ± 0.041 0.426 ± 0.069 0.988 ± 0.004 0.0009 ± 0.0003
SCAN 2 0.0201 ± 0.0007 0.3777 ± 0.2776 0.968 ± 0.042 0.427 ± 0.070 0.988 ± 0.003 0.0010 ± 0.0003
CV (%) 0.13% 4.06% 0.02% 0.11% 0.004% 0.52%

Figure 6.14: Quantitative maps of the parameters given as output by the Bingham-
NODDI model fitted to the phantom data acquired on the Siemens Prisma with a single-
refocused applied gradient (Monopolar). The images represent (A) the ODI, (B) the
β-fraction, (C) the Tissue volume fraction, (D) the Intra-cellular volume fraction, (D) the
R2 coefficient, (E) the MSE coefficient.

Regarding phantom Bipolar acquisitions performed on the Siemens Prisma, the Bingham-
NODDI fit metrics results are shown in Table 6.10. The quantitative maps for each
Bingham-NODDI parameter are shown in Figure 6.15. The ODI values show consistency
over time, with a CV equal to 1.2%. Similar considerations can be made for the intra-
cellular and tissue volume fractions, as they show low values for the coefficient of variation.
The β-fraction CV is equal to 5%, exactly equal to our desired threshold. This value could
be due to the non-uniform distribution of the β-fraction values in the fibre ring, resulting
in a higher standard deviation of the measurements. The R2 coefficient values are close
to 1 and the MSE low values suggest satisfactory goodness of fit.
Comparing the intra-site consistency of the acquisitions performed on the Siemens Prisma
using a single-refocused and a twice-refocused applied gradient, it is possible to notice that
the ODI values are consistent in both protocols’ results however, the coefficient of variation
(CV) for the Bipolar β-fraction is comparatively higher in the Monopolar acquisition.
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This may reflect the impact of acquisition parameters in capturing the properties of
distributions of neurite orientations.
Notably, both the tissue volume fraction and intra-cellular volume fraction demonstrate
temporal repeatability in the outcomes for both protocols. Furthermore, the R2 coefficient
and Mean Squared Error (MSE) exhibit low CV values for both protocols, with the
Monopolar acquisitions displaying a lower MSE compared to the Bipolar counterparts.

Table 6.10: Bingham-NODDI model metrics results for a set of two acquisitions of phan-
tom data performed on the 3T Siemens Prisma with a twice-refocused applied gradient
(bipolar acquisition).

Bingham-NODDI model
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

SCAN 1 0.0206 ± 0.0085 0.4723 ± 0.2351 0.958 ± 0.052 0.410 ± 0.077 0.987 ± 0.004 0.0010 ± 0.0004
SCAN 2 0.0202 ± 0.0091 0.4274 ± 0.2269 0.959 ± 0.048 0.413 ± 0.073 0.988 ± 0.003 0.0010 ± 0.0003
CV (%) 1.2% 5% 0.05% 0.36% 0.02% 1.63%

Figure 6.15: Quantitative maps of the parameters given as output by the Bingham-
NODDI model fir on the phantom data acquired on the Siemens Prisma with a twice-
refocused applied gradient (bipolar). The images represent (A) the ODI, (B) the β-
fraction, (C) the Tissue volume fraction, (D) the Intra-cellular volume fraction, (D) the
R2 coefficient, (E) the MSE coefficient.

Regarding the other two 3T MRI scanners, i.e., the GE Premier located at the Oxford
Centre for Magnetic Resonance Research (OCMR) and at the Churchill Hospital, results
are shown below. In particular, the Bingham-NODDI metrics obtained fitting the phan-
tom data acquired on the GE Premier located at the OCMR are shown in Table 6.11. The
quantitative maps for the Bingham-NODDI parameters are shown in Figure 6.16. The
ODI values show consistency over time, with a CV equal to 0.22%. Similar considerations
can be made for the intra-cellular and tissue volume fractions, as they show low values
for the coefficient of variation. The β-fraction CV is equal to 2.28%, below our desired
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Table 6.11: Bingham-NODDI model metrics results for a set of two acquisitions of phan-
tom data performed on the 3T GE Premier located at the OCMR.

Bingham-NODDI model
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

SCAN 1 0.0203 ± 0.0015 0.327 ± 0.261 0.969 ± 0.045 0.431 ± 0.069 0.986 ± 0.005 0.0011 ± 0.0004
SCAN 2 0.0202 ± 0.0011 0.312 ± 0.255 0.974 ± 0.042 0.431 ± 0.069 0.987 ± 0.004 0.0010 ± 0.0003
CV (%) 0.22% 2.28% 0.24% 0.02% 0.05% 3.57%

Figure 6.16: Quantitative maps of the parameters given as output by the Bingham-
NODDI model fir on the phantom data acquired on the GE Premier located at the OCMR.
The images represent (A) the ODI, (B) the β-fraction, (C) the Tissue volume fraction,
(D) the Intra-cellular volume fraction, (D) the R2 coefficient, (E) the MSE coefficient.

threshold. The R2 coefficient values are close to 1 and the MSE low values suggest a
satisfactory goodness of fit.

Results obtained by fitting phantom data acquired on the GE Premier located at the
Churchill Hospital are shown in Table 6.12. Quantitative maps for the Bingham-NODDI
model parameters are displayed in Figure 6.17. Outcomes highlight low ODI values, in-
dicating that in the fibre ring region the orientation dispersion of neurites is low hence
suggesting a fairly organized structure for neurites. This is consistent with the informa-
tion supplied by the phantom’s manufacturing specifications and in alignment with the
inherent nature of the fiber ring region, which emulates brain tissue within a relatively
compact structure. The CV value is equal to 0.99% suggesting intra-site stability of re-
sults. Similar considerations about the CV can be made for the other parameters. As
in the case of the Bipolar acquisitions performed on the Siemens Prisma, the β-fraction
value is above the desired 5% threshold and may be due to the non-uniform distribution
of the β-fraction values in the fibre ring, resulting in a higher standard deviation of the
measurements. The MSE CV is equal to 4.75% being higher compared to the other MRI
scanners’ Mean Squared Errors. This could be due to noisier acquisitions, as also seen in
the lower SNR set to create the binary mask required to perform distortions corrections.

Regarding the 1.5T GE Artist, the GE Premier located at Churchill Hospital, the results
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Table 6.12: Bingham-NODDI model metrics results for a set of two acquisitions of phan-
tom data performed on the 3T GE Premier located at the Churchill Hospital.

Bingham-NODDI model
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

SCAN 1 0.0201 ± 0.0008 0.396± 0.253 0.957 ± 0.045 0.444 ± 0.789 0.985 ± 0.004 0.0012 ± 0.0004
SCAN 2 0.0202 ± 0.0007 0.473 ± 0.225 0.943 ± 0.078 0.452 ± 0.074 0.984 ± 0.006 0.0013 ± 0.0005
CV (%) 0.14 % 8.92% 0.76% 0.76% 0.076% 4.75%

Figure 6.17: Quantitative maps of the parameters given as output by the Bingham-
NODDI model fit on the phantom data acquired on the GE Premier located at the
Churchill Hospital. The images represent (A) the ODI, (B) the β-fraction, (C) the Tissue
volume fraction, (D) the Intra-cellular volume fraction, (D) the R2 coefficient, (E) the
MSE coefficient.

are shown below in Table 6.13. The quantitative maps for each Bignham-NODDI pa-
rameter are shown in Figure 6.18. The ODI values show consistency over time, with a
CV equal to 0.99%. Similar considerations can be made for the intra-cellular and tissue
volume fractions, as they show low values for the coefficient of variation. In particular,
the tissue volume fraction values are close to 1, indicating the presence of neurites in
the fibre ring region, as expected. The β-fraction CV is equal to 3.94%, below our de-
sired threshold. The R2 coefficient values are close to 1 and the low CV value suggests a
satisfactory goodness of fit.

Table 6.13: Bingham-NODDI model metrics results for a set of two acquisitions of phan-
tom data performed on the 1.5T GE Artist located at the Churchill Hospital.

Bingham-NODDI model
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

SCAN 1 0.0212 ± 0.0049 0.446 ± 0.233 0.968 ± 0.049 0.525 ± 0.094 0.959 ± 0.011 0.0032 ± 0.0010
SCAN 2 0.0216 ± 0.0088 0.412 ± 0.239 0.967 ± 0.048 0.514 ± 0.091 0.963 ± 0.014 0.0030 ± 0.0012
CV (%) 0.99 % 3.94 % 0.1 % 1.03 % 0.15 % 4%

In order to compare the quantitative maps of the Bingham-NODDI model, the ODI, tis-
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Figure 6.18: Quantitative maps of the parameters given as output by the Bingham-
NODDI model fit on the phantom data acquired on the 1.5T GE Artist located at the
Churchill Hospital. The images represent (A) the ODI, (B) the β-fraction, (C) the Tissue
volume fraction, (D) the Intra-cellular volume fraction, (D) the R2 coefficient, (E) the
MSE coefficient.

sue and intra-cellular volume fractions, and the MSE quantitative maps of the first scan
of each MRI scanner used in this multi-shell study are placed in Figure 6.19 and in Figure
6.20, to better visualize differences. After confirming intra-site repeatability, the initial
scan from each distinct set of MRI scanner acquisitions was selected and displayed in
Table 6.14. Notably, ODI values obtained on each scanner are congruent to each other
within the margin of error, low values indicate all scanners are able to capture the low
level of dispersion of neurites in the fibre ring region that simulates brain tissue. Simi-
lar considerations can be made regarding the intra-cellular volume fraction values, with
values being all close to 1 and indicating a high proportion of brain tissue in the fibre
ring region. The intra-cellular volume fraction is substantial across all acquisitions. The
β-fraction varies, suggesting differences in the proportion of neurites with a Bingham dis-
tribution. MSE values are generally low, indicating low error in the model predictions,
with the highest MSE observed in the GE Artist acquisition and R2 values indicating a
reliable goodness of fit for the model in all cases.

Overall, the Bingham-NODDI model demonstrates good consistency in capturing mi-
crostructural characteristics across different MRI scanners. The observed differences in
β-fraction values highlight the importance of considering different protocols of acquisi-
tions in microstructural modeling. Finally, the high R2 values and low MSE indicate a
robust fit of the model to the acquired data, supporting the reliability of results.

So, despite the tensor model highlighting some differences between the 3T MRI scanners
and the GE Artist, specifically regarding the lower Mean Diffusivity values, the Bingham-
NODDI model parameters are similar within the margin of errors, showing inter-site
consistency and repeatability and assessing the reliability of the Bingham-NODDI model
across all scanners.

The acquired diffusion data was also fitted to the linear formulation of the NODDI model,
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Table 6.14: Bingham-NODDI metrics results for the first scan of the set of acquisitions
on each MRI scanner system.

Bingham-NODDI model
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

Siemens Prisma
MONOPOLAR

0.0202 ± 0.0012 0.410 ± 0.256 0.969 ± 0.041 0.426 ± 0.069 0.988 ± 0.004 0.0009 ± 0.0003

Siemens Prisma
BIPOLAR

0.0206 ± 0.0085 0.472 ± 0.236 0.958 ± 0.052 0.410 ± 0.077 0.987 ± 0.004 0.0010 ± 0.0004

GE Premier
(OCMR)

0.0203 ± 0.0015 0.327 ± 0.261 0.969 ± 0.045 0.431 ± 0.069 0.986 ± 0.005 0.0011 ± 0.0004

GE Premier
(Churchill H.)

0.0201 ± 0.0008 0.396± 0.253 0.957 ± 0.045 0.444 ± 0.789 0.985 ± 0.004 0.0012 ± 0.0004

GE Artist 0.0212 ± 0.0049 0.446 ± 0.233 0.968 ± 0.049 0.525 ± 0.094 0.959 ± 0.011 0.0032 ± 0.0010

Figure 6.19: Quantitative maps of the parameters given as output by the Bingham-
NODDI model fit on the phantom data acquired on the first row: Siemens Prisma Monopo-
lar; second row: Siemens Prisma Bipolar; third row: GE Premier (OCMR). The images
represent (A) the ODI, the Tissue volume fraction, the Intra-cellular volume fraction, and
the MSE coefficient.

the AMICO-NODDI model, as described in Section 2.2. The implementation of the
AMICO-NODDI model is described in Section 4.3. The obtained metrics results for
phantom data acquired on each MRI scanner are shown in Table 6.15. For each set of
acquisitions, the AMICO-NODDI model was fitted in order to obtain outcomes for the
orientation dispersion index (ODI), the intra-cellular volume fraction (ICVF), which cor-
responds to the Intra-neurite volume fraction metric of the Bingham-NODDI model fit,
and the isotropic volume fraction (ISOVF), describing the extra-cellular compartment,
i.e. CSF. The quantitative maps for each parameter are displayed in Figure 6.21, Figure
6.22, and in Figure 6.23.

The ODI index values are constant across the different scanners, showing intra-site con-
sistency with low coefficient of variation (CV) values. In particular, the acquisitions
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Figure 6.20: Quantitative maps of the parameters given as output by the Bingham-
NODDI model fit on the phantom data acquired on the first row: GE Premier (Churchill
Hospital); second row: GE Artist. The images represent (A) the ODI, the Tissue volume
fraction, the Intra-cellular volume fraction, and the MSE coefficient.

performed on the GE Premier located at the OCMR have the lowest CV value. However,
all ODI outcomes are slightly higher compared to those obtained by fitting the Bingham-
NODDI model (Table 6.14). This may be due to the AMICO-NODDI mathematical
formulation exploiting the Watson distribution rather than the Bingham distribution to
model the neurite orientation distribution, possibly overestimating the ODI values due to
its incapability to capture complex neurite configurations.

The ISOVF, shown in Figure 6.23, has low values, emphasizing how the ring region is
mainly composed by a material mimicking neurite fibers in the human brain hence not
CSF. This may also explain the higher standard deviation values, almost as high as the
value itself thus affecting the CV, which has high values for all MRI scanners, except for
the Siemens Prisma Bipolar acquisitions, having good repeatability while the GE Premier
(Churchill) has the highest CV, suggesting greater variability.

The ICVF values, shown in Figure 6.22, are stable between scans for acquisitions per-
formed on the Siemens Prisma (Monopolar and Bipolar) and on the GE Premier located
at the OCMR while the acquisitions performed at the GE Premier located at the Churchill
Hospital exhibits moderate variability between scans. The highest CV value is shown by
data acquired on the GE Artist, still below the desired threshold of 5%. Overall, Siemens
Prisma (Monopolar and Bipolar) and GE Premier (OCMR) show high repeatability for
both ODI and volume fractions, with low CV values. Data acquired on the GE Artist
also show good repeatability, particularly for ODI and ISOVF, with the exception of the
ICVF, congruently with what expected by this study.

Notably, data acquired on the Siemens Prisma (Bipolar) demonstrates low variability
across all metrics, however, this may be due to the fibre ring region being fitted by the
model in a reduced dimension compared to the other ring regions hence having less voxels
to compute the AMICO-NODDI model metrics on (Figure 6.21(B) ). Furthermore, the
consistency of results is evident, with minimal differences between scans for most metrics.
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Table 6.15: AMICO-NODDI model metrics results obtained fitting to the phantom data
acquired on: Siemens Prisma Monopolar and Bipolar, GE Premier (OCMR), GE Premier
(Churchill Hospital) and GE Artist.

AMICO-NODDI model
Siemens Prisma
MONOPOLAR

Siemens Prisma
BIPOLAR

GE Premier
(OCMR)

GE Premier
(Churchill H.)

GE Artist

ODI
Scan 1 0.0301 ± 0.0010 0.0300 ± 0.0001 0.03000 ± 0.00006 0.03 ± 4e-06 0.0301 ± 0.0006
Scan 2 0.0300 ± 0.0004 0.0300 ± 0.0004 0.03000 ± 0.00006 0.0301 ± 0.0014 0.0301 ± 0.0006
CV (%) 0.09 % 0.02% 0.003% 0.16 % 0.001%

ISOVF
Scan 1 0.048 ± 0.040 0.05 ± 0.04 0.042 ± 0.036 0.053 ± 0.039 0.046 ± 0.037
Scan 2 0.050 ± 0.043 0.05 ± 0.04 0.037 ± 0.033 0.074 ± 0.073 0.054 ± 0.044
CV (%) 2.53 % 0.1% 5.6% 16.6 % 8.4%

ICVF
Scan 1 0.430 ± 0.082 0.412 ± 0.086 0.443 ± 0.069 0.453 ± 0.080 0.519 ± 0.083
Scan 2 0.435 ± 0.073 0.417 ± 0.075 0.442 ± 0.066 0.462 ± 0.072 0.506 ± 0.082
CV (%) 0.53 % 0.66% 0.12% 1.0 % 1.2%

Figure 6.21: Quantitative maps of the ODI parameter given as output by the AMICO-
NODDI model fit on the phantom data acquired on first row: Siemens Prisma Monopolar,
Siemens Prisma Bipolar and GE Premier (OCMR): second row: GE Premier (Churchill
Hospital) and GE Artist.
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Figure 6.22: Quantitative maps of the Intra-cellular volume fraction parameter given as
output by the AMICO-NODDI model fit on the phantom data acquired on first row:
Siemens Prisma Monopolar, Siemens Prisma Bipolar and GE Premier (OCMR): second
row: GE Premier (Churchill Hospital) and GE Artist.

Figure 6.23: Quantitative maps of the Isotropic volume fraction parameters given as
output by the AMICO-NODDI model fit on the phantom data acquired on first row:
Siemens Prisma Monopolar, Siemens Prisma Bipolar and GE Premier (OCMR): second
row: GE Premier (Churchill Hospital) and GE Artist.
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Chapter 7

MULTIPLE TE and b-VALUES
PHANTOM STUDY

In this chapter, we investigate the relationship between echo time and b-values with the
tensor model metrics, i.e. Fractional Anisotropy (FA) and Mean Diffusivity (MD). Results
in the previous chapter have shown how mean diffusivity values decrease when increasing
the echo time (TE).

In particular, this has been highlighted when analyzing the phantom data acquired on the
1.5T GE Artist as due to the lower magnetic field, the minimum echo time allowed and
set for the acquisition TE = 105 ms resulted in being higher compared to the echo times
set for the phantom acquisitions on the 3T MRI scanners used for this study. Having
dismissed the hypothesis attributing the observed results to the manual generation of
the 3D binary ring mask utilized for extracting data from the fiber ring region—crafted
meticulously for each distinct acquisition through the functionalities of FSLeyes applied to
the eddy-corrected image—we have chosen to extend our examination into the relationship
between echo time and the metrics derived from the tensor model. To do so, the DTI basic
phantom was first scanned multiple times on the GE Premier located at the OCMR with
different echo times with a single-shell and a multi-shell protocol. Then, the phantom
was scanned with a single-shell and a multi-shell protocol using nine different b-values.

7.1 Multiple TE acquisitions

The DTI basic phantom was scanned with a single-shell protocol with different echo times
consecutively, spanning the time interval of 10 ms, with a first echo time point TE = 56.3
ms up to TE = 126 ms. The single-shell protocol involved the acquisitions of 32 volumes
with a b-value equal to 1000 and non-weighted volume. In the context of each acqui-
sition, the phantom data underwent tensor model fitting to derive fractional anisotropy
(FA) and mean diffusivity (MD) outcomes specifically from the fiber ring region. This
extraction process was facilitated by employing a consistent 3D binary ring mask. The
stability of the phantom, devoid of motion artifacts, ensured the precise placement of the
identical ring on different images. Results of the tensor model metrics are shown in Table
7.1. As it is possible to notice, the results of the MD values decrease with increasing echo
times. It is also possible to notice how, on the contrary, the FA values with the increase
of echo times to the acceptable result of 0.78± 0.02 given by the manufacturer [46]. This
suggests that a single-shell protocol may be enough to capture properly anisotropic diffu-
sion information when the acquisitions are performed with a longer echo time. However,
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this evidence should be further investigated on multiple scanners to infer information and
compare results.

Regarding the MD decreasing values, a first hypothesis considered the decrease in mean
diffusivity values to be linked with diffusion along the preferential direction. Increasing
the echo time facilitates a greater diffusion of water molecules along the principal di-
rection, where diffusion along orthogonal directions occurs at a substantially slower rate
in comparison. Consequently, considering that the diffusion magnitude in the Diffusion
Tensor Imaging (DTI) model, elucidated in Section 1.1, is delineated by the eigenvalues
λ1, λ2, and λ3, our hypothesis posits that the diffusion magnitude along the principal
direction, denoted as µ1 and governed by λ1, should be greater than that along the other
two directions (λ2 and λ3), exhibiting an increasing trend with increasing echo times if
our conjecture holds true.

Table 7.1: Basic Phantom single-shell acquisitions with multiple TE values from TE =
56.3 ms to TE = 126 ms. For each acquisition, the Tensor model metrics results for FA
and MD, and the mean values of the eigenvalues λ1, λ2 and λ3 of the Diffusion Tensor
Matrix are shown.

Tensor Model
TE (ms) FA MD (·10−3mm2/s) λ1 (mm2/s) λ2 (mm2/s) λ3 (mm2/s)
56.3 0.710 ± 0.083 0.930 ± 0.097 0.00186 ± 9.3e-05 0.00051 ± 0.00013 0.00042 ± 0.00013
66 0.739 ± 0.081 0.896 ± 0.093 0.00186 ± 7.6e-05 0.00046 ± 0.00013 0.00038 ± 0.00012
76 0.756 ± 0.082 0.873 ± 0.094 0.00184 ± 8.3e-05 0.00043 ± 0.00013 0.00035 ± 0.00012
86 0.766 ± 0.083 0.856 ± 0.089 0.00182 ± 8.7e-05 0.00042 ± 0.00013 0.00032 ± 0.00012
96 0.777 ± 0.086 0.841 ± 0.094 0.00181 ± 9.1e-05 0.00039 ± 0.00013 0.00031 ± 0.00013
106 0.784 ± 0.088 0.828 ± 0.099 0.00180 ± 0.00010 0.00038 ± 0.00014 0.00030 ± 0.00013
116 0.789 ± 0.085 0.823 ± 0.092 0.00180 ± 0.00011 0.00038 ± 0.00013 0.00029 ± 0.00012
126 0.796 ± 0.088 0.811 ± 0.100 0.00179 ± 0.00012 0.00037 ± 0.00013 0.00027 ± 0.00013

To analyze the eigenvalues results, the mean of each eigenvalue has been computed on the
dtifit eigenvalues maps extracting the outcomes from the fibre ring region exploiting
fslmaths. Results in Table 7.1 show that λ1 is almost four times greater than λ2 and λ3, as
expected given that it represents the magnitude of diffusion along the preferential direc-
tion. Notably, λ2 and λ3 decrease with increasing echo times. Furthermore, considering
that the mean diffusivity is by definition (see Eq. (1.11)) the average of the eigenvalues,
the decrease of λ2 and λ3 imply a decrease in MD. However, the changes appear to be
almost minimal.

Similar considerations may be done with the acquisitions performed with a multi-shell
protocol using three different b-values (b=0, 1000, 2600 s/mm2). Results show the frac-
tional anisotropy assumes acceptable values, showing that a multi-shell protocol is reliable
for capturing diffusion properties through the tensor model metrics independently from
the echo time. However, it is noticeable that FA values show an increasing trend with
increasing echo time. Even in this case, the mean diffusivity values drop considerably
with increasing echo times. Furthermore, the eigenvalues λ2 and λ3 values decrease but
similarly to the single-shell acquisitions not drastically.

The diffusion data acquired with the multi-shell protocol were then fitted to the Bingham-
NODDI model as it is crucial to assess the model’s metrics results do not depend on the
echo time to capture microstructural properties of the organization of neurites in the
brain. The results are shown in Table 7.3. Results show consistency of the results hence
proving the robustness of the model. In particular, the ODI values show perfect repeata-
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bility whilst the Tissue and the Intra-neurite Volume Fraction show similar values within
the margin of errors. These results confirm the independency of the Bingham-NODDI
model from the echo time, as desired, hence proving the model’s reliability once more.

Table 7.2: Basic Phantom multi-shell acquisitions with multiple TE values from TE = 70
ms to TE = 120 ms. For each acquisition, the Tensor model metrics results FA and MD,
and the mean values of the eigenvalues λ1, λ2 and λ3 of the Diffusion Tensor Matrix are
shown.

Tensor Model
TE (ms) FA MD (·10−3mm2/s) λ1 (mm2/s) λ2 (mm2/s) λ3 (mm2/s)

70 0.793 ± 0.058 0.819 ± 0.063 0.00180 ± 8.4e-05 0.00036 ± 8.6e-05 0.00029 ± 7.9e-05
80 0.804 ± 0.060 0.802 ± 0.065 0.00179 ± 8.2e-05 0.00034 ± 8.7e-05 0.00028 ± 8.3e-05
100 0.816 ± 0.063 0.775 ± 0.064 0.00176 ± 9e-05 0.00031 ± 8.7e-05 0.00025 ± 8.3e-05
120 0.824 ± 0.068 0.745 ± 0.063 0.0017 ± 0.0001 0.00029 ± 9e-05 0.00023 ± 8.3e-05

Table 7.3: Bingham-NODDI model metrics results for each echo time used for this phan-
tom study.

Bingham-NODDI model
TE (ms) ODI beta Tissue v. f. Intra-neruite v. f. R2 MSE

70 0.020 ± 0.001 0.367 ± 0.251 0.96 ± 0.04 0.44 ± 0.07 0.983 ± 0.007 0.0014 ± 0.0006
80 0.020 ± 0.001 0.378 ± 0.252 0.97 ± 0.04 0.45 ± 0.08 0.984 ± 0.007 0.0013 ± 0.0005
100 0.020 ± 0.001 0.350 ± 0.244 0.97 ± 0.04 0.48 ± 0.09 0.982 ± 0.008 0.0015 ± 0.0007
120 0.020 ± 0.001 0.357 ± 0.261 0.96 ± 0.04 0.51 ± 0.10 0.978 ± 0.011 0.0018 ± 0.0009
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7.2 Multiple b-values acquisitions

Up to now, the single-shell and multi-shell acquisitions provided phantom data with: SS =
32 diffusion-weighted volumes with b = 1000 s/mm2 and one non-weighted b = 0 s/mm2

image and MS = 90 diffusion-weighted volumes with b = 1000, 2600 s/mm2 and one
non-weighted b = 0 s/mm2 image. To investigate the correlation between the decrease
of the mean diffusivity and echo time we decided to perform phantom acquisition with
a multi-shell protocol involving nine different b-values and the same single-shell protocol
used in the previous acquisitions, to make comparisons.

The hypothesis posits that by incorporating more b-values in the relaxation curve fitting
process, a more accurate fit is achieved. This is crucial because, with only two b-values,
the fit essentially represents a straight curve, making it challenging for the tensor model
to discern between the T2 decay and diffusion-induced decay, see Figure 7.1.
It is noteworthy that the Bingham-NODDI model remains unaffected by the choice of
b-values. Therefore, the acquisition protocol employed in the preceding chapter yields
dependable results regardless of the specific b-values chosen.

Figure 7.1: Schematic representation of the MD fit sampling b-values points.

Table 7.4: Tensor model metrics results obtained fitting to phantom data acquired with
a multi-shell acquisition protocol with multiple b-values. The table shows mean and
standard deviation values for FA and MD and the eigenvalues λ1, λ2 and λ3 of the Diffusion
Tensor Matrix obtained with the DTI fit.

TENSOR model - Multi Shell
TE (ms) FA MD (·10−3mm2/s) λ1 (mm2/s) λ2 (mm2/s) λ3 (mm2/s)

70 0.768 ± 0.056 0.806 ± 0.052 0.001724 ± 9.5e-05 0.00038 ± 7.6e-05 0.00031 ± 7e-05
110 0.805 ± 0.076 0.767 ± 0.080 0.001718 ± 0.000166 0.00033 ± 9.4e-05 0.00026 ± 8.9e-05

Results in Table 7.4 and in Table 7.5 show the MD values decreasing with increasing echo
time despite the multiple b-values used for the fit. In particular, the same procedure
regarding the computation of the eigenvalues applied in Section 7.1 was used to process
this data. The obtained eigenvalues show a visible decrease with increasing echo time.
However, computing the ratio of the variability of the eigenvalues outcomes in both the
single-shell and multi-shell acquisitions, it results not uniform as λ1 has a lower ratio. In
particular, for the single-shell acquisitions, the ratios are λ1,ratio = 1.00, λ2,ratio = 1.15
and λ3,ratio = 1.19. For the multi-shell acquisitions the ratios are λ1,ratio = 1.01, λ2,ratio

80



7.2. MULTIPLE B-VALUES ACQUISITIONS

Table 7.5: Tensor model metrics results obtained fitting to phantom data acquired with a
single-shell acquisition protocol. The table show mean and standard deviations values for
FA and MD and the eigenvalues λ1, λ2 and λ3 of the Diffusion Tensor Matrix obtained
with the DTI fit.

TENSOR model - Single Shell
TE (ms) FA MD (·10−3mm2/s) λ1 (mm2/s) λ2 (mm2/s) λ3 (mm2/s)

70 0.741 ± 0.078 0.903 ± 0.097 0.00187 ± 8.1e-05 0.00046 ± 0.000126 0.00038 ± 0.00013
110 0.788 ± 0.081 0.840 ± 0.090 0.00184 ± 8.6e-05 0.00038 ± 0.00013 0.00030 ± 0.00012

= 1.21 and λ3,ratio = 1.27.
Furthermore, the questions posed by the decrease in the MD values needs future further
investigation.
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Chapter 8

IN-VIVO BRAIN STUDY

In this chapter, the results of the analysis performed on the healthy volunteers is presented.
In-vivo diffusion brain data were fitted to the tensor model and the NODDI models to
obtain the metrics described in the previous chapter for the phantom data acquisitions
hence describing the diffusion properties in the brain.

The diffusion brain data was acquired using two 3T MRI scanners: the Siemens Prisma
with a single-refocused applied gradient (Monopolar acquisition protocol) and the GE
Premier, located at the Oxford centre for Magnetic Resonance. The aim of this in-vivo
study is to assess the intra-site stability and the inter-site repeatability of the results of the
main diffusion models across different MRI scanners. Intra-site consistency is assessed by
analyzing two sets of scans acquired on both 3T MRI scanners on one healthy volunteer.
After that, inter-site comparisons to assess the repeatability of the diffusion models were
made by analyzing two sets of scans acquired on two healthy volunteers.

Lastly, the last part of the chapter displays the comparisons of the in-vivo brain diffusion
data fitted to the AMICO-NODDI model with the Bingham-NODDI model, as previously
done with the phantom acquisitions.

8.1 GE PREMIER

To assess the intra-site consistency of the diffusion metrics over time, two healthy volun-
teers were scanned with the 3T Siemens Prisma using a monopolar acquisition protocol
and a 21 channels head coil, available at the OCMR - University of Oxford. The acquisi-
tion protocol is described in Section 3.3.

In Figure 8.1, the original diffusion-weighted brain image acquired is shown. As it is
possible to notice, the brain is warped, especially in the higher region. The figure also
displays the binary brain mask, required to perform EDDY correction. The corrected
image is finally shown, hence showing the brain image corrected of the distortions. In
particular, the corrections are visible in the higher region of the brain. In Figure 8.2, the
t1-weighted brain image used in the alignment to the MNI152 standard space is shown.
The acquired data was fitted to the tensor model in order to obtain the Fractional
Anisotropy (FA) and Mean Diffusivity (MD) mean and standard deviations values. This
is done using the dtifit function, implemented in fslpy.

The obtained quantitative maps are then aligned to the standard space MNI152 in order
to extract results exploiting the same ROIs, displayed in Figure 5.5. In particular, the
FA and MD maps were extracted from the Thalamus to infer information about the Gray
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Figure 8.1: In-vivo brain diffusion data acquired on the GE Premier located at the OCMR

Figure 8.2: T1-weighted image of the brain acquired on the GE Premier, located at the
OCMR.

Matter, from the Corpus Callosum to infer results about the White Matter, and from the
Ventricles to infer results on the CSF.

The tensor model metrics results are shown in Table 8.1.

The quantitative maps of FA and MD are shown in Figure 8.3 and in Figure 8.4. In
particular, the images show the fractional anisotropy and mean diffusivity values for the
whole brain and for each selected ROI used to extract results, as aforementioned.

As it can be seen in Table 8.1, the FA values for corpus callosum are higher compared
to those of obtained for the Thalamus and the Ventricles, highlighting the intricately or-
ganized nature of White Matter as opposed to the lower values of FA in the Ventricles,
hence reflecting the isotropic diffusion of CSF, as expected in this region of the brain.

Regarding consistency of results, for both Scan 1 and Scan 2, FA and MD values are
consistent, with slight variations. This is also confirmed by a low Coefficient of Variation
(CV) at 0.08%, indicating a high level of repeatability. FA and MD values for the Thala-
mus show minor variability between the two scans, also confirmed by a relatively low level
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Table 8.1: Tensor model metrics results for the in-vivo brain data acquired on the GE
Premier located at the OCMR.

TENSOR model
FA MD (·10−3mm2/s)

Corpus Callosum
SCAN 1 0.577 ± 0.196 0.661 ± 0.145
SCAN 2 0.578 ± 0.190 0.647 ± 0.127

CV 0.08% 1.07%

Thalamus
SCAN 1 0.307 ± 0.078 0.724 ± 0.177
SCAN 2 0.300 ± 0.070 0.686 ± 0.139

CV 1.1% 2.69%

Ventricles
SCAN 1 0.346 ± 0.186 1.522 ± 0.370
SCAN 2 0.325 ± 0.166 1.501 ± 0.310

CV 3.1% 0.69%

of variation between scans. Finally, FA and MD values for the Ventricles demonstrate
some variability between Scan 1 and Scan 2 but remain within a reasonable range. This
is also confirmed by a slightly higher CV though still below our desired threshold of 5%.

Overall, the tensor model applied to in-vivo brain data on the GE Premier at the OCMR
produces consistent results for all ROIs. The observed FA and MD values are generally
small, indicating the robustness and reliability of the Tensor model.

Figure 8.3: (A) Quantitative map of the FA of the whole brain aligned to MNI152 standard
space, (B) quantitative map of FA for each selected ROI, i.e. Corpus Callosum, Thalamus
and Ventricles.

The results obtained fitting the diffusion brain data acquired on the GE Premier of a
healthy volunteer are shown in Table 8.2. The quantitative maps for each Bingham-
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Figure 8.4: (A) Quantitative map of the MD of the whole brain aligned to MNI152
standard space, (B) quantitative map of MD for each selected ROI, i.e. Corpus Callosum,
Thalamus and Ventricles.

NODDI model parameter for the whole brain are shown in Figure 8.5. These are the
results of the parameters of the Bingham-NODDI model fit not aligned to the MNI152
standard space. The quantitative maps obtained by the fit for each parameter were then
aligned to the MNI152 standard space, to better compare results based on a reference
system. Furthermore, the quantitative maps for each selected ROI are displayed in Figure
8.6, Figure 8.7, Figure 8.8, Figure 8.9, Figure 8.10, Figure 8.11, and in Figure 8.12.

Regarding the obtained results for Genu of Corpus Callosum, the ODI values for scan 1 and
scan 2 are similar, with low variability (CV= 0.48 %). This suggests good repeatability in
measuring the orientation dispersion in the Genu. The β-fraction, Tissue volume fraction
and Intra-neurite Volume Fraction show similar metrics results, exhibiting low variability,
as also confirmed by the CV values of each of these parameters hence suggesting consistent
results between the two scans. The high R2 values for both scans (0.980 and 0.967) indicate
a strong fit of the Bingham-NODDI model to the data while the low MSE values (0.0013
and 0.0022) further support the model’s goodness of fit. Similar considerations can be
made for the Splenium of CC and the Anterior and Posterior limbs of Internal Capsule,
showing low variability through scans. Thalamus, Caudate, and Putamen regions also
exhibit low variability in the measured metrics, indicating the intra-site consistency of
the Bingham-NODDI model fitted to in-vivo acquisitions.

The quantitative maps in Figure 8.6 show a great contrast between gray and white matter
arising from the difference in the ODI index values between the two tissue types. White
matter has lower ODI values, indicating a more structured neurite arrangement, with
little dispersion about the dominant orientation of fiber tracts. Viceversa, grey matter is
characterized by higher ODI values hence suggesting that gray matter does not exhibit
organized fibre tracts like white matter. Notably, the ODI values in the Ventricles region
are very close to zero, as Ventricles are mainly composed of Cerebral Spinal Fluid hence
marking the absence of cells.
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Table 8.2: Bingham-NODDI metrics results of a set of two in-vivo acquisitions on the GE
Premier of a healthy volunteer to assess intra-site repeatability.

Bingham-NODDI model
ODI β-fraction Tissue v. f. Intra-neurite v. f. R2 MSE

Genu CC
SCAN 1 0.103 ± 0.089 0.582 ± 0.202 0.82 ± 0.17 0.56 ± 0.11 0.980 ± 0.008 0.0013 ± 0.0006
SCAN 2 0.102 ± 0.088 0.603 ± 0.211 0.83 ± 0.15 0.56 ± 0.11 0.967 ± 0.013 0.0022 ± 0.0009

CV 0.48% 1.78% 0.49% 0.27% 0.67% 24.4%

Splenium CC
SCAN 1 0.079 ± 0.077 0.583 ± 0.200 0.86 ± 0.10 0.64 ± 0.11 0.979 ± 0.006 0.0014 ± 0.0005
SCAN 2 0.075 ± 0.075 0.597 ± 0.196 0.85 ± 0.11 0.64 ± 0.11 0.972 ± 0.008 0.0019 ± 0.0006

CV 2.79% 1/16% 0.79% 0.61% 0.38% 15.2%

Anterior limb IC
SCAN 1 0.193 ± 0.099 0.491 ± 0.183 0.939 ± 0.051 0.549 ± 0.073 0.976 ± 0.008 0.0014 ± 0.0005
SCAN 2 0.190 ± 0.091 0.487 ± 0.177 0.938 ± 0.049 0.549 ± 0.072 0.971 ± 0.010 0.0015 ± 0.0006

CV 0.67% 0.45% 0.01% 0.04% 0.27% 10.3%

Posterior limb IC
SCAN 1 0.119 ± 0.041 0.521 ± 0.233 0.881 ± 0.041 0.65 ± 0.06 0.977 ± 0.008 0.0013 ± 0.0005
SCAN 2 0.116 ± 0.049 0.516 ± 0.250 0.887 ± 0.042 0.66 ± 0.06 0.973 ± 0.009 0.0016 ± 0.0006

CV 1.71% 0.51% 0.34% 0.10% 0.22% 9.42%

Thalamus
SCAN 1 0.181 ± 0.073 0.622 ± 0.206 0.921 ± 0.131 0.424 ± 0.061 0.981 ± 0.005 0.0011 ± 0.0003
SCAN 2 0.186 ± 0.070 0.649 ± 0.191 0.946 ± 0.097 0.434 ± 0.061 0.973 ± 0.009 0.0016 ± 0.0006

CV 1.34% 2.07% 1.30% 1.12% 0.40% 17.6%

Caudate
SCAN 1 0.423 ± 0.147 0.524 ± 0.173 0.834 ± 0.201 0.446 ± 0.076 0.981 ± 0.012 0.0012 ± 0.0007
SCAN 2 0.405 ± 0.131 0.562 ± 0.170 0.850 ± 0.179 0.441 ± 0.068 0.97 ± 0.01 0.0019 ± 0.0010

CV 2.28% 3.52% 0.98% 0.63% 0.58% 23.37%

Putamen
SCAN 1 0.417 ± 0.136 0.542 ± 0.178 0.986 ± 0.010 0.460 ± 0.031 0.979 ± 0.003 0.0012 ± 0.0002
SCAN 2 0.439 ± 0.138 0.542 ± 0.174 0.987 ± 0.010 0.468 ± 0.025 0.976 ± 0.006 0.0014 ± 0.0004

CV 2.6% 0.04% 0.02% 0.83% 0.18% 8.02%

Figure 8.5: Quantitative maps of the metrics obtained fitting the diffusion brain data
acquired on the GE Premier located at the OCMR to the Bingham-NODDI model: (A)
The ODI index, (B) The β-fraction, (C) The tissue volume fraction, (D) The intra-neurite
volume fraction, (E) The R2 coefficient, (F) The Mean Squared Error (MSE) coefficient.

On the other hand, in Figure 8.8, it is possible to notice how the tissue volume fraction is
close to one in regions characterised by the presence of gray and white matter, highlighting
the very low presence of inter-cellular water filling the spaces between adjacent cells in a
tissue. Furthermore, the tissue volume fraction index shows values close to zero in the
Ventricles, as we don’t expect to have brain tissues located in this region.
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Figure 8.6: Quantitative maps of the ODI index obtained fitting the diffusion brain data
acquired on the GE Premier located at the OCMR to the Bingham-NODDI model: on
the left, the ODI map fitted to the MNI152 space: on the right the ODI index for each
selected ROI, i.e. Genu and Splenium of Corpus Callosum, Anterior and Posterior Limbs
of Internal Capsule, Thalamus, Putamen, and Caudate.

Figure 8.7: Quantitative maps of the β-fraction index obtained fitting the diffusion brain
data acquired on the GE Premier located at the OCMR to the Bingham-NODDI model:
on the left, the β-fraction map fitted to the MNI152 space: on the right the β-fraction
index for each selected ROI, i.e. Genu and Splenium of Corpus Callosum, Anterior and
Posterior Limbs of Internal Capsule, Thalamus, Putamen and Caudate.

In Figure 8.5, the quantitative maps show the fraction of axons and dendrites in the brain.
It is evident that values are higher in the Genu and Splenium of the Corpus Callosum
as well as in the Anterior and Posterior Limbs of the Internal Capsule compared to the
regions of the Thalamus, Caudate, and putamen, as these regions are predominantly
characterized by the presence of white matter. This indicated that white matter has a
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Figure 8.8: Quantitative maps of the Tissue Volume Fraction index obtained fitting the
diffusion brain data acquired on the GE Premier located at the OCMR to the Bingham-
NODDI model: on the left, the Tissue Volume Fraction map fitted to the MNI152 space:
on the right the Tissue Volume Fraction index for each selected ROI, i.e. Genu and Sple-
nium of Corpus Callosum, Anterior and Posterior Limbs of Internal Capsule, Thalamus,
Putamen and Caudate.

Figure 8.9: Quantitative maps of the Intra-neurite Volume Fraction index obtained fit-
ting the diffusion brain data acquired on the GE Premier located at the OCMR to the
Bingham-NODDI model: on the left, the Intra-neurite Volume Fraction map fitted to the
MNI152 space: on the right the Intra-neurite Volume Fraction index for each selected
ROI, i.e. Genu and Splenium of Corpus Callosum, Anterior and Posterior Limbs of In-
ternal Capsule, Thalamus, Putamen and Caudate.

higher density of neurites when compared to gray matter.

Figure 8.10 shows the extra-cellular component obtained by fitting the Bingham-model
to in-vivo results. Notably, the extra-cellular component’s values are higher in the region
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Figure 8.10: Quantitative maps of the Extra-cellular Volume Fraction index obtained
fitting the diffusion brain data acquired on the GE Premier located at the OCMR to
the Bingham-NODDI model: on the left, the Extra-cellular Volume Fraction map fitted
to the MNI152 space: on the right the Extra-cellular Volume Fraction index for each
selected ROI, i.e. Genu and Splenium of Corpus Callosum, Anterior and Posterior Limbs
of Internal Capsule, Thalamus, Putamen and Caudate.

Figure 8.11: Quantitative maps of the R2 index obtained fitting the diffusion brain data
acquired on the GE Premier located at the OCMR to the Bingham-NODDI model: on
the left, the R2 map fitted to the MNI152 space: on the right the R2 index for each
selected ROI, i.e. Genu and Splenium of Corpus Callosum, Anterior and Posterior Limbs
of Internal Capsule, Thalamus, Putamen and Caudate.

corresponding to the Ventricles, as expected, as it depicts the main presence of CSF inside
this brain region whilst showing lower values in the rest of the brain.

Figure 8.11 and Figure 8.12 show the statistical coefficient indicating the goodness of fit in
the case of the in-vivo acquisitions. The coefficients shoul not display the brain structure
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Figure 8.12: Quantitative maps of the Mean Squared Error index obtained fitting the
diffusion brain data acquired on the GE Premier located at the OCMR to the Bingham-
NODDI model: on the left, the Mean Squared Error map fitted to the MNI152 space: on
the right the Mean Squared Error index for each selected ROI, i.e. Genu and Splenium of
Corpus Callosum, Anterior and Posterior Limbs of Internal Capsule, Thalamus, Putamen
and Caudate.

of the fitted data, as it indicates that the model is able to fit the acquired data equally
well everywhere. Figure 8.12 shows white voxels indicating higher values of the MSE that
do not produce a precise structure. Furthermore, the values of the MSE were thresholded
to better visualize the coefficient properties as the original visualization could not be clear
otherwise. Figure 8.11 shows the high values obtained for the R2 coefficient, indicating
the robustness of the fit as the values extracted from the white matter ROIs and those
obtained from the gray matter ROIs are similar within the margin of errors.

91



CHAPTER 8. IN-VIVO BRAIN STUDY

8.2 SIEMENS PRISMA

Following the initial scanning of the healthy volunteer on the GE Premier system, subse-
quent analysis involved two additional acquisitions of the same individual on the Siemens
Prisma, employing a monopolar acquisition protocol. The analysis protocol mirrored that
applied to the GE Premier images, encompassing the fitting of the tensor model to the
diffusion brain data, followed by fitting to the NODDI models. Relevant parameters were
then extracted from region-of-interests (ROIs) tailored to yield results from both gray and
white matter.

Notably, the Siemens Prisma acquisitions employed a phase encoding gradient oriented
from left to right, differing from the GE Premier acquisition. To facilitate accurate data
fitting, a new file incorporating acquisition parameter information was generated to rectify
distortions affecting the Siemens Prisma images. Subsequently, the images were aligned
with the MNI152 standard space, ensuring a consistent reference system for reliable ex-
traction of results and facilitating meaningful inter-site comparisons.

The original diffusion brain images are shown in Figure 8.13, together with the binary
brain mask required to perform distortions corrections and the final corrected image. The
original diffusion brain image is warped on both sides of the brain, indicating it has been
affected by distortions, then corrected in the final image used to be fitted. Figure 8.14
shows the T1-weighted image of the brain acquired on the Siemens Prisma.

Figure 8.13: In-vivo brain diffusion data acquired on the Siemens Prisma with a monopo-
lar acquisition protocol.

The tensor model metrics results are shown in Figure 8.3. The quantitative maps of FA
and MD are shown in Figure 8.15 and in Figure 8.16. In particular, the images show the
fractional anisotropy and mean diffusivity values for the whole brain and for each selected
ROI used to extract results, i.e. Ventricles for the CSF analysis, Thalamus for the Gray
Matter analysis, and the Corpus Callosum for the White Matter analysis.
Corpus Callosum fractional anisotropy and mean diffusivity results are similar suggest-
ing consistency between scans, also confirmed by the low coefficient of variation values,
indicating good repeatability. FA values are lower compared to the Corpus Callosum,
indicating a lower level of anisotropy in this brain region compared to those in the Cor-
pus Callosum, characterized by the presence of white matter tracts through which water
diffuses preferentially. Low CV suggests little variability. The FA values extracted from
the Ventricles’ region are lower, indicating lower anisotropy, as expected due to the free
movement of water in this brain region. Values are consistent between scans and low CV
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Figure 8.14: T1-weighted image of the brain acquired on the Siemens Prisma with a
Monopolar acquisition protocol.

Table 8.3: Tensor model metrics results for diffusion brain data acquired on the Siemens
Prisma with a Monopolar acquisition protocol.

TENSOR model
FA MD (·10−3mm2/s)

Corpus Callosum
SCAN 1 0.6564 ± 0.1700 0.650 ± 0.146
SCAN 2 0.6563 ± 0.1677 0.646±0.141

CV 0.009% 0.31%

Thalamus
SCAN 1 0.331 ± 0.078 0.657 ± 0.117
SCAN 2 0.335 ± 0.077 0.665 ± 0.133

CV 0.62% 0.61%

Ventricles
SCAN 1 0.274 ± 0.126 1.741 ± 0.290
SCAN 2 0.284 ± 0.134 1.740 ± 0.308

CV 1.71% 0.02%

values suggest high reproducibility of the obtained results.

The quantitative maps show uniform distribution of FA and MD values, the discussed
consideration about diffusion properties are also evidently displayed in the selected ROIs.

The results obtained for the Genu of the CC show similar values for the ODI index,
β-fraction, Tissue volume fraction, and Intra-neurite volume fraction. The CV values
are all low, indicating low variability. Similar to the Genu of the CC, scan 1 and scan
2 results of the Splenium of the CC are consistent, indicating good repeatability. The
Anterior Limb of IC shows consistent results between scans, while the intra-neurite volume
fraction and MSE have a slightly higher CV. The Thalamus results show one of the highest
CV values for the tissue volume fraction, suggesting a relatively higher variability in this
metric whilst the Caudate results have a generally low CV, except for MSE, which has a
higher CV. Finally, the Putamen results demonstrate very low CV values, indicating high
repeatability and low variability in the measured metrics. Overall, the Bingham-NODDI
model results suggest intra-site repeatability for the assessed brain regions, with low
coefficients of variation in most metrics. Notably, the Mean Squared Error’s coefficients
of variation of the GE Premier have higher variability between scans compared to the
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Figure 8.15: (A) Quantitative map of the FA of the whole brain aligned to MNI152
standard space, (B) quantitative map of FA for each selected ROI, i.e. Corpus Callosum,
Thalamus and Ventricles.

Figure 8.16: (A) Quantitative map of the MD of the whole brain aligned to MNI152
standard space, (B) quantitative map of MD for each selected ROI, i.e. Corpus Callosum,
Thalamus and Ventricles.

scans acquired on the Siemens Prisma. However, the values obtained are similar between
the two scanners hence suggesting a robust fit for the Bingham-NODDI model across
scanners.

The considerations applied to the quantitative maps derived from the diffusion brain
data collected on the GE Premier remain applicable to those generated from the Siemens
Prisma. Particularly noteworthy is the observation of elevated ODI index values within
regions of the Corpus Callosum and areas corresponding to the anticipated histological
presence of white matter, shown in Figure 8.18. The β-fraction values in Figure 8.19
exhibit notable variability across various Regions of Interest (ROIs), primarily attributed
to the intricate and diverse nature of neurite structures within the brain. This diversity
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Table 8.4: Bingham-NODDI metrics results of a set of two in-vivo acquisitions on the
Siemens Prisma of a healthy volunteer to assess intra-site repeatability.

Bingham-NODDI model
ODI β-fraction Tissue v. f. Intra-neurite v. f. R2 MSE

Genu CC
SCAN 1 0.080 ± 0.069 0.586 ± 0.219 0.85 ± 0.14 0.61 ± 0.11 0.981 ± 0.009 0.0013 ± 0.0007
SCAN 2 0.078 ± 0.065 0.592 ± 0.202 0.86 ± 0.13 0.61 ± 0.11 0.982 ± 0.009 0.0012 ± 0.0007

CV 1.44 % 0.54% 0.53% 0.30% 0.02% 1.1%

Splenium CC
SCAN 1 0.061 ± 0.062 0.595 ± 0.194 0.85 ± 0.12 0.69 ± 0.11 0.980 ± 0.011 0.0016 ± 0.0013
SCAN 2 0.060 ± 0.059 0.607 ± 0.202 0.85 ± 0.13 0.69 ± 0.12 0.981 ± 0.010 0.0014 ± 0.0010

CV 1.53% 1.00% 0.48% 0.21% 0.07% 4.7%

Anterior limb IC
SCAN 1 0.174 ± 0.095 0.551 ± 0.184 0.94 ± 0.05 0.59 ± 0.09 0.974 ± 0.013 0.0015 ± 0.0007
SCAN 2 0.177 ± 0.091 0.532 ± 0.182 0.95 ± 0.06 0.59 ± 0.09 0.973 ± 0.020 0.0016 ± 0.0016

CV 0.87% 1.72% 0.3% 0.46% 0.04% 2.6%

Posterior limb IC
SCAN 1 0.100 ± 0.044 0.541 ± 0.235 0.91 ± 0.03 0.69 ± 0.06 0.977 ± 0.011 0.0014 ± 0.0007
SCAN 2 0.099 ± 0.050 0.558 ± 0.213 0.91 ± 0.04 0.68 ± 0.06 0.976 ± 0.013 0.0015 ± 0.0008

CV 0.46% 1.56% 0.27% 0.47% 0.04% 2.1%

Thalamus
SCAN 1 0.185 ± 0.076 0.627 ± 0.203 0.95 ± 0.08 0.46 ± 0.06 0.976 ± 0.008 0.0010 ± 0.0006
SCAN 2 0.179 ± 0.074 0.641 ± 0.194 0.94 ± 0.10 0.47 ± 0.06 0.984 ± 0.007 0.0010 ± 0.0004

CV 1.70% 1.12% 0.33% 0.09% 0.06% 3.83%

Caudate
SCAN 1 0.420 ± 0.127 0.581 ± 0.187 0.88 ± 0.15 0.47 ± 0.07 0.976 ± 0.016 0.0016 ± 0.0011
SCAN 2 0.418 ± 0.120 0.581 ± 0.191 0.90 ± 0.14 0.47 ± 0.07 0.972 ± 0.020 0.0018 ± 0.0014

CV 0.22% 0.01% 0.75% 0.39% 0.16% 6.76%

Putamen
SCAN 1 0.444 ± 0.137 0.540 ± 0.170 0.989 ± 0.003 0.49 ± 0.02 0.980 ± 0.004 0.0011 ± 0.0002
SCAN 2 0.451 ± 0.136 0.536 ± 0.166 0.989 ± 0.004 0.49 ± 0.02 0.980 ± 0.004 0.0011 ± 0.0002

CV 0.77% 0.31% 0.002% 0.02% 0.002% 0.13%

Figure 8.17: Quantitative maps of the metrics obtained fitting the diffusion brain data
acquired on the Siemens Prisma to the Bingham-NODDI model: (A) The ODI index, (B)
The β-fraction, (C) The tissue volume fraction, (D) The intra-neurite volume fraction,
(E) The R2 coefficient, (F) The Mean Squared Error (MSE) coefficient.

poses challenges in accurately determining a precise value representing the proportion of
volume occupied by neurites relative to the total voxel volume. The Tissue volume fraction
index in Figure 8.20 has values that are close to 1 in the brain regions characterized by the
presence of brain tissue whilst it is close to zero in the ventricles region, mainly composed
by the CSF. Similar consideration can be done for the intra-neurite volume fraction,
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Figure 8.18: Quantitative maps of the ODI index obtained fitting the diffusion brain data
acquired on the Siemens Prisma to the Bingham-NODDI model: on the left, the ODI map
fitted to the MNI152 space: on the right the ODI index for each selected ROI, i.e. Genu
and Splenium of Corpus Callosum, Anterior and Posterior Limbs of Internal Capsule,
Thalamus, Putamen and Caudate.

Figure 8.19: Quantitative maps of the β-fraction index obtained fitting the diffusion
brain data acquired on the Siemens Prisma to the Bingham-NODDI model: on the left,
the β-fraction map fitted to the MNI152 space: on the right the β-fraction index for each
selected ROI, i.e. Genu and Splenium of Corpus Callosum, Anterior and Posterior Limbs
of Internal Capsule, Thalamus, Putamen and Caudate.

showing lower values in the Thalamus, Caudate and Putamen regions hence suggesting
a lower density of axons and dendrites. Finally, the Extra-cellular volume fraction has
values close to one in the Ventricles region, thus marking the dominant presence of non-
tissue in this region of the brain.
The Mean Squared Error assumes low values. Furthermore, voxels with higher values are
randomly located in the map not showing any particular brain structure hence showing
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Figure 8.20: Quantitative maps of the Tissue Volume Fraction index obtained fitting the
diffusion brain data acquired on the Siemens Prisma to the Bingham-NODDI model: on
the left, the Tissue Volume Fraction map fitted to the MNI152 space: on the right the
Tissue Volume Fraction index for each selected ROI, i.e. Genu and Splenium of Corpus
Callosum, Anterior and Posterior Limbs of Internal Capsule, Thalamus, Putamen and
Caudate.

Figure 8.21: Quantitative maps of the Intra-neurite Volume Fraction index obtained
fitting the diffusion brain data acquired on the Siemens Prisma to the Bingham-NODDI
model: on the left, the Intra-neurite Volume Fraction map fitted to the MNI152 space:
on the right the Intra-neurite Volume Fraction index for each selected ROI, i.e. Genu
and Splenium of Corpus Callosum, Anterior and Posterior Limbs of Internal Capsule,
Thalamus, Putamen and Caudate.

the goodness of fit.
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Figure 8.22: Quantitative maps of the Extra-cellular Volume Fraction index obtained
fitting the diffusion brain data acquired on the Siemens Prisma to the Bingham-NODDI
model: on the left, the Extra-cellular Volume Fraction map fitted to the MNI152 space:
on the right the Extra-cellular Volume Fraction index for each selected ROI, i.e. Genu
and Splenium of Corpus Callosum, Anterior and Posterior Limbs of Internal Capsule,
Thalamus, Putamen and Caudate.

Figure 8.23: Quantitative maps of the R2 index obtained fitting the diffusion brain data
acquired on the Siemens Prisma to the Bingham-NODDI model: on the left, the R2 map
fitted to the MNI152 space: on the right the R2 index for each selected ROI, i.e. Genu
and Splenium of Corpus Callosum, Anterior and Posterior Limbs of Internal Capsule,
Thalamus, Putamen and Caudate.
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Figure 8.24: Quantitative maps of the Mean Squared Error index obtained fitting the
diffusion brain data acquired on the Siemens Prisma to the Bingham-NODDI model: on
the left, the Mean Squared Error map fitted to the MNI152 space: on the right the Mean
Squared Error index for each selected ROI, i.e. Genu and Splenium of Corpus Callosum,
Anterior and Posterior Limbs of Internal Capsule, Thalamus, Putamen and Caudate.
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8.3 Comparisons

The in-vivo data investigation proceeded with the acquisition of diffusion brain data of
a second healthy volunteer. First, the volunteer was scanned on the GE Premier located
at the OCMR, then on the Siemens Prisma with a monopolar acquisition protocol. On
each scanner, one scan was performed, in order to visualize comparisons with the scans
acquired on the first healthy volunteer and to assess the inter-site repeatability of results
of the tensor model of the Bingham-NODDI model. Having assessed intra-site consistency
of results, for each set of acquisitions performed on the first healthy volunteer, the first
scan was chosen to show results.
It is necessary to highlight that the processing of the diffusion brain images of the sec-
ond healthy volunteer acquired on the Siemens Prisma showed distortions that the FSL
EDDY tool was not able to properly correct hence creating inaccurate alignments of the
quantitative map of the fit with the MNI152 standard space. For this reason, images were
corrected by exploiting distortion correction without reverse phase-encoding scans or field
maps, as explained in the paper [56].

This tool aims to enable susceptibility distortion correction with historical and/or lim-
ited datasets using an ”undistorted” b = 0 image that matches the geometry of struc-
tural T1-weighted images and also matches the contrast from the diffusion images. This
”undistorted” image is used in the standard work pipeline and tells the algorithm that
this synthetic image has infinite bandwidth. The resulting topup outputs were then used
to perform eddy correction and to fit the data to the tensor and NODDI models.

Comparisons of the metrics results obtained fitting the tensor model to each healthy
volunteer diffusion brain data are shown in Table 8.5.

Table 8.5: Tensor model metrics results for the in-vivo diffusion brain data acquisitions
performed on the GE Premier located and on the Siemens Prisma. Results are extracted
from three region of interests: Corpus Callosum for WM, Thalamus for GM and Ventricles
for CSF.

TENSOR model
FA MD (·10−3mm2/s)

GE PREMIER

Corpus Callosum
Healthy Volunteer 1 0.577 ± 0.196 0.661 ± 0.145
Healthy Volunteer 2 0.615 ± 0.180 0.636 ± 0.133

Thalamus
Healthy Volunteer 1 0.307 ± 0.078 0.724 ± 0.177
Healthy Volunteer 2 0.316 ± 0.067 0.629 ± 0.122

Ventricles
Healthy Volunteer 1 0.346 ± 0.186 1.522 ± 0.370
Healthy Volunteer 2 0.234 ± 0.108 1.812 ± 0.285

SIEMENS PRISMA

Corpus Callosum
Healthy Volunteer 1 0.656 ± 0.170 0.650 ± 0.146
Healthy Volunteer 2 0.495 ± 0.297 0.515 ± 0.260

Thalamus
Healthy Volunteer 1 0.331 ± 0.078 0.657 ± 0.117
Healthy Volunteer 2 0.272 ± 0.135 0.543 ± 0.254

Ventricles
Healthy Volunteer 1 0.274 ± 0.126 1.741 ± 0.290
Healthy Volunteer 2 0.140 ± 0.128 1.455 ± 1.0

The FA and MD outcomes, derived from the analysis of in-vivo brain data presented in
Table 8.5, juxtapose the results of the initial scans obtained from both the GE Premier
and Siemens Prisma scanners of the first healthy volunteer with those acquired from both
MRI scanners in the case of the second healthy volunteer.
Results obtained on the Siemens Prisma tend to show higher FA values in the Corpus
Callosum region compared to those obtained on the GE Premier. Both scanners exhibit
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relatively similar FA and MD values for the Thalamus in both healthy volunteers whilst
FA values are generally lower in Siemens Prisma. Results obtained across scanners for
each single volunteer are similar within the margin of errors. However, MD results ex-
tracted from the ROIs designed on the ventricles region show variability. This may be due
to the different alignment processing performed on the second volunteer Siemens diffusion
data, as it has been corrected from distortions differently hence showing slight differences.

Figure 8.25 displays the quantitative maps of FA obtained fitting the diffusion brain data
acquired on the two 3T scanners to the tensor model. The quantitative maps were aligned
to the MNI152 standard space to better visualize differences.

In addition to the structural distinctions among the brains, the FA maps exhibit compa-
rable characteristics, as FA tends to attain higher values in white matter regions. This
is indicative of the preferential diffusion direction of water molecules along axons. Figure
8.26 shows MD quantitative maps. Notably, mean diffusivity assumes higher values in
the ventricles, consistent with the unrestricted diffusion properties of CSF located in this
brain region.

Figure 8.25: FA quantitative maps obtained fitting the diffusion brain data to the tensor
model. First row shows GE Premier acquisitions: (A) FA map of the first scan of Healthy
Volunteer 1, (B) FA map of Healthy Volunteer 2; second row shows Siemens Prisma
Monopolar acquisitions: (C) FA map of the first scan of Healthy Volunteer 1, (D) FA
map of Healthy Volunteer 2.
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Figure 8.26: MD quantitative maps obtained fitting the diffusion brain data to the tensor
model. First row shows GE Premier acquisitions: (A) MD map of the first scan of
Healthy Volunteer 1, (B) MD map of Healthy Volunteer 2; second row shows Siemens
Prisma Monopolar acquisitions: (C) MD map of the first scan of Healthy Volunteer 1,
(D) MD map of Healthy Volunteer 2.
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CHAPTER 8. IN-VIVO BRAIN STUDY

Comparisons of results obtained for Healthy Volunteer 1 on paired scanners show simi-
larity hence suggesting the model’s consistency. In particular, the ODI values obtained
on the Siemens Prisma for Genu CC are slightly lower compared to the GE premier but
acceptable within the margin of errors. Tissue and Intra-neurite volume fraction results
are consistent across MRI scanners. The ODI values obtained by extracting from the
Splenium region are affected by noise on both scanners.
The volume fraction within neurites shows elevated values in the Genu and Splenium
regions of the Corpus Callosum, as well as in the Anterior and Posterior limbs of the
Internal Capsules, in contrast to the results derived from the Putamen, Caudate, and
Thalamus. This indicates a greater concentration of axons and dendrites in these former
regions, aligning with histological expectations, given that the latter regions are primar-
ily distinguished by the prevalence of gray matter. Also, results extracted from Genu,
Splenium and Anterior limb of IC show slightly higher values on the Siemens Prisma
compared to those obtained on the GE premier although consistent within the margin of
errors whilst results from the Posterior limb of the IC are comparable between scanners.

Overall, despite being different scanners, there is consistency in the estimated metrics for
intra-neurite volume fraction across most brain regions and for both healthy volunteers.
There is some variability between healthy volunteers, with different individuals showing
slightly different intra-neurite volume fraction values. This is expected due to natural
anatomical variations among individuals.

The Bingham-NODDI model appears to provide robust and consistent estimations of the
metrics across different brain regions and volunteers on both scanners.

Figure 8.27: Bingham-NODDI quantitative maps obtained fitting in-vivo brain data ac-
quired on a) GE Premier, b) Siemens Prisma with a monopolar acquisition protocol.
Images show the ODI index, the Tissue Volume Fraction index, the Intra-neurite Volume
Fraction and the Mean Squared Error.
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8.3. COMPARISONS
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CHAPTER 8. IN-VIVO BRAIN STUDY

The same diffusion-weighted MRI data was also fitted to the linear formulation of the
NODDI model which used the Watson distribution to model the neurite dispersion, in-
stead of the Bingham distribution. The data processing pipeline is the same as for fitting
the Bingham-NODDI model and it was repeated for each scan separately, results are
shown in Table 8.7.

Regarding results obtained on both Healthy Volunteers, values are slightly different be-
tween scanners but consistent within the margin of errors, with ODI and ICVF values be-
ing slightly higher for Siemens Prisma. The ISOVF values are less consistent but indicate
potential variations in isotropic diffusion characteristics. Healthy Volunteer 1 generally
exhibits more noticeable differences between scanners compared to Healthy Volunteer 2.

The quantitative maps obtained from the AMICO-NODDI fit are shown in Figure 8.28,
Figure 8.29, and in Figure 8.30.

The ODI map, shown in Figure 8.28, represents the orientation dispersion index obtained
on (A) the GE Premier and (B) Siemens Prisma. In particular, the regions where CSF
is located are characterized by higher values, indicating the absence of coherent neurite
structure for CSf.
The ICVF maps, in Figure 8.30, show the volume fraction occupied by neurites in each
voxel and looks similar to the intra-neurite volume fractions maps in Figure 8.27. In this
map, however, the ventricles have values close to zero, showing the absence of cells in this
region, due to the CSF signal not being suppressed in the AMICO-NODDI mathematical
formulation.
The ISOVF maps, in Figure 8.29, define the fraction of voxels occupied by non-tissue in
the brain, clearly showing higher values in the region where CSF is located, mainly the
ventricles, the surface of the brain and down the subarachnoid space.
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8.3. COMPARISONS

Figure 8.28: Amico-NODDI model quantitative maps of the results fitting in-vivo data.
(A) The ODI index map obtained fitting diffusion brain data of the first scan of Healthy
Volunteer 1 on the GE Premier; (B) The ODI index map obtained fitting diffusion brain
data of the first scan of Healthy Volunteer 1 on the Siemens Prisma with a monopolar
acquisition protocol.

Figure 8.29: Amico-NODDI model quantitative maps of the results fitting in-vivo data.
(A) The Isotropic Volume Fraction (ISOVF) index map obtained fitting diffusion brain
data of the first scan of Healthy Volunteer 1 on the GE Premier; (B) The ISOVF index
map obtained fitting diffusion brain data of the first scan of Healthy Volunteer 1 on the
Siemens Prisma with a monopolar acquisition protocol.
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CHAPTER 8. IN-VIVO BRAIN STUDY

Figure 8.30: Amico-NODDI model quantitative maps of the results fitting in-vivo data.
(A) The Intra-cellular Volume Fraction (ICVF) index map obtained fitting diffusion brain
data of the first scan of Healthy Volunteer 1 on the GE Premier; (B) The ICVF index
map obtained fitting diffusion brain data of the first scan of Healthy Volunteer 1 on the
Siemens Prisma with a monopolar acquisition protocol.
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CONCLUSIONS

This thesis is the result of my research study carried out at the Oxford Centre for Clinical
Magnetic Resonance (OCMR) - University of Oxford. The main objective of this study
was to assess the consistency and repeatability of the Bingham-NODDI model results
across different MRI scanner systems, a model used to detect microstructural changes in
the brain by estimating the orientation distribution function of neurites in the brain. In
particular, this model employs the Bingham distribution to model the neurite dispersion
about a dominant orientation, improving the original formulation of the NODDI model,
only able to capture the isotropic dispersion of neurites. In this way, the Bingham-NODDI
model offers a unique perspective on microstructural changes in the brain by being able
to properly capture more complex configurations of neurites in the brain, such as bending
or fanning fibers of white matte. The tensor model and the AMICO-NODDI model were
also used as the first is able to provide insights into the diffusion properties of the brain,
and the latter is a linear formulation of the NODDI model which requires less time to fit
the diffusion data compared to its original formulation.

To assess the repeatability of the results across different MRI scanners, the study employed
a DTI basic phantom that mimics restricted anisotropic diffusion in the brain, in particular
in white matter. The phantom, described in Chapter 3 was scanned with the acquisition
protocol described in Section 3.3 on four different scanners, three 3T MRI scanners (GE
Premier located at the OCMR, GE Premier located at the Churchill Hospital in Oxford,
and Siemens Prisma) and one 1.5T scanner located at the Churchill Hospital in Oxford,
the GE Artist, described in Chapter 3. The acquired diffusion data were then fitted with
the tensor, Bingham-NODDI and AMICO-NODDI models, and the final results were
extracted from ROIs contoured onto the quantitative maps. To assess the consistency
of results across different MRI scanners, first intra-site stability was assessed on each
scanner computing the coefficient of variation (CV) considering the mean and the standard
deviation of each model’s metric on each scanner’s set of acquisitions. The final results
of the inter-site phantom study are shown in Chapter 6. The consistency of results are
shown by low CV values for each scanner. Comparisons of results obtained on each model
for each scanner show similar results within the margin of error with slight differences. In
particular, the analysis performed on the single-shell acquisitions shows that the Fractional
Anisotropy values are not consistent with the expected value given by the manufacturer of
the phantom whilst results obtained fitting the multi-shell data show acceptable Fractional
Anisotropy values and consistency of results across different MRI scanners for the tensor
model. Furthermore, the analysis has also shown that the Mean Diffusivity obtained
values decrease with increasing echo times, as highlighted by results obtained fitting data
acquired on the GE Artist. This is further investigated Chapter 7. The basic phantom
was scanned multiple times with different echo times, spanning from an echo time of 56.3
ms to 126 ms. Results show that the Mean Diffusivity values decrease with increasing echo
time whilst the Fractional Anisotropy values are still acceptable. To further investigate
what might be the cause of this decrease, acquisitions with multiple diffusion weighting
b-values was performed, in order to obtain a better fit for the MD values, hopefully stable
increasing echo time. However, the results show that despite increasing the number of
points (b-values) on which the MD values are being sampled, the results of mean diffusivity
are still decreasing. This implies that this study needs further investigation.

Regarding the Bingham-NODDI model, results show consistency within the margin of
errors across different MRI scanners, indicating there is no significant variation in the
analyzed metrics hence suggesting the reliability of the model.
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CONCLUSIONS

In addition to the phantom study, two healthy volunteers were scanned on the GE Premier
and on the Siemens Prisma. The first volunteer was scanned twice on each scan, to
assess intra-site repeatability of results and compare it between the two scanners. The
second volunteer was scanned once on each scanner. The consistency of the measures
contributes to the evidence of stability of the Bingham-NODDI model, given that slight
variations on the values results are still within the margin of error for the main metrics
of interest, such as the Orientation Dispersion Index (ODI), the Tissue Volume Fraction
and Intra-neurite Volume Fraction. Further investigation analyzing diffusion brain data
acquired on both 3T scanners of more healthy volunteers may increase the evidence of the
model’s applicability in different research and clinical applications thus providing a more
robust statistical investigation. The model’s reliability serves as a solid foundation for
detecting minor changes in the brain microstructure over time, representing an additional
tool for clinicians thus representing a powerful tool in both neuroscience and the clinical
fields. This study also poses a step forward for multi-center studies as it contributes to
transcending the boundaries of individual equipment thus establishing solid ground for
collaborative research and clinical applications.
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