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Lapis-rs

A Dedukti type checker based on term graphs

Nicolò Pizzo

Abstract
Logical frameworks are formal systems that provide a meta-language for specifying and
manipulating other logical systems. Logical frameworks play a crucial role in the field
of formal verification. λΠ-calculus modulo is a modern and elegant logical framework
for expressing type systems. This framework introduces the notion of dependent types,
hence enabling more expressive systems. Moreover, λΠ calculus modulo introduces the
notion of rewrite rules, that provide a more flexible and expressive system, particularly
useful for encoding type systems. Dedukti is a logical framework that implements λΠ-
calculus modulo theory.
Many of the existing implementations of proof assistants and proof checkers, such as
Dedukti, use de Brujin indices for representing and manipulating λ-terms. De Brujin
indices provide a handy structure for handling λ terms and avoid issues such as variable
renaming in many operations.
An alternative approach to handling λ terms is given by term graphs, graph based data
structures where nodes represent subterms and edges represent relations between sub-
terms. Term graphs provide the ability to easily represent shared subterms with a single
node: this mechanism helps in eliminating redundancy and in handling efficiently the
memory. For this reason, term graphs provide very efficient algorithms for computing
operations on sub terms, such as β reduction and α-equivalence.
This work aims at the implementation of a bidirectional typechecker based on term
graphs, compatible with Dedukti. One important task of this thesis consists in imple-
menting an algorithm for checking α-equivalence using sharing equality, an algorithm
that uses term graphs and computes the check in linear time.
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Chapter 1

Introduction

In the realm of formal verification and mathematical reasoning, proof assistants emerge as
powerful tools that facilitate the creation and verification of mathematical proofs. These
sophisticated software systems play a pivotal role in the domain of formal methods, where
precision and rigor are paramount. At their core, proof assistants are interactive and
automated systems designed to assist mathematicians, computer scientists, and engineers
in the development and verification of formal proofs. They leverage computational power
to ensure the correctness of logical arguments, minimizing the risk of human error and
enhancing the reliability of mathematical results. These systems are equipped with
formal languages that allow users to express mathematical statements and construct step-
by-step proofs. Proof assistants are not mere automated provers: they actively involve
users in the proof process, providing a collaborative environment where human intuition
and expertise synergize with machine-assisted verification. As technology advances, proof
assistants continue to evolve, expanding their applicability beyond pure mathematics into
fields such as software verification, hardware design, and formalized reasoning about
complex systems. In several of these systems, proofs are expressed by λ-terms, and
typing corresponds to proof checking.
λΠ-calculus modulo is a logical framework that enables an elegant and simple encoding
for type systems. At its core, λΠ modulo provides a framework for specifying and
reasoning about computations. It introduces dependent types, allowing types to depend
on terms, enabling a more expressive and fine-grained type system. This expressive
capability is crucial for formalizing intricate mathematical structures and representing
complex computations with a high level of precision. Dedukti and kontroli-rs represent
two interesting and efficient implementations of λΠ-calculus modulo.
An important task in these systems is the possibility to manage and visualize efficiently
terms. Most of the systems implement the De Brujin index for handling and comparing
terms and expressions. There exist more efficent algorithms for handling terms based
on term graphs. Term graphs are a data structure that easily represents terms and
expression; this data structure is interesting for several reasons, as we will see throughout
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this thesis. In particular, term graphs are inducted by proof nets, so their formalization
is more accurate and sophisticated than De Brujin index; moreover, the cost of many
operations is singificantly reduced when compared to the De Brujin index: for example,
a single step of β-reduction costs O(1), and the check for α-equivalence can be done in
time linear with respect to the size of the terms.
In this work, I want to explore the realm of λΠ-calculus modulo, implementing a bidi-
rectional typechecker that uses term graphs for checking α-equivalence compatible with
Dedukti. Moreover, I implemented the typechecker in Rust. A first reason for this choice
is the fact that it is needed a language that doesn’t implement garbage collection for
doing becnhmarks on the algorithms we present. Moreover, this choice leads to the pos-
sibility of exploring thread-safe parallel computing and to the possibility of comparing
this system with kontroli, an existing typechecker for Dedukti written in Rust that
uses De Brujin index.

1.1 Structure

In Chapter 2 we will talk about the theoretical foundations of my work. We will explain
in detail λΠ-calculus, type theory and Dedukti. Moreover, we will explain in detail the
theoretical foundations of some properties and algorithms I implemented, such as syntax
direction, bidirectional typingterm graphs and sharing equality.
In Chapter 3, we will talk about the extensions of the algorithms introduced in Section 2
for λΠ modulo. Moreover, we will see some implementation details (Section 3.5) that
represent both strong and weak points of the type checker.
Finally, in Chapter 4 we will present the benchmark and the obtained results; moreover,
we will briefly introduce some ideas for future works about this typechecker.
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Chapter 2

Theoretical Foundation

This chapter covers the theoretical, non-original studies I have used for my thesis. In
Section 2.1 I will talk about λΠ-modulo calculus. Section 2.2 will cover the main features
of Dedukti, and will show some simple examples. In Section 2.4 I will give a detailed
explanation about bidirectional typechecking, why it is useful and the new typing rules
used. In Section 2.5 I will cover the De Brujin index technique. In Section 2.6 we will
introduce the structure of term graphs, and will se how it provides efficient ways for
handling terms and expressions. Finally, in Section 2.7 we will show an algorithm based
on term graphs for checking α-equivalence between terms that goes under the name of
sharing equality

2.1 λΠ-modulo calculus

In this chapter I will briefly explain what is λΠ-modulo calculus. In Section 2.1.1 I will
talk about λΠ calculus and I will present the typing rules adopted. In Section 2.1.2 I
will talk about λΠ-modulo calculus and its typing rule extension.

2.1.1 λΠ calculus

λΠ calculus is an extension of λ calculus with dependent types. It introduces a new
type called Type inhabited by types. λΠ calculus introduces the possibility to define
dependent types: this family of types is stronger than simple typing, since types can
depend on terms. For instance, we can define the type encoding “a vector of size n”, that
depends on the term n. Additionally, we introduce a special type, Kind, to type terms
such as Type, A→ Type, and so on. Finally, we extend the notion of function A→ B to
a dependent product, Πx : A.B; if x does not appear in B, we have Πx : A.B ≡ A→ B
. Formally, we define a λΠ term as follows.
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t ::= ⟨x, λx.t,Πx : t.t, tt⟩

Before showing the typing rules for λΠ-calculus, we introduce some notations we will
use:

• Empty context: the empty context will be denoted with the notation [·].
• Context: with Γ we denote the context. The context is composed by a list of pairs
(x, t), where x is the name of term, and t is its type.

• β-equivalence: with ≡β we denote the notion of β-equivalence, that is the reflexive,
symmetric, transitive closure of the β-step −→β.

We are now ready to define the typing rules of the λΠ calculus.
Well-formedness of empty context

[·] well-formed

Declaration of a type or type family

Γ ⊢ A : Kind
Γ ⊢ x : A

Declaration of an object variable

Γ ⊢ A : Type

Γ ⊢ x : A
Type

Γ well-formed
Γ ⊢ Type : Kind

Variable
x : A ∈ Γ Γ well-formed

Γ ⊢ x : A
Product for types

Γ ⊢ A : Type Γ, x : A ⊢ B : Type

Γ ⊢ Πx : A. B : Type

Product for kinds
Γ ⊢ A : Kind Γ, x : A ⊢ B : Kind

Γ ⊢ Πx : A. B : Kind
Abstraction for type families

Γ ⊢ A : Type Γ, x : A ⊢ t : B Γ, x : A ⊢ B : Kind

Γ ⊢ (λx : A. t) : Πx : A. B

Abstraction for object variables

Γ ⊢ A : Type Γ, x : A ⊢ t : B Γ, x : A ⊢ B : Type

Γ ⊢ (λx : A. t) : Πx : A. B

Application

Γ ⊢M : (Πx : A. B) Γ ⊢ N : A

Γ ⊢MN : [N/x]B
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Conversion
Γ ⊢ t : A Γ ⊢ A : Type Γ ⊢ B : Type A ≡β B

Γ ⊢ t : B

Γ ⊢ t : A Γ ⊢ A : Kind Γ ⊢ B : Kind A ≡β B

Γ ⊢ t : B

2.1.2 λΠ-modulo theory

λΠ-modulo theory extends λΠ calculus by introducing rewriting rules. The major differ-
ence between λΠ and λΠ modulo is that in the former the context contains only variables,
while in the latter the context contains variables and rewrite rules. Moreover, the latter
introduces the concepts of global and local context. Global contexts encompass both
variables and rewrite rules, whereas local contexts can only contain declarations for
object variables. The first rule we introduce is the declaration of an object variable
within a local context.
Declaration of an object variable in a local context

Γ ⊢ ∆ local Γ,∆ ⊢ A : Type

Γ,∆ ⊢ x : A local

If Γ is a well-formed global context we denote by −→βΓ the smallest relation, closed
by context, such that if t rewrites to u for some rule in Γ, or if t β-reduces to u, then
t −→βΓ u. With ≡βΓ we indicate the reflexive-symmetric-transitive closure of the rela-
tion −→βΓ.
Before showing the typing rules for rewrite rules, we introduce the notion of metavari-
ables. In the context of the λΠ calculus modulo, metavariables are variables used as
placeholders in expressions. Metavariables are often used to represent unknown terms,
types, or contexts during the formulation of rules or theorems. They are placeholders
that can be replaced with concrete expressions when needed. They provide a level of
abstraction and generality when defining rules in formal systems, allowing the rules to
apply to a wide range of specific instances.

Γ well-formed Γ,∆ ⊢ l : A Γ,∆ ⊢ r : B A ≡βΓ B

Γ ⊢ l −→∆ r well-formed
From the previous rule we can notice that rewrite rules preserve the typing. We need to
rewrite the typing rules for conversion using the ≡βΓ congruence.
Conversion with rewrite rules

Γ ⊢ t : A Γ ⊢ A : Type Γ ⊢ B : Type A ≡βΓ B

Γ ⊢ t : B

Γ ⊢ t : A Γ ⊢ A : Kind Γ ⊢ B : Kind A ≡βΓ B

Γ ⊢ t : B
Finally, we show some syntactical constraints on rewrite rules to ensure soundness and
termination.
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1. The right-hand side of a rewrite rule should contain a subset of the variables used in
the left-hand side. This is done to ensure termination and avoid circular rewriting.

2. The head of the left-hand side of the rule must be a variable.

2.2 Dedukti

Dedukti [6] is a logical framework based on the λΠ-calculus modulo. lapis-rs is based
on the syntax and implementative choices adopted by this framework. In this section
I will outline the syntax of Dedukti, using some simple examples. In Dedukti, the
comments are enclosed between (; ... ;).
In Dedukti there are two kinds of declarations: declarations of static symbols, and decla-
rations of definable symbols. Static symbols cannot appear at head of rewrite rules, and
for this reason they are injective with respect to conversion. To declare static symbols,
the following syntax is used.

(; Defining the type for natural numbers. ;)

Nat: Type.

(; Defining the zero for natural number ;)

z: Nat.

To declare definable symbols, the following syntax is used.

def one : Nat.

[ ] one --> S z.

The product is expressed with the syntax A -> B. If we are expressing a dependent type,
the product can use the syntax a: A -> B. The following is a simple example for using
product in both ways.

(; Definition of the successor function. ;)

def S : Nat -> Nat

(; Defining a type that depends on a natural number. ;)

Vec: Nat -> Type.

To express a rewrite rule Dedukti uses the syntax [ ctx ] l --> r. If we want to
describe a set of rewrite rules, we only add the . at the end of the last rule. It is possible
to omit the type for the variables in the context. Let’s say we want to define the plus

function between two numbers.
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def plus: Nat -> Nat -> Nat.

[ n ] plus z n --> n

[ m, n ] plus (S m) n --> S (plus m n).

We can also express a rewrite rule with the syntax def f := b.. For example

def one: Nat := S z.

is just syntactic sugar for

def one: Nat.

[ ] one --> S z.

The abstractions are specified with x: T := B where T is an optional parameter. For
example, the following code is correct.

def K := x: Nat => z.

def K2 : Nat -> Nat := x => z.

This code is syntactically and semantically correct. I will explain in detail why this code
is peculiar, and how to address the problems it poses during the type checking process
in section 2.4.
Another syntactic term introduced by Dedukti are theorems. Theorems are defined with
the keyword thm. A theorem definition is opaque meaning that the defined symbol do
not reduce to the body of the definition. This means that the rewrite rule is not added
to the system. For example, for the code

thm three := S ( S ( S z ) ).

The rewrite rule S ( S ( S z ) ). is not added to the system, but only the definition
of three.
Finally, Dedukti syntax accepts wildcards : when a variable is not used on the right-hand
side of a rewrite rule, it can be replaced by an underscore on the left-hand side. The
following example shows how wildcards can be used.

def mult: Nat -> Nat -> Nat

[ ] mult _ zero --> zero.

Now I want to show a simple example with dependent types to see Dedukti effectively
in action. We have already defined the type for the “Array of size n”. As for the
code we have right now, we cannot instantiate this type, so we will inductively define a
constructor for this type. The constructor will take a number n, a vector of size n, and
will return a vector of size n+1.
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(; Empty vector ;)

nil: Vec z.

(; Constructor ;)

cons: n: Nat -> Vec n -> Vec (S n).

Now, we can define a function to append one vector to another.

def append : n: Nat -> Vec n -> m: Nat -> Vec m -> Vec (plus n m).

[ v, m ] append z nil m v --> v

[ n, u, m, v ] append (S n) (cons n u) m v -->

cons (plus n m) (append n u m v).

This code can be very interesting to explain why Dedukti and similar tools can be useful:
if we had written an erroneous code, the type checker would have failed, suggesting that
the result would not actually be a Vec (plus n m). This is very useful for critical sce-
narios, where the correctness of a program must be known with certainty. For example,
if we had written the following code, instead of the correct one

def append : n: Nat -> Vec n -> m: Nat -> Vec m -> Vec (plus n m).

[ v, m ] append z nil m v --> v

[ n, u, m, v ] append n (cons n u) m v -->

cons (plus n m) (append n u m v).

Dedukti would throw the following error.

Error while typing

vec.cons (vec.plus n m) (vec.append n u m v)

...

---- Expected:

vec.Vec (vec.plus n m)

---- Inferred:

vec.Vec (vec.S (vec.plus n m))

Telling us that we are returning a Vec S (plus n m) instead of Vec (plus n m). More
interesting and detailed examples are shown in [6].

2.3 Syntax Directed

When implementing a judgement we need to understand if each slot position is an input
or an output. For example, for the judgement Γ ⊢ e : A, we should always know which

11



of Γ, e, A are input and which are outputs. We will assume that everything before the :
is the input, and everything after is an output. In the previous example, we would have
Γ, e as input, and A as output. Syntax direction is an useful property whenever we want
to obtain an algorithm starting from an inference system. It refers to the situation where
the inputs conform to the conclusion of only one rule. However, the typing rules outlined
in section 2.1.1 do not make our system syntax-directed. In particular, the conversion
rule introduces ambiguity between input and output.

Γ ⊢ t : A Γ ⊢ A : Type Γ ⊢ B : s A ≡βΓ B
s is a sort

Γ ⊢ t : B
This rule overlaps with every other rule: this makes undecidable when the conversion
rule should be triggered as the derivation trees are built. To solve the problem, we need
to remove the conversion rules from the rule-set, so we focus on when the conversion
rule should occur in the typing rules described in Section 2.1. Let’s analyze the rule for
application.

Γ ⊢M : (Πx : A. B) Γ ⊢ N : A

Γ ⊢MN : [N/x]B

In this case, A appears twice as output: we are implicitly requiring that the output of
M is a product where the bound variable has the same type as N . Moreover, we are
requiring that the output of Γ ⊢M is exactly a product, so this too is an implicit use of
the conversion rule. In particular, in λΠ calculus we want that the output of Γ ⊢ M is
a product up to weak head normal form. Hence, we denote with the judgement u ↠ v
the fact that the weak head normal form of u is v.
For this reason, we eliminate the conversion rules and slightly change the application
rule.

Γ ⊢M : T T ↠ (Πx : A. B) Γ ⊢ N : A′ A ≡βΓ A′

Γ ⊢MN : [N/x]B

2.4 Bidirectional Typechecking

Regular typechecking poses the big problem of annotating each variable: the typecheck-
ing process assumes that every variable is correctly annotated, so that the check for
a certain variable is always decidable. However, modern programming languages and
frameworks let the programmer write a program flexible and clean code, omitting types
when they are too complex or too naive, preserving the benefits of static typing. The
technique that makes it possible, goes under the name of bidirectional typing or
bidirectional typechecking.
Bidirectional type checking is an approach in type theory and programming language
design that divides the process of type checking into two phases: checking and synthesis.
Type checking is applied in scenarios where the type of an expression is known or can be
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easily inferred: for example, when checking the arguments of a function call. Type infer-
ence is useful in many contexts, such as polymorphic functions, generic types, dependent
types, and in general whenever the type can be determined based on how the expression
is used. Clearly, using both techniques, allows for more flexible code, preserving the
benefits of static type checking.
Dedukti uses bidirectional typechecking to use an elegant syntax, enabling the omission
of types in some circumstances. One scenario where it is possible to omit types is with
variables in a local context. In the following example, the variables m, n do not have an
explicit type, so without bidirectional typing it couldn’t be possible to correctly typecheck
the program without introducing metavariables and unification, that make the algorithm
more complex and the error messages hard to understand.

def plus : Nat -> Nat -> Nat

[ m, n ] plus (S m) n --> S (plus m n).

Another, non-trivial, scenario where bidirectional typing is useful is when we use ab-
stractions. Let’s consider the following example.

def K2 : Nat -> Nat := x => S (S z).

Dedukti accepts this kind of code. With bidirectional typechecking we know that
K2 : Nat -> Nat, hence, because of injectivty of ->, we must have x : Nat. With
bidirectional typechecking, it is possible to catch this syntactic phenomenon and treat
it correctly. Moreover, abstractions can appear in either side of the rule, so we can have
more non-trivial cases where it is useful to not express explicitly thee type of the bound
variables, like the following.

def ignore_abs : Nat -> (Nat -> Nat) -> Nat.

[ y ] ignore_abs y (x => plus y (S x)) --> y.

As described in [9], there are many ways to design a bidirectional typing system. The
rules designed for the system will be shown in detail in Section 3.1.

2.5 De Brujin index

In lambda calculus, de Brujin indices are a way of representing variables. Instead of using
variable names, de Brujin indices encode the information about the binding structure of
variables directly into the syntax of terms.
The De Brujin index of a certain variable is defined as the number of binders that are in
scope between the occurrence of the variable and its corresponding binder. For instance,
the lambda expression

λx.λy.x
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becomes
λλ2

The following example is slightly more intricate, but provides a better perspective in
situations involving complex lambda functions.

λz.(λy.y(λx.x))(λx.zx)

λ(λ1(λ1))(λ21)

De Brujin indices provide a way to avoid issues related to variable capture and renaming
in substitution operations, as the indices capture the binding information explicitly.
De Brujin indices are often used in the context of α-equivalence in lambda calculus.
α-equivalence is a notion of equivalence between lambda terms that takes into account
variable renaming. Two lambda terms are considered α-equivalent if they only differ in
the names of their bound variables. For example

λx.λy.xy ≡α λa.λb.ab

Using de Brujin indices, we would check the trivial case

λλ21 ≡α λλ21

Using de Brujin indices simplifies the process of checking α-equivalence because there
are no variable names to compare directly. Instead, we can compare the structures of the
terms and how they bind variables through their indices. In Dedukti, De Brujin indices
are used for higher-order abstract representation (HOAS) of terms [4].
As we will see in section 2.7, an alternative approach to verify α-equivalence is employed
by the sharing equality algorithm using term graphs.

2.6 Term Graphs

As we will see in Section 2.7, sharing equality is an algorithm for checking α-equivalence
between terms. The sharing equality algorithm works on a data structure known as term
graphs. In this section, we will explain what they are and will show some examples.
Term graphs are a representation technique used to model and analyze the structure of
terms in mathematical expressions, programming languages, or formal systems. They
provide a visual and efficient way to represent and manipulate complex data structures,
expressions, or computations. Term graphs use a graph-based structure to represent
terms. In this representation, nodes in the graph correspond to subterms, and edges
represent the relationships or operations between these subterms. The graph structure
provides a concise and visual way to capture the hierarchical and recursive nature of
terms. One notable feature of term graphs is the ability to represent shared subterms
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with a single node. This sharing mechanism helps eliminate redundancy in the represen-
tation of terms, making it more efficient in terms of memory usage and computational
complexity. Term graphs are commonly used in functional programming languages where
expressions can involve repeated subterms. By representing shared subterms as shared
nodes in a graph, functional programming languages can optimize memory usage and
improve the efficiency of certain operations. The use of term graphs is closely related to
graph reduction strategies in functional programming languages and plays a significant
role in optimizing the evaluation of expressions.
The λ-graphs presented in [8] represent an encoding of a λ term under the form of nodes
of a directed graph. Graphically, λ-terms can be seen as syntax trees. We can distinguish
between three kinds of node:

• Application: an application node has exactly two children, called left and right.
We write App(n, m) for an application node whose left child is n and right child
m.

• Abstraction: an abstraction node has exactly two children, called respectively its
bound variable and its body. We write Abs(v, n) for an abstraction node whose
bound variable is v and body is n.

• Variable: we can have two kinds of variable:
– free: a free variable has no children, and is denoted by Var().
– bound: a bound variable has exactly one child called its binder. We write

Var(b) for a variable term with binder b. The binding edge is represented
with a dashed line.

One example of term graphs is shown in Figure 2.1.

Figure 2.1: Term graph for (λx.x(λy.w))((λy.w)w)
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In the following example, we will show how term graphs are useful and efficient structure
to reason about λ calculus. Suppose we have the term

(λx.M)N

where M,N are λ expressions, and M contains at least once x. We want to compute a
single step of β-reduction for this expression. With term graphs, we introduce a special
edge (drawn as purple in Figure 2.2) from the bound variable (in this case, x) to the
λ expression we substitute. Using term graphs, this operation only costs O(1). The
computations on the resulting graph will then take into account that the substitution
has happened and will use the substituted expression N instead of the variable x. The
computing of the previous λ expression can be found in Figure 2.2.

Figure 2.2: Term graph for (λx.x(λy.w))((λy.w)w)

This definition for λ-graphs is given by [8] in the context of untyped λ calculus. Since
this study is focused on λΠ-calculus modulo, we must extend this concept of term graphs
on product terms and typed variables. In particular, we have these new kind of nodes:

• Product: a product node has two children, called respectively its bound variable
and its body. We write Prod(x, n) for a product node whose bound variable is x
and body is n.

• Variable: we redefine variable nodes. As before we have two kinds of variable:
– free: a free variable has exactly one child, called its type; it is denoted by

Var(typ) where typ is the type of the variable node.
– bound: a bound variable has two children, called its type and its binder. We

write Var(typ, b) for a bound variable whose type is typ and binder b.
• Sorts: we introduce the sorts Type,Kind described in Section 2.1 as special kinds
of node for typing correctly expressions.
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Graphically we will denote the type of a variable with a red edge starting from the
variable. An example of term graphs in the context of λΠ-calculus is shown in Figure 2.3.

Figure 2.3: Term graph for plus z z where plus : Πx : Nat.Πx : Nat.Nat and z : Nat

2.6.1 Implementation details

2.6.2 Rust smart pointers

Smart pointers are structures that implement some traits for handling pointers, like
dereferencing, deallocating and so on. Two of these smart pointers are very interesting:
Rc and Weak: these pointers enable garbage collection in Rust with the technique of
reference count. By default, Rust doesn’t use garbage collection, but when using these
pointers it is possible to enable it with the reference counting technique. As the name
suggests, the Rc pointers maintain strong references, while Weak pointers maintain weak
references. Smart pointers are particularly useful in handling circular data structures:
without them, in fact, the reference counting technique would not recognize garbage and
would run indefinitely.

2.6.3 Representation of nodes

For implementing the structure of the lambda-nodes described in [8], I used the smart
pointer previously described. Each node, except for the sorts Kind, Type maintain
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the fields undir, canonic, building, queue used for checking the sharing equality of
nodes presented in Section 2.7. The following snippet of code describes the structure of
the App node implemented.

1 pub enum LNode {

2 App {

3 left: Rc<Self>,

4 right: Rc<Self>,

5 parent: RefCell<Vec<Weak<Self>>>,

6 undir: RefCell<Vec<Weak<Self>>>,

7 canonic: RefCell<Weak<Self>>,

8 building: RefCell<bool>,

9 queue: RefCell<VecDeque<Weak<Self>>>,

10 },

11 }

As we can see, left and right fields are Rc pointers, because we want strong pointers
to the children of the application. On the other hand, the parents of a node are Weak

pointers, graphically represented previously with dashed edges. Note also that LNode is
described as an enum: this is how Rust defines algebraic data types. The use of enums
gives the programmer the possibility to use sophisticated and efficient ways to handle
and recognize data, such as pattern matching.

2.6.4 Representation of λ-graphs

In this section we will show the implementation of the structure for λ-graphs. Before
doing so, we introduce the concepts of borrowing and of lifetime in Rust.
In Rust, borrowing a variable corresponds to creating a reference to that variable. A
borrow can either be mutable or immutable: Rust imposes some constraints on the use
of these two kinds of borrowing to preserve its thread-safe nature. In particular:

1. There can be as many immutable borrows as possible: these are “read-only” ref-
erences, so the thread-safe nature of Rust is preserved.

2. There can only be one mutable borrow at a time; moreover, if there is a mutable
borrow, all other immutable borrows are freezed and it is not possible to create
new immutable borrows

A borrow is denoted by the symbol & if it is immutable and by the symbol &mut if it is
mutable.
A lifetime is a construct that the Rust compiler uses to ensure all borrows are valid. A
variable’s lifetime begins when it is created and ends when it is destroyed. Rust denotes
lifetimes with the <'a> syntax. λ-graphs are encoded with the structure of LGraph. This
structure contains the field nodes: this is an HashSet of references to LNodes.
pub struct LGraph<'a> {
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nodes: HashSet<&'a Rc<LNode>>,

}

This structure holds all the references to the sub-terms that compose a λ-graph, as we
will see in Section 2.7 it is important to iterate over all the nodes of the graph.

2.7 Sharing Equality

In this section I will describe the algorithm presented in [8] for checking α-equivalence in
the scenario of untyped λ calculus. The idea behind the algorithm of sharing equality is
that having the terms structured in λ graphs, checking for equality reduces to check for
the bisimulation relation between the two term graphs. In particular, the sharing equality
algorithm computes the smallest bisimulation between the given term graphs. Before
talking about the algorithm for sharing equality, I present some theoretical elements
useful to fully understand the algorithm. The first notion introduced is that of equivalence
between nodes.
Definition 2.7.1 (Homogeneous nodes) Let n,m be nodes of a λ-graph G. We say
that n and m are homogeneous if they are both application nodes, or they are both ab-
straction nodes, or they are both free variable nodes, or they are both bound variable
nodes.
Let R be a generic binary relation over the nodes of λ-graph: we call such relation
homogeneous if it only relates pairs of homogeneous nodes. Sharing equivalence requires
that it is closed under some other structural rules.

Figure 2.4: Sharing equivalence rules

• Equivalence rules: usual rules that characterize equivalence relations (reflexivity,
symmetry and transitivity)

• Bisimulation rules:
– Downward propagation rules: rules ↙,↘ are downward propagation rules;

these rules state that if two application nodes are related, their children should
also related. The same goes for the relation ↓ that states that if two abstrac-
tion nodes are related, their bodies should also related.

– Scoping rule: the rule ⟳ states that if two bound variable nodes are related,
then also their binders should be related.

19



Finally, a sharing equivalence should not equate two different free variable nodes. Now
we can formally define sharing equivalence.
Definition 2.7.2 ((Blind) sharing equivalence) Let ≡ be a binary relation over the
nodes of a λ-graph G.

• ≡ is a blind sharing equivalence if it is an equivalence relation, it is homoge-
neous and it is closed under the rules ↙,↘, ↓

• ≡ is a sharing equivalence if it is a blind sharing equivalence, it is closed under
the rule ⟳ and satisfies the open requirement for which v ≡ w requires v = w for
every free variable nodes v, w.

Another ingredient for sharing equivalence is the notion of query and of its spreading.
Definition 2.7.3 (Query) A query Q over a λ-graph G is a binary relation over the
root nodes of G.
Every query Q induces a number of other equality requests, obtained by closing Q under
the rules that every sharing equivalence has to satisfy.
Definition 2.7.4 (Spreading R#) Let R be a binary relation over the nodes of a λ-
graph G. The spreading R# induced by R is the binary relation on the nodes of G induc-
tively defined by closing R under the rules ↙, ↓,↘
Now we have all the ingredients to describe the algorithm to check sharing equality. We
check sharing equality in two phases:

• Blind check: building the propagated query Q# and at the same time checks that
it is a blind sharing equivalence.

• Variables check: verifying that Q# is a sharing equivalence by checking the condi-
tions for free and bound variables.

2.7.1 Blind check

In this section we introduce the concept behind the blind check algorithm, shown in Al-
gorithm 1. For a detailed explanation on criterions such as completeness and correctness,
along with the proof for the linearity of the algorithm, you can check [8].
The algorithm needs to enrich λ graphs with a few additional concepts, namely canonic
edges, undirected query edges, building flags and queues, all grouped under the notion of
state. We define a state S as either Fail or a tuple

(G, undir, canonic, building, queue)

where G is the λ graph and
• undir is is a multiset of undirected query edges, pairing nodes that are expected
to be placed by the algorithm in the same sharing equivalence class. We denote by
∼ the binary relation over G such that n ∼ m iff the edge (n,m) belongs to undir.

• nodes may have one additional canonic directed edge pointing to the computed
canonical representative of that node.
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Algorithm 1: Blind check algorithm

Data: an initial state
Result: fail or final state
Procedure BlindCheck()

1 foreach node n do
2 if canonic(n) undefined then
3 BuildEquivalenceClass(n)

end

end

Procedure BuildEquivalenceClass(c)
4 canonic(c) := c
5 building(c) := c
6 queue(c) := {c}
7 while queue(c) is non-empty do
8 n := queue(c).pop()
9 foreach parent m of n do

10 case canonic(m) do
11 undefined ⇒ BuildEquivalenceClass(m)

12 c′ ⇒ if building(c′) then fail

end

end
13 foreach ∼ neighbour m of n do
14 case canonic(m) do
15 undefined ⇒ EnqueueAndPropagate(m, c)
16 c’ ⇒ if c′ ̸= c then fail

end

end

end

Procedure EnqueueAndPropagate(m, c)
case m, c do

17 Abs(m′), Abs(c′) ⇒ create edge m′ ∼ c′

18 App(m1,m2), App(c1, c2) ⇒ create edges m1 ∼ c1 and m2 ∼ c2
19 Var(b), Var(b′) ⇒ ()
20 Var(), Var() ⇒ ()
21 , ⇒ fail

end
22 canonic(m) := c
23 queue(c).push(m)
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• nodes may have an additional boolean building that signals whether an equiva-
lence class has or has not been constructed yet.

• nodes have a queue data structure that is used only on canonic representatives,
and contains the nodes of the class that are going to be processed next.

Some interesting points to focus on the algorithm:
• Top-down recursive exploration: the algorithm can start at any node, but when
processing a node n the algorithm recursively acts on the parents that have not
been visited yet.

• Undir edges: the query is represented through undirected query edges between
nodes and it is propagated on children nodes. The notion used for this kind of
edges is ∼.

• Canonic edges: once the BuildEquivalenceClass(c) algorithm terminates, a
canonic node is assigned to the node c, and it is representative of its sharing
equivalence class.

• Building flag: each node has a boolean building flag that is mainly used to suggest
failing and cyclic situations.

The procedure BuildEquivalenceClass is responsible for creating the sharing equiva-
lence class for terms. It can be summarized in four steps:

1. Collect all the nodes in the sharing equivalence class of n, that is done in line 13
of the algorithm.

2. Set n as the canonical element of its class (line 4).
3. Propagate the query on the children (line 15)
4. Pushing a node in the queue, setting its canonic and propagating the query on its

children through the procedure EnqueueAndPropagate.

2.7.2 Variables check

The variables check algorithm (Algorithm 2) takes in input the output of the blind check,
and check if the Var-nodes of G satisfy the variable conditions for a sharing equivalence.
After invocation of the BlindCheck algorithm, we can compare a node with its canonical
representative of the class instead of checking it against all the nodes in its class. The
check fails in two cases:

• When checking a free variable node: in this case, Q# is not an open relation (lines
4, 5).

• When checking a bound variable node: in this case, Q# is not closed under (lines
6, 7).

.
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Algorithm 2: Variables Check

Data: canonic(·) representation of Q#

Result: is Q# a sharing equivalence?
Procedure VarCheck()

1 foreach var-node v do
2 w ← canonic(v)
3 if v ̸= w then
4 if binder(v) or binder(w) is undefined then
5 fail

end
6 else if canonic(binder(v)) ̸= canonic(binder(w)) then
7 fail

end

end

end
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Chapter 3

Lapis-rs

This chapter contains the core concepts for the implementation of lapis-rs. In Sec-
tion 3.1, we will talk in detail about the typing rules I implemented and in particular
about my implementation of bidirectional typechecking. In Section 3.2 we will show the
extension of the sharing equality algorithm introduced in Section 2.7 for the context of
λΠ calculus modulo. In Section 3.3, we will briefly explain the workflow that guided my
study. In Section 3.5, we will talk about some implementation details that will show the
possibility to further improve lapis-rs.

3.1 Rules for type checking

In this section we will enumerate the typing rules designed and implemented in the
typechecker. Since we implemented bidirectional typing, we will use the judgement
x ⇐ A with the meaning of checking term x with type A; on the other hand, we use
the judgement x ⇒ A with the meaning of inferring type A from term x. Moreover, I
will often use the notation A ↠ A′ with the meaning of “the weak head normal form
of A is A'”. Moreover, we will denote with xT a variable x with known type T . Using
term graphs described in Section 2.6, we don’t need to use a context Γ to know the
type of a specific variable: we have already encoded the information inside the nodes, so
we will omit Γ and use the information computed. As for the rewrite rules, we assume
that they are always known in the global context. The typing rules presented will be
already syntax directed, and will incorporate conversion when in a context of application
as described in Section 2.4.
Rewrite rule with inference on left hand-side term.

l⇒ T r ⇐ T
l −→ r

Rewrite rule with inference on right hand-side term.

r ⇒ T l⇐ T
l −→ r
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This pair of rules makes it possible to check symbols where the left hand side of a rewrite
rule is not annotated. One such rule is given by the following example

def K0 := x: Nat => zero.

It is important to note that the rules are not complete: with this set of rules, in fact,
we encountered some problems in type checking Dedukti code. Investigating into the
matter, we found out that Dedukti uses higher order patterns for unification, so we still
can’t capture those cases.
Application.

M ⇒ A A ↠ (ΠxA′
.B) N ⇐ A′

Γ ⊢MN ⇒ [N/x]B

Abstraction where s is a sort.
x⇒ A t⇒ B A⇒ Type B ⇒ s

λx.t⇒ ΠxA.B
Product where s is a sort.

x⇒ A A⇒ Type B ⇒ B′ B′ ⇒ s

ΠxA.B ⇒ B′

Variable.
xA

x⇒ A
Type sort.

Type⇒ Kind

Checking abstraction

A ↠ ΠxA′
.B x⇐ A′ t⇐ B

λx.t⇐ A
Checking untyped variable. In this case we denote the assignment of the type A to x
with Typ(x)← A.

Typ(x)← A
x⇐ A

Checking generic term

t⇒ A′ A ≡βΓ A′

t⇐ A
With this design, bidirectional typechecking is coherent with the specifications of De-
dukti: it is in fact possible to express patterns like the following for inferring the type
for abstractions without having to annotate the variable x.

def K0 : Nat -> Nat := x => zero.

Note that this code typechecks only if K0 is annotated.
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3.2 Sharing Equality in λΠ-calculus modulo

As we have already discussed in Section 2.6, when we are in the context of Π calculus
we extend the set of nodes with the Prod node. For this reason, we slightly change the
the procedure EnqueueAndPropagate to accept nodes of this type (Procedure Enqueue-
AndPropagate).

Procedure EnqueueAndPropagate

case m, c do
1 Abs(m′), Abs(c′) ⇒ create edge m′ ∼ c′

2 Prod(m′), Prod(c′) ⇒ create edge m′ ∼ c′

3 App(m1,m2), App(c1, c2) ⇒ create edges m1 ∼ c1 and m2 ∼ c2
4 Var(b), Var(b′) ⇒ ()
5 Var(), Var() ⇒ ()
6 Type, Type ⇒ ()
7 Kind, Kind ⇒ ()
8 , ⇒ fail

end
9 canonic(m) := c

10 queue(c).push(m)

As for the VarCheck procedure, it is not necessary to apply any change to the procedure
itself: in λΠ calculus, the variables can be bound to to an Abs node, or to a Prod node.
One problem arises from this property: in fact, the relation ⟳ could not be satisfied
since while typechecking we can in fact have situations for which two bound variables
with different binders can be in relation with each other. For example, in the following
Dedukti code, we would need to check sharing equivalence between n1 and n2: the first
has a product as binder, while the latter has an abstraction.

succ: Nat -> Type.

def X: n1: Nat -> m1: succ n1 -> Nat := n2: Nat => m2: succ n2 => zero.

This problem is properly described and solved in Section 3.5.3. For now, it suffices to
say that the VarCheck procedure is in fact correct also in this scenario.

3.3 Workflow

The workflow of the lapis-rs is illustrated in Figure 3.1. The source code of the project
is publicly available at https://github.com/nicolopizzo/lapis-rs.
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Figure 3.1: Workflow of the tool. The purple arrows represent the flow of the input/out-
put of each phase. The orange boxes represent phases of the tool. The green boxes
represent the sub-modules of the tools. The green arrows represent the dependency of
the sub-modules.

The flow of the system can be descripted in 2 crucial steps:
1. Parsing: the parsing process is done with the library dedukti-parse. It is one of

the component of kontroli-rs, and it parses a Dedukti file, building the corre-
sponding syntax tree. After parsing, we implemented a function to map the nodes
of the syntax tree to λ nodes. An example of this mapping is shown in figure 3.2.

2. Type checking: the typechecker represents the original part of this thesis. The
typechecker includes the algorithm for reducing terms to normal form and the
algorithm to check for alpha equivalence.

Figure 3.2: Example for mapping an Abstraction parsed by dedukti-parse into a lambda
node. On the left there is the encoding of dedukti-parse; on the right, the term created
by the mapping.
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3.4 Implemented functions

In this section I will briefly introduce some of the functions I implemented and will
explain some of the side effect they have. This introduction is useful when we will talk
about implementative details in Section 3.5 and reason about the possible efficiency and
design solutions to apply to the system, in order to gain the possibility to compare
lapis-rs with existing solutions.

3.4.1 Enqueue and Propagate

This function is the implementation of EnqueueAndPropagate procedure shown in Al-
gorithm 1.
pub fn enqueue_and_propagate(&self, m: &Rc<LNode>, c: &Rc<LNode>)

The type of self is that of a LGraph. The main extension of this algorithm consists
in adding a side-effect: since in Dedukti it is possible to define wildcard metavariables
(see Section 2.2), we could try to check sharing equality between two different terms.
For example, we might try to compare Succ (plus n m) with Succ _. In this case,
the algorithm for sharing equivalence would fail, because we would try to compare an
application (plus n m) with a meta-variable (_). For this reason, we slightly change the
algorithm, so that it accepts this syntax and instantiate _ with plus n m. Note that,
this way, we can also achieve first order unification, since instead of Succ _ we could
write Succ x.

3.4.2 Deep clone

This function is used when computing weak head and strong normal forms. The goal of
the function consists in cloning the term graphs as needed, preserving the sharing.
pub fn deep_clone(subs: &mut HashMap<usize, Rc<LNode>>, node:

&Rc<LNode>) -> Rc<LNode>↪→

The function takes as input a substitution map subs and a term node to be cloned. The
result of the function is the cloned term, and there is no side-effect.
This function is particularly useful when computing normal forms: in triggering rewrite
rules, we instantiate some metavariables for unification purposes. If we didn’t clone
correctly the nodes, we would not be able to reuse those rules, as metavariables would
already be instantiated. This function also preserves the sharing.

3.4.3 Weak head normal form

This function computes the weak head normal form of a term labelled node.
pub fn weak_head(node: &Rc<LNode>, rules: &RewriteMap) -> Rc<LNode>
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The function accepts as a second argument the set of rewrite rules rules because, in
the context of λΠ-calculus modulo, as we have seen in Section 2.1, computing the weak
head normal form of a term may involve rewriting it to some other term. This function
propagates the side-effect of the matches function, since it is used to check if node

matches the left hand side of a rewrite rule up to weak head.

3.4.4 Matches

This function is used to test structural equality between a term and a node pattern.
The set of rewrite rules rules is passed as argument because, in some circumstances,
term can match pattern up to weak head normal form.
pub fn matches(term: &Rc<LNode>, pattern: &Rc<LNode>, rules:

&RewriteMap) -> bool↪→

This function returns a boolean value. If pattern is a meta-variable, and has no substi-
tution, the function turns it into term. For this reason, the function is applied on deep
cloned left-hand side and right-hand side pairs of rewrite rules.

3.4.5 Type infer and type check

The following two codes are used to implement bidirectional typechecking.

fn type_infer(node: &Rc<LNode>, rules: &RewriteMap) ->

Result<Option<Rc<LNode>>>↪→

The type_infer function takes as input a node and the rewrite rules rules of the con-
text. The function tries to infer the type of node based on the information computed
at time of checking. If the function cannot infer the type for node, the result of the
function is Ok(None); on the other hand, if there it is impossible to correctly type node,
the result of the function is Err(...). The main side effect of the function consists in
the substitution of a bounded var with an application argument if the node is an App.

fn type_check(term: &Rc<LNode>, typ_exp: &Rc<LNode>, rules: &RewriteMap)

-> Result<()>↪→

The type_check function takes as input a term, an expected type typ_exp for the term,
and the set of rewrite rules rules. This function is responsible for checking that the type
of term is equal to typ_exp using the sharing equality algorithm shown in Section 2.7.
This function introduces side-effects in two different cases:

• Sharing equality: the function checks the sharing equality between two types, so it
propagates the side effects of the enqueue_and_propagate.

• Inference: when the term is an untyped variable, the function sets the type of term
to typ_exp.
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3.4.6 Check rule

fn check_rule(lhs: &Rc<LNode>, rhs: &Rc<LNode>, rules: &RewriteMap) ->

Result<()>↪→

This function is responsible for type checking a rewrite rule of the form lhs --> rhs.
This function restores the state of the meta-variables, removing the substitution hap-
pened during the check of the rule. This acts as a countering measure for the side-effects
generated by the enqueue_and_propagate and matches functions.
The following two lines of code are executed at the end of the typechecking of the rule.
lhs.unsub_meta();

rhs.unsub_meta();

3.5 Implementation Details

3.5.1 Structure of the rewrite map

The choice of the data structure for maintaining the rewrite rules has been very important
and impacted significantly on the efficiency of the code. In fact, during the normalization
steps, the algorithm checks if any subterm has to be rewritten using rewrite rules. As the
size of subterms and rewrite rules grows, it is important to keep the costs for checking if
a sub-term has to be rewritten as low as possible.
Throughout the implementation of the system, the structure of the rewrite map has
undergone three changes:

1. Vector of rewrite rules: the naive version of the map consisted, for a brief period,
in a simple vector. Clearly such implementation was highly inefficient when the
rewrite rules were too many.

2. Naive HashMap: the second implementation of this structure was a naive HashMap
where the key of an entry was the memory address of the head of the term, and
the value the vector of the rewrite rules associated with that head. This change
highly improved the time efficiency of the system, leading to acceptable times of
execution

3. Refined HashMap: in the final implementation of the structure, the key of the
HashMap has changed. The key has type (usize, usize): the first member of
the pair is, as before, the memory address of the head of the term, while the second
is the number of argumnets that are being applied to the head; before this change,
in fact, if a variable had 4 arguments applied, and 3 possible rewrite rules, we would
check for a match 4× 3 = 12 times. For example, if the rule plus is implemented
as follows
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def plus: Nat -> Nat -> Nat.

[ n ] plus zero n --> n

[ m, n ] plus (S m) n --> S (plus m n).

and we wanted to check if plus zero (S zero) matches a rewrite rule, we would
have checked twice for plus and plus zero, and only in the end we would have
matched plus zero (S zero) with plus zero n --> n, performing 5 match checks
instead of 1. With this change, the performance improved drastically.

3.5.2 Inference for variables

As we have already said, Dedukti gives the possibility to the programmer to omit types
in some circumstances. In particular, inference can happen in three circumstances:

• Local metavariables
• Wildcards
• Variables bound to abstractions (when possible)
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As we have already introduced in Section 3.4, we adapted the code for checking sharing
equality, adding an explicit substitution to cover first-order unification. The following
snippet of code is extracted from the implementation of the enqueue_and_propagate.

1 fn enqueue_and_propagate(&self, m: &Rc<LNode>, c: &Rc<LNode>) ->

Result<(), String> {↪→

2 match (&**m, &**c) {

3 ...,

4 (BVar { subs_to, is_meta, .. }, _) => {

5 let sub = &mut *subs_to.borrow_mut();

6 if let Some(sub) = sub {

7 return self.enqueue_and_propagate(&sub, c);

8 } else if *is_meta {

9 *sub = Some(c.clone());

10 } else {

11 ...

12 }

13 (BVar { subs_to, is_meta, .. }, _) => {

14 let sub = &mut *subs_to.borrow_mut();

15 if let Some(sub) = sub {

16 return self.enqueue_and_propagate(m, &sub);

17 } else if *is_meta {

18 *sub = Some(m.clone());

19 } else {

20 ...

21 }

22 }

23 ...

24 }

25 ...

26 }

As it is possible to see, lines 9 and 18 are responsible for adding the explicit substitution.
On the other hand, for implementing correctly bidirectional type checking and inferring,
when possible, the type for variables, the following code is added in the type_check

function. Lines 5 and 8 implement explicit type inference for variables.
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1 fn type_check(term: &Rc<LNode>, typ_exp: &Rc<LNode>, rules: &RewriteMap)

-> Result<()> {↪→

2 match &**term {

3 ...

4 LNode::Var { ty, .. } if ty.borrow().is_none() => {

5 *ty.borrow_mut() = Some(typ_exp.clone());

6 }

7 LNode::BVar { ty, is_meta, .. } if ty.borrow().is_none() => {

8 *ty.borrow_mut() = Some(typ_exp.clone());

9 }

10 ...

11 }

12 }

3.5.3 Binding to the context

As we have already introduced in Section 3.2, in the context of the λΠ calculus the
sharing equivalence is not naively closed under the ⟳ relation. One such example is the
following

succ: Nat -> Type.

def X: n1: Nat -> m1: succ n1 -> Nat := n2: Nat => m2: succ n2 => zero.

When checking the sharing equality between n1, n2, the varcheck would fail: in fact,
we would find that the binder of n1 is the product n1: Nat -> ..., while the binder of
n2 is the abstraction n2: Nat => .... To solve this kind of problem we implemented
the notion of binding to the context: when checking the type of an abstraction with
a product, we unbind the variable of the product. Moreover, we substitute the variable
bounded to the abstraction with the variable bounded to the product. For the exam-
ple shown before, this would then result in checking the sharing equivalence n1 ≡ n1,
and not n1 ≡ n2: with this implementation, sharing equivalence is closed under the ⟳
relation, hence the var_check procedure remains correct. Following is the code that
implements the binding to the context.
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1 fn type_check(term: &Rc<LNode>, typ_exp: &Rc<LNode>, rules: &RewriteMap)

-> Result<()> {↪→

2 match &**term {

3 LNode::Abs { bvar: lbvar, body: lbody, .. } => {

4 let typ_exp = weak_head(&typ_exp, rules);

5 if let LNode::Prod { bvar: pbvar, body: pbody, .. } = &*typ_exp {

6 ...

7 pbvar.bind_to_context(); // removes binder

8 lbvar.subs_to(&pbvar);

9

10 type_check(&lbody, &pbody, rules)?;

11 ...

12 }

13 ...

14 }

15 ...

16 }

17 }

3.5.4 Computation of Strong Normal Form

For lack of time, the strong normal form of a term is currently computed inefficiently:
once the strong normal form is computed for an instantiated variable, it is saved into a
field of the and it can be reused. This implementation can be very inefficient, as it leads
to computing and expanding terms even if it is not useful. By useful we mean that the
reduced form of the term is not a β-redex. For example, in the following reduction

yxx [x← t] −→β ytt

the resulting term ytt is not a β-redex, hence it is not useful to expand the term. On
the other hand, a useful scenario would be the following

xN [x← λz.M ] −→β (λz.M)N

In this case, (λz.M)N is a β-redex, hence it can be useful to expand the term.
This results in big normal forms, impacting indirectly also on the sharing equality algo-
rithm, as will be shown in Section 4.2. The following code shows the implementation of
the strong normal form for a generic term.
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1 pub fn snf(term: &Rc<LNode>, rules: &RewriteMap) -> Rc<LNode> {

2 let term = weak_head(term, rules);

3 match &*term {

4 LNode::Prod { bvar, body, .. } => {

5 let bvar = snf(bvar, rules);

6 let body = snf(body, rules);

7 LNode::new_prod(bvar, body)

8 }

9 LNode::Abs { bvar, body, .. } => {

10 let bvar = snf(bvar, rules);

11 let body = snf(body, rules);

12 LNode::new_abs(bvar, body)

13 }

14 LNode::App { left, right, .. } => {

15 let left = snf(left, rules);

16 let right = snf(right, rules);

17 LNode::new_app(left, right)

18 }

19 LNode::BVar {

20 subs_to,

21 normal_forms,

22 ..

23 } if subs_to.borrow().is_some() => {

24 let subs_to = subs_to.borrow().clone().unwrap();

25 let NormalForms(wnf_computed, computed_snf) =

normal_forms.borrow().clone();↪→

26 computed_snf.unwrap_or_else(|| {

27 let snf_term = snf(&subs_to, rules);

28 *normal_forms.borrow_mut() = NormalForms(wnf_computed,

Some(snf_term.clone()));↪→

29

30 snf_term

31 })

32 }

33 LNode::BVar { ty, .. } => {

34 let ty_b = ty.borrow().clone();

35 let ty_b = ty_b.map(|ty| snf(&ty, rules));

36 *ty.borrow_mut() = ty_b;

37

38 term

39 }

40 _ => term,

41 }

42 }
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3.5.5 Deep Cloning variables

One implementative choice we have taken consists in treating rewrite rules defined in
one line such as

def one: Nat := S zero.

the same as

def one: Nat.

[ ] one --> S zero.

Deep cloning this kind of terms can be very inefficient, as we would compute and expand
many times the same rule. An improvement could be to treat these variables as constant
variables with a substitution, in order to always use it and memorize the normal forms
for future re-usability.
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Chapter 4

Conclusions

In this section we will summarize the work and give the results obtained. Section 4.1
presents the summary of the work done for this thesis. Section 4.2 will show the per-
formance of lapis-rs, and will briefly investigate some interesting key points on which
we could focus for future works. Section 4.3 will show some of the ideas we had for
improving the performance and compatibility of lapis-rs with Dedukti.

4.1 Summary

In this section, I will summarize the work I have done in terms of time and implemen-
tation effort. This work started in July 2023, when together with professor Claudio
Sacerdoti Coen, we planned the implementation of this tool. In July and August, I
deeply researched for bibliographic references, understanding the topics found and plan-
ning the workflow for implementing lapis-rs. In the months of September, October
and November, I implemented the code for lapis-rs, while reading and researching new
topics for future works and efficient implementations of the typechecker. The implemen-
tation proved to be a hard task: understanding some mechanisms of Rust and tweaking
some efficiency parameters for the typechecker took a lot of time. In the end, the current
implementation of lapis-rs counts 2145 lines of code that also include the implemented
tests. As a comparison kontroli counts 2237 lines of code without dedukti-parse

module, while Dedukti counts 4385 lines of code that also include the parser.

4.2 Results

The benchmark has been done on a subset of a small library called matita_basics_logic.dk.
We had efficiency issues on such a small library, so we haven’t tried to test lapis-rs on
bigger libraries. Moreover, as we will explain in Section 4.3, there are still some portions
of Dedukti that lapis-rs does not recognize, so we think it is best to postpone the
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comparison of lapis-rs with the existing tools at a later time. Even though the sys-
tem is inefficient, it shows some important properties of the sharing equality algorithm
extended to the λΠ-calculus modulo context.
Figures 4.1 and 4.2 show that the time for computing the sharing equivalence is, in fact,

Figure 4.1: Time of execution of sharing equality algorithm in function of the size of the
terms in strong normal form

Figure 4.2: Frequencies of time executions (a) and memory usage (b)

linear w.r.t. the size of the term in strong normal form. We further investigated why
the algorithm is inefficient, and we’ve found that the computed strong normal forms can
be very big (Figure 4.3), even though the computing times are very efficient. It would
be interesting to further investigating the reasons behind the high size of the terms in
strong normal form. As we already shown in Section 3.5, the computation of the normal
form of the terms is not linear, so this is sure to play an important role.
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Figure 4.3: Frequencies of size for terms in strong normal form (a) and time execution
for computing it (b)

File Dedukti Lapis Lapis*
matita basics logic.dk 0.02s 269.50s 0.65s

Table 4.1: Comparison for time execution between Dedukti and Lapis. Lapis* is Lapis
without the check for sharing equivalence.

4.3 Future Works

In this section we will present some of the possible future works on lapis-rs. There
are many ideas and algorithms that can be implemented to improve the efficiency of
lapis-rs, and it could be interesting, in future, to be able to effectively compare this
tool with dedukti and kontroli.

4.3.1 Further investigations

As it is clear from the obtained results, there is much room for improving lapis-rs.
One future work could consist in investigating which components of the system make it
inefficient. As it is shown in Figure 4.4 the most expensive operation is the check for
sharing equality: nonetheless, even disabling the check, the system is slow if compared
with dedukti. Table 4.1 shows the times of execution, and we can clearly see that, even
if dedukti executes the check for alpha equivalence, they are still faster than lapis-rs

with the check for sharing equivalence disabled.
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Figure 4.4: Time of execution of Sharing Equality over total time execution

4.3.2 Crumbling Abstract Machines

As described in Section 3.5, the algorithm for computing the strong normal form of a
term implemented is the highly inefficient. One way it could be better implemented
consists in computing the weak head of the term only when it is needed, as it is the main
approach used in literature. Moreover, in [7] has been described an interesting algorithm
to compute the strong normal form of a term, that is compatible with the structure of
term graphs. It would be interesting to implement abstract crumbling machines and
compare the results obtained with the ones we have now. It could also be interesting to
further study the phenomenon of implosive sharing described in [10].

4.3.3 Higher-order patterns

During the implementation of the system, we have found out that Dedukti uses higher
order patterns in rewrite rules. A higher order pattern consists in the possibility to apply
arguments to a meta-variable. The following example in Dedukti shows a real case we
have incurred in.

[s1 : Sort, s2 : Sort, a : Univ s1, b : (Term s1 a -> Univ s2)]

Term _ (prod s1 s2 a b) --> x : Term s1 a -> Term s2 (b x).

Here b is a meta-variable, but it also appears as the head of an application (b x). This
kind of pattern has not been covered by our work, and many rules used this rewrite
rule specifically. We have encountered some problems with checking sharing equivalence
for these terms, so it is clear that it would be much more interesting to implement
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the possibility handle these patterns, or at least those occurring in Miller’s pattern
fragment [1].
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