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Abstract

In this master thesis we conducted extensive simulations in the framework of
numerical relativity, involving black hole-neutron star binary systems and investi-
gating the parameter space for different mass-ratio’s and spin’s configurations.

While existing data predominantly involve binary black holes or binary neutron
stars, the analysis of hybrid systems, observed tentatively and acknowledged to
exist, remains incomplete. Mixed binary systems represent compelling candidates
for the study of ultra-dense matter, offering valuable insights into constraining the
equation of state for neutron stars which are today not exactly known. Addition-
ally, they are also expected to produce highly relativistic dynamical ejecta, that
can produce heavy elements via rapid neutron capture and whose exact origin is
still today a matter of debate. Of particular interest is the potential for kilonovae
events, arising from the radioactive decay of the aforementioned heavy nuclei. This
subsequent electromagnetic emission positions black hole-neutron star binaries as
promising candidates for multimessenger astronomy observations.

We started by producing initial data employing the Elliptica code (Rashti
et al., 2022). The data produced in this phase are characterized by irrotational
neutron stars, with fixed mass and equation of state. The effects of different mass-
ratios and spins are included in the configuration of the black holes, which we
simulated with three different values both for mass and spin. The initial data are
systematically compared to the effective-one-body model TEOBResumS (Nagar et al.,
2018), and to post-Newtonian models, constructing quasi-equilibrium sequences to
analyze tidal and spin-orbit effects that can influence the dynamical evolution.
Subsequently, nonspinning initial data are evolved using the BAM code (Brügmann
et al., 2004) with a specific focus on the finite mass-ratios effects and their impact on
the dynamics of the system. An in-depth analysis of the accuracy of the data is then
performed, focused on gravitational waveforms, merger remnant, and dynamical
ejecta.
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1 Introduction

The physics behind compact binary coalescence is one of today’s most interesting and
multidisciplinary fields of research. This general relativistic framework can in fact cover
diverse topics such as hydrodynamics, magnetic field physics, micro-physics, gravita-
tional waves physics, numerical relativity as well as many others. To point out which are
the most important things to present our results, it is therefore crucial to select carefully
the information for the reader. Consequently, the thesis is organized into five main chap-
ters. Chapter 1 introduces the main concepts behind black hole-neutron star binaries,
analyzing the available results from the literature and providing an overview of those
parameters that regulate the subsequent evolution. In Chapter 2 we recall the main
equations and formalism behind gravitational waves’ physics including post-Newtonian
theories and effective-one body models. It also delves into the main concepts related
to the theory of black holes (BHs) and neutron stars (NSs). Chapters 3 and 4 provide
an insight into the numerical relativity framework and introduce the numerical methods
used during the project. Finally, in Chapter 5, we articulate and discuss our obtained
results.

1.1 Why are we interested in the black hole–neutron star bi-
nary merger?

Starting from the last decade, the research for compact binary coalescence has com-
pletely changed, rapidly becoming a fertile ground for different kinds of studies. Starting
from the gravitational-wave (GW) event GW150914 detected by LIGO and Virgo Col-
laboration (Abbott et al., 2016a), strong evidence for the existence of black hole binary
(BBH) mergers within the Hubble time were gathered, producing results consistent with
the scenario predicted by General Relativity (GR), e.g. (Abbott et al., 2016b) and
(Yunes et al., 2016). After that, the first binary-neutron-star (BNS) merger GW170817
was detected, not only via GW observations (Abbott et al., 2017a) but also exploiting
multiband electromagnetic (EM) signals (Abbott et al., 2017c). These astrophysical phe-
nomena are today considered as one of the most likely sources of short gamma-ray-burst
(Abbott et al., 2017c), as well as a possible site of r-process nucleosynthesis (Watson
et al., 2019) discoveries that open the way for a new era of multimessenger astronomy
with gravitational and EM signals. This kind of observation allowed the possibility of
using GW170817 as a standard siren (Abbott et al., 2017b) to measure for the first time
the Hubble constant using gravitational signatures.

More recently (January 2020), the LIGO-Virgo detector network observed the first
GW signals consistent with black hole-neutron star (BHNS) binaries (GW200105 and
GW200115 reported in (Abbott et al., 2021)). The rate at which these mergers occur is
currently inferred to be around 7.8 − 140 Gpc−3yr−1, largely consistent with the avail-
able theoretical estimations (Santoliquido et al., 2021), positioning BHNS between BNS,
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whose merger rate is 10-1700 Gpc−3yr−1, and BBH with 17.9-44 Gpc−3yr−1 (Abbott
et al., 2023). Given the commonly large mass ratio (defined as Q = MBH/MNS, and as
high as 4-5) and the weak BH spin (likely to be zero or retrograde), these systems are
typically not expected to produce a bright EM radiation, hence, the lack of detection
for this kind of signal should not come as a surprise. In fact, being tidal disruption
unlikely to happen in this region of the parameter space, mass ejection and its associ-
ated EM emission are not expected to occur in most of the cases. However, for both of
these detections, it was possible to constrain the orbiting masses using the information
contained in the GW signal alone to 8.9+1.2

−1.5M⊙ and 1.9+0.3
−0.2M⊙ for GW200105 and to

5.7+1.8
−2.1M⊙ and 1.5+0.7

−0.3M⊙ for GW200115 at the 90% credible level for the BHs’ and NSs’
masses, respectively. This happens to be a crucial point since, in the absence of an EM
counterpart, the classification of these systems as BHNS binary is purely based on the
expected mass of the two bodies, labeling as NS those objects with a mass smaller than
the theoretical upper limit of 3M⊙.

The merging scenarios are today widely studied by means of numerical relativity
(NR) simulations whose outputs seem to point to the existence of two main scenarios:
the NS could be tidally disrupted before merging, or it could plunge directly into the
BH (this time, without tidal disruption). Among these two kinds of mergers, the former
are typically considered as the most valuable for physics and astrophysics, in particular
the tidal disruption is required to happen at a sufficiently large distance from the BH’s
innermost stable circular orbit (ISCO) to produce the most interesting outcomes. As a
matter of fact, in the case the NS is not disrupted, or the tidal disruption takes place in
a region too close to the ISCO, it will have the very same behavior of a point-like particle
throughout the coalescence, and the final merging will show no major differences with
respect to a highly asymmetric BBH coalescence scenario with the only possible exception
of EM emission related to crust shattering (Tsang et al., 2012), magnetospheric activities
(Carrasco et al., 2021) or charged BHs (Zhang, 2019). Referring to the possibility of
having the NS tidally disrupted, researchers have focused their efforts on three major
aspects of this phenomenon:

• Gravitational waves. GWs can be used to infer finite-size properties of the
NS including its equation of state (EOS). In particular, the tidal deformability Λ
can be extracted from the phase evolution of the inspiral (Flanagan and Hinderer,
2008) together with masses and spins of the astrophysical objects (Poisson andWill,
1995). With these quantities is then possible to gather an estimate of the NS radius,
a quantity strongly but not entirely connected to Λ (De et al., 2018), together
with invaluable information on supra nuclear-density matter (Harada, 2001). It is
therefore crucial to have a better understanding of the gravitational waveform and
to develop a model able to reproduce those observable features connected to tidal
disruption and to possible theoretical EOS.

• The remnant. The accretion disk formed by the disrupted NS material could
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be a promising source of short-hard gamma-ray burst (Mochkovitch et al., 1993).
The mechanism of production could be related to the neutrino pair annihilation
process (Rees and Mészáros, 1992), in presence of a sufficiently hot and dense
disk that could generate a so-called neutrino-dominated accretion flow. A different
hypothesis for this engine to work is related to the rotational energy of a spinning
BH extracted by magnetic fields (a process known as Blandford–Znajek mechanism
(Blandford and Znajek, 1977)). An additional topic of investigation is today the
possibility of successfully simulating the launch of ultrarelativistic jets starting
from the merger remnant.

• Ejecta. The merger of BHNS binaries is shown to produce tidal mass ejection
with parameters dependent on the mass ratio, the BH’s spin, and the NS’s EOS.
In particular we expect to have a more energetic and massive ejection in the case
of smaller mass ratios, larger BH’s spin, and stiffer EOS1. During the merger, a
large amount of neutron-rich matter will be ejected and will synthesize, via rapid
neutron capture, elements heavier the iron. This source of metals is of primary
importance being their galactic abundances still today not completely understood.
Their subsequent radioactive decay will heat up the ejecta producing a quasither-
mal emission in the UV-optical-IR bands called kilonova and it is today considered
as the most promising EM counterpart to GWs. These ejecta are then interacting
with the surrounding interstellar medium (ISM), contributing to the chemical evo-
lution of galaxies and producing a subsequent synchrotron radiation. This second
part of their life is very similar to the one found in supernova remnants: the ejecta
expand freely, then start to blend with the ISM and to decelerate when their mass
is compatible with the one of the entangled ISM entering the Sedov-Taylor phase.
However, the evolution of this remnant is significantly shorter than the one found
in supernovae due to their smaller masses and higher velocities. Since the particles
are accelerated in a strongly magnetized medium, the presence of relativistic elec-
trons will generate a synchrotron emission in the radio band and can also emit X
and γ rays in the framework of a synchrotron self-Compton model (Takami et al.,
2014). From the point of view of stellar astrophysics, this kind of ejecta could
also be the origin of exceptionally r-process enhanced metalpoor stars, so-called
actinide-boost stars (Mashonkina, L. et al., 2014).

The analysis of these points can be done today only by means of NR, which has
the possibility to produce high-accuracy waveforms currently beyond the reach of ap-
proximated2 analytical models. However, the computational costs associated with these
simulations are extremely elevated, making NR by itself an inefficient way to proceed.

1EOS denoted as ”stiff” characterize a kind of matter more difficult to compress. Conversely, ”soft”
EOS are associated with compact and massive NSs.

2See section 2.3.
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Therefore the field has evolved to include numerical-relativity informed models, which
rely on the information coming from these simulated data to produce accurate templates
in a cost-effective way. The latter serve as invaluable tools for the gravitational waves
community, enabling the analysis of detected waveforms by the LIGO-Virgo-KAGRA
collaboration. The simulations generated in this project can be utilized within a broader
framework for developing this kind of template.

1.2 Black hole-neutron star binaries

Just to provide a qualitative overview of the topic we are going to face, let me start
by describing the evolution of these peculiar binary objects from their formation until
their final merging. First of all, it is interesting to notice how the origin of these systems
is still a matter of debate. For the time being, the most likely scenario is the one
describing two massive stars, born in a binary, and sufficiently distant from one another
to have a fully isolated evolution.3 Nevertheless, many different formation channels can
not be a priori ruled out, including dynamical interaction in globular cluster (Zwart
and McMillan, 1999), population III stars mergers (Belczynski et al., 2017), formation
in active galactic nuclei discs (O'Leary et al., 2009) or more exotic channels such as
formation from primordial BHs (Capela et al., 2013) or mirror dark matter particles
(Beradze et al., 2020). The typical mass ranges covered by our binary objects space
between 1.2 − 1.6M⊙ (Özel et al., 2012) for NSs while the BHs are considered to be
as massive as 5 − 15M⊙ (Özel et al., 2010) with poorly known spins magnitude and
orientation. The binary system we can describe in this way is typically characterized
by low level of eccentricity (Peters and Mathews, 1963) even though the existence of
eccentric binaries can not be excluded and would have a profoundly different GW and
EM observables in respect to the one described for circular binaries: this would be
the case for dense stellar cluster where the NS could be dynamically attracted by the
gravitational field of a BH, performing a few very eccentric orbits and eventually merge
(East et al., 2012). It is interesting to point out the fact that the lifetime of BHNS binary
in circular orbit scales like (Kyutoku et al., 2021)

tgw ∝ 1.01 · 1010 yr

(
r

6× 106 km

)4

(1)

for a given orbital separation r and assuming the adiabatic approximation (which is
appropriate when the radiation reaction’s time scale is much longer than the orbital
period). A condition to a have BHNS binary merger within the Hubble time (needed
to explain short-hard gamma-ray burst and r-process elements) is to have the initial

3Sometime this could include the temporary formation of a common envelope able to push the
objects a little bit closer during the inspiral (Smarr and Blandford, 1976).
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semimajor axis smaller4 then 107 km. One important remark regarding long-term evo-
lution is that orbital eccentricity decreases rapidly as a function of the semimajor axis
a in an asymptotically circular regime thanks to the emission of gravitational radiation,
specifically (Peters, 1964)

a(e) ∝ e12/19/(1− e2) (2)

shows how the eccentricity tends to zero, reaching a circular configuration as the semi-
major axis decreases. Consistently with that, BHNS binaries that start their inspiral
in an eccentric regime may safely be approximated as circular right before the merger
when the GWs are observed by ground-based detectors. The evolution of BHNS bi-
nary systems can be summarized into three main stages: a million-of-years long inspiral
during which the objects lose their energy and angular momentum via GW emission;
a millisecond-long merger phase that can result in NS tidal disruption or to its plunge
into the BH; for those disrupted systems, see Fig. 1, a post-merger phase can also occur
(lasting a few seconds) during which matter could be ejected or accreted onto the BH
(Foucart, 2020).

Figure 1: Evolution of a tidally disrupted BHNS binary. Onset of mass accretion (top
left), unstable mass transfer (top right), evolution into a tidal tail (bottom left), circu-
larization into an accretion disk (bottom right). Image from (Foucart, 2020).

An additional note on the NS, to guide the reader through some of the choices made
during this project: detectable BHNS binaries are unlikely to host recycled pulsars, being
the NS expected to lose its residual birth-spin long before entering the band of interest for
ground-based gravitational wave observatories, via gravitational radiation from r-modes
or magnetic braking (Staff et al., 2012). For this reason, it is a typical choice to consider
the NS as nonspinning, with the only exception arising from the dynamical formation
scenario in galactic centers or globular clusters (Ye et al., 2019) where NSs can be spun
up in a process called ”recycling”, where matter is accreted from a donor star.

4The precise value depends on the masses of the two bodies and the initial eccentricity of the system.
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1.3 The merger

An appropriate description of the merger provides an ensemble of processes including
the NS tidal disruption, ejection of stellar material, and formation of a disk. During
these phenomena, a significant role is played by the presence of magnetic fields and
neutrino transport but only after the disrupted NS particles have formed a circularized
disk. Therefore, the properties of the NS are only related to its EOS. As we saw, the
separation between the two objects during the inspiral decreases with time, thanks to
the dissipation of energy and angular momentum which happens via GW emission, a
fundamental process that will be further described in the following chapter. In the
previous section, we briefly discussed the possible ending points of BHNS systems: to
understand which of those will happen, we have to study the location of the ISCO and
the orbital separation associated with the NS’s tidal disruption. The latter happens when
a critical mass is subtracted from the NS’s surface, but in order to properly describe it,
it is mandatory to understand the position at which the BH’s tidal force overcomes the
NS’s self-gravity at the inner edge of the stellar surface. We call the orbit at which this
happens the mass shedding limit. This quantity, which is connected to the mass-ratio
of the binary and to the radius of the NS, can be estimated by

rms = 21/3cR

(
MBH

MNS

)1/3

·RNS (3)

where the factor cR > 1 stands for the degree of tidal elongation of the NS’s radius,
and has values depending on the NS properties and the orbital separation. The exact
location at which the tidal disruption will occur is connected to the NS EOS and to the
speed at which the radius of the star expands following the mass loss. If this happens
inside the ISCO, then matter is just rapidly captured by BH’s gravitational field without
the possibility to generate a remnant disk or to produce ejecta. Therefore, the observable
astrophysical consequences are significantly more difficult to detect. The position of the
ISCO is extremely dependent on how the BH is spinning: for instance, considering an
orbit on the BH equatorial plane it is possible to estimate5 (Bardeen et al., 1972)

rISCO = r̂ISCO(χ)
GMBH

c2
(4)

with r̂ISCO(χ) being a decreasing function of the dimensionless spin parameter of the BH
χ. This is connected to the so-called spin-orbit interaction, in particular for a retrograde
orbit (χ = −1) we have a value of r̂ISCO = 9, for a nonspinning BH r̂ISCO = 6 and for a
prograde orbit (χ = +1), r̂ISCO = 1. A representation of this effect is visible in Fig. 2.

In case the BH’s spin is not aligned with the orbital angular momentum, the spin-
orbit interactions are determined only by the component parallel to the orbital angular

5Being the considered BH spinning, Eq. (4) is formally derived describing the motion of a particle
inside a Kerr geometry, see section 2.2.3.
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Figure 2: Different location of the ISCO as function of the BH’s rotation. Image from:
NASA/JPL-Caltech.

momentum. Since we lose a direct dependence on the spin magnitude, the effects of
a rapidly spinning BH could be negligible in this condition. Taking the ratio of Eqs.
(3) and (4) we can obtain an estimate of the condition for which an observable tidal
disruption occurs

rms

rISCO

= 21/3
cR

r̂(χ)ISCO

(
MBH

MNS

)−2/3(
GMNS

c2RNS

)−1

> 1 (5)

Suggesting that the probability for these events to occur will depend on the mass ra-
tio being small (MBH/MNS ≪ 1), the neutron star having small compactness (C :=
GMNS/c

2RNS ≪ 1), and the dimensionless BH’s spin being large (χ≫ 0).
To provide the reader with a graphical idea of this process, it is possible to have a

look at Fig. 3 and 4, from (Kyutoku et al., 2021), representing the evolution of two
BHNS systems. In Fig. 3 we can see the evolution of a system with MBH = 4.05M⊙,
χ = 0, MNS = 1.35M⊙, and RNS = 11.1km (Q = 3, C = 0.180) modeled by a piecewise-
polytropic approximation of the APR4 EOS (Akmal et al., 1998). In this system the
tidal disruption of the NS happens inside the ISCO: the production of dynamical ejecta
and accretion disk is negligible (M ≪ 0.01M⊙) as most of the NS material falls directly
onto the BH. In Fig. 4 we have the same binary system, this time with a spinning black
hole with χ = 0.75. The NS is here tidally disrupted outside the ISCO: this leads to
the spreading of the NS particles around the BH and to the formation of a one-armed
spiral structure in differential rotation called tidal tail (left middle panel). Since the
outer parts of this tail are slowly moving around the BH, the tidal tail collides with itself
(right middle panel), producing an axisymmetric disk surrounding the BH remnant.
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During this phase the small one-arm structure still remains, slowly transporting angular
momentum toward the outside: this sets the conditions for having mass accretion even
if magnetohydrodynamical processes are still not efficient. Moreover, since the accretion
time scale is considered to be significantly smaller than the rotational period, we assume
the disk to be in a quasi-steady state on a time scale of 10 ms.

Figure 3: Example of the time evolution of the rest-mass density profile for a NS poorly
tidally disrupted: the mass shedding limit is reached in an orbit too close to the BH.
MBH = 4.05M⊙, χ = 0,MNS = 1.35M⊙ and RNS = 11.1km (Q = 3, C = 0.180) modeled
by a piecewise-polytropic approximation of the APR4 EOS. Image from: Kyutoku et al.
(2021).

Eventually, the outermost particles of the tail obtain energy sufficient to leave the
gravitational potential of the remnant leading to dynamical ejection. This process hap-
pens in two phases: initially the tidal torque increases their energy and the angular
velocity and subsequently impulsive outward radial force (probably associated with the
infall of a significant fraction of the NS onto the BH) pushes them further away. If
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Figure 4: Example of the time evolution of the rest-mass density profile for a NS tidally
disrupted outside the ISCO. MBH = 4.05M⊙, χ = 0.75, MNS = 1.35M⊙ and RNS =
11.1km (Q = 3, C = 0.180) modeled by a piecewise-polytropic approximation of the
APR4 EOS. Image from: Kyutoku et al. (2021).

the gravitational binding energy is won by the fluid particle’s kinetic energy, then that
element is free to escape the system. Some material in the middle and inner part of the
disk can also acquire some energy, which is however insufficient for it to be expelled from
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the system, and will eventually fall back on the disk.
The evolution described for tidal disruption outside the ISCO is qualitatively typical
for binaries characterized by large NS’ radii, small BH’s masses, and small BH’s spins;
however, how this process occurs is directly dependent on some parameters of the binary
and can be quantitatively different in each case.

1.4 Parameters of the binary

1.4.1 Equation of state

As discussed in section 1.3, the NS compactness C plays a fundamental role in terms of
tidal disruption and is therefore connected to the final evolution of the BHNS system.
This parameter is conveyed by the NS’s EOS, which describes the density distribution
and that can be exploited to determine a value for the NS’s mass as function of its
radius. With this in mind, it should not come as a surprise the fact that the gravita-
tional waveform, the properties of the disk, and those of the dynamical ejecta happen
to be controlled by this equation. However, formulating an equation able to describe
supranuclear density matter (and so the structure of NSs) is still today one of modern
physics’ open issues. A possible solution for this issue comes from GW analysis: for
this reason a vast variety of theoretical gravitational waveforms have been produced,
performing simulations over the whole parameter space of BHNS binaries, considering as
many different EOS as possible. As of today, a typical practice has become performing
studies using piecewise-polytropic EOS where pressure and density are connected by a
broken power-law in the form

P =


K0ρ

Γ0
0 if ρ0 ≤ ρ1

K1ρ
Γ1
0 if ρ1 ≤ ρ0 ≤ ρ2

...

Kn−1ρ
Γn−1

0 if ρn−1 ≤ ρ0 ≤ ρn

(6)

where Γi denotes a polytropic exponent and Ki a polytropic constant. During this
project, we choose to explore the possibility offered by ALF2 (Alford et al., 2005). This
hybrid EOS is characterized by mixed APR nuclear matter (Akmal et al., 1998) and
colour-flavor-locked quark matter, and it is sufficiently stiff to produce relevant dynam-
ical ejecta. The NR simulations of BHNS systems have been focusing on nonspinning
NSs, with masses within the typical values observed for our galaxy MNS ≈ 1.2− 1.5M⊙.
Consistently with that, a gravitational mass of 1.44M⊙ was considered for this project
associated with a baryon rest mass of 1.6M⊙ (see section 4.1 for a further description
of this parameter). For this choice, the NS radius is RNS = 12.40km. Fig. 5 shows
the mass vs radius plot for NSs with different EOS, together with a blue point repre-
senting our simulated NS. As for today, the maximal mass detected for massive pulsars
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is accepted to be beyond 2M⊙, therefore NR simulations rarely adopt EOS incompat-
ible with these objects. However, for the purpose of instructing a model, it can be
useful to explore the parameter space properly, considering regimes not fully compat-
ible with the observations as to uncover physical properties that may be hidden by
the presence of parameter degeneracy. In Table 1 some peculiar quantities related to
various EOS are reported from the website of the collaborative research group CORE
(http://www.computational-relativity.org), including the maximum mass achiev-
able for irrotational TOV model (see section 2.2.1) and the same value obtained for a
body in rigid rotation, where slightly higher equilibrium masses can be reached. If we
now consider two identical NSs with the same mass and compactness but with different
EOS, it could be interesting to study how the density profile changes. What was found
by Kyutoku et al. (2010) is that NSs with a more centrally condensed density profile
are more easily subjected to tidal disruption, this relation is settled by the value of the
adiabatic index Γ: a NS with a certain compactness will be more centrally condensed
(and consequently less affected by tidal disruption) if the value of Γ in the core region is
smaller.

1.4.2 Mass ratio

We briefly discussed how small mass ratios set the ideal conditions for having tidal
disruption outside the ISCO. This statement happens to be particularly true in the
case of nonspinning BHs, being more prone to have tidal disruption effects only in the
case of low-mass ratios, while in the case of prograde spinning BHs, also more massive
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Figure 5: Mass-Radius sequences for different EOS. The blue point on top of the ALF2
curve represents the NS simulated in this project.
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Name Mmax (TOV) Mmax (rr) Mb,max(TOV) Mb,max(rr)
2B 1.78 2.16 2.13 2.58
2H 2.83 3.46 3.41 4.14

ALF2 1.99 2.51 2.32 2.93
ENG 2.25 2.76 2.73 3.33
H4 2.03 2.48 2.33 2.85

MPA1 2.47 3.06 3.03 3.74
MS1 2.77 3.43 3.35 4.13
MS1b 2.76 3.44 3.35 4.16
SLy 2.06 2.51 2.46 2.98

Table 1: Maximum masses available for different EOS. The notation Mb,max refers to
the maximum baryonic mass. The notation (rr) refers to values estimated for objects in
rigid rotation. All the masses reported here are shown in unit of M⊙. Data from Read
et al. (2009).

objects and so larger mass ratios could lead to tidal disruption. It is therefore possible
to investigate more deeply what will happen for different initial masses, starting by
providing a way to find the critical mass ratio Qc that defines which BHNS binaries will
encounter the ISCO before reaching the mass-shedding limit as a function of the NS’s
compactness, (Kyutoku et al., 2021)

0.270C3/2(1 +Qc)

(
1 +

1

Qc

)1/2

= 0.0680

[
1− 0.444

Q0.25
c

(
1− 3.54C1/3

)]
(7)

For a given value of C, Eq. (7) provides a way to identify Qc. In this way, if a given
BHNS binary has a mass ratio Q > Qc, the NS will plunge onto the BH, thus avoiding
tidal disruption. As mentioned, this critical mass ratio is strongly related to the BH
spin’s value: for high, prograde, and spin-aligned BHs, the region in which the mass
shedding limit can be reached is significantly enlarged, being the location of the ISCO
much closer to the singularity. NR simulations have covered in the last ten years the range
1 < Q < 8.3. Large mass ratios are today considered as the most realistic BHNS system,
with observed stellar-mass BH with typical masses MBH ≥ 5 − 7M⊙, while low mass
ratios are now studied with a renewed interest after the discovery of BNS gravitational
waves. The reasons for that are manifold: first, BHNS with low mass ratio could be
very similar to BNS making GWs sources ambiguous; second being able to discriminate
between very-low mass BHNS binary and BNSs could be a crucial step in determining
the maximum mass for NSs, the mass gap between BHs and NSs and further detail on
the formation mechanism of compact objects.
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1.4.3 Black hole spin

The BH’s spin has probably all the rights to be considered the most significant parameter
in this description, since it has the ability to modify the orbital evolution in the late
inspiral together with the properties of the merger. Since during this project we only
considered spin-aligned orbits, the majority of this discussion will be focused on its
features. Let’s consider a system characterized by common parameters, with the only
exception of the BH’s spin. As seen in Fig. 6 the systems with different spin (χ = 0
on the left panel and χ = 0.6 on the right panel) have different coalescence times. This
difference can be imputed to the possibility of having spin-orbit interaction which behaves
as a repulsive force for prograde spins and as an attractive force for retrograde spin. In
this way, the gravitational pull between the two bodies is partially compensated, leading
to a reduction of the orbital angular velocity and to a longer quasi-circular inspiral.

Figure 6: Orbit trajectory of the BH (blue line) and the NS (black line). The parameters
used to create this plot are Q = 3, C=0.17 modeled by the ALF2 EOS. The spin values
are respectively χ = 0 (left panel) and χ = 0.6 (right panel). Plot produced using data
from BAM.

We already mentioned how the location of the ISCO is connected to the value of BH’s
spin: the spin-orbit repulsion can move its location toward the innermost region of the
BH gravitational field, increasing therefore the merging time of a BHNS binary with a
positive spin and requiring the emission of a significant amount of energy to reach it. All
of these effects, lead to the increasing number of orbits visible in Fig. 6. The probability
of a NS being disrupted is therefore significantly higher in the case of prograde BH’s spin.
This can affect some properties of the dynamics of the merging, leading to the formation
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of more massive disks and ejecta.6 Going back to Fig. 3 and 4 it is possible to quantify
the mass of the disk to a value of 10−3M⊙ for the nonspinning BH, reaching a value of
0.19M⊙ for the spinning one, and a mass of the ejecta that varies from ≈ 10−3M⊙ for
the first one to a value of 0.01M⊙ for the second.

Figure 7: System with Q = 7, χ = 0.9, and C = 0.144 modeled by a Γ = 2 polytrope.
The angles between the spin angular momentum of the black hole and the orbital angular
momentum of the binary are 0° and 40° for the left and right panels. Image from: Foucart
et al. (2013).

The possibility of dealing with inclined spins has also been considered in many sim-
ulations, even though covering the whole parameter space can become exceptionally
demanding due to the increased number of degrees of freedom. Simulations with this
property have not been handled during this project, however they do represent a valuable
and informative test ground for astrophysics, since the inclination angle of the binaries
has in fact a strong impact on the evolution of the system. Due to the misalignment
between the angular momentum of the system and the orbital angular velocity vector,
the vector normal to the orbital plane precesses around the system’s angular momentum
for the duration of the inspiral. Furthermore, this effect produces a net reduction of
the tidal disruption, leading to less massive disk and dynamical ejecta. It is possible
to relate spin-orbit interaction to the scalar product of the spin angular momentum S
and the orbital momentum L, L ·S, using post-Newtonian terminology (Kidder, 1995),
which also means that the location of the ISCO will be affected by this product. Note-

6For this reason, the vast majority of current simulations have considered prograde or null spin.
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worthy is the fact that, as the inclination angle increases, the spin-orbit repulsion for a
given magnitude of the spin becomes weaker. Additionally, the shape of the dynamical
ejecta will be distorted with respect to the spin-aligned case due to the violation of re-
flection symmetry, forming asymmetric remnants. We can have an idea of these effects
by looking at Fig. 7 where we can see a system with the same parameters on the left
and on the right but with different black hole inclination angles with respect to the total
angular momentum (0° and 40° respectively). We can see how these systems evolve in
both cases producing a tidal tail outside the ISCO. In the right column case, the tail
self interacts creating a thick torus with an inclination angle different from the one of
the non-precessing case. Eventually, a tilted disk will form, evolving in a different way
than the aligned one, via processes like Lense-Thirring precession (Bardeen and Petter-
son, 1975), magnetically-induced turbulent viscosity (Fragile et al., 2007), or magnetic
coupling with the remnant BH (McKinney et al., 2013).
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2 The general relativistic 2 body problem

2.1 A Gravitational waves theory

The study of GW moves its first steps starting from Einstein theory of general relativity.
Predicted in 1916, the first indirect experimental confirmation of GWs was in 1974,
when Russell Alan Hulse and Joseph Hooton Taylor Jr. matched the orbital decay of a
binary pulsar to the decay predicted by GR as energy lost via gravitational radiation. In
this chapter, the main concepts related to the field of GR and GWs will be introduced,
in order to get familiar with the terminology and the main theoretical ideas behind
compact binaries inspiral and coalescence. Considering the Einstein Field Equation
(EFE), written using the Einstein tensor Gµν and the energy-momentum tensor Tµν

Gµν = 8πGTµν (8)

We can look for the simplest wave-like solutions that can be found in the weak field
limit, by linearizing the equations around the Minkowski metric. In other words, we will
consider a source of gravitational field sufficiently weak to justify an expansion around
a flat spacetime. In this regime, we can assume the existence of a global inertial frame,
where the metric tensor can be written as

gµν = ηµν + hµν (9)

where ηµν is the Minkowski metric, here defined with signature (-, +, +, +) and |hµν | ≪
|ηµν | ≪ 1 are small perturbations on top of it. Quantities are then rewritten at first
order in h, and the linearized equations are rewritten using the trace-reverse metric h̄µν
defined as

h̄µν = hµν −
1

2
ηµνh (10)

Applying gauge fixing conditions as the Lorenz or the Hilbert gauge, one can rewrite the
EFE as wave equations:

2h̄µν =
−16πG

c4
Tµν (11)

Where c is the speed of light. If we now consider a further simplification such as the
absence of a source term, we can obtain the linearized EFE in vacuum, which host
solutions that can be constructed as a superposition of planar waves with constant wave
vector kµ and amplitudes Aµν

h̄µν = Aµνeikρx
ρ

(12)

However, what we need is a description of a gravitational signal emitted from a mass/en-
ergy distribution. A formal solution for Eq. (11) can be obtained in terms of the Green
function with retarded time tr := t− |x− y|/c (Jackson, 1975)

h̄µν(t,x) = −4G

c4

∫
T µν(tr,y)d

3y

||x− y||
(13)
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where (t,x) labels the four-coordinates of an event on the spacetime, produced by a
source spatially located in y. Considering now a far-field approximation ( ||y|| ≪ ||x|| ∼
||x − y||) and a source moving at slow velocities (v ≪ c) we can perform a Taylor

expansion of
1

r
=

1

||x− y||
and considering only the leading order approximation

h̄µν(t,x) = −4G

c4r

∫
T µν(ct− r,y)d3y (14)

Among all the possible components of the stress-energy tensor T µν , only the T ij are time-
varying and, therefore, possible sources of GWs. If we consider isolated sources without
ongoing mass accretion processes, the energy content of the source T 00 is constant in
time, and so is the linear momentum along direction i, T 0i if we chose a reference frame
that origins from the center of mass of the system. By using conservation laws on the flat
background, it is possible to derive an equation for the integral of the spatial components
T ij ∫

T ij(ct′,y)d3y =
1

2c2
d2I ij(ct′)

dt′2
(15)

where I ij is the moment of inertia tensor of the matter distribution. We can therefore
simplify Eq. (14) considering only its spatial component

h̄ij(ct,x) = −4G

c4r

∫
T ij(ctr,y)d

3y = −2G

c6r

[
d2I ij(ct′)

dt′2

]
t′=tr

(16)

This formula, known as the quadrupole formula7, represents a useful tool to relate the
properties of the source to the physical phenomena measured at distance r. Using this
definition, we developed a formalism that is only at leading order in the multipole ex-
pansion, valid only at a large distance from a (spatially) compact, slowly moving and
non self-gravitating source. However, it is possible to show, e.g. (Thorne, 1980), that a
generic gravitational source may be decomposed in an infinite series of multipoles, with
the quadrupole being the lowest order one8 (labeled with ℓ = 2) described by the two
indexes tensor T µν . We can continue defining the moment of inertia tensor as

I ij(ct) =

∫
T 00(ct,y)yiyjd3y = c2

∫
ρ(ct,y)yiyjd3y (17)

the last identity is obtained in the limit of slowly moving particles where T 00 ∼ ρc2. We
consider now the case of a binary system composed of two point masses in circular orbit

7More formally, the quadrupole formula is written substituting the inertia tensor with its traceless
version, the quadrupole moment tensor defined in Eq. (64).

8The reason behind the absence of monopole and dipole moment (ℓ = 0 and ℓ = 1 respectively) is
related to the conservation of mass and momentum. We leave as reference chapter 3 of Maggiore (2008).
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on the (x1, x2) plane and reduce it to a one-body problem by introducing the reduced
mass µ = m1m2/(m1 +m2). The coordinates of the body, moving around the center of
mass of the progenitor system are given by

xs =


x1s = R cos(ωst)

x2s = R sin(ωst)

x3s = 0

(18)

with ωs as the orbital velocity of the effective body and R as the distance from the center
during the circular motion. The density distribution of the particle is given by

ρ(ct,x) = µδ(x1−x1s)δ(x2−x2s)δ(x3−xi3) = µδ(x1−R cos(ωst))δ(x
2−sin(ωst))δ(x

3) (19)

we can plug this definition into the moment of inertia tensor and find the associated
values of h̄ij

h̄ij(ct,x) =
4GµR2

c4r
ω2
s

cos(2ωstr) sin(2ωstr) 0
sin(2ωstr) − cos(2ωstr) 0

0 0 0

 (20)

or, considering also the time component

h̄µν(ct,x) =
4GµR2

c4r
ω2
s


0 0 0 0
0 cos(2ωstr) sin(2ωstr) 0
0 sin(2ωstr) − cos(2ωstr) 0
0 0 0 0

 (21)

The number of independent components for a tensor inside the linearized EFE in vacuum
is in principle 16 (being µ and ν, four-dimensional indexes) but applying symmetry
and the Hilbert/Lorenz gauge, the problem reduces to 16-6-4=6 independent equations.
However, freedom in the gauge’s choice remains. Applying the traceless-tranverse (TT)
gauge, that introduces four additional conditions, the system reduces to two degrees of
freedom, with planar solution in the shape of

hTT
µν =


0 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 0

 eie
ikρx

ρ

(22)

and are characterized by the values of A11 = A+ and A12 = A× which will denote the two
possible polarization of the GW. Going back to Eq. (21), we can notice how a distant
observer, looking at the two particles performing circular orbits on the (x1, x2) along the
x3 direction, receives a GW already projected on the TT gauge and therefore we can
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define the two polarization as
h+ =

4GµR2

c4r
ω2
s cos(2ωstr)

h× =
4GµR2

c4r
ω2
s sin(2ωstr)

(23)

where we can assume r as the distance between the center of mass of the system and the
GW detector. An additional generalization of these equations can be computed in the
case of an observer looking at the inspiral along an arbitrary direction, forming an angle
i with the orbital plane, such that i = 0 in the case of a line of sight perpendicular to
(x1, x2) 

h+ =
4GµR2

c4r
ω2
s

(
1 + cos2(i)

2

)
cos(2ωstr)

h× =
4GµR2

c4r
ω2
s cos(i) sin(2ωstr)

(24)

If one considers this system of equations as strictly Newtonian, the orbital parameters
such as R and ωs can be assumed as constant. In this framework, the circular orbits are
stable, and no energy is subtracted from the system. However, in a relativistic context,
GWs will be emitted, leading the orbits to shrink and the compact bodies to merge.
This phenomenon is typically characterized by a very long timescale which also means
that we can approximate the orbits as quasi-circular for the majority of the inspiral.

We continue the analysis by considering the back-reaction of the GWs emission on
the system. The first theoretical work in this context was produced during the six-
ties, through fundamental works from Bondi, Goldberg, Newmann, Penrose, and many
others. It clarified of GWs can not be explained via coordinate effects and how they
can effectively transport energy and momentum. However, this topic comes with some
caveats:

1. In GR there is no local definition of energy density for the gravitational field.
This is a result of Einstein’s equivalence principle, which allows us to eliminate
gravitational forces at any point of the spacetime9.

2. According to GR, any source of energy induces curvature through its stress-energy
tensor. However, the definition of GWs given so far describes them as small per-
turbations on a flat background, that can not be curved. To reconcile this, there’s
a need to extend the concept of GWs as perturbations of a ”generic background”.
A formal procedure related to this, was introduced by Isaacson, relying on a sepa-
ration of scales of the variations of the metric (called short wave approximation).

9This concept is implemented in the diffeomorphism invariance of the theory, according to which
a coordinate system such that in an arbitrary point p the metric is flat (gµν(p) = ηµν) can always be
considered.
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This allows the identification of a background component upon which GWs can
propagate.

gµν ∼ background metric + waves (25)

In this way it is possible to define a stress-energy tensor suitable for GWs. However,
this separation is not always allowed, and its applicability needs to be evaluated
case-by-case by identifying the scales related to the chosen physical system.

3. A notion of global spacetime energy exists in the special cases of stationary space-
times and other spacetimes describing isolated bodies. In this case (see section
3.4.1) a conserved global energy can be defined: we will come back to this point
when talking about asymptotically flat spacetimes in NR.

Considering now an isolated system and a generic background metric ηµν , we postulate
a formal expansion of the metric tensor as

gµν = ηµν + h(1)µν + h(2)µν (26)

which at first order is formally equal to the weak field approximation of Eq. (9). The

terms h
(1)
µν contain only short wavelength terms (or high frequency), while h

(2)
µν can host

long wavelength ones, due to resonance of high-frequency terms. In this way we can
perform short-wave approximation, separating the contributions of the long wavelength
terms (associated to the background) from the short ones (associated to the GWs).
Averaging in time the long wavelength component leads to the definition of a stress
energy tensor for GW (also known as Isaacson tensor) which is gauge invariant and that
can be integrated inside a spherical surface of radius r to compute the GW luminosity
dE/dt. In the case of a binary system in circular orbit, one can derive the total radiated
power as

dE

dt
=

32

5

Gµ2

c5
R4ω6

s =
32

5

c5

G

(
GMcωgw

2c3

) 10
3

(27)

where in the last equivalence we introduced the chirp mass Mc = µ3/5(m1 +m2)
2/5 and

the gravitational wave frequency ωgw = 2ωs. Assuming that this energy is subtracted by
the orbital energy Eorb = −G(m1m2)/2R during the motion

dEorb

dt
= −dE

dt
(28)

this balance law implies that the orbital energy will become more and more negative
during the inspiral, leading the orbital radius to shrink and the orbital frequency to
increase (and so the signal’s frequency). Therefore, in presence of gravitational radiation,
a circular orbit will be modified becoming an accelerated spiral motion during which the
bodies become more and more relativistic as they approach until they collide. This leads
to the emission of a characteristic signal, known as ”chirp signal”.
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2.2 Relativistic stars and resonating black holes

2.2.1 Neutron stars

NSs are stellar remnants resulting from the gravitational collapse of a massive star during
type II supernova event. They are the densest and tiniest stars known to exist in the
universe and represent the ending point of stellar evolution for those objects whose mass
was sufficiently large to trigger a core collapse event (M > 11M⊙) but not enough to
generate a BH (M < 25M⊙). NSs have a typical mass in a range unexpectedly high:
from modern observations we can set a typical regime between 1.2 M⊙ and 2 M⊙, which
is increasing as new objects are discovered, supported by neutron degeneracy’s pressure.
While the masses can be today properly measured, the radius represents a real range of
uncertainties as mentioned in section 1.4.1, and can be today estimated via pulse profile
modelling related to brightness variations from the non-uniform surface of the NS, by
fitting spectra with an appropriate atmospheric model to observations of the quiescent
emission from low-mass X-ray binaries, through detections of gravitational waves from
BNS systems together with many other techniques. Typical values range in 8-13 km,
suggesting that the NS central density may reach values of 10 times the nuclear density
(ρnuc := 2.4×1014g/cm−3), an ultra-dense regime for which the EOS is still unknown. NSs
show a complicated layered structure, characterized by an outer solid crust (an ionic or
nuclear lattice) where the pressure comes from degenerate electrons. As we delve deeper
into the interior, the nature of the nuclei in the solid region changes: starting from
layers that can have still some remnant of Fe, as the density increases we proceed toward
a neutron rich medium, since pressure forces electron capture. Eventually, a point is
reached where the conditions give rise to a fluid consisting of degenerate electrons, free
nuclei, and free neutrons in a superfluid state. As the density continues to rise to ultra-
high levels, the isolated nuclei are disrupted, leading to the formation of a neutron-rich
fluid that characterizes the core and that can not be reconstructed in laboratories on
Earth. Also, since the gravitational confinement of the star covers a long timescale,
weak forces have time to operate, assembling ordinary matter into a stable state of
exotic matter which can take very different forms including quarks locked up in hyperons,
mixture of deconfined quarks etc...

When perturbed, a NS just like any other elastic body, is free to oscillate into a
set of normal modes that involve the whole structure. There are different astrophysical
processes during which these normal modes can be excited including supernovae explo-
sions, the collapse of compact binary systems, or the formation of a proto-NS. There is a
large literature describing the asteroseismologic properties of these bodies, but since this
Master thesis is focused on describing BHNS systems, we won’t go further into the detail
of internal structure quakes and structural rearrangement, as well as in those modes
associated to proto-NS formation related to the coalescence of NS-NS binaries.

The study of stellar perturbations starts from the definition of an equilibrium con-
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figuration: considering a spherically-symmetric and nonrotating star10, the metric inside
and outside the NS can be described in the form:

ds2 = −e2Φ(r)c2dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2θdϕ2) (29)

The NS matter is here considered a perfect fluid with energy-momentum tensor given by

T µν = (ρ+
p

c2
)uµuν + pgµν (30)

where ρ, p and uµ are the density, pressure and four-velocity of the fluid. In this metric,
the radial component of energy-momentum conservation gives11

dp

dr
= −(ρc2 + p)

dΦ

dr
(31)

This recovers the Newtonian equation of hydrostatic equilibrium in the gravitational
potential, since in the non-relativistic limit p ≪ ρc2, this reduces to dp/dr = ρdU/dr,
where U = −Φc2 is the sign-reversed gravitational potential. The 00 component of the
Einstein equation gives

e−2Λ(r) = 1− 2Gm(r)

rc2
(32)

with m(r) being the relativistic analogous of the energy/mass enclosed within a sphere
of radius r:

m(r) = 4π

∫ r

0

dr′r′2ρ(r′) (33)

Combining the rr component of the Einstein equation with Eq. (31), we can get the
relativistic equation for hydrodynamic equilibrium

dp

dr
= −G

c2
(ρc2 + p)

[
m(r) +

4πr3p(r)

c2

]
1

r[r − 2Gm(r)/c2]
(34)

Eqs. (31), (33), and (34) are the Tolman-Oppenheimer-Volkov (TOV) equations and,
together with an EOS p = p(ρ), determine the equilibrium configuration of a nonrotating
NS. Perturbing this equilibrium configuration, it is possible to obtain a set of coupled
wave equations for the matter and the spacetime variables from which the normal modes
can be determined. In this way, it is possible to retrieve a rich spectrum of normal
modes that includes fluid modes12 where the matter variables δρ, δp, δuµ are excited,
and spacetime modes where the metric perturbations outside the NS are excited. In the

10Notice that while the spherical symmetry approximation is excellent for equilibrium NS’ configu-
ration, the rotation is significantly important but challenging to model.

11Detailed derivations can be found in section 23.5 of Misner et al. (2017).
12Fluid modes are typically computed in the Cowling approximation, which consists of neglecting the

spacetime perturbations.
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simplest analysis, a NS is modeled using a polytropic EOS and it is approximated as
a nonrotating, non magnetized object. In this approximation exists three main classes
of fluid modes: fundamentals modes (f-modes), pressure modes (p-modes) and gravity
modes (g-modes); for a more complete descriptions, r-modes from rotational effects and
w-mode from spacetime perturbations outside the NS should be also considered.

2.2.2 Black hole perturbation theory

Just like the aforementioned case of NSs, also BHs can react to external disturbances
vibrating in a set of normal modes. This kind of modes can be for instance excited by
infalling material, then decay via GWs emission. To stress out the fact these modes
are damped, they are typically referred to as quasi-normal modes. However, while in
the case of NSs we could consider the presence of a resonating fluid, BHs are assumed
purely spacetime oscillators. Despite this property, they do behave quite much like elastic
bodies with (quasi-) normal modes that depend only on the BH’s mass and spin. It is also
important to point out that while for NSs we considered spacetime oscillations to affect
the external region of the metric, for BH’s we consider oscillations outside the horizon. To
study gravitational perturbations of BH’s, let’s start by examining them as Schwarzschild
solutions for static and spherically symmetric in vacuum Einstein equations. In this case,
we can write the metric as

ḡµνdx
µdxν = −A(r)(cdt)2 +B(r)dr2 + r2(dθ2 + sin2θdϕ2) (35)

where the notation used is

A(r) = 1− RS

r
; B(r) =

1

A(r)
(36)

where RS = 2GM/c2 is the Schwarzschild radius, denoting the spherical surface within
which we locate the event horizon. The perturbations on such an object will be given by

gµν(x) = ḡµν(x) + hµν(x) (37)

where ḡµν(x) is the Schwarzschild metric, and hµν are the perturbations on top of it.
We could for instance associate this scenario with the image of some external matter,
described by an energy-momentum tensor Tµν , falling on the BH. In this sense we can
associate an energy-momentum tensor to the infalling material and study the perturbed
EFE assuming that this perturbation are sufficiently small to be studied in a linear
regime. Starting from the EFE, we can expand the Einstein tensor Gµν as in Eq. (37)

Gµν = Ḡµν +∆Gµν (38)

and knowing that the Schwarzschild metric is a solution for the EFE in vacuum Ḡµν = 0,
one finds that the equations governing the perturbations are

∆Gµν =
8πG

c4
Tµν (39)
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There are different ways to proceed at this point, but a typical technique consists in
choosing a suitable gauge (e.g. the Regge-Wheeler gauge) to simplify the equations.
By doing that, and choosing suitable redefinitions, it is then possible to express the
perturbations in terms of two master equations: the Regge-Wheeler equation for axial
perturbation and the Zerilli equation for polar perturbation. Setting the source term to
zero, one could study how these perturbation evolve with time by writing an equation
in the form of

ϕ′′(ω, x) + [ω2 − V (x)]ϕ(ω, x) = 0 (40)

where x = r∗/c, and r∗ = r + RS log(r/RS − 1) is known in the literature as tortoise
coordinate, and V (x) is a potential. This method eventually reduces to the standard
praxis followed to study the response of a resonant bar or a resonant string: in that case,
the imposition of the right boundary conditions (such as ϕ(t,±L/2) = 0 for a string with
fixed endpoints in x = ±L/2) selects a discrete set of frequencies ωm (known as normal
frequencies) and whose associated solutions are the normal modes :

ϕn(t, x) = e−iωntψn(x) (41)

However, in the case of a perturbed BH there are no fixed endpoints where kinetic
energy bounces back and forth: the system is open, which means that the energy of
the perturbation will eventually disappear. For this reason, the solutions that one can
find take the name of quasi-normal modes: they are damped oscillations describing the
pulsational response of the BH to a perturbation, caused for instance by infalling matter.
This set of quasi-normal modes generates the so-called ringdown signal and will lead the
perturbed BH toward relaxation over a time-scale associated with the longest-living
quasi-normal mode, typically of the order of Rs/c. To provide an example, the ringdown
of a 10M⊙ BH will vanish with a timescale of a millisecond, while for a supermassive
BH, with a mass of 106M⊙ it can last for a few minutes.

2.2.3 Rotating black holes and the Newman–Penrose formalism

Until this point, the discussion about BHs was based on spherically symmetric, nonro-
tating, Schwarzschild BHs. However, in a more realistic astrophysical framework, BHs
are expected to be rapidly rotating. Thinking about the gravitational collapse, a star
will go through a strong reduction of its radius, and therefore, conservation of angular
momentum implies a strong increase in its angular velocity. This means that even a
slowly rotating progenitor star should in principle generate a remnant BH (or NS) which
is rapidly spinning. To take this into account, it is necessary to modify (or better gen-
eralize) the Schwarzschild metric. We start by defining the Kerr metric for a BH with
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mass M and angular momentum J as

ds2 =− (1− RSr

ρ2(r, θ)
)c2dt2 − 2aRSr sin

2 θ

ρ2(r, θ)
cdtdϕ+

ρ2(r, θ)

∆(r)
dr2 + ρ2(r, θ)dθ2

+ (r2 + a2 +
a2RSr sin

2 θ

ρ2(r, θ)
) sin2 θdϕ2

(42)

where a is called Kerr parameter, defined as

a :=
J

Mc
(43)

In the case of a = 0, the Kerr metric reduces to the Schwarzschild metric. Thinking
about the motion of a particle in this geometry, we can appreciate many differences with
respect to nonrotating BHs, for instance considering a radially moving particle falling
into the BH from an infinite distance, which in the case of Schwarzschild geometry will
always remain on a radial path, in the case of Kerr its geodesic is bent toward the
direction in which the BH rotates: this will be for instance the case described by binary
systems in the test-mass limit, where one of the two objects is extremely more massive
than the other and the second one can be schematized as a point particle.

We could now look for the equations that govern perturbations of the Kerr metric in
a similar way to what we did previously for Schwarzschild BHs. However, this time the
equations are significantly more complicated, spherical symmetry can not be applied, and
therefore a different formalism must be considered. We briefly introduce the Newman-
Penrose formalism, just to provide the reader with some of the concepts that will be used
during the numerical extraction of GWs (see section 4.2.2). Let’s start by defining null
tetrads on spacetime with metric gµν as a set of four linearly independent four-vectors

zµa = (lµ, nµ,mµ, m̄µ) (44)

The four-vectors lµ and nµ are real, whilemµ is complex and m̄µ is its complex conjugate.
They are chosen for a specific metric, in this case the Kerr metric, with values such that

gµνl
µlν = gµνn

µnν = gµνm
µmν = gµνm̄

µm̄ν = 0 (45)

and
gµνm

µm̄ν = 1, gµνl
µnν = −1 (46)

We can now define the Weyl tensor, as a combination of the Riemann tensor Rµνρσ, the
Ricci tensor Rµν and the metric tensor gµν :

Cµνρσ = Rµνρσ −
1

2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +

1

6
R(gµρgνσ − gµσgνρ) (47)
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Projecting this tensor onto a null tetrad, we can define the following quantities, known
as Newman-Penrose scalars

ψ0 = Cµνρσl
µmνlρmσ,

ψ1 = Cµνρσl
µnνlρmσ,

ψ2 =
1

2
Cµνρσl

µnν(lρnσ +mρm̄σ),

ψ3 = Cµνρσn
µlνnρm̄σ,

ψ4 = Cµνρσn
µm̄νnρm̄σ

(48)

Adopting a proper choice for the tetrads, it is possible to introduce a relation between
the ψ4 scalar and the GW + and × polarizations

ψ4 = ḧ+ − iḧ× (49)

This procedure has become nowadays a standard praxis in the field of NR, since provides
a way to characterize GWs in terms of quantities that can be derived directly from the
Riemann curvature tensor. However, this expression is valid only at an asymptotically
far distance from the source. To have an additional in-depth analysis of GWs, the ψ4

should be expanded using suitable functions, but since the Newman-Penrose scalars were
derived for the Kerr geometry which is not spherically symmetric, it is not possible to
perform a decomposition in spherical harmonics which was a typical way to describe the
perturbations. However, it is still possible to separate the variables using a different set
of functions known as spin-weighted-spherical-harmonics13

Y ℓm
s (θ, ϕ) = (−1)s

√
(2ℓ+ 1)

4π
dℓm(−s)(θ) e

imϕ (50)

where the index s refers to the spin weight, and dsmℓ (θ) are called Wigner d-function,
defined as

dℓms(θ) =

C2∑
t=C1

(−1)t

√
(ℓ+m)!(ℓ−m)!(ℓ+ s)!(ℓ− s)!

(ℓ+m− t)!(ℓ− s− t)!t!(t+ s−m)!

× (cos(θ/2))2ℓ+m−s−2t (sin(θ/2))2t+s−m

(51)

with C1 = max(0,m− s) and C2 = min(ℓ+m, ℓ− s). In this way, one can obtain for a
s = −2 field14

ψ4(t, r, θ, ϕ) =
∑
ℓ,m

ψℓm
4 (t, r)Y −2

ℓm (θ, ϕ) (52)

13We leave as reference Gó mez et al. (1997) for a quick introduction to spin-weighted fields.
14See section 2.2.1 ”Why a spin-2 field?” in Maggiore (2008).
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and therefore, the waveform can be expanded in the same way

h = h+ − ih× =
∑
ℓm

hℓm(t, r)Y
−2
ℓm (θ, ϕ) (53)

The multipolar waveforms hℓm can be obtained by integrating twice in time ψℓm
4 , see

Eq. 49. These quantities describe the intrinsic gravitational effect that we want to
measure, while the spin-weighted spherical harmonics Y −2

ℓm (θ, ϕ) describe how the signal
is projected on the sky. The gravitational wave strain h, represents the natural observable
for GW and therefore, it is the natural quantity measured by detectors. Some problems
can occur while moving from the numerically computed Ψ4, to the detected h since their
relation only holds at infinite distance, while GWs are numerically estimated at finite
radii. We will come back to this problem in section 4.3.1.

2.3 Post-Newtonian formalism

The generation of GWs has been discussed until this point under the assumption that
the background spacetime could be considered flat. This implied that sources of GWs in
the far-field region were not contributing to the spacetime’s curvature in the near-field
region. Moreover, we computed an expansion in v/c to find the quadrupole formula
assuming that the background curvature and the velocity of the source could be con-
sidered independent parameters (i.e. keeping the spacetime flat while expanding v/c).
These assumptions are typically correct in the case of a system whose dynamic is not
governed by gravitational forces: an example of this could be a system of particles mov-
ing in a Minkowski spacetime, or a beam of charged particles accelerated by an external
electric field that could reach relativistic speeds, while not contributing to the curvature
of the background metric. However, when dealing with astrophysical systems like self-
gravitating bodies, i.e. compact objects, these assumptions may not hold; in such cases
there is a need to extend the results of slowly moving, non-gravitating sources, with a
more sophisticated formalism that can describe and account for self-gravitating objects.

The theory of gravitational radiation from isolated sources is a complex science. De-
riving an exact and sufficiently general solution for the Einstein’s equations, valid for
extremely different matter systems, and describing accurately the emission and propa-
gation of GWs from the source to an infinite distant detector, and their back-reaction
mechanism, is extremely hard to obtain. Therefore, a typical way to proceed is by consid-
ering approximated methods, with the ultimate aim of extracting some firm predictions
by producing template waveforms that can model all the stages from the inspiral to the
post-merger and comparing them with the experimental outcomes (Ajith et al., 2008).
Among the many different approximation methods, we considered the post-Newtonian
approximation (PN), developed in 1916 by Einstein himself, by Droste, de Sitter, and
Lorentz, following Blanchet (2014). This theory has been providing invaluable predic-
tions on the physics of compact binaries, including problems of motion and gravitational
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radiation (Damour, 1983). Let’s start by defining as compact, those systems character-
ized by a distance between the two objects a, comparable to the total gravitational mass
of the system M

a ≈ MG

c2
(54)

from this definition follows that only two astrophysical objects can be considered as
compact: BHs and NSs. The creation of a complete and accurate template, however, is
not a straightforward procedure: in fact, the PN approximation has a regime of validity
that covers only slowly moving sources and weak field regimes. This can be appreciated
by looking at the plot of Fig. 8, showing on the y-axis the symmetric mass ratio ν =
(m1 · m2)/(m1 + m2)

2 which covers values closed to zero if one of the two objects is
significantly larger then the other, condition that typically takes the name of test-mass
limit, and values close to 1/4 in the case of equal masses; and, on the x-axis a slow-motion
parameter v2/c2 that can be also interpreted as an indicator of the field’s strength. This
is an effect due to the virial theorem that sets a relation between the source’s velocity
and the gravitational potential (v

c

)2
∼ 2GM

c2R
=
Rs

R
(55)

In this notation, v is the relative orbital velocity and c stands for the speed of light. We
can notice that when the two bodies have comparable masses and enter the strong field
regime, i.e. they approach the coalescence, the tools that one can adopt are provided just
by NR techniques, while BH perturbation theory can be exploited as an approximated
technique for analyzing the post-merger waveform during the ringdown phase when the
remnant BH emits radiation via quasi-normal modes 15. What one could think now, is to
adopt a complete NR simulation to have an ideal description of the waveform16, however,
this would require thousands of orbital cycles, computed with high precision. This last
point, is manifestly unfeasible, both in terms of computational costs and in terms of the
required accuracy. Therefore, the typical way to proceed is to combine the numerical
results with the approximated ones from PN and perturbation theory. Nevertheless, this
matching technique does not work particularly well, and better methods are required
to fill the gap between the PN inspiral and the NR merger phase. An idea for doing
that is provided by the effective-one-body (EOB) formalism, which provides a way to
extend the domain of validity of the PN model beyond the inspiral phase (see section
2.5). In the case of PN approximation, the matter source is considered at once slowly
moving and weakly stressed. Therefore, we can define a PN parameter ϵ, which is always

15It can be furthermore used for describing the coalescence of binaries with an extreme mass ratio in
the test-mass limit.

16Interestingly enough, in this branch of physics there is a notable preference for numerically com-
puted solutions, often regarded as more accurate and reliable, over the analytical ones sometimes deemed
as too approximated.
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Figure 8: Sketch showing the different regimes of validity of PN, NR and perturbation
theory. Image from: Blanchet (2019).

significantly smaller than one, and which is defined from the stress-energy Tensor and
the source’s Newtonian potential U as

ϵ := max

[∣∣∣∣T 0i

T 00

∣∣∣∣ , ∣∣∣∣T ij

T 00

∣∣∣∣ 12 , ∣∣∣∣Uc2
∣∣∣∣ 12
]

(56)

this parameter reduces to a slow-motion estimation ϵ ≈ v/c ≪ 1. The definition of
slow-motion can sound in this definition a little inappropriate since we can consider very
relativistic sources as inspiralling compact binaries that can reach values of v/c closed to
50% in the last orbits, by introducing contributions of higher-order PN approximations.
If the PN parameter ϵ of the studied source is sufficiently small, then we can proceed by
expanding in ϵ. As a formal note, we will call an expansion in ϵn, n/2 PN order17.

We end this section by providing a quick description of the energy of compact binaries
in circular orbits with masses m1 > m2 and dimensionless spin χi = Si/m

2
i (i = 1, 2).

Other useful definitions for a more compact notation are

ãi :=
Si

mmi

=
χimi

m
, â0 := ã1 + ã2, ã12 := ã1 − ã2. (57)

In the test mass limit, ã1 → S1/(m1) is the dimensionless spin of the large black hole
and ã2 → 0. Defining x as

x =

(
1

2

Gm

c3
ωs

)2/3

(58)

17As pointed out in many different studies, e.g. Cutler et al. (1993b), Cutler et al. (1993a) and many
others, in order to obtain a sufficiently accurate theoretical template, contributions up to 3PN level
must be included.
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the energy of circular orbits can be rewritten as the sum of three/four different contri-
butions

E(x) = Eorb(x) + Eso(x) + Ess(x) (59)

where the different terms describe the orbital, spin-orbit and spin-spin interactions. In
the case of finite size effects due to the presence of matter, like in the case BNS or BHNS
binaries, an additional contribution will be given by the tidal effects. A more in depth
description of the latter will be provided in section 2.4. The leading order contribution

is given by ENewt =
−µc2x

2
The expansion of each of these terms is particularly long

and therefore we report only a few of the leading terms

Eorb

ENewt

=1−
(
3

4
+

ν

12

)
x+

(
−27

8
+

19ν

8
− ν2

24

)
x2 +

(
−675

64
+

(
34445

576

−205π2

96

)
ν − 155ν2

96
− 35ν3

5184

)
x3 +

[
−3969

128
+

(
9037π2

1536
− 123671

5760

+
448

15
(2γE + ln(16x))

)
ν +

(
3157π2

576
− 498449

3456

)
ν2 +

301ν3

1728
+

77ν4

31104

]
x4 + . . .

(60)
where γE = 0.577 . . . is the Euler constant. The spin contribution are

Eso = −1

6
(7â0 + ã12

√
(1− 4ν))νx5/2 + . . . (61)

Ess =
1

2
â20νx

3 + . . . (62)

Notice that the above definition for the spin-orbit interaction is defined as a negative
value. This will have a relevant impact in terms of the evolution and the dynamics of
the system. More information on this topic can be found in section 5.2 where it is shown
how these different contributions can be extracted and measured.

2.4 Tidal effects

The discussion made in section 1.3 did not consider in a detailed way the effects of tidal
deformation except for the elongation parameter cR. Tidal interaction can behave as
an additional attractive force, with the ability to modify the location of the ISCO, the
orbital evolution, and the criterion for tidal disruption. The relativistic theory of tides
in its current form for compact binary coalescence (Damour and Nagar, 2009) is due to
the work of Thibault Damour (Damour, 1983). The tidally deformed NS originates a
quadrupole moment with a magnitude of component ∝ r−3, and the gravitational poten-
tial develops a r−6 term in addition to the usual r−1 term of the monopolar interaction,
therefore it will be crucial to determine the properties of the closest orbits. In this way,
tidal effects make the potential more attractive, making the coalescence process faster if
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compared to a pure nonspinning BBH case where these phenomena are absent. The tidal
effects enter the equation at the fifth PN order, but it is important to remark that the
point-particle terms at this order still have to be derived. For this reason, GW modelling
via EOB formalism and NR has become more and more important in the last few years.

The theory of tidal deformation for NSs can be characterized by their Love numbers.
Starting from Newtonian gravity, we can consider an external gravitational potential
Uext (generated by a companion in the binary system) acting on the NS, generating a
quadrupolar tidal field.

Eij = −∂i∂jUext (63)

Considering a nonrotating NS, as a spherically symmetric object, the presence of an
external tidal field would produce perturbation δρ in the equilibrium position of the NS’
self-gravitating fluid. Outside the NS we can perform a multipole expansion taking as
origin its center of mass: in this way we can generate an unperturbed monopole term
Gm/r (with m being the NS’s mass), a dipole term which vanishes being on the center
of mass frame, and other high order terms produced by the deformed NS. The total
potential will be therefore given by an ”external” contribution, related to the companion,
and a ”self” contribution related to the deformation. The first term generated by the
perturbation can be found inside the second moment of the mass density, and can be
written using the quadrupole moment tensor, a traceless version of the moment of inertia
tensor seen in Eq. (15), defined as

Qij =

∫
d3xρ(t,x)(xixj − 1

3
r2δij) (64)

We can add the potential created by the deformed NS to the gravitational potential

of the companion as a second external potential Uext = −1

2
Eijxixj + O(x3) so to have a

total potential U(t,x) given by

U(t,x) =
Gm

r
+

3G

2r5
xixjQij(t) +O

(
1

r4

)
− 1

2
Eij(t)xixj +O(x3) (65)

This equation is valid in the star’s local asymptotic rest frame (asymptotically mass-
centered Cartesian coordinates) at large distance r. The equation is characterized by
the presence of three dominant terms: the standard gravitational potential, and two
leading order terms arising from the perturbation: one describing an external tidal field
and one describing the resulting tidal distortion. Considering the external perturbation
Eij as static, then also the star’s induced quadrupole term will also be constant in time
and the potential U will be just a function of the spatial coordinate x. By making this
assumption, the quadrupole term can be rewritten at linear order as

Qij(t) = −λEij(t) (66)

31



where λ can be found in the literature, e.g. (Hinderer et al., 2010), as an EOS-dependent
tidal deformability parameter related to the l = 2 tidal Love number k2

k2 =
3

2

Gλ

R5
(67)

where R is the NS’ radius. We can use this definition to redefine the quadrupole moment
tensor as

Qij = − 2

3G
k2R

5Eij (68)

The potential takes the form

U(t,x) =
Gm

r
− 1

2
Eij(t)xixj

[
1 + 2k2

(
R

r

)5
]
+O

(
1

r4

)
+O(x3) (69)

This procedure can be extended to any generic l, by considering higher-multipole contri-
butions of the external field. It is possible to define a Love number kl for each Newtonian
multipole considering the Newtonian approximation of the g00 component of the metric.

g00 = −1 + 2
2Gm

c2r
− 1

c2

∞∑
l=2

2

l(l − 1)
Ei1,i2,...,ilxi

1

. . . xi
l

[
1 + 2kl

(
R

r

)2l+1
]

(70)

However, working with higher accuracy means developing a fully relativistic theory of
tidal deformation. In particular, working in a strong field regime means that Eq. (64)
and 63 are no longer valid; while we can still use Eq. (65) in the asymptotically flat
region at a large distance from the source. To do that, the appropriate way to proceed
is to consider perturbation theory over the equilibrium configuration of the star. This
problem will be separated into an interior and exterior problem, that will consider re-
spectively the perturbed equations inside and outside the NS. In this way, the metric
perturbations are separated per each multipole into polar and axial modes and their
coefficients, which, as long as we only consider the exterior problem are just free pa-
rameters, will define two families of Love numbers: electric type k

(e)
l for polar modes

and magnetic-type k
(m)
l for axial modes. We can use them to parametrize the most

general solution for the perturbation of the component of the metric. In the case of
non-relativistic limit, the magnetic type multipoles just disappear and we go back to
Eq. (70). To estimate the Love numbers, we start by considering the TOV equilibrium
configuration (which carries information about the EOS) together with perturbed EFE
and perturbed hydrodynamical equations. Matching the external and internal solution,
for a range of realistic EOS, we can find typical values of k2 between 0.05 and 0.15. An
additional effect related to tidal fields is a modification of the equation of motion: given
the presence of a quadrupole moment, the orbits of the binary system will be modified.
Considering a frequency domain inspiral waveform in PN approximation, the GW phase
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evolution is, at large separations and low orbital frequencies, driven by the value of the
chirp mass only. However as the frequency increases and the objects get closer the phase
evolution will be more and more influenced by the tidal effects, that can eventually be-
come the dominant effect towards the end of the inspiral in the case of nonspinning BNS.
It is convenient to define the tidal polarizability Λ to introduce the phase correction due
to tidal effects

Λi =
2

3
k2

(
Ri

Gmi/c2

)5

(71)

which can take typical values between 102 and 103 with the larger values obtained for
less compact NSs. The definitions here reported are typical of a BNS system, but can
be easily reduced to the BHNS case by assuming a single NS. In the case of BNS we can
define a reduced tidal polarizability as

Λ̃ =
16

13

(m1 + 12m2)m
4
1Λ1 + (m2 + 12m1)m

4
2Λ2

(m1 +m2)5
(72)

so that the phase correction can be written as

∆Ψtidal = −117

256

m2

m1m2

Λ̃
(v
c

)5
(73)

In some case, especially near the late inspiral phase, this tidal effects can overcome
lower-order terms in the PN expansion making them detectable for third-generation
interferometers.

2.5 The Effective-One-Body framework

The effective-one-body (Buonanno and Damour, 1999) is a complex Hamiltonian for-
malism that incorporates results from PN, black hole perturbation theory and NR to
generate GWs templates. It allows to map the general-relativistic two-body problem
into the dynamics of an effective particle in an effective metric, starting from PN knowl-
edge and introducing suitable resummations of the Taylor expansions to obtain a more
compact notation of the PN terms. Introducing only the main results, the first idea
consists of combining together the results from the PN inspiral of compact bodies, with
the test-mass results for a point-like object, orbiting in the gravitational field of a BH
without causing spacetime deformation, where the weak field limit assumption can be
avoided and strong field features such as the presence of an ISCO or a lightring can be
described exactly for both the Schwarzschild and the Kerr metrics. To simplify the re-
sults, the notation in this section will pose G = c = 1 and will consider only nonrotating
BHs.

In the case of the GR two-body problem for objects with mass m1 and m2, the
dynamics is encoded into the mass-shell condition of each particle

gµνpµpν = p2 = −m2 (74)
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with pµ = muµ/
√
−uνuν being the four-linear momentum and uµ the four-velocity. In

fact, considering a Schwarzschild metric and the problem of a test particle with mass µ,
orbiting around a BH with massM , we can rewrite the mass-shell condition as a condition
for a Hamiltonian that will describe the equation of motion through an action principle.
The idea is to map this two-body problem into an effective-one-body problem, in a similar
way to what was done for the Newtonian binary problem. In the latter case, a system
of two masses orbiting around their center of mass could be described using a variable
transformation, obtaining a body with relative momentum p = p1 = −p2 and reduced
mass µ = m1m2/(m1+m2) = m1m2/M orbiting around a fixed gravitational background
described by a mass M = m1 +m2, with total linear momentum P = p1 + p2 = 0 in
the center of mass frame. In the relativistic case, we can write the total four-momentum
as P µ = pµ1 + pµ2 where pµi (i = 1, 2) are the momenta of the two individual bodies. To
efficiently map the two-body problem we have therefore to find a mass-shell condition
for P µ that associates the results

p2i = m2
i −→ P µ =? (75)

Simplifying the problem assuming flat space, i.e. considering the two bodies moving
along straight lines without interaction, one can set gµν = ηµν and in the center of mass
frame, the relative four-momentum is

pµ =

(
− 1

M
p1µp

2µ ,
1

M
P0p

i
1

)
, (76)

with pi1 = −pi2. One can find the constraints for the relative and total momenta as

−pµpµ = µ2, −PµP
µ =M2

p =M2

[
1 + 2ν

(
−p0
µ

− 1

)]
(77)

with ν = µ/M . We have therefore two constraints: one for the total center of mass
momentum and one for the effective particle. We can at this point calculate the real
Hamiltonian and the effective Hamiltonian with the map (p0 ⇐⇒ P0) since

H = −P0 Heff = −p0 (78)

Solving for the real Hamiltonian, that describes the binary motion we can find

H =
√
M2[1 + 2ν(Heff/µ− 1)] + P 2 (79)

which is purely obtained from the kinematics of particles without interaction18. The
next step consists of finding a PN approximation for the real Hamiltonian H. However,

18In the case the center of mass is static, P 2 can be neglected. However, in the case of strongly
asymmetric systems, the emission of radiation is larger along a certain direction, pushing the system
and leading to a moving remnant BH.
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it is important to recall that this function is not unique and equivalent descriptions
can be achieved through canonical transformations. Therefore HPN and H don’t have
to be exactly the same function but can be interconnected by these transformations.
There are different methods to face this problem which are based on comparing gauge
independent quantities or explicitly constructing the canonical transformations. We
proceed by providing a modified version of the test-body Hamiltonian Heff, achieved by
deforming the Schwarzschild metric, Eq. (35), and the mass-shell condition, Eq. (74)
but this time estimated for the effective particle µ.

geffµν dx
µdxν = −Adt2 + dr2

A · D̄
+
r2

c
(dθ2 sin2 θdϕ2) (80)

gµνeff pµpν +Q = µ2 (81)

where A, D̄ and C are functions of r and ν, and Q is function of r, ν and pr. With these
choices the effective Hamiltonian takes the form

Heff = −p0 =

√
A

(
µ2 + A · D̄ · p2r +

L2

r
+Q

)
(82)

and it reduces to the case of a particle moving on a Schwarzschild’s spacetime for D̄ = 1
and Q = 0. To efficiently construct the mapping between the effective and the real
Hamiltonian, we have to match these functions to the PN results. In this way one can
find the EOB potentials

A = 1− 2u+ 2νu3 + (
94

3
− 41π2

32
· νu4) + . . . (83)

D̄ = 1 + dνu2 + (52ν − 6ν2)u3 + . . . (84)

Q = 2(4− 3ν)νu2p4r (85)

with u =M/r, while r is the relative distance between the two particles. The content of
the EOB potential is based on an infinite amount of terms coming from the PN Taylor
expansion, therefore resummation techniques should be employed to improve the model.
However, since the entire series is unknown a priori some guesswork has to be performed
and must be verified against all the available exact results. A relevant example in this
sense is provided by Padé approximants, described in Appendix D and that comes with
fitting coefficient to be estimated.

The Q potential describes how the motion deviates from a geodesic line: in the case
of circular orbits pr = 0, Q = 0 and D̄ is negligible, therefore the dynamics is exclusively
related to the A potential. Using the same formulas of a Schwarzschild’s spacetime,
for which A = 1 − 2u, one can find strong field features, including the existence of
an ISCO (at r ∼ 6MBH) and a lightring (at r ∼ 3MBH). The latter represents an
unstable orbit for massless particles like photons: an object positioned on it can move
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on a circular orbit as long as its motion is purely tangential. However, even the slightest
radial perturbation inward or outward will cause it to either fall into the black hole or
be ejected from the system. Therefore, thinking about an object that is emitting GWs
while moving on the lightring, half of the radiated energy will escape, while the other
half will be absorbed by the BH. Notably, the GWs emitted from this region will exhibit
the largest amplitude in the waveform creating a distinctive signature in the signal,
followed by an absolute minimum that marks the end of the chirp signal. However, it
is essential to note that at this point the dynamics is also reaching the highest velocity
and, therefore, the assumption of circular orbits becomes ineffective. Taking this into
account, an EOB waveform can be improved by introducing a multiplicative correction
called Next-to-Quasi-Circular correction. This modification allows for the development
of an inspiral+plunge waveform which is then smoothly connected to a ringdown model
derived from the BH perturbation theory, providing a comprehensive representation of
the entire gravitational wave signal encompassing inspiral, plunge, and ringdown phases.
The discussion made until this point however, was concerning only BBH systems. The
extension to BHNS and BNS comes with the necessity to include tidal effects: this can
be done by modifying the EOB potential (Damour and Nagar, 2010)

A −→ A+ Atidal (86)

with an expression that includes free parameters and the electric and magnetic type Love
number. The model obtained is then tuned using NR simulations that fix those free
coefficients that characterize the resummation techniques, the Next-to-Quasi-Circular
corrections, and the tidal parameters. This matching process is approached as a param-
eter estimation problem where the NR waveform is treated as the reference model, with
the goal of identifying the set of parameters that best align the analytical model with
the NR simulation, ensuring an optimal fit between the two, refining and calibrating the
EOB result.

2.6 TEOBResumS

The EOBmodel utilized and studied during the development of this project is TEOBResumS.
Initially proposed in Nagar et al. (2018) as an approximant to describe spinning BBH
and BNS19, it was then improved with the possibility to describe BHNS systems in Gon-
zalez et al. (2023a). In this way, it can describe at the same time tidal and spin-orbit
effects, including high order modes20. This model is based on an analytical description of
the dynamics through the inspiral, merger, and ringdown phases, which was made pos-
sible through information coming from NR simulations that can drastically improve the

19The tidal model used to describe BNS evolution up to the merger was initially proposed in Bernuzzi
et al. (2015).

20See as references Akcay et al. (2019) and Riemenschneider et al. (2021).

36



late-inspiral, strong-field, and fast-velocity regime of the model. This procedure consists
of least-square fitting many NR waveforms to analytical templates with free coefficients.
For instance, in the case of BNS and BHNS, tidal interactions are quantified using a
set of dimensionless tidal polarizability coefficients (for each deformed body) that can
be tuned in this way. The most important of the latter can be found in the literature
as tidal polarizability parameter Λ, and that we already described in Eq. (71). These
parameters strongly vary with the NS’s internal structure: both the radius R and the
gravito-electric love number k2 are fixed for a given mass by the chosen EOS; therefore
measuring them can provide strong constraints on the allowed EOS for cold degenerate
matter at supranuclear density. This was done for the first time in Abbott et al. (2017a),
putting constraints that disfavor some of the stiffest EOS. The construction of BHNS
waveforms from the early inspiral to the ringdown is similar to the one of BBH: in fact,
the results are expected to be in extremely good agreement for those systems charac-
terized by a NS that is not tidally disrupted during the inspiral. Also in the case of a
mass-shedding limit met outside the ISCO, the waveform is a chirp-like signal qualita-
tively similar, but modified by the presence of tidal effects. Nevertheless, in both of the
cases, the ringdown waveform will differ from the one produced by BBH, as well as the
post-merger remnant. Therefore, the approach followed to create BHNS model consists
of employing NR fitting formulas that describe how much a given quantity differs from
the BBH case. To construct the waveform, an accurate model for the remnant BH’s
mass and dimensionless spin is required: this can be achieved via fitting formulas based
on NR simulated data, that allow to map MBH

rmn and χBH
rmn, knowing the symmetric mass

ratio ν, the tidal polarizability parameter Λ and the dimensionless spin of the progenitor
BH χBH (Zappa et al., 2019). In particular, in the Λ ≈ 0 limit, the model reduces to
the BBH case, and in the ν ≈ 0 limit, it furthermore reduces to the test mass case.
It is important to notice how the amount of stellar material falling onto the BH will
impact the final mass and spin of the remnant (more details on this will be provided in
section 5.4). As far as the ringdown emission is concerned, TEOBResumS has implemented
a BHNS model constructed as a deformation of the EOB ringdown for BBH. However,
the NS’s tidal disruption is still playing a fundamental role, damping significantly the
emission of quasi-normal modes: in those regions of the parameter space where this is
going to happen, the BBH representation of the ringdown is no longer accurate. Also in
this case fitting formulas are required, with coefficients related to the amplitude and the
frequency at the peak of each quasi-normal mode and free coefficients to be fitted from
NR data. However, the state of the art of the parameter space’s exploration for BHNS
systems, is not sufficiently advanced to investigate efficiently the waveforms for different
mass ratios and spin configurations for different EOS. It is therefore fundamental to ef-
ficiently produce NR simulated data, as to create realistic templates able to capture the
complex physics hidden behind compact binary mergers.
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3 Numerical Relativity

The following section will be used to guide the reader through the main concepts of
Numerical Relativity with the aim of providing the fundamental information necessary
for a better understanding of the rest of the project. Here we will find the most important
concepts and problems associated with solving EFE using numerical techniques. Just
to provide a brief excursus on the topic, I will start by saying that the formalism here
introduced, called 3+1 formalism is nowadays used in a large collection of physical
problems including :

• Gravitational collapse and black hole formation

• Black holes and neutron stars collisions

• Dynamical stability of stationary solutions (from rotating stars and discs to black
strings)

and originates from works by Georges Darmois in the 1920s, André Lichnerowicz in the
1930-40 and Yvonne Choquet-Bruhat in the 1950s. In the late fifties and sixties the 3+1
formalism was adopted by Richard Arnowitt, Stanley Deser and Charles W. Misner to
propose the Hamiltonian formulation of general relativity known as ADM formalism. In
the 1970s a crucial role was covered by the work of James W. York, who developed a
general method to solve the initial data (ID) problem and who put the 3+1 equations in
the shape used afterward by the numerical community (hereafter ADMY equations). The
main idea behind this formalism consists in rewriting EFE as a set of partial differential
equations (PDE), slicing the four-dimensional spacetime (procedure known as foliation)
using three-dimensional surfaces (called hypersurfaces). This procedure allows us to
reformulate EFE as a Chauchy problem with constraints.

3.1 Framework and Notation

We start by considering a spacetime (M, g) where M is a four-dimensional manifold
and g a Lorentzian metric on M with signature (-, +,+,+). We assume it to be time
orientable, so that every light cone of the metric g can be divided continuously over M
in two parts: a past and a future cone. Choosing any point p ∈ M, we can define the
four-dimensional tangent space to p as T (M)p and its dual space (also called co-tangent
space) as T ∗(M)p. The following index convection from Gourgoulhon (2007) has been
adopted:

• Greek indices run in 0,1,2,3. Letters from the beginning of the alphabet (α, β, γ, . . . )
for free indices and letters starting from µ (µ, ν, ρ, . . . ) as dumb indices for con-
traction, to make more manifest the tensorial degree of any equation
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• Lower case latin indices from i (i, j, k, . . . ) run in 1,2,3 while those starting from a
(a, b, c, . . . ) run only in 2,3

With this notation, we can define a basis vector (eα) for the tangent space T (M)p and
another one (eα) for the associated dual space T ∗(M)p. Therefore we can define the

component Tα1...αp
β1 . . .βq of a tensor T of type

(
p
q

)
with respect to these basis (eα) and

(eα) through the expansion

T = Tα1...αp
β1 . . .βqeα1 ⊗ · · · ⊗ eαp ⊗ eβ1 ⊗ · · · ⊗ eβq

3.2 Geometry of hypersurfaces

As mentioned in the previous section, in order to solve EFE algorithmically, what we want
to do is rewrite them as an evolution problem in which a three-dimensional spatial slice
is evolved in time. More formally, we can assume that a four-dimensional spacetime can
be subdivided into a family of hypersurfaces Σ, namely the images of three-dimensional
manifolds Σ̂ by an embedding (i.e. a 1-to-1 map) Φ : Σ̂ → M such that Σ = Φ(Σ̂).
Thanks to this one-to-one character each point of Σ is mapped by a single point in Σ̂,
both Φ and Φ−1 are continuous, and the hypersurface Σ is guaranteed not to intersect
itself and is considered as spacelike. To define what a spacelike hypersurface is, let’s
consider a coordinate system xα = (x0, xi) of M, so that Σ can be defined as the level
set of a scalar field on M, that is to say a set of points for which that scalar field is
constant. For instance, calling t the scalar function associated to x0 (that we’ll later
identify with being the time coordinate), one could say that

∀p ∈ M, p ∈ Σ ⇐⇒ t(p) = 0 (87)

In other words, one could introduce a coordinate system21 of M ((x0, xi) = (t, x, y, z))
such that t spans R, (x, y, z) are Cartesian coordinates spanning R3, and Σ can be defined
by those coordinate having t = 0. The vector normal to the surface will be described by
the gradient dx0 whose components are

∇αt = gαµ∇µt = gαµ(dx0)µ (88)

which defines the unique direction perpendicular to Σ. In particular we can characterize
Σ as spacelike, having a timelike ∇αt. Also we can call v any vector tangent to Σ so
that ⟨dt , v⟩ = 0. In this way any other vector normal to Σ must be collinear to ∇t.

We can renormalize ∇t to make it a unit vector by setting

n := (±∇t ·∇t)−1/2∇t (89)

21Assuming Σ as a connected submanifold of M, with topology R3.
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with n · n = −1 being Σ spacelike, the unit normal vector is chosen as to point toward
increasing values of t. In this way, we can decompose any four-dimensional tensor into
spatial parts defined on the hypersurfaces, and timelike part normal to Σ and aligned
with n. It is also important to notice that, when talking about embedding and maps,
what we are doing is to consider a three spatial manifold Σ̂ whose curves and vectors are
carried on M by a mapping Φ such that (see Fig. 9)

Σ̂ → M (90)

(x, y, z) 7→ (0, x, y, z) (91)

If one considers the vectors belonging to the tangent space of Σ̂, we can define a mapping
Φ∗ so that those vectors v = (vx, vy, vz) are transformed into vectors of the tangent space
of M, Φ∗v = (0, vx, vy, vz). This procedure takes the name of push-forward mapping.
Conversely, one can define a pull-back mapping between the linear forms of Tp(M) and

those on Tp(Σ̂). Applying the latter procedure to the spacetime metric g, one could
define an induced metric also known as 3-metric.

γ = Φ∗g (92)

so that
γij = gij (93)

This ”reverse mapping” can be intuitively described also in terms of an orthogonal
projector P (or explicitly Pα

β = δαβ + nαnβ), so that

Tp(M) → Tp(Σ)

v 7→ v + (n · v)n

In particular, the 3-metric can be obtained from

γαβ = P µ
αP

ν
β gµν = gαβ + nαnβ (94)

From the above formula, the projector is nothing but the 3-metric γαβ with an index
raised with gαβ we can therefore use it to find the spatial part of any four-dimensional
tensor.

3.2.1 Curvature

Since in this discussion we considered only spacelike hypersurfaces, what we have is a
non-degenerate, definite positive22, induced metric γ. This implies the existence of a

22A definite positive or Riemannian metric is characterized by a signature (+,+,+).
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Figure 9: Embedding of a three-dimensional manifold Σ̂ in a four-dimensional one M,
defining the hypersurface Σ. The vector v, tangent to some curve C in Σ̂ is mapped into
a vector tangent to the mapped curve Φ(C). Image from Gourgoulhon (2007).

unique connection, which also means a unique covariant derivative D, on the manifold
Σ, so that

Dγ = 0 (95)

which takes the name of Levi-Civita connection, and an associated Riemann tensor,
defined as:

(DiDj −DjDi)v
k = Rk

lijv
l (96)

which provides a measure of the intrinsic curvature of (Σ, γ), just like 4Rµ
ναβ does for

(M,g). In order to enhance readability, we denote the three Riemann tensor 3Rk
lij :=

Rk
lij. The information we lack in this description is related to how Σ is bent inside M.

This bending corresponds to the change of direction of the normal vector n as one moves
from Σ̂ to Σ and we can describe it using a tensor called extrinsic curvature tensor

Kαβ = −γµαγνβ∇µnν (97)

Another way to cast this definition, is by using the Lie Derivative along the normal
vector n

Kαβ = −1

2
Lnγαβ (98)

also known as kinematical equation. In this context, the Lie derivative can be considered
as a geometric generalization of the partial time derivative ∂t even though formally, it
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represent a way to measure how much a change in a tensor field along a given direction
xα differs from an infinitesimal coordinate transformation generated by xα (see Fig. 11).

We can therefore associate the evolution of the 3-metric to the extrinsic curvature.
In this terms, a four-dimensional globally hyperbolic spacetime23(M,g), foliated24 by a
family of non intersecting hyperfurfaces Σt (so that M = ∪Σt) can be represented as the
time evolution of a three-dimensional slice (Σ0,γ), see Fig. 10.

Figure 10: Foliation of the spacetimeM by a family of spacelike hypersurfaces (Σt)t ∈ R.
Image from Gourgoulhon (2007).

3.2.2 Foliation kinematic

As mentioned in the above section, the timelike future directed unit vector n, normal to
the slice Σt can be written as

n := −α∇t (99)

with α being (−∇t∇t)−1/2 and a minus sign so to have future oriented vectors n for a
scalar field t increasing toward the future. We define the scalar field α the lapse func-

23A spacetime is said to be globally hyperbolic if it admits spacelike hypersurfaces Σ such that each
causal curve (that is to say timelike or null curve) intersects Σ once and only once.

24Any globally hyperbolic surface can be represented as a family of spacelike hypersurfaces Σt. By
foliation or slicing we refer to the existence of a smooth scalar field t̂ on M which is regular and such
that each Σt is a level surface of it

∀t ∈ R,Σt = p ∈ M, t̂(p) = const = t
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tion, which by construction is always positive and never vanishes for regular foliations.
Considering the normal vector n, one can define worldlines orthogonal to Σt: physically
this means that the hypersurfaces represent the set of events that happens simultane-
ously from the perspective of some observer that we will call Eulerian observer and
whose acceleration is given by

a := ∇nn = Dlnα (100)

The vector a is orthogonal to n and tangent to Σt. Together with n we can also define
a normal evolution vector

m = αn (101)

With these definitions we can provide some kinematic properties of 3+1 GR exploiting
geometrical properties of spacelike foliations:

• The normal evolution vector carries points from Σt to Σt+δt;

• Tensors defined on Σt can be transported to tensors on Σt+δt using the Lie derivative
along the normal evolution vector mα;

• The Lie derivative of the 3-metric (i.e. its time evolution) is given by the extrinsic
curvature K.

3.3 3+1 decomposition of Einstein Equation

In Eq. (98) we can see an interpretation of the extrinsic curvature being the time
derivative of the spatial metric. It should not come as as surprise that spatial projection
of the four Riemann tensor will internalize factors related toK and to its time derivative.
4Rα

βγδ can be projected in three different ways: projecting all four indexes on Σ produces
the Gauss equation

γµαγ
ν
βγ

γ
ργ

σ
δ

4Rρ
σµν = Rγ

δαβ +Kγ
αKδβ −Kγ

βKαδ (102)

Three spatial projection and a contraction with n takes the name of Codazzi equation

DβK
γ
α −DαK

γ
β = γγρn

σγµαγ
ν
β

4Rρ
σµν (103)

Two spatial projections and two contractions with n give the Ricci’s equation

γαµn
ργνβn

σ 4Rµ
ρνσ =

1

α
LmKαβ +

1

α
DαDβα +KαµK

µ
β (104)

We can now use these equations to decompose EFE obtaining Hamiltonian and mo-
mentum constraints and evolution equations for the extrinsic curvature. Let’s start by
considering the Einstein equation without cosmological constant:

4R− 1

2
Rg = 8πT (105)

43



Figure 11: Let’s consider a vector v as the infinitesimal displacement between two points
q and t on the hypersurface Σt. Transporting those points on the neighboring hyper-
surface Σt+δt along the field lines of vector field m. The displacement between p(t) and
Φδt(p) is given by δtm. The new points on Σt+δt denote a new vector Φδtv(t) tangent
to it. The geometrical interpretation of the Lie Derivative of v along direction m is the
difference between the value of v in Φδt. i.e. v(t+ δt). and the vector transported along
m Φδtv(t). Image from Gourgoulhon (2007).

Where 4R is the Ricci tensor25 associated to g, R is the Ricci scalar and T is the matter
stress-energy tensor. Let’s consider as usual a globally hyperbolic spacetime (M, g),
foliated by Σt spacelike hypersurfaces. The 3+1 formalism aims to project the EFE on
and perpendicularly to Σt. Projecting Eqs. (105) entirely along n and using the Gauss
equation (102) one can obtain

R +K2 −KijK
ij = 16πE (106)

a scalar equation known as Hamiltonian constraint. The variable E is defined as the
matter-energy density as measured by an Eulerian observer

E := nµnνTµν (107)

Projecting once on Σt and once along n and using the Codazzi equation (103) we obtain
the momentum constraint (a rank 1 tensorial equation with 3 components)

DjK
i
j −DiK = 8πpi (108)

25In terms of components, the Ricci tensor can be considered as a contraction of the Riemann tensor,
such that 4Rαβ =4 Rµ

αµβ .
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with pα = −Tµνnµγνα as the matter momentum density as measured by the Eulerian
observer. The reason why Eqs. (106) and (108) take the name of constraints is adducible
to the fact that the final form of 3+1 EFE will be the one of a time evolution system
tractable as a Cauchy problem with them constituting the constraints, and therefore will
have to hold on each individual spatial slide Σt. The full projection onto Σt produces
instead the evolution equation

LmKij = −DiDjα + α
{
Rij +KKij − 2KikK

k
j + 4π[(S − E)γij − 2Sij]

}
(109)

where S is the trace of the projected stress-energy tensor Sαβ = γµαγ
ν
βTµν . In this way

it is possible to rewrite the 10 EFE (four of which involving only first time derivatives of
the metric g and six involving second time derivatives) in a system of 4+6+6 equations
(106,108, 109, 98) typically referred to as ADM equations, Arnowitt R. (1962). While the
two constraints set values for γ and K on every slice, the other two provide a description
of how these quantities evolve forward in time from one hypersurface to the other. The
general covariant behaviour of EFE is maintained in the 3+1 form, and translated in
the freedom of choice for the lapse function and for the three spatial coordinates which
are unspecified on Σt. We can therefore proceed to introduce coordinates on the four-
dimensional manifold, a procedure necessary to convert our system of tensorial equations
into a system of PDE. We can choose on each hypersurface some coordinate system
(xi) = (x1, x2, x3), and if it varies smoothly from one slice to the other then we can
define a well-behaved coordinate system (xα) = (t, x1, x2, x3) on M. We can define a set
of basis ∂α = (∂t,∂i) for Tp(M), associated with coordinates xα

∂t :=
∂

∂t

∂i :=
∂

∂xi
, i ∈ (1, 2, 3)

where ∂t is tangent to the lines of constant spatial coordinates. However, in general, ∂t

is not a timelike vector: its direction depends on the spatial coordinates. One could be
tempted to say that m and ∂t coincide, but this is true only in the special case of having
coordinates xi such that the lines xi = const are orthogonal to the foliation (see Fig.
12). The difference between them is described by the shift vector, β:

∂t = m+ β = αn+ β (110)

which is always tangent to the hypersurfaces Σt. We can now specify the tensorial ADM
equations using this system of adapted coordinates to obtain PDEs. However, one could
notice that some freedom remains in the choice of the lapse function and for the shift
vector which must be specified to close the system. The simplest choice one could make
is to consider

α = 1; βi = 0 (111)
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Figure 12: Coordinates (xi) on the hypersurfaces. The lines xi = const define time vector
∂t which differs from the normal evolution vector (in this figure the letter N refers to the
lapse function α) by a shift vector β. Image from Gourgoulhon (2007).

this choice takes the name of Geodesic gauge or Geodesic slicing. In this case, the
constant spatial coordinates are orthogonal to the hypersurfaces and the time coordinate
is the proper time of the Eulerian observer. It is also possible to rewrite the ADM
equation using this gauge as :

∂tγij = −2Kij (112)

∂tKij = Rij +KKij − 2KikK
k
j + 4π[(S − E)γij − 2Sij] (113)

R +K2 −KijK
ij − 16πE = 0 (114)

DjK
j
i −DiK − 8πPi = 0 (115)

ending up with a system of nonlinear PDE, of first order in time and second order in
space wavelike equations. In order to find a solution, initial data must be provided,
satisfying the four constraint equations. However, this procedure involves specify some
free data, whose choice has physical meaning and it is based on:

1. Astrophysical expectations for the solution;

2. Physical meaning of the metric fields;

3. Mathematical necessity (equations must be well-posed, decoupled, etc...).
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3.4 The initial data problem

In the previous section we discussed how, thanks to the 3+1 decomposition, finding a
solution for the EFE can be reconsidered to solving a Cauchy problem, consisting in
evolving forward in time a set of initial data. However, finding suitable values is not an
easy task, being subjected to the Hamiltonian and momenta constraints. The problem
could be split into two main parts:

1. a mathematical problem: given a hypersurface Σ0, find a Riemannian metric γ, a
symmetric bilinear form K and some matter distribution (E,p) on Σ0 such that
the constraints are satisfied;

2. an astrophysical problem: the solution to the constraint equations should not be
random, but should take into account the physical system that one is studying.

There are many possible ways to solve this issue: one of the most used today is based
on splitting the initial data to be found (γ,K), between an arbitrarily chosen part,
and a second part obtained by solving the constraints (Lichnerowicz, 1944). This idea,
proposed initially by Lichnerowicz, was then extended in Choquet-Bruhat (1971), York
(1979) and more recently in Pfeiffer and York (2003), and take the name of conformal
decompositions method.

3.4.1 Asymptotic flatness & global quantities

Before jumping straight into the initial data problem, let’s start by providing an overview
of the main concept of energy in GR starting from the case of asymptotically flat (AF)
spacetimes. The concept of asymptotic flatness can be applied to stellar-type objects, in
isolated conditions and to be faced, the existence of an extra structure on the hypersur-
faces Σt is required, named as background metric f . f has signature (+,+,+) (so it
is a Riemannian metric as γ) and its component fij are time evolved along ∂t, following
the condition:

δfij
∂t

= 0 (116)

and if the topology of Σt allows it, then f is typically chosen as a flat metric (so that its
Riemann tensor vanishes). Going back to the concept of asymptotic flatness, a spacetime
is said to be asymptotically flat if ∀Σt ∃fij :

1. fij is flat (except on the strong field region where we have located our source);

2. There is a Cartesian-type coordinates system xi = (x, y, z) on Σt such that outside
the strong field region f = diag(1, 1, 1) and r =

√
x2 + y2 + z2 can take arbitrarily

large values on Σt;
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3. when r → +∞, the components of γ satisfy

γij = fij +O(r−1) (117)

∂γij
∂xk

= O(r−2) (118)

4. when r → +∞, the components of K satisfy

Kij = O(r−2) (119)

∂Kij

∂xk
= O(r−3) (120)

So besides a narrow region of the spacetime, what we have are asymptotically decaying
conditions. Noteworthy the fact that requirement 3. forbids the existence of gravitational
waves at spatial infinity, however, this issue can be solved by considering that any isolated
source has started emitting GWs at a finite time in the past and that these waves have
still not reached the spatial infinity.

In a AF spacetime, it is always possible to define a global conserved energy contained
on each Σt and therefore a mass. Let’s define V as the portion of M delimited by two
hypersurfaces Σt1 and Σt2 (t1 < t2)

V =

t2⋃
t=t1

Σt (121)

and its boundary ∂V (assumed as a timelike hypersurface). Defining St as

St = ∂V ∩ Σt (122)

we can describe the ADM mass of the slice Σt as

MADM = − 1

16π
lim

St→+∞

∮
St

[Djγij −Di(f
klγkl)]s

i√qd2y (123)

where D is the connection associated to the background metric f , si represents the unit
vector normal to St, and

√
qd2y denotes the surface element induced by the spacetime

metric26 on St. In particular if one uses Cartesian coordinates xi, then Di =
∂

∂xi
and

fkl = δkl Eq. (123) can be written as

MADM = − 1

16π
lim

St→+∞

∮
St

(
∂γij
∂xj

− ∂γjj
∂xi

)si
√
qd2y (124)

26In this case q is the induced metric on St, y
a = (y1, y2) are arbitrary coordinates on St, for instance

ya = (θ, ϕ), and q is the determinant of qab.
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and always takes finite values thanks to AF conditions. By taking the Newtonian limit,
the ADM mass represents the total mass of the considered system. Moreover, it can be
shown, e.g. (Schoen and Yau, 1979) and (Schoen and Yau, 1981), that if matter obeys
the dominant energy condition E2 ≥ PiP

i, then the ADM mass is always non-negative
and it is null only in the case of having Minkowskian hypersurfaces Σt with extrinsic
curvature K = 0. Remarkable is the fact that, although from a theoretical perspective
this quantity should remain constant in time, during NR simulations this integral is
computed on spheres of finite radius, therefore the numerical approximation could lead
to a violation of this condition.

Another conserved quantity that will be useful later on, is the ADM angular momen-
tum JADM associated with the invariance of the action with respect to rotations. One
could then define a set of rotational killing vectors ϕi of f , associated with a rotation
about the x, y, and z axis respectively, in terms of Cartesian coordinates xi:

ϕx =− z∂y + y∂z (125)

ϕy =− x∂z + z∂x (126)

ϕz =− y∂x + x∂y (127)

(128)

One can then define the ADM angular momentum as

Ji :=
1

8π
lim

St→+∞

∮
St

(Kjk −Kγjk)(ϕi)
jsk

√
qd2y (129)

3.4.2 Conformal decomposition

The specification of the 12 variables that characterize the γij and Kij components of the
induced metric and of the extrinsic curvature on Σ0 is what characterizes the initial data
problem. To find an estimation for these quantities what one could do is to use the four
constraints equations, ending up eventually with an over-determined problem where the
prescription of some quantities is required in order to solve for the others. A typical
approach to this problem involves a conformal decomposition of γij (Lichnerowicz, 1952)
in the form

γ = Ψ4γ̄ (130)

where Ψ, called conformal factor, is some scalar field strictly positive and γ̄ an auxiliary
metric on Σt, necessarily positive definite as γ, that will be referred to as the conformal
metric. At first glance, this could look like a superficial mathematical trick, fruitful only
in terms of simplifying the calculations of the constraint equation. However at a deeper
level, it defines an equivalence class of manifolds and metrics, related by γ̄ij = γ1/3γij
where γ is the determinant of the induced metric. By choosing γ̄ij as the flat spatial
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metric ηij, one can find the so-called conformally flat metric. This choice allows us to
rewrite the surface integral of Eq. (123) as a volume integral over the whole hypersurface

MADM =

∫
Σt

Ψ5(E +
1

16π
KijK

ij)d3x, (131)

where E is the total energy density of matter as seen by an Eulerian observer.
In order to proceed in this decomposition, let’s consider the extrinsic curvature K.

First of all, let’s split it up into two components: a trace part obtained using γ, and a
traceless part A so to have

Kij = Aij +
1

3
γijK (132)

and then proceed by conformally decomposing the traceless part A

Aij = ΨpĀij (133)

the choices of the power p are typically two:

• p = −4 is typically used to deal with time evolutions. Let’s define the values
obtained with this choice by using the symbol ∧ as in Â.

• p = −10 is the natural choice to deal with the initial data problem. We will in this
case use the symbol ∼, as in Ã.

By considering the former choice, it is possible to rewrite Eq. (98) using Eqs. (130) and
(132) (

∂

∂t
− Lβ

)
γ̃ij = 2αÃij +

2

3
D̃kβ

kγ̃ij (134)

where the notation D̃ refers to the conformal connection (see Appendix B). Considering
the power p = −10, it is possible to rewrite the Hamiltonian and momentum constraints,
Eqs. (106) and (108), respectively as

D̃iD̃
iΨ− 1

8
R̃Ψ+

1

8
ÂijÂ

ijΨ−7 + (2πE − 1

12
K2)Ψ5 = 0

D̃jÃ
ij + 6ÃijD̃jlnΨ− 2

3
D̃iK = 8πΨ4pi

(135)

where R̃ is the Ricci scalar associated with the conformal metric. The former one being
called Lichnerowicz equation, is typically interpreted as a non-linear elliptic equation
for the conformal factor Ψ. Well-posedness and uniqueness of the boundary value prob-
lem for the Lichnerowicz equation have been deeply studied under the constant mean
curvature condition (K = γijKij = const). In particular, if one considers AF hypersur-
faces, K = E = 0, the equation is solvable if and only if the metric γ̃ is conformal to a
metric with null scalar curvature, i.e. 4R = 0.
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3.4.3 Conformal thin sandwich method

This method to compute ID was introduced for the first time in York (1999). The
starting point of this method consists in taking Eq. (134) and solving for Ã. Defining
(L̃X)ij as the conformal Killing operator associated with the metric γ̃ and acting on
the vector field X

(L̃X)ij = D̃iXj + D̃jX i − 2

3
D̃kX

kγ̃ij (136)

(also called longitudinal part of Âij) and using the notation

˙̃γij =
∂

∂t
γ̃ij (137)

We can rewrite Eq. (134) as

Ãij =
1

2α
˙̃γij + (L̃β)ij (138)

Using the relation Âij = Ψ6Ãij, we can get

Âij =
1

2α̃
˙̃γij + (L̃β)ij (139)

where the conformal lapse α̃ = Ψ−6α has been introduced. This equation represents
a decomposition of Âij that we can use to rewrite the Lichnerowicz equation and the
momentum constraint as a new system described by

D̃iD̃
iΨ− R̃

8
Ψ +

1

8
ÂijÂ

ijΨ−7 + 2πẼΨ−3 − K2

12
Ψ5 = 0

D̃j

(
1

α̃
(L̃β)ij

)
+ D̃j

(
1

α̃
˜̇γij
)
− 4

3
Ψ6D̃iK = 16πp̃i

(140)

with conformal data Ẽ = Ψ8E and p̃i = Ψ10pi. The method to compute initial data
consists therefore in choosing arbitrarily γ̃ij, ˙̃γ

ij, K, α̃, Ẽ and p̃i on Σ0 and solving the
system for Ψ and βi. As for other techniques to solve the ID problem, the conformal thin
sandwich method, which takes its name from the fact that one of the parameters ( ˙̃γij)
can be obtained from the value of the conformal metric on two neighboring slice (Σt and
Σt+δt), in the case of constant mean curvature condition becomes an elliptic equation for
the shift vector β.

3.4.4 Extended conformal thin sandwich method

Considering the equations of system (140), it looks like there is no easy way to pick a
value for the conformal lapse that satisfies the requirement we saw in section 3.3. Instead
of choosing an arbitrary value, it was suggested in Pfeiffer and York (2003) to compute a
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value out of the Einstein equation, given the time derivative of the trace of the extrinsic
curvature(

∂

∂t
− Lβ

)
K = −Ψ−4(D̃iD̃

iα + 2D̃i lnΨD̃
iα) + α

[
4π(E + S) + ÃijÃ

ij +
k2

3

]
(141)

This expression can be manipulated a bit using the identity

D̃iD̃
iα + 2D̃i lnΨD̃iα = Ψ−1[D̃iD̃

i(αΨ) + αD̃iD̃
iΨ] (142)

and solving the former equation of system (140) for D̃iD̃
iΨ one can get

D̃iD̃
i(α̃Ψ7)−(α̃Ψ7)

[
1

8
R̃ +

5

12
K2Ψ4 +

7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]
+(K̇−βiD̃iK)Ψ5 = 0

(143)

using the notation K̇ :=
∂K

∂t
and S̃ := Ψ8S. Adding this equation to those of system

(140), we obtain the Extended conformal thin sandwich (XCTS) system for the ID
problem. This time the free data consists in the conformal metric γ̃, its coordinate time
derivative ˙̃γ, the trace of the extrinsic curvature K and its coordinate time derivative
K̇ and the rescaled variables Ẽ, S̃ and p̃i, while the conformal factor Ψ, the conformal
lapse α̃ and the shift vector β are constrained by the equations. This technique happens
to be particularly suited to describe quasi-stationary spacetimes and it is therefore used
to prepare quasi-equilibrium ID such as the one produced in chapter 4.1.

3.5 Initial data for binary systems

Constructing efficiently ID for binary systems made of compact objects is still today
one of the major topics of NR. The reason for that relies on the fact that such systems
constitute the main sources of detectable gravitational waves for the interferometric
detectors either ground-based (LIGO, VIRGO, KAGRA) or space-based (LISA). The
motion of compact bodies, entangled in a long inspiral, will eventually lead to their
merging since the emission of GWs will cause the orbits to shrink. However, this effect
causes also an efficient circularization of the orbits, allowing us to describe this motion
as closed circular orbits. From the perspective of relativity, having exact circular orbits
implies the existence of some symmetry (that in this case is called helical symmetry, Fig.
13) and of an associated killing vector ℓ. This can suggest a choice of coordinate such that
∂t = ℓ. With this choice all fields are time independent, and in particular ˙̃γij = 0 and
K̇ = 0 will be our prescription for those XCTS free parameters. This assumption holds
for the majority of the inspiral phase, during which the timescale under which the orbits
shrink is much larger than the orbital one and so the evolution can be considered as a
quasi-adiabatic process, even though strictly closed circular orbits could not be admitted
in a relativistic framework, due to the emission of GWs. This concept has been used to
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Figure 13: Action of the helical symmetry group. We can follow the displacement χτ

of point P as it moves forward in time. With the notation N the author refers to the
lapse function, and with β to the shift vector associated with coordinates adapted to the
symmetry (i.e. (t, xi) such that ∂t = ℓ ). Image from Gourgoulhon (2007).

generate ID for all kinds of compact binaries, however, after a certain amount of orbits,
the motion will become unstable and the two bodies will collide, leading to a violation
of the assumptions and the symmetries described until this point. To determine the
point at which this happens, i.e. to locate the last stable circular orbit for which we
can compute ID, we could study the evolution of the binding energy Eb of the system,
locating its turning point. In the case of BBH systems, this quantity can be defined as

Eb =MADM − 2MBH (144)

where the black hole mass can be defined using the irreducible mass, see Eq. (176).
Defining l as the proper separation between the two horizons (see the next section for
more details), we can find the turning point as

∂Eb

∂l
= 0 (145)

In this case, a minimum in the binding energy corresponds to a stable quasi-circular
orbit, while a maximum to an unstable orbit. The transition between these two defines
the ISCO which occurs at the saddle point

∂2Eb

∂l2
= 0 (146)
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On the other hand, in the case of BNS systems, it is possible to localize the ISCO by
looking for the presence of a minimum of the total energy/mass, that should coincide
with a minimum in the angular momentum. Both of these techniques can be applied
to look for stable orbits for BHNS systems. The evolutionary sequence in the case of
BNS can end either at the ISCO, at the collision, or at the formation of a cusp on the
NS surface. Differently to BHNS systems, the latter case corresponds to the inset of
mass-transfer and formation of a dumbbell-like structure.

3.5.1 Black hole initial data

While describing the evolution of BHNS systems a problem arises when we come to
numerically describe a BH. One could start by stating that a BH represents a certain
region of the spacetime out of which no null geodesic can escape to infinity. In this
sense, we could identify the presence of a BH with a certain surface, for instance the
one delimited by the boundary between those events that can emit light rays visible
to infinity and those that can not. This rough definition coincides with the one of the
event horizon: a gauge invariant entity that contains important geometrical information.
However, this happens to be a global property of the spacetime depending on past,
present and future events which makes it very complicated to provide a good location:
a complete knowledge of the entire future spacetime is in fact needed to decide whether
or not a certain null geodesic will eventually escape or not.

Finding a good description for the surface of a BH becomes a matter of primary
importance also in terms of the numerics: the singularities contained at the center of
the BH must be somehow excluded from the grid to avoid spurious calculations. One
technique could consist of choosing an ad hoc slicing of the spacetime, technique that
however typically leads to grid’s pathologies causing the code to crash. Another idea
could arise from the fact that the interior of a BH can never influence the exterior: in
this sense we could excise a spacetime region just inside the event horizon from the
numerical grid. The problem of doing that consists in the requirement of knowing the
location of the horizon for all the timesteps throughout the evolution. Since, as said,
this is unachievable, one can locate an apparent horizon. When dealing with spherical
symmetry, it is quite easy to provide a definition for this object: we define it as the
boundary of smooth 2+1 surfaces embedded in spatial slices Σt whose outgoing null
geodesic have zero expansion. This definition is local in time and can be provided on
each slice. From the singularity theorems of general relativity (Hawking and Ellis, 1973)
we can also say that if an apparent horizon exists on a given slice, it must be contained
inside the BH’s event horizon and that its area can not decrease27. Another issue consists
of choosing the topology of the solution to be constructed. For the aim of this project,
let’s consider the so-called puncture approach (Brandt and Brügmann, 1997). We

27Because of this property, it is possible to define a quantity called irreducible mass. See Eq. (176).
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choose as topology for Σ0, R3 minus a point:

Σ0 = R3\{O} (147)

the removed point O is named as puncture. The singularities in Hamiltonian constraint
are with this choice absorbed in an analytical expression. This idea can be generalized
to the case of multiple BHs: the starting ansatz consists of expressing the conformal
factor as a generalization of the results found by Brill and Lindquist(Brill and Lindquist,
1963), introducing a correction u

Ψ = ΨBL + u =
N∑

h=1

Mh

|xi − cih|
+ u (148)

where Mh is the mass of the h-th black hole and ΨBL is the same analytical factor found
for the Brill-Lindiquist data and that contains the singularities located in cih which are
removed from the slice. Plugging this definition inside the Lichnerowicz equation we can
obtain the following equation that defines u:

∆u+
ÂijÂ

ij

8Ψ7
BL

(
1 +

u

ΨBL

)−7

= 0 (149)

with boundary conditions given by the AF requirement

u = 1 +O(r−1) ∂ru =
1− u

r
for r → ∞ (150)

In this way, the analytical term absorbs the BH singularity and the corrections u are
regular everywhere, except at the punctures. This means that Eq. (149) can be always
solved without the need to excise the BH interior from the computational grid. As for
other data, the spacetime of the punctured ones presents AF region for each puncture.

3.5.2 Neutron star initial data

In order to compute ID for NSs, it is necessary to consider equation of motion for the
fluids together with EFE. To consider a matter source in the equations, let’s consider an
energy-momentum tensor for a perfect fluid:

T µν = (ρ0 + ρi + P )uµuν + Pgµν (151)

Here u is the four-velocity of the fluid, and ρ0, ρi and P are respectively the rest-mass
density, internal energy density and pressure as observed by a comoving observer. We
define the specific enthalpy as

h = exp

(∫
dP

ρ0 + ρi + P

)
(152)

55



Figure 14: The wormhole topology for punctured data is the same defined by the ex-
tended hypersurface Σ′

0 obtained by gluing a copy of Σ0. The region around S is called
Einstein-Rosen bridge and connects two AF regions without entering below the event
horizon. The figure displays an embedding diagram based on the metric γ. Using the
punctured approach the entire N +1 wormhole topology can be represented in a single
three-dimensional space R3, without the need to excise any region during numerical sim-
ulations. Image from Gourgoulhon (2007).

that reduces for polytropic EOS to

h =
ρ0 + ρi + P

ρ0
(153)

From the equation of motion
∇νT

µν = 0 (154)

one can find the Euler equation

uν∇ν(huµ) +∇µh = 0 (155)

and the continuity equation for the rest-mass

∇µ(ρ0u
µ) = 0 (156)

We can now project these four-dimensional equations on the slice Σt. Rewriting the fluid
four-velocity as uµ = ut(lµ + V µ) where lµ is timelike and V µ is purely spatial, we can
rewrite Eq. (155) as

γ µ
i Ll(huµ) +Di(

h

ut
+ ûjV

j) + V j(Djûi −Diûj) = 0 (157)

and Eq. (156) as
α(Ll(ρ0u

t) + ρ0u
t∇µl

µ) +Di(αρ0u
tV i) = 0 (158)
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Here we used the notation ûi = γ µ
i huµ as the spatial projection of hui. The analysis

made so far, did not consider the possibility of having symmetries, however it is possible
to consider lµ as a helical killing vector simplifying furthermore28 Eqs. (155) and (156).

3.6 Evolution schemes

We will now conclude this chapter by introducing a description of the evolution scheme
used to run the simulations studied in this project. Let’s start by defining the free
evolution schemes as a group of techniques for integrating the 3+1 EFE in time, where
the constraint equations are solved only initially to get the ID, without the need to
consider them again for the subsequent time steps. In fact, fixing some choices for the
lapse function and shift vector, while considering only the evolution equation (109) and
the kinematical equation (98) is sufficient to reconstruct the full spacetime metric g at
each time t. By doing that, however, the constraints may be violated, leading to a metric
that doesn’t satisfy the EFE. Nevertheless, it can be shown that if the constraints are
satisfied at the initial time t = 0, then the dynamical equation ensures that they are
satisfied for all the other t > 0. The scheme we will describe now, is called BSSN scheme
(Shibata and Nakamura, 1995). The starting point is the conformal 3+1 Einstein system,
rewritten using a Ricci tensor R̃ expressed using the conformal metric γ̃. Introducing a
tensor field

∆k
ij =

1

2
γ̃kl(Diγ̃lj +Dj γ̃il −Dlγ̃ij) (159)

where Di stands for the covariant derivative associated with the flat metric f , we can
rewrite the Ricci tensor as

R̃ij =
1

2

(
γ̃kl(DkDlγ̃ij + γ̃ikDjDlγ̃

kl + γ̃jkDiDlγ̃
kl
)
+Qij(γ,Dγ) (160)

where

Qij(γ,Dγ) := −1

2

(
Dkγ̃ljDiγ̃

kl +Dkγ̃ilDj γ̃
kl +Dkγ̃klDlγ̃ij

)
−∆k

il∆
l
kj (161)

If we now consider the Ricci tensor as a differential operator acting on γ̃, its principal
part (i.e. those terms with the highest derivatives) is given by the three terms in the
right-hand side of Eq. (160), involving second derivatives. In particular, considering
the first term γ̃klDkDlγ̃ij, we can find something similar to a Laplace operator acting
on γ̃ij. Introducing auxiliary variables, it is possible to rewrite it as a wave operator,
acting on the metric coefficients. In this way it is possible to obtain a formulation which
leaves free the coordinate choice, introducing new constraint and evolution equation for
the auxiliary variable. An example of this procedure consists in defining as auxiliary
variable

Γ̃i = −Dj γ̃
ij (162)

28See chapter 9 - ”Binary Neutron Stars Initial Data”, Baumgarte (2003), for more details.
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to rewrite the Ricci tensor as a Laplace-like operator. The evolution of Γ̃i is related to
the evolution of the spatial coordinates xi on each hypersurface Σt, which is governed
by the shift vector β, and to the choice of foliation, related to the lapse function α.
The choices of the shift vector and lapse function are therefore fundamental and will
determine the form of the 3+1 Einstein system to solve. We introduce as choice for α,
a foliation called 1+log slicing, where the condition for the lapse is in the form(

∂t − βi∂i
)
α = −2αK (163)

Foliations whose lapse function obeys this condition have a strong singularity avoidance
property and therefore are widely used in BBHs simulations. The prescription for the
evolution of spatial coordinates that we introduce is called Gamma freezing, obtained
from the condition

Dj
˙̃γij = 0 (164)

and, expressing the covariant derivative in terms of the Christoffel symbol Γ̄i
jk of the

metric f with respect to coordinates xi, and defining

Γ̃i := γ̃jk
(
Γ̃i

jk − Γ̄i
jk

)
(165)

Then Eq. (164), can be rewritten as

Dj γ̃
ij = −Γ̃i (166)

which is exactly our auxiliary variable of Eq. (162) and whose time derivative is zero:
for this choice Γ̃ does not evolve, from here the name. Writing this into a condition for
the shift vector β, one can find

∂Γ̃i

∂t
=γ̃jkDjDkβ

i +
1

3
γ̃ijDjDkβ

k +
2

3
Γ̃iDkβ

k − Γ̃kDkβ
i + βkDkΓ̃i

− 2α

[
πΨ4pi − Ãjk

(
Γ̃i
jk − Γ̃i

jk

)
− 6ÃijDj lnΨ +

2

3
γ̃ijDjK

]
− 2ÃijDjα

(167)

which is exactly the evolution equation, needed for the auxiliary variable in the BSSN
scheme, while Eq. (162), will be its constraint. The combination of punctured ID and
BSSN evolution scheme represents the pillar of the moving puncture paradigm used by
the BAM code, described in the next chapter.
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4 Numerical methods

This chapter will be dedicated to a detailed description of the numerical tools used to
develop this master’s thesis project. As mentioned, high-accuracy NR simulations are
today required to face the complex physics hidden within GW’s observations. However,
the production of this kind of codes can be very demanding, both in terms of complexity
and computational costs. Their development thus follows the most sophisticated algo-
rithms and state-of-the-art techniques. Among all possible choices, NR codes look for
those algorithms that can grant a satisfactory result in terms of accuracy, reliability, and
computational costs. For this reason, two main methods are nowadays adopted (Duez
et al., 2008):

• Finite differences schemes: they provide a simple and easy way to describe dynam-
ical fields. They should converge to the exact solution as some power of the grid
spacing, and, together with shock-capturing techniques, can be used to evolve flu-
ids with sharp discontinuities in a stable and accurate way. However, they require
the use of large grids in order to obtain accurate results (a problem that can be
partially resolved by using mesh refinement or higher-order schemes);

• Spectral methods: functions are approximated as a truncated series expansion,
written in a set of orthogonal basis functions. These methods allow to solve exactly
the derivatives of the approximated functions; particularly in the case of smooth
problems, they show exponential convergence to the exact solution and have been
shown to provide highly precise solutions in a large variety of problems from fluid
dynamics to astrophysics.

We begin this chapter with a description of the production of constraint-satisfying and
self-consistent ID. Being this problem of primary importance, significant efforts have been
made by the NR community, leading to the development of several codes. To name a few
of the most important ones: COCAL (Uryū and Tsokaros, 2012) is a code for constructing
quasi-equilibrium spinning BBH and BNS ID on circular, but not eccentricity-reduced
orbits 29; the FUKA code (Papenfort et al., 2021), useful for computing eccentricity-
reduced BBH, BNS, and BHNS binaries with aligned or anti-aligned spins; the public
code LORENE30 for quasi-equilibrium or corotational BBH, BHNS, and BNS, where only
black holes can have spin (either aligned or anti-aligned). The ID solver used to construct
the initial conditions for our simulations is Elliptica (Rashti et al., 2022), one of the

29Being the orbits of compact binaries nearly completely circularized just before the merger, the
orbital eccentricity computed by the code should be as close as possible to zero. Even a small value of
e ≈ 0.01 in the theoretical template can significantly degrade the accuracy with which we can measure
the tidal deformability. Therefore an eccentricity reduction routine is nowadays typically performed on
the ID.

30Lorene, Langage Objet pour la RElativité NumériquE, URL http://www.lorene.obspm.fr.
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most ductile codes available today thanks to its ability to describe compact binaries
with spin vectors pointed towards arbitrary directions, based on the XCTS method. The
output of this code will be then used to generate a series of quasi-equilibrium states and,
by putting them together, sequences (see section 5.1). The latter give us the possibility
to have a better understanding of physical interaction phenomena such as tidal effects
on comparable-mass objects, and can be considered a sort of approximate model for the
evolutionary path of the system. The complete evolution of these ID is then performed
using the latest version of BAM (Brügmann et al., 2008): a NR code based on the “moving
puncture” paradigm (see section 3.6) to simulate black hole spacetimes without excision,
adopting finite differences schemes and “moving boxes” mesh refinement.

4.1 Constructing the initial data with Elliptica

As mentioned in section 3.4 and 3.5 constructing ID in NR for a given BHNS initial
configuration means finding a solution for the constraint equations as well as for the
Euler’s equations, Eqs. (106), (108), (155). As we saw the former are obtained from
Einstein’s field equations, while the latter can be derived from the conservation of the
stress-energy tensor. There are different forms into which these equations can be cast;
the one chosen by Elliptica consists of a system of coupled nonlinear elliptic partial
differential equations (see section 3.4.3 and 3.4.4). Furthermore, the NS’s surface location
is not known a priori, but it is found as a solution for an additional algebraic equation
for the specific enthalpy31(Tichy et al., 2019). These equations are then solved on a
computational grid using a spectral method based on Chebyshev polynomials of the first
kind (Boyd, 2001) together with a Schur complement domain decomposition method
(SCDD) (Saad, 2003). However, the number of computations to be performed depends
on the number of points that we consider when discretizing the domain and can become
prohibitively expensive. The strategy adopted by the code to face this problem is to
subdivide the domain into subsystems and to solve each of them separately. This divide-
et-impera procedure allows to solve in parallel all the equations. To do that, Elliptica
considers a grid Ω with outer-boundary ∂Ω, covered by patches (Ω1,Ω2,Ω3, . . . ,Ωs where
s is the number of subdomains) that touch but never overlap, each of them described
by their own set of coordinates (see Fig. 15). It finds the solutions on the common
interfaces first where those patches are in contact to decouple the equations, and then
proceeds to solve them for each patch independently.

The equations are then solved iteratively until a given stopping condition is met
(e.g., the number of iterations is larger than some limit or the numerically computed
value of some boundary condition exceeds a certain tolerance). The coordinate system
assigned to each patch can be Cartesian or cubed spherical. In this way, it is possible

31The specific enthalpy can be shown to connect metric variable and matter variables, therefore
knowing h means knowing the matter distribution.
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Figure 15: Visualization of a two-dimensional grid Ω, covered by two subdomains Ω1

and Ω2 with a single common interface Γ. Image inspired from Rashti et al. (2022).

to separate matter and vacuum region into different patches to avoid Gibbs phenomena
(Boyd (2001)) in an efficient way (notice how the coordinates change inside and outside
the NS surface in Fig. 16). The transformation between Cartesian Coordinates xi =
(x, y, z) and cube-spherical coordinates X i = (X, Y, Z) is given by

X =
xI

xK
(168)

Y =
xJ

xK
(169)

Z =
xK − rin
rout − rin

(170)

where I, J,K ∈ 1, 2, 3 are all distinct and X, Y ∈ [−1, 1], Z ∈ [0, 1].

rin =
σin(X, Y )√
1 +X2 + Y 2

(171)

rout =
σout(X, Y )√
1 +X2 + Y 2

(172)

The inner and outer boundary of each patch is described by σin(X, Y ) and σout(X, Y )
respectively. These two values are related to Cartesian coordinates by the equation
σout(X, Y ) =

√
x2 + y2 + z2. For instance, if one requires a patch to be a perfect sphere

of constant radius R∗, a boundary condition σout(X, Y ) = R∗ could be adopted. In this
way, it is possible to choose a domain boundary that coincides with the NS surface.
The possibility of using different grids opens up the availability of different setups for
various purposes, including covering the NS or the space between the two bodies. It is
also possible to use a Cartesian coordinates patch around the center of each spheroidal
object, in order to avoid coordinates’ singularities that may arise for r=0.
As one can see from Fig. 16, the BH’s description for these ID follows an excision
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Figure 16: A computational grid implementing cubed spherical coordinates. In this
image, we can see a slicing of the domains through the xy-plane and their coordinate
lines. The right part of the domain covers the BH while the left one the NS. Their
surfaces are both roughly spherical. Focusing on the NS one can notice how the patches
form a central cube, surrounded by six cubed spheres (but only four of those are shown
since we are displaying a 2d slice). Figure taken from Rashti et al. (2022).

method (see section 3.5.1): everything contained inside the AH area is removed from the
computational domain and boundary conditions are imposed on the excised surface and
at spatial infinity in order to have a unique physical solution. As a final note, to close
the system of Einstein-Euler equations an EOS for the NS must be considered. The code
supports both polytropic and piecewise polytropic EOS, see Eq. (6).

4.1.1 Parameter space investigated

In order to maximize to probability of seeing a tidal disruption scenario, the parameters
of the simulations were chosen to fulfill the requirements seen in section 1.3, while main-
taining canonical astrophysical values for masses and spins. Here is a list of some of the
parameters that the user can specify in the parameterfile, all of them are expressed in
geometric units32 with G = c =M⊙ = 1.

• The NS’s baryonic mass- Defined as

MB =

∫
NS

(−Jµ
Bnµ) dV (173)

32We recall the main transformation rules to move from geometric to cgs units in Appendix C.
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where −Jµ
Bnµ is the baryonic mass density as measured by an Eulerian observer

and
Jµ
B = ρ0u

µ (174)

is the baryonic mass density 4-current, and u is the fluid 4-velocity. In terms of
3+1 decomposition, this equation can be rewritten as

MB =

∫
NS

ρ0αΨ
6√γ d̄3x (175)

following the notation of section 3.3. The relation between the baryonic mass and
the specific enthalpy is hidden in the rest mass density of the fluid ρ0 which is
actually a function of h.
The NS’s baryonic mass is a conserved quantity throughout the quasi-equilibrium
sequence, given the fact no mass ejection from the NS happens before the merger
and the continuity equation is not violated. Given its value and an EOS, it is then
possible to retrieve the gravitational mass of the isolated body using the TOV
equation for nonspinning objects. In the case of the ALF2 EOS, a gravitational
mass of Mgr = 1.44 is associated with the chosen value of MB = 1.60, so to be
consistent with the canonical NS mass value.

• An arbitrary EOS - In our case, ALF2, a piecewise-polytropic EOS with constants
K = (8.95 · 10−2, 2.82 · 108, 2.11 · 103, 7.43 · 10), density threshold for different
pieces ρth = (0, 3.15 · 10−4, 8.11 · 10−4, 1.62 · 10−3) and Polytropic index Γ =
(1.36, 4.07, 2.41, 1.89).

• The NS spin vector - During this simulations’ campaign only irrotational NSs have
been considered, being the most realistic ones for BHNS systems.

• The BH’s irreducible mass - Defined as

Mirr =

√∮
AH

dA

16π
(176)

where dA is the proper surface element of the apparent horizon defined as

dA =

√
γij
∂xi

∂ya
∂xj

∂yb
dyadyb (177)

where γij is the 3-metric and ya are coordinates on the apparent horizon (see section
3.5.1). This parameter was chosen with values of Mirr = 3.2, 4.8, 6.4 to have small
enough mass ratios (Q = 2, 3, 4 respectively).
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• The dimensionless spin

χi :=
Si

M2
Chr

(178)

chosen with values of χ = (0, 0, 0) and χ = (0, 0,±0.3) (so to have spin-aligned
simulations). In the formula, MChr is the BH’s Christodoulou mass defined as

MChr =

√
Mirr +

S2
BH

4M2
irr

(179)

and Si is the BH’s spin

Si =
1

8π

∮
AH

ϕis
kKjkdA (180)

with Kij being the extrinsic curvature, si the outward pointing unit normal on the
excised surface, and ϕ the flat space coordinate rotational Killing vector on the
apparent horizon. In terms of Cartesian coordinates xi = (x, y, z), the 3 vectors
ϕi take the form

ϕx = −(z − zc)∂y + (y − yc)∂z (181)

ϕy = +(z − zc)∂x + (x− xc)∂z (182)

ϕz = −(y − yc)∂x + (x− xc)∂y (183)

corresponding to a rotation about the x,y and z axis respectively and having ∂i

as the basis vectors associated with the coordinates used and (xc, yc, zc) as the
coordinate center of the BH.

• The BHNS coordinate distance - This parameter was taken with values between
d=62 and d=40 in order to have a fair representation of the dynamics of the inspiral
and at the same time to have ideal ID to generate simulations of a few orbits before
the merging, so as not to have too computationally expensive simulations but still
complete waveforms.

4.1.2 Iteration

Since this code adopts an iterative method to solve the equations, initial guesses are
required for the fields Ψ, βi, α, ϕ, and h on the computational grid. To do that, Elliptica
takes into account well-known analytical solutions for single objects such as the TOV
solution for the NS and the Schwarzschild solution in isothropic coordinate for the BH.
Having set all the parameters is then possible to solve the coupled elliptic PDEs by using
a Newton-Raphson algorithm. However, there is no guarantee that the two bodies’s mass
and spin will converge to the target values specified in the parameter file, resulting in
wrong estimations of the ID. Moreover, since the NS’s surface is found by numerically
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Mirr MChr χz,BH Q
3.20 3.20 0.0 2
3.20 3.24 ±0.3 2
4.80 4.80 0.0 3
4.80 4.86 ±0.3 3
6.4 6.40 0.0 4
6.4 6.47 ±0.3 4
MB Mgr R(TOV) C
1.60 1.44 6.88 0.17

Table 2: Input values for the construction of the ID, the upper values refer to BH
parameters while the bottom ones are related to the NS. All values are reported in
geometric units with G = c = M⊙ = 1. The polytropic EOS is ALF2. The initial
coordinate distances d = (40, 50, 52, 54, 60) in geometric units or d=(59.08, 73.85,
76.80, 79.76, 88.62) [km]

solving the algebraic equation for the enthalpy, its value will change at each iteration.
This problem can be solved by finding at first the surface and then readjusting the
coordinate patches so that the surface is forced to be a patch boundary. In order to
overcome these possible issues, it is crucial to monitor, modify, and control various
parameters at each step of the algorithm, which consists of an iterative procedure to
refine the results. The code starts solving the equations at a low resolution and continues
iteratively, adjusting the parameters until the chosen stopping condition is met, then
increases the resolution as much as needed and solves the system of PDE again. In this
way, it is possible to find a stable, unique and physical solution of the Einstein-Euler
equations. The criterion used to exit the algorithm is based on the computed value of
the Hamiltonian and momenta constraints (Eqs. (106) and (108), rewritten so to have
all the terms at the left-hand side and zero on the right-hand side):

H := R−KijK
ij +K2 − 16πE = 0 (184)

Mi := Dj(K
ij − γijK)− 8πji = 0 (185)

When the values of H and Mi are no longer decreasing, it means they have reached the
truncation error for that resolution (this behavior can be seen in Fig. 17 ).

The main steps of the iteration scheme to find the ID for BHNS systems are the
following:

1. Solve the elliptic PDEs;

2. Update the fields;

3. Adjust BH’s parameters to satisfy the target values of χBH and Mirr;
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H

Iterations

Figure 17: Evolution of the Hamiltonian constraint violation estimated in the 6 patches
surrounding the BH, for a simulation with resolution 20×20×20, Mbar = 1.6Mirr = 6.4,
and χz,BH = 0. When a sufficient amount of iterations has been performed, its value
reaches the truncation error and therefore a plateau appears in the plot.

4. Solve Euler’s equation to fix the NS baryonic mass;

5. Update the enthalpy;

6. Extrapolate the matter fields ϕ,wi and h outside the NS;

7. Shift the matter to keep the NS’s center fixed;

8. Find the new location of NS’s surface by solving for r the equation;

h(r) = 1 (186)

this will determine the value of σ(X, Y ), seen in 4.1;

9. Create a new grid and interpolate the fields’ values from the previous grid;

10. If constraints have plateaued exit or increase the resolution, otherwise go back to
1.

The maximum resolution considered depends on how large is the maximum error on the
constraint we tolerate. The number of iterations used during this project is 200 at the
lowest resolution (12 points per direction per patch) and 70 for the highest (20 points
per direction per patch), for some simulations it was necessary to increase the maximum
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resolution to 22 points with 30 iterations so to achieve better results. These simulations
were performed on the HPC- Cluster ARA33, on a single Intel Xeon node with 36 cores,
and took ≈ 96 hours of actual wall clock time, reaching ≈ 140 hours for those with higher
resolution.

4.1.3 Diagnostic

We conclude this section on Elliptica by verifying the exponential convergence expected
by this spectral code. Let’s consider the violation of the Hamiltonian and momentum
constraints. Fig. 18 shows the L2 norm34 of Eqs. (184) and (185). The violation of
these constraints decays exponentially for all the simulations. However, this can happen
at different paces, in particular for those patches close to the BH where quantities are
more difficult to estimate, it could be necessary to increase the resolution or the number
of iterations to achieve a better result. In Fig. 19, the final values of the binding
energy are represented per each resolution considered. As one can notice the values for
the highest resolutions(e.g. 16, 18, 20) tend to oscillate around an equilibrium value.
For this reason, the errors on this quantity are estimated as an arithmetic mean of the

2 L 
no
rm

Resolution N

2 L 
no
rm

Resolution N

Figure 18: Spectral convergence of the Hamiltonian and momentum constraint as func-
tion of the resolution. On the vertical axis we can see the value of the L2 norm of each
constraint: we could consider it as a sort of residual between the numerically computed
result and the theoretical value we wish to obtain. In the right panel, we can see how
the violation of the constraints is still too high with resolution 20. For this simulation
was therefore necessary to increase the points per direction to 22. Patch considered: left
frontal around NS (right panel), and right frontal around BH (left panel).

33A description of this facility can be found at https://wiki.uni-jena.de/pages/viewpage.

action?pageId=22453005, access date: 13 October 2023

34The L2 norm of a quantity q is defined as |q|2 =

√∑N
i=1 q

2
i

N
where the summation considers all

grid points that contain valid data.
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relative differences between the last three higher resolutions. It is also interesting to
notice how the fluctuations can become larger both as the coordinate distance increases
or decreases significantly. This effect can be due to a relaxation of the hypothesis on
which the ID are built: objects that are not enough separated from each other cannot
be completely described on an AF spacetime, nor considered as isolated. On the other
hand, simulations with a too large spacing will go through a degradation of the resolution
on those patches which not located around the bodies.

Figure 19: Final value obtained for the binding energy at different resolutions. The itera-
tion scheme adopted is 12(×200), 14(×100), 16(×100), 18(×100), 20(×70) per direction
per patch. Parameters of the simulations Mbar = 1.6 Mirr = 4.8, χz,BH = 0
, and coordinates separation d = 35 (left panel) and d = 62 (right panel).

4.2 Evolving the data with BAM

Once the ID production has been concluded, the following step involves evolving those
data. To do this, we adopted the latest version of the BAM code, initially proposed in
Brügmann et al. (2004) and furthermore updated in Brügmann et al. (2008), Thierfelder
et al. (2011), and Dietrich et al. (2015). This code exploits a different description of
the BH’s interior: while for Elliptica an excision method was employed, BAM adopts a
moving-puncture gauge. Solving this incompatibility requires an ad hoc technique to fill
the empty BH’s interior with arbitrary smooth data (at least C2 across the AH). It can
be shown (Brown et al., 2007) that any constraint violations introduced inside the black
holes cannot affect the exterior spacetime, therefore we can robustly exploit a seventh-
order polynomial extrapolation of all the field values, using radial uniform points, for
r ≥ rAH . However, this ID reading procedure is not as straightforward as one may think,
and the technique explained above can be quite demanding in terms of computational
resources.

The code works by splitting the computational domain into hierarchical cells, nested
inside each other, using Cartesian grids with an increasing refinement factor of 2. This
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Figure 20: Grid structure for simulations using lmv = 4. Left panel: Three-dimensional
plot showing l = 0, 1, 2, 3, 4. The outermost boxes used by BAM are static cubes centered
on the origin. Right panel: 2-dimensional snapshot showing the density field of the
simulation (nmv=64, BH finest refinement level l = 8, NS finest refinement level l = 6).
Only levels l = 5, 6, 7, 8 are displayed: in this way, it is possible to notice how the finest
levels are centered on the two compact bodies. As one can notice, between consecutive
levels the size is halved, while the grid spacing is doubled, therefore the number of points
nmv remains constant

means that each level of refinement (labeled from l = 0 being the coarsest, outermost
one, to l = L − 1 being the finest one) will have its own Cartesian grid with a given
spacing hl = h0/2

l (where h0 is the grid spacing in the outermost level). The domain
decomposition performed with this approach is such that the coordinate extension of
any level l, will be completely covered by the one of level l − 1 (right panel of Fig.
20). The user is allowed to consider the innermost levels centered on the BH and NS
respectively, while the outermost can be centered on the center of mass frame origin as
long as the hierarchy is followed. In this way, the resolution of the simulation will be
maximal close to the compact bodies, and minimal at spatial infinity, avoiding the waste
of computational resources.

Refinement levels above a given user-defined threshold lmv, have the possibility to be
dynamically moved and modified, as to follow the orbits of the two objects, adopting
a ”moving boxes” technique. A usual choice for that consists in taking as static the
outermost ones so to avoid unnecessary grid motion. Specifically, the code creates boxes
with nl points per direction (for a total of n3

l points on level l) which are allowed to
move, always remaining contained inside the parent level. In order to obtain this, those
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levels that are static will require a slightly larger box in order to contain the moving
ones, from now on the points associated with the moving levels will be referred to as
nmv, while the notation n will be associated to static points35. Typically these boxes are
cubical on the finest levels and follow the motion of the two bodies. However, as they
overlap, the code replaces them using the associated bounding box, which is the smallest
rectangular (in general non-cubical) box containing the two original ones (Fig. 21). A
typical initial configuration for a binary system consists of two separate cubical boxes,
located on the finest levels available on each object, but as we consider coarser levels,
their size increases until overlapping, and a single rectangular box is formed, becoming
more and more cubical as we move toward l = 0 (left panel of Fig. 20). The variables are
then discretized at the center of each grid cell. This means that, on level 0, with spacing
h0, the value of the considered function will be estimated in h0/2 + j (with j being an
integer number), on level 1 it will be h1/2+j = h0/4+j, on level 2 at h2/2+j = h0/8+j
and so forth. The data is then transferred between levels using a sixth-order polynomial
interpolation and spatial derivatives are computed using fourth-order finite differences.
In order to reduce the computational costs of these simulations, a bitant symmetry
(i.e. reflection along the z=0 plane) is implemented. Time evolution is performed by
adopting explicit 4th-order Runge-Kutta schemes, together with a Berger-Oliger type
adaptive mesh refinement (AMR) (Berger and Oliger, 1984) to increase its efficiency. Its
algorithm consists in choosing a user-defined level lBG and dividing by a half the value
of the time-step for each level above lBG. Here’s an example of a Berger-Oliger time
stepping procedure for the first iteration performed on a grid with 8 refinement levels,
lBG = 6, h0 = 8.

l e v e l i t e r t s t ep h
0 1 1 .6 e−01 8 .000 e+01
1 1 1 .6 e−01 4 .000 e+01
2 1 1 .6 e−01 2 .000 e+01
3 1 1 .6 e−01 1 .000 e+01
4 1 1 .6 e−01 5 .000 e+00
5 1 1 .6 e−01 2 .500 e+00
6 1 1 .6 e−01 1 .250 e+00
7 1 7 .8 e−02 6 .250 e−01
8 1 3 .9 e−02 3 .125 e−01
8 1 3 .9 e−02 3 .125 e−01

7 1 7 .8 e−02 6 .250 e−01
8 1 3 .9 e−02 3 .125 e−01
8 1 3 .9 e−02 3 .125 e−01

35Being n ≥ nmv always, the value of lmv can impact significantly the computational costs. The
user should therefore consider the trade-off between unnecessary motion and unnecessarily larger boxes
before choosing this parameter.
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Figure 21: Snapshot of moving boxes structure for a simulation with 8 refinement levels
on the BH and 6 on the NS. In the three panels, we can see the structure of the boxes
on moving levels l = 4, 5, 6, 7, 8. While at the beginning of the simulations the moving
boxes are independent cubes, as they overlap, the code replaces them with the smallest
rectangular box containing the two initial boxes. This happens first for the boxes on
level 5 (second panel), and then for the boxes on level 6 (third panel). Noteworthy is the
shape of level 4 which moves from being rectangular to cubical as the simulation evolves.
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4.2.1 Hydro-Scheme

To describe the evolution of the matter field, the code solves for the general-relativistic
hydrodynamics (GRHD) equations (see section 3.5.2) in first-order flux-conservative form
36, so that:

∂tq = −∂if i(q) + s(q) (187)

where q =
√
{γ{D,Si, τ)} being the vector of the Eulerian conservative variables defined

in terms of the primitive variables as

D = Wρ, Si = W 2ρhvi, τ = (W 2ρh− p)−D (188)

where D is the rest-mass density, Si is the momentum density and τ is the internal
energy as viewed by an Eulerian observer. The primitive variables are the rest-mass
density ρ, the pressure p, the specific internal energy ϵ, and the 3-velocity vi of the fluid
(considered as perfect and simple, i.e. made of just one particle’s species). Additionally,
we define the Lorentz factor W = 1/

√
1− vivi, the specific enthalpy h = 1+ ϵ+p/ρ, and

the determinant of the 3-metric γ. The associated flux f(q) along direction i are then
defined as

f i =
√
−g
{
D

(
vi −

βi

α

)
, Sk

(
vi − βi

α

)
+ pδik, τ

(
vi − βi

α

)
+ pvi

}
(189)

while the source term is given by

s =
√
−g
{
0, T 00

(
1

2
βiβj∂kγij − α∂kα

)
+ T 0iβj∂kγij + T 0

i ∂kβ
i +

1

2
T ij∂kγij,

T 00βiβjKij − βi∂iα + T 0i
(
2βjKij − ∂iα

)
+ T ijKij

} (190)

and is finite even in the presence of physical shocks since it is not related to any
derivative of the fluid variables. Moreover, all of its component vanish in the case of a
flat spacetime described by Cartesian coordinates. However, in general, among the four
equations of the system (187), only the first one is a conservation law

∂tq
(D) + ∂if

(D)i = 0 (191)

being the source term always zero, we associate a conserved quantity: the baryonic (or
rest-) mass Mb here defined as

Mb =

∫
d3qD =

∫
d3
√
γD (192)

36Rezzolla and Zanotti (2013), for references.
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This quantity should remain constant on each level and could be used to test the perfor-
mance of the conservative AMR scheme. As a matter of fact, one of the main problems
of simulating hydrodynamical flows with AMR techniques is to ensure the global con-
servation of mass even in the presence of shocks, contact discontinuities, or sharp gradi-
ents. For this reason, the code adopts a high-resolution-shock-capturing method (Mart́ı
and Müller, 1999) based on primitive reconstruction, performed using 4th-order WENO
scheme (Borges et al., 2008), and the Local-Lax-Friedrich’s (LLF) central scheme for the
numerical fluxes in a similar way to what was done in Zanna and Bucciantini (2002).
Considering the semi-discretized description37 of Eq. (187) along the x direction only:

dqi,j,k

dt
= si +

1

h

(
Fi− 1

2
,j,k − Fi+ 1

2
,j,k

)
(193)

where h is the grid spacing and F are the numerical flux, or better, high-order approxima-
tions to the primitives of physical fluxes. This means that cell averages of the F(x) func-
tion must coincide with point values fi,j,k of the flux function f(x) (Fi± 1

2
,j,k = fi± 1

2
,j,k).

These equations are then integrated in time using a 4th order Runge-Kutta method.
This explicit time-advancing scheme is stable under the Courant-Friedrichs-Lewy con-
dition c < 1, therefore, a canonical value of 0.25 was chosen for this factor. For every
Runge-Kutta cycle and for every direction the code has to reconstruct the primitive vari-
ables from the conservative ones and to define the numerical fluxes on the cells’ interfaces.
We report here the principal steps of this procedure:

1. Retrieve primitive variables from conservative ones:

{qi} → {pi} i = 1, 2, . . . , N

2. Reconstruct the primitive variables at cell interfaces (both right and left):

{pi} → {pL
i+1/2}, {pR

i+1/2} i = 0, 2, . . . , N

3. Solve the Riemann problem at each inter-cell point. In this project, the fluxes
fi+1/2 are computed using LLF as Riemann solver so that

fLLF,

i+ 1
2

=
1

2h
(fL + fR − a(qL − qR)) (194)

The parameter a is the maximum of the local characteristic speed and the labels
L and R stand for Left and Right interface respectively.

4. Calculate the derivative.

37That is to say keeping continuous time dependency in spatially discretized quantities.
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The different elements of the algorithm used to evolve hydro-dynamical variables con-
tribute differently to the error budget: while some errors converge rapidly, others tend
to dominate. According to previous results (Thierfelder et al., 2011), the overall error
is expected to be dominated by the truncation error of the finite differences: in this
case the matter high-resolution-shock-capturing scheme is at most 2nd order accurate.
In this way the evolved fields and those relevant post-processed quantities such as the
gravitational waves and the constraints, are expected to reach the continuum solution
with a 2nd order convergency rate. Another problem may arise from the description of
low-density material characterizing accretion disks and dynamical ejecta. In particular,
the latter can be significantly challenging to calculate on a grid, being their densities
several orders of magnitude smaller than the typical NS maximum density (see section
5.5).

Related to that is the problematic description of vacuum regions outside the stars.
Formally the GRHD equation can not be applied here and at the same time the numerical
algorithm can not be used since the equations necessary to recover the primitives from
the conservatives are singular: this makes the description of vacuum around the NS
problematic already at a Newtonian level. A standard method to face this problem
is to replace the vacuum with a minimal atmosphere characterized by a density several
orders of magnitude smaller than the typical density of the system. The main assumption
behind this technique is that, being the atmosphere’s density extremely small, it will have
a negligible dynamical impact and, as a matter of fact, we found it sufficiently robust for
our purposes. However, this description could in principle lead to the violation of mass
conservation and could potentially invalidate the improvements related to conservative
AMR. Following Thierfelder et al. (2011), a low-density static and barotropic atmosphere
was used with density

ρatm = fatm ·max[ρ(t = 0)] (195)

In this way, a point is set to the atmosphere if its density is below the threshold

ρthr = fthr · ρatm (196)

The values used for this project are fthr = 100 and ρatm = 10 · 10−10.

4.2.2 Gravitational wave extraction

The extraction of physical information from NR simulations is typically a non-trivial
task. The reasons for that are essentially two: the numerically computed functions are
coordinates dependent, and, secondly, we must be sure to define in a general relativis-
tic framework, in an unambiguous way, those quantities typically used to describe local
systems in other areas of physics. For the problem that we have to face, the most im-
portant quantities to be extracted are the energy and momenta carried away by the
emission of GWs and their precise shape as seen by a detector at a large distance from
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Figure 22: Qualitative plot to provide a visualization of the complicated description of
the atmosphere. Simulation with nmv = 128, LLF scheme. The density is reported
in geometric units. A spurious emission of particles is happening during the evolution
without affecting substantially the results.

75



the binary system. The method adopted to extract these quantities was based on the
Newman-Penrose approach (see section 2.2.3), the code will thus focus its effort on the
calculation of the Newman-Penrose scalar ψ4. It starts by assuming known values for
the ADM variables gij and Kij on a given hypersurface Σt, then constructs a triad of or-
thonormal spatial vectors by applying the Gram-Schmidt orthonormalization procedure
to the three-dimensional vectors

ui = (−y, x, 0),
vi = (x, y, z),

wi = giaεabcu
avb

with εabc being the permutation tensor. The tetrad vectors are then

n0 =

√
1

2α

(
−βi

α
− vi

)
,

l0 =

√
1

2α

(
−βi

α
+ vi

)
,

m0 = 0,

ni =
1√
2

(
−βi

α
+ vi

)
,

li =
1√
2

(
−βi

α
− vi

)
,

mi =
1√
2

(
ui + iwi

)
.

The next step consists in defining the ψ4 scalar in terms of the three-dimensional
quantities available on each slice. This can be done using the Gauss-Codazzi equations
(see section 3.3) which relate the spacetime projections of the four-dimensional Riemann
tensor to its three-dimensional counterpart and to the ADM variables. The contribution
of each mode (ℓ,m) is then obtained by projecting it onto -2 spin-weighted spherical
harmonics Y −2

ℓm . These projections are defined using a scalar product

Aℓm = ⟨Y −2
ℓm , ψ4⟩ =

∫ 2π

0

∫ π

0

ψ4Y
−2
ℓm sin θ dθ dϕ (197)

the integrand is evaluated on the Cartesian grid and interpolated onto a sphere of radius
rext (from now on called extraction radius) using fifth-order polynomials. The spherical
integration is performed using the fourth-order Simpson method. Furthermore, it is
possible to define the energy and momenta radiated away in terms of the ψ4 scalar using
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the expressions:

dE

dt
= lim

r→∞

[
r2

16π

∫
Ω

∫ t

−∞
|ψ4d̃t|2dΩ

]
, (198)

dPi

dt
= − lim

r→∞

[
r2

16π

∫
Ω

ℓi

∫ t

−∞
|ψ4d̃t|2dΩ

]
, (199)

dJz
dt

= − lim
r→∞

{
r2

16π
Re

[∫
Ω

(
∂ϕ

∫ t

−∞
ψ4d̃t

)(∫ t

∞

∫ t̃

−∞
ψ4 d̃td̂t

)
dΩ

]}
(200)

where
ℓi = (− sin θ cosϕ,− sin θ sinϕ,− cosϕ) (201)

and can be simplified using Eq. (197):

dE

dt
= lim

r→∞

 r2

16π

∣∣∣∣∣
∫ t

−∞

∑
lm

Almd̃t

∣∣∣∣∣
2
 (202)

In particular, from this formula, one can study the energy radiated away by an individual
mode by using only one term inside the summation. The results of this analysis can be
found in section 5.3.

4.2.3 Ejecta

The coalescence of compact binaries involving NSs is characterized by the emission of
relativistic particles, whose energy is sufficient to leave the gravitational system (Li and
Paczyński, 1998). The code identifies these particles as the fluid’s elements that satisfy:

ut < 1 and v̄r = vixi > 0 (203)

where ut = −W (α − βiv
i) is the first lower component of the fluid 4-velocity, and

xi = (x, y, z) so that the first condition is obtained for fluid elements following geodesics
and requires that the associated orbit is unbound, while the second requires that the
material has an outward-pointing radial velocity. Integrating those fluid elements that
satisfy this condition, one can calculate the unbound mass from the baryonic rest mass

MV
ej =

∫
U
q(D)d3x (204)

where the region of integration is defined as

U = xi = (x, y, z) : ut < −1 and vr > 0 (205)
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A possible draw-back is that the ejected material could decompress and obtain densities
of the order of the artificial atmosphere. If this is the case, then the fluid particles will not
be included in the computation of the dynamical ejecta any longer and their mass will
be possibly underestimated. Another method implemented in BAM consists in computing
the ejecta mass through the matter flux across a coordinate sphere. In this way this
effect is reduced since the decompression of material outside the sphere does not impact
the computation of the mass:

MS
ej =

∫ t

0

dt′
∫
r=rs

[Du(αv
i + βi)ni]r

2dΩ (206)

where ni = xi/r with r =
√
xixi and Du denotes the unbound fraction of conserved rest

mass density D. The ejecta computed by BAM do not take into account the chemical
composition, the presence of neutrinos, or magnetic pressure. Therefore, they can not
be used to make assumptions related to the microphysics of the system or to the galactic
abundances. The only two quantities typically described in the literature are their masses
and velocities which can be therefore used to estimate the lightcurve of an EM radiation
(Chaurasia et al., 2018).

4.3 Diagnostic

4.3.1 Waveform accuracy

The accuracy with which GWs are computed relies on a series of different factors. Among
the most relevant sources of uncertainties, we have the truncation error of the numerical
scheme and the fact GWs are extracted at a finite radius (Bernuzzi et al., 2012). There
are other aspects that however could have an impact on the computation of the waveforms
such as the number of orbits, and the presence of residual eccentricity in quasi-circular ID.
This analysis has been performed by changing grid’s parameters such as the resolution
and the number of refinement levels on the BH. As typically done in literature, the
waveforms are obtained by reconstructing the multipolar modes hℓm. Following Reisswig
and Pollney (2011), it is possible to show that the strain and the ψ4 are related by:

h = h+ − ih× =

∫ t

−∞
dt′
∫ t′

−∞
dt′′ψ4 (207)

being ḧℓm = ψℓm. Each mode hℓm is then decomposed in amplitude Aℓm and phase ϕℓm

as:
hℓm(t) = Aℓm(t)e

−iϕℓm(t (208)

Another relevant quantity in this analysis is the time at which the compact bodies merge,
defined as the moment in which the maximum value of the amplitude A22(t) occurs. As
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Figure 23: Real part (blue line) of the ℓ = 2,m = 2 mode for a simulation with Q = 2,
res=96 and 8 refinement levels. On top of it, the amplitude is represented as a yellow solid
line. The presence of some eccentricity in the ID explains the non-perfectly monotonical
behavior typical of chirp-like signals.

one can see from the plots (Fig. 24) its value is significantly dependent on the resolution
of the simulation, meaning that the physics of the coalescence can vary with the value of
nmv for a not convergent series of simulations. All quantities in this section are expressed
in terms of the retarded time u, defined as

u = t−
[
rext + 2M ln

( rext
2M

− 1
)]

(209)

whereM is given by the sum of the gravitational masses of the two bodies. The expected
waveform is characterized by the chirp-like shape typical of quasi-circular inspirals, fol-
lowed by a ringdown. However, the presence of some leftover eccentricity in the data
may affect the amplitude of the signal in the early time (see Fig. 23). This could
lead to parameter biases if one uses the resulting waveform during a GW analysis, and
should therefore be removed using an eccentricity reduction routine. However, this pro-
cedure was not performed during this project due to the restricted amount of time at
disposal. The analysis of the waveform’s accuracy is typically performed by consider-
ing both phase and amplitude plots at different resolutions and extraction radii using
a minimum of three simulations at different grid resolutions. Using the data from BAM,
several authors found second-order convergence e.g. Bernuzzi and Dietrich (2016), using
nmv = 96, 128, 192. However, performing simulations with this level of resolution exceeds
the resources available for this project, therefore we restricted the maximal level of res-
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olution using nmv = 64, 96, 128 even though simulations with nmv = 64 are known to
be too low quality to show second-order convergence, and therefore should be discarded.
The production of a convergence series is therefore left as a possible follow-up for this
project. In this respect, the available data can be used to compare the cost and the
quality of different configurations.

Once the data are available, the convergency rate p can be found experimentally by
using a scaling factor SF (Bernuzzi et al. (2012))

SF =
∆p

L −∆p
M

∆p
M −∆p

H

(210)

Where L, M, H stands for low, medium, and high resolution and ∆x is the grid spacing at
resolution x. These differences should decrease with increasing resolutions (as expected
from convergent data), but should also increase for longer simulations, being the trunca-
tion error accumulated over multiple iterations. Once convergence has been proved, the
error assigned to the highest resolution data is given by the difference between those data
with the highest quality. However, with the best data available (nmv=64, 96, 128 and 8
refinement levels on the BH) only a convergence rate p = 7 was found, corresponding to
a scaling factor SF (7) = 18.56. These results can be seen in Fig. 25.

To determine the effects of extracting the waves at finite radii ri, we can compare the
differences in amplitude and phase between consecutive radii so that

∆ϕ22(ri) = ϕ22(ri)− ϕ22(ri − 1) (211)

and the same for the amplitudes. By plotting these quantities, it is possible to notice
how these waveforms converge at spatial infinity. Moreover, the phase differences are
larger at early times and decrease towards the merger, pointing out an opposite trend if
compared to resolution effects where phase differences increase approaching the merging
time (see Fig. 25). In Fig. 26, we can see the plot of these quantities, estimated for radii
r = 300, 400, 500, 600, 700, 800, 900M⊙ for a simulation with nmv = 64 and 6 refinement
level. Even if this simulation has the lowest quality configuration, the convergence of
these quantities is well visible, with relative differences in amplitude around 10−3 for the
majority of the radii.

The total error budget can then be computed as the sum in quadrature of the trun-
cation and finite extraction errors. As a closure note, it is important to mention that
being the waveform detected at a very large distance from the production region, a
subsequent procedure consists of extrapolating the simulated waveforms at null infinity
(Lousto et al., 2010).
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Figure 24: Waveform at resolution 64, 96, 128 and 6 refinement levels. The gray area
includes the time difference at merging for the highest and the lowest resolution. Zooming
in, it is possible to appreciate the big difference between resolution 64 and the other two.
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Figure 25: Self convergence test using resolutions 64, 96, 128 and 8 refinement levels. The
gray area shows the time difference at merging for the highest and the lowest resolution.
The dashed line represents the H-M difference, rescaled by a scaling factor SF(7). With
these data it was therefore impossible to retrieve a second-order convergence.

0 50 100 150 200 250 300 350 400
u/M

5

4

3

2

1

0

1

lo
g 1

0|
* A

22
/A

22
|

0 50 100 150 200 250 300 350 400
u/M

4

3

2

1

0

1

lo
g 1

0|
*

22
(R

i)|

Ri=400
Ri=500
Ri=600
Ri=700

Figure 26: Amplitude (left) and phase (right) differences between Rψ22 extracted at
consecutive finite-radii ri = 400, 500, 600, 700 M⊙ for a simulation with resolution 64
and 6 refinement levels.
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4.3.2 Costs and quality of the data

In this section, a quantitative comparison of the different simulations will be provided.
The first two simulations of Table 3 were performed on the HPC-cluster ARA using 6
CPUs per task, 4 tasks per node, and a total of 4 nodes per job. The remaining simu-
lations were performed on the HPC-cluster DRACO38 using the same configuration of
CPUs, but working on 2 nodes only being their memory allocation sufficient to efficiently
run the simulations for this project.

Figure 27: Visualization of the orbits for simulation with mass ratio Q = 3 (left panel)
and Q = 4 (right panel).

The binary configurations evolved consisted of mass ratios Q = 2, 3, 4 and initial
distance s = 40, 50, 54 (geometric units) respectively, to obtain simulations with enough
orbits to generate a complete waveform with information from the late inspiral, merging,
and ringdown phase. More specifically, three circular orbits were obtained for mass
ratio Q = 2, 3 while for mass ratio Q = 4 only two orbits were considered as to reduce
the computational costs, Fig. 27. However, looking at the values reported in Table 3
one could notice that, even considering a shorter simulation, the data obtained with
the highest mass ratio are consistently the most challenging and difficult to compute. In
terms of computational costs, one of the main tradeoffs is the one involving the resolution
and the number of refinement levels. In particular, the amount of memory that the code

38More information on the cluster can be found at https://confluence.uni-jena.de/display/

URZ010SD/HPC-Cluster+Draco, access date: 13 October 2023.
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has to allocate per timestep scales like:

ntot =
lmax∑
l=0

nvar · n3
l (212)

where nvar = 229 is the number of variables computed on the grid and nl stands for the
number of points on level l per dimension (so equal to nmv or n if we consider moving
or static levels). It is therefore fundamental to choose how many refinement levels to
consider in order to have an accurate description of the physics behind the coalescence
while saving on computational resources. During this project the analysis of the number
of refinement levels to use was performed by changing the maximum number of refinement
levels on the BH, where the violation of Hamiltonian and momenta constraint reach
their maximum. As one can see from the bottom panel of Fig. 28, data obtained with
6 refinement levels shows too low-quality results to make quantitative assumptions on
quantities such as the merging-time, the energy and momentum radiated away via GWs
etc. This also means that the physics of the problem itself can change with the adopted
resolution.

nmv n lmax hlmax[M⊙] Q speed[M/hr] wall-clock time[hr]
64 128.0 6 0.23 2 53.0 90
64 128.0 8 0.06 2 22.0 200
64 76.8 9 0.03 2 30.0 144
96 124.8 6 0.15 2 32.6 141
96 124.8 8 0.04 2 17.0 288
128 166.4 6 0.12 2 18.0 294
64 115.2 6 0.22 3 87.5 42
64 115.2 8 0.05 3 47.4 120
64 83.2 9 0.03 3 30.3 213
96 124.8 6 0.15 3 30.5 147
96 124.8 8 0.04 3 16.7 386
128 166.4 6 0.11 3 19.0 144
128 166.4 8 0.03 3 12.5 410
64 83.2 6 0.22 4 105.0 72
64 83.2 8 0.05 4 35.0 144
96 124.8 6 0.15 4 30.7 119
96 124.8 8 0.04 4 17.0 265
128 166.4 6 0.11 4 18.0 239

Table 3: Performance of BHNS run. The data include Elliptica ID interpolation. The
notation lmax refers to the BH finest refinement level and hlmax to the grid spacing in
that level.
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Figure 28: Waveform for a simulation with mass ratio 3, resolution 64, and refinement
levels on the BH 6,8,9 respectively. In the bottom panel, a zoom of the waveform shows
how the data with 6 refinement levels are insufficient to obtain quality simulations.
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Figure 29: Amplitude (left) and phase (right) for a simulation with resolution 64 and 6, 8,
9 refinement levels on the BH respectively. The behavior shown by the phase differences
is again the one seen before for resolution effects.

This aspect can be further appreciated when looking at the dynamical ejecta’s mass
computed using Eq. (206) (Fig. 30) on a sphere of radius rs = 200M⊙ ≈ 295 km where
the effects of the resolution can impact the number of elements leaving the system. In
this respect, exact quantitative statements can not be made and the discussion should be
just considered as qualitative (Chaurasia et al., 2018)39. Moreover, the choice of rs could
result in an underestimation of the total ejecta mass by up to ≈ 20% (Radice et al., 2016)
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Figure 30: Cumulative ejected mass for a simulation with mass ratio Q = 2, resolutions
64, 96, 128 and 6 refinement levels.

39See also Dietrich and Ujevic (2017) for more details.
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becoming more material unbound at larger radii. However, increasing the extension of
the coordinate radius, one could obtain data potentially affected by unphysical artifacts
related to the ejecta’s density approaching the floor value assigned to the numerical
atmosphere.
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5 Results

We report in this chapter the results of this project. It will start with the construction
and analysis of quasi-equilibrium sequences based on the simulated ID, and will continue
with a section dedicated to the physics behind the evolutionary simulations, focused on
the characteristics of the merger remnants, the complete waveforms, and the dynamical
ejecta. As a reminder, the data simulated are based on nonrotational NSs with fixed
ALF2 EOS and baryonic rest mass Mb = 1.6. The BH is taken with Mirr = 3.2, 4.8, 6.4
and non-dimensional spin aligned to the orbital plane with values of χz = 0,±0.3. We
work therefore in the frame of comparable-mass binaries, expecting the NS to be tidally
disrupted outside of the BH’s ISCO. The dynamics and the emission of GWs of the
nonspinning data are systematically compared.

5.1 Quasi-equilibrium sequences

The emission of gravitational radiation in GR prohibits exactly stationary equilibria of
binaries. Still, it is possible to construct quasi-equilibrium states, assuming the emission
of GWs during the inspiral as a quasi-adiabatic process. This assumption breaks only
when the system approaches coalescence, when the radiation reaction time scale and the
orbital period become comparable. For inspiral binaries, it is thus possible to obtain
approximately stationary solutions to EFE, obtained by solving the constraints and
hydrostationary equations. Series of quasi-equilibrium states are called quasi-equilibrium
sequences: they can bring invaluable information about the tidal interaction in GR
and can be used to check the quality of the simulated ID for a subsequent dynamical
evolution. As seen in section 1.3, their possible ending are two: either a mass-shedding
point is found, marking the end of the existence of quasi-equilibrium configurations, or
an orbital instability is met. For these purposes, they are typically parameterized by
the angular velocity Ω or by the orbital angular momentum J = JADM −SBH −SNS,
with JADM defined in Eq. (129), as to provide additional information related to the
spatial separation of the two objects: while the first one will increase as the two bodies
approach during the inspiral, the second is expected to decrease due to the emission of
GWs. Therefore Figs. 32 and 33 can be considered as a time evolution of equilibrium
states, reading the plots from left to right and from right to left, respectively. Quasi-
equilibrium states are described by a specific value of the gauge-invariant binding energy,
here defined as:

Eb =MADM −M (213)

whereMADM follows from Eq. (123), andM stands for the cumulative gravitational mass
of the isolated compact bodies as if they were located at an infinite distance from each
other (explicitly M = Mgr +MChr). Eb is therefore a quantity always negative, which
would ideally remain constant during the inspiral in a Newtonian description, but that
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Figure 31: 3D volume rendering of the contour of the NS rest mass density for a simula-
tion with Q = 3, res=128, lmax=8, snapshot taken on level 4. The AH of the BH is also
reported. The camera rotates around the merging to fully describe the distortion of the
NS after the mass-shedding limit is reached (first panel). The NS is sectioned to show
the internal density gradient.

actually changes thanks to the emission of GWs in a GR framework. Data are normalized
by the value40 of M so to have Eb/M [= Eb/(Mc2)], J/M2[= cJ/GM2], ΩM [= GΩM/c3].
As mentioned in section 3.5, we can study the dynamics of the inspiral by looking for
those values for which the motion becomes unstable, searching for the presence of a
plateau or a cusp in the Eb/M -ΩM or Eb/M -J/M2 plane respectively for those curves
computed with PN approximation. Interestingly enough, no cusp can be found in the
Eb/M vs J/M2 curves of the EOB model, being the dynamics of the system described
correctly until the coalescence, while for the PN, which consists of approximations for
point particles, the mass shedding point can not be identified and therefore the cusp
is always present. From Fig. 32 we can see that no orbital instability is found along
the simulated sequences, matching our expectation. However, in the case of mass ratio
Q = 3, 4 the location of the ISCO (that one can identify from the cusp visible on the
3PN curves of Fig. 33), is too close to the mass-shedding limit to fully appreciate the
post-merger phase. This result was expected from Eq. (4) where we can see how the
ISCO is pushed outward as we consider more massive BHs. Moreover, Eq. (5) suggests
that the ratio between the compact body separation at the mass-shedding point and the
radius of the ISCO, decreases for larger values of Q: this means that for mass ratios
sufficiently large, the presence of tidal effects will become irrelevant and the dynamics
will reduce to the one of the two-point-particle problem in GR.

The analysis of the ID was performed over different steps, starting from the simplest
scenario of nonspinning ID, we compare the equilibrium states computed with Elliptica

to the binding energy from a third-order PN approximation (Eq. 3 from Blanchet (2002)),
visible in the plots as a dashed black line. The results agree quantitatively with this
theoretical model for point particles, with differences in the order of 10−4, which are

40For NR data points we used the last calculated value of MChrfor the BH, while for the NS mass
we use the value obtained from the numerically solved TOV equation.
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expected towards higher frequencies where tidal effects start to dominate. We introduced
then the curves obtained from the EOB model TEOBResumS, which, as mentioned in
section 2.6 includes tidal and spin-orbit effects. While for large separations none of
these effects affect the dynamics, they become more relevant as the bodies get closer:
therefore the associated curves, which initially converge, are expected to diverge toward
the final part of the inspiral. Specifically, the spin-orbit contribution is by definition
negative, consequently, when we introduce a positive spin this effect will be added to
the nonspinning model, resulting in a curve with even more negative values. Conversely,
when negative spins are considered, the spin-orbit contribution is going to be positive,
leading to a less negative curve. This hierarchy can be appreciated by looking at the green
and purple solid lines of Fig. 32 which lay respectively below and above the nonspinning
red curve.

5.2 Analytical fits of the numerical data

A better description of the role played by spin and tidal interaction during the inspiral
phase can be achieved by considering a binding energy that encompasses four distinct
contributions at leading order, following Bernuzzi et al. (2014)

Eb ≈ e0 + eSO + eSS + eT (214)

which are respectively a nonspinning point mass term e0, a spin-orbit (SO) term eSO,
a spin-spin (SS) term eSS that we will not consider since only irrotational NSs were
simulated, and a tidal term eT . All of them have different PN contributions, starting
from eSO at 1.5 PN, followed by eSS at 2 PN, and concluding with eT at 5 PN. The spin-
orbit term has values that scale with ℓ · S (with ℓ being the unit vector normal to the
instantaneous orbital plane) and as said will play a pivotal role in altering the dynamics
according to the spin’s orientation. In particular, if eSO > 0, the contribution to the
binding energy will be repulsive, while if it is positive the contribution will be attractive.
However, as mentioned in the previous section, the aligned spin configuration produces
more negative binding energy at the merger than the anti-aligned one. We pose e0, as the
binding energy of a BBH system, which can be entirely described without considering
finite size effects stemming from the presence of matter. To explore these effects, our
approach involves devising a method for extracting them from the value of Eb. We start
by creating a full BHNS quasi-equilibrium sequence as detailed as possible: this is done
by creating twelve ID points for each value of the spin, and subsequently fitting them
with a PN curve. To achieve this, we considered the expression for E3PN

b seen in the
previous section, with the additional contribution of spin-orbit, Eq. (415) from Blanchet
(2014), and tidal effects, Eq. (6.5b) from Henry et al. (2020), and performed a Padé
approximant with the addition of free parameters to fit the NR data. This technique
consists in approximating a given analytical function near a specific point, by a rational
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Figure 32: Binding energy as function of the angular velocity for binaries with mass
ratio Q = 2, 3, 4, MNS

b = 1.6 and dimensionless spin χBH
z = 0,±0.3. The black dashed

curve denotes the result obtained in the 3PN approximation for point-particles in the
nonspinning configuration. The colored solid lines are obtained using the EOB model
TEOBResumS for various spin values. The points, marked with the same color code,
represent the ID computed from Elliptica. The second panel shows the differences
computed between the 3PN and the nonspinning EOB model (blacked dashed line),
those computed between the NR data and the 3PN approximation (black diamonds),
and those between NR data and the EOB model (colored crosses). The third and final
graph is a magnified view of the initial plot, providing a closer examination of the data.
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Figure 33: Binding energy as function of the orbital angular momentum, values are ob-
tained using the same configuration of Fig. 32 and share the same color code. Points are
computed at the same distances for the different mass-ratios, with values that decrease
from right to left. Noteworthy is how the 3PN ISCO (denoted by the presence of a cusp
in the black dashed line) is shifted toward larger distances for increasing BH’s masses.
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Figure 34: Left panel: Detailed quasi-equilibrium sequence for a simulation with mass
ratio Q = 3. Points are obtained at coordinate distance d = (35, 38, 40, 42, 44, 46, 50,
52, 54, 58, 60, 62), values reported in geometric units. The error bars follow the behavior
described in section 4.1.3, with the only exception of the nonspinning d = 35 ID (last
red point on the right), whose resolution was increased to get a better description of the
last stable configuration. All the points are in good agreement with the EOB model,
with differences in the order of 10−4 − 10−5. Right panel - Top figure: Colored solid
lines are plotted using a template for BBH with the same masses and spins of the BHNS
configuration. Black dashed lines are obtained by fitting a Padè approximant of the PN
binding energy obtained by summing the point-particle model together with a description
of the spin-orbit and tidal effects. The bottom panel shows the spin-orbit contribution
obtained by subtracting the nonspinning from the spinning Padé approximant. The value
of eso is defined as a negative term, therefore we obtain the black dashed line (increasing
toward negative values) by considering the positive spin configuration and vice-versa for
the black solid line. The green, purple, and red solid lines are a description of the tidal
effects, obtained by subtracting the approximant from the BBH models.

function of a given order at the numerator and at the denominator (see appendix D for
further information). In particular, a Padé [2,2] was used to approximate the point-
particle contribution, and a Padé [3,2] and [6,3] were used respectively for the spin-orbit
and tidal contributions based on their PN order. These approximated functions were then
added together with the addition of some fitting parameters. We then calculated three
sequences for BBH using TEOBResumS (one for each value of the spin considered) whose
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binding energy will be characterized by the point mass term together with the spin-orbit
contribution, where present. In this way it is possible to separate the tidal effects by
subtracting the nonspinning BBH curve to the Padé approximant of the nonspinning
BHNS; and the spin-orbit effects by subtracting the spinning BHNS curves from the
nonspinning one.

eT = E0
BHNS − E0

BBH ; eSO = E±0.3
BHNS − E0

BHNS (215)

In the right bottom panel of Fig. 34 we can see how the different contributions vary
during the inspiral. In particular, the dominant effect is given by the spin-orbit effects
which reach an absolute value ≈ 10−3 while the tidal ones remain in the order of 10−4.
As discussed, the sign of eso will be negative for positive spins, and therefore the sim-
ulation with χ = 0.3, which starts almost with the same binding energy of the χ = 0
curve, will diverge towards negative values as the merger approaches (black-dashed line).
Conversely, the opposite trend is observed for χ = −0.3 (solid black line). As far as the
tidal effects are concerned, we can appreciate how they grow progressively during the
inspiral, however, their contribution is significantly smaller, reaching a maximal value
almost one order of magnitude smaller than the SO effect. This was expected from PN
theory, where these effects come into play only at fifth order (∝ r−5).

5.3 Waveform

The gravitational waveforms that will be illustrated in this chapter are formed during
three different phases. The first one, the inspiral, generates a signal where both ampli-
tude and frequency increase progressively known as chirp signal; the second is the merger
phase, characterized by strong GR effects including spin-orbit, tidal and spin-spin cou-
pling; the third and last, is the postmerger phase, which is dominated by the ringdown
signal coming from the resonating BH remnant. The latter is strongly correlated to
the system’s final stage: when the NS is not tidally disrupted, the final perturbation
on the BH will be stronger and thus is the associated ringdown signal. This scenario
is reproducing essentially the very same waveform produced by BBH mergers. On the
other hand, if the NS is completely disrupted the perturbation will be negligible, and
the ringdown will be almost completely suppressed. An example of this can be seen in
Fig. 35, showing the waveform of our simulations with mass ratio Q = 4 (left panel) and
Q = 2 (right panel). The tidal disruption scenario occurring for the Q = 2 simulation,
leads to an almost complete suppression of the ringdown; on the other hand, the Q = 4
simulation shows a behavior extremely similar to the one of BBHs with a maximum
amplitude that, just like in that case, is much larger. This phenomenon is due to the
location of a tidal disruption limit too close to the ISCO, which produces an infall of
the disrupted material that proceeds from a well-defined and narrow region, without
spreading around the BH. Values for this comparison are reported in Table 5, where
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Figure 35: Waveform and amplitude obtained for the (2,2) mode obtained for Q = 4
(left panel) and Q = 2 (right panel) respectively. It is worth highlighting the presence of
a clearly defined ringdown in the scenario with the largest mass ratio. In contrast, this
part of the signal is significantly attenuated in the other case.

the simulations with the highest resolutions show a peak luminosity that is more than
doubled moving from Q = 2 to Q = 4. However, the existence of a ringdown signal does
not mean that those particular waveforms are going to be entirely identical to the one
produced by BBH. To analyze more into detail this discrepancy, we take into account
the full description of the multipolar spectrum. We analyze the amplitude associated
with each mode and compare the result to the one predicted for BBH, following Nagar
et al. (2022). Fig. 36 shows the multipolar structure of the waveform’s amplitude at
merger, where its highest value occurs. In the case of BBH this structure is hierarchical
under a suitable normalization, with a universal shape described by the symmetric mass
ratio ν = Q/(1 +Q)2

Amax
ℓm /ν ≈ ec1(ℓ)m+c2(ℓ)ℓ (216)

showing that the behavior of the maximum amplitude Amax
ℓm is approximately exponential

in m, as ℓ varies. The fitting coefficients ci(ℓ) are taken from Table VI of Bernuzzi et al.
(2011). However, in the case of BHNS, this hierarchy is not followed, exception made
for the ℓ = 2 modes. Modes with m = 0 show an amplitude at merger that is one order
of magnitude larger than the associated m = 1, breaking the hierarchy. The reason for
this unexpected trend is still not well known and will be a matter of investigation for
further studies on the topic. Like in the case of other compact binaries, the dominant
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Figure 36: Multipolar hierarchy of merger amplitudes. The colored circles are obtained
from our NR simulation, the dashed lines are the test-mass values obtained in the limit
of extreme mass-ratio (ν ≪ 1). Just like in the case of BBH proposed in Nagar et al.
(2022), the plot underlines the attended decrease of importance of the subdominant
multipoles with m < ℓ. A qualitative consistency is found between the test-mass and
the comparable-mass cases, with the only caveat of the m = 0 modes.

modes are those with the same value of ℓ and m, with a modal amplitude that decreases
for increasing values of ℓ and an energy emission dominated by the (2,2) mode. Fig. 37
provides a visualization of this phenomenon41, showing the gravitational wave multipolar
spectrum of a simulation with Q = 4, nmv = 128, lmax = 6. In the bottom right panel, a
cumulative plot of the modes is provided, with colors associated with the value of ℓ. The
associated value of the amplitude can be found in Table 4, showing how the (2,2) mode
dominates the expansions, with an amplitude almost four times larger than the second
largest mode (3,2).

Lastly, one can analyze the GW luminosity of the simulations. The coalescence of
compact binaries is one of the most luminous events in terms of emitted GWs, with
typical values in the order of magnitude of Lpeak ≈ 1055 − 1056 erg/s with the largest
ones obtained for equal-masses BHs and spin aligned configurations which as discussed
follow an enhancement of the GWs emission due to the spin-orbit effects. In the case of
BNS and BHNS, tidal effects have also to be considered. In particular, larger emissions
are connected to smaller values of the gravitoelectric quadrupolar tidal polarizability

41The burst of emission that one can see at early times, is a spurious numerical effect that affects
puncture-type data known as ”junk-radiation”, see Higginbotham et al. (2019) for a more detailed
description of this effect.
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Figure 37: Multipolar waveform for a simulation with Q = 4. The top and bottom left
panels represent modes with ℓ=2, 3, 4. Noteworthy are the differences on the y-axis. The
bottom right panel is a cumulative representation of the modes, with colors associated
with each value of ℓ. The (2,2) mode, dark-blue curve in the last plot, is the dominant
one.
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ℓ m |Amrg| Mωℓ,m
mrg

2 0 0.007 0.023
2 1 0.305 0.047
2 2 0.308 0.226
3 0 0.012 0.021
3 1 0.053 0.012
3 2 0.081 0.013
3 3 0.525 0.058
4 0 0.019 0.006
4 1 0.104 0.002
4 2 0.106 0.006
4 3 0.094 0.007
4 4 0.598 0.025

Table 4: Multipolar amplitude and frequency at merger for Q = 4, on a simulation with
nmv = 128, lmax = 6, values are reported in geometric units.

coefficients defined for BNS as
κT2 = κA2 + κB2 (217)

and which reduces to κT2 = κNS
2 for BHNS. In particular,

κA2 = 2
XB

XA

(
XA

CA

)5

kA2 (218)

where kA2 is the quadrupolar Love number, see Eq. (67), describing the static quadrupolar
NS’s deformation, CA is the compactness, andXA =MA/M . Specifically, kT2 parametrizes
at leading-order the tidal interactions in the general relativistic 2-body Hamiltonian,
together with the waveform’s amplitude and phase. Larger emissions are obtained for
smaller values of kA2 , that one can find for those scenarios mimicking the dynamics of
BBHs, i.e. for larger masses and more compact NSs. This behavior can be observed
from the values of Table 5, showing how the GWs’ emission and the associated peak
luminosity scale as a function of the mass-ratio Q.

5.4 Merger remnant

The post-merger phase is characterized by the formation of a new BH, that in the tidal
disruption scenario, can be surrounded by an accretion disk. The final value of the BH’s
mass and spin are typically related to the initial mass and spins of the isolated bodies,
but since only irrotational configurations have been studied during the evolution, we will
mainly focus on the mass-ratio dependencies. The expectations are again focused on the
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Q nmv lmax umrg[ms] fmrg[kHz] J tot
rad[g · cm2/s] Etot

rad[erg] Lpeak
GW [erg/s]

2 64 6 9.70 2.22 2.57 · 1049 8.38 · 1052 2.91 · 1056
2 64 8 9.64 2.28 2.74 · 1049 9.99 · 1052 3.97 · 1056
2 64 9 9.76 2.25 2.71 · 1049 9.75 · 1052 3.76 · 1056
2 96 6 10.52 2.24 2.83 · 1049 9.62 · 1052 3.46 · 1056
2 96 8 10.50 2.26 2.90 · 1049 1.03 · 1053 3.99 · 1056
2 128 6 10.50 2.26 2.86 · 1049 9.96 · 1052 3.69 · 1056
3 64 6 11.10 2.12 4.18 · 1049 1.31 · 1053 5.90 · 1056
3 64 8 11.30 2.08 4.43 · 1049 1.56 · 1053 7.82 · 1056
3 64 9 11.24 2.05 4.42 · 1049 1.54 · 1053 7.52 · 1056
3 96 6 12.08 2.10 4.47 · 1049 1.48 · 1053 6.98 · 1056
3 96 8 12.10 2.12 4.56 · 1049 1.60 · 1053 7.91 · 1056
3 128 6 12.07 2.13 4.54 · 1049 1.54 · 1053 7.46 · 1056
3 128 8 12.08 2.12 4.61 · 1049 1.61 · 1053 8.00 · 1056
4 64 6 7.90 1.75 4.68 · 1049 1.40 · 1053 6.83 · 1056
4 64 8 8.25 1.62 4.92 · 1049 1.57 · 1053 8.28 · 1056
4 96 6 8.20 1.70 4.78 · 1049 1.50 · 1053 7.87 · 1056
4 96 8 8.19 1.71 4.87 · 1049 1.59 · 1053 8.78 · 1056
4 128 6 8.18 1.71 4.83 · 1049 1.55 · 1053 8.29 · 1056

Table 5: Overview of the results obtained from the numerical simulation, reported in
physical units. Values are taken from the largest common extraction radius rext = 400
to highlight the variation with the mass ratio. Merging times and merging frequencies
are computed from the values of the (2,2) modes. As a reminder, let’s recall that the
number of orbits changes: while for Q = 2, 3 three orbits were simulated, only two were
considered for Q = 4, this explains the smaller value of umrg in the latter case.

possibility of having a NS completely disrupted outside the ISCO, therefore two main
possibilities are available:

1. the stellar material wraps around the BH, forming a disk, see Fig. 42. In this way,
the NS’s mass is not expected to contribute significantly to the final BH’s mass.
Moreover, as we saw, the ringdown emission is in this case almost completely
suppressed, which means that the system will conserve a larger amount of energy
and momentum. This allows the final BH to have a larger spin.

2. the NS plunges directly onto the BH: in this case almost no mass is ejected, and
no disk is expected to form. Therefore, the final BH’s mass will be significantly
larger, as visible in Fig. 43. The ringdown phase this time can not be neglected:
it will bring the system to relax toward an equilibrium configuration, hence, the
final BH’s spin is expected to be smaller, being a larger fraction of the angular
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momentum dissipated.
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Figure 38: Orbital frequency ω estimated from the (2,2) GWs (black dash-dotted line)
together with energy and orbital momentum evolution and loss through GWs. Mass
ratios Q = 2, 3, 4 are reported in the left, central, and right panels respectively.

This difference in the quantity of momentum conserved by the system can be appreciated
by looking at the left and central panels of Fig. 38, showing mass ratio Q = 2 and Q = 3
respectively. The central panel is characterized by a well-defined ringdown phase, with
a significantly larger amount of momentum radiated via GWs (purple solid line). Table
6 shows how the largest remnant masses are found for our largest mass-ratios, while
the opposite trend is observed for the dimensionless spin. We report in Fig. 39 the
evolution of the AH mass and area for a Q = 3 simulation representing a plunge-like

Q MBH [M⊙] Mdisk[10−3M⊙] MBH
rmn[M⊙] χBH

rmn

2 3.2 0.80 4.22 0.72
3 4.8 - 5.86 0.57
4 6.4 - 7.48 0.47

Table 6: Data reported for nmv = 128 and lmax = 6, NS’s gravitational massMNS = 1.44.
Only the smallest mass ratio produces the suitable condition for the formation of a disk,
due to the NS’s disruption. Remnant mass and spin’s value are related to the energy
and momentum radiated away in the three different cases.
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Figure 39: Evolution of the BH’s mass and area (left and right panel respectively) for
Q = 3. Little variation in the AH area can still happen due to the slow accretion of the
stellar material onto the BH.

case. Following Zappa et al. (2019), one can approximate the remnant BH’s mass scaled
to M using a mass conservation formula:

MBH
rmn

M
= 1− Etot

rad

M
− Mdisk

M
(219)

with Etot
rad being the total energy emitted via GWs and Mdisk the baryonic mass of the

disk. This equation shows how the final BH’s mass will be the result of two opposite
trends: the energy lost through gravitational radiation and the effect of tidal disruption
leading to the disk’s formation. Focusing on the differences between simulated BHNS
and BBH (Zappa et al., 2019) it is again possible to notice how finite-mass-ratio effects
lead to a similar trend. However, for BHNS systems, the value of the remnant BH’s mass
MBH

rmn/M slightly increases with respect to the BBH case for a given mass-ratio if the
tidal interactions are weak: this effect can be explained through a reduced gravitational
energy radiated by the BHNS system. Focusing on the final spin, one can apply a
similar reasoning, considering that a smaller amount of angular momentum is dissipated
being NSs less compact than a companion BH, therefore also in the case of plunging the
dimensionless spin is expected to be larger, and this tendency will increase in the case
of strong tidal interactions.
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5.5 Ejecta

The formation mechanism of BHNS’ dynamical ejecta is to be found in the torque ex-
erted on the tidal tail. This propagation of stellar material is typically characterized by
high degree of nonsphericity with a crescent-like shape on the equatorial plane. This
asymmetry is mainly due to the tidal torque efficiency, which is uneven, and with the
highest values along the orbital plane. However, as the dynamical ejecta escape from
the gravitational attraction of the remnant BH, their expansion becomes gradually ho-
mologous moving from a crescent-like shape to a half-disk-like shape. In the case of
less massive ejecta (M ej < 0.01M⊙), the first part of the evolution is skipped, and the
shape is spiral-like from the beginning (Kawaguchi et al., 2015), see Fig. 42. This result
is consistent with what we found for the chosen EOS, with results visible in Fig. 40
showing a three-dimensional rendering of a simulation with Q = 3 on refinement level
l = 4. An additional aspect, not investigated during this project, is the possibility of
having a modification of the morphology due to the radioactive decay heat of r-process
elements42. We proceed to calculate the ejecta’s mass using Eq. (206) (from now on
MS

ej = M ej) on a sphere of extraction radius r = 200M⊙ ≈ 295 km, and its velocity.
The latter is reported in two different contributions: vρ as the velocity estimated on the
orbital plane, and vz as its perpendicular component. In this way, we expect to find
values of vρ significantly larger than vz being the ejecta mainly distributed on the orbital
plane.

Fig. 41, shows how the dynamical mass ejection is concentrated in a single impulsive

8e115e114e112e111e111e9

Figure 40: 3d plot showing the time evolution of the unbound material for t − tmrg =
(−1.93,−1.62,−1.26) [ms], colors are reported in cgs units (g/cm3).

42Heating coming from the r-process could inflate the ejecta into a more spherical shape, smoothing
their small-scale structure (Darbha et al., 2021).
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Q nmv lmax M ej[10−3M⊙] vejρ [c] vejz [c]

2 64 6 3.36 0.19 0.016
2 64 8 3.10 0.19 0.013
2 64 9 4.06 0.21 0.015
2 96 6 4.62 0.18 0.014
2 96 8 4.16 0.19 0.014
2 128 6 1.84 0.19 0.009
3 64 6 0.82 0.51 0.045
3 64 8 0.02 - 0.080
3 64 9 0.16 - 0.020
3 96 6 0.13 0.21 0.014
3 96 8 0.10 0.37 0.001
3 128 6 - 0.67 0.009
4 64 6 0.54 0.42 0.054
4 64 8 0.63 0.89 0.005
4 96 6 0.02 0.75 0.030
4 96 8 0.07 0.46 0.008
4 128 6 - - 0.008

Table 7: Overview of the results obtained from the numerical simulation. The reported
values of M ej refer to the total amount of ejected material throughout the whole simu-
lation.

event, lasting a few milliseconds: therefore we can assume a robust estimation of this
quantity, being the phenomenon fully covered by the simulation. As expected, only
the scenario covered by mass ratio Q = 2 provides a sufficient amount of unbound
material, being the NS completely tidally disrupted. In this case, we obtain values
for masses and velocities consistent with the available literature of BNS mergers, i.e.
M ej ≈ 10−2 − 10−3 M⊙ and vej ≈ 10−1c. However, by looking at the results reported
in Table 7, finding a trend in the ejecta mass and velocity as function of Q can be
complicated since the results can vary a lot with the resolution. In general, we report
that the abundance of ejected material increases as the mass ratio decreases, while the
velocity increases for increasing mass ratios. Similar results were obtained in Hayashi
et al. (2021).
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Figure 41: Ejected mass rate (left panel) and cumulative ejected mass (right panel) for a
Q = 2 simulation, see Eq. (206). The ejection of the material is a single impulsive event.
Mass values reported in Table 7 are obtained from the top values of the right panel.
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Figure 42: Evolution of the rest mass density for a simulation with Q = 2, snapshots
from lmv = 4, showing a tidal disruption scenario. The scalars bars report the values of
the density in cgs units. The apparent horizon area of the BH is also reported.
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Figure 43: Evolution of the rest mass density for a simulation with Q = 4, snapshots
from lmv = 4. The NS is this time not tidally disrupted, the evolution of the stellar
matter leads to a net increase of the AH area, visible in the bottom right panel, due to
the increased remnant mass. Values reported in the scalar bar are in cgs units.
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6 Summary, conclusions and future prospects

The NR simulations performed during this project were used to shed light on the dynam-
ics behind BHNS binaries, analyzing the details of the emission of gravitational waves
and the ejection of stellar material that characterizes this region of the parameter space
for the chosen EOS. At the same time, they showed a good agreement with the consid-
ered EOB model as far as the inspiral phase was concerned. However, the final aim of
the model is to describe efficiently all the different stages of the system’s evolution from
the inspiral to the post-merger phase. As we discussed in section 2.6, NR simulations can
be used to inform EOB models, expanding the available parameter space and producing
more accurate GW templates, describing the merger and the ringdown phase. A nat-
ural follow-up for this project involves using the data produced to inform TEOBresumS,
refining its results as far as systems with mass-ratio Q = 2, 3, 4 are concerned, with a NS
described by the ALF2 EOS, expanding the results presented in Gonzalez et al. (2023a)
and Zappa et al. (2019). After this tuning procedure is performed, an analysis of the
phase differences and of the faithfulness should be produced to analyze and compare
the EOB and the NR waveforms. The former is typically done by defining a function
Ξ = (δt, δϕ) such that

Ξ = (δt, δϕ) =

∫ tf

ti

[ϕNR(t)− ϕEOB(t+ δt) + δϕ]2dt (220)

where ϕNR and ϕEOB stand for the phases of the NR and EOB waveform respectively,
and ti and tf define the alignment window where the waveforms are compared. The
phasing procedure consists of minimizing this function, finding optimal values for δt and
δϕ. The latter is then used to shift the EOB waveform in order to compare it directly
to the NR data. This initial step was partially done with our simulations, where the
comparison was made using the untuned model (see Fig. 44). We found however good
agreement for mass ratio Q = 3, with a difference at merger around 2 ·10−3, while Q = 2
and Q = 4 introduced both larger dephasing, in the order of 10−2. The following step
consists of calculating the faithfulness F and its complementary, the unfaithfulness

F̄ = 1−F = 1−max
t0,ϕ0

⟨hEOB, hNR⟩
||hEOB||||hNR||

(221)

where t0 and ϕ0 denote the initial time and phase, and ||h|| =
√
⟨h, h⟩. The inner

product is defined as

⟨h1, h2⟩ = 4R

∫
h̃1(f)h̃

∗
2(f)

Sn(f)
df (222)

where Sn(f) is the power spectral density of the detector and h̃(f) is the Fourier trans-
form of h(t). If F̄ is small enough, and the simulations have a sufficiently large number of
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orbits, the data can be considered suitable for parameter estimation up to signal with a
certain signal-to-noise ratio related to F . More details on this can be found in Gonzalez
et al. (2023a) and Gonzalez et al. (2023b).

A subsequent study that could be performed, explores the possibility for the BH to
absorb the GWs emitted by the NS during the inspiral phase. This effect, described in
Alvi (2001) for BBHs, should be visible in the form of tiny fluctuations in the AH mass
during the inspiral phase and should characterize those systems with high values of the
spin. An initial attempt to capture this phenomenon was made through a simulation
with parameters Q = 3 and χ = 0.6. The observed features, visible in Fig. 45, were
consistent with the anticipated effect. However, it’s crucial to note that the resolution
used in this initial attempt is insufficient for making robust and quantitative conclusions.
A recommended course of action would be to conduct additional simulations, particularly
focusing on high-spinning systems, and employing higher resolutions to more accurately
investigate and characterize this absorption effect.

In terms of EM counterparts for BHNS systems, an important additional study in-
volves the production of gamma-ray bursts and kilonovae signals. In fact, as mentioned
in section 1.1, BNS and BHNS neutron-rich ejected material settles the right condition
for the activation of rapid neutron capture processes, from which could originate elements
with atomic mass number A > 120 and which have formation mechanisms excluded from
the core-collapse supernovae scenario. This theoretical result, proposed for the first time
in Lattimer and Schramm (1974), has been recently confirmed in Levan et al. (2023)
using spectroscopic data from the James Webb Space Telescope. It is therefore fun-
damental to study whether or not our simulated binaries could be consistent with the
emission of a Kilonova: the quasi-thermal transient powered by radioactive decays of
r-process elements. Our results, especially in simulations with Q = 2, have shown good
agreement with the conditions necessary for generating both of them. The available data,
including ejecta masses and velocities, offers an opportunity to make order-of-magnitude
estimations for the luminosity and color of the Kilonova, eventually useful to derive a
complete lightcurve. In the presence of disks’s formation, it could be also possible to
study the emission of gamma-ray bursts which are fueled by the mass accretion processes
on the BH’s. In this respect, it could be however necessary to perform a different kind of
simulation, introducing magneto-hydrodynamical effects to better describe the complex
nature of the accretion disk, which are not included in BAM, to obtain better results.
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Figure 44: Phasing procedure for a simulation with Q = 2 (top panel) and Q = 3
(bottom panel), the differences between the EOB model and the NR waveform change
significantly for different mass ratios. A dephasing closed to 2 ·10−3 was found for Q = 3
at merger, while for Q = 2 we obtained values an order of magnitude larger, around
−3.6 · 10−2.
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Figure 45: Time derivative of the AH’s mass for a simulation with Q = 3, χ = 0.6,
nmv = 64, lmax = 6. The tiny fluctuations visible before the coalescence (big central
peak) could be adducible to energy flowing into the BH during the inspiral.
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Appendices

A Acronyms and Abbreviations

AF Asymptotically flat
AH Apparent horizon
AMR Adaptive mesh refinement
BBH Binary black hole
BH Black hole
BHNS Black hole-neutron star
BNS Binary neutron star
EFE Einstein Field Equation
EM Electromagnetic
EOS Equation of state
GR General Relativity
GRHD General-relativistic hydrodynamics
GW Gravitational-wave
ID Initial data
ISCO Innermost stable circular orbit
ISM Interstellar medium
NR Numerical Relativity
NS Neutron star
PDE Partial differential equation
SCDD Schur complement domain decomposition
TOV Tolman-Oppenheimer-Volkoff
XCTS Extended conformal thin sandwich

B Conformal connection

Given γ̃ a well-defined conformal metric on a Σt, and D̃ the Levi-Civita connection
associated to it, such that

D̃γ̃ = 0 (223)

We can define a Christoffel symbols Γ̃k
ij of D̃, with respect to the coordintes (xi):

Γ̃k
ij =

1

2
γ̃kl
(
∂γ̃lj
∂xi

+
∂γ̃il
∂xj

− ∂γ̃ij
∂xl

)
(224)

Given a tensor field T of type
(
p
q

)
on Σt, we can relate the physical and conformal

covariant derivative with the formula

DkT
i1...ip

j1...jq
= D̃kT

i1...ip
j1...jq

+

p∑
r=1

Cir
klT

i1...l...ip
j1...jq

−
q∑

r=1

C l
kjrT

i1...ip
j1...l...jq

(225)
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where

Ck
ij := Γk

ij − Γ̃k
ij =

1

2
γkl(D̃iγlj + D̃jγil − D̃lγij) (226)

This time Γk
ij are the Christoffel symbols of the physical covariant derivativeD. We leave

as reference appendix D of Wald (2010) for additional details on the topic of conformal
transformations.

C Transformations

The majority of this project introduces results written in geometric units. However,
such units system is not typically used by the astrophysics community. We introduced
therefore some transformations useful to efficiently convert from geometric with G =
c = M⊙ = 1, to cgs units with G = 6.67 · 10−8 [dyn · cm2 · g−2], c = 2.99 · 1010 [cm/s],
M⊙ = 1.99 · 1033 [g].

• Length transformation:

d = dgeom · GM⊙

c2
≃ dgeom · 1.48 · 105 [cm] (227)

• Time transformation:

t = tgeom · GM⊙

c3
≃ tgeom · 4.92 · 10−6 [s] (228)

• Mass transformation:

M =Mgeom ·M⊙ ≃Mgeom · 1.99 · 1033 [g] (229)

• Density transformation:

ρ = ρgeom · c6

M2
⊙G

3
≃ ρgeom · 6.18 · 1017 [g/cm3] (230)

• Luminosity transformation:

L = Lgeom · c
5

G
≃ Lgeom · 3.63 · 1059 [erg/s] (231)
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D Padé approximant

The Padé approximants are a particular type of rational approximation. One can define
a Padé of order L,M by

[L,M ] =
PL(x)

QM(x)
(232)

with PL(x) and QM(x) being polynomials of degree less than or equal to L and M
respectively. If f(x) is the analytical function to approximate, the final expansion will be
in the form

f(x) ≈ R(x) =

∑L
i=0 aix

i

1 +
∑M

j=1 bkx
k
=
a0 + a1x+ a2x

2 + a3x
3 . . . aLx

L

1 + b1x+ b2x2 + b3x3 . . . bMxM
(233)

If one considers the formal power series

f(x) =
∞∑
j=0

fjx
j (234)

then, can determine the coefficient of the Padé approximant by imposing

f(x)− PL(x)

QM(x)
= O(xL+M+1) (235)

and finally obtain

f0 = a0 (236)

f1 + f0b1 = a1 (237)

f2 + f1b1 + f0b2 = a2 (238)

... (239)

fL + f(L−1)b1 + · · ·+ f0bL = aL (240)

f(L+1) + fLb1 + · · ·+ f(L−M+1)bM = 0 (241)

... (242)

f(L+M) + f(L+M−1)b1 + · · ·+ fLbM = 0 (243)

When this technique can be applied, the resulting function is unique and a formal power
series of order M at the numerator and L at the denominator and corresponds to the
Maclaurin series in the case of a (L,0) approximant. The real strength of this method
becomes evident when approximating functions that contain poles, as the use of rational
functions enables a more accurate and comprehensive description of such functions if
compared to the Taylor expansion.
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D., Rezzolla, L., Santamaŕıa, L., Sperhake, U., and Thornburg, J. (2008). Template
bank for gravitational waveforms from coalescing binary black holes: Nonspinning
binaries. Phys. Rev. D, 77:104017.

Akcay, S., Bernuzzi, S., Messina, F., Nagar, A., Ortiz, N., and Rettegno, P. (2019).
Effective-one-body multipolar waveform for tidally interacting binary neutron stars
up to merger. Physical Review D, 99(4).

Akmal, A., Pandharipande, V. R., and Ravenhall, D. G. (1998). Equation of state of
nucleon matter and neutron star structure. Phys. Rev. C, 58:1804–1828.

114



Alford, M., Braby, M., Paris, M., and Reddy, S. (2005). Hybrid stars that masquerade
as neutron stars. The Astrophysical Journal, 629(2):969–978.

Alvi, K. (2001). Energy and angular momentum flow into a black hole in a binary.
Physical Review D, 64:104020.

Arnowitt R., Deser S., . M. C. W. (1962). Gravitation: An introduction to current
research. 104(8).

Bardeen, J. M. and Petterson, J. A. (1975). The Lense-Thirring Effect and Accretion
Disks around Kerr Black Holes. , 195:L65.

Bardeen, J. M., Press, W. H., and Teukolsky, S. A. (1972). Rotating Black Holes:
Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. ,
178:347–370.

Baumgarte, T. (2003). Numerical relativity and compact binaries. Physics Reports,
376(2):41–131.

Belczynski, K., Ryu, T., Perna, R., Berti, E., Tanaka, T. L., and Bulik, T. (2017). On
the likelihood of detecting gravitational waves from Population III compact object
binaries. Monthly Notices of the Royal Astronomical Society, 471(4):4702–4721.

Beradze, R., Gogberashvili, M., and Sakharov, A. S. (2020). Binary neutron star mergers
with missing electromagnetic counterparts as manifestations of mirror world. Physics
Letters B, 804:135402.

Berger, M. J. and Oliger, J. (1984). Adaptive mesh refinement for hyperbolic partial
differential equations. Journal of Computational Physics, 53(3):484–512.

Bernuzzi, S. and Dietrich, T. (2016). Gravitational waveforms from binary neutron
star mergers with high-order weighted-essentially-nonoscillatory schemes in numerical
relativity. Phys. Rev. D, 94:064062.

Bernuzzi, S., Dietrich, T., Tichy, W., and Brügmann, B. (2014). Mergers of binary
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Brügmann, B., González, J. A., Hannam, M., Husa, S., Sperhake, U., and Tichy, W.
(2008). Calibration of moving puncture simulations. Physical Review D, 77(2).
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Flanagan, É . É. and Hinderer, T. (2008). Constraining neutron-star tidal love numbers
with gravitational-wave detectors. Physical Review D, 77(2).

Foucart, F. (2020). A brief overview of black hole-neutron star mergers. Frontiers in
Astronomy and Space Sciences, 7.

Foucart, F., Deaton, M. B., Duez, M. D., Kidder, L. E., MacDonald, I., Ott, C. D.,
Pfeiffer, H. P., Scheel, M. A., Szilagyi, B., and Teukolsky, S. A. (2013). Black-hole–
neutron-star mergers at realistic mass ratios: Equation of state and spin orientation
effects. Phys. Rev. D, 87:084006.

Fragile, P. C., Blaes, O. M., Anninos, P., and Salmonson, J. D. (2007). Global general
relativistic magnetohydrodynamic simulation of a tilted black hole accretion disk. The
Astrophysical Journal, 668(1):417–429.
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