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Abstract

The XYZ spin-1
2
model describes a completely anisotropic spin chain, which is the most

generic nearest neighbor quantum magnet in one dimension. It describes a truly inter-

acting many-body system, but it is also known to be integrable in the Bethe ansatz

framework, which, despite its complexity, allows to extract most of the thermodynamic

properties. This is done by obtaining the solution for a finite chain and then taking the

thermodynamic limit to describe a macroscopic system. Peculiarly, all techniques pro-

posed in the second half of the 20th century for this system are valid only for chains with

an even number of sites. Although in general such boundary conditions are not expected

to affect the thermodynamic properties of a system, recent literature has shown that an

odd number of sites, by inducing frustration, can expose a different sector of the model.

In this project, we retrieve and analyze the very convoluted recent literature dealing with

the extension of the solution of the model to the case of an odd number of sites. The

analysis then moves to the study of its thermodynamic limit. In the continuum limit, the

XYZ chain maps in the famous sine-Gordon model, but, once again, this mapping is non-

trivial. Applying frustrated boundary conditions to the chain grants access to the sector

of the sine-Gordon model with an odd number of topological excitations. In particular,

the chain’s ground state corresponds to a single soliton, whose dispersion relation allows

us a match between the two models.
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Introduction

One of the most fascinating aspects of theoretical physics is the irrepressible ambition to

generalize: to take a system or phenomenon, to try to describe it through the language

of mathematics, with the aim of analyzing and hopefully predicting its behaviors; then,

although there was no compelling need, to try to extend our theory as far as possible.

We want to make it as usable as feasible with the aim of describing the physical entity

through a general model. Then, its particular cases can be recovered with a careful and

appropriate choice of parameters. The same aspiration is perpetuated in the field of sta-

tistical physics. In parallel, the theoretical physicist must place a stark realism alongside

this desire for abstraction. In particular, he must remain aware that mathematical tools

are very powerful but still limited. One could focus on the development of new tech-

niques, more effective for specific aims. Otherwise, pragmatism can lead us to optimize

the use of existing methods to get as much information as possible, even resorting to

ruses and approximations. This may appear to disagree with what was said before, but

it is actually our job, always driven by the pursuit of abstract beauty but still in touch

with the stark reality. Focusing on statistical physics, for example, in our real world

we deal with three-dimensional systems. The mathematical tools we currently have at

our disposal do not allow us to treat a macroscopic system analytically in a simple way.

Even two-dimensional systems complicate things very quickly. With this in mind, sta-

tistical physics in the 1900s sought to formalize a method for mapping the physics of a

macroscopic system into relatively elementary one-dimensional models. This sentence is

definitely reductive to describe what Conformal Field Theory consists of but it is definitely

a way to narrate its philosophy. Actually, only a small number of these one-dimensional

models can assume this role, but their importance leads us to investigate all their variety

and characteristics. The starting point is the well-known Ising model, and we would like

to end up with the analytic solution of the most general spin chain, from which all the

others can be recovered: the XYZ.
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Although this solution has existed since the 1970s, it originated as limited to the even-

numbered case, and many physicists in subsequent decades have attempted to extend it

to the odd N case. The absence, as yet, of experimental evidence to show a distinction

between the two cases for macroscopic systems may have limited research in this area.

The complexity of the objective has certainly not helped, and many of the attempts have

stalled. To get a satisfactory description, we will have to wait nearly 50 years, with the

creation of a new technique, a variant of the Bethe ansatz, valid for both parities of the

chain. Our first task will be to reconstruct the backbone connecting the texts dealing

with the subject, in order to show their continuity. We will struggle with the multiple

notations used in the literature, and with the difficulties coming from the nature of the

techniques used, trying to overcome them.

The relevance of frustrated systems

The reader might wonder why there is so much interest in odd-numbered chains. As

mentioned above, the desire to obtain a solution with broader validity, one that does not

exclude odd-numbered chains, would itself be a noble expedient. Actually, we are moved

by recent studies on the so-called frustrated systems, which could mark a breakthrough in

the field of statistical physics. In spin chains, the phenomenon of geometrical frustration

occurs when we choose an odd number of sites while selecting periodic boundary condi-

tions, together frustrated boundary conditions (FBC): when a dominant anti-ferromagnetic

regime is in force, one bond needs to display ferromagnetic alignment, as shown in fig.(1).

In finite systems, it has been experimentally observed and reproduced; in particular, in

small systems, it is very evident. This happens because frustration is carried by the

boundary conditions, that affect directly two sites only. The common belief has been

that by increasing the number of the sites, its effects vanish completely, and making an

odd-numbered system identically equivalent to an even-numbered one. This notion has

been theoretically formalized by Landau in its famous prescription, on which the whole

Statistical Field Theory is based. In particular, among other points, it states that, for a

macroscopic system, the thermodynamic properties are not influenced by the boundary

conditions.

Our work aims to analyze the thermodynamic limit of both XYZ chains with even and

odd number of sites, in order to identify potential differences. The choice of the XYZ

model is dictated by the notoriety of its mapping into the sine-Gordon model, a fascinat-

ing connection between spin chains and field theories. Frustration in the chain could be
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Figure 1: Intuitive example of a frustrated system: a ring-shaped chain (PBC) with N = 7 sites. Only
one coupling is switched on, to make clear the nature of frustration: in this configuration, two adjacent
spins must have the same direction.

connected with the emergence of a particular quasi-particle excitation in the continuum

theory. With this in mind, we will look for the difference between the N odd and N even

cases. In the event that we find it, in it we will search for the quasi-particle. Even this

plan harbors pitfalls but many interesting insights will emerge.

Content structure

The first part of this work is a hard journey through the varied and convoluted literature

on the integrability of the XYZ model. The introduction to integrability, in Chapter 1, is

preparatory to understanding the formalism and methodologies used to deal with the more

generic totally anisotropic chain. After that, in Chapter 2, we go into the meanderings

of techniques for solving XYZ, introducing the eight-vertex model, the QISM, and the

TQ relations. A great achievement has been to trace the common thread that connects

the work of our predecessors in this field. In Chapter 3, then, we describe the recent

new method called “off-diagonal Bethe ansatz” for extending the solution of the XYZ to

the odd-numbered case. This formalism is particularly complex but turns out to have, in

some of its variations, applications to other systems as well, mainly spin chains. Although

this technique does not return the eigenstates of the model, it can give the spectrum and

interesting cues in the thermodynamic limit. Indeed, the analysis of the string solutions

allowed us to investigate the ground state of the frustrated chain and the elementary

excitations. In particular, we are interested in the differences between the ground state

energies in the odd and even N case. Our hope, which becomes action in chapter 4, is to

identify in this discrepancy the emergence of the sine-Gordon soliton. Finally, in the last

chapter, we extract conclusions, considerations, and possible insights.
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Chapter 1

Integrability techniques

Even if solvability and integrability often go together, they are not the same thing. While

the former lies in our ability and computational power, the latter is a property of the

system. In statistical physics, by integrability of a system, we mean the possibility of

getting its exact solution; but even the concept of “exact solution” is not self-defined. For

classical systems the distinction between integrable and non-integrable systems is sharp:

an integrable system has a number of conserved charges, or first integrals, scaling like the

number of degrees of freedom. In the case of quantum systems, the classification is not

so straightforward. For example, an exact solution for some (few) many-body quantum

systems is achievable, in the sense that each eigenstate can be uniquely characterized by

a set of quantum numbers. However, this solution can in principle emerge from different

techniques, and the integrability of the system may acquire consistency inside the tech-

nique itself, such as Bethe ansatz or Quantum Inverse Scattering method, through the

rise of those quantum numbers.

Notice that the concept of integrability lives in many fields, such as differential geometry

or fluid mechanics for its classical version, and condensed matter or string theory for its

quantum counterpart. Our work will focus on the integrability of one-dimensional quan-

tum systems in statistical physics. One can refer to these models also as (1+1)-dimensional

models: 1 space + 1 time directions. In these integrable systems, the analytic solution

is based on the fact that any scattering event between quasi-particles can be decomposed

into a series of two-body scatterings. The direct consequence is that the elementary

excitations cannot be created nor destroyed in a scattering event ruled by an integrable

Hamiltonian. Anyway, due to the huge field we are diving in, let us first introduce the kind
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of models we are dealing with, and remark differences and connections between classical

and quantum ones.

1.1 Classical-quantum mapping

The quantum nature of a system in principle requires the use of quantum tools to deal with

it, with the complications it entails, such as the exponential growth of the Hilbert space.

However, if we find a way of encoding the quantum component of a model into classical

degrees of freedom, the problem can be faced in a more skilled way. We do not expect to

be thrown into an easy work environment, but the relatively deep knowledge of classical

statistical systems would guarantee us significant facilitation to solve the quantum ones.

In order to get familiar with this procedure, let us start by describing the classical-quantum

mapping for the most famous chain in statistical physics: the Ising model.

1.1.1 One-dimensional Ising model

The introductory model to statistical physics is the Ising model [1], first introduced by

Lenz in 1920. Then it was theoretically described in 1925 by one of his Ph.D. stu-

dents in Hamburg, Ernst Ising, who showed the absence of a phase transition in the

one-dimensional case. Its simplicity and its several applications make it very useful to get

the fundamental notions about our subject. It is in the basement of magnetic phenomena

and we can complicate it in many ways to get each time a different and specific system.

The Hamiltonian of the classical Ising model is:

H = −J
∑
⟨i,j⟩

σiσj −B
∑
i

σi, σi = ±1. (1.1)

The notation ⟨i, j⟩ means that we consider just neighboring sites, and we can do it even in

more than one dimension. Here the spins σi are taken as scalar quantities, which can take

only values +1 or −1, namely without any quantum nature. The parameter J identifies

the strength of the spin-spin interaction while B is the external magnetic field. When

B = 0 the system has Z2 symmetry, which consists in the simultaneous flip of all the spins.

In the absence of B, we can get the exact solution using a recursive method, which consists

of computing the partition function ZN+1 in terms of the previous ZN . An alternative

way, good also for B ̸= 0, is the transfer matrix method. It relies on the relationship that
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links classical systems of statistical mechanics in d dimensions with quantum systems in

(d− 1) and is based on the observation that the sum over the spin configurations can be

equivalently expressed in terms of products of 2×2 matrices.

For example, if we consider a chain with N sites, we have:

H = −J
N−1∑
i=1

σiσj −B
N∑
i=1

σi, σi = ±1. (1.2)

Assuming periodic boundary conditions, i.e., σi = σN+i, the chain has ring geometry.

Using the transfer matrix method, the partition function, i.e. the sum over all the possible

configurations which can be used to obtain the main quantities characterizing the system,

is:

H =
∑
{σ}

T (σ1, σ2)T (σ2, σ3) · · ·T (σN , σ1). (1.3)

The T ’s are 2 by 2 transfer matrices acting on a two-dimensional vector space with basis

elements corresponding to the spin-up and spin-down states, and it has matrix elements

T (σ, σ′) = exp

[
βJσσ′ +

1

2
βB(σ + σ′)

]
, β =

1

kBT
(1.4)

Thus V can be written as

T (σ, σ′) =

(
eβJ + eβB e−βJ

e−βJ eβJ−βB

)
= eβJ cosh(βB)

(
1 + tanh(βB) e−2βJ

e−2βJ 1− tanh(βB)

)
(1.5)

and it is easy to see that the product of V ’s correctly reproduces the Boltzmann weights of

the Ising model configurations. Indeed, the transfer matrices have the role of connecting

adjacent sites along the chain. Taking the limits βB → 0, βJ → ∞ while keeping α =

e2βJ tanh(βB) finite, we get

T ≃ const.× (I + e−2βJ(σx + ασz)), (1.6)

where I is the identity matrix in two dimensions and σx and σz are the Pauli matrices. The
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associated quantum Hamiltonian is now easy to extract by identifying δτ = e−2βJ , i.e. τ

as quantum time-direction, yielding H = −σx−ασz. These matrices are two-dimensional,

so the Hilbert space for the associated quantum system is two-dimensional. Thus, this

is the simplest non-trivial quantum system, often called a “two-state” quantum system.

This can be seen as a sort of mapping onto a (0+1)-dimensional model. The terms are

typically known respectively as a “transverse magnetic field” and just plain “magnetic

field”. The off-diagonal transverse field arises in the quantum Hamiltonian because in the

classical model the spins of course can vary as one moves from slice to slice. In this simple

case, it is easy to check that [T,H] = 0, so the transfer matrix and the Hamiltonian have

the same eigenvectors. Although having a transfer matrix commute with the Hamiltonian

is not typical behavior, such behavior occurs frequently in certain models in 1+1 dimen-

sions. Such models are called integrable, and as a consequence, some quantities can be

computed exactly by using techniques such as the Bethe ansatz.

1.1.2 Classical two-dimensional Ising model

The quantum-classical mapping can be described better considering a 2-dimensional Ising

model on a square lattice, without external magnetic fields. Its Hamiltonian is:

H = −1

2

N−1∑
i=1

σi,j [Jx (σi,j+1 + σi,j−1) + Jy (σi+1,j + σi−1,j)]. (1.7)

The transfer matrix acts on a one-dimensional slice of spins, the vector space spanned by

the set of all spins along the slice. Thus the resulting quantum Hamiltonian will act on

a many-body system of spins in a row, so that this and similar one-dimensional quantum

systems are typically referred to as “chains”.

Going into details, consider the two directions in the square lattice: x (horizontal) and

y (vertical). The horizontal one is conventionally the “principal” one, along which the

global transfer matrix will act connecting adjacent columns. Anyway, this global transfer

matrix is a composition of two transfer matrices: one acting along the horizontal axis

and the other along the vertical axis, both connecting adjacent sites. We take different

couplings, Jx and Jy, in the two directions for completeness. We remark that, in the

classical Ising model, the spin variables are simply boolean. This means that here Jx and
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Jy are not couplings between different components of the spin vectors, precisely because

the spins are not vectors, and neither are operators. Only the following mapping will

make them assume that role, due to the emergence of new σ’s with a quantum nature, i.e.

Pauli matrices. Thus, for a link along x, the situation is the same of the one-dimensional

example, which consisted entirely of horizontal links. So, for each row, the “x”-transfer

matrix is

Wi =

(
eβJx e−βJx

e−βJx eβJx

)
= eβJx(I + e−2βJxσx

i ). (1.8)

For a link in the vertical direction, the transfer matrix is diagonal, measuring whether or

not the two adjacent spins are the same:

Vi,i+1 = eβJyσ
z
i σ

z
i+1 = cosh(βJy) + σz

i σ
z
i+1 sinh(βJy). (1.9)

Considering periodic boundary conditions (∼ all indices mod N) in the y-direction, the

global transfer matrix that connects a whole column with N sites with the adjacent one

is

T =

(
N∏
i=1

Vi,i+1

)(
N∏
i=1

Wj

)
. (1.10)

For M sites and periodic boundary conditions along the horizontal axis (N ·M sites in

the lattice totally) the partition function is

Z = tr(T )M . (1.11)

At this point, we can connect this two-dimensional classical model with a one-dimensional

quantum one. In order to achieve this, we find a limit where T is near the identity, i.e.

e−2βJx → 0, tanh(βJy) → 0, while keeping λ ≡ e2βJx tanh(βJy) finite. This limit sends

Jx →∞ whereas Jy → 0. Thus, the quantum Ising Hamiltonian is

H = −λ
N∑
i=1

σz
i σ

z
i+1 −

N∑
i=1

σx
i . (1.12)
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This object identifies a one-dimensional quantum system, because, doing our mapping,

we singled out the x-direction as imaginary time. The fact that the limit sent Jx to ∞
can be seen as the sites in this direction became effectively close to each other like they

are now overlapped, constituting a single site belonging to a one-dimensional chain of N

sites along the y-direction. The same method can be generalized to higher-dimensional

lattices.

From now on, we will focus on one-dimensional quantum systems. Indeed, there are sev-

eral examples of degrees of freedom effectively constrained to move along a chain, since

the transverse directions are energetically blocked. Therefore, the study of these systems

will allow us to have a clever description of many physical models. But in doing this,

we will keep in mind the possibility of this bilateral mapping between a d-dimensional

classical system and a (d− 1)-dimensional quantum one.

1.2 The Heisenberg model

The Heisenberg, or XXX, chain is a quantum one-dimensional system that well represents

a one-dimensional quantum magnet. So, this time we are starting directly with a quantum

model. Along the chain, each site hosts a spin variable which is now described by a three-

dimensional vector S and that interacts with the adjacent sites. In the case of spin 1
2

(Sα
n = σα

n

2
where σα

n are the Pauli matrices), the Heisenberg chain with N sites and p.b.c.

has Hamiltonian:

H = −J
N∑
i=1

Si · Si+1 = −J
N∑
i=1

(
Sx
i S

x
i+1 + Sy

i S
y
i+1 + Sz

i S
z
i+1

)
. (1.13)

Due to the overall minus sign, J > 0 identifies a FM regime, while J < 0 an AFM one. In

terms of eigenstates of H, the value of J does not affect their structure, i.e. they will be

the same in every regime and for any magnitude of the energy scale J . The ground state

nature and the low-energy excitations will be sensitively affected by J , though. Consid-

ering H as an operator acting on a 2N Hilbert space, the orthogonal basis elements are

|σ1 · · · σN⟩.

12



Let us see how this model is integrable in terms of Bethe ansatz technique, briefly in-

troducing the aspects of the coordinate Bethe ansatz approach that will be useful in our

work. It is based on the intuition that superpositions of plane waves would be exact

eigenstates of the system, taking into account its symmetries. For example, the Heisen-

berg model has two main symmetries: SU(2) (rotational symmetry around all three axes)

and translational (discrete and allowed by periodic boundary conditions). The ladder is

due to the structure of the chain with equispaced sites. The former is evident since the

Hamiltonian is just a sum of scalar products. At the moment, we will use only the U(1)

rotational symmetry around one axis, the z one by convention, because the model remains

integrable even if we apply an external magnetic field (say along z). Then, obviously, the

full SU(2) symmetry will manifest itself making the spectrum degenerate for states in the

same multiplet. Since the z-component of the total spin Sz =
∑N

i=1 S
z
i is the generator

of the aforementioned U(1) symmetry, then [Sz, H] = 0, i.e. Sz is a conserved quantum

number. This allows us to consider a sector associated with each value of Sz = N
2
− R.

From this perspective, we can take R = 0, i.e. Sz = N
2
, hosting the single reference state

|0⟩ = | ↑ · · · ↑⟩, since each ↑ contributes with +1
2
. R is the number of flipped (down)

spins, thus the R = 1 sector hosts N states |n⟩ = S−
n |0⟩ where n identifies which spin of

the chain is flipped. While |0⟩ is an eigenstate of H, |i⟩ is not because it does not share

with the Hamiltonian the property of being translationally invariant. Thus, we need to

build linear combinations

|ψ⟩ = 1√
N

N∑
n=1

eikn|n⟩, k =
2πm

N
, m = 0, ..., N − 1, (1.14)

which are now eigenstates of H. They represent the so-called magnon excitations, i.e.

∆S = 1 excitations. They are an example of the quasi-particles that we introduced before,

having a crucial role in the Bethe ansatz framework. It is relevant to keep in mind this

classification of states in terms of the sector they live in, which is in turn identified by the

number of spins flipped with respect to a reference state.
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1.2.1 Ingredients of CBA

In this section, without going into details of the Coordinate Bethe ansatz, following [2]

and [3], we would like to introduce some quantities that will become useful also in the

Algebraic Bethe ansatz and in the Quantum Inverse Scattering Method. Let us start by

saying that a magnon can be seen as a collective excitation of the chain which assumes,

in our description, the role of a spin-1 quasi-particle. When we add another magnon, for

example taking R = 2 we cannot take a mere superposition of magnons but we need to

write a generic eigenstate of H in which 2 spins are flipped, which has the form:

|ψ⟩ =
∑

1≤n1≤n2≤N

f(n1, n2)|n1, n2⟩, (1.15)

where f(n1, n2), in the Bethe’s ansatz, assumes the form of a superposition of two plane

waves:

(n1, n2) = Aei(k1n1+k2n2) + A′ ei(k1n2+k2n1). (1.16)

Imposing the eigenvalue equation H|ψ⟩ = E|ψ⟩, with E = E0 + J
∑

j=1,2(1− cos kj), we

get the scattering phase relation:

A

A′ ≡ eiθ = −e
i(k1 + k2) + 1− 2eik1

ei(k1 + k2) + 1− 2eik2
. (1.17)

where θ is the scattering phase. We are describing the situation with the two magnons

scattering with each other acquiring a phase shift on their momenta. So, k1 and k2, the

quasi-momenta of the Bethe ansatz wavefunction are not the free magnon wave numbers.

k1 and k2 can be determined by imposing p.b.c. f(n1, n2) = f(n2, n1+N) getting eik1N =

eiθ and eik2N = e−iθ. These are the Bethe equations, usually written in logarithmic form.

So, taking the logarithm and summing the two identities we get

K = k1 + k2 =
2π

N
(I1 + I2), (1.18)

where the momentum K is the quantum number associated with the translational sym-

metry of the Hamiltonian, really observable, whereas k1 and k2, and consequently the

so-called Bethe numbers I1 and I2, identify the state, i.e., the Bethe ansatz wavefunc-

tion. Depending on their values, the solution can be real or complex. In the first case,

the dispersion relation forms a continuum, highlighting the presence of an internal d.o.f.

(k = k1 − k2). The complex solution, instead, is a bound state of two magnons, behaving
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like a single object, without internal degrees of freedom.

This argument can be extended to R > 2 flipped spins, getting R relations between the

phase shifts and the quasi-momenta:

Nkj = 2πÎj +
∑
l ̸=j

θ(kj, kl), j = 1, ..., R, (1.19)

where Îj ∈ {0, 1, ..., N − 1}.
Since θ(kj, kl) ̸= θ(kj − kl), in this form we do not have translational invariance in the

momenta. To restore it we can introduce another fundamental quantity: the rapidity λ.

It is a reparametrization of the momenta through the relation

kj =
1

i
ln
λj + i

λj − i
= π − θ1(λj), i.e. λj = cot

kj
2
, (1.20)

through which

θ(kj, kl) = −θ2(λj − λl) + π sgn[R(λj − λl)], (1.21)

where

θn(λ) ≡ 2 arctan
λ

n
. (1.22)

In terms of the rapidities, the Bethe equations (1.19) become

Nθ1(λj) = 2πIj +
R∑
l=1

θ2(λj − λl), j = 1, ..., R. (1.23)

where {Ij} are Bethe numbers intricately related to {Îj} but fortunately, for our purposes,
we can use them without making explicit the relation. Indeed, our need is just that they

give the proper counting of the states, as they do.

In the case of a single magnon, the solution is real and we can express the bare momentum

and energy of the quasi-particle in terms of the quasi-momentum k entering the wave-

function:

p0(λ) =
1

i
ln
λ+ i

λ− i = k (1.24)

ϵ0(λ) = −J
dk

dλ
=

2J

λ2 + i
= J(1− cos k). (1.25)
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Notice that the classification of complex solutions is not easy, even numerically, and it

is still an open problem. However, in the thermodynamic limit (N → ∞, system size

→ ∞, while their ratio remains finite) we can assume the so-called string hypotesis : the

complex solutions are arranged into strings in the complex plane, characterized by the

same real part and equispaced imaginary components. For example, in (1.24) and (1.25)

the subscript 0 stands for a 0-type string, corresponding to real solutions: the rapidity λ

belongs to the real axis. Using these bare quantities, we can express the momentum and

the energy of the eigenstates as:

K =

[
R∑

j=1

p0(λj)

]
mod 2π =

[
π R− 2π

N

R∑
j=1

Ij

]
mod 2π, (1.26)

E = E0 + J
R∑

j=1

ϵ0(λj), (1.27)

Notice that, in the quantization equations like (1.23), when Ij is an admissible quantum

number, the corresponding solution kj is said to be a root and, in the TD limit, we

can denote the density of these solutions around k with the function ρ(r)(k). Anyway,

these equations admit solutions in kj also for integer values of Īj, that are not admissible

quantum numbers. The solutions associated with them are called holes and their density

around k is ρ(h)(k).

1.2.2 String hypothesis

Now let us analyze the string hypothesis for the complex roots introduced in subsection

(1.2.1). The word hypothesis stands for the fact that we do not know if the emerging

solutions exhaust the whole Hilbert space. Anyway, we believe that they describe very

well the thermodynamics of the chain: solutions “out” of the strings are less relevant for

the analysis of systems at equilibrium.

Take the first interesting case R = 2, well described in [3], and write the Bethe equations:(
λ1 + i

λ1 − i

)N

=
λ1 − λ2 + 2i

λ1 − λ2 − 2i
, (1.28)

(
λ2 + i

λ2 − i

)N

=
λ2 − λ1 + 2i

λ2 − λ1 − 2i
. (1.29)
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and, consequently (
λ1 + i

λ1 − i

)N (
λ2 + i

λ2 − i

)N

= 1. (1.30)

Now, if Im(λ1) ̸= 0, the LHS in eq.(1.28) increases (or decreases) exponentially asN →∞;

so, to compensate, we need that

λ1 − λ2 = ±2i, i.e. λ1,2 ≡ λ 1
2
± i. (1.31)

The fact of having complex conjugated pairs as Bethe roots is actually a trademark of the

Bethe ansatz, and it happens always, also for higher R.

The total energy and momentum of this state are real:

p 1
2
= p0(λ+ i) + p0(λ− i) =

1

i
ln
λ+ 2i

λ− 2i
, (1.32)

ϵ 1
2
= ϵ0(λ+ i) + ϵ0(λ− i) =

4J

λ2 + 4
, (1.33)

and give the dispersion relation

ϵ 1
2
(p) =

J

2
(1− cos p 1

2
). (1.34)

If we take R > 2, we assume that complex solutions can be organized into vertical com-

plexes (or strings) of 2M + 1 rapidities in the complex plane, where M identifies the

string, characterized by the same real value for all the rapidities. The admissible values

for M are 0, 1
2
, 1, ... and the rapidities associated with each M are:

λ(M)
m + 2im, m = −M,−M + 1, ...,M − 1,M. (1.35)

A state can have more than one complex of type M : the number of such M -complexes

“inside” a state is denoted by νM . So, if we now take a state with a fixed magnetization,

it has to satisfy the identity:

R =
∑
M

(2M + 1)νM . (1.36)

A string, containing 2M + 1 roots, can be seen as a group of spins that move together

since they have the same real rapidity. Thus, in this framework, they can be considered as
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Figure 1.1: The figure shows how the strings lay on the complex plane. The rapidities (points) with
the same real part belong to the same string. The first point on the left constitutes the whole 0-complex
(M = 0) and it is a real solution. On its right, we find the 1

2 -complex (M = 1
2 ) with two complex

rapidities, equispaced by 2i. The 1-complex comprehends a real root and two complex ones, still at the
same distance. The 3

2 complex has two pairs of complex rapidities, and this scheme repeats for higher
M .

a single entity with precise momentum and energy, given by the sum of these quantities

over all the rapidities within one string:

pM(λM) =
M∑

m=−M

p0(λ+ 2im) =
1

i
ln
λM + i(2M + 1)

λM − i(2M + 1)
(1.37)

ϵM(λM) =
M∑

m=−M

ϵ0(λ+ 2im) =
2J(2M + 1)

λ2M + (2M + 1)2
=

J

2M + 1
(1− cos pM). (1.38)

For example, in the previous R = 2 case, to satisfy eq.(1.36), we needed just one
1
2
-complex (i.e. M = 1

2
and ν 1

2
= 1); thus, to get the whole momentum and en-

ergy of the state, we just had to sum along this single string constituted of two roots:

p 1
2
=
∑ 1

2

m=− 1
2

p0(λ 1
2
+ 2im) and ϵ 1

2
=
∑ 1

2

m=− 1
2

ϵ0(λ 1
2
+ 2im).

Notice that the Bethe ansatz techniques are known to be powerful to solve many systems

but, the string hypothesis, still being an hypothesis, is not completely clear how much
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it can describe the reality. What we expect is that, it should be a good approximation

of reality if ν0, i.e. the number of single-particle (real) solutions, dominates over all the

other complexes in the sum (1.36).

In any case, the facts that a spin chain’s Hilbert space is finite and that momenta are

constrained within a Brillouin zone impose some other constraints on the solutions. The

first implies that not all quantum numbers are allowed: for example, the Bethe numbers

associated with roots among the same M -complex must be different (IM,j ̸= IM,j′), other-

wise we get a vanishing solution. The second tells us that Bethe numbers are bounded: it

can be computed that the maximum quantum number that characterizes a finite rapidity

is

Imax
M =

N − 1

2
−
∑
M ′

J(M,M ′)νM ′ where J(M,M ′) ≡

2min(M,M ′) + 1 M ̸=M ′

2M +
1

2
M =M ′

(1.39)

Then, since all the scattering phases are odd functions of their argument, we have that

Imin
M = −Imax

M , (1.40)

which implies that there exists an amount PM of vacancies for a M -complex equal to

PM = 2Imax
M + 1 = N − 2

∑
M ′

J(M,M ′)νM ′ . (1.41)

It can be proven that the number of states accessible within the string hypothesis scales

like 2N . Thus, only a few states are neglected in this framework: they are the ones that

have a large number of complex rapidities that are not organized in strings, but are still

able to satisfy the Bethe equations (1.19). This can happen because in these equations,

the exponential growth/decay on the RHS can accidentally compensate the same behavior

on the LHS. We remark that these solutions are not significant for the TD of the model

but they can become useful to determine the completeness of the Bethe approach and for

other investigations.
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1.2.3 AFM case: J = −1
This brief recap on the CBA for the XXX model was useful to look at the backbone of the

string hypothesis, which will be crucial for our investigation of the XYZ chain. Another

fundamental ingredient in the Bethe ansatz approach is the identification of the ground

state (or, more generally, of a reference state), in order to “build on it” the excited states,

identified by specific quasi-particle excitations.

In this sense, the FM case is quite trivial. In fact, we can choose as ground state the

completely polarized one |0⟩ characterized by all the spins aligned, i.e. with overall spin

S = N
2
. Such a state is degenerate with all the other members of the S = N

2
multiplet.

They can be obtained from |0⟩ just by adding zero-momentum magnons, which possess

zero bare momentum and zero bare energy (see eqs.(1.24),(1.25)), so they cannot change

the energy of the system, keeping it in the ground state. If we want to get lower excited

states from the vacuum, we can add bound state complexes, so we can refer to the ground

state as a magnon-vacuum with quadratic dispersion relation for the excitations. In this

case, lower excitations are not multiple-magnon excitations because it can be shown that

the latter have higher energy than bound state complexes.

The AFM regime is instead very interesting, both for physical applications and to describe

some new features of the Bethe ansatz technique. In particular, a new quasi-particle will

emerge to describe the system: the spinon .

The ground state in this regime has to be a state with all the spins flipped with respect

to its neighbors. For the moment we are considering chains with an even number of sites

N . So, the ground state has total spin S = 0, i.e., it lives in the R = N
2
sector. In the

FM case, bounded states had lower energy than unbound magnons because that regime

obviously favors the clustering of flipped spins. The opposite regime instead, implies the

contrary hierarchy: unbound magnons have now lower energy and they will constitute the

lower excitations. Actually, since we begin from the R = 0 reference state, we need these

quasi-particle excitations even to get the ground state. What we do is add N
2
0-complexes

(unbound magnons), i.e., R real single quasi-particle excitations. In our notation:

ν0 =
N

2
while νM = 0, for M ≥ 1

2

eq.(1.36)−−−−−→ R =
N

2
. (1.42)
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The total number of vacancies is given by (1.41):

P0 = N − 2J(0, 0)ν0 = N − N

2
=
N

2
, (1.43)

which coincides with the number of particle states. Thus, this time, the Bethe numbers

occupy all the allowed vacancies (from (1.39) and (1.40)):

−N
4

+
1

2
≤ I0,k ≤

N

4
− 1

2
(1.44)

and they are clearly integer for N
2
odd, while half-integer for N

2
even. The fact that the

vacancies are all occupied means that there exists only one state with N
2
real magnons,

which is the antiferromagnetic ground state |AFM⟩.
Now, if we want to build excited states, we can take the ground state and substitute the

real quasi-particles with complexes. The number of 0-complexes removed will be called k

and it will label the excited states:

ν0 =
N

2
− k. (1.45)

The example for k=1 can be explicative on how we proceed in this framework: since we

have just one quasi-particle to relocate, we cannot excite aM -complex withM ≥ 0, hence

we have R = N
2
− 1, i.e., Sz = 1. Re-using eq.(1.41) we get the number of vacancies:

P0 = N − 2 · 2 · 1
2

(
N

2
− 1

)
=
N

2
+ 1⇒ P0 = R + 2. (1.46)

This means that we will place each quasi-particle, choosing R Bethe numbers among the

P0 possible ones, but two vacancies will remain empty. These two holes have to be chosen

and this choice selects the excited state.

For higher k the scheme is the same, but the situation becomes quickly complicated since

we can populate also the complexes, and the way we do it characterizes the excitations

above the ground state.

1.2.4 The emergence of the spinon in the TD limit

Fortunately, the Bethe equations simplify drastically in the thermodynamic limit (N →
∞): the real roots become quasi-continuous and we can evaluate the density distribution

of the state’s rapidities.
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Let us begin with the ground state, where all the roots are real the corresponding Bethe

numbers fill the vacancies without holes. Assume N
2
to be odd, so that

I0,j ≡ j, with j = −N
4

+
1

2
,−N

4
+

3

2
, ...,

N

4
− 1

2
. (1.47)

so that the BAE’s take the form

arctanλj = π
j

N
+

1

N

∑
l

arctan

(
λj − λl

2

)
. (1.48)

As the variable x = j
N

becomes continuous and limited in
[
−1

4
, 1
4

]
in the limit N → ∞,

the set of roots λj turns into the function λ(x). The equation (1.48) becomes

arctanλ(x) = πx+
1

N

∫ 1
4

− 1
4

arctan

(
λ(x)− λ(y)

2

)
dy. (1.49)

Now, since in this framework, the eigenvalues of local observables take the form of sums

over roots, we change variables in order to integrate over λ, and not over x (the continuous

form of the quantum numbers). The mapping x → λ(x) consists in sending the interval

−1
4
≤ x ≤ 1

4
into the whole real axis −∞ ≤ λ ≤ ∞, and the correspondence between the

sum, the integral in dx and the one in dλ is:

1

N

∑
j

f(λj) =

∫ 1
4

− 1
4

f(λ(x))dx =

∫ ∞

−∞
f(λ)ρ0(λ)dλ. (1.50)

The quantity ρ0(λ) is the density of real rapidities and it correspond to the Jacobian of

the change of variable:

ρ0(λ) =
dx

dλ
=

1

λ′(x)

∣∣∣∣
x=λ−1(λ)

(1.51)

Differentiating eq.(1.49) with respect to λ we get a linear integral equation:

2

1 + 4λ2
= πρ0(λ) +

∫ ∞

−∞

ρ(µ)

1 + (λ− µ)2dµ, (1.52)

that can be conveniently written in the recurrent form

ρ0(λ) +
1

2π

∫ ∞

−∞
K(λ− µ)ρ0(µ)dµ =

1

2π
θ′1(λ) (1.53)
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where K(λ− µ) is the “kernel”

K(λ− µ) ≡ d

dλ
θ2(λ) =

4

(λ− µ)2 + 4
. (1.54)

Equation (1.52) can be solved by Fourier transform getting

ρ0(λ) =
1

4 cosh(πλ
2
)
. (1.55)

The momentum and energy of the g.s. are given by

K = N

∫
p0(λ)ρ0(λ)dλ =

π

2
Nmod2π ≡ KAFM , (1.56)

E = E0 +N

∫
ϵ0(λ)ρ0(λ)dλ = N

(
1

4
− ln 2

)
≡ EAFM , (1.57)

where p0 and ϵ0 are defined in (1.24) and (1.25).

Now take the case k=1, i.e. ν0 =
N
2
− 1 and νM = 0 for M ≥ 1

2
. The emerging states are

characterized by two holes: we can select among the vacancies which quantum numbers

are empty. Let us choose j1 and j2: the Bethe numbers are no longer I0,j ≡ j but

I0,j = j + θH(j − j1) + θH(j − j2), where θH(j) =

1 j ≥ 0

0 j < 0
(1.58)

We can now map x1 =
j1
N

and x2 =
j2
N

into λ1 and λ2 respectively, and recover the integral

equation in this case for the real roots rapidity density ρt(λ) (t stands for “triplet”):

ρt(λ) +
1

2π

∫ ∞

−∞
K(λ− µ)ρt(µ)dµ =

1

π(1 + λ2)
− 1

N
[δ(λ− λ1) + δ(λ− λ1)]. (1.59)

Since we are dealing with linear equations, the solution of eq.(1.59) can be written as

ρt(λ) = ρ0(λ) +
1

N
[τ(λ− λ1) + τ(λ− λ2)], (1.60)

where τ(λ) is solution of the equation

τ(λ) +
1

2π

∫ ∞

−∞
K(λ− µ)τt(µ)dµ = δ(λ). (1.61)
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Its Fourier transform is

τ̃(ω) =
1

1 + exp−2|ω| . (1.62)

Working directly in Fourier space we can compute its contribution to the momentum

and energy of the states. Remember that the bare momentum and energy of the real 0-

complexes (the only ones that can be populated for k=1) are still p0 and ϵ0; what changes

is the way they are occupied, i.e. the density distribution is now ρt. So we have:

K = N

∫
p0(λ)ρt(λ) = KAFM + k(λ1) + k(λ2), (1.63)

E = N

∫
ϵ0(λ)ρt(λ) = EAFM + ϵ(λ1) + ϵ(λ2), (1.64)

where

k(λ) ≡ π

2
− arctan sinh

πλ

2
, (1.65)

and

ϵ(λ) ≡ π

2 cosh πλ
2

, (1.66)

are the functions that identify the excitation that a hole generates in the system. It is

clear that in our case, having two holes, the state we constructed (but equivalently also

the others with k=1 even if with a different choice of the position of the holes) has two

excitations over the ground states. They are identified as collective excitations over the

ground states, and they are called spinons . Notice that they can exist only as collective

excitations of the system in the TD limit, in the sense that they cannot be generated by

a spin flip, since flipping a spin-1
2
creates a spin-1 excitation, and consequently, a finite

number of flips generates integer spin excitations. They are typical of the AFM regime

because they exist over a ground state (|AFM⟩) that is far from a vacuum state (|0⟩).
We can imagine it as generated by flipping every spin after a given reference point along

the chain. It is fascinating that this physical instance goes along with the mathematical

identity
∑∞

n=1(−1)n = −1
2
obtained by analytical continuation.

Combining (1.65) and (1.66) we can also get the dispersion relation of the single spinon

excitation:

ϵ(k) =
π

2
sin k with − π

2
≤ k ≤ π

2
. (1.67)

24



which can approximated to be linear for small k. The dispersion relations of two spinons

are very different from the one of a pure spin-1 excitation made by one magnon since the

former makes a band due to its composite nature, while the latter is a simple curved line.

Now we highlight the direct jump from zero to two spinons. Indeed it is a direct conse-

quence of considering a chain with an even number of sites. In the case of N odd instead,

individual spinons can exist due to the degeneracy between states belonging to two dif-

ferent sectors: R = N−1
2

and R = N+1
2

. Remember this occurrence, because it will be

fundamental for the purposes of this work.

Another interesting aspect of the AFM Heisenberg model is that if we consider the case

k=2 we can have two situations:

1. we can keep νM = 0 for M ≥ 1
2
getting a state with Sz = 2 and generating 4 holes;

2. we take ν0 = N
2
− 2, and we start to populate a complex, the one with M = 1

2

(ν 1
2
= 1 while νM = 0 for M ≥ 1). This keeps R = N

2
and Sz = 0.

In this last case, using 1.41 the vacancies are:

P0 =
N

2
and P 1

2
= 1. (1.68)

This means that, having ν0 =
N
2
− 2 to be inserted among the P0 =

N
2
vacancies, we are

left with 2 holes; while the 1
2
-complex has no freedom: its state is fixed since ν 1

2
= 1 fits

exactly in the only P 1
2
= 1 vacancy.

In the TD limit, solving the linear equation for the density of real roots ρs(λ), we get

the exact same expressions (1.65) and (1.66) we got for the momentum and energy in the

k=1 case. This fact is a general feature in our framework: the contributions from the

complex cancel out and the state has the same momentum, energy, and dispersion relation

computed in the case without complexes, but with the same number of holes. Indeed,

notice that we called the distribution density ρs(λ) because this state is degenerate with

the one with ρt(λ), and while the former has magnetization Sz = 0 (singlet), the latter has

Sz = 1 (triplet). So, also for higher k=1, it remains that the contribution ofM -complexes

to the momentum and energy identically vanishes, i.e., these quantities depend only on

the number of particles (↔ real roots).

Anyway, we need to remark that these multiplets are exactly degenerate only at the
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Heisenberg point and get split as we add anisotropy (e.g. XXZ or XYZ), associated with

the SU(2) symmetry breaking.

1.3 The XXZ chain

A straightforward generalization of the XXX chain can be obtained by introducing the

anisotropy along one of the axes, namely we modify one of the three couplings, say the

one along z, getting a different magnitude and/or sign with respect to the other two. The

model clearly loses its SU(2) symmetry but keeps the U(1) around the z-axis, i.e. on the

XY plane. This means that the integrability of the model is still intact. Indeed, as you

can remember, the construction of the Bethe ansatz solution for the XXX chain was based

just on the U(1) symmetry, with the presence of the bigger SU(2) giving the degeneracy

between states belonging to different R-sectors seen in the last paragraph.

This means that the CBA methodology remains the same, but the classification of the

complex roots is more complicated, and the nature of the low-energy excitations changes.

1.3.1 Hamiltonian and possible regimes

The Hamiltonian of the XXZ model in the absence of an external magnetic field is:

H = −J
N∑

n=1

[
Sx
nS

x
n+1 + Sy

nS
y
n+1 +∆Sz

nS
z
n+1

]
, (1.69)

where we select periodic boundary conditions. Notice that if |∆| = 1 we recover the

Heisenberg chain.

The various regimes are selected by the combinations of the two parameters J and ∆. We

cite the most interesting ones for our purposes. Let us assume J > 0, namely ferromagnetic

order preferred on the XY plane. The parameter ∆ fixes the strength of the uniaxial

anisotropy along the z direction, competing with the planar term: |∆| < 1 sets a planar

regime, while |∆| > 1 an axial one. In the axial regime, if also ∆ is positive, we have an

axial ferromagnet, and an axial anti-ferromagnet if ∆ is negative. This last regime is the

crucial one for our aims.

In particular, for ∆ < −1, the phase is dominated by the Ising AFM along z of the

∆ → −∞ limit. Its ground states are the two degenerate Néel states |N1⟩ ≡ | ↑↓↑↓ · · · ⟩
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and |N2⟩ ≡ | ↓↑↓↑ · · · ⟩. The low-energy excitations are constructed in terms of domain

walls, i.e., regions where one type of Néel order changes into the other, thus creating

two consecutive aligned spins. These states can be created by flipping a potentially

macroscopic number of spins, but their energy cost only lies at the boundaries and does

not depend on the number of flipped spins: this phenomenon generates fractionalized

excitations (seen before for XXX), and each domain wall carries spin S = 1
2
, i.e. the

simplest example of a spinon.

For |∆| < 1 we have a paramagnetic phase, reached passing through ∆ = −1, where
happens a BKT (Berezinsky-Kosterliz-Thouless) type phase transition: the excitation

spectrum goes from massive to gapless, but the ground state energy and all its derivatives

are continuous across the point.

Having discussed the phenomenology of the system, let us solve the system analytically

using the CBA approach.

1.3.2 Coordinate Bethe ansatz solution

As said before, we proceed with this solution exactly as for the isotropic case. Due to the

U(1) symmetry, the magnetization along the z-axis

Sz ≡
N∑

n=1

Sz
n (1.70)

is a conserved quantity, commuting with H. This allows us to divide the problem into

sectors of defined magnetization, considering only the case 0 ≤ Sz ≤ N
2
since the negative

magnetization solution can be recovered just by flipping all the spins.

Again, the reference state |0⟩ is the ferromagnetic one with all spins up (Sz = N
2
), it is

unique in that sector and it is an eigenstate of the Hamiltonian. Considering magneti-

zation Sz = N
2
− R, the number of states in this sector is equivalent to all the possible

configurations ({nl}) that the system can assume by placing the R spin-flips. A generic

state in this sector can be written as

|Ψ⟩ =
∑
{nl}

f(n1, n2, ..., nR)|n1, n2, ..., nR⟩, (1.71)
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with

|n1, n2, ..., nR⟩ ≡ S−
n1
S−
n2
· · ·S−

nR
|0⟩ (1.72)

the state with R spins flipped at the positions {nl}. Since we took Sz ≥ 0 without loss of

generality, then R ≤ N
2
and we mention that only for even N we can have Sz = 0 while

for odd number of sites the magnetization is always a half-integer. The state (1.71) is

obviously too generic, thus we have to impose some constraints to get proper eigenstates

of H (1.69). With this in mind, we can directly analyze the eigenvalue equation for the

Hamiltonian, i.e. applying directly H to the state (1.71):

(H − E)Ψ = − J

2

R∑
j=1

(1− δnj+1,nj+1
) [f(n1, ..., nj + 1, nj+1, ..., nR) + f(n1, ..., nj, nj+1 − 1, ..., nR)]

+

[
E0 − E + J∆R− J∆

R∑
j=1

]
f(n1, n2, ..., nR) = 0.

(1.73)

Then, the ansatz consists again of writing the “amplitude” function in (1.71) as a super-

position of plane waves. In subsection (1.2.1), we did it explicitly for R = 2, here we

propose the version for any 0 ≤ R ≤ N
2
:

f(n1, ..., nR) ≡
R!∑
P

A[P ] e
∑R

j=1 kPj
nj = ΩR

R!∑
P

exp

[
R∑

j=1

kPj
nj +

i

2

R∑
j<l

Θ̃(kPj
, kPl

)

]
,

(1.74)

where P is a permutation of the quasi-momenta kj. The sum of all these momenta kj gives

the total momentum of the Bethe wave function (1.74): K =
(∑R

j=1 mod2π
)
. Inserting

(1.74) into (1.73), and after a few computations, we fix the scattering phases as

Θ(k, k′) ≡ Θ̃(k, k′)− π = 2

(
arctan

∆ sin(k−k′

2
)

cos(k+k′

2
)−∆cos(k−k′

2
)

)
, (1.75)

so that (1.74) is an eigenfunction of (1.73) with eigenenergy:

E = E0 + J∆R−
R∑
l=1

cos kl. (1.76)

28



Then, by imposing periodic boundary conditions, we get the following quantization rela-

tions on the scattering phases:

eikjN =
∏
j ̸=l

eiΘ̃(kj ,kl) = (−1)R−1
∏
j ̸=l

ei(kj+kl) + 1− 2∆eikj

ei(kj+kl) + 1− 2∆eikl
, j = 1, ..., R. (1.77)

In their logarithmic form, they are the Bethe equations for our system:

Nkj = 2πĨj −
R∑
l=1

Θ(kj, kl), j = 1, ..., R, (1.78)

where the {Ĩj} are the quantum numbers defining the state.

Again, let us reparametrize the quasi-momenta kj in terms of the rapidities λ̃j as

eikj =
sin ϕ

2
(λ̃j + i)

sin ϕ
2
(λ̃j − i)

, (1.79)

where the parameter ϕ is fixed by requiring the coveted translational invariance of the

scattering phase, i.e., being a function of rapidity difference only; this constraint sets

coshϕ = ∆. (1.80)

Now, rewriting the Bethe equations (1.78) in terms of these new variables, we have:

Nθ̃1(λ̃j) = 2πIj +
R∑
l ̸=j

θ̃2(λ̃j − λ̃l), j = 1, ..., R, (1.81)

where

θ̃n(λ̃) ≡ 2 arctan

[
coth

(
nϕ

2

)
tan

(
λ̃ϕ

2

)]
. (1.82)

At this point, we can also write the momentum and energy of the system, in terms of

rapidities:

K = 2
R∑

j=1

cot−1 tan(
ϕλ̃j

2
)

tanh ϕ
2

, (1.83)

E = E0 +
R∑

j=1

ϵ̃(λ̃j), (1.84)
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where

ϵ̃(λ̃) ≡ −J sinh2 ϕ

coshϕ− cos(ϕλ̃)
(1.85)

is the quasi-particle energy.

We can observe that the phase θ̃1(λ̃j) is actually the original quasi-momentum kj. Thus

we can write also the quasi-particle momentum in terms of λ̃j as

p(λ̃j) ≡ θ̃1(λ̃j) = kj (1.86)

and the associated dispersion relation as

ϵ̃(λ̃) = −sinhϕ

ϕ

d

dλ̃
p(λ̃) = J(∆− cos k). (1.87)

In order to study better the string solutions of the XXZ, it is worth going through another

reparametrization of the rapidities:

λ = ϕλ̃ (1.88)

that sends us from θ̃1(λ̃j) = kj to

θ1(λj) = kj, (1.89)

and allows us to rewrite the last expression (1.81) for the Bethe equations as

Nθ1(λj) = 2πIj +
∑
l

θ2(λj − λl), j = 1, ..., R. (1.90)

where functions θn depend now also on ϕ, and they are different depending on the regime

selected.

So far, we have introduced the basic elements for our description of the XXZ, namely the

nature of its quasi-particle excitations. Though, we know that the CBA solution has its

own features in each regime of the system, in turn, selected by ∆, or equivalently by ϕ.

Therefore, let us focus on the solution of the two most interesting regimes for our needs:

the paramagnetic (|∆| < 1) and the uni-axial antiferromagnet (∆ = 1).

1.3.3 Paramagnetic regime: |∆| < 1

In this phase, the magnitude of the couplings in the XY plane is greater than the one

along z, and we will focus on the ∆ < 0 regime. The most relevant aspect is that it hosts

gapless excitations, while the uni-axial ferromagnet (∆ > 1), for example, has gapped
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magnon excitations: ϵM(pM = 0) ̸= 0.

Using the relation (1.89), we notice that real rapidities (as we know, associated with the

ground state) generate real quasi-momenta constrained in an interval k ∈ [−(π−γ), π−γ]
depending on a parameter γ = −iϕ which goes to 0 as ∆→ −1 and goes to π as ∆→ −1.
If the quasi-momenta are outside this interval, they correspond to rapidities lying on the

iπ horizontal axis. The “problem” for this phase is that the function k(λ) is periodic in

the imaginary axis, in the sense that kj = k(λj) = k(λj + i2π).

The ground state is given by pure, real rapidities, filling the Fermi sea, whose density, in

the TD limit, is the solution of the integral equation (1.53):

ρ0(λ) +
1

2π

∫ ∞

−∞
K(λ− µ)ρ0(µ)dµ =

1

2π
θ′1(λ). (1.91)

which comes from the Bethe equations (1.90). With respect to the XXX version (1.53)

we have a different kernel function:

K(λ) ≡ d

dλ
θ2(λ) =

sin(2γ)

coshλ− cos(2γ)
. (1.92)

The magnetization of this state, in the usual scheme, is

Sz =
N

2
−N

∫ ∞

−∞
ρ0(λ)dλ, (1.93)

and its energy is

E = E0 +N

∫ ∞

−∞
ϵ0(λ)ρ0(λ)dλ (1.94)

where

ϵ0(λ) ≡ −J
√
1−∆2 θ′1(λ) = −J

sin2 γ

coshλ− cos γ
. (1.95)

is the (bare) single magnon energy.

Assuming N even, the lowest energy state has zero magnetization, and thus is given by
N
2
real rapidities (half filled sector), which exhausts the allowed vacancies.

1.3.4 Spectra of spinons and magnons in the paramagnetic phase

Following the approach proposed in subsection (1.2.4), we can analyze the elementary

excitations of the XXZ chain. Similarly, these low-energy excitations are obtained by

removing k real rapidities from the ground state contribution. Each removal leaves two

31



holes among the allowed vacancies: these holes are the already introduced spinons. Using

the “new” kernel function, we can perform the same kind of computations done for the

Heisenberg chain, obtaining the momentum and energy carried by each spinon:

k(λ) ≡ π

2
− arctan

(
sinh

πλ

2γ

)
, (1.96)

ϵ(λ) ≡ J
π

2

sin γ

γ

1

cosh πλ
2γ

, (1.97)

yielding the dispersion relation

ϵ(k) = J
π

2

sin γ

γ
sin k. (1.98)

One interesting feature of the XXX chain was the degeneracy between the singlet and

triplet states, i.e. pairs of spinon excitations had the same energy as solutions with other

M -complexes. That relied on the SU(2) symmetry of the isotropic chain, now broken in

the XXZ. Thus, in the latter, for each state one has to determine the contributions from

each excitation separately.

Another novelty of this model is the fact that additional real excitations (k real) can be

generated by placing on the iπ axis some of the k rapidities just removed from the real

axis. The associated spectrum can be computed through the usual techniques, getting

ϵ(k) = Jπ
sin γ

γ

∣∣∣∣sin k2
∣∣∣∣
√
1 + cot2

[(
π

γ
− 1

)
]
π

2

]
sin2 k

2
. (1.99)

Each of these excitations carries Sz = 1 and this reminds us of a magnon, but we have to be

careful. For example, in the ∆→ 1 (γ → π) limit, they approach the magnonic dispersion

relation, but they are physical only for 0 < ∆ < 1. Indeed, for ∆ > 0 their contribution

vanishes in the linear approximation, and magnons can only appear in high-energy states.

At low momentum, their dispersion relation is the same as individual spinons, but since

the latter appear in pairs and are composite excitations, they are actually distinguishable.

Moreover, their momentum range is complementary to that of the spinon excitations. To

sum up, low-momentum magnons can only appear close to ∆ = 1.
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1.3.5 String solutions in the paramagnetic phase

Real solutions (i.e., Im(λ) = 0) are the basis of the thermodynamics of the system.

The influence of (non-0)-complexes instead, depends on the nature of the system itself

and is actually still difficult to evaluate. In any case, we must take them into account,

since their effects could always be structural. In the XXZ case, in the paramagnetic

phase, string solutions are higher energy states compared to unbound states. However,

due to their number and structure, they contribute significantly to the dynamics of the

model. Moreover, unlike its isotropic counterpart, here not all complexes are allowed in the

paramagnetic phase. This makes the problem of accounting for them very controversial.

The fundamental constraint for the strings comes from the normalizability of the wave

function. To show it, consider aM -complex, with overturned spins at positions n1 < n2 <

· · · < n2M+1. The relevant parts of the wave function can be written as

f(n1, ..., n2M+1) = (z1z2 · · · z2M+1)
n1

∑
P

(−1)P
[∏

j<l

sinh
1

2
(λPj

− λPl
+ 2iγ)

]
2M∏
n=1

(
2M+1∏
nl=+1

zPl

)nj+1−nj

(1.100)

where zj ≡ eikj =
sinh 1

2
(iγ−λj)

sinh 1
2
(iγ+λj)

.

When Im(λj) ̸= 0, then |zj| ≠ 1; so, assuming Im(kj) ≥ Im(kj+1), for the wave function

not to explode we need to require

|z1z2 · · · z2M+1| = 1 and

∣∣∣∣∣
2M+1∏
l=n+1

zl

∣∣∣∣∣ < 1 n = 1, ..., 2M. (1.101)

These conditions guarantee that one of the permutations yields a normalizable wave func-

tion. We still have to force all the others to vanish. To do this we can select the following

string structure for bound states:

λM,j = λM +
1− η
2

π + i 2(M − j)γ j = 0, ..., 2M, (1.102)

where we introduced the parameter η = ±1, which identifies the “parity” of the string

and divides the complexes into two types: the ones with the center of mass lying on the

real axis (η = +1) and lying on the iπ axis (η = −1).
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We can compute the momentum and energy of these M -complexes:

pM(λM) =
1

i
ln

sinh 1
2

[
i(2M + 1)γ − λM − i1−η

2
π
]

sinh 1
2

[
i(2M + 1)γ + λM + i1−η

2
π
] , (1.103)

ϵM(λM) = −J sin γ sin[(2M + 1)γ]

η coshλM − cos[(2M + 1)γ]
. (1.104)

and their dispersion relation:

ϵM(pM) = −J sin γ

sin[(2M + 1)γ]
[cos[(2M + 1)γ] + cos pM ] . (1.105)

In addition, concerning the accounting problem we mentioned earlier, we can extract the

range limitation for the momenta of the strings:

cos pM > − cos[(2M + 1)γ] for η = +1, (1.106)

cos pM < − cos[(2M + 1)γ] for η = −1, (1.107)

showing that it depends on the length M and parity η of the string, and on γ (i.e. ∆).

We also have other constraints coming from the second equation in (1.101):

η sin[(2M + 1− n)γ] sin[nγ] > 0 n = 1, ..., 2M. (1.108)

At roots of unity, i.e. points at which γ = p
q
π with p and q co-prime numbers, these

constraints mean that only strings shorter than q are allowed. Irrational values of γ
π
can

be approximated by continued fractions to work out the selection rules. Although the

cumbersome nature of this solution, the results are in good agreement with the actual

behavior of the systems.

1.3.6 Uni-axial antiferromagnet: ∆ < −1
We close this section on the CBA describing the other possible antiferromagnetic situation:

the uni-axial antiferromagnet. In this regime, the ground state has zero magnetization

Sz = 0 and is given by N
2
magnons lying on the |0⟩ ferromagnetic reference state. Then,

we proceed as usual, solving the integral equation (1.91) for the density of real rapidities

obtained in the TD limit. To do so, we need to point out that ∆ < −1 imposes a precise

range on the quasi-momentum k, i.e. on λ, as said at the beginning of subsection (1.3.3).
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In this phase Re(k) ∈ (−π, π) and this interval is mapped into Re(λ) ∈ (−π, π); this
means that this time the integral in (1.91) goes from −π to π. Moreover, the Kernel

function K(λ) ≡ d
dλ
θ2(λ) assumes the form

K(λ) = sinh(2ϕ)

cosh(2ϕ)− cosλ
. (1.109)

Thanks to periodicity, the integral equations can be solved through Fourier transform,

getting a situation in which, for N
2
real rapidities, the number of vacancies allowed is N

2
+1.

This gives a singular behavior: the ground state configuration generated by a symmetric

distribution of quantum numbers turns out to be nearly degenerate with one in which these

numbers are shifted by one unity. But while the first has zero momentum, the second

has π: in the ∆ → −∞ limit these two states become the the symmetric/antisymmetric

combination of the two Néel states: | ↑↓↑↓ · · · ⟩ ± | ↓↑↓↑ · · · ⟩.
Instead, low-energy excitations are 2k spinons generated by removing k rapidities from

the ground states. Each spinon contributes with energy [4] [5]

ϵ(k) = J
sinhϕ

π
I(k)
√
1− k2 cos2 k (1.110)

where

I(k) ≡
∫ π

2

0

dθ√
1− k2 sin2 θ

(1.111)

is the complete elliptic integral of the first kind.

Even if we will not make use of the Coordinate Bethe ansatz in the following, the descrip-

tion of this method is fundamental to fixing in mind the concept of the string hypothesis

and to understanding its “second quantized version” called Algebraic Bethe ansatz (ABA).

1.4 Recap on classical and quantum integrability

In the case of classical systems and in quantum field theories, what makes a system

integrable is an infinite number of conserved charges. For a discrete (1+1)-dimensional

quantum system like the XXZ spin chain, this condition is not sufficient since, for any

quantum mechanical system, the set of projectors onto the eigenstates of a Hamiltonian

is a complete set of charges in convolution with one-another and with the Hamiltonian

itself. This sort-of-integrability is the reflection of the fact that the Schrödinger equation
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is essentially a linear differential equation. For this reason, the actual integrability relies

on the technique we used to solve the system. What emerged was the possibility of

identifying its integrability in the Coordinate Bethe ansatz framework. What we can say

now is that Ising, Heisenberg, and XXZ, for example, are known to be integrable. If we

insert another anisotropy, therefore selecting the XYZ model, for all we know so far, we

must appeal to the previously enhanced quantum-classical mapping. Indeed, we leverage

the mapping of the quantum 1D chain into the 2D classical 8-vertex model, that we are

about to introduce. There, we make use of the Quantum Inverse Scattering Method

techniques, relying on the manipulation of one fundamental object: the transfer matrix,

already introduced in the Ising model section (1.1). Since this transfer matrix commutes

with the Hamiltonian of the original quantum system, searching for its spectrum we also

recover the eigenenergies of the physical model. Notice that this method can be used also

to solve the XXZ chain, through its mapping into the 6-vertex model [2] [3]. Anyway, in

the case of XYZ, this can be seen not only as a solving technique but as the basis of the

quantum integrability of our system. At this point, we know that we can, in principle,

recover its spectrum and its eigenstates. Thus, in general, a quantum system is said to

be integrable when we use a technique and it technically happens to be integrated.

1.5 Algebraic Bethe ansatz

The Algebraic Behte-ansatz can be seen as the second quantization of CBA in the sense

that we will deal directly with operators instead of wave functions. Actually, wave func-

tions will still lie under our talk, but the direct work will be done on matrices operating

on an enlargement of the physical space. The ABA is in one-to-one correspondence with

the Quantum Inverse Scattering Method (QISM) [6], introduced by Bogoliubov, Izergin,

and Korepin, and whose name will be clear soon.

The ABA is based on the previously remarked relation between two-dimensional classical

integrable systems and one-dimensional quantum ones. The former are based on the for-

malism of the transfer matrices that allow us to construct the partition function of the

model, known to encode all the thermodynamics. If we want to summarize it, in ABA

we apply certain operators to a reference state (called pseudo-vacuum) to generate other

states (wave functions), and to do so, we use the Yang-Baxter algebra that these transfer

matrices obey.
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1.5.1 Technicalities of the ABA

The previously mentioned enlargement of the physical space is the first main feature of

this approach. Indeed, the introduction of some auxiliary space or variable allows us to

decouple the interaction: the physical d.o.f.s do not interact among themselves, but only

with the entities in the auxiliary space. Then, after getting the solution for the whole

enlarged space, we can trace out the auxiliary variables and recover the physical original

model solution. This auxiliary space’s insertion corresponds to the addition of a probe

that propagates inside the real system and interacts with the physical variables.

Talking in operators, the most relevant entity is the transfer matrix T(λ) of the system,

whose role and construction will be clear when built specifically for our XYZ spin chain.

By now, we can say that it depends on the spectral parameter λ, which can be seen as the

rapidity of the probe injected in the system. The transfer matrix operates in the physical

Hilbert space H, i.e. T(λ) : H → H, and commutes with the Hamiltonian. If we add the

auxiliary space Va (subscript a in case we need more than one copy of the aux. space), we

introduce an operator, strictly connected to the transfer matrix, that acts in the enlarged

space: the monodromy matrix Ta(λ) : H × Va → H × Va. This connection consists of

the possibility of recovering the transfer matrix just by tracing over the ancillary space:

T(λ) = traTa(λ).
The freedom on the value of λ is necessary to define a whole family of T’s, commuting with

one another independently of λ. The integrability of the model is strictly bound to these

commutation relations. Indeed, they guarantee the transfer matrix to be a generating

function of a series of conserved charges, among which we can find the Hamiltonian of the

original system. Therefore, if we diagonalize the transfer matrix we consequently get the

eigenvectors of the Hamiltonian, too.

1.5.2 Yang-Baxter equation

From now on, we need to get familiar with the concept of consistency relations, as they are

fundamental in this framework. In the Coordinate Bethe ansatz we worked directly with

the eigenfunctions of the system. Instead, the ABA structure, and then the integrability

itself, relies on the properties of some peculiar operators. For example, in the CBA, the

Bethe equations came from quantization relations, explicitly imposed on the ansatz wave

function. In this sense, they were probably more physically intuitive than their ABA
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counterpart. Indeed, at some point they will emerge, as trademarks of Bethe ansatz tech-

niques; but they will just descend from the consistency relations involving those matrices.

In particular, the integrability of the model is encoded in the property that the order of ap-

plication of two monodromy matrices is related by a similarity transformation. The latter

is realized by another operator: the intertwiner or R-matrix Ra,b(λ) : Va×Vb → Va×Vb,
and the identity can be written as

Ta(λ) Tb(µ)Ra,b(µ− λ) = Ra,b(µ− λ) Tb(µ) Ta(λ). (1.112)

This relation owes its existence to another equation satisfied by the R-matrix on its own,

the so-called Yang-Baxter equation (YBE):

R1,2(λ− µ)R1,3(λ− ν)R2,3(µ− ν) = R2,3(µ− ν)R1,3(λ− ν)R1,2(λ− µ), (1.113)

where the subscripts indicate on which two out of the three copies of the auxiliary space

the intertwiner acts.

Here comes the explanation of the word inverse in the name Quantum Inverse Scattering

Problem: intuitively, we should take a quantum system and look for its intertwiner matrix,

since each solution of the YBE (1.113) generates a family of integrable models. Actually,

the aim of recovering the R-matrix starting from the system is quite complicated to pursue.

For this reason, in practice, we travel in the opposite direction: first, we look for solutions

of eq.(1.113), and then we recover which integrable model they are associated with. The

word scattering is to remind us that the probe pictorially scatters with the degrees of

freedom of the physical chain. The other two words’ meaning is pretty clear.

After this brief smattering about ABA, we do not expect that the method is clear, but

this section was useful in introducing the cornerstones of this new technique. Now, it is

time to enter the model on which this work is about, the XYZ spin chain: you will see

that the Algebraic approach will be much clearer when directly seen on the battlefield.
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Chapter 2

The XYZ spin chain

Among the family of the one-dimensional spin-1
2
chain, we can decide to switch on all the

nearest-neighbor interactions. This is what happens in the Heisenberg model. Looking

back at its Hamiltonian in eq.(1.13), it is clear that the coupling is the same for the

interaction between each component of the vector spin. If we want to introduce anisotropy

along one of the three axes, we can select a different coupling between the z-component, for

example, getting the XXZ model. When all three couplings are different, the anisotropy

is complete, giving us the XYZ spin chain. This is the most general model since the

previously introduced chains can be recovered from it just by performing the appropriate

limit.

In this chapter, we are going to introduce the physics of this chain and show in which

sense it is integrable in the Algebraic Bethe ansatz framework.

2.1 The Hamiltonian

Let us start by introducing the Hamiltonian of the quantum XYZ spin chain with N sites

[7]:

H =
N∑
i=1

(
Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1

)
(2.1)

In order to be clear, let us recap the basic features of the model, even at the risk of being

redundant: Jx, Jy and Jz are real parameters, while, as usual, σα
j is the appropriate Pauli

matrix as acting on site. We assume periodic boundary conditions (PBC), i.e. σα
L+1 = σα

1 .
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When Jx, Jy and Jz are all unequal we have the XYZ model, but we can recover the XXZ

by selecting Jx = Jy = 1, Jz = ∆ and the XXX by choosing Jx = Jy = Jz = 1, except for

a common multiplying factor. We remark that the XYZ is integrable with the following

techniques for arbitrary values of the couplings Jα, but integrability would be broken if

we added an external arbitrary magnetic field. Notice that, by now, no assumption on

the number of sites has been made: N is finite and, if not specified, it can be either even

or odd. Distinctions will be made when necessary.

As from the Heisenberg to the XXZ chain we lost the SU(2) symmetry to remain with

the U(1), introducing another anisotropy we threw the U(1) to keep the Z2 only. Indeed,

there is no rotational symmetry left, but if we reverse every spin with respect to one of

the three principal planes, the system remains the same. However, you can remember

that the U(1) symmetry was crucial for the CBA approach, both in the XXX and in the

XXZ model. Thus, remember the lack of this symmetry, because we will need a trick to

overcome it.

Historically, the first physicist to solve this model, for N even, was Baxter in 1972 [8].

In section (2.2) we are going to introduce, mainly following [9], the fundamental elements

the solution cannot bypass.

2.2 8-vertex transfer matrix construction

As we said, nowadays, the integrability of this one-dimensional quantum chain is obliged

to pass through the mapping into the classical two-dimensional 8-vertex model. So, the

first step, for every attempt to integrate the XYZ is this mapping. Notice that the con-

nection is not immediately intuitive, but will be clear later.

First, we have to select the 8-vertex model: take a two-dimensional square lattice with

M rows and N columns (N sites per row). Each site of the lattice is a vertex that

can assume a particular configuration, depending on how it is connected with its near-

est neighbors. In fig.(2.1) we show the eight possible configurations. Then, we have to

build the 2N × 2N transfer matrix which connects two successive rows of the lattice. This

is realized by summing over all the possible configurations along one row. Its elements are:
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Figure 2.1: The figure shows the 8 possible configurations each vertex can assume in the 8-vertex
model. The letters (a, b, c, or d) under each vertex correspond to the energy contribution of that precise
configuration. If two vertices are associated with the same letter, then they carry the same energy. Notice
that, to recover the 6-vertex model, we need to remove the d-type vertices, leaving only the six allowed
ones.

Tα|α′ =
one row∑
all config.

exp

(
−β

8∑
j=1

njϵj

)
(2.2)

where nj is the number of vertices of type j and ϵj is the energy brought by one vertex of

type j. The subscript α|α′ stands for the two rows that are being connected. Assuming

that the interaction is invariant under simultaneous inversion of the directions of all the

arrows on the lattice, the eight-vertex model has that

ϵ1 = ϵ2,

ϵ3 = ϵ4,

ϵ5 = ϵ6,

ϵ7 = ϵ8.

(2.3)

This justifies that in fig.(2.1) the configurations are clustered in couples with the same

energy (same subscript a, b, c or d). We can then write the vertex weights

ωj = exp(−βϵj) (2.4)
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having consequently

ω1 = ω2 = a,

ω3 = ω4 = b,

ω5 = ω6 = c,

ω7 = ω8 = d.

(2.5)

A related set of quantities that we are going to use are

w1 =
1

2
(c+ d),

w2 =
1

2
(c− d),

w3 =
1

2
(a− b),

w4 =
1

2
(a+ b).

(2.6)

They become particularly useful to individuate explicitly the symmetries of the partition

function Z, obtained “summing over” all the M rows:

Z =
∑
a1

· · ·
∑
aM

Ta1|a2Ta2|a3 · · ·TaM |a1 = tr(TM) (2.7)

where this trace is taken in the physical space H = (HC)
N = (C 2)N in which the square

matrix T works.

The utility is clear when we write

Z(w1,w2,w3,w4) = Z(±wi,±wj,±wk,±wl) (2.8)

for any permutation (i, j, k, l) of (1, 2, 3, 4). This identity is valid and means that Z is

invariant by negating or interchanging any of the w’s.

Now introduce another parameter λj = ±1 according to whether the arrow along the

horizontal bond between columns (j − 1) and (j) points right or left, respectively. It has

nothing to do with the spectral parameter λ used in the previous chapter. Notice that
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the indices α, α′ and λ, λ′ play different roles. The former are the “quantum” indices

identifying the vertical arrows, while the latter are the “auxiliary” indices identifying the

horizontal arrows. Both can take only values ±1 giving all the possible combinations.

The auxiliary ones can be also seen as the matrix indices of a 2×2 matrix Rα′
α , which

numbers its entries. Thus, a matrix Rα′
α (λ, λ′) is associated with each vertex, exploiting

its configuration. It has elements:

Rα′

α (λ, λ′) =

0 if the configuration is NOT allowed

ωj if the configuration is allowed
(2.9)

We can intrepret this expression in this way: we first select a vertex in the lattice, then we

choose λ and λ′. This fixes the direction of the horizontal arrows exiting from the vertes,

for example λ ≡ λj on the left of the vertex, and λ′ ≡ λj+1 on its right. At this point the

“quantum” indices α and α′ choose the vertical arrows above and under the vertex. The

fact that we are using λ’s as indices implies that, in practice, dealing with each vertex,

we are working in an enlarged space HC ⊗ Va with respect to the physical one HC that

we have for each site of the chain. In particular, we chose them to be both of dimension

2, i.e., also the auxiliary space is C2. And the 2× 2 matrix R lives in this auxiliary space.

These assumptions and the equations (2.2)-(2.9) establish the link between problems of

quantum mechanics on one-dimensional chains a problems of classical statistical physics

on two-dimensional lattices.

λ λ′

α

α′

No worries if in principle we could get 16 vertices, i.e. also non-allowed ones, from these

combinations: the R-matrix (2.9) is designed to vanish in that case, leaving us only with

the vertices permitted in the eight-vertex model, depicted in fig.(2.1).

At this point, keeping in mind the different role of α and λ, we can modify a bit the

notation for R and we can write

Tα|α′ =
∑
λ1

· · ·
∑
λN

(R(α1, α
′
1) R(α2, α

′
2) · · ·R (αN , α

′
N)) (2.10)
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where it is assumed λ1=λN+1. Treating explicitly the λ’s as indices, can rewrite the sum

as a trace, and (2.10) becomes:

Tα|α′ = tra (R(α1, α
′
1)R(α2, α

′
2) · · ·R(αN , α

′
N)) (2.11)

where the trace has the subscript a since it is now taken in the auxiliary space Va = C2.

Indeed, tracing out the ancillary space, we recover an operator working on the physical

space, as we want for T.

There exist four possible R(α, α′):

R(+,+) =

(
a 0

0 b

)

R(+,−) =
(
0 d

c 0

)

R(−,+) =

(
0 c

d 0

)

R(−,−) =
(
b 0

0 a

)
.

(2.12)

Notice that using the usual 2×2 Pauli operators (calling here σ4 = Id), we can write a

compact expression for R:

R(α, α′|λ, λ′) =
4∑

j=1

wjσα,α′σλ,λ′ (2.13)

For our aims, it is convenient to introduce also the (local) so-called Lax-operator Ln (or

local transition matrix) defined by

Ln =
4∑

j=1

wj σ
j ⊗ σj

n =

(
w4σ

4
n + w3σ

3
n w1σ

1
n − w2σ

2
n

w1σ
1
n + w2σ

2
n w4σ

4
n − w3σ

3
n

)
(2.14)
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which lives in the auxiliary space as a 2×2 matrix, but each of its four entries acts on the

local physical space HC . Using these operators, we can write the transfer matrix T as

T = tra(LN · · · L1). (2.15)

To make it even more compact, we can define the monodromy matrix T as

T = LN · · · L1 =
N∏

n=1

Ln (2.16)

in this expression, the trace can be seen as reconnecting the (N +1) columns, in order to

build the transfer operator which characterizes the transition between two adjacent entire

rows.

Then the identity (2.15) takes the form

T = traT . (2.17)

Now, we already said that solutions of exactly-solvable two-dimensional models are based

on the commutation relations between transfer matrices; in particular transfer matrices

with different values of the coefficients wj, i.e., of a, b, c, d. From this perspective, we

anticipate here that we will parametrize them using some constants and one only variable

(u). Notice that the u takes the place of the λ adopted in the previous chapter when we

briefly introduced the ABA. This means that by changing u we get in principle different

matrices T(u). Hence, we have to investigate under what conditions on the wj the transfer

matrices commute.

Let us look at two monodromy matrices T and T ′ having two different sets of coefficients

wj and w′
j. The corresponding transfer matrices T and T’ commute if there exists a

non-singular 4 by 4 numerical matrix R such that

R (T
⊗
T ′) = (T ′

⊗
T )R. (2.18)

We remark that this R is different from R in 2.9. This R is the matrix introduced in

subsection (1.5.2) that must be solution of the Yang-Baxter equation.

Then, eq.(2.18) is true if the analogous relation is satisfied by the Lax-matrices Ln:

R (Ln

⊗
L′

n) = (L′
n

⊗
Ln)R. (2.19)
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since the product can be taken out of the tensor product and vice-versa. This identity

can be actually seen as another way of writing the YBE. It has been found that eq.(2.18)

is satisfied if and only if, for all permutations (j, k, l, n) of (1,2,3,4), the following relation

holds:

wnw
′
lw

′′
j − wlw

′
nw

′′
k + wnw

′
jw

′′
l − wjw

′
kw

′′
n = 0. (2.20)

Eq.(2.20) is a way of writing six independent equations that correspond to the so-called

“Star-Triangle relations” of the eight-vertex model.

2.2.1 Parametrization via elliptic functions

The complicated solution of the Star-Triangle relations, concurrently with the YBE, gives

the structure of the R matrix

R =


a(u) 0 0 d(u)

0 b(u) c(u) 0

0 c(u) b(u) 0

d(u) 0 0 a(u)

 , (2.21)

of the L matrix

L =


α(u) 0 0 δ(u)

0 β(u) γ(u) 0

0 γ(u) β(u) 0

δ(u) 0 0 α(u)

 , (2.22)

and the required parametrization of its coefficients α, β, γ, and δ in order to satisfy

eq.(2.19). These parametrizations are not unique, and even less are the notations. Indeed,

every source is likely to adopt a different one. Beyond dispute is the need for a specific

type of function, the only one with a peculiar quasi-periodic behavior, required from the

previous identities: the elliptic functions. We refer you to Appendix A for explanations

of these functions. In our case we report the parametrization used in two papers by Cao

et al. ([10] and [11]):

α(u) =

θ

[
0
1
2

]
(u, 2τ) θ

[
1
2
1
2

]
(u+ η, 2τ)

θ

[
0
1
2

]
(0, 2τ) θ

[
1
2
1
2

]
(η, 2τ)

, β(u) =

θ

[
0
1
2

]
(u, 2τ) θ

[
0
1
2

]
(u+ η, 2τ)

θ

[
0
1
2

]
(0, 2τ) θ

[
1
2
1
2

]
(η, 2τ)

, (2.23)
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γ(v) =

θ

[
0
1
2

]
(u, 2τ) θ

[
1
2
1
2

]
(u+ η, 2τ)

θ

[
0
1
2

]
(0, 2τ) θ

[
0
1
2

]
(η, 2τ)

, δ(v) =

θ

[
0
1
2

]
(u, 2τ) θ

[
1
2
1
2

]
(u+ η, 2τ)

θ

[
0
1
2

]
(0, 2τ) θ

[
0
1
2

]
(η, 2τ)

, (2.24)

where u is the spectral parameter, η is the crossing parameter, and τ is a generic complex

number such that Im(τ) > 0. We will see the crossing parameter has the role of setting the

anisotropy between the three couplings of the quantum Hamiltonian (2.1), for example

η = 0 would mean Jx = Jy = Jz, while η = 0.5 selects the XY chain (Jz = 0). The

complex number τ can tune the amplitude of the couplings.

The choice of this parametrization is not random: these papers are the hub of this work

and conforming with their notation is useful. Moreover, it is very convenient since it is

very general. Indeed,

θ

[
a1

a2

]
(u, τ) =

∞∑
m=−∞

exp{iπ[(m+ a1)
2τ ] + 2(m+ a1)(u+ a2)]}, (2.25)

and its combinations can assume the form of every elliptic function we need in our work.

It is also useful to define two other functions connected to the θ’s:

σ(u) = θ

[
1
2
1
2

]
(u, τ), (2.26)

and

ζ(u) =
∂

∂u
{lnσ(u)}. (2.27)

We use some other lines to connect from the beginning the elliptic functions’ notations

adopted by several sources. The u used by now is the spectral parameter in [11]. Its

correspondent in [9] and [12] is instead its rescaling:

z ≡ πu. (2.28)

Moreover, they use a different notation for the elliptic functions. Here we report the

one present in [12] since it is the most suitable for numerical computations (the same as
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“Wolfram Mathematica”’s):

θ1(z, q) ≡ −θ
[

1
2
1
2

]
(u, τ),

θ2(z, q) ≡ θ

[
1
2

0

]
(u, τ),

θ3(z, q) ≡ θ

[
0

0

]
(u, τ),

θ4(z, q) ≡ θ

[
0
1
2

]
(u, τ).

(2.29)

where q = eiπτ . The notation used in [9] is actually quite the same as [12], and their

connection is exploited in Appendix A.

2.2.2 Connection with the XYZ Hamiltonian

Now that we have the Lax-matrices, we can use eq.(2.16) to recover the monodromy

matrix. More explicitly we can write:

T (u) = LN(u− ξN)LN−1(u− ξN−1) · · · L1(u− ξ1). (2.30)

where we allow each site to be endowed with a different spectral parameter. We remember

that u identifies the rapidity of the probe injected into the system. Even if transfer matri-

ces and monodromy matrices do not have a direct interpretation in the one-dimensional

quantum chain, each ξj can be seen as the rapidities of the degree of freedom placed at

site j. The ξj’s are often called inhomogeneous parameters.

Consequently, we can use eq.(2.15) to obtain the transfer matrix. The crucial property is

that transfer matrices identified by different coefficients, for example generated by differ-

ent values of the spectral parameter, but still obeying that parametrization, commute:

[T(u),T(v)] = 0 ∀u, v. (2.31)

This commutation relation has a fundamental meaning: T(u), varying u, constitute a

whole family of operators, commuting with each other. Thus, T(u) can be seen itself as a
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generating function for a family of commuting operators. Each of these can be regarded

as a Hamiltonian for a quantum system with many integrals of motion. The remarkable

thing is that the Hamiltonian of the XYZ spin chain is contained in this family.

In particular, we can extract the Hamiltonian

H =
1

2

N∑
i=1

(
Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1

)
, (2.32)

which is exactly (2.1) with just an overall factor 1
2
, from the transfer matrix using

H =
σ(η)

σ′(0)

(
∂ lnT (u)

∂u

∣∣∣∣
u=0, ξj=0

− 1

2
Nζ(η)

)
, (2.33)

where σ′(0) = ∂
∂u
σ(u)

∣∣
v=0

and the function ζ(η) is defined in (2.27). The identity (2.33)

leads us to the following parametrization of the coupling constants

Jx = eiπη
σ(η + τ

2
)

σ( τ
2
)

, Jy = eiπη
σ(η + 1+τ

2
)

σ(1+τ
2
)

, Jx =
σ(η + 1

2
)

σ(1
2
)

. (2.34)

where the crossing parameter η and the complex number τ find their physical meaning.

We remark that the formulae (3.33) are not restrictions on Jx, Jy, and Jz, but they give

their parametrization up to an insignificant common factor. It is worth remarking that by

playing with the parameters inside, in principle we can select any regime of our system.

As always, we will be primarily interested in cases with one or more couplings that are

anti-ferromagnetic. Notice, anyway, that there will be no longer a planar regime and each

axis will be by itself: the one with greatest magnitude is referred to as dominant.

At this point, we recovered the connection between the transfer matrix of the 8-vertex

model and the XYZ spin chain Hamiltonian. The presence of H among the family of

operators commuting with T, in practice tells us what we wanted to hear:

[H,T(u)] = 0 ∀u. (2.35)

This means that by diagonalizing T we are simultaneously finding the eigenvalues and

eigenstates of H. Unfortunately, we are still far from having the luxury of shouting that

the work is done. Indeed, the diagonalization of the transfer matrix is actually very cum-
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bersome. In the case of N even, we can adopt two methods to do it: the Generalized

Algebraic Bethe ansatz and the TQ-relations. The first is more physically intuitive, the

second is more flexible. In the following, we are going to introduce them both. Let us

start with the Generalized Algebraic Bethe ansatz.

2.3 ABA approach to the eight-vertex model

The ABA procedure involves the direct construction of the monodromy matrix through

eq.(2.30). In particular, when the dimension of the auxiliary space Va is chosen to be

2 (i.e. dim(Va) =dim(Hj)= 2), the monodromy operator can be represented as a 2×2
matrix where each entry is an operator acting on the whole Hilbert space H = (Hj)

N :

T =

(
A(z) B(z)

C(z) D(z)

)
. (2.36)

For notation’s sake, we adopt the rescaling of the spectral parameter announced in sub-

section (2.2.1):

z ≡ πu. (2.37)

Then, tracing out the ancillary space, we get the transfer matrix:

T(z) ≡ tra T (z) = A(z) +D(z). (2.38)

The operators A, B, C and D can be represented as 2N × 2N matrices. Their expressions

are not simple but we do not actually need them. Indeed, if we insert (2.36) in (2.18), the

Yang-Baxter equation for the monodromy matrix provides a series of generalized commu-

tation relations between the A, B, C, D matrices at different spectral parameters. Then,

by making use of these relations, still ignoring the explicit expressions of the operators

involved, we can generate eigenstates of the system. At least, the last sentence refers to

what we are able to do in the standard Algebraic Bethe ansatz, used to solve the XXZ

chain.
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2.3.1 Step back to the XXZ chain

What we have done until now is good both for XXZ and XYZ, nothing must be thrown

away. The difference in the preliminary phases of the method is that the latter maps into

the 6-vertex model, instead of the 8-vertex one. At first glance, this distance could seem

unbridgeable, and maybe cause of even more differences in the subsequent steps of the

method. Actually, looking back at fig.(2.1), to recover the 6-vertex model it is sufficient to

remove the last two vertex configurations, labeled by d. The consequence of this removal

can be found quite intuitively in the matrices R and L: their structure is the same but the

entries d(z) and δ(z) are now identically zero. This will give a different parametrization

of α(z), β(z) and γ(z), but we still end up with the form 2.36 for the monodromy matrix,

following the same steps. Obviously, the operators A, B, C, D have different expressions,

and consequently different commutation relations. In particular, the expression for C(z)

allows us to identify a state which is annihilated by C(z) for any spectral parameter z:

C(z)|0⟩ = 0 ∀ z. (2.39)

In this expression, |0⟩ assumes the role of reference state and it is called pseudo-vacuum,

because it hosts no quasi-particle excitations. This approach with operators acting on a

reference state to create other eigenstates of the transfer matrix is also called Quantum

Inverse Scattering Method (QISM).

The issue for the XYZ model is that the reference state |0⟩ cannot be found for its

expression of C(z), and this is strictly linked to the lack of U(1) of the totally anisotropic

chain.

2.3.2 Extension to the XYZ

At this point, we need to find a trick to overcome this obstacle. First of all, let us focus

again on the implications of the lack of U(1) symmetry of the XYZ spin chain. The

pseudo-vacuum is defined as the state without excitations. The ability to count and

classify these excitations comes from the presence of conserved quantities that identify

them. In the method used so far, the fundamental quantity is the total spin Sz. Since

U(1) symmetry is generated by just such a spin, the absence of the former does not allow

us to use the latter as a conserved quantity.

Consider the local L-matrix (2.14) as a 2×2 matrix in the auxiliary space, but with
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elements acting on the local physical space Hj = C2. We can rewrite it in a form similar

to T , since the latter is the N -times ordered product of the former:

Ln(z) =

(
αn(z) βn(z)

γn(z) δn(z).

)
(2.40)

This form appears to be in discord with (2.22), because that was 4×4 instead of 2×2.
Actually, it just depends on how we “play” with the auxiliary space. Here, in fact, the

elements of L are not numerical entries but, as we said, operators acting on the physical

space. We admit that the notation, with the Greek letters already used in that case, is

very inconvenient. But we kept it in order to be as coherent as possible with the sources

[9] [12]. The subscript n is there to remark that, in this case, we deal with a physical

operator locally acting at row n (site n in the chain).

Anyway, the relevant part of this formulation lives in the operator γn(z): for the 8-vertex

model, it is non-degenerate for almost all z. Hence, we cannot obtain a local vacuum,

either for Ln(z) or for a finite product of such matrices. Namely, for T (z) it is not possible
to find C(z) that annihilates a state for all z.

Still in the QISM framework, Takhadzhan and Faddeev in [9] performed a very clever

trick to overcome the hump. Instead of using the generating vector (2.39), they used

a family of generating vectors, and instead of the commutation relations between A(z),

B(z), B(z) and D(z) in (2.36), they used a series of permutation relations for various

linear combinations of these operators.

The construction of this family of generating vectors starts by applying a local gauge

transformation to the local transition matrix Ln:

L′
n(z) = M−1

n+1(z)LnMn(z), (2.41)

where the Mn(z) are arbitrary non-singular 2 by 2 numerical matrices. Thus, the new

monodromy matrix

T ′(z) =
N∏

n=1

L′
n(z) (2.42)
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differs from T (z) only by the simple linear transformation

T ′(z) = M−1
N+1(z)T (z)M1(z). (2.43)

Actually, we can admit that there exists a whole family of gauge transformations

Mn+l−1(z) ≡ M l
n(z) (2.44)

depending on an integer l. The corresponding transformed local transition matrices are

Ll
n and they are denoted by

Ll
n(z) = M−1

n+l(z)Ln(z)Mn+l−1(z) =

(
αl
n(z) βl

n(z)

γln(z) δln(z),

)
(2.45)

where s and t can be omitted since they are assumed to be fixed for our aims. Similarly,

the monodromy matrix T l
N(z) can be written in terms of the original T (z):

T l
N(z) = M−1

N+l(z)T (z)Ml(z) ≡
(
Al(z) Bl(z)

Cl(z) Dl(z).

)
(2.46)

and we can clearly recover T ′ (z) selecting l = 1.

Now Mk can be chosen in such a way, that there exists a local reference state at each site,

that is annihilated by γln(z), for all values of v, namely

γln(z)ω
l
n = 0 ∀z, (2.47)

even if, with respect to the six-vertex model, this reference state is not an eigenvector of

neither αl
n(z) nor δ

l
n(z). To achieve this, Mk can be defined as:

Mk(z; s, t) =

(
θ1(s+ kη − z) 1

g(τk)
θ1(t+ kη + z)

θ4(s+ kη − z) 1
g(τk)

θ4(t+ kη + z).

)
(2.48)

where g(z) = θ1(z) θ4(z), τk =
s+t
2
+kη− π

2
, and s and t are two arbitrary but fixed complex

parameters, not reported again the following. Now that identity (2.47) is satisfied, the

vectors

Ωl
N = ωl

1 ⊗ · · · ⊗ ωl
N (2.49)
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are annihilated by Cl
N(z), and the action of Al

N(z) and Dl
N(z) is known, namely

Cl
N(z)Ω

l
N = 0,

Al
N(z)Ω

l
N = Ωl−1

N ,

Dl
N(z)Ω

l
N =

(
hN (z)

hN (z+η)

)
Ωl+1

N ,

(2.50)

where h(z) = θ4(0) θ4(z) θ1(z). Hence, {Ωl
N}l=+∞

l=−∞ constitutes a family of generating vec-

tors (i.e., on which the actions of the elements of the transformed monodromy matrix are

known) for the transfer matrix of the eight-vertex model.

Anyway, to generate the eigenvectors of the model is better to consider more general

transformations of T , by not restricting the indexes of the gauge transformation matrices,

namely not imposing l as subscript for both M ’s:

T k,l(z) = M−1
k (z)T (z)Ml(z) ≡

(
Ak,l(z) Bk,l(z)

Ck,l(z) Dk,l(z)

)
. (2.51)

Notice that the transfer matrix, being the trace of the monodromy matrix, can be still

recovered as

T(z) = A(z) + D(z) = Al,l(z) + Dl,l(z), (2.52)

and that the monodromy matrix T l
N(z) can be written in the new notation as T l

k=N+l,l (z).

Now, these new elements of Tk,l have well-defined and relatively simple commutation

relations, that can be recovered from the RTT -relation (2.18). Then, they can be used,

in particular Bk,l, to build the eigenstates of the model. We refer below to the procedure.

The needed commutation relations are:

Bk,l+1(z)Bk+1,l(µ) = Bk,l+1(µ)Bk+1,l(z),

Ak,l(z)Bk+1,l−1(µ) = α(z, µ)Bk,l−2(µ)Ak+1,l−1(z)− β(z, µ)Bk,l−2(z)Ak+1,l−1(µ),

Dk,l(z)Bk+1,l−1(µ) = α(µ, z)Bk+2,l(µ)Dk+1,l−1(z) + β(z, µ)Bk+2,l(z)Dk+1,l−1(µ),

(2.53)

where the functions α(z, µ) and βk(λ, µ) are defined as

α(z, µ) =
h(z − µ− η)
h(z − µ) βk(z, µ) =

h(η)h(τk + µ− z)
h(µ− z)h(τk)

. (2.54)
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At this point, we are able to construct the transfer matrix eigenstates. First, take the

vector

Ψl(z1, ..., vn) = Bl+1,l−1(z1) · · ·Bl+n,l−n(zn) Ωl−n, (2.55)

where the rapidities {zk}nk=1 are to be determined.

By using the commutation relations (2.53), we can obtain the actions of Al,l(z) and Dl,l(z)

on the state (2.55):

Al,l(z)Ψl(z1, ..., zn) = Λ̂(z|z1, ..., zn)Ψl−1(z1, ..., zn) +
n∑

j=1

Λ̂l
j(z|z1, ..., zn)Ψl−1(z1, ..., zj−1, z, zj+1, ..., zn),

Dl,l(z)Ψl(z1, ..., zn) = Λ̃(z|z1, ..., zn)Ψl+1(z1, ..., zn) +
n∑

j=1

Λ̃l
j(z|z1, ..., zn)Ψl+1(z1, ..., zj−1, z, zj+1, ..., zn)

(2.56)

where

Λ̂(z|z1, ..., zn) =
n∏

k=1

α(z, zk),

Λ̂l
j(z|z1, ..., zn) = −βl−1(z, zj)

n∏
k=1,k ̸=j

α(zj, zk),

Λ̃(z|z1, ..., zn) =
h(z)

h(z + η)

n∏
k=1

α(zk, z),

Λ̃l
j(z|z1, ..., zn) = βl+1(z, zj)

(
h(zj)

h(zj + η)

) n∏
k=1,k ̸=j

α(zj, zk).

(2.57)

Until now, we seem to be happy about the procedure. However, a problem emerges at

this stage. If we consider the vector (2.55), the action (2.56) is actually realized only

consistently with the commutation relations between A and B in (2.53), since

Al,l(z)Ψl(z1, ..., zn) = Al,l Bl+1,l−1(z1) · · ·Bl+n,l−n(zn) Ωl−n. (2.58)

Indeed, Al,l(z) has to be commuted through all the B(zk), and finally we need to evaluate

Al,l(z)Ωl−n using (2.50). But this is only possible if n = N
2
. This restriction puts a big

brake on our ambitions: the generalized Bethe ansatz method only works for chains of

even length.
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Anyway, for completeness, we report the last steps of this procedure. We multiply (2.55)

by e2πilθ with 0 ≤ θ ≤ 1 and sum it over all the integers l obtaining the vector:

Ψθ(z1, ..., zn) =
∞∑

l=−∞

e2πilθΨl(z1, ..., zn). (2.59)

This state, using (2.56), can be seen to be an eigenstate of the eight-vertex transfer matrix,

with eigenvalue

Λf (z) = e2πiθΛ̂(z|z1, ..., zn) + e−2πiθΛ̃(z|z1, ..., zn), (2.60)

if the rapidities zj satisfy the Bethe equations:

(
h(zj)

h(zj + η)

)N

= e4πiθ
n∏

k=1,k ̸=j

α(zj, zk)

α(zk, zj)
. (2.61)

Let us conclude by saying that the infinite sum in (2.59) requires a special investigation.

Indeed, it is summable to zero for all θ except for finitely many values of θj. For these

θj the numbers (2.60) are the eigenvalues of T(z). Results by Baxter show that 0 is

among these θj. Anyway, the situation simplifies if we impose restrictions on the range

of η, which, however, allow us to select all the regimes of the system. Without going into

details, the restriction is

Kη = m1 2π +m2 πτ (2.62)

with K, m1 and m2 being integers. Since the elliptic theta functions are quasi-periodic by

definition, Mk(z), T k,l(z) and Ψl(z1, ..., zn) are all quasi-periodic functions of k and l in

this case. If we choose appropriately a common normalizing factor, it can be shown that

they become periodic in k and l with period K. As a result, the infinite sum in (2.59)

becomes finite with the values θ = k
K

for k = 0, 1, ..., K − 1.

In any case, despite the elegance of this method, we anticipate that we cannot use it for

our aims, i.e., for frustrated chains. Thus, with the tools we know to date, the only other

possibility is to bring into play the TQ relations.
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2.4 TQ relations

Baxter’s famous solution to the 8-vertex model has been the origin of a long series of

works [7], [9], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], from McCoy, Fabricius,

Klümper, and among the others, Baxter himself. In particular, over the years, there

have been reformulations of this solution also in the framework of Algebraic Bethe ansatz

and of the Quantum Inverse Scattering Method [9]. Summarizing the previous section,

it is well-known that the Algebraic Bethe ansatz technique can be successfully applied to

the XXZ model. In the XYZ chain case, the total anisotropy removes the residual U(1)

symmetry of the model. This does not allow us to make use of ABA in the same direct

way. Anyway, we can apply some preliminary gauge transformations to “prepare the field”

for the ABA. However, this precise technique requires the existence of a reference state

to build the other eigenstates, and such a state is not identifiable in the case of an odd

number of sites. An extension to the case N odd has been proposed by Niccoli and Terras

in [23].

Anyway, the original solution of the even-length XYZ chain was based on a smart idea

conceived by Baxter [8]. Instead of thinking in terms of the monodromy matrix, he focused

on the construction of an additional operator Q(z), this time acting in the same space as

T. This Q-matrix allows for an easy derivation of the Bethe equations and of the spectrum

of the transfer matrix. Indeed, it is built as an operator that commutes with T:

[T(z),Q(z′)] = [Q(z),Q(z′)] = 0 (2.63)

and that satisfies the following equation:

T(z)Q(z) = Q(z)T(z) = ϕ(z − η′)Q(z + 2η′) + ϕ(z + η′)Q(z − 2η′) (2.64)

with ϕ(v) = [ρ h(v
2
)]N , where ρ is a normalization factor. We add that this construction

was also instrumental in the development of the algebraic version of the thermodynamic

Bethe ansatz. 1 The commutation relation tells us that T and Q commute, namely they

1We are not digging into the first Q-matrix construction but you can consult Appendix C of [8] to get more details on
its construction. We can say though, that he actually started from the eigenvalue version of (2.64). Then, with non-trivial
considerations, he extended that to an operator identity: since T(y) and T(z) commute, there exists a representation
independent of z in which T(z) is diagonal ∀z. Thus, we can build a matrix Q(v) which is also diagonal in the same repre-
sentation, with diagonal elements Q(v). In this perspective can look at eq.(2.65) as a matrix equation in this representation.
So, we can in principle go back to the original representation, getting the generalized matrix equation (2.64).
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share the same eigenvectors. For the eigenvectors of T(z), we can obtain the identity

T (z)Q(z) = ϕ(η − z)Q(z + 2η′) + ϕ(η + z)Q(z − 2η′) (2.65)

for the eigenvalues Λ(z) associated with the eigenvectors. In this expression, η′ = η − 2I,

where I is the complete elliptic integral, namely one of the two half-periods of the (quasi-

periodic) elliptic functions. Look at Appendix A for an in-depth analysis of the elliptic

functions. The subsequent analysis relies on the peculiar nature of elliptic functions. The

requirement of Λ(z) and Q(z) being entire functions of z (since the operators T and Q

are) leaves us, after many computations [24], with an ansatz for Q(z):

Q(z) = eτz
n∏

j=1

h

(
z − zj

2

)
. (2.66)

where h(z) has been defined in section (2.3.2) as h(z) = θ4(0) θ4(z) θ1(z) and with a com-

plicated but unnecessary to exploit definition of τ (not to be confused with the imaginary

number that enters the elliptic θ’s). What is relevant in this expression is the fact that

the function h(x) has a simple zero at x = 0, so setting z = zj in (2.65) causes the LHS

to vanish, leaving

(
h[1

2
(η − zj)]

h[1
2
(η + zj)]

)N

= −e−4τη′
n∏

l=1

h[1
2
(zj − zl − 2η′)]

h[1
2
(zj − zl + 2η′)]

j = 1, ..., n. (2.67)

which are the Bethe equations for the XYZ chain. They determine the rapidities z1, ..., zn

and they have many solutions corresponding to the different eigenvalues. Now, if we sub-

stitute the roots just found in the expression for q(z) it is vanishing by construction. So,

plugging it into (2.65), we obtain the eigenvalues Λ(z) of the transfer matrix T(z).

This approach is very general because it relies on the Q-operator construction, which can

be mathematically manipulated in order to obey the desired commutation relations. The

whole procedure can be as always extended to the XXZ chain with a consequent sim-

plification of some expressions, getting parametrizations in terms of hyperbolic functions

instead of elliptic ones. Moreover, in the generalized ABA we had to extend the 6-vertex

method to the 8-vertex through a gauge transformation trick. In this case, the building of

Q directly guarantees the reliability of the method, since Q is based on the eight-vertex

model requirements from the beginning. However, even this approach conceals a problem
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if we search for a solution of an odd-length chain. The issue is represented by the number

n which enters the products and corresponds to the number of roots. In fact, the most

careful readers could have noticed that we did not exploit its limitations. We remedy

saying that Baxter set

n =
N

2
. (2.68)

Indeed, following the properties of the elliptic functions, Q(z) ends up having N
2
zeros per

period rectangle. This precisely constitutes the limitation we had to avoid to have a valid

method for N odd since n must be an integer.

Actually, also for even-N this approach has a disadvantage: we obtained the spectrum

of the transfer matrix and consequently we can get all the information contained in the

partition function, but we cannot access directly to the eigenvectors of the system. This

is quite the opposite of the Algebraic Bethe ansatz, which started from the eigenstates

of the transfer matrix to characterize the system. Anyway, the TQ-relations are more

powerful if we want to develop the Thermodynamic Bethe ansatz. This last aspect drives

us to try to extend the TQ-relations method to N odd.
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Chapter 3

Extension to N odd:

“off-diagonal Bethe ansatz”

3.1 First TQ relations for N odd

In a series of works, McCoy and Fabricius [17], [18], [20], [21], performed several manipu-

lations on the Baxter’s TQ relations with the aim of extending them to the odd N case.

In their papers, this description appears to be possible, but only for particular values of

the eight-vertex model parameters. They demonstrate that the location of zeros of the

Q-matrix is qualitatively different from the case of even N . In particular, such rapidities

satisfy a previously unknown equation which is more general than the Bethe equation.

Let us discuss briefly their work.

Rodney Baxter spent a lot of time and papers to get the final version of the solution of

the 8-vertex model. The first paper approaching this theme dates back to 1972. After ten

years, in 1982, he recollected all the material concerning exactly solved statistical models

in his book [24]. In the previous chapter, we reported the solution written in the book.

However, recently, McCoy and Fabricius analyzed the steps that brought the Q-matrix

to assume the form (2.66), proposed by Baxter in his book. They focused on the fact

that this definition applies only to N even and they wondered which which step imposed

this limitation. They found out that it came from the will to make the definition of Q(z)

valid for any η. In fact, the proceeding that brings the solution of many statistical models

passes by the analysis of the freedom left to their parameters. What must be preserved

is the possibility of recovering every physically accessible regime. Namely, we are allowed
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to restrict one or more parameters to a narrower domain, but every physical phase still

has to be selectable. In our case, the crossing parameter η is the one under examination.

McCoy and Fabricius recovered the first version of the Q-matrix defined in 1972 in [8] as

Q72(z) = K(q, zk) e−iνπz/2I

N∏
j=1

θ1(z − zj) (3.1)

where K(q, zk) keeps its normalization. Notice that the subscript 72 is the same as that

used by McCoy and refers to the year in which the matrix was introduced by Baxter. The

expression (3.1) is the most general function that satisfies the quasi-periodicity properties

Q72(z + 2I) = (−1)ν′Q72(z)

Q72(z + 2iI ′) = q−Ne−iNπz/IQ72(z)
(3.2)

required by the 8-vertex model and the TQ relation in the form

T(z)Q(z) = [ρ θ1(0)h̄(z − η)]NQ(z + η) + [ρ θ1(0)h̄(z + η)]NQ(z − η). (3.3)

where h̄ ≡ θ1(z)θ4(z). They are actually the same as Baxter’s, just written in a different

way. The parameters ν and ν ′ in (3.2) are related by the constraint ν ′ + ν + N = even

integer, and I is the complete elliptic integral of the first type. We note that under the

spin inversion, σz
j → −σz

j the eigenvalues of the transfer matrix are invariant but the total

spin Sz → (−1)N Sz. Thus, when N is odd, each eigenvalue of T(z) is doubly degenerate,

with one eigenvector in each of the two sectors Sz and −Sz, one with η′ = 0 and one with

η′ = 1, due to the so-called Kramer’s degeneracy. This phenomenon does not happen for

N even. So, this aspect clearly separates the two situations. Anyway, what we want to

remark is that this solution is restricted to the so-called root of unity condition [25] for

the crossing parameter:

η =
mI

L
(3.4)

where m and L are two integers. This restriction is consistent with the expression of Q72

in (3.1), where the product goes from 1 to N . Namely, it is extended to N roots, not

just N
2
. At this point, Baxter wanted to propose a method with a simpler expression for

Q(z) and more powerful in the search for the eigenvectors. Thus, he presented the new

Q-matrix (2.66), which is valid for every η but only for N even.
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To avoid this limitation, and to approach odd-length chains, McCoy and Fabricius re-

hashed the matrix Q72. Making use of the TQ relation, in the case η = mI
L

with m odd

and L even or odd, they recovered a more different type of the Bethe equations:

(
h(zl − η)
h(zl + η)

)N

= e2πiνη/I
N∏

j=1, j ̸=l

θ1(zl − zj − 2η)

θ1(zl − zj + 2η)
, (3.5)

which mainly differ from the Bethe equations (2.67) for even N in two features: the

function θ1(z) appearing on the RHS instead of h(z) and the number of terms in the

products, now N . For the N emerging roots, as they admit, it is very tough to find

a scheme in terms of the string hypothesis. Therefore, probably for this reason, their

speculation has stalled, but it was the first commendable attempt to reach a solution for

the frustrated case.

3.2 Introduction to inhomogeneous TQ relations

In section (1.5), we introduced the concept of consistency relations between matrices. It

is fundamental to fix the picture that more than one parametrization or definition can be

correct as long as they describe the system consistently with the previous constraints. The

ancestor of these restrictions is the Yang-Baxter equation (1.113), on which the quantum

integrable models are defined. Then, in this framework, each model collects particular

characteristics depending on its own nature. From this perspective, the TQ relation is a

perfect example of our approach. Indeed, it is a ploy, theorized by Baxter, to diagonalize

the transfer matrix making use of an auxiliary one. As we have seen, the form of the Q-

matrix is not fixed, being subject to changes. Moreover, even the TQ relations themselves

can be reviewed to adapt them to our issues, provided that we obey all the required

consistency relations.

Recently, Cao et al. proposed a new method, still based on the TQ relations, which allows

us to treat the N even and the N odd case in the same framework: the “off-diagonal Bethe

ansatz” [26].

Going back to the most general form of the TQ relations, we can write

Λ(u) = a(u)
Q(u− η)
Q(u)

+ d(u)
Q(u+ η)

Q(u)
. (3.6)
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that encodes Baxter’s intuition that the eigenvalues Λ(u) of the transfer matrix T(u) take

a unified shape for all the eigenstates. It can be rewritten in the matrix form

Q(u)T(u) = a(u)Q(u− η) + d(u)Q(u+ η). (3.7)

where a(u) and d(u) are two known model-dependent functions. This operator relation

is not affected by the representation basis and, since [T(u),T(v)] = 0, the eigenstates of

the transfer matrix do not depend on u. At this point, suppose that |Ψ⟩ is a common

eigenstate of the transfer matrix and the Q-operator (such an eigenstate exists since T

and Q commute by hypothesis) with eigenvalues

T(u)|Ψ⟩ = Λ(u)|Ψ⟩
Q(u)|Ψ⟩ = Q(u)|Ψ⟩.

(3.8)

Substituting in (3.7), we recover the scalar equation (3.6). For these reasons, the TQ

relation is universal for most of the integrable models, but only if owners of a proper

reference state. In general, Q(u) is a polynomial of some entire function f(u) and can be

parametrized as

Q(u) =
M∏
j=1

f(u− µj) (3.9)

with f(0) = 0, where the parameters {µj| j = 1, ...,M} are the Bethe roots. They are the

solutions of the BAEs
a(µj)

d(µj)
= −Q(µj + η)

Q(µj − η)
(3.10)

deriving from the constraint that Λ(u) is also an entire function about u, and the regular-

ity of eq.(3.6) requires that all the residues about µj must be zero. Thus, the simplicity

of the “poles” µj is crucial to derive the above BAEs, and it is a common feature of the

Bethe roots.

Now, for most of the integrable models without U(1) symmetry, this relation does not allow

polynomial solutions of Q(u). Thus, an extended version of (3.6), namely an inhomoge-

neous TQ relation should be used [27]. In the following, we give a concise introduction

to this method.
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3.2.1 Basic ingredients of the ODBA

The absence of the U(1) symmetry, i.e. of a proper reference state, induces difficulties

in the research of the eigenstates of the transfer matrix. This practically comes from the

fact that some off-diagonal elements of the monodromy matrix enter the expression of the

transfer matrix. For example, we saw it in the Algebraic Bethe ansatz, which followed the

scheme of constructing the eigenvectors to recover the eigenvalues; but the use of the more

versatile TQ relation seemed to help us. Indeed, a reference state is not needed for getting

the spectrum, if we use the functional TQ relation. In any case, note that expressions like

(2.66) for Q(u), obtained by Baxter for the XYZ (that lacks U(1) symmetry), were not

polynomials of some entire function, due to the exponential term depending on z.

We would like to get the eigenvalue Λ(u) as a degree N polynomial of some entire function

f(u) and factorized as

Λ(u) = Λ0

N∏
j=1

f(u− xj) (3.11)

where Λ0 is a constant to be determined by the asymptotic behavior of T. If there are N

equations for the N unknowns xj, then Λ(u) can be determined completely. The central

idea of the ODBA is to derive the functional TQ relation based on N operator identities

which determine the N unknowns in (3.11).

3.2.2 Functional relations of the XXX chain

Here we propose an example of solution for the XXX spin chain to show more clearly

how this method is consistent: for other integrable models, even when owners of U(1)

symmetry.

Let us show the OBDA clearly, starting from the L-matrix for the periodic XXX spin

chain:

L0,j(u) = u+ ηP0,j

= u+
1

2
η(1 + σj · σ0),

(3.12)

where η is the crossing parameter (η = 1 in this case), σj = (σx
j , σ

y
j , σ

z
j ) are the Pauli

matrices and Pi,j is the permutation operator possessing the properties

Pi,jOj = OjPi,j, P 2
i,j = Id, trjPi,j = triPi,j = Id, (3.13)
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for an arbitrary operator O in the corresponding tensor space. We can also show that the

L-matrix also satisfies the following relations:

· Initial condition: L1,2(0) = P1,2,

· Unitary relation: L1,2(u)L2,1(u) = −ϕ(u)× Id, withϕ(u) = u2 − 1,

· Crossing relation: L1,2(u) = −σy
1Lt1

1,2(−u− 1)σy
1 ,

· PT-symmetry: L1,2(u) = L2,1(u) = Lt1,t2
1,2 (u),

· Z2-symmetry: σα
1 σ

α
2L1,2(u) = L2,1(u)σ

α
1 σ

α
2 α = x, y, z,

· Fusion condition: L1,2(±1) = ±1 + P1,2 = ±2P (±)
1,2 ,

(3.14)

where P
(±)
1,2 are the symmetric/antisymmetric projection operators. With the above prop-

erties, the following crossing-unitary relation holds, too:

Lt1
1,2(u)Lt1

1,2(−u− 2) = Lt1
1,2(−u− 2)Lt1

1,2(u) = −ϕ(u+ 1)× Id. (3.15)

Then we can, as usual, recover the monodromy and the transfer matrix as

T0(u) = L0,N(u− ξN) · · ·R0,1(u− ξ1),
T = tr0T0(u)

(3.16)

where {ξj |j = 1, ..., N} are the inhomogeneity parameters. Notice that we left explicit

the subscript 0 which identifies the auxiliary space on which the trace is performed.

In order to get some functional relations involving the transfer matrix, we evaluate T(u)

at the particular points u = ξj and u = ξj − 1. Applying the initial condition among

(3.14) of the L-matrix we can express the transfer matrix at u = ξj as:

T(ξj) = tr0{L0,N(ξj − ξN) · · · L0,j+1(ξj − ξj+1) · P0,j · L0,j−1(ξj − ξj−1) · · · L0,1(ξj − ξ1)}
= Lj,j−1(ξj − ξj−1) · · · Lj,1(ξj − ξ1)× tr0{L0,N(ξj − ξN) · · · L0,j+1(ξj − ξj+1)}
= Lj,j−1(ξj − ξj−1) · · · Lj,1(ξj − ξ1) · Lj,N(ξj − ξN) · · · Lj,j+1(ξj − ξj+1).

(3.17)

The initial condition has been crucial in allowing us to rewrite the transfer matrix ate the

special spectral parameter points ξj as a product of L-matrices. The transfer matrix T(ξj)

assumes the form of a reduced monodromy matrix if the jth quantum space is treated as

the auxiliary space.
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The crossing relation among (3.14) makes it possible to express the transfer matrix T(ξj−
1) as:

T(ξj − 1) = tr0{L0,N(ξj − ξN − 1) · · · L0,1(ξj − ξ1 − 1)}
= (−1)Ntr0{σy

0Lt0
0,N(−ξj + ξN) · · · Lt0

0,1(−ξj + ξ1)σ
y
0}

= (−1)Ntr0{L0,1(−ξj + ξ1) · · · L0,N(−ξj + ξN)}
= (−1)NLj,j+1(−ξj + ξj+1) · · · Lj,N(−ξj + ξN) · Lj,1(−ξj + ξ1) · · · Lj,j−1(−ξj + ξj−1).

(3.18)

Then, using the unitary relation among (3.14), we have

T(ξj)T(ξj − 1) = a(ξj)d(ξj − 1) Id, j = 1, ..., N, (3.19)

with

a(u) =
N∏
j=1

(u− ξj + 1), d(u) =
N∏
j=1

(u− ξj). (3.20)

Thus, applying (3.19) to an eigenstate of T(u), the corresponding eigenvalue Λ satisfies

Λ(ξj)Λ(ξj − 1) = a(ξj)d(ξj − 1) j = 1, ..., N. (3.21)

From the definition of the transfer matrix (3.16) it is easy to show that Λ(u) is a degree

N polynomial of u, as expected for a model with U(1) symmetry, with the asymptotic

behavior Λ(u) = 2uN + · · · .
Moreover, it can be proven that each solution of (3.20) can be parametrized in terms of

the TQ relation (3.6) with a polynomial Q-function.

3.2.3 Inhomogeneity’s takeover

Baxter’s TQ relation (3.6) gives a convenient parametrization of the eigenvalues of the

transfer matrix, but it is obvious that it is not unique. We could demonstrate that for

any given parameter ϕ, the inhomogeneous TQ relation

Λ(u) = eiϕa(u)
Q(u− 1)

Q(u)
+ e−iϕd(u)

Q(u+ 1)

Q(u)
+ 2(1− cosϕ)

a(u)d(u)

Q(u)
, (3.22)
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with

Q(u) =
N∏
j=1

(u− µj), (3.23)

satisfies (3.21), and therefore characterizes the spectrum of T(u) of the periodic XXX

chain completely, provided that the Bethe roots {µj |j = 1, ..., N} satisfy the BAEs

eiϕa(µj)Q(µj − 1) + e−iϕd(µj)Q(µj + 1) = 2(cosϕ− 1)a(µj)d(µj), (3.24)

and the selection rules µj ̸= µl and µj ̸= ξl, ξl − 1.

For most of the spin-1
2
models, the operator identity (3.19) and its functional version hold,

but with a different crossing parameter:

T(ξj)T(ξj − η) = a(ξj)d(ξj − η) Id, j = 1, ..., N, (3.25)

Λ(ξj)Λ(ξj − η) = a(ξj)d(ξj − η), j = 1, ..., N, (3.26)

where a(u) and d(u) are two known functions with zeros {ξj − η} and {ξj}, respectively.
It can be shown that the functional relations together with the analytic properties of

the transfer matrix constitute the necessary and sufficient conditions to determine the

N unknowns of the Λ(u) polynomial (as we have proven for the XXX) and allow us to

construct the more general functional TQ relation

Λ(u) = eiϕ(u)a(u)
Q(u− η)Q1(u− η)

Q(u)Q2(u)
+e−iϕ(u+η)d(u)

Q(u+ η)Q2(u+ η)

Q(u)Q1(u)
+c(u)

a(u)d(u)

Q(u)Q1(u)Q2(u)
,

(3.27)

with Q(u) being a degree M polynomial, and Q1(u) and Q2(u) degree M1 polynomials.

c(u) is a polynomial adjust function of degree n which matches the asymptotic behavior

of Λ(u). The phase ϕ(u) can be determined using the initial condition of the transfer

matrix. By definition of a(u) and d(u) at the special points u = ξj, ξj − η, the last term

vanishes. This is the crucial property of the inhomogeneous TQ relation: makes it possible

for the generalized functional TQ relation to satisfy the scalar eq.(3.26) automatically, for

arbitrary Q-functions and c(u). Namely, eq.(3.27) leads to

Λ(ξj) = eiϕ(ξj)a(ξj)
Q(ξj − η)Q1(ξj − η)

Q(ξj)Q2(ξj)
, (3.28)
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Λ(ξj) = e−iϕ(ξj)d(ξj − η)
Q(ξj)Q2(ξj)

Q(ξj − η)Q1(ξj − η)
(3.29)

and these two equations identically give eq.(3.21).

Our last task is to ensure Λ(u) to be a polynomial of degree N . For this aim, we need

three conditions:

1. M + 2M1 − n = N :

2. the asymptotic behavior of the RHS of eq.(3.27) must coincide with the one of T(u);

3. the RHS of eq.(3.27) must be regular.

The last constraint gives the Bethe ansatz equations.

Then, since eq.(3.27) is valid for all the eigenvalues, we naturally conclude that also its

operator version holds:

T(u) = eiϕ(u)a(u)
Q(u− η)Q1(u− η)

Q(u)Q2(u)
+e−iϕ(u+η)d(u)

Q(u+ η)Q2(u+ η)

Q(u)Q1(u)
+c(u)

a(u)d(u)

Q(u)Q1(u)Q2(u)
,

(3.30)

with all Q-operators being commutative with each other. Notice that this is the most

general TQ relation for spin-1
2
quantum integrable systems derived from the operator

product identities. We remark that there is actually an infinite number of choices for the

Q-functions and for c(u). For example, for the XXX chain, a n = 0 or n = 1 were both

sufficient to parametrize Λ(u) completely. Conversely, some systems are very sensitive to

the choice ofM1. For instance, the eigenvalues of the XYZ spin chain with an odd number

of sites N cannot be characterized correctly by a TQ relation with M1 = 0; thus, we need

to choose M1 ̸= 0.

We mention that, even if it is very powerful in getting the eigenvalues, an important

problem in the ODBA scheme is to retrieve the eigenstates, that are known to be crucial

to compute correlation functions and dynamical properties.

3.2.4 Brief remark on Bethe roots

As we mentioned before, in order to get a self-consistent set of BAEs, the poles µj must

be simple. For example, examining the Bethe states emerging from the Coordinate Bethe

ansatz, we can deduce the Pauli principle for the Bethe roots: the eigenvector is zero as

long as µj = µl for j ̸= l. In fact, to preserve the regularity of Λ(u), doubly degenerate
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µj (if they exist) must satisfy the condition

res{(u− µj)Λ(u)}|u=µj
= 0 (3.31)

and this gives rise to an additional equation and makes the M − 1 Bethe roots overdeter-

mined.

3.3 ODBA for the XYZ model

In this section, we introduce how to apply ODBA to obtain the solution of the fully

anisotropic spin chain with periodic boundary conditions. Check out how this technique

simplifies the derivation process for the XYZ, and, in particular, provides the exact so-

lution for the odd-N case. The first subsection is devoted to reviewing the Hamiltonian

and the properties of the matrices involved in the eight-vertex model.

3.3.1 Recap on the Hamiltonian

Take the usual Hamiltonian

H =
1

2

N∑
i=1

(
Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1

)
, (3.32)

with coupling constants

Jx = eiπη
σ(η + τ

2
)

σ( τ
2
)

, Jy = eiπη
σ(η + 1+τ

2
)

σ(1+τ
2
)

, Jz =
σ(η + 1

2
)

σ(1
2
)

. (3.33)

parameterized in terms of the elliptic functions defined in (2.25). The associated L-matrix

was

L =


α(u) 0 0 δ(u)

0 β(u) γ(u) 0

0 γ(u) β(u) 0

δ(u) 0 0 α(u)

 , (3.34)
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with entries

α(u) =

θ

[
0
1
2

]
(u, 2τ) θ

[
1
2
1
2

]
(u+ η, 2τ)

θ

[
0
1
2

]
(0, 2τ) θ

[
1
2
1
2

]
(η, 2τ)

, β(u) =

θ

[
0
1
2

]
(u, 2τ) θ

[
0
1
2

]
(u+ η, 2τ)

θ

[
0
1
2

]
(0, 2τ) θ

[
1
2
1
2

]
(η, 2τ)

, (3.35)

γ(v) =

θ

[
0
1
2

]
(u, 2τ) θ

[
1
2
1
2

]
(u+ η, 2τ)

θ

[
0
1
2

]
(0, 2τ) θ

[
0
1
2

]
(η, 2τ)

, δ(v) =

θ

[
0
1
2

]
(u, 2τ) θ

[
1
2
1
2

]
(u+ η, 2τ)

θ

[
0
1
2

]
(0, 2τ) θ

[
0
1
2

]
(η, 2τ)

. (3.36)

We remind that u is the spectral parameter, η is the crossing parameter, and τ is a generic

complex number such that Im(τ) > 0.

For convenience’s sake, we report again the two other functions connected to the θ’s:

σ(u) = θ

[
1
2
1
2

]
(u, τ), (3.37)

and

ζ(u) =
∂

∂u
{lnσ(u)}. (3.38)

Again, using (2.30) we can obtain the monodromy matrix, and subsequently the transfer

matrix. At this point, the Hamiltonian can be recovered by making use of the relation

(2.33).

Now, to dive into the ODBA, we need to write the properties of this L, as we did in

subsection (3.2.2) for the XXX chain.
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3.3.2 Properties of the L-matrix and Operator Product Identi-

ties

The L-matrix defined above satisfies the YBE and possesses the following properties:

· Initial condition: L1,2(0) = P1,2,

· Unitary relation: L1,2(u)L2,1(−u) = −ξ(u)× Id, with ξ(u) =
σ(u− η)σ(u+ η)

σ(η)2
,

· Crossing relation: L1,2(u) = (−iσy
1)Lt2

1,2(−u− η)(−iσy
1),

· PT-symmetry: L1,2(u) = L2,1(u) = Lt1,t2
1,2 (u),

· Z2-symmetry: σα
1 σ

α
2L1,2(u) = L2,1(u)σ

α
1 σ

α
2 α = x, y, z,

· Fusion condition: L1,2(−η) = −(1 + P1,2) = −2P (−)
1,2 ,

(3.39)

The XYZ transfer matrix satisfies the following operator identities:

T(ξj)T(ξj − η) = a(ξj)d(ξj − η) Id, j = 1, ..., N, (3.40)

with

a(u) =
N∏
l=1

σ(u− ξl + η)

σ(η)
,

d(u) = a(u− η) =
N∏
l=1

σ(u− ξl)
σ(η)

.

(3.41)

The quasi-periodicity of the elliptic function σ(u)

σ(u+ τ) = −e2iπ(u+ τ
2
)σ(u), σ(u+ 1) = −σ(u), (3.42)

directly induces the quasi-periodic properties of the R-matrix:

L1,2(u+ 1) = −σz
1L1,2(u)σ

z
1

L1,2(u+ τ) = −e2iπ(u+ η
2
+ τ

2
)σx

1L1,2(u)σ
x
1 .

(3.43)
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Consequently, the transfer matrix possesses the following quasi-periodicity properties:

T(u+ 1) = (−1)NT(u)

T(u+ τ) = (−1)Ne−2πi{Nu+N( η+τ
2

)−
∑N

j=1 ξj}T(u).
(3.44)

In addition, the operator identity

N∏
j=1

T(ξj) =
N∏
j=1

a(ξj)× Id (3.45)

can be obtained from the unitary relation among (3.39) combined with the form of the

transfer matrix.

The quasi-periodicity properties (3.44), and the relations (3.40) and (3.45) are sufficient

to determine the spectrum of T(u), and accordingly the one of the Hamiltonian.

3.3.3 Inhomogeneous TQ relation

Applying T(u) to an arbitrary eigenstate |Ψ⟩, we can verify that the corresponding eigen-

value Λ(u) has properties similar to those of T(u):

Λ(u+ 1) = (−1)NT(u)

Λ(u+ τ) = (−1)Ne−2πi{Nu+N( η+τ
2

)−
∑N

j=1 ξj}Λ(u),
(3.46)

and the analytic properties of the L-matrix indicate that

Λ(u) is an entire function ofu. (3.47)

This last property and the quasi-periodicity features tell us that Λ(u) is, as desired, an

elliptic polynomial of degree N . Similarly, (3.40) and (3.45) lead to

Λ(ξj)Λ(ξj − η) = a(ξj)d(ξj − η) Id, j = 1, ..., N, (3.48)

N∏
j=1

Λ(ξj) =
N∏
j=1

a(ξj). (3.49)
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The equations (3.46)-(3.48) provide sufficient conditions to determine the function Λ(u)

and allow us to construct the inhomogeneous TQ relation

Λ(u) = e2iπl1u+iϕa(u)
Q1(u− η)
Q2(u)

+ e−2iπl1(u+η)−iϕd(u)
Q2(u+ η)

Q1(u)
+ c

σL1
(
u+ η

2

)
a(u)d(u)

σL1(η)Q1(u)Q2(u)
,

(3.50)

where l1 is an integer, ϕ and c are two constants to be determined, and M and m are two

non-negative integers that satisfy the relation

N + L1 = 2M. (3.51)

In the following, keep in mind that the integer L1 appears only in the last term of (3.50);

thus it is necessary only when c ̸= 0, and even in those cases it can be unnecessary,

but here we keep it for generality’s sake. The functions Q1(u) and Q2(u) are specularly

parametrized by 2M Bethe roots divided into two sets both with M elements, {µj|j =

1, ...,M} and {νj|j = 1, ...,M}, as follows:

Q1(u) =
M∏
j=1

σ(u− µj)

σ(η)
, Q2(u) =

M∏
j=1

σ(u− νj)
σ(η)

. (3.52)

Now, Λ(u) given by the functional TQ relation (3.50) satisfy the eq.s (3.46)-(3.48), pro-

vided that the 2M +2 parameters entering the TQ relation (namely, the 2M Bethe roots,

c, and ϕ) satisfy the 2M + 2 Bethe ansatz equations:

(
N

2
−M

)
η −

M∑
j=1

(µj − νj) = l1τ +m1, l1, m1 ∈ Z, (3.53)

Mη −
N∑
l=1

ξl +
M∑
j=1

(µj + νj) = m2, m2 ∈ Z, (3.54)

c e2iπ(l1µj+l1η)+iϕσL1(µj +
η
2
)

σL1(η)
a(µj) = −Q2(µj)Q2(µj + η), (3.55)

c e2iπl1νj−iϕσL1(νj +
η
2
)

σL1(η)
d(νj) = −Q1(νj)Q1(νj − η). (3.56)

Notice that (4.4) and (3.54) are two equations and they come from the required quasi-

periodicity of Λ(u). Equations (4.2) and (3.56) are M +M (= 2M) identities and they

are derived from the constraint on the analyticity of Λ(u).

We open a small parenthesis to remark that the “inhomogeneity” of the TQ relations is not
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the same “inhomogeneity” of the inhomogeneous parameters ξj. The former is due to the

presence of the last term in eq.(3.50), while the latter was discussed when we introduced

the monodromy matrix of the XYZ chain in subsection (2.2.2). We needed this difference

between spectral parameters at different sites for the technique’s sake. But now, we need

a “homogeneous limit” to recover the physical behavior of the system. Practically, it

corresponds to setting all the sites at the same rapidity, sending ξj → 0 (j = 1, ..., N).

Performing this limit, which affects the functions a(u) and d(u), the inhomogeneous TQ

relation is reduced to

Λ(u) =e2iπl1u+iϕσ
N(u+ η)

σN(η)

Q1(u− η)
Q2(u)

+ e−2iπl1(u+η)−iϕσ
N(u)

σN(η)

Q2(u+ η)

Q1(u)

+ c
σL1

(
u+ η

2

)
σL1(η)Q1(u)Q2(u)

σN(u+ η)σN(u)

σN(η)σN(η)
,

(3.57)

and the BAES are modified into(
N

2
−M

)
η −

M∑
j=1

(µj − νj) = l1τ +m1, l1, m1 ∈ Z, (3.58)

Mη +
M∑
j=1

(µj + νj) = m2, m2 ∈ Z, (3.59)

c e2iπ(l1µj+l1η)+iϕσL1(µj +
η
2
)

σL1(η)

σN(µj + η)

σN(η)
= −Q2(µj)Q2(µ+ η), (3.60)

c e2iπl1νj−iϕσL1(νj +
η
2
)

σL1(η)

σN(νj)

σN(η)
= −Q1(νj)Q1(νj − η). (3.61)

The equation (3.49) is a selection rule:

Λ(0) = eiϕ
M∏
j=1

σ(µj + η)

σ(νj)
= e

2iπk
N , k = 1, ..., N. (3.62)

Finally, the eigenvalue of the Hamiltonian with PBC is given by

E =
σ(η)

σ′(0)

(
M∑
j=1

[ζ(νj)− ζ(µj + η)] +
1

2
Nζ(η) + 2iπl1

)
. (3.63)
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3.3.4 Even N case

The inhomogeneous TQ relations for the XYZ have been introduced especially for the

odd N case, but they are designed to be general, and then valid for N even, as well. Let

us show what happens if we select N as an even number.

We can prove that, from the eq.s (3.60) and (3.61), either the choices µj = νk or µj = νk−η
leads to c = 0. This means that for c = 0 a one-to-one correspondence between the two

sets {µj} and {νk} (that have the same number of elements M) is induced, namely either

µj = νk or µj = νk−η. Thus, looking back at (3.51) and using (3.58), we conclude that for

a generic spectral parameter η and c = 0, we can set L1 = 0 in (3.51), and the parameters

have to obey the relations

l1 = 0, N = 2M, {µj} = {νk} ≡ {λj}. (3.64)

This means that now the spectrum of the system can be obtained from M = N
2
Bethe

roots, making use of the TQ relation (3.57), at this point reduced to a conventional one:

Λ(u) = eiϕ
σN(u+ η)

σN(η)

Q(u− η)
Q(u)

+ e−iϕσ
N(u)

σN(η)

Q(u+ η)

Q(u)
(3.65)

where the functions Q1(u) and Q2(u) are melted into the same function

Q(u) =
M∏
l=1

σ(u− λl)
σ(η)

. (3.66)

The parameters to be determined are now M + 1, namely {λj} and ϕ, and they satisfy

the BAEs and the selection rule:

σN(λj + η)

σN(λj)
= −e−2iϕQ(λj + η)

Q(λj + η)
, j = 1, ...,M, (3.67)

eiϕ
M∏
j=1

σ(λj + η)

σ(λj)
= e

2iπk
N , k = 1, ..., N. (3.68)

Notice that the BAEs (3.67) coincide exactly with the ones obtained by Baxter in [24]

with his standard TQ relations and by Takhtadzhan and Faddeev in [9] with the QISM.

Thus, our TQ relations are back to being homogeneous. The fact that the eigenvalues

can be determined by M = N
2
Bethe roots had been already proven by Baxter in [28].

In this sense, c = 0 must not lead to new solutions but just to different parametrizations
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of the eigenvalues. Finally, the selection rule (3.68) determines the parameter ϕ and,

accordingly, the amplitude of Λ(u).

When N is odd, the BAEs (3.58)-(3.61) do not admit any solutions for c = 0 and generic

η. Thus, we can follow two paths: keep generic η but remaining with an inhomogeneous

TQ relation (c ̸= 0) or select degenerate values of η.

3.3.5 Odd N case: generic η and c ̸= 0

The first option is accomplished by considering the most general form of the eigenvalue

Λ(u), i.e. another TQ relation:

Λ(u) = e2iπl1u+iϕa(u)
Q1(u− η)
Q2(u)Q(u)

+e−2iπl1(u+η)−iϕd(u)
Q2(u+ η)

Q1(u)Q(u)
+c

σL1
(
u+ η

2

)
a(u)d(u)

σL1(η)Q1(u)Q2(u)Q(u)
,

(3.69)

where Q1(u) and Q2(u) are the same as always (3.52), whereas Q(u) has the usual form

but now is a product of M1 terms instead of M :

Q(u) =

M1∏
l=1

σ(u− λl)
σ(η)

. (3.70)

whereM1 has to satisfy N+L1 = 2M+M1. For convenience, we put again L1 = 0, relying

on the numerical simulations [26] showing that any choice of L1 might give a complete set

of eigenvalues. After the homogeneous limit, the TQ relation right above becomes:

Λ(u) = e2iπl1u+iϕa(u)
Q1(u− η)Q(u− η)

Q2(u)Q(u)

+ e−2iπl1(u+η)−iϕd(u)
Q2(u+ η)Q(u+ η)

Q1(u)Q(u)

+ c
a(u)d(u)

Q1(u)Q2(u)Q(u)
.

(3.71)
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The associated BAEs are:(
N

2
−M −M1

)
η −

M∑
j=1

(µj − νj) = l1τ +m1, l1, m1 ∈ Z, (3.72)

N

2
η +

M1∑
j=1

(λj) +
M∑
j=1

(µj + νj) = m2, m2 ∈ Z, (3.73)

ca(µj) + e−2iπl1(µj+η)−iϕQ2(µj + η)Q2(µj)Q(µj + η) = 0, (3.74)

cd(νj) + e2iπl1νj+iϕQ1(νj − η)Q1(νj)Q(νj − η) = 0, (3.75)

ca(λj)d(λj) + e2iπl1λj+iϕa(λj)Q1(λj − η)Q1(λj)Q(λj − η)
+ e−2iπl1(λj+η)−iϕd(λj)Q2(λj + η)Q2(λj)Q(λj + η) = 0,

(3.76)

eiϕ
M∏
j=1

σ(µj + η)

σ(νj)

M1∏
j=1

σ(λj + η)

σ(λj)
= e

2iπk
N , k = 1, ..., N. (3.77)

Notice that, since N is odd, M1 must be odd and M takes the possible values

M = 1, ...,
N − 1

2
. (3.78)

and we need in total N Bethe roots to determine the spectrum of the transfer matrix,

while N
2
were sufficient for even N . Finally, the energy eigenvalues of the XYZ chain can

be recovered using:

E =
σ(η)

σ′(0)

(
M∑
j=1

[ζ(νj)− ζ(µj + η)] +

M1∑
j=1

[ζ(λj)− ζ(λj + η)] +
1

2
Nζ(η) + 2iπl1

)
. (3.79)

3.3.6 Numerical check of ODBA solution

via exact diagonalization for small N

This method has promising power for odd N systems due to its generality. However, it is

not very easy in terms of analytical computations. Thus, our first objective is to evaluate

its goodness verifying the results obtained by Cao et al. with our own method of exact

diagonalization. This computation is also performed to make it more clear the match

between the method and the actual physics of the system.

First of all, we used the notation (2.29) to rewrite all the elliptic theta functions in a form

compatible with Wolfram Mathematica [29]. We took the smallest non-trivial system for

N odd for convenience, i.e. N = 3, and we consideredM =M1 = 1 with their exact same
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En n

-1,4087 0

-1,4087 0

-1,4087 0

-1,4087 0

1.1847 1

1.1847 1

1.6326 2

1.6326 2

Table 3.1: Spectrum of the XYZ spin chain with N = 3 sites with couplings Jx = 1.06536, Jy =
0.94502, Jz = 0.80693 and N = 3, obtained using a Lanczos algorithm. The subscript n stands for the
energy level.

choices of the parameters:

η = 0.20, τ = i, l1 = m1 = m2 = 0. (3.80)

Using the identities (3.33), we computed the values of the parameters we are selecting

with the choice η = 0.20, τ = i. The results are:

Jx = 1.06536, Jy = 0.94502, Jz = 0.80693, (3.81)

so, since the Hamiltonian has no overall minus sign, these couplings yield an antiferro-

magnetic regime along all three axes, as desired to make frustration emerge. In general,

due to the properties of the elliptic functions, it can be observed that every real η ∈
(
0, 1

2

]
gives the same exact regime. Once we verified this, we implemented on GNU Octave [30]

a Lanczos algorithm [31] to obtain the first eigenvalues of the system, inserting the ob-

tained J ’s as couplings. This algorithm is powerful and efficient in estimating the largest

eigenvalue of a system described by a Hermitian matrix. When, as in our case, we search

for the ground state, i.e. the state with the lowest energy, it is sufficient to put an overall

minus sign and restore the correct hierarchy in the end. We made use of the Z2 symmetry

of the system to optimize the efficiency of the computation, working in one sector only

and duplicating the results for the other sector. The results coincide with the ones ob-

tained by the cited authors, and they are shown in (3.1). They satisfy the phenomenology

expected from a frustrated system: each excited state is doubly degenerate due to the Z2

symmetry, while the ground state is four-time degenerate due to the combined effect of

the Z2 and time-inversion symmetries.
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We repeated the same proceeding for N = 5 with the same parameters as before, and

we got the results reported in table (3.2). These results match again with the ones ob-

tained by Cao et al. It is interesting to analyze the characteristics of the spectra obtained.

Indeed, we note that all states turn out to be double or four times degenerate. One of

these degeneracies is given by the presence of Z2 symmetry, connected to the parity in the

magnetization, and it is the one that unites all the energy levels. According to [32] [33],

the other degeneracy is associated with Kramer’s theorem. In fact, it states that such

degeneracy is responsible for ground state manifolds at least two-fold degenerate, and it

occurs in systems possessing total half-integer spin and time-reversal symmetry. These

hypotheses are satisfied by our frustrated system. To give a taste of it, we can say that

it consists of the emergence of states with non-zero total momentum. Another way to

see the appearance of this degeneracy is to notice that the parity of the magnetization

along the three directions commute with the Hamiltonian, but anti-commute with one

another. In addition to this symmetry, the model is also clearly symmetric under a mirror

symmetry passing through any of its sites. While states with 0 (or π) momentum are

singlet under this symmetry, any state with non-zero momentum has to be degenerate

with the state with opposite momentum. In [33], it was shown that topological frustration

can promote a finite (non-extensive) momentum in the ground state and in these cases

the ground state manifold’s degeneracy is doubled. Again, this happens always for the

ground state while only under certain conditions for the excited states.

For completeness, and to investigate the complexity of the equations they derived, we

solved the system of BAEs (3.72)-(3.77) for N = 3 using Mathematica and we obtained

the exact same results reported in [26]; we show them in table (3.3). We remark that the

µ’s, the ν’s, and the λ’s are all Bethe roots with the same attributes; in the sense that

there is no hierarchy or distinction of roles between them. The different letters are just

the heritage of the notation we used for the Q-functions (Q1, Q2, Q).

It could be interesting to evaluate the goodness of this method for higher dimensions of

the system. However, the difficulty increases with the number of sites N . Already for

N = 5, the algorithm struggles to find the roots, and for higher N a much more precise

method would be required. Anyway, the comparison would be with exact diagonalization

results, which are known to be limited to systems of small dimensions. Moreover, for

finite N , the scheme of the Bethe roots is not so clear since we cannot read them through

the string hypothesis. For this reason, let us consider the other case that allows us to
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En n

-3.5134 0

-3.5134 0

-3.5134 0

-3.5134 0

-1.4219 1

-1.4219 1

-1.2506 2

-1.2506 2

-1.2506 2

-1.2506 2

-0.8624 3

-0.8624 3

-0.8624 3

-0.8624 3

0.7043 4

0.7043 4

0.7043 4

0.7043 4

1.0235 5

1.0235 5

1.0235 5

1.0235 5

1.0813 6

1.0813 6

1.0813 6

1.0813 6

2.0062 7

2.0062 7

2.3593 8

2.3593 8

2.6910 9

2.6910 9

Table 3.2: Spectrum of the XYZ spin chain with N = 5 sites with couplings Jx = 1.06536, Jy =
0.94502, Jz = 0.80693, obtained using a Lanczos algorithm. The subscript n stands for the energy level.

µ1 µ1 λ1 c ϕ k En n
0.35000 + 0.02632i 0.45000 + 0.02632i −1.10000 − 0.05263i −0.08948 + 0.00000i −0.08501 + 0.00000i 1 −1.40865 0
0.35000 − 0.02632i 0.45000 − 0.02632i −1.10000 + 0.05263i −0.08948 + 0.00000i 0.08501 + 0.00000i 2 −1.40865 0
−0.15000 + 0.08693i 0.05000 + 0.08693i −0.10000 − 0.17387i 3.04065 + 0.00000i 4.10893 + 0.00000i 2 −1.40865 0
−0.15000 − 0.08693i 0.05000 − 0.08693i −0.10000 + 0.17387i 3.04065 + 0.00000i 4.10893 + 0.00000i 1 −1.40865 0
−0.65000 − 0.27875i 0.55000 − 0.27875i 0.90000 + 0.55749i −0.28951 + 0.00000i 0.35925 + 0.00000i 0 1.18468 1
−0.28066 + 0.31196i −0.18066 + 0.31196i 0.16133 − 0.62392i −0.61188 + 0.36729i 0.27657 + 0.04967i 0 1.18468 1
0.15828 + 0.12139i 0.25828 + 0.12139i −0.71655 − 0.24279i −0.09303 − 0.16695i −0.29190 + 0.31832i 0 1.63263 2
−0.42198 + 0.50000i −0.32198 + 0.50000i 0.44397 − 1.00000i 3.33371 − 7.57925i −0.94248 + 0.14392i 0 1.63263 2

Table 3.3: Numerical solutions for the BAEs (3.72)-(3.77) for system dimension N = 3, integers
M = M1 = 1, and parameters η = 0.20, τ = i, l1 = m1 = m2 = 0. On the right, we reported the
eigenenergies obtained from the Bethe roots using the relation (3.79).
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get solutions of the BAEs, the one for degenerate values of η, that turns out to be more

suitable to take the thermodynamic limit.

3.3.7 Odd N case: degenerate values of η

It was shown in [10] [26] that only at the discrete points of the spectral parameter

η =
2l1

N − 2M
τ +

2m1

N − 2M
l1, m1 ∈ Z. (3.82)

we can put c = 0 and the BAEs (3.58)-(3.61) admit solution. Then, the inhomogeneous

TQ relation (3.57) is reduced to a conventional homogeneous one:

Λ(u) = e2iπl1u+iϕσ
N(u+ η)

σN(η)

Q(u− η)
Q(u)

+ e−2iπl1(u+η)−iϕσ
N(u)

σN(η)

Q(u+ η)

Q(u)
, (3.83)

where

Q(u) =
M∏
l=1

σ(u− λl)
σ(η)

, (3.84)

and the M + 1 parameters {λj} and ϕ satisfy the associated BAEs:

e2iπ(2l1λj+l1η)+2iϕ σ
N(λj + η)

σN(λj)
= −Q(λj + η)

Q(λj − η)
j = 1, ...,M, (3.85)

eiϕ
M∏
j=1

σ(λj + η)

σ(λj)
= e

2iπk
N , k = 1, ..., N. (3.86)

It should be emphasized that, since c = 0, the relation (3.51) does not need to be satisfied,

and we can make the “safe” choice M = N , which gives a complete set of solutions,

as emerged from some numerical analyses [26]. Another crucial aspect is that in the

thermodynamic limit (N → ∞) the degenerate points given by eq.(3.82) become dense

in the whole complex η-plane. The latter ensures the covering of all the possible regimes

of the physical system and allows us to obtain the thermodynamic properties (up to the

order of O(N−2)) of the XYZ for generic values of η. This analysis has been realized in

[11] and will be reported in the following section (3.4).
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3.4 Thermodynamic limit: ground state and elemen-

tary excitations

As announced in the last paragraph of subsection (3.3.7), since the degenerate values of

the crossing parameter η become dense in the complex η-plane as N → ∞, we can take

the shortest path to analyze the system in the thermodynamic limit. Thus, consider c = 0

and η obeying (3.82). Then we can take M = N and m1 = −m without losing generality

[11], and we also choose l1 = −1 to keep η depending on τ . Notice that the case η ∈ R
can be easily recovered. The degenerate points become

η̃m =
τ

N
+

2m

N
m ∈ Z. (3.87)

It is also convenient to restrict to the case 0 < 2m
N
≤ 1

2
, since the range 1

2
< 2m

N
≤ 1 is a

straightforward extension but with slightly different distributions of the Bethe roots for

the ground state and hole excitations.

If we redefine the λ’s by λj =
i
2
xj − η̃m

2
, we can consider the {xj} as our physical Bethe

roots, frameable in terms of the string hypothesis, and solutions of the BAEs

eπxj+2iϕσ
N [ i

2
(xj − iη̃m)]

σN [ i
2
(xj + iη̃m)]

= −
N∏
k ̸=j

σ[ i
2
(xj − xk − 2iη̃m)]

σ[ i
2
(xj − xk − 2iη̃m)]

j = 1, ..., N, (3.88)

eiϕ
M∏
j=1

σ[ i
2
(xj − iη̃m)]

σ[ i
2
(xj + iη̃m)]

= e
2iπk
N , k = 1, ..., N. (3.89)

simply derived from (3.85)-(3.86). Similarly, (3.63) becomes

E =
σ(η̃m)

σ′(0)

(
N∑
j=1

[
σ′[ i

2
(xj + η̃mi)]

σ[ i
2
(xj + η̃mi)]

− σ′[ i
2
(xj + η̃mi)]

σ[ i
2
(xj + η̃mi)]

]
+
N

2

σ′(η̃m)

σ(η̃m)

)
. (3.90)

where we can insert the Bethe roots {xj} recovered from the BAEs to get the spectrum of

the Hamiltonian (3.32). Since we are interested in the thermodynamic properties of the

system, we shall evaluate the distribution of the Bethe roots in the thermodynamic limit,

relying on the string hypothesis.
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3.4.1 String hypothesis

Here, the string hypothesis consists in a general form for the solutions of the BAEs,

proposed by Takahashi [4]:

xj,kα = xjα + (nj + 1− 2k)η i+
1− vj

2
i+O(e−δN), 1 ≤ k ≤ nj, (3.91)

where xjα is the position of the j-string, k means the kth Bethe root scrolling the string,

nj is the length of the string, vj = ±1 identifies the parity of the same string, and O(e−δN)

stands for the finite-size correction. If vj = 1, the center of the j-string is the real axis,

whereas if vj = −1, the center of the string is the horizontal line with imaginary part i.

Thus, we make this assumption also for our Bethe roots when N is large. The length

nj and the parity vj, for example, are determined by the parameters of the system, just
2m
N

in our case. It is convenient to expand 2m
N

into a so-called simple continued fraction

(SCF) of length l as done by Takahashi, too:

2m

N
=
c2
c1

=
1

a1 +
1

···+ 1
al

≡ [a1, · · · , al], al ≥ 2 and c1, c2 co-primes, (3.92)

where a1 ≥ 2 since 0 < 2m
N
≤ 1

2
. Then we need to define the integers zs and the quantities

ys as

z0 = 0, zk =
k∑

j=1

aj, k = 1, 2, ..., l; (3.93)

y−1 = 0, y0 = 1, yk = akyk−1 + yk−2. (3.94)

In terms of these new elements, the length nj and parity vj of string solutions should

satisfy the following relations [4]:

nj = ys−1 + (j − zs)ys, s = 0, 1, ..., l, zs ≤ j < zs+1, j = 1, 2, · · · , zl;
nzl+1 = yl;

vj = (−1)⌊(nj−1) 2m
N

⌋ j ̸= z1;

vz1 = −1.

(3.95)

Here ⌊x⌋ denotes the so-called floor(x), that is the maximum integer less than or equal

to x.
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Figure 3.1: Disposition of the Bethe roots for l1 = −1 as strings on the complex plane for N = 73,
τ = i, and 2m

N = 10
73 . The strings are oblique due to the non-vanishing imaginary part of the crossing

parameter. Notice that the centers of strings (3.91) with positive parity (vj = 1) lay on the real axis,
while the ones of strings with negative parity (vj = −1) are on the shifted horizontal green line. The red
point constitutes the whole 1-string for j = 7 and it represents a hole among the real roots.

From the eq.s (3.92)-(3.95) we obtain yl = c1 which corresponds to the length of the

(zl+1)-string, and from eq.(3.95) we can deduce that the number of string types is zl+1.

Let us consider an example value for 2m
N

in order to make the description of the string

structure clearer. So, let us take 2m
N

= 10
73

= [7, 3, 3]. Substituting these values in (3.95)

we obtain all the required quantities that, plugged into the string hypothesis expression

(3.91), give us all the Bethe roots, clustered in strings. As N = 73, the value of the

crossing parameter is η̃m = i
73

+ 10
73
. We remark that, choosing l1 ̸= 0, the crossing

parameter η would depend on τ . And if τ is chosen to be purely imaginary as usual,

η will have an imaginary part. This is reflected in the structure of the strings making

them oblique: they are not parallel to the imaginary axis. The disposition of the roots

for l1 = −1 is shown in fig.(3.1).

3.4.2 Distribution of Bethe roots

Now that we have the strings, we have to plug them into the BAEs (3.88). Then, omit-

ting exponentially small corrections, and taking the product of the BAEs (3.89) for nj
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components of a j-string, we get the equation for the position xjα of the j-string:

eφj(x
j
α)gN(xjα;nj, vj) = (−1)nj+1

zl+1∏
r=1

Mr∏
β=1

min(nr,nj)−1∏
k=1

g(xjα − xrβ;nr + nj, vrvj)

× g(xjα − xrβ; |nr − nj|, vrvj) g2(xjα − xrβ; |nr − nj|+ 2k, vrvj),

(3.96)

where Mr is the number of r-strings and

φj(x) = πnj

(
x+ i

1− vj
2

)
+ i2njϕ, (3.97)

g(x;n, v) =
σ[ i

2
(x− nη̃mi+ 1−v

2
i)]

σ[ i
2
(x+ nη̃mi+

1−v
2
i)]
. (3.98)

Taking the logarithm of eq.(3.96), we have

1

i
φj(x

j
α) +Nϑj(x

j
α) = 2πIjα +

zl+1∑
r=1

Mr∑
β=1

Θjr(x
j
α − xjβ), α = 1, ...,Mr, (3.99)

where Ijα is an integer (half-integer) for nj +Mj + 1−N 1+vj
2

even (odd) and

ϑj(x) ≡ ϑ(x;nj, vj) = −i ln[(−vj) g(x;nj, vj)], (3.100)

Θjr(x) = ϑ(x;nr + nj, vjvr) + ϑ(x; |nr − nj|, vjvr) + 2

min(nr,nj)−1∑
k=1

ϑ(x; |nr − nj|+ 2k, vjvr).

(3.101)

In particular, ϑj(x) is an elliptic function with double quasi-periodicities 2i and 2 τ
i
, but

it is sufficient to consider their values in one periodicity. In order to shift the variables

into the domain [−i, i], we define

qj ≡ (−1)s(ps − (j − zs)ps+1), s = 0, 1, ..., l, j = 1, 2, ..., zl, zs ≤ j ≤ zs+1,

qzl+1 = (−1)l+1pl+1,

(3.102)

where the {ps} constitute a series:

p0 =
N

2m
, p1 = 1, pn = pn−2 − pn−1an−1, (3.103)
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with

an−1 =

⌊
pn−2

pn−1

⌋
, n = 2, 3, ..., l + 1. (3.104)

This makes the series completely determined by the SCF expansion (3.92), which yields

pl+1 = 0. Moreover, from (3.102) we extract the range covered by the q’s: −1 ≤ qj ≤ N
2m
−1

for j = 1, 2, ..., zl + 1 with internal ordering |qr| ≤ |qj| if r > j. It can also be proven that

qj can be parametrized as

qj = ωj
N

2m
− nj, (3.105)

where

ωz1 = 0, ωj =

⌊
(nj − 1)

2m

N

⌋
+ 1, j ̸= z1. (3.106)

From this expression, we notice that the integers ωj, and consequently the quantities qj,

are only determined by the length nj of the j-string.

These quantities allow us to express the function ϑj(x) as

ϑj(x) =
1

i
ln

θ

[
1
2

0

] (
i
2
(x+ (qj

2m
N
i+

nj

N
τ
i
))
)

θ

[
1
2

0

] (
i
2
(x− (qj

2m
N
i+

nj

N
τ
i
))
) . (3.107)

This expression is useful to deduce that the behavior of the function ϑj(x) sensitively

depends on the sign of qj: it is monotonically increasing in x for qj > 0 while monotonically

increasing in x for qj > 0.

At this point, we can go back to the string hypothesis (3.91), substitute it into the selection

rule (3.89), and take the logarithm, obtaining

zl+1∑
j=1

{
1

2π
ϑj(x

j
α)

}
= I +

k1
2N
− ϕ

2π
, k1 = 1, ..., 2N, (3.108)

where I is an integer (half-integer) for
∑zl+1

j=1 Mj
1+vj
2

even (odd). The function ϑj(x) has

the role of quantifying the distribution of the Bethe roots. In particular, this equation

tells us that the distribution and the value of ϕ are tied to each other, and consequently

they are both fixed for each state.

These algebraically complicated steps were preparatory to defining the counting function
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Zj(x) as

Zj(x) =
φj(x)

2πNi
+

1

2π
ϑj(x)−

1

N

zl+1∑
r=1

Mr∑
β=1

1

2π
Θjr(x− xrβ). (3.109)

The imposition Zj(x
j
α) = Ijα/N corresponds exactly to (3.99).

In the thermodynamic limit, xjα becomes a continuous variable and the counting function

Zj(x) turns into a continuous function. Thus, we define

d

dx
Zj(x) = sign(qj)[ρj(x) + ρhj (x)], (3.110)

where ρj(x) is the density of states characterized by the j-string, while ρhj (x) is the density

of the corresponding holes. Notice that the function sign(qj) is needed due to the different

monotonicity of ϑj(x) depending on the sign of qj.

At this point, we can plug (3.109) into the definition (3.110), namely we take the derivative

of (3.109) with respect to x, and we obtain the integral equations for the densities of states:

sign(qj)ρ
h
j (x) = aj(x) +

nj

2Ni
−

zl+1∑
r=1

∫ Q

−Q

Ajr(x− y)ρr(y)dy, (3.111)

where the functions aj(x) and Ajr(x), defined as

aj(x) ≡ a(x;nj, vj) =
1

2π

d

dx
ϑj(x)

= − 1

4π


θ′

[
1
2

0

]
[ i
2
(x− (qj

2m
i
+

nj

N
τ
i
))]

θ

[
1
2

0

]
[ i
2
(x− (qj

2m
i
+

nj

N
τ
i
))]

−
θ′

[
1
2

0

]
[ i
2
(x+ (qj

2m
i
+

nj

N
τ
i
))]

θ

[
1
2

0

]
[ i
2
(x+ (qj

2m
i
+

nj

N
τ
i
))]


,
(3.112)

Ajr(x) =
1

2π

d

dx
Θj(x) + δjrsign(qj)δ(x)

= a(x;nr + nj, vrvj) + a(x; |nr − nj|, vrvj) + 2
∑
k=1

a(x; |nr − nj|+ 2k, vrvj) + δjrsign(qj)δ(x),

(3.113)

are elliptic functions with double-periods 2i and 2 τ
i
. Since the j-strings are distributed in

the interval
[
− τ

i
, τ
i

]
on the real axis (remember that τ is pure imaginary) we can choose

the extreme of the integral to be Q = τ
i
.
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3.4.3 Ground state energy

All the functions computed until now become useful to calculate the physical quantities

of the XYZ chain with odd N in the thermodynamic limit.

Let us focus on the ground state energy. Thus, our goal is to arrange the Bethe roots in a

way that is allowed by all the previous considerations, but also choosing a configuration

that minimizes the energy of the system. We know that the real Bethe roots contribute

negative energies, so we want them to fill the real axis as far as possible. The first

constraint is that, in general, the maximum number of real Bethe roots is N
2
. This means

that, as the first thing, imagine putting N
2

on the real axis for even N or N
2
− 1 for

odd N ; the remaining roots will be distributed on the complex plane with the shape of

strings satisfying (3.95). In the following, the real roots will be expressed as 1-strings,

corresponding to nj = 1 and vj = +1 in (3.95).

Therefore, substituting nj = 1 and vj = +1 in (3.113), we are selecting the function A1r

associated with the ground state:

A1r(x) = a(x;nr + 1, vr) + a(x;nr − 1, vr) + δ1rsign(q1)δ(x). (3.114)

This equation can be solved by Fourier transform. The FT of the function A1r(x) is

Ã1r(k) = 2 cosh

(
i

τ
kπη̃m

)
sinh[ i

τ
kπ(qr

2m
N
− nr

τ
N
)]

sinh( i
τ
kπ)

. (3.115)

We make use of this expression by plugging it into the FT of the whole eq.(3.111) with

j = 1. This yields the FT of the density of states at the ground state

ρ̃1(k) =
1

2 cosh( i
τ
kπη̃m)

− ρ̃h1(k)

Ã11(k)
− τδk0

NÃ11(k)
−

zl+1∑
r ̸=1

sinh[ i
τ
kπ(qr

2m
N
− nr

τ
N
)]

sinh[ i
τ
kπ(1− η̃m)]

ρ̃r(k). (3.116)

It is clear that real Bethe roots, holes, and strings are coupled together. In particular, it

is interesting that the distribution of real Bethe roots depends on the densities of holes

and strings.

Now, if we take a look back at the expression (3.90) for the eigenenergies of the system in

terms of Bethe roots, and we make use of (3.112), we obtain that the energy of a r-string
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is

εr(η̃m) =
σ(η̃m)

σ′(0)


θ′

[
1
2

0

]
[ i
2
(x− (qj

2m
i
+

nj

N
τ
i
))]

θ

[
1
2

0

]
[ i
2
(x− (qj

2m
i
+

nj

N
τ
i
))]

−
θ′

[
1
2

0

]
[ i
2
(x+ (qj

2m
i
+

nj

N
τ
i
))]

θ

[
1
2

0

]
[ i
2
(x+ (qj

2m
i
+

nj

N
τ
i
))]


= −4πσ(η̃m)

σ′(0)
ar(x).

(3.117)

Thus, from the last two eq.s and again (3.90), we get the expression for the ground state

energy of the system

Eodd
g (η̃m) = −4πN

σ(η̃m)

σ′(0)

{∫ τ
i

− τ
i

a1(x)ρ1(x)dx+

zl+1∑
r ̸=1

∫ τ
i

− τ
i

ar(x)ρr(x)dx

}
+
N

2

σ′(η̃m)

σ′(0)

= −2iπN

τ

σ(η̃m)

σ′(0)

∞∑
k=−∞

{
ã1(k)

2 cosh( i
τ
kπη̃m)

− ρ̃h1(k)

2 cosh( i
τ
kπη̃m)

}
+
N

2

σ′(η̃m)

σ′(0)
.

(3.118)

Then, exploiting the Fourier transform ã1(k) =
sinh[ i

τ
kπ(1−η̃m)]

sinh( i
τ
kπ)

, we can recollect the terms

e0(η̃m) = −
iπ

τ

σ(η̃m)

σ′(0)

∞∑
k=−∞

sinh[ i
τ
kπ(1− η̃m)]

sinh( i
τ
kπ) cosh( i

τ
kπη̃m)

+
1

2

σ′(η̃m)

σ′(0)
(3.119)

ϵh(η̃m) =
iπN

τ

σ(η̃m)

σ′(0)

∞∑
k=−∞

ρ̃h1(k)

cosh( i
τ
kπη̃m)

(3.120)

to write

Eodd
g (η̃m) = e0(η̃m)N + ϵh(η̃m). (3.121)

Thus, we recognize e0(η̃m) as the density of the ground state energy at the degenerate

point η̃m and ϵh(η̃m) as the energy carried by the holes in the real axis. This means that

the ground state energy is only related to the real Bethe roots and corresponding holes.

Notice that, since e0 only depends on the real roots, we have that the ground state energy

is only related to the real Bethe roots and the corresponding holes. Although the strings

could in principle affect the density of states, their contribution to the energies is zero.

90



This phenomenon derives from the rearrangement of Fermi sea.

3.4.4 Distinction between N odd and N even

Notice that no restriction on N has been done until now. We used the ODBA technique

and the string hypothesis, but the proceeding is completely valid for both the odd and the

even case. This is relevant because we can use the obtained results to compare the two

cases directly and as fruits of the same technique. In this subsection will be shown how the

strings affect the distribution of holes, and how they together determine different ground

state energy in the two cases. Thus, first of all, let us analyze in general the string solutions

satisfying (3.95). Suppose that, there are Mr r-strings (with r ≥ 2). From the definition

of the q’s (3.102), we know that −1 ≤ qr ≤ N
2m
− 1 for r = 2, ..., zl + 1. Since we have

shifted all the variables into one periodicity to compute the values of elliptic functions,

these strings should also be moved to the same periodicity. In order to minimize the

energy, we need to reduce as much as possible the number of holes (since they contribute

with positive energy). This can be expressed in the requirement

−1 <
zl+1∑
r ̸=1

Mrqr <
N

2m
− 1. (3.122)

Then, using the parametrization of the q’s in terms of the ω’s as written in eq.(3.105)-

(3.106), we have ⌊(
zl+1∑
r ̸=1

Mrnr − 1

)
2m

N

⌋
+ 1 =

zl+1∑
r ̸=1

Mrωr, (3.123)

where
zl+1∑
r ̸=1

Mrnr (3.124)

constitutes the total number of string solutions. Substituting eq.(3.123) into the definition

of the ω’s (3.106), we end up with

zl+1∑
r ̸=1

Mrqr =

(⌊(
zl+1∑
r ̸=1

Mrnr − 1

)
2m

N

⌋
+ 1

)
N

2m
−

zl+1∑
r ̸=1

Mrnr. (3.125)

From this expression, it is clear that the contribution of the strings depends sensibly on

the parity of N .
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First, consider the case N odd. Since the real Bethe roots correspond to 1-strings, the

number of real Bethe roots is M1 =
N−1
2

, while the number of string solutions, i.e. all the

other roots out of the real axis, is

zl+1∑
r ̸=1

Mrnr =
N + 1

2
, (3.126)

and substituting (3.126) into (3.125), we get

zl+1∑
r ̸=1

Mrqr =

(⌊(
zl+1∑
r ̸=1

Mrnr − 1

)
2m

N

⌋
+ 1

)
N

2m
− N + 1

2
= −1

2
. (3.127)

Now we can use the number of real Bethe roots M1 = N−1
2

and our knowledge of the

number of holes in the ground state as constraints to fix the density of roots and holes.

ρ̃1(0) =

∫ τ
i

− τ
i

ρ1(x)dx =
M1

N
=
N − 1

2N
=

1

2
− 1

2N
. (3.128)

Then, using the expression for the density of states at the ground state (3.116), we obtain

the values of ρ̃1(0) as

ρ̃1(0) =
1

2
− ρ̃h1(0)

2(1− η̃m)
+

η̃m
2M(1− η̃m)

. (3.129)

Consequently, substituting this expression into (3.128), we get the FT of the distribution

of the holes at the ground state for k = 0.

ρ̃h1(0) =

∫ τ
i

− τ
i

ρh1(x)dx =
1

N
. (3.130)

Comparing this result with the definition of counting function, we know that such a

configuration gives that there is only one hole in the real axis at the ground state. In

particular, the density of holes ρh1(x) can be expressed by the δ-function centered in the

position xh of the single hole:

ρh1(x) =
1

N
δ(x− xh), ←→ ρ̃h1(k) =

1

N
e

kπ
τ
xh

. (3.131)
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Now, this expression can be plugged in (3.120) to obtain the energy carried by the single

hole

ϵh(x
h, η̃m) =

iπ

τ

σ(η̃m)

σ′(0)

∞∑
k=−∞

e
kπ
τ
xh

cosh( i
τ
kπη̃m)

. (3.132)

It remains to be determined the position of the hole. For this problem, some considerations

on the thermodynamic limit come to the rescue. Indeed, in the thermodynamic limit, its

position xh can take continuous values in the interval
[
− τ

i
, τ
i

]
. And it should be noted

that the function ϵh(x
h, η̃m) takes the minimum value at xh = τ

i
. Then, since we are

selecting the ground state, we are going to choose this point to minimize the positive

energy brought by the hole.

Finally, the ground state energy reads

Eodd
g,PBC(η̃m) = e0(η̃m)N + ϵh

(τ
i
, η̃m

)
. (3.133)

Instead, if the system size N is even, at the ground state there exist M1 =
N
2
real Bethe

roots (again, we take the maximum number to minimize the energy) and N
2
string solutions

zl+1∑
r ̸=1

Mrnr =
N

2
; (3.134)

plugging it into (3.125), we have

zl+1∑
r ̸=1

Mrqr =

(⌊(
N

2
− 1

)
2m

N

⌋
+ 1

)
N

2m
− N

2
= 0. (3.135)

Performing the same procedure as before, namely using eq.s (3.116),(3.134) and (3.135),

we have
M1

N
=

1

2
=

∫ τ
i

− τ
i

ρ̄1(x)dx = ˜̄ρ1(0) =
1

2
−

˜̄ρh1(0)

2(1− η̃m)
, (3.136)

where ρ̄1(x) is the density of real Bethe roots, ˜̄ρ1(x) is its FT and ˜̄ρh1(0) is the FT of the

density of the holes. Such a configuration gives that there is no hole at the ground state,

i.e. ρ̄h1(x) = 0. Finally, the ground state energy for N even is

Eeven
g (η̃m) = e0(η̃m)N, (3.137)
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Figure 3.2: Disposition of the Bethe roots as strings on the complex plane for N = 73, τ = i, and
2m
N = 10

73 . The strings are vertical since the choice l1 = 0 makes the crossing parameter independent from
τ and then keeps η real. Notice that the centers of strings (3.91) with positive parity (vj = 1) lay on the
real axis, while the ones of strings with negative parity (vj = −1) are on the shifted horizontal green line.
The red point constitutes the whole 1-string for j = 7 and it represents a hole among the real roots.

which is lower than the one obtained in the odd N case, since lacking of the positive

contribution coming from the hole.

The proceeding that brought us here was conducted using the imaginary crossing param-

eter η̃ = τ
N
+ 2m

N
. Now, it is interesting but non-trivial to note that these results for the

ground state can be extended to the real η case just by substituting η̃ with

η̄m =
2m

N
m ∈ Z. (3.138)

This spectral parameter no longer depends on τ , and corresponds to the choice l1 = 0 in

eq.(3.82). The arrangement of the roots is no longer oblique, but vertical, and it shown

in fig.(3.2). The reality of the spectral parameter is physically relevant because now it

belongs to the region η ∈
(
0, 1

2

]
. This guarantees that we are selecting an AFM regime,

that makes the frustration effects emerge.

3.4.5 Elementary excitations

So, consider the roots’ scheme of the odd N ground state and move the hole from xh = τ
i

to another position in the real axis. This is called hole excitation and it is a typical

elementary excitation of the system. The energy we are adding to the system is given by

the difference between the energy of the new excited state and the one of the ground state

(3.133). Since we are not touching the ground state energy density (3.119), the expression
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of the excitation is

∆Eodd(xh, η̄m) = Eodd
e (η̄m)− Eodd

g (η̄m) = ϵh(x
h, η̄m)− ϵh

(τ
i
, η̄m

)
. (3.139)

This quantity is positive since we have seen that ϵh(x
h, η̄m) is minimal when the hole is

placed at xh = τ
i
. Therefore, any other position of the hole implies a higher value for

the energy. An interesting aspect of the expression above is that, in the thermodynamic

limit, the position of the hole xh can tend to τ
i
infinitely. Thus,

lim
xh→ τ

i

∆Eodd(xh)→ 0 (3.140)

and we conclude that the excitation spectrum is continuous.

In the evenN case, there were no holes in the ground state. So, the simplest hole excitation

consists of replacing a real Bethe root of the ground state configuration with a z1-string

of length nz1 = 1 and parity vz1 = −1. The energy carried by this 1-string is positive.

Intuitively, in this kind of excited state, there are M1 =
(
N
2
− 1
)
real Bethe roots and(

N
2
+ 1
)
string solutions. Then, the real roots satisfies

M1

N
=

1

2
− 1

N
=

∫ τ
i

− τ
i

ρ′1(x) = ρ̃′1(0), (3.141)

while the string solutions satisfy

zl+1∑
r ̸=1

Mrnr =
N

2
+ 1, (3.142)

zl+1∑
r ̸=1

Mrqr =

(⌊(
N

2
− 1

)
2m

N

⌋
+ 1

)
N

2m
− N

2
+ qz1 = −1. (3.143)

Due to these two constraints on the string solutions, the density of states (3.116) with

k = 0 becomes

ρ̃′1(0) =
1

2
− ρ̃′h1 (0)

2− (1− η̄m)
− η̄m
N(1− η̄m))

. (3.144)

Plugging this expression in the constraint for the real roots (3.141), we get

ρ̃′h1 (0) =

∫ τ
i

− τ
i

ρ′h1 (x)dx =
2

N
. (3.145)

95



This result for the FT of the density of holes tells us that there are two holes in the real

axis, that will be placed in xh1 and xh2 respectively. Then, the Fourier anti-transform yields

the density of holes

ρ′h1 (x) =
1

N

[
δ(x− xh1) + δ(x− xh2)

]
. (3.146)

Summing up these results, the energy of this hole excitation is

∆Eeven(xh1 , x
h
2 , η̄m) = Eeven

exc (η̄m)− Eeven
g (η̄m) = ϵh(x

h
1 , x

h
2 , η̄m) + ϵh(x

h
1 , x

h
2 , η̄m). (3.147)

In the thermodynamic limit, we can put both the holes xh1 and xh2 on the point τ
i
, getting

lim
xh
1 ,x

h
2→

τ
i

∆Eeven(xh1 , x
h
2)→ 2ϵh

(τ
i
, η̄m

)
. (3.148)

This means that for even N , the excitation is gapped. These results are justified by both

analytical and numerical (DMRG method) computations [11].
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Chapter 4

Connection with the sine-Gordon

model

In 1976, Alan Luther showed explicitly [34] the connection that exists between the spin-1
2

XYZ chain and the sine-Gordon model, with suitable relations between coupling constants.

First of all, let us introduce the sine-Gordon model and its characteristics.

4.1 Introduction to the sine-Gordon model

In Chapter 1 we discussed the concept of integrability for classical and quantum systems.

So far we have been dealing with discrete quantum models whose integrability did not

have an unambiguous definition. Quantum Field Theories fit into this discussion in a

very interesting way since, although they describe quantum systems, their integrability

is well-defined. In fact, an integrable QFT is characterized by an infinite number of

conserved charges, i.e., of conservation laws [35]. Therefore, for them, we can derive the

exact mass spectrum of its excitations, the correlation functions, the thermodynamics,

etc. Anyway, we still deal with only (1+1) dimensions, for which non-trivial integrable

QFTs can occur. Many of these integrable Quantum Field Theories are associated with

a Lagrangian density: one of them is the sine-Gordon model.
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4.1.1 The Lagrangian

The (1+1)-dimensional Lagrangian density for the quantum sine-Gordon model [36] can

be written as:

LsG =
1

2
∂µϕ ∂

µϕ+
m2

β2
(cos βϕ− 1) (4.1)

where ϕ is a scalar bosonic field while m and β are two parameters of the model: m2 is the

“squared mass” associated with the spectrum of small oscillations about the minimum,

while β measures the strength of the interactions between these small oscillations. It

is interesting to notice that, using the bosonization procedure, this Lagrangian can be

transformed in the massive Thirring model’s [37]:

LTh = iΨ̄γµ∂µΨ−MΨ̄Ψ− 1

2
g(Ψ̄γµΨ)(Ψ̄γµΨ) (4.2)

where Ψ is instead a complex fermionic field, provided that the coupling constants are

related by the identity
β2

4π
=

1

1 + g
π

. (4.3)

Note that β2 = 4π is equivalent to g = 0, i.e., a free fermionic model.

The first term in (4.1) is the kinetic one, while the second is the scalar potential

V (ϕ) =
m2

β2
(cos βϕ− 1). (4.4)

This potential presents an infinite series of degenerate minima placed at ϕ = 2πn
β

(n =

0,±1, ...), that correspond to an infinite family of equivalent quantum vacua. Around each

minimum, the potential has a quadratic concavity m2 that can be seen as the mass of the

scalar particle created out of the vacuum by the field ϕ. But this is not the only type

of excitation of the model [38]. Indeed, the sine-Gordon hosts also topological excitations

of finite energy, associated with the field configurations that interpolate between two

degenerate vacua.

4.1.2 Topological excitations

Consider two vacua among the infinite family seen before: 2πn1

β
and 2πn2

β
, labeled by two

integers (n1, n2). The field ϕ(x) reaches the two vacua at x → ±∞. This scheme is
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associated with a topological charge defined by

T = n1 − n2 =
1

2πβ

∫ ∞

−∞
dx
∂ϕ

∂x
. (4.5)

A generic configuration ϕ(x, t) has energy given by the expression

E(ϕ) =

∫ ∞

−∞
dx

[
1

2

(
∂2ϕ

∂t2

)2

+

(
∂2ϕ

∂x2

)2

+ V (ϕ)

]
, (4.6)

and it obeys the equation of motion of the model

∂2ϕ

∂t2
− ∂2ϕ

∂x2
=
∂V

∂ϕ
. (4.7)

Looking at the static solutions of the equation of motion, we are left with

∂2ϕ

∂x2
= −∂V

∂ϕ
. (4.8)

These solutions of (4.8) are the classical expressions of the elementary topological config-

urations, i.e. those associated with T = ±1. In practice, the expression (4.8) coincides

with the equation of motion of classical mechanics of a fictitious particle with coordinate

ϕ(x) and subjected to the potential −V (ϕ). We can also individuate its integral of motion,

typical of a classical system under a conservative force. It is given by

W =
1

2

(
dϕ

dx

)2

− V (ϕ). (4.9)

which corresponds to its mechanical energy and it must not be confused E(ϕ). By the way,

it must be identically zero, since at x→ ±∞ both V (ϕ) and ∂ϕ
∂x

must be zero to guarantee

finite energy E(ϕ) in (4.6). The solution of eq.(4.8) can be recovered by quadrature from

(4.9):

dϕ

dx
=
√

2V (ϕ) → (x− x0) = ±
∫ ϕ(x)

ϕ(x0)

dϕ̄√
2V (ϕ̄)

, (4.10)

where x0 is an arbitrary constant of integration. Plugging V (4.4) in the expression above

and integrating, we obtain the two solutions

ϕ̄(x) = ± 4

β
arctan[em(x−x0)]. (4.11)

99



The solution with positive sign corresponds to a soliton: it has topological charge T = 1

and interpolates between the vacuum ϕ̄ = 0 and the next one ϕ̄ = 2π
β

(or equivalently

between a generic pair 2πn
β

and 2π(n+1)
β

since the theory is defined modulus 2π
β
). The other

one, with the minus sign, is the anti-soliton with T = −1 and interpolating between the

vacuum 2πn
β

and the previous one 2π(n−1)
β

.

We can consider the energy of the soliton static solution as the integral of an energy

density:

E(ϕ̄) =

∫ ∞

−∞
dx ϵ(x), with ϵ(x) =

4m2

β2

1

cosh2m(x− x0)
. (4.12)

Since ϵ(x) is strongly localized at x0, the soliton can be interpreted as a particle excitation

of the system with mass corresponding to the energy (4.12):

Ms =
8m2

β2
. (4.13)

The soliton and the anti-soliton have the same mass Ms [39].

4.2 Connection between sine-Gordon and XYZ spin

chain

The interesting work by Luther [34] was initially devoted to obtaining the eigenvalues of

the sine-Gordon making use of its mapping on the discrete XYZ spin-1
2
chain, that allows

us to work on a lattice. Anyway, in describing this bilateral mapping, he took the most

intuitive route, consisting of the continuum limit of the lattice theory. His work has been

taken up and expanded upon by Ercolessi, Evangelisti, and Ravanini in [40]. First of

all, take again the Hamiltonian of the XYZ model defined in eq.(2.1) (keep in mind that

Cao’s H does not have the minus sign present in ERE’s and Luther’s paper). We have

seen in subsection (2.2.2) how the couplings can be written in terms of the eight-vertex

model parameters. In eq.(3.33) we reported the parametrization adopted by Cao et al.,

but there actually exist many ways of doing that. Following Baxter [24], for example, the

relations that make T commute with H are

JA
x : JA

y : JA
z = 1 : Γ : ∆, (4.14)
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where the constants ∆ and Γ are parametrized in terms of elliptic functions

Γ =
1 + k2sn2(iλ)

1− k sn2(iλ)
, ∆ =

cn(iλ) dn(iλ)

1− k sn2(iλ)
. (4.15)

Notice that we introduced the superscript L to remark that these are the couplings used

by Luther in his work. The distinction is relevant since they are opposite in sign with

respect to the J ’s used by Cao et al. The Jacobian elliptic functions cn(x), dn(x), sn(x)

are described in Appendix (A) and the parameters λ and k have specific domains:

0 < k < 1, 0 < λ < I(k′), (4.16)

where I(k′) is the complete elliptic integral of the first kind of argument k′ =
√
i− k2. This

parametrization is particularly suitable to describe the antiferromagnetic phase. Notice

that we are keeping Jx = 1 in the following, without any way affecting the generality of

the approach.

The first step in the method proposed by Luther consists of using the Jordan-Wigner

transformation to fermion operators, σ+
i = a+i exp(iπ

∑i−1
0 nj), etc., where σ

+
i = σx

i + σy
i ,

ai is a Fermi operator, and nj = a+j aj. This transforms the XYZ chain Hamiltonian into a

simple Fermi one, written in terms of fermionic construction and annihilation operators.

Under the further transformation an → (i)nan, the result is

H =
∑
i

H(i) (4.17)

with

H = −1

2
iv(a+i ai+1 + a+i+1ai) +

1

2
J⊥(a

+
i a

+
i+1 + aiai+1)(−1)i + Jza

+
i aia

+
i+1ai+1, (4.18)

with

v ≡ JA
x + JA

y

2
and J⊥ ≡

JA
x + JA

y

2
, (4.19)

where the apex A stands for Alan Luther’s notation. Then, he converts the chain of

N discrete fermion states, one at each site, to a string of length L involving an infinite

number of fermion states. This is done by considering the Fourier-series transformation

for the operators at the lattice sites. In this set-up, the lattice constant is a = L
N
; as it

tends to zero for fixed L, while N →∞, the discrete sum of the Fourier series becomes an

integral with cut-off. Calculations are performed with the equations of motion involving
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the Fourier transform of the fermionic operators, depending on the k-vectors inside the

Brillouin zone − π
2a
< k < π

2a
. The limit a→ 0 has to be taken afterward. This limit also

defines the cut-off prescription, strictly related to the renormalizability of the theory. It

has to be read in the renormalization of the parameters in the lattice theory that follows

from the requirement that observable quantities must be finite in the final limit a→ 0. In

particular, the cut-off at a−1 arises from the restriction of k to the first Brillouin zone. We

remark, anyway, that these Fourier transforms are defined as sums in n, an even integer

that is summed up to N
2
, that assumes an even N number of sites. The next step consists

of determining the Hamiltonian density Hc(x) from the lattice Hamiltonian H(i):

N∑
i=1

H(i)→
∫ L

0

dxHc(x), (4.20)

where x = si is a fixed distance in the continuum, and Hc(x) = a−1H(i). What becomes

relevant in performing the continuum limit is that, as a → 0, i has to tend to ∞. This

is crucial to keep the distance x = si fixed in the ratio i
N

= x
L
. Then, Luther recognized

that the equations of motion involving the fermionic fields are very similar to the ones

of the massive Thirring model. They become equal if we identify β2 = 8πθ, where

θ = 1
2
[(πv0 − 2JA

z )(πv0 − 2JA
z )]

− 1
2 , with v0 = v − JA

z

2π
. Moreover, these equations provide

the basis for calculating the excitation spectrum of the XYZ in the continuum limit. To

do that, he took the results obtained by Baxter [24] for the excitation spectrum in the

discrete case and analyzed its extension to the continuum. Let us consider the quantity l

defined by

l2 =
(JA

x )
2 − (JA

y )
2

(JA
x )

2 − (JA
z )

2
; (4.21)

It is clear that its value sets the anisotropy of the chain. The crucial step to perform the

continuum limit is to select a small x-y anisotropy (JA
x ∼ JA

y ), namely l ∼ 0. Indeed, this

limit of weak anisotropy allows us to obtain a well-defined value ∆gap of the “free”-state

solution at zero momentum among the excitation spectrum of the spin chain in terms of

the parameters of the model:

∆gap = 8π

(
sinµ

µ

)
|JA

x |
(
l

4

)π
µ

, (4.22)

where

µ = π(1− θ) ≡ π

(
1− β2

8π

)
= arccos(−JA

z ) = arccos(Jz). (4.23)
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It may appear curious that we wrote JA
x in this expression even if it was put = 1 in the

beginning. Actually, it is useful in order to make more clear the justification of the weak

anisotropy regime: all the computations performed until now were still for finite L; to take

the L → ∞ limit, the JA
x coupling constant in (4.22) becomes replaced by (JA

x a
−1), and

∆gap would clearly diverge as a→ 0, unless the anisotropy parameter l is renormalized to

0. This requires the introduction of the renormalized coupling constant

lr = la−
µ
π . (4.24)

At this point, we can write the renormalized mass gap of the theory that, provided the

previous relations on the parameters, coincides with the solitonic mass of the sine-Gordon

model:

M = ∆gap
r = 8π

(
sinµ

µ

)(
lr
4

)π
µ

(4.25)

From these identities, we know how the coupling constant JA
z is connected with the pa-

rameter β of the sine-Gordon model. This parameter needs to be limited in the domain

0 < β2 < 8π in order to identify correctly the physical regimes of the XYZ chain. For

example, for β2 > 8π, the continuum theory has some problems since the ground state

of the massive Thirring model is unbounded from below; this means that for these values

of β2, the theory can only be studied on lattice. A similar instability occurs for β2 = 0.

Actually, Luther showed how to circumvent this issue with some tricks but, for our aims,

it is sufficient to stay in the standard domain 0 < β2 < 8π. The point β2 = 0 is seen

to correspond to JA
z = JA

x (= JA
y ), i.e. the ferromagnetic point, β2 = 8π is the antifer-

romagnetic one, and β2 = 4π give the isotropic XY model, known to be a Dirac fermion

free-field theory.

Anyway, for our aims, it is convenient to stay in the interval 0 < β2 < 8π, which corre-

sponds to the antiferromagnetic regime −1 < JA
z < 0, i.e., 0 < Jz < 1.

4.3 Continuum limit of the XYZ with N odd:

analysis in terms of sine-Gordon

Thermodynamic limit and continuum limit do not coincide. The former is a limit on the

dimension of the system, that has to be sent to infinite. The latter is way more tricky: it

consists of sending the lattice spacing to zero after doing the thermodynamic limit itself.
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In practice, the continuum limit ends up being a limit on the parameters of the XYZ

chain (Jx, Jy, Jz), or equivalently, of the eight-vertex model (Γ, ∆). Consider ∆ to be

in the interval [−1, 1], i.e. the repulsive regime. If we take Γ finite, we end up with a

massive theory, i.e. gapped. Statistical field theory tells us that, to close the gap, we

have to approach a critical point of the spin chain model. Even without actually reaching

it, moving toward it allows us to isolate the contribution coming from the critical point

only, which gives a massless theory. This point lives in the space of the couplings, so we

have to calibrate them to organize the flow that generates the continuum limit. This is

exactly what we did in section (4.2) if we recognize l = 0 as our critical point, or better,

our critical line. Indeed, substituting l = 0 in (4.22), we obtain a gapless, i.e. massless,

theory that can be successfully read as a field theory. Luther described this proceeding by

starting from a finite number of sites, while Ravanini et al. start from results already in

the thermodynamic limit. Our idea is to make use of their works to derive the continuum

limit of the results obtained by Cao et al. for the frustrated XYZ in the TD limit.

Before doing it, we have to spend some lines discussing the physical meaning of the ∆gap

introduced in the previous section. That gap is crucial to identifying our lattice theory

with the continuous one. It physically emerges from the fact that while performing the

continuum limit, we are keeping away from the critical line l = 0. If we actually reach that

line, the mass gap vanishes. To sum up, the modus operandi to get the correct continuum

limit of the XYZ chain consists of approaching the critical line without touching it, sending

the lattice spacing to zero but providing the correct renormalization of the parameters.

This last step makes the ∆gap not diverge as a→ 0; it then remains finite as long as l ̸= 0.

4.3.1 Why N odd could give us something new?

Investigating the low-lying excitations of the XYZ chain for evenN , an interesting question

arises. These excitations are given by spin-1
2
flips, implying that, the global excitation

can only have an integer spin. This situation can be described in the continuum limit

of the XYZ by the emergence of couples of sine-Gordon solitons, but never of a single

one. Indeed, we can recognize the correspondence between these excitations and an even

number of solitons of the sine-Gordon theory. Thus, our idea consists of analyzing the

continuum limit of the N odd case and looking for the plausible emergence of the single

soliton. From this perspective, the difference between the energy of the odd N ground
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state and the one for N even

Eodd
g,PBC − Eeven

g,PBC , (4.26)

has a crucial role. In the continuum limit, we are looking forward to finding in it the

energy of the single soliton ϵsol(y); where y stands for the rapidity of the soliton, which

would be connected to the position of the hole xh. In fact, we can get from eq.s (3.118)

and (3.137) that, in the TD limit, the difference (4.26) is given by

Eodd
g,PBC − Eeven

g,PBC = e0(η̄m)(N
odd −N even) + ϵh(x

h, η̄m), (4.27)

where we did not choose the position of the hole, leaving it as a variable. The expression

on the r.h.s. is composed of two non-trivial terms. The first one depends on the difference

between the number of sites that we consider in the two different parities. Even though

we are already in the thermodynamic limit, this term is macroscopic and non-vanishing.

If we assume Nodd = N even + 1, we can rewrite the expression above as

Eodd
g,PBC − Eeven

g,PBC = e0(η̄m) + ϵh(x
h, η̄m). (4.28)

In any case, the first is independent of the position of the hole, and then also of any rapidity

variable possibly connected with it, but is a finite term that ineluctably separates the two

sectors. It is connected to the intrinsic extensive character of energy. We rewrite here the

two expressions (3.132) and (3.119) here for convenience:

ϵh(x
h, η̄m) =

iπ

τ

σ(η̄m)

σ′(0)

∞∑
k=−∞

e
kπ
τ
xh

cosh( i
τ
kπη̄m)

. (4.29)

e0(η̄m) = −
iπ

τ

σ(η̄m)

σ′(0)

∞∑
k=−∞

sinh[ i
τ
kπ(1− η̄m)]

sinh( i
τ
kπ) cosh( i

τ
kπη̄m)

+
1

2

σ′(η̄m)

σ′(0)
(4.30)

Now, to analyze the physical implications of these two terms, let us focus on the x-y

isotropic limit of our XYZ chain: the XXZ model. For example, according to the results

obtained by Karbach in [41] in the TD limit, working directly with the XXZ chain with

an odd number of sites, its ground state has the quantum numbers of an excited state.

Thus, also the limit to the XXZ from the XYZ should be coherent with this evidence.

First of all, we are going to describe such a limit.
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4.3.2 Limit to the XXZ model

We have seen in [34] and [40] that the continuum limit goes along with the weak x-y

anisotropy one. So, let us analyze the difference between the latter and the limit that

gives the XXZ chain. In order to do this, let us rewrite here the parametrization of the

couplings of the XYZ in terms of the elliptic functions depending on η and τ :

Jx = eiπη
σ(η + τ

2
)

σ( τ
2
)

, Jy = eiπη
σ(η + 1+τ

2
)

σ(1+τ
2
)

, Jz =
σ(η + 1

2
)

σ(1
2
)

. (4.31)

Due to the properties of the elliptic function σ(x), we see that, by sending τ → i∞, we

obtain

lim
τ→i∞

Jx(η, τ)→ 1, lim
τ→i∞

Jy(η, τ)→ 1, lim
τ→i∞

Jz(η, τ)→ cos(πη). (4.32)

This means that if we apply the same limit to the quantities obtained for the XYZ model

in Chapter 3, we could extract their values for vanishing anisotropy, provided that such

a limit exists also in those cases. In particular, we are interested in the behavior of the

ground state energy, for both N odd and N even. In doing this, we need to keep in mind

the constraints imposed during the proceedings: first of all 0 < η ≤ 1
2
, introduced for

convenience before performing the TD limit in section (3.4). Then, we remember that

we are still working with discrete degenerate values of the crossing parameter η̄m = 2m
N
,

required to remove the inhomogeneous term from the TQ relation. But this time, we

need to work with real values of η. Thus, in their work, Cao et al. generalized the results

obtained for degenerate points ηm to an arbitrary real η in the interval
(
0, 1

2

]
. They did it

in [11] working with Taylor expansions of the physical quantities up to order O(N−2). The

equality of the results for generic η and for its degenerate values have been also proven

numerically. Then, we can assume that the limit τ → i∞ can be taken continuously.

Finally, note that the constraint 0 < η ≤ 1
2
implies that the related results are valid

in the region 0 < Jz(η, i∞) = cos(πη) ≤ 1. This region corresponds correctly to the

antiferromagnetic selected before.

Also Luther prepared the system in the anti-ferromagnetic regime in order to perform the

continuum limit. All could seem the correct preliminary step needed. Actually, sending

τ → i∞ is too drastic. By doing this we have no longer a weak anisotropy, but we finish

directly in the total x-y isotropy. This is exactly equivalent to touching the critical line
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l = 0.

To see this explicitly, we report here the expression for the energy carried by the hole

after the τ → i∞ limit:

ϵ̄h(x
h, η) = lim

τ→i∞
ϵh(x

h, η) =
sin η

η

1

cosh(πx
h

2η
)
. (4.33)

The very ground state still has to be selected by choosing the position of the hole xh. In

the XYZ model, we placed it at the boundary of its domain
[
− τ

i
, τ
i

]
. This time we do

the same, but the interval has expanded to (−∞,∞). Thus, putting the hole at infinity,

eq.(4.33) yields that the minimum energy carried by the hole is zero, namely ϵ̄h(∞, η) = 0.

This is in agreement with the continuum limit theory, because we are practically placing

the system exactly on the critical point, in fact obtaining a massless theory.

Thus, the only term that still separates the ground states with different parities is ē0(η),

see eq.(4.28). In the τ → i∞ limit, that term becomes

ē0(η) = lim
τ→i∞

e0(η) = −
sin(πη)

π

∫ ∞

−∞

sinh[w(1− η)]
sinh(w) cosh(wη)

dw +
1

2
cos(πη). (4.34)

This qualitatively shows the effective equality of Cao’s and Karbach’s [41] results, where

a discrepancy between the odd and the even cases is present, but without any connection

with a field theory.

4.3.3 Aprroach to continuum limit

In the previous subsection, we saw how, in their work, Cao et al. generalized the results

obtained for degenerate points ηm to an arbitrary real η in the interval
(
0, 1

2

]
. So, let us

consider the energy coming from the hole (3.132) for η continuous and real:

ϵh(x
h, η) =

iπ

τ

σ(η)

σ′(0)

∞∑
k=−∞

e
kπ
τ
xh

cosh( i
τ
kπη)

, (4.35)
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and in particular the series over k. This can be rewritten as

∞∑
k=−∞

e
kπ
τ
xh

cosh( i
τ
kπη)

= 1 +
∞∑
k=1

e
−kπ
τ

xh

cosh( i
τ
kπη)

+
∞∑
k=1

e
kπ
τ
xh

cosh( i
τ
kπη)

= 1 + 2
∞∑
k=1

cosh(kπx
h

τ
)

cosh(kπηi
τ

)

(4.36)

Now, we recall that τ is purely imaginary. So, we define t as the imaginary part of τ ,

namely τ ≡ it, and rewrite the series above as

1 + 2
∞∑
k=1

cos(kπx
h

t
)

cosh(kπη
t
)
. (4.37)

and plug it back into (4.35), obtaining

ϵh(x
h, η) =

π

t

σ(η)

σ′(0)

(
1 + 2

∞∑
k=1

cos(kπx
h

t
)

cosh(kπη
t
)

)
. (4.38)

Now, let us investigate if this quantity may be the candidate for the role of sine-Gordon

soliton energy in the continuum limit. The first idea is to realize this limit à la Luther;

however, we run into an obstacle. In fact, as we saw in section (4.2), Luther’s preliminary

steps involve a connection between the XYZ chain and the Thirring model. This mapping

is implemented using Fourier transforms that rely on the presence of an even number of

sites in the original spin chain. It is not yet entirely clear to us whether the corresponding

version in the odd case can be achieved by clever extension. Thus, we found an alternative

approach based on matching the low-energy dispersion relation of the chain and of the sine-

Gordon model. However, before presenting this, let us comment on a possible connection

with another integrable model.

4.3.4 Hubbard spinon parallelism

Anyway, in order to look a the physics that could emerge, let us try to go on with the

computation. We are interested to see if some relevant insights can emerge to accompany

future research. Hence, let us focus on the fact that k is, for the moment a discrete

variable ∈ Z. This constraint comes from the FT of a periodic function. If the extremes

of the integration domain τ
i
= t → ∞, then we can just take a simple (continuous) FT

passing from a discrete index k to the continuous w, obtaining, for the whole expression
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of ϵh:

ϵh(x
h, η) = lim

t→∞,b→0
π
σ(η)

σ′(0)

(
1

t
+ 2

∫ ∞

b

dw

bt

cos(wπxh

bt
)

cosh(wπη
bt

)

)
(4.39)

where, in principle, b = 1
t
due to FT rule. The quotient of the two elliptic functions has

been verified to tend, for big t, to sin(πη)
π

. So we end up with

ϵh(x
h, η) ≃ 2 sin(πη)

∫ ∞

0

cos(wπxh)

cosh(wπη)
dw. (4.40)

Notice that this expression is very similar to the one for the spectrum of the spinon s

(Sz = 1
2
) emerging as elementary excitation in the Hubbard model [42]:

Es(Λ) = Es̄(Λ) = 2

∫ ∞

0

J1(w)

w

cos(wΛ)

cosh(wω)
dw. (4.41)

The two expressions would coincide, unless irrelevant multiplicative constants if, the Bessel

function J1(w) was reduced, in our case, to a linear function of w. This actually happens

for 0 < w <
√
2, where J1(w) ∼ w. In the integral (4.41) the domain of w is extended

from 0 to ∞, but the argument of the integral has cosh(wω) in the denominator, which

diverges rapidly as w increases. The Bessel J1(w), instead, is a limited oscillating function.

Thus, the dominant part of the integral actually emerges from the small values of w.

We know that the Hubbard model, in the strong coupling regime, maps into the AFM

Heisenberg chain. Although the XXX model can be seen as a specific limit of the XYZ

one, in the transition we lose the cherished anisotropy between the couplings. Hence, this

speculation is certainly a bit audacious, but it suggests that the search for spinon in the

difference between the two sectors is reasonable. We remark that the spectrum above is a

result obtained in the TD limit with TBA eq.s, but the continuum limit, according to their

method, is still to be done. In [42], they performed their own scaling limit, working with

the parameters of the Hubbard model. Anyway, a mapping between those parameters

and the XYZ couplings would be very complex and certainly reckless. What is relevant

is that the scaling limit of the Hubbard model is equivalent to the SU(2), which is, as its

U(1) version, integrable with Bethe ansatz techniques. We firmly know that our model

does not have U(1) symmetry, let alone SU(2), but it is quite interesting that we recover

similar expressions. This aims to be the subject of future discussions.
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4.3.5 Expansion for big t in the vicinity of the minimum

An alternative idea is to manipulate the expression (4.35) to look for the additional terms

that separate it from the purely XXZ case. That is, given the obstacles to the formal

realization of Luther’s limit, we try to extract information about the system from the

terms that might distance it from a massless theory. In order to do this, let us consider

again the energy of the hole (4.35). To that expression, we can apply the Poisson Sum

Formula:

1

T

∞∑
m=−∞

Ĝ

(
2πm

T

)
exp

(
2πimx

T

)
=

∞∑
m=−∞

G(x+mT ) = f(x), (4.42)

valid for G(x) admitting Fourier transform Ĝ(p). In our case, sending k → −k, we can

rewrite ϵh(x
h, η) as

ϵh(x, η) = π
σ(η)

σ′(0)

1

t

∞∑
k=−∞

1

cosh(kπη
t
)
e

ikπη
t

x

= π
σ(η)

σ′(0)
f(x)

(4.43)

where xh ≡ ηx. Now, identifying T ≡ 2t
η
, we can use (4.42) to get

ϵh(x
h, η) = π

σ(η)

σ′(0)

1

η

∞∑
k=−∞

1

cosh
(

π
2η
(xh + 2kt)

) . (4.44)

If we separate the series, isolating the k = 0 term, we obtain

ϵh(x
h, η) = π

σ(η)

σ′(0)

1

η

 1

cosh
(

πxh

2η

) +
∞∑
k=1

1

cosh
(

π
2η
(xh + 2kt)

) +
∞∑
k=1

1

cosh
(

π
2η
(xh − 2kt)

)
 ,

(4.45)

Manipulating a bit the two series for big t, we obtain, at first order:

ϵh(x
h, η) = π

σ(η)

σ′(0)

1

η

 1

cosh
(

πxh

2η

) + 4 cosh

(
πxh

2η

)
e−

π
η
t + · · ·

 . (4.46)

where the first term (k = 0) reconnects to the XXZ model expression (4.33), while the

second is its first correction, exponentially suppressed as t → ∞. At this point, we can
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expand this expression near the point of minimum energy, which, as we have seen, lies at

the far end of the domain, i.e. in xh = τ
i
= t. Hence, consider xh = t − δx, and expand

(4.46) at second order in δx, obtaining

ϵh(δx, η) = π
σ(η)

σ′(0)

1

η

[
2 q
(
2 + α(δx)2

)]
where α ≡ π

2η
and q ≡ e−αt

= π
σ(η)

σ′(0)

1

η

[
2 e−

π
2η

t

(
2 +

π

2η
(δx)2

)]
.

(4.47)

The absence of a linear term in δx confirms that the energy of the hole finds its minimum

(vanishing first derivative) in xh = τ
i
= t. This leaves us with a quadratic dependence in

δx, which gives a small positive correction above the ground state.

4.4 Momentum of the ground state

During the calculations realized to get the energy of the ground state, for both N odd and

N even, we defined many new crucial functions in the thermodynamic limit. An analogous

proceeding can be in principle used to obtain another interesting quantity of the system

in the TD limit: the total momentum of the system. In fact, since the sine-Gordon soliton

has its own energy and momentum, it could be useful to analyze both the corresponding

quantities coming from the XYZ chain. Following [43], in addition to Cao’s paper, we

can derive, up to multiplicative constants, the expression for the total momentum at the

ground state in the thermodynamic limit:

P = N

{∫ τ
i

− τ
i

ϑ1(x)ρ1(x)dx+

zl+1∑
r ̸=1

∫ τ
i

− τ
i

ϑr(x)ρr(x)dx

}
, (4.48)

where the function ϑj(x) has been defined in (3.100) as

ϑj(x) ≡ ϑ(x;nj, vj) = −i ln[(−vj) g(x;nj, vj)], (4.49)

and all the other elements are the same as we encountered in Chapter 3. In particular,

the densities of states are still the same. To perform the computation, we remember that

aj(x) ≡ a(x;nj, vj) =
1

2π

d

dx
ϑj(x), (4.50)
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thus
d

dx
ϑj(x) = 2πaj(x). (4.51)

Then, for the Fourier transform for periodic functions in a limited domain [−t, t], we have
the following property: if G(x) = dF (x)

dx
, then G̃(k) = ikπ

t
F̃ (k). Thus, we obtain that

ϑ̃1(k) =
t

ikπ
ã1(k) =

t

ikπ

sinh
[
i
τ
kπ(1− ηm)

]
sinh( i

τ
kπ)

. (4.52)

Working in Fourier Transform, eq.(4.48) turns into

Pg(ηm) =
iN

2τ

∞∑
k=−∞

{
ϑ̃1(k)

2 cosh( i
τ
kπηm)

−
t

ikπ
ρ̃h1(k)

2 cosh( i
τ
kπηm)

}

=
N

2t

∞∑
k=−∞

t

ikπ

{
ã1(k)

2 cosh( i
τ
kπηm)

− ρ̃h1(k)

2 cosh( i
τ
kπηm)

}

=
N

2πi

∞∑
k=−∞

1

k

{
sinh[ i

τ
kπ(1− ηm)]

2 sinh( i
τ
kπ) cosh( i

τ
kπηm)

− ρ̃h1(k)

2 cosh( i
τ
kπηm)

}
.

(4.53)

Also in this case, as for the energy, we can make the two separate contributions explicit,

writing

p0(ηm) =
1

2πi

∞∑
k=−∞

1
k
sinh[ i

τ
kπ(1− ηm)]

sinh( i
τ
kπ) cosh( i

τ
kπηm)

, (4.54)

ph(ηm) =
N

2πi

∞∑
k=−∞

1
k
ρ̃h1(k)

cosh( i
τ
kπηm)

. (4.55)

The former comes from the Bethe roots while the latter from the corresponding holes.

Thus, the total momentum of the ground state can be rewritten as

Pg(ηm) = Np0(ηm) + ph(ηm). (4.56)

This means that also for the momentum, there is no direct contribution coming from the

strings, even though they could in principle affect the density of states.

To get the final value of the momentum, we still need to exploit the density of the holes

ρ̃h1(k). To do so, we have, also in this case, to treat separately the two possible parities of

the system. Anyway, the considerations on the densities of states are the same realized

for the energy.
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So, if N is odd, we can consider eq.(3.131) and plug it into (4.55) obtaining

ph(ηm, x
h) =

1

2πi

∞∑
k=−∞

1
k
e

kπ
τ
xh

cosh( i
τ
kπηm)

. (4.57)

The position of the hole xh = τ
i
is constrained by the minimization of the energy, giving

us

P odd
g (ηm) = Np0(ηm) + ph

(τ
i
, ηm

)
. (4.58)

If N is even, instead, the configuration of roots gives that there is no hole at the ground

state, leaving us with the ground state energy

P even
g (ηm) = Np0(ηm). (4.59)

If we compute the difference between the momenta in the odd and even sectors, assuming

η real and continuous, we get that the relevant term (dependent on the position of the

hole) is

ph(η, x
h) =

1

2πi

∞∑
k=−∞

1
k
e

kπ
τ
xh

cosh( i
τ
kπη)

. (4.60)

Using the fact that 1
k
e−i kπ

t
xh

= − iπ
t

∫
dxhe−i kπ

t
xh
, we can use the same manipulation

performed for hole energy and derive:

ph(η, x
h) = − 2

π
arctan

[
tanh

(
πxh

4η

)]
− 4

π
sinh

(
πxh

2η

)
e−

π
η
t + · · · (4.61)

at first order. From the first term of this expression, the dominant one, we deduce that

the hole momentum goes slowly to zero in the t → ∞ limit. The second term is its first

order correction that sees an exponential suppression.

As we did for the energy, we can perform the expansion of (4.61) in the proximity of the

domain boundary, where the minimum of ϵh is placed. At first order in q, and keeping up
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to quadratic terms of δx, we obtain

ph(η, δx) = −
1

2
+

4 q

π
α(δx)

= −1

2
+

2

η
e−

π
2η

t (δx).

(4.62)

The constant term represents the momentum carried by the hole in the ground state,

while the second term is the exponentially dumped (as t → ∞) correction emerging in

proximity to the domain boundary: it is linear in δx and we can consider it as

δp =
2

η
e−αtδx. (4.63)

4.4.1 Approximated dispersion relation for small momentum

If we invert this relation and plug it in (4.47), we obtain

ϵh(δp, η) =
σ(η)

σ′(0)

π

η

[
4 e−αt +

πη

8
e+αt(δp)2

]
, (4.64)

and using σ(η)
σ′(0)
≃ sin(πη)

π
for big t, we get

ϵh(δp, η) ≃
sin(πη)

η

[
4 e−αt +

πη

8
e+αt(δp)2

]
. (4.65)

This expression can be read as a kind of dispersion relation for a massive quasi-particle

at small momentum:

ϵ =
√
M2 + λp2 ≃M + λ

p2

2M
. (4.66)

Thus, we can identify the first term in (4.65) with the mass of the quasi-particle:

M =
sin(πη)

η
4 e−αt, (4.67)

which vanishes exponentially in the t→∞ limit, as expected. In fact, if M is the mass of

the soliton before the renormalization procedure, we want it to go to zero as we approach

the critical isotropic point. The second term instead, depending on the momentum, can

be used to recognize the parameter λ. In our case, we get:

λ =
2π

η
sin2(πη). (4.68)
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Let us focus on the mass term: working a bit with (4.67), we obtain

M = 4π

(
sin πη

πη

)(
e−

π
2
t
) π

πη . (4.69)

Now compare this expression with the one obtained by Luther in [34] for the mass gap of

the XYZ model

∆ = 8π

(
sinµ

µ

)(
l

4

)π
µ

. (4.70)

First, notice that the factor two difference comes simply from the fact that our Hamilto-

nian (2.32) includes an overall 1
2
that Luther does not insert (just a matter of definition).

Then, we identify the correspondence

µ = πη (4.71)

and we can match the parameter l he uses to renormalize the theory in the continuum,

to our 4 e−
π
2
t:

l = 4 e−
π
2
t = 4 ei

π
2
τ . (4.72)

Luther uses µ as the parameter connected to the sine-Gordon β2

8π
through

β2

8π
= θ = 1− µ

π
, (4.73)

which also selects the regime of the system. The identification µ = πη gives us the

mapping
β2

8π
= 1− η. (4.74)

Notice that η = 0 selects Jz = 1 in our chain (2.1), i.e. an AFM coupling. If we substitute

η = 0 in (4.74), we get β2 = 8π that correctly identifies the AFM regime in Luther’s

description. More generally, η ∈
(
0, 1

2

]
, that is the domain we chose in our work, gives

the repulsive regime 4π < β2 < 8π. And this, according to [40], is the regime in which

the mass gap of the theory coincides with the soliton mass. We checked numerically

the correspondence between our results and Luther’s: going back to the definition of his

parameters, µ was introduced as

µ = arccos

(
Jz
Jx

)
. (4.75)
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Figure 4.1: Plot and linear fit of µ vs η for t = 5. The resulting slope is π as expected.

In our model, Jz and Jx are functions of η and τ . We verified that choosing a big t = τ
i
(e.g.

t > 5) and a value for η in the domain
(
0, 1

2

]
for both, the result of µ = arccos

(
Jz(η,τ)
Jx(η,τ)

)
gives exactly πη. As expected, the identity between the two values becomes less precise

as τ decreases, since we are no longer in the weak-anisotropy (l ∼ 0) regime. Figures

(4.1)-(4.6) show how Luther’s µ = arccos
(

Jz
Jx

)
corresponds to our πη for t ⪆ 3. For

smaller values, the linear fit is no longer good and the match fails, as expected.

For completeness, we report also the numerical check of the correspondence between l and

4 e−
π
2
t in table (4.1). Luther’s parameter l is computed using his definition

l =

√
J2
x − J2

y

J2
x − J2

z

, (4.76)

keeping η = 0.2 fixed and varying t (= 5, 3, 1.5, 1, 0.8, 0.7). The same t is then used

to calculate the value 4 e−
π
2
t. The results show that two values coincide for t ⪆ 3, in

agreement with theory and previous results for µ.

Now, having demonstrated the validity of the mapping, the corresponding parameters

can be renormalized à la Luther, to obtain the actual scaling limit. In summary, since we

could not realize Luther’s mapping a priori, due to the constraint on the parity of N , we

worked to identify its validity in our case, a posteriori. In doing so, we also obtained a

dispersion relation that inevitably recalls that of a massive quasi-particle, that we identify

with the single soliton.
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Figure 4.2: Plot and linear fit of µ vs η is repeated for t = 3. The purpose is to estimate approximately
the tau threshold value below which the weak anisotropy regime is lost. The resulting slope is still π but
with slightly less precision.

Figure 4.3: Plot and linear fit of µ vs η for t = 1.5. The resulting slope begins to deviate sensibly from
the desired value π: the weak anisotropy regime is lost.

t l 4 e−
π
2
t

0.7 0.913967 1.33207
0.8 0.854102 1.13844
1 0.707107 0.831518
1.5 0.365915 0.379121
3 0.0359216 0.0359332
5 0.00155281 0.00155281

Table 4.1: Comparison between values of Luther’s parameter l and our 4 e−
π
2 t for η = 0.2 fixed. Since

our description applies only to large t (small l), for small t the values differ from each other, as expected.
As t grows, l tends to zero, the mapping gains validity and the values in the table actually coincide.
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Figure 4.4: Plot and linear fit of µ vs η for t = 3. The resulting slope begins to deviate from the desired
value π. The arrangement of the points suggests that the linear fit is no longer suitable.

Figure 4.5: The linear fit is no longer appropriate.

Figure 4.6: The linear fit is no longer appropriate.
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Conclusions

The first objective of this dissertation has been to go over the most relevant integrability

techniques, draw a thread through the intricate literature discussing them, and describe

their extension to the XYZ chain with an odd number of sites. This last step required the

treatment and use of a new recent technique, the off-diagonal Bethe ansatz. The second

goal, pursuable using the solution obtained with ODBA, was to analyze the difference

between the ground state with odd N and that with even N . The results in terms of

the string hypothesis showed that the main difference lies in the presence of a hole in the

ground state of the odd-numbered case, which is absent in the even-numbered one. This

hole contributes to energy and momentum depending on its position. Our final aim was to

interpret this particular contribution in terms of the well-known field theory counterpart

of the XYZ spin chain, the sine-Gordon model. The limitation to even N in Luther’s work

was a formal obstacle we encountered. It forced us to take an alternative route to identify

the match between the parameters. We computed the total momentum of the ground

state and used our parameters to select the weak-anisotropy regime, required to perform

the continuum limit. So, we worked in the proximity of the ground state to extract the

quasi-particle content. In the approximated dispersion relation we recognized the nature

of the massive solitonic quasi-particle. Essentially, we looked at the sine-Gordon sector

with an odd number of solitons, unreachable for a chain with even N , confirming that

the identification of the parameters remains correct. Thus, the mapping is still valid and

allows us to identify the excitation carried by the hole in the odd-numbered chain with

the single sine-Gordon massive soliton. The analytical calculation was supported by a

numerical analysis that confirmed the equivalence between the examined parameters in

the proper regime.

This work has shown that indeed the frustrated XYZ chain in the scaling limit flows to the

sine-Gordon model in its sector with an odd number of topological excitations. It would
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be interesting to reformulate Luther’s procedure to eliminate the constraint on the parity

of the system size or to find another approach that allows a direct mapping between the

lattice model and the field theoretical one. In the literature, frustrated boundary condi-

tions have been claimed to introduce “topological frustration” in the system. Indeed, the

mapping we realized shows that only in this way one can excite a topological excitation

in the system. For sure, a fascinating continuation could be to search for the spin chain

equivalent of the sine-Gordon topological charge. Finally, having understood better the

connection between the models, it would be interesting to study them both out of equilib-

rium, also by developing a proper Generalized Hydrodynamics description, which is yet

lacking.
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Appendix A

Elliptic functions

This Appendix aims to recap the properties and the notations of the elliptic function.

In particular, we made large use of the elliptic θ-functions [44]. We introduced the general

expression for an elliptic θ-function:

θ

[
a

b

]
(u, τ) =

∞∑
m=−∞

exp{iπ[(m+ a)2τ ] + 2(m+ a)(u+ b)]}, (A.1)

where a and b are rational numbers called characteristics, and τ is a generic complex

number called parameter with Im(τ) > 0. The four θ-functions we adopted are:

θ

[
0

0

]
(u, τ), θ

[
1
2

0

]
(u, τ), θ

[
1
2
1
2

]
(u, τ), θ

[
0
1
2

]
(u, τ). (A.2)
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They are all doubly quasi-periodic functions of quasi-periods 1 and τ ; so, keeping τ

constant, they satisfy

θ

[
1
2
1
2

]
(u+ 1) = −θ

[
1
2
1
2

]
(u), θ

[
1
2
1
2

]
(u+ τ) = −e−2iπ(u+ τ

2
) θ

[
1
2
1
2

]
(u)

θ

[
1
2

0

]
(u+ 1) = −θ

[
1
2

0

]
(u), θ

[
1
2

0

]
(u+ τ) = e−2iπ(u+ τ

2
) θ

[
1
2

0

]
(u)

θ

[
0

0

]
(u+ 1) = θ

[
0

0

]
(u), θ

[
0

0

]
(u+ τ) = e−2iπ(u+ τ

2
) θ

[
0

0

]
(u)

θ

[
0
1
2

]
(u+ 1) = θ

[
0
1
2

]
(u), θ

[
0
1
2

]
(u+ τ) = −e−2iπ(u+ τ

2
) θ

[
0
1
2

]
(u)

(A.3)

While θ

[
1
2
1
2

]
(u, τ) is an odd function of u, the other three theta’s are even functions of u.

For simplicity, we can define two functions connected to the θ’s:

σ(u) = θ

[
1
2
1
2

]
(u, τ), (A.4)

and

ζ(u) =
∂

∂u
{lnσ(u)}. (A.5)

A more compact definition used frequently is

θ1(z, q) = −θ
[

1
2
1
2

]
(u, q) = −i

∞∑
n=−∞

(−1)nq(n+1/2)2eiπ(2n+1)u,

θ2(z, q) = θ

[
1
2

0

]
(u, q) =

∞∑
n=−∞

q(n+1/2)2eiπ(2n+1)u,

θ3(z, q) = θ

[
0

0

]
(u, q) =

∞∑
n=−∞

qn
2

eiπ2nu,

θ4(z, q) = θ

[
0
1
2

]
(u, q) =

∞∑
n=−∞

(−1)nqn2

eiπ2nu,

(A.6)
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where q is the nome of the functions (|q| < 1) and it is related to τ by q = eiπτ .

Notice that, in the limit τ → i∞, they become:

θ1(u, τ) = 2q
1
4 sin(πu) +O(q

9
4 ),

θ2(u, τ) = 2q
1
4 cos(πu) +O(q

9
4 ),

θ3(u, τ) = 1 +O(q),

θ4(u, τ) = 1 +O(q).

(A.7)

This represents trigonometric limit, coherent with the concept that the theory of θ-

functions is a sort of “elliptically deformed” trigonometry.

Here we report some of the identities satisfied by the elliptic functions introduced in (A.2)

and (A.4):

σ(u+ x)σ(u− x)σ(v + y)σ(v − y)− σ(u+ y)σ(u− y)σ(v + x)σ(v − x)
= σ(u+ v)σ(u− v)σ(x+ y)σ(x− y),

(A.8)

σ(2u) =
2σ(u)σ(u+ 1

2
)σ(u+ τ

2
)σ(u− 1

2
− τ

2
)

σ(1
2
)σ( τ

2
)σ(−1

2
− τ

2
)

, (A.9)

σ(u)

σ( τ
2
)
=

θ

[
0
1
2

]
(u, 2τ) θ

[
1
2
1
2

]
(u, 2τ)

θ

[
0
1
2

]
( τ
2
, 2τ) θ

[
1
2
1
2

]
( τ
2
, 2τ)

, (A.10)

θ

[
1
2
1
2

]
(2u, 2τ) = θ

[
1
2
1
2

]
(τ, 2τ) · σ(u)σ(u+

1
2
)

σ( τ
2
)σ( τ

2
+ 1

2
)
, (A.11)

θ

[
0
1
2

]
(2u, 2τ) = θ

[
0
1
2

]
(0, 2τ) · σ(u−

τ
2
)σ(u+ 1

2
+ τ

2
)

σ(− τ
2
)σ( τ

2
+ 1

2
)

. (A.12)

Other notations for the elliptic θ-functions can be used depending on the situation. For

example, Pozsgay in [12] uses the same form found inWolframMathematica, just rewritten

in a slightly different way. This makes his results more directly reproducible numerically.
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Also in this case, they are defined as infinite sums:

θ1(z, q) = −i
∞∑

n=−∞

(−1)nq(n+1/2)2ei(2n+1)z = 2
∞∑

n=−∞

(−1)n+1q(n+1/2)2 sin((2n− 1)z),

θ2(z, q) =
∞∑

n=−∞

q(n+1/2)2ei(2n+1)z = 2
∞∑
n=1

q(n+1/2)2 cos((2n− 1)z),

θ3(z, q) =
∞∑

n=−∞

qn
2

ei2nz = 1 + 2
∞∑
n=1

qn
2

cos(2nz),

θ4(z, q) =
∞∑

n=−∞

(−1)nqn2

ei2nz = 1 + 2
∞∑
n=1

(−1)nqn2

cos(2nz).

(A.13)

where the only difference with respect (A.6) is a rescaling of the spectral parameter: the

relation between the u adopted in our work and z is z ≡ πu. Keeping q (or equivalently

τ) fixed, from their definitions, we extrapolate that θ1(z) is an odd function of z, while

θ2(z), θ3(z) and θ4(z) are even. They are quasi-periodic functions with periods π and πτ .

Baxter uses a definition with an infinite product instead of an infinite sum. Anyway it

matches the one by Pozsgay, using the same spectral parameter and the same q (assumed

fixed):

H(z) ≡ θ1(z),

H1(z) ≡ θ2(z),

Θ1(z) ≡ θ3(z)

Θ(z) ≡ θ4(z).

(A.14)

Dealing with elliptic θ-functions, it can be useful to introduce the complete elliptic integral

K:

K(k) =

∫ π
2

0

1√
1− k2 sin(φ)

∂φ, (A.15)

of the first kind of modulus k, and the same integral K ′ of the complementary modulus

k′ =
√
1− k2, i.e. K ′(k) = K(

√
1− k2). The nome q can be written in terms of these

two quantities as q = e−π
K′(k)
K(k) . These elliptic integrals can be used to bring out other
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properties of the elliptic theta’s, such as

H(z +K) = H1(z),

Θ(z +K) = Θ1(z),

H(z + 2K) = −H(z),

Θ(z + 2K) = Θ(z),

Θ(x± iK ′) = ±q− 1
4 e∓

iπz
2KH(z)

H(x± iK ′) = ±q− 1
4 e∓

iπz
2K Θ(z).

(A.16)

We conclude this addendum by reporting the expressions of the Jacobi elliptic functions

in terms of the Theta functions θi(z, q):

sn(z; k) = −θ3 (0, q(k)) θ1
(
z ÷ 2

π
K(k), q(k)

)
θ2 (0, q(k)) θ4

(
z ÷ 2

π
K(k), q(k)

)
cn(z; k) =

θ4 (0, q(k)) θ2
(
z ÷ 2

π
K(k), q(k)

)
θ2 (0, q(k)) θ4

(
z ÷ 2

π
K(k), q(k)

)
dn(z; k) =

θ4 (0, q(k)) θ3
(
z ÷ 2

π
K(k), q(k)

)
θ3 (0, q(k)) θ4

(
z ÷ 2

π
K(k), q(k)

)
(A.17)

As you can see, the notations for the θ-functions used in literature are of great variety.

This can be a source of confusion. We hope that this Appendix may be helpful in shedding

light on the multiple notations and how to move from one to the other.
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