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Abstract

This thesis delves into the integration of Artificial Intelligence (AI) within the

realm of autonomous racing drones. Traditionally, the racing industry has led

the way in advancing resilient and streamlined systems, with recent empha-

sis shifting towards the implementation of autonomous driving mechanisms.

The intricacies of this field present complex challenges, demanding the devel-

opment of precise control and perception systems that operate with minimal

reaction times and constrained resources.

The research, conducted within the Drone Racing team at the Autonomous

Robotics Research Center of the Technology Innovation Institute, primarily

focuses on advancing perception and state estimation systems for autonomous

racing drones.

Central to the study is the introduction of a novel high-speed autonomous

drone racing multimodal dataset and an innovative map-based, perceptually

aware state estimation technique.

This work is instrumental in pushing the boundaries of autonomous drone

racing technology, offering valuable insights and solutions that contribute to

the broader advancements within the field of autonomous systems.
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Chapter 1

Introduction

The world of racing has long been a driving force for the advancement of safer

andmore efficient technologies. The harsh conditions that vehicles face on the

racetrackmagnify challenges that are relevant to everyday transportation. This

continuous push for progress has not only transformed competitive racing but

also played a pivotal role in reshaping technology in our daily lives.

In recent years, the increasing interest in self-driving systems has given

rise to autonomous vehicle competitions that span various aspects, including

obstacle avoidance, path planning, and races involving a diverse array of ve-

hicles, such as cars and drones. These latter competitions introduce even more

intricate challenges, demanding the creation of exceptionally precise control

and perception systems with rapid response capabilities.

This master’s thesis delves into research conducted at the Autonomous

Robotics Research Center of the Technology Innovation Institute. It primarily

concerns the enhancement of perception and state estimation systems for au-

tonomous racing drones. The research involves the creation of a high-speed

dataset and the introduction of an innovative state estimation approach for au-

tonomous racing drones. The findings are intended to provide valuable sup-

port for future research efforts aimed at advancing learning-based control and

perception systems.
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Drone racing

Drone racing, an electrifying and rapidly evolving sport, has surged in popu-

larity in recent years, captivating a diverse audience of enthusiasts and spec-

tators. This thrilling competition centers around the piloting of small, agile

unmanned aerial vehicles, commonly known as drones, through complex and

high-speed courses filled with obstacles and challenges. It seamlessly blends

the precision of remote-controlled flight with the rush of competitive racing,

resulting in a captivating fusion of technology and competition.

In the realm of drone racing, skilled pilots make use of specialized first-

person-view (FPV) goggles that grant them an immersive and real-time per-

spective from the drone’s perspective. This unique technology allows them

to deftly navigate the racecourse, threading their way through gates, tunnels,

and various other obstacles, all while racing against the clock.

The fundamental objective of drone racing is simple yet deceptively chal-

lenging: complete the designated course in the shortest time possible, all the

while demonstrating extraordinary agility and precision in piloting the drones.

With racecourses that often feature hairpin turns, long straights, and techni-

cal challenges, drone racing demands exceptional control and agility, pushing

pilots and their equipment to their limits.

Beyond being a compelling and visually captivating sport, drone racing

has steadily amassed a fervent global following. It not only underscores the

potential of unmanned aerial systems for recreational enjoyment but also acts

as a catalyst for technological innovation, pushing the boundaries of what

drones can achieve in terms of speed, agility, and precision.

An illustrative example of this evolution is Autonomous drone racing,

where researchers strive to replace human pilots with sophisticated software.

This software is designed to execute all the sensory and manual actions that

a human pilot would undertake, including perceiving surroundings, making

rapid decisions, and taking actions autonomously.
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Background

Estimating the position and attitude of an autonomous racing drone on a racing

track has been an open problem since the beginning of research in this field

and has become more and more challenging with the increasing agility and

speed that state-of-the-art technology and hardware have enabled. To solve

this problem there has been the joint effort from both the robotics and the

AI research communities to release datasets and develop new techniques. In

this section I will first chronologically review the datasets that are publicly

available for UAV purposes, highlighting what were the critical points that

suggested the need for a new and more suited one. Then I will go through the

different approaches to localization and state estimation in aggressive flights.

2.1 Review ofAutonomousDroneRacingDatasets

In the realm of AI-driven perception systems for autonomous racing drones,

the availability of suitable datasets stands as a cornerstone for advancing re-

search and development. Over time, a range of datasets has emerged, each

tailored to specific facets of this dynamic field. In this section, I want to cover

all existing datasets in an extensive exploration, unveiling their distinctive at-

tributes, and emphasizing the contributions of our newly introduced dataset.
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Early Datasets

Among the earlier datasets aimed at Visual-Inertial Odometry (VIO) and Si-

multaneous Localization and Mapping (SLAM), we find the 2016 EuRoC

dataset [6] and the 2017 Zurich Urban micro aerial vehicle MAV dataset [29].

The main aim of these dataset was to provide a benchmark for the emerging

VIO and SLAM techniques, to promote their early adoption. For these rea-

sons, they were primarily characterized by lower speeds and low image cap-

ture frequencies. Such limitations made this datasets unsuitable for address-

ing the rigorous demands of drone racing, where high-speed maneuvering and

real-time perception are paramount.

Advent of Racing-Oriented Datasets

In recent years, there has been a notable surge in the development of datasets

tailored to meet the specific demands of drone racing. For example, in 2018,

the UPenn dataset [37] was introduced with the primary goal of validating

stereo Visual-Inertial Odometry (VIO) methods for fast autonomous flight.

However, the absence of a racing track with gates in the scene rendered it un-

suitable for conducting comprehensive benchmarking of racing scenarios. The

identification of gates through a monocular image is a critical perceptual step,

even in human-piloted drone racing, as it allows the pilot to accurately local-

ize themselves on the track and navigate it effectively at high speeds. In 2019,

Lockheed Martin contributed to this field by releasing an image dataset for

Test 2 of its AlphaPilot challenge’s virtual qualifiers [15]. While this dataset

served its purpose, it lacked essential drone state information, making it un-

suitable for comprehensive dynamic perception tasks. In that same year, UZH

introduced the UZH FPV Dataset [10]. This dataset marked a significant ad-

vancement in visual-inertial odometry benchmarking, being one of the most

aggressive datasets available up to that date. It encompassed a variety of flight

sequences, both indoor and outdoor, involving the navigation through gates.
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These sequences were captured using a first-person-view (FPV) drone racing

quadrotor equipped with sensors and flown aggressively by an expert pilot.

However, it’s worth noting that this dataset was characterized by relatively

lower speeds and featured images with lower resolution and frequency com-

pared to the growing demands of drone racing.

The Blackbird Dataset

The Blackbird dataset [1], introduced in 2020, was developed to facilitate

comprehensive perception and control research in agile indoor flight scenar-

ios. A notable feature was its fusion of real-world inertial data with high-

resolution photorealistic images generated within the FlightGoggles [20] sim-

ulation environment. The dataset also included precisemotion caputure ground

truth of all the available trajectories.

Recent Contributions

Recent additions to the dataset landscape encompass [33] and [2], both spe-

cialized datasets catering to drone racing and aggressive multi-rotor flight.

Additionally, [16] introduced an open-source, open-hardware racing drone,

enhancing accessibility and reproducibility in this research domain.

A Novel Racing Dataset

Despite these commendable efforts, a dataset encompassing the entire spec-

trum of high-speed autonomous flights, featuring high-resolution, high-frequency

RGB mono-camera images akin to those relied upon by human pilots, and of-

fering comprehensive annotations, including precise gate corner labels, was

absent until the creation of our dataset. Our dataset distinguishes itself from [10]

not only by including piloted flights but also autonomous high-speed flights,

thus reflecting the diverse operational modes of racing drones. Furthermore,

it provides higher-resolution images captured under varying light conditions,
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making it more representative of the challenging real-world scenarios encoun-

tered in drone racing. Most significantly, our dataset is meticulously annotated

with high-frequencymotion capture data, ensuring precise and comprehensive

ground truth information for research purposes.

Distinctive Features of Our Dataset

In comparison to the existing literature [21], our dataset excels in several

key dimensions. First, it represents the fastest autonomously flown dataset,

pushing the boundaries of speed and maneuverability. Second, it offers high-

resolution, high-frequency image data, capturing the subtleties of different

lighting conditions, a vital factor in real-world racing scenarios. Lastly, our

dataset is fully annotated at the granularity of individual gate corners. This

empowers researchers to explore various facets of autonomous drone racing,

including Visual-Inertial Odometry (VIO), gate pose estimation [11, 24] and

and end-to-end control. In summary, our dataset provides a robust founda-

tion for advancing research in AI-powered perception systems for high-speed

autonomous racing drones.

2.2 Review of state estimation techniques

When it comes to state estimation techniques to localize autonomous aerial ve-

hicles in the 3-dimensional space Visual-Inertial Odometry (VIO) stands out

as the most common technique for the application, thanks to the fact that it re-

lies only on onboard sensing and computing and that it represents a favorable

trade-off between accuracy and computational requirements. Visual-Inertial

Odometry (VIO) is a technique used in drone navigation, combining data from

cameras and Inertial Measurement Units (IMUs) to estimate the drone’s po-

sition, orientation, and velocity. While IMU measurements are integrated to

provide short-term relative estimates rapidly, they accumulate significant er-

rors over longer periods due to factors such as scale errors, axis misalignment,
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and biases. On the other hand, camera measurements, albeit at a lower rate of

around 30 Hz (in common low speed applications), offer rich environmental

information but are susceptible to conditions like poor illumination, texture-

less scenes, and motion blur, which degrade their quality for state estimation.

As a result, the combination of camera and inertial measurements is the stan-

dard choice for accurately estimating the state of flying vehicles.

2.2.1 Classical VIO methods

Classical VIO algorithms typically consist of two main components: the fron-

tend and the backend.

The frontend utilizes camera images to estimate sensor motion. There are

two primary approaches: direct methods [12], [4] and feature-based meth-

ods [30], [25], [35]. Direct methods work directly with raw pixel intensities,

tracking image patches and estimating camera motion by minimizing photo-

metric errors [12]. Feature-based methods extract visual features or keypoints

from raw image pixels and estimate motion by tracking these points across im-

ages. While feature-based methods are more mature and robust, direct meth-

ods excel in low-texture environments. Hybrid methods, combining keypoints

and pixel patches, also exist [17].

The backend combines frontend output with inertial measurements. There

are two categories of methods in the literature: filtering methods and fixed-

lag smoothing methods. Filtering methods, based on Extended Kalman Filters

(EKFs), propagate the system state using inertial measurements and fuse cam-

era measurements during updates. The pioneering filter-based VIO algorithm

is the Multi-State Constraint Kalman Filter (MSCKF) [30], with various ver-

sions developed since [19]. Fixed-lag smoothing methods [25], [35], also

known as sliding window estimators, solve nonlinear optimization problems

involving recent robot states. Their cost functions include residuals from vi-

sual, inertial, and past states marginalization. Fixed-lag smoothing methods
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accumulate less linearization error but are computationally demanding.

In the realm of drone racing, the combination of high speeds and vibrations

generated by the quadcopter’s motors poses a significant challenge to VIO

systems. These conditions often lead to difficulties in handling blurred images

and coping with substantial noise patterns present in the IMU data, making

VIO systems alone unsuitable for the task due to their high drift and loss of

feature tracking.

2.2.2 Drone racing specific approaches

Taking a step back to consider the human aspect of drone racing, it’s important

to highlight that pilots heavily depend on certain scene understanding cues

when it comes to locating themselves within the racing track. Pilots possess

prior knowledge about the appearance, shape, and dimensions of the gates, and

they typically receive a visual representation of the track layout. Additionally,

it’s worth noting that they are able to navigate the track at high speeds through

one single RGB image, often received through a noisy analog channel.

Hence, researchers in the autonomous drone racing domain began explor-

ing solutions for gate detection and pose estimation challenges. Both the in-

formation regarding a bounding box encompassing the gate and the relative

pose of the gate concerning the drone hold potential as input for subsequent

state estimation, planning and control modules. One of the first notable works

[22] for gate detection obtained the victory at the first autonomous drone race

at IROS 2016, and was based on a modified Single Shot Detector (SSD) [28]

Convolutional Neural Network CNN. After the detection of only the closest

gate in the form of a bounding box (BB), the center of the bounding box was

taken as a the next target point and the control module would act with with

a Line of Sight (LOS) proportional guidance control, that aligned the center

of the image plane to the center of the BB. Nonetheless, a limitation of this
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method arises from the significant assumption that the center of the bound-

ing box aligns precisely with the actual center of the gate. This assumption

remains valid only under specific circumstances, such as when the camera’s

optical axis is orthogonal to the gate, and there is no presence of lens distor-

tion. In practical real-world scenarios, these conditions are often not satisfied.

Moreover, the approach relies on the strong assumption that at least one gate

is always in sight. A significant milestone in the field of autonomous rac-

ing drones was achieved at IROS 2018 when Kaufmann et al. [24] secured

victory using the first end-to-end image-to-pose approach. They employed a

CNN with two separate Multi-Layer Perceptron (MLP) heads. One head was

dedicated to regressing the relative pose of the closest gate, while the other

provided an estimate of uncertainty. These two pieces of information were

particularly valuable, as they were first used to build a gobal track layout rep-

resentation with coarse gate locations during a single demonstration flight.

At test time, a CNN predicted the poses of the closest gates along with their

uncertainty. These predictions were incorporated by an EKF to maintain op-

timal maximum-aposteriori estimates of gate locations. The drone was then

controlled using model predictive control (MPC), given the estimated gate

poses.

The same authors built up another solution [15] starting from [24] which

earned them the second position at the biggest autonomous drone racing com-

petition ever hosted, the Alphapilot Challenge in 2019. In this case the gate

detection step involved the identification of gates corners through a CNN and

the association of them with the correct gate through the use of Part Affin-

ity Fields (PAFs). Regarding the state estimation module, the output of the

gate detection and VIO are fused together with the measurements from the

downward-facing laser rangefinder (LRF) using an EKF. The EKF estimates

a global map of the gates and, since the gates are stationary, uses the gate de-

tections to align the VIO estimate with the global gate map, i.e. compensates

for the VIO drift.
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The winning team at the Alphapilot Challenge [11] secured victory with

a similar approach in terms of gate detection and corner extraction, using

GateNet, a fully convolutional network trained on a segmentation task in a

supervised manner. GateNet produced as ouputs the gate masks which were

then processed by a variant of the lightweight snake algorithm [26] to per-

form the next gate’s corner extraction. Regarding the state estimation module

De Wagter et al. drew inspiration from human pilots who focus greatly on the

gates, while combining their observations with their knowledge of the drone’s

responses to control inputs and an approximate map of the track. For this rea-

son, no state-of-the-art method for VIO was used, both because of their com-

putational complexity and speed contraints (8 m/s was the top speed of the

runners up team [15] due to VIO limits). Instead they combined the drone’s

pose estimation, obtained by solving a perspective-n-point (PnP) problem on

the next gate corners positions and the approximative apriori known gate po-

sitions, with model-based predictions from a dynamic model fitted on flight

data through a random sample consensus (RANSAC) based Moving Horizon

Estimator (MHE) from a previous work [27].

While ongoing research continues on looking for fascinating learning based

end-to-end solution for the perception-to-action loop, these examples high-

light how in real world scenarios it is still often needed to have a customiz-

able enough system to enable perception and control experts to adapt the au-

tonomous modules to different racing scenarios.
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The Open-design Quadrotor and

Autonomous Drone Racing

Dataset

This thesis introduces a unique dataset, which is detailed in [5]. The dataset

provides a versatile platform for comprehensive evaluations of Autonomous

Drone Racing, encompassing various aspects such as perception systems, con-

trol, and dynamics. To acquire this dataset, we designed a custom quadrotor

(shown in Figure 3.1). Our quadrotor design is centered around a 5” carbon-

fiber frame with a diagonal propeller-to-propeller span of 215mm. The fully-

assembled drone, including the battery, weighs approximately 870g and can

achieve a top speed of 179km/h, enabling the aggressive maneuvers essential

for drone racing. Importantly, our design seamlessly transitions between au-

tonomous and human-piloted First-Person-View (FPV) racing, serving as an

authentic benchmark for comparing autonomous drone performance against

human pilots. The dataset encompasses both autonomous and piloted flights.



3.1 Platform Overview 12

3.1 Platform Overview

The quadrotor comprises three primary sub-systems: (i) quadrotor electronics,

(ii) the autonomous module, and (iii) the FPV system. These components

are integrated using the frame and fasteners. The system incorporates two

cameras: a digital camera connected to the autonomous module and an analog

camera used by human pilots in the FPV system. The two cameras share a

mount, with the FPV camera positioned above the digital one (as depicted in

Figure 3.1).

Quadrotor Electronics

The quadrotor electronics include (i) the electronic speed controller (ESC),

(ii) the Kakute H7 v1 flight controller unit (FCU), (iii) the radio controller

(RC) receiver, and (iv) the battery. These components are mounted beneath

the frame, protected by aluminum standoffs connecting the frame and a cus-

tom 3D-printed battery cage. The FCU features an STM32H7microcontroller

capable of running various firmware, including Ardupilot and PX4.

Autonomous Module

The autonomous module consists of (i) an NVIDIA Orin NX, hosted on the

A203v2 carrier board with SSD and a wireless card, (ii) a battery eliminator

circuit (BEC) to power it, and (iii) an Arducam RGB camera. These compo-

nents are situated above the frame and are secured by two 3D-printed plates

connectedwith aluminum standoffs. The top plate serves as the cameramount,

and an MIPI CSI-2 ribbon cable links the companion board to the Arducam.

The FCU connects via a serial port, employing a shielded cable for both drone

control and sensor data retrieval.
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FPV System

Operating independently from the autonomous module, the FPV system com-

prises an FPV analog camera, a video transmitter, and associated antennas, all

mounted above the frame.

3.2 Sensors

Our quadrotor features a range of sensors to support autonomous and human-

piloted aggressive flight:

InvenSense MPU6000 IMU

Embedded within the quadrotor electronics, the InvenSense MPU6000 IMU

serves dual purposes. It provides real-time tri-axis angular rate sensor (gyro-

scope) data and accurate tri-axis accelerometer data. The autonomous com-

panion computer retrieves raw IMUdata through a demand/response exchange

using the Multiwii Serial Protocol (MSP) [32].

Arducam IMX219 8MP RGB Bayer Camera

Part of the autonomous module (Section 3.1), the Arducam IMX219 captures

640x480 pixel frames at 120Hz, offering a diagonal field-of-view (FOV) of

175°. This camera, widely used for lightweight embedded applications, is

fully supported by NVIDIA, with dedicated MIPI CSI-2 drivers. The image

YUV frames are captured in NV12 format, converted to BGR for processing,

and eventually saved as JPEG using the NVIDIA GStreamer plugin on the

companion computer.

Foxeer T-Rex Mini 1500TVL

This low-latency (6ms) camera forms part of the FPV system. During data

collection, it is used by human pilots in conjunction with a pair of 1280x960
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Figure 3.1: The drone platform used to record the dataset, the body frame B
has its origin at the FCU’s IMU location, the camera frame C is located where
the bottom lens is (the top lens being the one of the FPV system).

OLED Fat Shark HDO2 goggles.

3.3 Software

Quadrotor Electronics Software

The quadrotor electronics (Section 3.1) run Betaflight 4.3.1 [3], featuring a

tuned proportional-integral-derivative (PID) controller for flight. The com-

panion computer employs MSP to send commands to the flight controller and

read sensor data. Betaflight’s MSP_OVERRIDE feature is activated to bypass RC

controller commands while maintaining safety, allowing human supervisors

to disarm the drone with an RC controller.

Autonomous Module Software

The autonomous module (Section 3.1) runs NVIDIA JetPack 5.1.1, encom-

passing Jetson Linux 35.3.1 Board Support Package (BSP) with Linux Real-

Time Kernel 5.10 and an Ubuntu 20.04-based root file system with CUDA

11.4 support. The Robot Operating System 2 (ROS2) Humble LTS distribu-

tion serves as the middleware for communication among perception, planning,

and control modules on the Orin NX module.
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Wy

Wz

Wx

Gate

MoCap

Figure 3.2: The 25×9.7×7 meters indoor arena, instrumented with 32 Qual-
isys MoCap cameras and equipped with four 5×5 feet racing gates used to
record the dataset.

3.4 Data Collection

Flight Arena, Racing Gates, and Motion Capture System

The dataset was collected in an indoor flying arena measuring 25 meters in

length, 9.7 meters in width, and 7 meters in height. The arena is equipped with

a 32-camera Arqus A12 Qualisys Motion Capture (MoCap) system, capable

of tracking 6-degree-of-freedom (6DoF) poses of defined rigid bodies with

millimeter accuracy at a rate of 275Hz. To facilitate tracking, our quadrotor

design (Section 3.1) is equipped with six 25mmmarkers defining a single rigid

body. Thesemarkers are strategically placed on the top plate, battery cage, and

48.2mm arm extensions, ensuring they remain visible even during propeller

motion (as depicted in Figure 3.1). The origin of the quadrotor’s rigid body

aligns with the FCU’s IMU location, as illustrated in Figure 3.1. The IMU

undergoes calibration using RC prior to each take-off [3]. Within the indoor

arena, four racing gates (Figure 3.2) are constructed using PVC pipes covered

by printed fabric banners. These gates measure 7 feet by 7 feet (213.36 cm)

with an internal opening of 5 feet by 5 feet (152.4 cm), conforming to standards

used in major drone racing leagues [31]. Each racing gate is defined by four

markers placed at its inner corners.
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Table 3.1: Summary of the flights recorded in the dataset

Control Shape Top Speed Time Distance

Autonomous Ellipse† 21.83 m/s 149.32 s 526.15 m
Lemniscate† 10.22 m/s 155.32 s 480.67 m

Piloted Ellipse‡ 9.50 m/s 575.62 s 3355.67 m
Lemniscate‡ 8.93 m/s 594.60 s 3577.65 m

†Flown twice in 6 flights (3 brightness × 2 camera settings). ‡Flown as many times as
possible in 6 flights (3 brightness × 2 camera settings).

Flight Program

The dataset comprises a total of 24 flights (Table 3.1), evenly split between

human-piloted and autonomous flights. For each category, two different flight

shapes (ellipse and lemniscate) are executed six times, employing consistent

gate configurations for each run. These six repetitions account for variations

in illumination conditions and camera settings.

Brightness Levels

Data collection incorporates three levels of brightness: high, achieved with

both natural and artificial light; medium, with controlled light by turning on

artificial lights and blocking natural light using blinds; and low, attained by

deactivating most arena lights and keeping blinds down.

Camera Settings

Two distinct camera settings are employed: auto exposure time and gains,

and fixed exposure time, analog gain, and digital gain set to 2.5ms, 2, and 1,

respectively. The auto setting produces brighter images but may introduce

motion blur, while the fixed setting yields darker but less blurred images.
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Human-piloted and Autonomous Control

Human-piloted flights range from 84 to 108 seconds, during which the pilot

aims to maximize the number of laps on a single battery charge. In contrast,

autonomous flights consist of precisely two laps, averaging a duration of 25.38

seconds. Autonomous flights employ a position controller based on [14], gen-

erating trajectory references using geometric formulas for position, heading,

linear velocity, and linear acceleration. The motion capture system provides

real-time quadrotor pose data to the controller via WiFi. The position con-

troller applies a proportional-derivative (PD) control loop to calculate desired

acceleration, thrust, and attitude. Subsequently, a proportional (P) control

loop converts attitude into desired body rates. The human pilot employs a

camera angle of 30° for both the FPV camera and the recorded Arducam. Au-

tonomous flights utilize camera angles of 40° for lemniscate trajectories and

50° for ellipse trajectories. The choice of camera angles for autonomous mode

ensures gate visibility at high speeds, similar to how FPV pilots adjust camera

angles based on their planned speed.

Image Labeling

Gates play a crucial role in racing environments for relative localization and

next-waypoint detection. This dataset provides image labels in the form of

bounding boxes and keypoints corresponding to the inner corners of visible

gates. Leveraging the quadrotor’s inertial data and ground truth from the mo-

tion capture system, the dataset enables replication and benchmarking of state-

of-the-art gate pose estimation [34] and the development of new methods.

The labeling process initially involves automated labeling using a top-down

keypoints detector [7, 9], trained on a synthetic dataset and fine-tuned with

5,000 manually labeled images. Subsequently, all images undergo iterative

manual review and re-training. Finally, all labels receive manual verifica-

tion. Bounding boxes and corner positions are provided for partially occluded
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Figure 3.3: Examples of recorded trajectories on a 4-gate track:
an autonomous ellipse flight-01a-ellipse (top-left); a piloted
ellipse flight-01p-ellipse (top-right); an autonomous lemnis-
cate flight-07a-ellipse (bottom-left); and a piloted lemniscate
flight-07p-ellipse (bottom-right).

gates. However, no distinction is made between occluded and fully visible

keypoints; instead, the dataset follows the COCO format definition [8], des-

ignating visibility values of 0 (outside image boundaries) and 2 (inside image

boundaries) for keypoints. Gates are not labeled when no visible corners are

present.

Time Synchronization

Data recording encompasses three separate streams: (i) a rosbag containing

FCU readings and autonomous control setpoints, (ii) on-board camera images,

and (iii)Qualisys motion capture measurements. For FCU data, custom ROS2

messages and the Real-Time Kernel are employed to minimize sensor reading

jitter. The GStreamer pipeline saves images and timestamps them based on

frame acquisition time. Synchronization involves two clocks: the real-time

clock of the drone’s companion computer and the clock of the Qualisys work-

station. Both clocks are synchronized with a Network Time Protocol (NTP)

server within the facility before each flight. Clock offsets relative to the NTP

server for both machines are recorded before and after each flight to compute

offset corrections and jitter. The drone achieves microsecond clock accuracy

with Chrony, while the Qualisys workstation records millisecond accuracy.
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The total jitter throughout a trajectory never exceeds 3ms.

Data Post-processing

Motion capture data are converted to CSV format, with onboard computer

clock offsets removed. ROS2 bags are also converted to CSVs. All data are

trimmed to eliminate pre-take-off and post-landing records. Data alignment

is achieved using an open-source script that produces user-friendly compre-

hensive CSVs. Alignment involves linear interpolation for most fields, with

spherical linear interpolation [36] applied to rotation matrices.



Chapter 4

Map-based state estimation

As discussed in Section 2.2, many different techniques have been used to en-

able drones to localize themselves in the 3d space and estimate their attitude,

but let’s take a step back and delve into how the perception-to-action loop

works and what are the crtical challenges that need to be faced in a racing

scenario. While flying through a racing track a quadrotor needs to perform all

the steps that a human pilot would subconsciously perform explictly on its on

board PC, based solely on the on board sensors, which in our case only con-

sisted in a camera and an IMU. The main control perception-to-action loop

comprises:

• Perception

• State estimation

• Planning

• Control

The primary hurdle in optimizing the racing setup lies in the critical factor

of total execution time within the control loop. The demanding velocity re-

quirements for the drone necessitate that the control loop operates within ex-

tremely tight timeframes, typically in the order of milliseconds. Adding to
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this challenge is the limitation imposed by the hardware’s constrained com-

puting resources where these computations must be performed. In this and the

next chapter, we will delve into the state estimation step of the loop, which in-

volves gathering data from the onboard sensors to calculate the drone’s current

position and orientation in three-dimensional space.

4.1 Problem definition

This chapter is dedicated to the challenge of reconstructing the drone’s posi-

tion based solely on an image, a problem often referred to as Visual Odometry

(VO). In recent years, researchers have approached this problem through vari-

ous methods. Initially, geometric methods, as presented in [18] and [13], were

employed. Later, learning-based approaches, such as [39] and [38], gained

traction. However, these approaches struggled to handle the demanding con-

ditions unique to drone racing, including high speeds, motion blur, and rapid

trajectory variations.

It’s important to emphasize that in the context of drone racing, the race

track is predefined and known to the pilots in advance. Therefore, for the

purpose of this study, we assume the availability of a map that provides precise

information about the positions and orientations of the gates at all times during

the flights.

Referring to Figure 3.1, our problem involves three distinct reference frames:

the world reference frameW, which is the frame we aim to use for estimating

the drone’s position; the body reference frame of the drone B; the camera ref-

erence frame C; and the gates’ reference framesG. It’s crucial to note that the

transformation matrix between the body reference frame and the camera ref-

erence frame, denoted as HC
B
1, is fixed and known apriori, whereas our goal

is to estimate HW
B .

1From this point onward, all transformation matrices H and rotation matrices R will be
denoted in accordance with the bottom-up convention, i.e., HC

B signifies the rototranslation
of the body frame B with respect to the camera reference frame C.
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4.2 Estimation pipeline

The estimation pipeline commences with the capture of an image using the

drone’s camera. This image is subsequently subjected to processing by a con-

volutional neural network, specifically YoloV8, which is responsible for ex-

tracting the four inner corners of the gates. It’s important to clarify that the

scope of this work is focused on the pipeline beginning with the pixel coordi-

nates of the gate’s corners as the initial input. These obtained corner coordi-

nates are then utilized as input for a Perspective-n-Point (PnP) algorithm. This

algorithm computes the rototranslation of the gate in relation to the camera’s

reference frame, denoted as HC
G.

4.2.1 Perspective and Point

PnP, or Perspective-n-Point, is a computer vision algorithm used to determine

the 3D pose of an object based on its 2D image projections. In our case, the

object of interest is a gate on the racing track, and the 2D image projections

are the pixel coordinates of the gate’s corners in the image captured by the

drone’s camera.

The core principle behind the PnP algorithm lies in the knowledge of both

2D image points and the size (or scale) of the object in 3D space. These corre-

spondences, along with the intrinsic and distortion camera parameters, allow

PnP to compute the transformation between the gate’s reference frame and the

camera’s reference frame.

Let’s break down the PnP process step by step:

1. Image Points: The first step involves identifying and extracting the

pixel coordinates of the gate’s corners in the image. This is typically

achieved through computer vision techniques, such as the gate corner

extraction performed by YoloV8 in our pipeline.

2. Size Information: For the PnP algorithm to work, we need to know the
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size (scale) of the gate in the 3D world. This size information is criti-

cal for accurate pose estimation and navigation. Fortunately, in drone

racing scenarios, the size of the gates is typically known in advance (ca.

1.5x1.5m in our case).

3. Camera Parameters: Additionally, we need to be aware of the intrin-

sic and distortion parameters of the camera used on the drone. These

parameters describe the camera’s internal characteristics, such as its fo-

cal length, principal point, and lens distortion.

4. PnP Computation: With the 2D image points, the gate’s size informa-

tion, and intrinsic camera parameters in hand, the PnP algorithm com-

putes the transformation matrix HC
G, which represents the rototransla-

tion of the gate with respect to the camera reference frame (C). This

matrix includes both the rotation and translation information, allowing

us to precisely determine the gate’s pose in 3D space with respect to the

camera reference frame.

Following the completion of the computation, a crucial initial filtering step is

implemented to mitigate the impact of potentially inaccurate estimates. The

three-dimensional points corresponding to each gate undergo a reprojection

onto the image plane based on the estimated rototranslation. These repro-

jected points are then subjected to a filtering process guided by a predeter-

mined threshold, effectively enhancing the precision of the results by elim-

inating noisy estimates. Having this information, the pipeline can proceed

with the identification of the gates in sight and the subsequent global position

estimation.
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Figure 4.1: Examples of poses estimated via PnP on dataset images.

4.2.2 Gate identification

To accurately reconstruct the drone’s current position on the race track, it is

essential to correctly identify the gates in the image by matching them with

the map of the race track. This matching step assumes the availability of the

last known rototranslation of the drone with respect to the world reference

frame, denoted as HW
B , which will be recursively estimated. At the beginning

of the flight, it can be assumed that the starting position and orientation of

the drone are known a priori. The initial phase of the matching process entails

transforming the gate’s position and orientation into the world reference frame

using the following transformation:

HW
G = HW

B HB
CHC

G

Here,HC
G is the result of the PnP computation andHB

C is a fixed transformation

defined by the physical structure of the drone. With this transformation result,

we can now compare it with the exact gate locations provided in the map of

the race track. The objective is to find the closest matching gate, based on

a minimum Euclidean distance criterion, considering a specified threshold.

Moreover, the relative rotation between the estimated orientation HW
G and the
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ground truth one HW
Ĝ

is computed as:

HĜ
G = HĜ

W HW
G

This is used to filter out wrongly oriented detections, by applying a threshold

to the angle represented by the rotational part of HĜ
G, enhancing the quality of

the subsequent reconstruction. Moreover, to address the scenario where the

drone navigates through gates in varying orientations, we apply this filtering

considering a 180◦ modulo of the aforementioned angle.

4.2.3 Final position reconstruction

Having identified each gate in sight we proceed by deriving their ground truth

rototranslation with respect to the camera, namely HC
Ĝ
, through the following

relation:

HC
Ĝ

= HC
W HW

Ĝ

Where HW
Ĝ

represents the ground truth position and orientation of the gate in

the world frame, extracted from the map. Subsequently, we can proceed with

the final position reconstruction. For this we are going to use the estimated po-

sitional offset of the gate in the camera reference, expressed in homogeneous

coordinates tg ∈ R4, and the rotational part of HC
Ĝ
, expressed as RC

Ĝ
∈ R3×3.

The transformation matrix that combines tg with RC
Ĝ
is obtained through the

following:

HĜ
C =

RC
Ĝ

T 03×1

01×3 1

 [
−tg

]
,

Finally, for each gate in sight we obtain an estimate of the drone position given

by

HW
B = HW

Ĝ
HĜ

CHC
B

The primary source of measurement error arises from the uncertainty in de-

tecting gate corners in the gate detector. This error, occurring in the image
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plane, leads to a pose error when the PnP algorithm is applied. To address

this, we have adopted a sampling-based approach to estimate the pose error

based on the known average uncertainty in gate corner detection. For each

gate, the PnP algorithm is employed not only on the nominal gate observation

but also on 20 perturbed estimates of gate corners. The resulting distribution

of pose estimates is then utilized to approximate the measurement covariance

associated with the gate observation, which will be used later in the pipeline.



Chapter 5

Kalman Filter for VIO Drift

Correction

When it comes to estimating the state of autonomous drones, researchers face

a crucial trade-off between accuracy and the need for a fast and agile platform.

Achieving high accuracy often requires more sensors, increasing the weight

and volume of the drone and impacting its maneuverability. This trade-off

is particularly challenging in the context of drone racing, where small and

lightweight drones are essential. Drone racing demands drones that are not

only swift and agile but also capable of navigating intricate courses with pre-

cision. Achieving the necessary speed and agility while maintaining accuracy

in state estimation poses a formidable task. An additional challenge arises

from the inherent noise in sensor data. In the high-speed, high-vibration en-

vironment of drone racing, sensors are susceptible to noise and interference,

often resulting from intense vibrations and magnetic disturbances generated

by the drone’s motors. The noisy sensor data significantly affects the accu-

racy of state estimation, emphasizing the need for sophisticated and robust

estimation techniques.

In this chapter, we delve into the application of the Kalman Filter (KF) for

state estimation in racing drones. TheKalman Filter is a recursive Bayesian es-

timation method that combines sensor data with a dynamic model to estimate



5.1 Formulation 28

the drone’s state, incorporating uncertainty and correcting errors in measure-

ments. Our exploration commences with an exploration of the foundational

principles of the Kalman Filter (KF), a robust methodology tailored for pre-

cise state estimation in dynamic environments. We delve into its algorithmic

underpinnings, accentuating the predictive and corrective steps. The KF’s dis-

tinctive capability to iteratively enhance state estimates, accounting for uncer-

tainties, positions it as a dependable choice for navigating dynamic scenarios

such as drone racing.

In our pursuit of heightened accuracy and resilience in state estimation,

we delve into the integration of diverse data sources. A deliberate choice was

made to avoid the implementation of a complete Extended Kalman Filter, opt-

ing instead for efficiency and process streamlining. This chapter focuses on

the amalgamation of Visual-Inertial Odometry (VIO) data and gate-based es-

timation within a Kalman Filter framework. This integration aims to estimate

and rectify VIO drift, following the approach proposed by Kaufmann et al.

[23].

Given the infrequent occurrence of gate detections and the precision of ori-

entation estimates fromVIO, our attention centers on refining the translational

components of VIO measurements. The Kalman Filter is harnessed to esti-

mate both the translational drift pd (position offset) and its derivative, the drift

velocity vd. These estimates are iteratively employed to rectify the present

state estimate, contributing to an overall enhancement in accuracy throughout

the state estimation process.

5.1 Formulation

The Kalman Filter (KF) iteratively refines state estimates, accounting for un-

certainty in measurements and predictions. It operates by generating an ap-

proximation of the system’s state through a weighted average of the predicted
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state and the latest measurement. This weighted average is determined by as-

signing weights based on the quality of the estimated uncertainty, giving more

trust to values with smaller uncertainties. The weights are derived from the

covariance, a metric indicating the anticipated uncertainty in predicting the

system’s state. The outcome of this weighted average yields a refined state

estimate positioned between the predicted and measured states, characterized

by a lower estimated uncertainty compared to either state in isolation.

This iterative process unfolds at each time step, with the updated estimate

and its covariance influencing the subsequent prediction in a recursive fashion.

Notably, the Kalman filter relies solely on the most recent ”best guess” rather

than the entire historical record of a system’s state to iteratively compute a

new state.

5.1.1 Prediction and Update Steps

The KF consists of two fundamental steps: prediction and update.

Prediction Step

In the prediction step, the KF uses the dynamicmodel of the system to estimate

the value of the state vector at the next time step. In our case, the state vector

is x = [pT
d , vT

d ]T ∈ R6, and the prediction consists of estimating the amount

of drift and its velocity at the next timestep, as per the following equation:

xk+1 = Fxk,

F =

I3×3 dtI3×3

03×3 I3×3

 ,

which merely express the fact that drift velocity vd is the derivative of the

translational drift pd
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However, as real-world systems are often subject to unpredictable distur-

bances, the prediction also accounts for process noise according to the follow-

ing equation:

Pk+1 = FPkF T + Q,

Q =

1
4dt4 1

2dt3

1
2dt3 dt2

 σ2
a

Where P represents the state’s covariance, which is initialized to zero, as done

for the state and σ2
a is the covariance of the noise process characterizing the

acceleration of the drift.

Update Step

In the update step, the KF considers measurement noise and the likelihood of

the observed measurements, aligning the predicted state with the actual mea-

surements. The KF’s update step is crucial for continuously refining the state

estimate based on new data. In this case, for each measurement zk, represent-

ing the measured drift between a pose estimate obtained from a gate detection

and a VIO estimate, the predicted VIO drift xk
− is adjusted to the corrected

estimate x+
k using the Kalman filter equations:

Kk = P −
k HT

k (HkP −
k HT

k + R)−1,

x+
k = x−

k + Kk(zk − H(x−
k )),

P +
k = (I − KkHk)P −

k ,

in which Kk is the Kalman gain, R is the measurement covariance matrix,

estimated via Monte-Carlo sampling as described in the previous chapter, and

Hk is the measurement matrix. When several gates are detected in a single

camera frame, all relative pose estimates are stacked and processed in the same

Kalman filter update step.
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5.2 Deployment

During the deployment phase of this research, the code for the state estimation

pipeline had to be encapsulated in a ROS 2 C++ node. This step was essential

to align with the remainder of the drone’s software stack, which operates on

an Nvidia Jetson Orin NX embedded on the drone. The input sources for the

state estimation node are two different topics: the VIO topic and the synchro-

nized image-VIO topic. With the data coming from these two topics the state

estimation node implements the following pipeline:

• undistortion of the image;

• gate detection and corner extraction, through the use of a separate library

implementing the inference via TensorRT;

• solve PnP and compute drift estimates;

• perform drift estimation KF prediction and updates, through the use of a

separate library implementing the KF formulation, described in Section

5.1;

• publish the corrected state estimate on a topic, which is then used by the

controller.

As is common within the ROS framework, the management of various data

streams is performed utilizing callback functions. Specifically, in handling

the disparate frequencies of data from the two sources, prediction steps are

performed each time a new VIO message is available, while updates are only

triggered when a synchronized VIO-image message is delivered, in order to

maintain synchronization and enhance the overall processing efficiency. This

approach serves to maintain a stable and reliable frequency for the control

system, enabling it to operate effectively even in scenarios where detection

messages may experience delays.
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Figure 5.1: Pipeline overview.

5.3 Experiments

Throughout the development of the aforementioned module, the dataset pre-

sented in Chapter 3 played a pivotal role. This dataset facilitated essential pre-

liminary tests using ground truth data, encompassing both image labels and the

drone’s position and orientation obtained through motion capture. To assess

the performance of the state estimation pipeline, a series of test flights were

conducted using an alternative platform, distinct from the one outlined in Sec-

tion 3.1. This modified platform retained core components such as the flight

controller and autonomous model but underwent significant alterations. Both

the FPV camera, Arducam, and video transmitter were removed, and in their

place, an Intel Realsense T265 stereo camera was integrated. The integration

of this camera, facilitated by the Realsense SDK and ROS wrapper, enabled

the streaming of Visual-Inertial Odometry (VIO) estimates via a ROS topic.

Subsequently, these estimates were employed by the state estimation module,

as described earlier. It is noteworthy that the use of the Intel Realsense T265

introduced additional challenges. The camera captures highly distorted fish-

eye grayscale images, which posed complexities during Yolo model training

and resulted in reduced accuracy in the Perspective-n-Point (PnP) estimates.

The test flights were carried out within the indoor arena detailed in Section

3.4, where gates were arranged to form a track. Before each flight, the precise

positions of the gates were meticulously measured using the Qualisys motion

capture system, which provided millimeter-level accuracy. These measure-

ments were then stored as a race track map, serving as a reference for the

state estimation module during flight operations. While flying, using a Model
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Predictive Control (MPC) algorithm as our control algorithm, we recorded

rosbags containing data from the following topics:

• Qualisys motion capture,

• image topic,

• VIO,

• drift corrected state estimation.

5.3.1 Test flight 1

This test flight involved the drone flying through gates in a simple ellipse tra-

jectory, with a top speed of 10m/s. Being it a preliminary test flight the control

module was still relying on the motion capture ground truth data and the state

estimation computation has been performed offline on a laptop. As you can

see from the plots in 5.2 the VIO estimate is largely affected by drift on all

the axes, especially at the beginning of the flight. Moreover, it is also notice-

able how the drift doesn’t evolve regularly across time. As a consequence,

the dynamic model present in the KF was unable to adequately fit the data.

Subsequent to this observation, a decision was made to deactivate the drift

velocity estimate in the filter, leading to higher precision tracking. Indeed,

after just half a lap, the drift-corrected state published by the state estimation

module almost totally compensates for the VIO offset, approaching the ground

truth. This delay is attributed to the necessity of some initial movement for

the drift estimator to commence convergence to a reasonable estimate, a factor

unknown at the time this recording was made.
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(a) VIO vs Mocap

(b) VIO vs KF

(c) z axis

Figure 5.2: Flight 1. Red represents VIO data, blue drift corrected state, green
Mocap ground truth data

5.3.2 Flight 2

In the second flight, the drone followed the same trajectory as in Flight 1 but

achieved a higher top speed of 12 m/s. As illustrated in the plots in Figure

5.3, VIO drift was more pronounced in both the x and y axes, although it

exhibited less severity along the z-axis. Similar to the preceding flight, the

controller depended on mocap position tracking, and the state estimation node

was executed offline on a laptop.
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(a) VIO vs Mocap

(b) VIO vs KF

(c) z axis

Figure 5.3: Flight 2. Red represents VIO data, blue drift corrected state, green
Mocap ground truth data

5.3.3 Flight 3

In this flight, the setup remains consistent with the previous flights, with the

exception that the state estimation computation is now performed on theNvidia

Orin NX mounted on the drone. Meanwhile, the controller still relies on mo-

tion capture data. As evident from the plots in 5.4, the correction concerning
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the VIO is highly effective across all axes, with notable improvement, partic-

ularly along the z-axis. With all conditions met to enable a fully vision-based

flight, we proceeded to implement this in Flight 4.

(a) VIO vs Mocap

(b) VIO vs KF

(c) z axis

Figure 5.4: Flight 3. Red represents VIO data, blue drift corrected state, green
Mocap ground truth data

5.3.4 Flight 4

This final flight marked our inaugural fully vision-based flight on a real track

with gates, following an elliptical trajectory at 8 m/s. Despite the VIO data ex-

hibiting greater consistency in this run due to the lower speed, the discernible
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impact of the drift-corrected state estimation is evident from the plots in Figure

5.5, particularly on the z-axis.

(a) VIO vs Mocap

(b) VIO vs KF

(c) z axis

Figure 5.5: Flight 4. Red represents VIO data, blue drift corrected state, green
Mocap ground truth data
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Table 5.1: Summary of the flights

Flight Max speed Estimate ATE Max Error Min Error

Flight 1 10 m/s
VIO 0.71 m 2.61 m 0.08 m

KF 0.24 m 1.97 m 0.02 m

Flight 2 12 m/s
VIO 0.90 m 2.06 m 0.04 m

KF 0.28 m 0.65 m 0.04 m

Flight 3 12 m/s
VIO 0.18 m 0.44 m 0.06 m

KF 0.11 m 0.34 m 0.01 m

Flight 4 8 m/s
VIO 0.17 m 1.73 m 0.05 m

KF 0.11 m 1.04 m 0.02 m

From Table 5.1, it is evident that the drift was successfully corrected in

each flight, leading to a notable reduction in Absolute Trajectory Error (ATE)

compared to using VIO alone.

In conclusion, as of the writing of this thesis, experiments are still in

progress, involving incremental increases in speed and track complexity. The

objective is to determine the true limitations of this system and eventually

deploy it in a real autonomous drone race.
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Conclusion and Future Work

In this master’s thesis, the primary focus centered around the domain of au-

tonomous drone racing, specifically targeting perception and state estimation

systems. The complex challenges within this context necessitate rapid, ef-

ficient, and precise solutions to optimize performance, ensuring agile drone

control throughout the race track and maximizing speed.

The initial phase of the research involved the creation of a comprehen-

sive, multimodal dataset tailored for high-speed drone racing. This meticu-

lously annotated dataset is expected to play a pivotal role in advancing re-

search within the field. Overcoming challenges in recording multimodal data

required the development of an open-source accessible platform and the syn-

chronization of an external motion capture system with onboard sensor data

from the camera and IMU. An innovative aspect of the dataset is the inclusion

of recordings from both piloted and autonomous flights.

The second major contribution of this thesis pertains to the design and

implementation of a state estimation module. This module empowers the

drone to autonomously navigate using solely onboard sensors and compu-

tation, eliminating reliance on external motion capture systems. Overcom-

ing the limitations of state-of-the-art Visual-Inertial Odometry (VIO) systems,

particularly in the extreme conditions encountered in drone racing, was a no-

table achievement. This was accomplished by leveraging prior knowledge of
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the gates and track layout. Additionally, in the interest of reliability and ef-

ficiency, a simplified Kalman Filter for VIO drift estimation and correction

was developed, instead of employing a full-state Extended Kalman Filter for

sensor fusion. The described state estimation system underwent initial valida-

tion using motion capture data in lieu of VIO on the dataset. Subsequently, it

achieved successful deployment for fully autonomous flights, marking a sig-

nificant advancement in the realm of autonomous drone racing.

While the current work provides a solid foundation, several avenues for

future research and development can be explored. One promising direction

is the exploration of end-to-end perception-to-action training, allowing the

drone to learn directly from raw sensor inputs to execute complex maneu-

vers. This approach may further enhance the adaptability of the system to

unforeseen racing conditions. Additionally, further improvements to the state

estimation system could involve the integration of advanced machine learning

techniques to enhance the robustness and accuracy of position and orientation

estimation. Investigating the potential of reinforcement learning for refining

control policies in dynamic racing environments is another avenue worth ex-

ploring. Moreover, expanding the dataset to include diverse racing scenarios,

environmental conditions, and hardware setups would contribute to the gener-

alizability and applicability of the developed systems. The inclusion of more

challenging racing tracks and varying lighting conditions can aid in pushing

the boundaries of system performance. In summary, this thesis establishes the

groundwork for perception-aware state estimation in autonomous drone rac-

ing. The potential for future work in these directions not only holds promise

for pushing the boundaries of what is achievable in this exciting and chal-

lenging field but also underscores the applicability of the findings in diverse

environments beyond racing scenarios.
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