
Alma Mater Studiorum · University of Bologna

FACULTY OF MATHEMATICAL, PHYSICAL AND NATURAL SCIENCES
Undergraduate Degree Course in Computer Science

DATA CLOUD
THROUGH

GOOGLE CLOUD STORAGE

Thesis in Databases

Supervisor:
Professor
DANILO MONTESI

Presented by:
GINO CAPPELLI

Session III
2010/2011

Abstract

Il Cloud Storage è un modello di conservazione dati su computer in rete, dove
i dati stessi sono memorizzati su molteplici server, reali e/o virtuali, generalmente os-
pitati presso strutture di terze parti o su server dedicati. Tramite questo modello è
possibile accedere alle informazioni personali o aziendali, siano essi video, fotografie, mu-
sica, database o file in maniera “smaterializzata”, senza conoscere l’ubicazione fisica dei
dati, da qualsiasi parte del mondo, con un qualsiasi dispositivo adeguato. I vantaggi di
questa metodologia sono molteplici: infinita capacita’ di spazio di memoria, pagamento
solo dell’effettiva quantità di memoria utilizzata, file accessibili da qualunque parte del
mondo, manutenzione estremamente ridotta e maggiore sicurezza in quanto i file sono
protetti da furto, fuoco o danni che potrebbero avvenire su computer locali.

Google Cloud Storage cade in questa categoria: è un servizio per sviluppatori fornito
da Google che permette di salvare e manipolare dati direttamente sull’infrastruttura
di Google. In maggior dettaglio, Google Cloud Storage fornisce un’interfaccia di pro-
grammazione che fa uso di semplici richieste HTTP per eseguire operazioni sulla propria
infrastruttura. Esempi di operazioni ammissibili sono: upload di un file, download di
un file, eliminazione di un file, ottenere la lista dei file oppure la dimensione di un dato
file. Ogniuna di queste richieste HTTP incapsula l’informazione sul metodo utilizzato
(il tipo di richista, come GET, PUT, ...) e un’informazione di “portata” (la risorsa su
cui effettuare la richiesta). Ne segue che diventa possibile la creazione di un’applicazione
che, facendo uso di queste richieste HTTP, fornisce un servizio di Cloud Storage (in cui
le applicazioni salvano dati in remoto generalmene attraverso dei server di terze parti).

In questa tesi, dopo aver analizzato tutti i dettagli del servizio Google Cloud Storage,
è stata implementata un’applicazione, chiamata iHD, che fa uso di quest’ultimo servizio
per salvare, manipolare e condividere dati in remoto (nel “cloud”). Operazioni comuni di
questa applicazione permettono di condividere cartelle tra più utenti iscritti al servizio,
eseguire operazioni di upload e download di file, eliminare cartelle o file ed infine creare
cartelle. L’esigenza di un’appliazione di questo tipo è nata da un forte incremento, sul
merato della telefonia mobile, di dispositivi con tecnologie e con funzioni sempre più
legate ad Internet ed alla connettività che esso offre.

La tesi presenta anche una descrizione delle fasi di progettazione e implementazione
riguardanti l’applicazione iHD. Nella fase di progettazione si sono analizzati tutti i requi-
siti funzionali e non funzionali dell’applicazione ed infine tutti i moduli da cui è composta
quest’ultima. Infine, per quanto riguarda la fase di implementazione, la tesi presenta
tutte le classi ed i rispettivi metodi presenti per ogni modulo, ed in alcuni casi anche
come queste classi sono state effettivamente implementate nel linguaggio di program-
mazione utilizzato.

To my parents

Contents

List of Figures 4

List of Tables 5

1 Introduction 7
1.1 What is Google Cloud Storage? . 7
1.2 Goals of the thesis . 9
1.3 Related work . 9
1.4 Thesis outline . 10

2 Google Cloud Storage Technical Background 12
2.1 Features and Capabilities . 13

2.1.1 High Capacity and Scalability . 13
2.1.2 Consistency . 13
2.1.3 RESTful API (Application Programming Interface) 13
2.1.4 Authentication . 14

2.2 Structure . 15
2.2.1 Projects . 15
2.2.2 Buckets and Objects . 15
2.2.3 Hierarchy . 15

2.3 API Overview . 16
2.3.1 HTTP Requests . 16
2.3.2 Resumable uploads . 22

1

CONTENTS

3 Design 27
3.1 A statement of the problem . 27
3.2 Requirements analysis . 27

3.2.1 Functional requirements . 27
3.2.2 Non-Functional requirements . 28
3.2.3 Constraints . 28

3.3 Design choices . 29
3.3.1 General overview . 29
3.3.2 The Connection Controller . 31
3.3.3 The Upload Manager . 31
3.3.4 The Download Manager . 31
3.3.5 The Database Gateway . 33
3.3.6 The Google Storage Gateway . 33

3.4 The database . 34

4 Implementation 37
4.1 Development Environment and choice of the programming language . . . 37
4.2 Libraries . 38
4.3 Classes . 39
4.4 The connection controller . 42
4.5 The google storage gateway . 44
4.6 The database gateway . 46
4.7 SSL security . 49
4.8 Multi-threading implementation . 50

4.8.1 The download manager . 50
4.8.2 The upload manager . 53

5 iHD application - GUI Description 61
5.1 The Main Window . 62

5.1.1 Menu bar . 63
5.1.2 Header panel . 63
5.1.3 Navigation panel . 64
5.1.4 Scroller panel . 64
5.1.5 Footer panel . 65

5.2 The Configuration Assistant Dialog . 66
5.3 The Accounts Dialog . 67

5.3.1 Menu bar . 67
5.3.2 Edit Dialog . 68

2

CONTENTS

6 Conclusion 70
6.1 Thesis summary . 70
6.2 Future Work . 70
6.3 Acknowledgements . 71

A The UploadManager Class 73

B The DatabaseGateway Class 89

Bibliography 102

3

List of Figures

2.1 Google Cloud Storage HTTP requests and responses 14
2.2 Buckets and Objects hierarchy . 16

3.1 iHD application – scheme of communication 29
3.2 Buckets management on Google Cloud Storage 30
3.3 The Connection Controller . 31
3.4 The Upload Manager . 32
3.5 The Download Manager . 32
3.6 The Database Gateway . 33
3.7 The Google Storage Gateway . 34
3.8 The Database ER diagram . 35

4.1 The Package Hierarchy . 39
4.2 Multi-threading implementation of uploads and downloads 50

5.1 The Main Window . 62
5.2 Header panel . 63
5.3 Navigation panel . 64
5.4 Scroller panel . 64
5.5 Footer panel . 65
5.6 The Configuration Assistant Dialog . 66
5.7 The Accounts Dialog . 67
5.8 The Edit Dialog . 68

4

List of Tables

1.1 Comparison between different features of various Cloud Storage services . 10

2.1 Example of a request with its corresponding message to sign 18
2.2 Response headers of an HEAD request 21

5

TRADEMARKS

Google Cloud Storage is a service provided by Google, Inc.
Dropbox is a service operated by Dropbox, Inc.
Box.net is a service from Alexa Internet, Inc.
iCloud is a service from Apple, Inc.
Windows Live SkyDrive is a service from Microsoft, Inc.
Amazon S3 is a web service operated by Amazon.com, Inc.
Eucalyptus is a software platform provided by Eucalyptus Systems, Inc.

6

Chapter 1

Introduction

1.1 What is Google Cloud Storage?
The term “Cloud” refers to the technologies that provide convenient, on-demand net-
work access to a shared pool of computing resources such as networks, servers, storage,
applications and services [sye11]. In particular, Cloud Storage is a model of networked
storage where applications store data in a remote pool of storage (multiple servers) which
is generally hosted by third parties. Google Cloud Storage [gog01] falls into this category.
It is a service for developers provided by Google, that permits to store and access data
on the Google’s infrastructure. This means that from any type of device with an internet
connection it is possible to store and manage files on the web through Google Storage.
This approach is becoming more and more common in recent years due to many factors:

• Hardware limitations : The different kind of devices throughout the world, with
different software and hardware specification. For instance a smartphone device
will provide less memory capacity than a personal computer. The usage of a web
service for storing data remotely can overcome these limitations [fur10].

• Productivity :

1. In the corporate world, allowing employees to access their company’s files
from their home means that they can be more productive. They can perform
work from home instead of having to remain at the office to access files that
are on the corporate network [mil09].

2. Storing files in a remote single location allows to develop advance features
such as file sharing or traceability.

• Simplicity : From an user’s point of view, data can be accessed from any part of
the globe with just an internet connection. From a developer’s point of view, the

7

1.1. WHAT IS GOOGLE CLOUD STORAGE?

maintenance of a system of file storing it is a difficult issue. Providing a “ready-to-
use” interface to access and manage data remotely will simplify all the applications
that use this layer.

• Safety : Since the data is stored remotely, data is secured from theft, fire or any
other damages that might happen to local computer/business [sch12].

• Costs :

1. Companies need only pay for the storage they actually use [shr10].

2. Storage maintenance tasks, such as backup, data replication, and purchas-
ing additional storage devices are offloaded to the responsibility of a service
provider, allowing organizations to focus on their core business [ant10].

Google Cloud Storage provides a RESTful programming interface: applications can
use standard HTTP methods, such as PUT, GET, POST, HEAD and DELETE to
store, share, and manage data [gog02]. Each HTTP request includes the HTTP protocol
version (1), a request method (2), a request URI (3), a set of request headers (4) and
the body of the request (5). In order to communicate properly with Google Storage
applications populate these field in the following manner:

1. HTTP protocol version: The Google Cloud Storage supports HTTP/1.1.

2. request method : GET, PUT, POST, HEAD or DELETE.

3. request URI : all files in the system can be identified by an unique URL—a resource
on which you can perform operations with HTTP methods.

4. request headers : Google Storage supports the HTTP/1.1 request headers. For
example, the “content-length” header is an integer that in a PUT request specifies
the size of the file to upload.

5. request body : For instance, it can be a file to upload.

These characteristics will be better explained in Chapter 2, which will provide an
in-depth view of the Google Cloud Storage developers API.

8

1.2. GOALS OF THE THESIS

1.2 Goals of the thesis
This work is conceived mainly for two different purposes:

1. To explore all the concerns regarding the Cloud Storage:
Nowadays, with the spreading of devices with internet capability and the reduction
of the internet connection costs, the Cloud Storage model, and more in general the
Cloud Computing, represents an important field of the Computer Science.
The two biggest concerns about Cloud Storage are reliability and security. Keeping
Google Cloud Storage as a reference, we will enhance our understanding on these
problems.

2. To develop a client application for Google Storage:
In this thesis will be described the development of a software application written
in Java, which is able to communicate with Google Storage through its API. In
particular, the main interest is to develop a complete application of Cloud Storage,
named iHD, that permits to store and manage data “in the Cloud”.

1.3 Related work
On the market there are several products of Cloud Storage. The main characteristics
that distinguish these products are large availability of remote storage, file sharing, con-
tent management interface, file synchronization and integration with other services.

Dropbox [dro01] is a web-based file hosting service operated by Dropbox, Inc. that
uses cloud storage to enable users to store and share files with others across the Internet
using file synchronization. It offers a free account of 2 GB and a paid account of 50 GB,
100 GB, and a team account of 1 TB or more.

Box.net [box01] is an online File Sharing and Cloud Content Management service for
enterprise companies from Alexa Internet, Inc. Box offers 3 account types: Enterprise,
Business and Personal. The company provides 5GB of free storage for personal accounts.

iCloud [icl01] is a cloud storage and cloud computing service from Apple, Inc. that
allows users to store data on remote computer servers for download to multiple devices
such as iOS-based devices and personal computers running Mac OS X or Microsoft Win-
dows. Each iCloud account has 5 GB of free storage.

9

1.4. THESIS OUTLINE

Windows Live SkyDrive [sky01] is a file hosting service from Microsoft, Inc. that
allows users to upload files to a cloud storage and access them from a Web browser. The
service offers 25 GB of free personal storage, with individual files limited to 100 MB.

iHD [ihd01] is the cloud storage service that will be developed throughout this the-
sis. It provides a multi-platform client application with a simple interface to manage and
share files among users. Will be provided 200MB of free personal storage.

The following table shows the different features of each Cloud Storage service previ-
ously exposed.

iHD Dropbox Box.net iCloud SkyDrive
Desktop client application Yes Yes Yes Yes

Web application Yes Yes Yes
File sharing Yes Yes Yes Yes

File synchronization Yes Yes Yes
Integration with external services Yes Yes Yes

Developers API Yes Yes

Table 1.1: Comparison between different features of various Cloud Storage services

1.4 Thesis outline
Chapter 2 summarise all the characteristics and details of the Google Cloud Storage
service. In particular, the chapter explains all the HTTP methods necessary to establish
a complete communication with the Google Cloud Storage server.

Chapter 3 presents the design of the iHD application. In this chapter will be eval-
uated all the requirements on which the iHD application will be developed. Finally, a
description of all the modules that compose the application will be provided in order to
pave the way to the development process.

Chapter 4 discusses the implementation of the iHD application, dwelling on the de-
velopment issues related to Java and its environment. Moreover, an overview of all the
components of the iHD application will be provided, showing in many cases how these
components are effectively implemented in Java.

Chapter 5 assesses the contributions of this thesis and highlights directions for future
work.

10

1.4. THESIS OUTLINE

11

Chapter 2

Google Cloud Storage Technical
Background

Google Cloud Storage is an extensive and structured service. Among the many features
that will not be viewed in this thesis there are:

• Interoperability with some cloud storage tools and libraries that work with services
such as Amazon Simple Storage Service (Amazon S3) [ama01] and Eucalyptus
Systems, Inc [euc01].

• Integration with Google’s accounts and groups. In particular, it is possible to
restrict the access to an object specifying an opportune ACL (access control list)
which contains a Google Storage ID (string of 64 hexadecimal digits that identifies
a specific Google account holder or a specific Google group).

• Support for the OAuth 2.0 authentication and authorization to interact with its
API. The OAuth 2.0 protocol gives out OAuth tokens. OAuth tokens authenticate
tools and applications to access Google Cloud Storage API and also provides the
ability to restrict access using scopes.

• Possibility to interact with the Google APIs Console. Google Cloud Storage is
available as a service for Google APIs Console projects. It is possible to have many
projects and many instances of the Google Cloud Storage service.

In the following chapter will be explored only the characteristics of Google Cloud
Storage that are useful to the development of the iHD client application.

12

2.1. FEATURES AND CAPABILITIES

2.1 Features and Capabilities

2.1.1 High Capacity and Scalability

Google Cloud storage permits to exploit the excellent Google’s infrastructure. It provides
a scalable storage architecture and a powerful networking infrastructure accessible from
two locations: Europe or United States. Google Cloud Storage supports a large number
of accounts and objects that can be terabytes in size.

2.1.2 Consistency

Google Cloud Storage provide a strong read-after-write consistency for all upload and
delete operations. In particular, objects in Google Cloud Storage are either available or
not available:

• During upload operations, objects are not available until they are completely up-
loaded. By extension, uploaded objects are never available for download in a
corrupted state or as partial objects. Moreover, when a file is uploaded to Google
Cloud Storage, and a success response is received, the file is immediately available
for download operations. This is true for download operations and also for the
overwriting of an existing file.

• If an object is deleted, an immediate attempt to download the object will result in
a 404 Not Found status code. It is possible to delete only object in an available
state. For instance, a delete operation on a file that is being overwritten will result
in an error.

• List operations are eventually consistent: when a object is created, the newly-
created object might not immediately appear in the returned list of objects.

2.1.3 RESTful API (Application Programming Interface)

Google Cloud Storage provides a simple RESTful programming interface which permits
to store, share and manage data simply using the standard HTTP methods (GET, PUT,
POST, HEAD and DELETE). This method is designed to encapsulate in each request
two informations: the type of the request (PUT, GET, ...) and the resource on which
perform the request (the URI). The URI is a path to the resource which consists of an
object name and a container name. Used together, the object name and the container
name create a unique URL to a given resource–a resource on which it is possible to
perform operations with HTTP methods.

13

2.1. FEATURES AND CAPABILITIES

Google Cloud Storage API

Client 1

HTTP

Request

HTTP

Response HTTP

Request

HTTP

Response

HTTP

Request

HTTP

Response

Client N
...

...

Figure 2.1: Google Cloud Storage HTTP requests and responses

2.1.4 Authentication

In order to interact with the Google Cloud Storage API, each HTTP request must
be authenticated through the HMAC authentication code. The HMAC (Hash-based
Message Authentication Code) is a specific algorithm for calculating a message authenti-
cation code (MAC) using a cryptographic hash function in combination with a secret
key. The secret key that will be used is the Google Cloud Storage developer key.
Developer keys consist of an access key and secret.

An access key is a 20 character alphanumeric string, which is linked to each Google
account. It must be used in all authenticated Google Cloud Storage requests, so that
the Google Cloud Storage system knows who is making the request. The following is an
example of an access key:

GOOGTS7C7FUP3AIRVJTE

A secret is a 40 character Base-64 encoded string that is linked to a specific access
key. A secret is a pre-shared key that only the owner of an account and the Google Cloud
Storage system know. The secret is used to sign all requests as part of the authentication
process. The following is an example of a secret:

bGoa+V7g/yqDXvKRqq+JTFn4uQZbPiQJo4pf9RzJ

Through a specific tool (Google Cloud Storage key management tool) it is possible
to create and manage up to 5 different developer keys.

14

2.2. STRUCTURE

2.2 Structure

2.2.1 Projects

All data in Google Cloud Storage belongs to a Project, which consists of a set of users,
a set of APIs, and billing, authentication, and monitoring settings for those API. The
main idea is that it is possible to create various project simultaneously, each one for a
different purpose. For instance, it can be useful to create a project for the management
of the clients informations of an hotel and another different project for the details of the
hotel rooms. Each project will have its own data and own set of users.

2.2.2 Buckets and Objects

In Google Cloud Storage Buckets are the basic containers that hold data. Everything
that it is stored in Google Cloud Storage must be contained in a bucket. Every bucket
must have a unique name across the entire Google Cloud Storage namespace.

Objects are the individual pieces of data that it is possible to store in Google Cloud
Storage. Objects have two components: object data and object metadata. The object
data component is usually a file that it is stored in Google Cloud Storage. The object
metadata component is a collection of name-value pairs that describe various object
qualities. The size of an object or the date of creation are examples of metadata values.
Object names can contain any combination of Unicode characters (UTF-8 encoded) less
than 1024 bytes in length.

Objects are immutable, which means that an uploaded object cannot change through-
out its storage lifetime. An object’s storage lifetime is the time between successful object
creation (upload) and successful object deletion. In practice, this means that it is not
possible to make incremental changes to objects, such as append operations or truncate
operations. However, it is possible to overwrite objects that are stored in Google Cloud
Storage because an overwrite operation is in effect a delete object operation followed im-
mediately by an upload object operation. So a single overwrite operation simply marks
the end of one immutable object’s lifetime and the beginning of a new immutable object’s
lifetime.

2.2.3 Hierarchy

Google Cloud Storage uses a flat hierarchical structure to store buckets and objects.
All buckets reside in a single flat hierarchy (it is not possible to put buckets inside
buckets), and all objects reside in a single flat hierarchy within a given bucket.

15

2.3. API OVERVIEW

Object 1 Object 2 Object N Object 1 Object N......

...

Bucket 1 Bucket N

Figure 2.2: Buckets and Objects hierarchy

2.3 API Overview
The Google Cloud Storage API is a RESTful interface that permits to programmatically
manage data on Google Cloud Storage. As a RESTful API, the Google Cloud Storage
API relies on method information and scoping information to define the operations that
can be performed [gog03]. The method information is specified with standard HTTP
methods, such as DELETE, GET, HEAD, and PUT. And it is necessary to specify also
the scoping information with a publicly-accessible endpoint (URI) and various scoping
parameters. In this case, the primary scoping parameter is a path to a resource, which
consists of an object name (file name) and bucket name (container name). Used together,
the object name, bucket name, and public URI create a unique URL to a given resource.

All the HTTP requests in this section are referred to
Google Cloud Storage version 1.0

2.3.1 HTTP Requests

Requests Authentication

All the HTTP requests to Google Cloud Storage must be authenticated. This is done
populating the Authorization request header of each HTTP request in the following
manner:

Authorization: GOOG1 google_storage_access_key:signature

GOOG1 is the signature identifier that identifies the signature algorithm and ver-
sion to be used. The signature identifier for Google Cloud Storage is always GOOG1.

16

2.3. API OVERVIEW

The google_storage_access_key is the user identifier, a 20 character access key
that identifies the person who is making and signing the request. Google Cloud Storage
uses the access key to look up the secret key, which is a pre-shared secret that only the
owner of the account and the Google Cloud Storage system know (see 2.1.4).

The signature is a cryptographic hash function of various request headers. The sig-
nature is created by using HMAC-SHA1 as the hash function and the secret key as the
cryptographic key (HMAC-SHA1 is a hash-based message authentication code and re-
quires two input parameters, both UTF-8 encoded: a key and a message). The resulting
digest is then Base64 encoded.

SecretKey = UTF-8-Encoding-Of(GoogleStorageSecretKey)
Signature = Base64-Encoding-Of(HMAC-SHA1(SecretKey, MessageToBeSigned))

The MessageToBeSigned must be constructed by concatenating specific HTTP head-
ers in a specific order. The following notation shows how to construct the message:

MessageToBeSigned = UTF-8-Encoding-Of(CanonicalHeaders +
CanonicalExtensionHeaders + CanonicalResource)

CanonicalHeaders is constructed concatenating several header values and adding
a newline (U+000A) after each header value. The following notation shows how to do
this (newlines are represented by \n):

CanonicalHeaders =
HTTP-Verb + \n +
Content-MD5 + \n +
Content-Type + \n +
Date + \n

The CanonicalExtensionHeaders string is formed concatenating all extension
(custom) headers that begin with x-goog-. In the development of the iHD applica-
tion the CanonicalExtensionHeaders will be often an empty string.

The CanonicalResource string is constructed concatenating the resource path
(bucket, object and subresource) on which the current request is acting.

17

2.3. API OVERVIEW

Sample Request Sample Message To Sign
PUT /cars/mercedes/classA.jpg HTTP/1.1 PUT\n
Host: mark.commondatastorage.googleapis.com \n
Date: Mon, 20 Feb 2011 20:15:18 GMT image/jpg\n
Content-Length: 6597 Mon, 20 Feb 2011 20:15:18 GMT\n
Content-Type: image/jpg /mark/cars/mercedes/classA.jpg
Authorization: GOOG1 GOOGT ... FzlAm9ts=

Table 2.1: Example of a request with its corresponding message to sign

GET Service

GET Service: A GET HTTP request that lists all buckets in a specified project. Request
syntax:

GET / HTTP/1.1
Host: commondatastorage.googleapis.com
Date: date
Content-Length: 0
Authorization: authentication string

Response details: The request returns the list of buckets in an XML document in
the response body.

PUT Bucket

PUT Bucket : A PUT HTTP request that creates a new bucket in a specified project.
Request syntax:

PUT / HTTP/1.1
Host: bucket.commondatastorage.googleapis.com
Date: date
Content-Length: 0
Authorization: authentication string

Response details: The response does not include an XML document in the response
body.

18

2.3. API OVERVIEW

GET Bucket

GET Bucket : A GET HTTP request that lists the objects that are in a bucket. Request
syntax:

GET / HTTP/1.1
Host: bucket.commondatastorage.googleapis.com
Date: date
Content-Length: 0
Authorization: authentication string

Response details: The request returns the list of objects in an XML document in
the response body. Google Cloud Storage does not return lists longer than 1000 objects.

DELETE Bucket

DELETE Bucket : A DELETE HTTP request that deletes an empty bucket. This means
that if a bucket it is not empty it must be freed before to call this method. Request
syntax:

DELETE / HTTP/1.1
Host: bucket.commondatastorage.googleapis.com
Date: date
Content-Length: 0
Authorization: authentication string

Response details: The response does not include an XML document in the response
body.

GET Object

GET Object : A GET HTTP request that permits to download a file. The GET request
is scoped to a bucket and object. Request syntax:

GET object HTTP/1.1
Host: bucket.commondatastorage.googleapis.com
Date: date
Content-Length: request body length
Authorization: authentication string

19

2.3. API OVERVIEW

Response details: The binary data of the file to download.
Request example:

GET /friends.doc HTTP/1.1
Host: mark.commondatastorage.googleapis.com
Date: Tue, 15 Feb 2011 15:16:05 GMT
Content-Length: 1500
Authorization: GOOG1 GOOGT ... FzlAm9ts=

PUT Object

PUT Object : A PUT HTTP request that uploads or copies an object. The PUT request
is scoped with a bucket name and an object’s name, and the object data is inserted
into the request body. Request syntax:

PUT /object HTTP/1.1
Host: bucket.commondatastorage.googleapis.com
Date: date
Content-Length: request body length
Content-Type: object MIME type
Content-MD5: object MD5 digest – OPTIONAL
Authorization: authentication string

Request body: ... object data ...

Response details: The response does not include an XML document in the response
body.

Request example:

PUT /mountains.jpg HTTP/1.1
Host: carlos.commondatastorage.googleapis.com
Date: Sat, 11 Feb 2010 12:34:18 GMT
Content-Type: image/jpg
Content-MD5: iB94gawbwUSiZy5FuruIOQ==
Content-Length: 890
Authorization: GOOG1 GOOGT ... FzlAm9ts=

20

2.3. API OVERVIEW

DELETE Object

DELETE Object : A DELETE HTTP request that deletes an object. The DELETE
method is a DELETE request with bucket and object scope. Request syntax:

DELETE /object HTTP/1.1
Host: bucket.commondatastorage.googleapis.com
Date: date
Content-Length: request body length
Authorization: authentication string

Response details: The response does not include an XML document in the response
body.

HEAD Object

HEAD Object : A HEAD HTTP request that lists metadata for an object. Request
syntax:

HEAD /object HTTP/1.1
Host: bucket.commondatastorage.googleapis.com
Date: date
Content-Length: 0
Authorization: authentication string

Response details: The request can return a variety of response headers depending
on the request headers you use. The response body does not include an XML document.
The following table shows all the response headers of an HEAD request:

Header Description
Cache-Control A request and response header that specifies the cache control setting
Content-Length The length (in bytes) of the request or response body.
Content-Type The MIME type of the request or response.
Content-Disposition A request and response header that specifies presentational information

about the data being transmitted.
ETag The entity tag for the response body. Usually a valid MD5 digest.
Last-Modified The date and time that the object was last modified.

Table 2.2: Response headers of an HEAD request

21

2.3. API OVERVIEW

POST Object

POST Object : A POST HTTP request that uploads objects by using HTML forms.
HTML form fields:

Field Description
Content-Type The MIME type of the file uploaded via the form.
file The file to upload. Must be the last field in the form. It is possible to

upload only one object per request.
key The name of the object to upload.

This method it is not of interest for the development of the iHD application, so it
will not further explained.

2.3.2 Resumable uploads

Google Cloud Storage provides a resumable uploads feature that permits to resume
upload operations after a communication failure has interrupted the flow of data. Re-
sumable uploads are useful when large file are transferred, because the likelihood of an
error during the transmission is high. Furthermore, resuming upload operations can re-
duce the bandwidth usage (and costs) because it is not necessary to restart file uploads
from the beginning. In this section it is shown how to implements the resumable upload
feature using the Google Cloud Storage API.

Step 1–Initiate the resumable upload

The first step is to construct a POST request with an empty body, which must contains
the following fields:

• A Content-Type request header, which contains the content type of the file to
upload.

• A Content-Length request header, which must be set to 0.

• An x-goog-resumable header, which must be set to start.

The following example shows a simple POST request that initiate the resumable
upload:

22

2.3. API OVERVIEW

POST /mozart.mp3 HTTP/1.1
Host: mark.commondatastorage.googleapis.com
Date: Mon, 10 Dec 2011 18:54:10 GMT
Content-Length: 0
Content-Type: audio/mpeg
x-goog-resumable: start
Authorization: GOOG1 GOOGTS ... xs98GTER=

Step 2–Process the response

The Google Cloud Storage system will then responds with a 201 Created status mes-
sage. The response contains also a Location header which defines an upload ID for the
resumeable upload.

The following example shows the response message of the request in the step 1:

HTTP/1.1 201 Created
Location: https://mark.commondatastorage.googleapis.com/mozart.mp3/upload_id=thE0RdYnhDa...hJJElop

Date: Mon, 10 Dec 2011 18:54:10 GMT
Content-Length: 0
Content-Type: audio/mpeg

Step 3–Upload the file

Once the upload ID has been obtained, the next step is to make a PUT request which
include the upload ID parameter. In this case the Content-Length header must be set
to the dimension of the file to upload.

The following example shows the PUT request for the file mozart.mp3 initiated in
step 1:

PUT /mozart.mp3?upload_id=thE0RdYnhDa...hJJElop HTTP/1.1
Host: mark.commondatastorage.googleapis.com
Date: Mon, 10 Dec 2011 18:54:10 GMT
Content-Length: 8809876
Authorization: GOOG1 GOOGiT ... leqiklJHl=

23

2.3. API OVERVIEW

If the PUT request is not interrupted and the file is completely uploaded, Google
Cloud Storage responds with a 200 OK status code. Otherwise, the upload can be
resumed performing the steps 4, 5 and 6.

Step 4–Query Google Cloud Storage for the upload status

If the upload operation has been interrupted, it is possible to query Google Cloud Storage
for the number of bytes it has received by implementing another PUT request. This PUT
request must have an empty body, the upload ID obtained in step 2, and the following
headers:

• A Content-Length request header, which must be set to 0.

• A Content-Range request header, which must be in the following format:

Content-Range: */content-length

Where content-length is the value of the Content-Length header specified in the
PUT request of step 3.

The following example shows how to query the Google Cloud Storage for the inter-
rupted upload of step 3:

PUT /mozart.mp3?upload_id=thE0RdYnhDa...hJJElop HTTP/1.1
Host: mark.commondatastorage.googleapis.com
Date: Mon, 10 Dec 2011 18:56:11 GMT
Content-Range: bytes */8809876
Content-Length: 0
Authorization: GOOG1 GOOGT ... grYiUh=

Step 5–Process the status response

The system will then respond with a 308 Resume Incomplete status code to the PUT
request of step 4. This response contains a Range response header, which indicates the
amount of bytes the Google Cloud Storage system has received.

24

2.3. API OVERVIEW

The following example shows the response of the PUT request of step 4:

HTTP/1.1 308 Resume Incomplete
Range: bytes=0-3826739
Date: Mon, 10 Dec 2011 18:56:11 GMT
Content-Length: 0
Content-Type: audio/mpeg

Step 6–Resume the upload

Finally, the upload operation can be resumed implementing a last PUT request. The
body of this request must contains the portion of the file not previously uploaded. This
portion is calculated subtracting the Range value (obtained in step 5) from the Content-
Length (specified in step 3). The PUT request must also contains the upload ID of the
resumeable upload and the following headers:

• A Content-Length request header, which is setted to:

Content-Length_of_step_3 - Range

• A Content-Range request header, which specifies the range of bytes to be up-
loaded.

The following example shows the PUT request that resumes the upload of the file
interrupted in step 3:

PUT /mozart.mp3?upload_id=thE0RdYnhDa...hJJElop HTTP/1.1
Host: mark.commondatastorage.googleapis.com
Date: Mon, 10 Dec 2011 18:56:11 GMT
Content-Range: bytes 3826739-8809875/8809876
Content-Length: 4983137
Authorization: GOOG1 GOOGT ... lkYoUg=

The steps 4, 5 and 6 can be performed as many times as necessary.

25

2.3. API OVERVIEW

26

Chapter 3

Design

3.1 A statement of the problem
The goal is to develop a complete application, named iHD, of Cloud Storage for the
access, management and sharing of files on the web. The end user will simply use the
application from any type of device with an internet connection without caring about
the storage location of the files. This storage location is provided by the Google Cloud
Storage service, which offers a simple programming interface to store and manage data.
Through this service, the client application will provide a simple and practical GUI
interface to maintain the users data always available “in the Cloud”.

3.2 Requirements analysis
In this section will be analysed all the important characteristics on which the iHD ap-
plication will be based. These characteristics can be viewed like a starting point from
which begin the development of all the various parts of the software.

3.2.1 Functional requirements

Functional requirements define the specific behaviour and functions of an application.
The following list specifies the functional requirements for the iHD application:

• The application must permit the download of multiple files simultaneously.

• The application must permit the upload of multiple files simultaneously.

• The application must permit the inclusion of multiple accounts on the same device.

• The application must permit to define a local path, called workspace, where to save
all the downloaded files.

27

3.2. REQUIREMENTS ANALYSIS

• The application must permit to share files and folders among the users (registered
to the service).

• The application must show a progress bar that indicates the amount of used space
for each user.

• The application must show both the traffic in download and in upload measured
in Kb/s.

• The application must permits to switch from an user to another without the need
of restart.

3.2.2 Non-Functional requirements

Non-functional requirement impose constraints on the design or implementation of an
application. The following list defines the non-functional requirements for the iHD ap-
plication:

• The application shall exhibit a main single interface from which it is possible to
access to all the implemented functions.

• The application shall notify an accidental network error and, in this case, it shall
interrupt temporarily all the operations.

• The application shall resume the interrupted uploads from the state at which they
were arrived.

• The application shall permit to modify some settings like the port numbers, IP
addresses, etc.

• All the file transfers shall be secured with SSL.

• All the sensitive data of users saved locally on the device shall be protected using
the MD5 algorithm.

• The software shall be portable on all the systems that run a JVM (Java Virtual
Machine).

3.2.3 Constraints

The following list defines some constraints related to the development of the iHD appli-
cation:

• The programming language for the development must be Java.

28

3.3. DESIGN CHOICES

• The system must be interfaced with the Google Cloud Storage service.

• The RDBMS (relational database management system) must be MySQL.

3.3 Design choices
The iHD application will be divided into macro components. Each component will do a
single major job. Following this methodology the final structure of the application will
be better understandable and the development of the software will be easier.

3.3.1 General overview

The system as a whole is composed by three major parts:

• The iHD application developed in Java, distributed from a website on which new
users can also crate an account.

• The MySQL database that contains the informations of all the registered users.

• The Google Cloud Storage service on which the files will be saved.

The following figure shows these three major parts:

iHD application

MySQL

Database Google Cloud Storage API

@ commondatastorage.gogoleapis.com:80

@ db_location_host:3306

Figure 3.1: iHD application – scheme of communication

As already stated, on the Google Cloud Storage service will be saved the data of
different users, so it is necessary to subdivide the available space on Google Cloud Storage

29

3.3. DESIGN CHOICES

among many users. This is done assigning a different bucket to each user, a bucket
named with the same username of the correspondent user1. For example, if an user
called “Steven” subscribes to the service, a new bucket named Steven will be created,
and all the data of the user Steven will be saved in this bucket. This design choice
increments also the security of the iHD application, because a given user will never be
able to access the data of another user (saved in fact in another bucket). The following
figure shows the buckets management on Google Cloud Storage for the iHD application:

Files and Folder of
user Steven

Files and Folders of
user Mark

Files and Folders of
user Emma

Bucket "Steven" Bucket "Emma" Bucket "Mark"

...

 Google Cloud Storage - iHD project

Access Key: GOOGW76... Secret: T4GhL4TU...

iHD Application

Figure 3.2: Buckets management on Google Cloud Storage

Regarding the database, it will contain all the registered users to the iHD service
with their username, password and other relevant informations such as the amount of
space they are currently using. In more detail, the database will be accessed by the iHD
application:

• During login operations, to check the username and password

• To update the amount of used space (in KB) on Google Cloud Storage for a given
user. This information changes after upload or delete operations.

• To update the current plan of an user (a plan indicates how many MB’s are available
for a given user)

1Actually Google Cloud Storage provides a single bucket namespace for all its projects, so it could
be better to associate each username with a generated bucket name. This feature will be implemented
in the next versions of the iHD application.

30

3.3. DESIGN CHOICES

3.3.2 The Connection Controller

The Connection Controller is a thread and start its execution immediately after the
call of the iHD application. Its job consists to check the connection every x seconds and
to notify the application whenever the connection is interrupted. This thread will be
useful to interrupt the downloads and uploads on every connection break.

:iHD

:Thread

connection controller

new

Figure 3.3: The Connection Controller

3.3.3 The Upload Manager

The Upload Manager is a component that initiates and manages all the uploads to
Google Cloud Storage. Bringing the management of the uploads on this component will
simplify the structure of the application. The upload manager is not a thread.

3.3.4 The Download Manager

Like its counterpart, theDownload Manager is a component the initiates and manages
all the downloads from Google Cloud Storage. It is not a thread.

31

3.3. DESIGN CHOICES

:iHD

Upload manager
new

addTask()

addTask()

addTask()

addTask()

new upload

new upload

new upload

new upload

Figure 3.4: The Upload Manager

:iHD

Download manager
new

addTask()

addTask()

addTask()

addTask()

new download

new download

new download

new download

Figure 3.5: The Download Manager

32

3.3. DESIGN CHOICES

3.3.5 The Database Gateway

The Database Gateway is a component that executes all the queries to the MySQL
database. It can be viewed like an interface on which any other component must com-
municate in order to retrieve informations from the database.

iHD

database gateway

Figure 3.6: The Database Gateway

3.3.6 The Google Storage Gateway

The Google Storage Gateway is the component that executes all the HTTP requests
to the Google Cloud Storage API. Omitting the PUT Object and GET Object requests
(that are implemented by the Upload and Download manager, respectively), this com-
ponent implements the following requests:

• PUT Bucket

• GET Bucket

• DELETE Bucket

• DELETE Object

• HEAD Object

33

3.4. THE DATABASE

iHD

Google Cloud Storage API

Google Storage Gateway

Req
Resp

Req
Resp

Req
Resp

...

Figure 3.7: The Google Storage Gateway

3.4 The database
The database has been designed following three simple principles:

• Simplicity: Only the necessary tables and fields have been implemented, omitting
to insert unnecessary or rare values that can be added in future.

• Atomicity: The number of fields for each table has been reduced to the minimum.
Each field contains only one concept.

• Compactness: The number of NULL values has been reduced to the minimum
and therefore the opportunity for inconsistency is lower.

34

3.4. THE DATABASE

The following ER diagram represent the iHD database:

users

username VARCHAR(45)

password VARCHAR(45)

connections

username VARCHAR(45)

lastlogin DATETIME

usages

username VARCHAR(45)

usage BIGINT(30)

sharing

guest VARCHAR(45)

owner VARCHAR(45)

fullpath VARCHAR(255)

usersplans

username VARCHAR(45)

plan VARCHAR(45)

autoadvance TINYINT(1)

plans

plan VARCHAR(45)

space INT(11)

price INT(11)

usersdetails

username VARCHAR(45)

email VARCHAR(60)

country VARCHAR(60)

region VARCHAR(60)

address VARCHAR(150)

zip VARCHAR(6)

gender VARCHAR(10)

age INT(11)

cardid VARCHAR(45)

Figure 3.8: The Database ER diagram

users: This table contains all the users with their password (saved through the MD5
algorithm).

usages: This table indicates the amount of space that each user is currently using.

connections: This table indicates for each user when occurred the last login.

plans: This table contains all the available plans with their respective price. A basic
free plan of 200MB is offered for the startup of the iHD application.

usersplans: This table associates to each user an available plan from the plans table.
The autoadvance field indicates whether it is possible to automatically pass to the next
available plan (with the respective change of the price).

usersdetails: This table contains all the information of the registered users.

sharing: This table permits to share folders among the users. The field guest is the
invited user, the field owner indicates the holder of the folder, while the field fullpath
represents the path to the folder. In chapter 4 this mechanism will be better explained.

35

3.4. THE DATABASE

36

Chapter 4

Implementation

This chapter shows all the major parts of the iHD application and how these parts
are implemented. The first part of the chapter is focused on the issues regarding the
environment on which the application has been developed, while the second part explains
how many components of the application are effectively implemented.

4.1 Development Environment and choice of the pro-
gramming language

In chapter 3 we defined all the functional and not-functional requirements of the iHD
application. Among these requirements there are: (I) advanced network capabilities (to
enable data transfers over the HTTP protocol), (II) file management (to save users data
locally), (III) database management (to communicate with the MySQL database), (IV)
multi-threading architecture (to allow the application to accomplish multiple tasks at the
same time. An example could be a task that checks the underlying network periodically),
(V) portability (availability on different platforms), (VI) security capabilities (to encrypt
all the data that transfer over the network and the informations in the database), and
(VII) graphic functionalities (the application should exhibit a graphical user interface).
It is clear that is necessary to choose a programming language that provides all these
capabilities and that is designed to develop large projects. Java is surely the best
choice. It provides all the necessary libraries to develop the characteristics mentioned
above and is an excellent language for developing cross-platform desktop applications.
The following list provides the strengths of Java that will be useful to the development
of the iHD application:

• Vast array of third-party libraries

• Huge amount of documentation available

37

4.2. LIBRARIES

• Managed memory

• Native threads

• Excellent performance

• OOP capability

• Portability - it runs on almost every platform

• Well-supported

• Flexibility - does graphics, desktop GUIs and web user interfaces

Regarding the development environment the choice has fallen to Eclipse. It is an
open-source development platform comprised of extensible frameworks, tools and run-
times for building, deploying and managing software across its life-cycle. In particular
it provides a software development environment comprising an integrated development
environment (IDE) and an extensible plug-in system.

4.2 Libraries
The following list shows the most important java libraries (packages) imported in the
iHD application:

• java.io: Provides the classes to manage data streams, runtime exceptions and files.

• java.net/javax.net: Provides the classes for implementing networking applica-
tions. The URL and HttpsURLConnection are two examples of classes that contain
method used to connect with the Google Cloud Storage server.

• java.awt/javax.swing: A set of components used for creating user interfaces and
for painting graphics.

• org.w3c/org.xml/javax.xml: Contains methods and classes used to parse the
XML responses retrieved from the Google Cloud Storage server (for example the
list of buckets or the list of files in a specific bucket).

• java.util: Contains useful classes able to handle dates, formats and arrays.

• java.sql/com.mysql: All the classes necessary to execute queries to the MySQL
databases.

38

4.3. CLASSES

• Fast MD5 implementation: It is an open-source library1 originally written by
Santeri Paavolainen that implements the MD5 algorithm.

4.3 Classes
Before to show all the classes that compose the iHD application, it is necessary to define
the package hierarchy on which these classes are contained. The following figure shows
this hierarchy:

ihd

ihd.guiihd.database ihd.googlestorage

ihd.gui.components

ihd.utils

ihd.utils.md5

ihd.local

Figure 4.1: The Package Hierarchy

The following list defines for each package all its contained classes:

• Package ihd:

Class iHD: This is the main class that contains the main() method. It instan-
tiates the TopInterface class from the ihd.gui package.

• Package ihd.gui:

Class AboutDialog: Create a simple window that display all the informations
about the iHD application.

Class AccountsDialog: A modal dialog on which it is possible to add/re-
move/modify an account of the iHD application.

1To see more details about the Fast MD5 implementation library follow this link: http://www.
twmacinta.com/myjava/fast_md5.php

39

http://www.twmacinta.com/myjava/fast_md5.php
http://www.twmacinta.com/myjava/fast_md5.php

4.3. CLASSES

Class ConfigurationDialog: Whenever the user needs to add a new account
to the iHD application (for example through the AccountsDialog class) this modal
dialog is shown. It permits to insert all the important informations of the new
account and finally save it locally.

ClassTopInterface: Displays the main window of the iHD application. Through
this window it is possible to access all the functionalities of the application.

• Package ihd.gui.components:

Class FileElement: Each file is represented through this class. It shows an
icon, the name of the file, its size and when it was last modified.

Class FileProgressElement: Every upload or download operation of a file is
shown with this class. It contains a progress bar that displays a percentage from 0
to 100. The progress bar is colored with blue for the upload operations and with
green for the downloads.

Class FileScrollerPanel: This class creates an area on which is possible to
drag&drop files into the application (starting a new upload operation of multiple
files) and that displays all the files and folders (as a list). For example it will
contain a list of FileElement objects.

Class FolderElement: Each folder is represented through this class. It shows
an icon, the name of the folder, the list of the users with which the folder is shared,
an add button used to share the folder with other users, and a remove button used
to remove the folder and all its content.

Class FooterPanel: Creates an area that displays the state of the connection
(connected to the internet or not), the current logged user (or not logged), and the
amount of KB/s used in upload and in download.

Class HeaderPanel: Shows a panel with a series of button useful to access
many functionalities of the iHD application. In particular there is a download
button (download the selected files), an upload button (upload a new file), a new-
folder button (create folder), a refresh button (refresh the current folder), a remove
button (remove the selected files), a progress bar (amount of used and available
space for your account), and a search field (select the files to be shown according
to a prefix).

Class NavigationPanel: A panel that displays the sequence of the visited
folders. Whenever a new folder is accessed the leaving folder is added to the
sequence as the last element. Clicking on a previous folder in the sequence it is
possible to going back in the tree.

Class NewFolderElement: Displays a panel that contains an input field.
Inserting the name of the folder in the input field and pressing Enter it is possible

40

4.3. CLASSES

to create a new folder.

Class SharingFolderElement: Displays a panel with a special icon that rep-
resent the list of the folders that the other users are sharing with the current user.
In order to show all the shared folders is necessary to click on this panel.

Class WebFolderElement: Each shared folder is represented through this
class (shared means that the folder belongs to another user, but the current user
can view it because the folder is shared with him). It shows an icon, the name of
the folder and the list of the users with which the folder is shared.

• Package ihd.databse:

Class DatabaseGateway: This class contains all the methods necessary to
communicate with the iHD database.

• Package ihd.local:

Class CurrentState: This class contains all the informations regarding the
current behaviour of the iHD application. It contains: the current amount of
downloading and uploading KB/s, the logging state (logged/not logged) and the
connection state (connected to the network/not connected).

Class LocalSettings: This class contains all the account available on the
current machine. It provides many methods to add/remove/edit an account.

• Package ihd.googlestorage:

ClassDownloadManager: This class manages all the current downloads from
the Google Cloud Storage server. Through its multi-threading structure is possible
to handle multiple data streams at the same time.

Class UploadManager: This class manages all the current uploads to the
Google Cloud Storage server. Through its multi-threading structure is possible to
handle multiple data streams at the same time. Whenever an upload is interrupted
this class can resume it later without loss of data.

ClassGoogleStorageGateway: This class is an interface to the Google Cloud
Storage server. It provides all the methods necessary to accomplish operations on
the server like: remove file, get file length, get list of files, get list of folders, remove
folder, create folder and check user existence.

ClassGoogleStorageAuthorization: All the operations to the Google Cloud
Storage server require a special authorization string. This class produces for each
request to the server a valid authorization string.

41

4.4. THE CONNECTION CONTROLLER

• Package ihd.utils:

Class CommonUtils: This class provides many useful methods like: get the
size of a file in a readable format given its size expressed in bytes, convert dates,
get the type of a file given its format.

Class ConnectionController: This class checks every x seconds if the net-
work connection is available.

ClassGlobalVars: This is an abstract class (it is not possible to instantiate the
class) that contains all the constants of the iHD application: database password,
database url location, database user, database port number, Google Cloud Storage
access key, Google Cloud Storage secret, Google Cloud Storage host and many
informations regarding the speed of upload and download.

Class InfiniteProgressPanel: Display over the main window of the applica-
tion a loading image, obscuring the underlying components. It can be very useful
during operations that take an large amount of time.

• Package ihd.utils.md5:

Class MD5: This class is used to crypt a given string using the MD5 hashing
algorithm. This package contains also other classes related to the MD5 algorithm
but that are not used in the iHD application.

In the following sections many of the viewed classes will be better explained.

4.4 The connection controller
As described in the previous section the Connection Controller checks every x sec-
onds if the network connection is available. In order to do this it tries to connect to a
specific host (for instance, http://www.google.com) every timeout milliseconds, where
timeout is a defined constant (e.g. 3000). The following code fragment shows how this
is implemented in Java:

public class Connect ionContro l l e r implements Runnable
{

private boolean running ;

// . . .

private Thread t ;

// . . .

42

4.4. THE CONNECTION CONTROLLER

public void run ()
{

while (running)
{

try {

URL ur l = new URL("http ://www. goog l e . com") ;
HttpURLConnection huc = (HttpURLConnection) u r l . openConnection () ;

huc . connect () ;

// I f I a r r i v ed here the connect () worked −> connected

// . . .

s t a t e . setConnected (true) ;

huc . d i s connec t () ;

try {
Thread . s l e e p (timeout) ;

} catch (Inter ruptedExcept ion e1) {}

} catch (IOException e) {

// huc . connect () not worked −> not connected & excep t i on launched

// . . .

s t a t e . setConnected (fa l se) ;

try {
Thread . s l e e p (timeout) ;

} catch (Inter ruptedExcept ion e1) {}
}

}
}

public void s t a r t ()
{

t . s t a r t () ;
}

// . . .
}

43

4.5. THE GOOGLE STORAGE GATEWAY

4.5 The google storage gateway
The GoogleStorageGateway class provides a set of methods that allow to accomplish
operations on the server (create folder, delete file, ...) and to retrieve informations
from the server (list of files, folders, ...). The following list provides all the methods
implemented by the GoogleStorageGateway class:

• public GoogleStorageGateway(String bucket): This is the constructor. It
assigns a bucket name to this class.

• public String getBucket(): Returns the bucket name associated with this class.

• public boolean checkBucket(): Returns true if the bucket exists on the server
(Google Cloud Storage server).

• public int getFileLength(String filename, String path): Returns the size
expressed in bytes of a specific file on the server.

• public int deleteFile(String filename, String path): Deletes a specific file on
the server.

• public int removeFolder(String folderPath): Removes a specific folder from
the server.

• public int createFolder(String folderName, String path): Creates a folder
on the server.

• public ArrayList<String> getFiles(String folderPath): Returns the list of
files in a specific folder on the server.

• public ArrayList<String> getFolders(String folderPath): Returns the list
of folders contained a given folder.

As an example, the following well-commented code shows how the deleteFile() method
is implemented:

public class GoogleStorageGateway
{

private St r ing bucket ;

public GoogleStorageGateway (St r ing bucket)
{

this . bucket=bucket ;
}

44

4.5. THE GOOGLE STORAGE GATEWAY

// . . .

public int d e l e t e F i l e (S t r ing f i l ename , S t r ing path) throws IOException
{

int responseCode ;

// Remove a l l the white−spaces from the path
// because the HTTP reque s t t h a t we are going to
// cons t ruc t does not admit white−spaces .
path=path . r e p l a c eA l l ("␣" , "%20") ;
f i l ename=f i l ename . r e p l a c eA l l ("␣" , "%20") ;

URL myURL=null ;

// Construct the URL with which i t i s p o s s i b l e to
// communicate wi th Google Cloud Storage .

i f (path . matches ("/"))
myURL = new URL(" https : // "+this . bucket+" . "+(GlobalVars . googleHost)

+ "/" + f i l ename) ;
else

myURL = new URL(" https : // "+this . bucket+" . "
+ (GlobalVars . googleHost)
+ path +f i l ename) ;

// Connect to the Google Storage s e r v e r
HttpsURLConnection conn = (HttpsURLConnection)myURL. openConnection () ;

// Our connect ion can transmi t / r e c e i v e data
conn . setDoInput (true) ;
conn . setDoOutput (true) ;
conn . setUseCaches (fa l se) ;

// To d e l e t e a f i l e use the DELETE HTTP method
conn . setRequestMethod ("DELETE") ;

conn . setRequestProperty ("Host" , this . bucket + " . "
+ (GlobalVars . googleHost)) ;

// Obtain the current date
//
f ina l Date currentTime = new Date () ;
f ina l SimpleDateFormat dateFormat =

new SimpleDateFormat ("EEE, ␣d␣MMM␣yyyy␣HH:mm: s s ␣z") ;

dateFormat . setTimeZone (TimeZone . getTimeZone ("GMT")) ;

// Normalize the date to a s tandard i z ed model accepted by Google

45

4.6. THE DATABASE GATEWAY

conn . setRequestProperty ("Date" , dateFormat . format (currentTime)) ;

// This c l a s s i t i s used to c r ea t e our au t ho r i z a t i on s t r i n g
// necessary to au t ho r i z e the HTTP reque s t
// t ha t we are sendind to Google
//
GoogleStorageAuthor izat ion auth = new GoogleStorageAuthor izat ion (

GlobalVars . accessKey ,
GlobalVars . s e c r e t ,
dateFormat . format (currentTime)) ;

// Set a l l important in format ion needed to the DELETE reque s t in
// the Goog leS torageAuthor i za t ion c l a s s
//
auth . setMethod ("DELETE") ;
auth . setBucketName (this . bucket) ;
i f (! path . matches ("/"))

auth . setPath (path) ;
auth . setFileName (f i l ename) ;

// Given the au thor i z a t i on , add i t to our r e que s t to Google Storage
conn . setRequestProperty ("Author i zat ion " , auth . g e tAuthor i za t i onSt r ing ()) ;

// The content−l e n g t h f o r a DELETE reque s t i s 0
conn . setRequestProperty ("Content−Length" , "0") ;

// F ina l l y send the r e que s t to the s e r v e r (t ha t w i l l d e l e t e the f i l e)
conn . connect () ;

// Get the response code by the s e r v e r
responseCode=conn . getResponseCode () ;

conn . d i s connec t () ;

// Return the response code o f the DELETE method
// to the c a l l e r
return responseCode ;

}
}

4.6 The database gateway
The DatabaseGateway class provides all the methods necessary to communicate with
the MySQL database that contains the informations of the iHD users. In particular, the
following methods are provided:

• public boolean exists(String username): Returns true if a given username is

46

4.6. THE DATABASE GATEWAY

contained in the database.

• public boolean checkCorrectness(String username, String password): Check
if a pair username-password is correct.

• public int getAvailableStorage(String username): Returns the amount of
available storage (the maximum amount of space an user can utilize, given by his
plan) for a particular user.

• public int getUsedStorage(String username)): Returns the amount of non-
available storage (used space) for a particular user.

• public int updateUsedStorage(String username, int amount): This method
updates the amount of used storage for an user with a quantity equal to amount
(that can be positive or negative).

• public boolean shareFolder(String owner, String guest, String fullPath):
This method permits to the user owner to give the access of one of his folders
(defined by fullPath) to another user guest.

• public boolean removeWebFolder(String guest, String fullPath): With
this method the user guest can remove one of the folders (defined by fullPath) that
other users are sharing with him.

• public boolean removeGuestContact(String owner, String guest, String
fullPath): This method permits to the user owner to deny the access of one of
his shared folders (defined by fullPath) to another user guest (which previously
obtained the access to the folder through the shareFolder() method).

• public ArrayList<String> getGuestContacts(String owner, String full-
Path): Returns the list of users that have the access to a shared folder of the user
owner (shared folder defined by fullPath).

• public ArrayList<String> getWebFolders(String guest): Returns the list
of the folders shared with the user guest.

It is clear that all the sharing mechanism is implemented through the MySQL database,
using the methods shareFolder(), removeWebFolder(), removeGuestContact(), getGuest-
Contacts() and getWebFolders(). Another important characteristic is the management
of the users plans. This is done, as can be clearly noticed, through the database, using
the methods getAvailableStorage(), getUsedStorage() and updateUsedStorage().

Appendix B shows the full implementation of the DatabaseGateway class. As an ex-
ample, the following code shows the implementation of the getGuestContacts() method:

47

4.6. THE DATABASE GATEWAY

public class DatabaseGateway
{

// . . .

public ArrayList<Str ing> getGuestContacts (S t r ing owner , S t r ing fu l lPa th)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
ArrayList<Str ing> r e t L i s t = new ArrayList<Str ing >() ;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing mysqlQuery="SELECT␣ guest ␣" +

"FROM␣ shar ing ␣" +
"WHERE␣owner=’" +
owner +
" ’ ␣AND␣ f u l l p a t h=’" +
fu l lPa th + " ’ " ;

Resu l tSet r e s=s t a t . executeQuery (mysqlQuery) ;

while (r e s . next ())
r e t L i s t . add (r e s . g e tS t r i ng (" guest ")) ;

s t a t . c l o s e () ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return r e t L i s t ;
}

}

48

4.7. SSL SECURITY

4.7 SSL security
All the files that are transmitted or received from the Google Cloud Storage server must
be encrypted in some way. This is done using the SSL (Secure Sockets Layer) protocol
that provides communication security over the Internet. The SSL protocol encrypts the
segments of network connections above the Transport Layer, using asymmetric cryptog-
raphy for key exchange, symmetric encryption for privacy, and message authentication
codes for message integrity. In Java, as shows the following upload example, this is done
with the HttpsURLConnection class:

// Create a new HttpsURLConnection o b j e c t
// A l l the data t ransmi t t ed through t h i s o b j e c t w i l l pass under an
// SSL tunne l
//
HttpsURLConnection conn = (HttpsURLConnection)myURL. openConnection () ;

// . . .
// Set many p r o p e r t i e s o f the conn o b j e c t l i k e Content−Length , Host ,
// the r e que s t method , e t c . . .

conn . setRequestMethod ("PUT") ;
conn . setRequestProperty ("Host" , googleHost) ;
conn . setRequestProperty ("Content−Length" , f i l eL engh t) ;

// . . .

// ∗∗∗∗∗∗∗∗ Transmit data ∗∗∗∗∗∗∗∗

// Ret r i eve an output stream from the connect ion where to wr i t e data
output = conn . getOutputStream () ;

while (/∗ Data a v a i l a b l e to wr i t e ∗/)
{

output . wr i t e (data [i]) ;

wr i t edB i t s++;
}

// ∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗

// F ina l l y c l o s e the output stream and the connect ion
output . c l o s e () ;
conn . d i s connec t () ;

49

4.8. MULTI-THREADING IMPLEMENTATION

4.8 Multi-threading implementation
In order to permit the upload and download of multiple files at the same time the
iHD application must implement a dynamic array (that can expand in size at runtime)
of threads. Actually the implemented arrays of threads are two, the first one for the
UploadManager class and the second one for the DownloadManager class. Every time
a new upload (download) is initiated, a special class called Uploader (Downloader) that
implements the Runnable interface is instantiated, and the new created object is added
to the respective array. This object will manage the upload (download) transmission,
and when its work will be completed the object will be removed from the array. It
is important to notice that every object of this type is itself a thread so can follow
its execution in parallel with the execution of the iHD application, without stopping the
other current operations. This mechanism allows the iHD application to execute multiple
downloads and uploads at the same time, as shows the following image:

Google Cloud Storage server

UploadManager DownloadManager

Channel 1 Channel n

Channel 1 Channel n

Figure 4.2: Multi-threading implementation of uploads and downloads

4.8.1 The download manager

TheDownloadManager class handles all the downloads from the Google Cloud Storage
server (where the files of the users are located). It provides a single method addTask()
to initiate a new download. After this method is called a new thread is executed and the
transmission of the file can take place. The following Java code (simplified, and without
many parts replaced by a “...”) shows the general behaviour of the DownloadManager
class:

50

4.8. MULTI-THREADING IMPLEMENTATION

public class DownloadManager
{

private ArrayList<Downloader> downloads ;

public DownloadManager ()
{

downloads = new ArrayList<Downloader >() ;
}

public void addTask (St r ing fi leName ,
S t r ing f i l ePa th ,
S t r ing user ,
. . .) throws IOException

{
downloads . add (0 ,new Downloader (f i leName ,

f i l ePa th ,
user , . . .)) ;

downloads . get (0) . s t a r t () ;
}

private class Downloader implements Runnable
{

private Thread t ;

private boolean downloading ;

// . . .

public Downloader (S t r ing fi leName ,
S t r ing f i l ePa th ,
S t r ing user ,

. . .) throws IOException
{

downloading = true ;

// . . .

t = new Thread (this) ;

this . f i leName=fi leName ;
this . f i l ePa t h=f i l ePa t h ;
this . u se r=user ;

// . . .

51

4.8. MULTI-THREADING IMPLEMENTATION

this . f i l ePa t h=this . f i l ePa t h . r e p l a c eA l l ("␣" , "%20") ;
this . f i leName=this . f i leName . r e p l a c eA l l ("␣" , "%20") ;

// . . .
}

public void s t a r t ()
{

t . s t a r t () ;
}

public boolean isCompleted ()
{

return ! downloading ;
}

public void run ()
{

// . . .

try{
// . . .

HttpsURLConnection conn =
(HttpsURLConnection)myURL. openConnection () ;

//

conn . setRequestMethod ("GET") ;

// . . .

conn . connect () ;
responseCode=conn . getResponseCode () ;

i f (responseCode==200)
{

InputStream in = conn . getInputStream () ;

FileOutputStream f i l eOutput = new FileOutputStream (f i l e) ;
OutputStream out = new DataOutputStream (f i l eOutput) ;

// . . .

while ((i=in . read ())!=−1)
{

out . wr i t e (i) ;

r eadedBits++;

52

4.8. MULTI-THREADING IMPLEMENTATION

// . . .
}

// . . .

conn . d i s connec t () ;
}

} catch (IOException e1) {}

this . downloading=fa l se ;
}

// . . .
}

}

4.8.2 The upload manager

The UploadManager class, like his counterpart, handles all the uploads to the Google
Cloud Storage server. It provides a single method addTask() to initiate a new upload.
After this method is called a new thread is executed and the transmission of the file can
take place. Appendix A shows the full implementation of the UploadManager class. The
following Java code (simplified, and without many parts replaced by a “...”) shows the
general behaviour of the UploadManager class:

public class UploadManager
{

private ArrayList<Uploader> uploads ;

public UploadManager ()
{

uploads=new ArrayList<Uploader >() ;
}

public void addTask (St r ing fi leName ,
S t r ing f i l ePa th ,
S t r ing user ,

. . .) throws IOException
{

uploads . add (0 ,new Uploader (f i leName ,
f i l ePa th ,
user ,

. . .)) ;

53

4.8. MULTI-THREADING IMPLEMENTATION

uploads . get (0) . s t a r t () ;
}

private class Uploader implements Runnable
{

private Thread t ;

private Checker checker ;

private boolean uploading ;
private boolean r e s t o r i n g ;

private St r ing f i leName ;
private St r ing f i l ePa t h ;
private St r ing user ;

// . . .

public Uploader (S t r ing fi leName ,
S t r ing f i l ePa th ,
S t r ing user ,

. . .) throws IOException
{

uploading = true ;
r e s t o r i n g = fa l se ;
wr i t edB i t s = 0 ;

t = new Thread (this) ;

checker = new Checker () ;

this . f i leName=fi leName ;
this . f i l ePa t h=f i l ePa t h ;
this . u se r=user ;

// . . .
}

public void s t a r t ()
{

t . s t a r t () ;
}

public void run ()
{

// . . .

try{
// . . .

54

4.8. MULTI-THREADING IMPLEMENTATION

HttpsURLConnection conn =
(HttpsURLConnection)myURL. openConnection () ;

// . . .
/∗∗∗∗∗∗∗ RESUMABLE UPLOADS − STEP 1 ∗∗∗∗∗∗∗/

conn . setRequestMethod ("POST") ;

// . . .

conn . setRequestProperty ("x−goog−resumable " , " s t a r t ") ;
conn . setRequestProperty ("Content−Length" , "0") ;

// . . .

conn . connect () ;
responseCode=conn . getResponseCode () ;

i f (responseCode==201)
{

/∗∗∗∗∗∗∗ RESUMABLE UPLOADS − STEP 2 ∗∗∗∗∗∗∗/

uploadId = conn . getHeaderFie ld ("Locat ion ") ;

// . . .

conn . d i s connec t () ;

// . . .

conn = (HttpsURLConnection)myURL. openConnection () ;

// . . .

/∗∗∗∗∗∗∗ RESUMABLE UPLOADS − STEP 3 ∗∗∗∗∗∗∗/

conn . setRequestMethod ("PUT") ;

// . . .

conn . connect () ;

output = conn . getOutputStream () ;

Fi le InputStream f i l e I n p u t = new Fi leInputStream (f i l e) ;
InputStream in = new DataInputStream (f i l e I n p u t) ;

55

4.8. MULTI-THREADING IMPLEMENTATION

// . . .

checker . s t a r t () ;

while ((i=in . read ())!=−1)
{

output . wr i t e (i) ;

wr i t edB i t s++;

// . . .
}

// . . .

checker . stop () ;

output . c l o s e () ;
conn . d i s connec t () ;

this . uploading = fa l se ;

}
} catch (IOException e1) { . . . }

}

// . . .

private void r e s t o r e ()
{

r e s t o r i n g = true ;

try {
output . c l o s e () ;

} catch (IOException e) {}

// . . .

int responseCode = 0 ;

while (responseCode !=308)
{

try {
// . . .

HttpsURLConnection conn =
(HttpsURLConnection)myURL. openConnection () ;

// . . .

56

4.8. MULTI-THREADING IMPLEMENTATION

/∗∗∗∗∗∗∗ RESUMABLE UPLOADS − STEP 4 ∗∗∗∗∗∗∗/

conn . setRequestMethod ("PUT") ;

// . . .

conn . connect () ;

responseCode = conn . getResponseCode () ;

/∗∗∗∗∗∗∗ RESUMABLE UPLOADS − STEP 5 ∗∗∗∗∗∗∗/

i f (responseCode == 308)
rangeHeader = conn . getHeaderFie ld ("Range") ;

conn . d i s connec t () ;

} catch (IOException e1) { . . . }

// . . .
}

i f (responseCode == 308)
resume (. . .) ;

}

private void resume (int alreadyWrited)
{

try {
// . . .

HttpsURLConnection conn =
(HttpsURLConnection)myURL. openConnection () ;

// . . .

/∗∗∗∗∗∗∗ RESUMABLE UPLOADS − STEP 6 ∗∗∗∗∗∗∗/

conn . setRequestMethod ("PUT") ;

// . . .

conn . connect () ;

output = conn . getOutputStream () ;

Fi le InputStream f i l e I n p u t = new Fi leInputStream (f i l e) ;
InputStream in = new DataInputStream (f i l e I n p u t) ;

57

4.8. MULTI-THREADING IMPLEMENTATION

// . . .

wr i t edB i t s = alreadyWrited ;

in . sk ip (alreadyWrited) ;

// . . .

r e s t o r i n g = fa l se ;

while ((i=in . read ())!=−1)
{

output . wr i t e (i) ;

wr i t edB i t s++;

// . . .
}

// . . .

checker . stop () ;

output . c l o s e () ;
conn . d i s connec t () ;

uploading = fa l se ;

} catch (IOException e1) { . . . }
}

private class Checker implements Runnable
{

private Thread subT ;

private int l a s tWri ted ;

private boolean running = true ;

// . . .

public Checker ()
{

subT = new Thread (this) ;

l a s tWri ted = 0 ;
}

58

4.8. MULTI-THREADING IMPLEMENTATION

public void s t a r t ()
{

subT . s t a r t () ;
}

public void stop ()
{

this . running = fa l se ;
}

public void run ()
{

while (running)
{

Thread . s l e e p (timeout) ;

i f (! r e s t o r i n g && running)
{

i f (la s tWri ted >= getWritedBits ())
r e s t o r e () ;

else
l a s tWri ted = getWritedBits () ;

}
}

}
}

// . . .
}

}

Resumable uploads implementation

As can be seen in code above, the UploadManager class implements the resumable uploads
(RU) mechanism described in chapter 2 (section 2.3.2). In more detail, this job is done
by the Uploader class contained in the UploaderManager, which actually handles the
upload operation. Firstly, it makes a POST request in order to initiate the resumable
upload (RU - STEP 1), and after that it processes the consequent response to retrieve
the Location response header (RU - STEP 2). Consequently, it begins to upload the file
implementing a PUT request (RU - STEP 3), and if nothing goes wrong the Uploader
class finishes his job. Otherwise, a special class that implement the Runnable interface (a
thread) called Checker notices that the transmission is interrupted and therefore makes
a call to a restore() method. The restore() method waits for the underlying network
connection to be available and then iteratively tries to implement the PUT request to
retrieve the interrupted upload status (RU - STEP 4). Once the response to this request

59

4.8. MULTI-THREADING IMPLEMENTATION

is received (it should be a 308 resume-incomplete response. If not, the PUT request
will be resubmitted), the Range response header is retrieved and a resume() method can
be called (RU - STEP 5). Finally, the resume() method implements the PUT request
(RU - STEP 6) the resumes the upload from the point at which had been interrupted
(information given by the Range response header). Obviously, the upload operation
can be newly interrupted and the restore process can be reinitiated from step 4 (again
through the Checker class).

60

61

5.1. THE MAIN WINDOW

Chapter 5

iHD application - GUI Description

5.1 The Main Window

Figure 5.1: The Main Window
62

5.1. THE MAIN WINDOW

5.1.1 Menu bar

File

Name Description
Exit Close the software.

Edit

Name Description
Select All Select all the files in the main panel.
Configuration Assistant Shows a dialog that permits to add a new account.
Accounts Shows the accounts dialog.

Help

Name Description
Help Information about how to use the software.
About Information about the software.

5.1.2 Header panel

Figure 5.2: Header panel

A panel with a series of components (in order, from left to right):

• A download button (download all the selected files)

• An upload button (upload a new file)

• A new-folder button (create folder)

• A refresh button (refresh the current folder)

63

5.1. THE MAIN WINDOW

• A remove button (remove the selected files)

• A progress bar (percentage of utilized space)

• An input field (shows only the files that begin with a given prefix)

5.1.3 Navigation panel

Figure 5.3: Navigation panel

A panel that displays the sequence of the visited folders. Whenever a new folder is
accessed the leaving folder is added to the sequence as the last element. Clicking on a
previous folder in the sequence it is possible to going back in the tree. Referring to the
figure, the current path is “/sea pics/homeworks/current_folder” (The “Home” button
represents the root).

5.1.4 Scroller panel

Figure 5.4: Scroller panel

An area on which is possible to drag&drop files into the application (starting a new
upload operation of multiple files) and that displays all the files and folders (as a list).
In more detail, this area contains:

64

5.1. THE MAIN WINDOW

• (1) The sharing folder
This element is only visible when the current path is the root. Clicking on it the
area will be populated with all the shared folders which the user can access.

• (2) Folders
Each folder shows an icon, the name of the folder, the list of the users with which
the folder is shared (3), an add button used to share the folder with other users
(4), and a remove button used to remove the folder and all its content (5).

• (6) Files
Each file shows an icon, the name of the file, its size and when it was last modified.

• (7) File downloads
Each download is represented with a green progress bar that displays a percentage
from 0 to 100.

• (8) File uploads
Each upload is represented with a blue progress bar that displays a percentage
from 0 to 100.

5.1.5 Footer panel

Figure 5.5: Footer panel

An area that displays (in order, from left to right) the state of the connection (connected
to the internet or not), the current logged user (or not logged), and the current amount
of Kb/s used in download and in upload (respectively).

65

5.2. THE CONFIGURATION ASSISTANT DIALOG

5.2 The Configuration Assistant Dialog

Figure 5.6: The Configuration Assistant Dialog

The Configuration Assistant dialog can be called from the Edit menu. It permits to
insert all the important informations of a new account and finally save it locally. In
particular it shows progressively six steps:

• Step 1: A brief description of the Configuration Assistant behaviour.

• Step 2: Insert the username.

• Step 3: Insert the password.

• Step 4: Insert the workspace, a path that indicated where to download the files
from the Google Cloud Storage server.

• Step 5: A checkbox. If enabled it indicates that the auto-advance mode for the
current account is activated (auto-advance: whenever the limit space quota is

66

5.3. THE ACCOUNTS DIALOG

reached the system automatically upgrades the user plan to the next one in order
to increase the available space).

• Step 6: A summary of all the insert informations and a confirmation button.

5.3 The Accounts Dialog

Figure 5.7: The Accounts Dialog

A modal dialog on which it is possible to add/remove/modify an account of the iHD
application.

5.3.1 Menu bar

Accounts

Name Description
Add an account Shows the Configuration Assistant dialog in order to add a new account.
Edit account Shows an edit dialog on which it is possible to modify the username,

password, workspace and auto-advance mode for a given account.
Remove accounts Remove the selected accounts.
Close Closes the Accounts dialog.

67

5.3. THE ACCOUNTS DIALOG

5.3.2 Edit Dialog

Figure 5.8: The Edit Dialog

An edit dialog on which it is possible to modify the username, password, workspace and
auto-advance mode for a given account. It can be selected from the Accounts menu.

68

5.3. THE ACCOUNTS DIALOG

69

Chapter 6

Conclusion

6.1 Thesis summary
This thesis introduced Google Cloud Storage: a service that permits to store data on the
Google’s infrastructure. It provides a simple programming interface to create applications
that store, share, and manage data on Google Cloud Storage. In particular, as seen in
chapter 2, the communication between applications and Google Cloud Storage is made
using HTTP requests. Each of these requests encapsulates a method information (the
type of the request, such as PUT, GET, DELETE, ...) and a scoping information (the
resource on which perform the request). It follows that it becomes possible to develop
an application that, relying on this API, provides a cloud storage service. This has been
done implementing the iHD application, a client that permits to upload and manage
files in the Cloud, through the Google Cloud Storage service. About that, chapter 3
showed the design principles on which the iHD application has been developed focusing
on the requirements analysis and on the structure of the application. Chapter 4 instead
provided an overview of all the components of the iHD application, showing in many
cases how these components are effectively implemented in Java. Finally, chapter 5
described the GUI of the iHD application, providing for each element that compose the
interface a brief description of its behaviour.

6.2 Future Work
There are a number of features that can be certainly added to the iHD application,
among these features there are:

• Interoperability with other services of cloud storage such ad Amazon S3, that
provides a simple RESTful programming interface like Google Cloud Storage. In
this case, the end-user could choose for each account or for each folder where to

70

6.3. ACKNOWLEDGEMENTS

save the data. This decision could also be taken by the iHD application in order
to balance the storage between different services.

• A mechanism to download entire folders. This is not yet possible through the
Google Cloud Storage API but it could be possible to develop it in Java.

• Capacity to rename the folders on the server. This is not yet possible through the
Google Cloud Storage API but it could be possible to develop this feature with a
series of delete/upload operations.

• Possibility to synchronize a given folder on the local operating system (for instance
the workspace folder) with the files on the Google Cloud Storage server. In this
case any change on this local folder will lead to a new upload (or delete) operation
on the server.

• On the most advanced operating systems, an icon that permits to minimize the
iHD application to the System Tray in order to run it in background.

• Possibility to set bandwidth limits. In this way the iHD application will not slow
down the entire connection.

• A mechanism to make a specific file on the server completely public, which means
that it can be accessed through a generated static URL from every user on the
internet. This feature could be implemented quickly because this is an option
already available with the Google Cloud Storage service.

6.3 Acknowledgements
Firstly, I gratefully acknowledge my supervisor Danilo Montesi for for his guidance
throughout my thesis.

A ton of thanks go out to my family, particularly my mother and father for having
believed in me and for putting up with my insistence on exploring the unknown instead
of settling down.

I would like to thank all the students of the Computer Science department, and
Francesco Orrù, for the many stimulating discussions and enjoyable friendships over the
past three years.

Finally I’d like to acknowledge my best friend Andrea Franzoni and his lovely girl-
friend for their support.

71

6.3. ACKNOWLEDGEMENTS

72

Appendix A

The UploadManager Class

Below there is the complete implementation of the UploadManager class. The Down-
loadManager will not be shown because is very similar to the UploadManager.

public class UploadManager
{

private ArrayList<Uploader> uploads ;
private ArrayList<PermissionToken> permi s s i ons ;

public UploadManager ()
{

uploads=new ArrayList<Uploader >() ;
pe rmi s s i ons=new ArrayList<PermissionToken >() ;

}

public void addTask (St r ing fi leName ,
S t r ing f i l ePa th ,
S t r ing loca lAbso luteF i l ePath ,
F i l eProgres sElement f i l eP r o g r e s s ,
S t r ing user ,
CurrentState cu r rS ta t e) throws IOException

{
for (int i =0; i<permi s s i ons . s i z e () ; i++)

permi s s i ons . get (i) . incrementIndex () ;

pe rmi s s i ons . add (0 , new PermissionToken (fi leName , f i l ePa th , 0)) ;

uploads . add (0 ,new Uploader (f i leName ,
f i l ePa th ,
l oca lAbso luteF i l ePath ,
f i l eP r o g r e s s ,
user ,
currState ,
pe rmi s s i ons . get (0))) ;

73

APPENDIX A. THE UPLOADMANAGER CLASS

uploads . get (0) . s t a r t () ;
}

public void removeTask (St r ing fi leName , S t r ing f i l ePa t h)
{

for (int i =0; i<permi s s i ons . s i z e () ; i++)
i f (pe rmi s s i ons . get (i) . getName () . compareTo (f i leName)==0 &&

permi s s i ons . get (i) . getPath () . compareTo (f i l ePa t h)==0)
{

permi s s i ons . get (i) . removePermission () ;

uploads . remove (pe rmi s s i ons . get (i) . getIndex ()) ;

for (int j=i ; j<permi s s i ons . s i z e () ; j++)
permi s s i ons . get (j) . decrementIndex () ;

pe rmi s s i ons . remove (i) ;

break ;
}

}

private class Uploader implements Runnable
{

private Thread t ;

private Checker checker ;

private boolean uploading ;
private boolean r e s t o r i n g ;

public St r ing f i leName ;
public St r ing f i l ePa t h ;
private St r ing user ;
private int f i l eL engh t ;

private St r ing uploadId ;

private int wr i t edB i t s ;
private OutputStream output ;

private F i l e f i l e ;
private Fi leProgres sElement f i l e P r o g r e s s ;

private CurrentState cu r rS ta t e ;

private Timer time ;

74

APPENDIX A. THE UPLOADMANAGER CLASS

private PermissionToken myPermission ;

public Uploader (S t r ing fi leName ,
S t r ing f i l ePa th ,
S t r ing loca lAbso luteF i l ePath ,
F i l eProgres sElement f i l eP r o g r e s s ,
S t r ing user ,
CurrentState currState ,
PermissionToken myPermission) throws IOException

{
uploading = true ;
r e s t o r i n g = fa l se ;
wr i t edB i t s = 0 ;

t = new Thread (this) ;

checker = new Checker () ;

this . f i leName=fi leName ;
this . f i l ePa t h=f i l ePa t h ;
this . f i l e P r o g r e s s=f i l e P r o g r e s s ;
this . u se r=user ;

this . uploadId = new St r ing () ;

this . cu r rS ta t e = cur rS ta t e ;

this . f i l ePa t h=f i l ePa t h . r e p l a c eA l l ("␣" , "%20") ;
this . f i leName=fi leName . r e p l a c eA l l ("␣" , "%20") ;

this . myPermission = myPermission ;

f i l e=new F i l e (l o ca lAbso lu t eF i l ePath) ;

i f (f i l e . e x i s t s ())
this . f i l eL engh t=(int) f i l e . l ength () ;

}

public void s t a r t ()
{

t . s t a r t () ;
}

@SuppressWarnings ("unused")
public boolean isCompleted ()
{

return ! uploading ;
}

75

APPENDIX A. THE UPLOADMANAGER CLASS

@SuppressWarnings ("unused")
public St r ing getName ()
{

return this . f i leName ;
}

@SuppressWarnings ("unused")
public St r ing getPath ()
{

return this . f i l ePa t h ;
}

@Override
public void run ()
{

int i ;
int responseCode ;

try {
URL myURL=null ;

i f (f i l ePa t h . matches ("/"))
myURL = new URL(" https : // "+user+" . "+(GlobalVars . googleHost)

+ "/" + this . f i leName) ;
else

myURL = new URL(" https : // "+user+" . "
+ (GlobalVars . googleHost) + this . f i l ePa t h + this . f i leName) ;

HttpsURLConnection conn =
(HttpsURLConnection)myURL. openConnection () ;

conn . setDoInput (true) ;
conn . setDoOutput (true) ;
conn . setUseCaches (fa l se) ;

conn . setChunkedStreamingMode (GlobalVars . uploadTransitionWindow) ;
conn . setRequestMethod ("POST") ;

conn . setRequestProperty ("Host" , user+" . "+(GlobalVars . googleHost)) ;

Date currentTime = new Date () ;
SimpleDateFormat dateFormat = new SimpleDateFormat (

"EEE, ␣d␣MMM␣yyyy␣HH:mm: s s ␣z" ,new Locale ("en" , "US")) ;

dateFormat . setTimeZone (TimeZone . getTimeZone ("GMT")) ;

conn . setRequestProperty ("Date" , dateFormat . format (currentTime)) ;

conn . setRequestProperty ("x−goog−resumable " , " s t a r t ") ;

76

APPENDIX A. THE UPLOADMANAGER CLASS

conn . setRequestProperty ("Content−Length" , "0") ;

conn . setRequestProperty ("Content−Type" ,
new MimetypesFileTypeMap () . getContentType (this . f i l e)) ;

Goog leStorageAuthor izat ion auth = new GoogleStorageAuthor izat ion (
GlobalVars . accessKey ,
GlobalVars . s e c r e t ,
dateFormat . format (currentTime)) ;

auth . setMethod ("POST") ;
auth . setBucketName (user) ;
i f (! f i l ePa t h . matches ("/"))

auth . setPath (f i l ePa t h) ;
auth . setFileName (f i leName) ;
auth . setContentType (

new MimetypesFileTypeMap () . getContentType (this . f i l e)) ;
auth . setGoogCustomHeader ("x−goog−resumable : s t a r t ") ;

conn . setRequestProperty ("Author i zat ion " ,
auth . g e tAuthor i za t i onSt r ing ()) ;

conn . connect () ;
responseCode=conn . getResponseCode () ;

i f (responseCode==201)
{

uploadId = conn . getHeaderFie ld ("Locat ion ") ;
uploadId = uploadId . sub s t r i ng (

uploadId . l a s t IndexOf ("?upload_id=")+11);

conn . d i s connec t () ;

i f (f i l ePa t h . matches ("/"))
myURL = new URL(" https : // "+user+" . "+(GlobalVars . googleHost)

+ "/" + this . f i leName
+ "?upload_id=" + uploadId) ;

else
myURL = new URL(" https : // "+user+" . "

+ (GlobalVars . googleHost)
+ this . f i l ePa t h + this . f i leName
+ "?upload_id=" + uploadId) ;

conn = (HttpsURLConnection)myURL. openConnection () ;

conn . setDoInput (true) ;
conn . setDoOutput (true) ;
conn . setUseCaches (fa l se) ;

77

APPENDIX A. THE UPLOADMANAGER CLASS

conn . setChunkedStreamingMode (GlobalVars . uploadTransitionWindow) ;
conn . setRequestMethod ("PUT") ;
conn . setRequestProperty ("Host" , user+" . "+(GlobalVars . googleHost)) ;

conn . setRequestProperty ("Date" , dateFormat . format (currentTime)) ;

auth = new GoogleStorageAuthor izat ion (
GlobalVars . accessKey ,
GlobalVars . s e c r e t ,
dateFormat . format (currentTime)) ;

auth . setMethod ("PUT") ;
auth . setBucketName (user) ;
i f (! f i l ePa t h . matches ("/"))

auth . setPath (f i l ePa t h) ;
auth . setFileName (this . f i leName) ;

conn . setRequestProperty (
"Author i zat ion " , auth . g e tAuthor i z a t i onSt r ing ()) ;

conn . setRequestProperty ("Content−Length" ,
In t eg e r . t oS t r i ng (this . f i l eL engh t)) ;

conn . connect () ;

output = conn . getOutputStream () ;

Fi le InputStream f i l e I n p u t = new Fi leInputStream (f i l e) ;
InputStream in = new DataInputStream (f i l e I n p u t) ;

f loat prog r e s s ;
time = new Timer () ;

checker . s t a r t () ;
time . s t a r t () ;

while ((i=in . read ())!=−1)
{

output . wr i t e (i) ;

wr i t edB i t s++;

i f (! myPermission . getPermiss ion ())
{

this . uploading = fa l se ;

in . c l o s e () ;
f i l e I n p u t . c l o s e () ;

78

APPENDIX A. THE UPLOADMANAGER CLASS

return ;
}

i f ((wr i t edB i t s%GlobalVars . uploadTransitionWindow)==0)
output . f l u s h () ;

p rog r e s s=(f loat) (wr i t edB i t s /(f loat) f i l eL engh t)∗100 .0 f ;
f i l e P r o g r e s s . setValue ((int) p rog r e s s) ;

}

time . stop () ;

output . f l u s h () ;

checker . stop () ;

output . c l o s e () ;
conn . d i s connec t () ;

this . uploading = fa l se ;

removeTask (fi leName , f i l ePa t h) ;
}

} catch (IOException e1) { time . stop () ; }
}

private int getWritedBits ()
{

return this . wr i t edB i t s ;
}

private void r e s t o r e ()
{

St r ing rangeHeader = null ;

r e s t o r i n g = true ;

try {
output . c l o s e () ;

} catch (IOException e) {}

f i l e P r o g r e s s . s e t I n t e r rup t ed () ;

try {
Thread . s l e e p (5 0 0) ;

} catch (Inter ruptedExcept ion e1) {}

while (! cu r rS ta t e . i sLogged ())
while (! cu r rS ta t e . i sConnected ())

79

APPENDIX A. THE UPLOADMANAGER CLASS

{
try {

Thread . s l e e p (2000) ;
} catch (Inter ruptedExcept ion e1) {}

}

int responseCode = 0 ;

while (responseCode !=308)
{

try {
URL myURL=null ;

i f (f i l ePa t h . matches ("/"))
myURL = new URL(" https : // "+user+" . "+(GlobalVars . googleHost)

+ "/" + this . f i leName
+ "?upload_id=" + uploadId) ;

else
myURL = new URL(" https : // "+user+" . "

+ (GlobalVars . googleHost)
+ this . f i l ePa t h + this . f i leName
+ "?upload_id=" + uploadId) ;

HttpsURLConnection conn =
(HttpsURLConnection)myURL. openConnection () ;

conn . setDoInput (true) ;
conn . setDoOutput (true) ;
conn . setUseCaches (fa l se) ;

conn . setChunkedStreamingMode (GlobalVars . uploadTransitionWindow) ;
conn . setRequestMethod ("PUT") ;
conn . setRequestProperty ("Host" , user+" . "+(GlobalVars . googleHost)) ;

conn . setRequestProperty ("Content−Length" , "0") ;
conn . setRequestProperty ("Content−Range" , " bytes ␣∗/"

+ In t eg e r . t oS t r i ng (this . f i l eL engh t)) ;

Date currentTime = new Date () ;
SimpleDateFormat dateFormat = new SimpleDateFormat (

"EEE, ␣d␣MMM␣yyyy␣HH:mm: s s ␣z" ,new Locale ("en" , "US")) ;

dateFormat . setTimeZone (TimeZone . getTimeZone ("GMT")) ;

conn . setRequestProperty ("Date" , dateFormat . format (currentTime)) ;

Goog leStorageAuthor izat ion auth = new GoogleStorageAuthor izat ion (
GlobalVars . accessKey ,
GlobalVars . s e c r e t ,

80

APPENDIX A. THE UPLOADMANAGER CLASS

dateFormat . format (currentTime)) ;

auth . setMethod ("PUT") ;
auth . setBucketName (user) ;
i f (! f i l ePa t h . matches ("/"))

auth . setPath (f i l ePa t h) ;
auth . setFileName (this . f i leName) ;

conn . setRequestProperty ("Author i zat ion " ,
auth . g e tAuthor i za t i onSt r ing ()) ;

conn . connect () ;

responseCode = conn . getResponseCode () ;

i f (responseCode == 308)
rangeHeader = conn . getHeaderFie ld ("Range") ;

conn . d i s connec t () ;

} catch (IOException e1) {
try {

Thread . s l e e p (2000) ;
} catch (Inter ruptedExcept ion intExcp) {}

}

i f (responseCode==400)
{

checker . stop () ;
f i l e P r o g r e s s . setBroken () ;
r e s t o r i n g = fa l se ;
uploading = fa l se ;
break ;

}

i f (responseCode !=308)
{

try {
Thread . s l e e p (3000) ;

} catch (Inter ruptedExcept ion intExcp) {}
}

i f (! myPermission . getPermiss ion ())
{

this . uploading = fa l se ;
return ;

}
}

81

APPENDIX A. THE UPLOADMANAGER CLASS

i f (responseCode == 308)
resume (In t eg e r . pa r s e In t (rangeHeader . sub s t r i ng (

rangeHeader . l a s t IndexOf ("−")+1))) ;
}

private void resume (int alreadyWrited)
{

try {
URL myURL = null ;
int i ;

i f (f i l ePa t h . matches ("/"))
myURL = new URL(" https : // "+user+" . "+(GlobalVars . googleHost)

+ "/" + this . f i leName
+ "?upload_id=" + uploadId) ;

else
myURL = new URL(" https : // "+user+" . "

+ (GlobalVars . googleHost)
+ this . f i l ePa t h + this . f i leName
+ "?upload_id=" + uploadId) ;

HttpsURLConnection conn =
(HttpsURLConnection)myURL. openConnection () ;

conn . setDoInput (true) ;
conn . setDoOutput (true) ;
conn . setUseCaches (fa l se) ;

conn . setChunkedStreamingMode (GlobalVars . uploadTransitionWindow) ;
conn . setRequestMethod ("PUT") ;
conn . setRequestProperty ("Host" , user+" . "+(GlobalVars . googleHost)) ;

Date currentTime = new Date () ;
SimpleDateFormat dateFormat = new SimpleDateFormat (

"EEE, ␣d␣MMM␣yyyy␣HH:mm: s s ␣z" ,new Locale ("en" , "US")) ;

dateFormat . setTimeZone (TimeZone . getTimeZone ("GMT")) ;

conn . setRequestProperty ("Date" , dateFormat . format (currentTime)) ; ;

conn . setRequestProperty ("Content−Length" ,
In t eg e r . t oS t r i ng (this . f i l eLenght−alreadyWrited)) ;

conn . setRequestProperty ("Content−Range" , " bytes ␣"+
(alreadyWrited+1) + "−"
+ (this . f i l eLenght −1)
+ "/" + this . f i l eL engh t) ;

Goog leStorageAuthor izat ion auth = new GoogleStorageAuthor izat ion (

82

APPENDIX A. THE UPLOADMANAGER CLASS

GlobalVars . accessKey ,
GlobalVars . s e c r e t ,
dateFormat . format (currentTime)) ;

auth . setMethod ("PUT") ;
auth . setBucketName (user) ;
i f (! f i l ePa t h . matches ("/"))

auth . setPath (f i l ePa t h) ;
auth . setFileName (this . f i leName) ;

conn . setRequestProperty ("Author i zat ion " ,
auth . g e tAuthor i za t i onSt r ing ()) ;

conn . connect () ;

output = conn . getOutputStream () ;

Fi le InputStream f i l e I n p u t = new Fi leInputStream (f i l e) ;
InputStream in = new DataInputStream (f i l e I n p u t) ;

f loat prog r e s s ;
time = new Timer () ;

wr i t edB i t s = alreadyWrited ;

in . sk ip (alreadyWrited) ;

f i l e P r o g r e s s . s e tAct i v e () ;
r e s t o r i n g = fa l se ;

time . s t a r t () ;

while ((i=in . read ())!=−1)
{

output . wr i t e (i) ;

wr i t edB i t s++;

i f (! myPermission . getPermiss ion ())
{

this . uploading = fa l se ;

in . c l o s e () ;
f i l e I n p u t . c l o s e () ;

return ;
}

i f ((wr i t edB i t s%GlobalVars . uploadTransitionWindow)==0)

83

APPENDIX A. THE UPLOADMANAGER CLASS

output . f l u s h () ;

p rog r e s s=(f loat) (wr i t edB i t s /(f loat) f i l eL engh t)∗100 .0 f ;
f i l e P r o g r e s s . setValue ((int) p rog r e s s) ;

}

time . stop () ;

output . f l u s h () ;

checker . stop () ;

output . c l o s e () ;
conn . d i s connec t () ;

uploading = fa l se ;

removeTask (fi leName , f i l ePa t h) ;

} catch (IOException e1) { time . stop () ; }
}

private class Checker implements Runnable
{

private Thread subT ;

private int l a s tWri ted ;
private f ina l int t imeout = 9000 ;

private boolean running = true ;

public Checker ()
{

subT = new Thread (this) ;

l a s tWri ted = 0 ;
}

public void s t a r t ()
{

subT . s t a r t () ;
}

public void stop ()
{

this . running = fa l se ;
}

@Override

84

APPENDIX A. THE UPLOADMANAGER CLASS

public void run ()
{

while (running)
{

try {
Thread . s l e e p (timeout) ;

} catch (Inter ruptedExcept ion e1) {}

i f (! r e s t o r i n g && running)
{

i f (la s tWri ted >= getWritedBits ())
r e s t o r e () ;

else
l a s tWri ted = getWritedBits () ;

}
}

}
}

private class Timer implements Runnable
{

private Thread timeT ;

private boolean running ;

private int l a s tWri ted ;

public Timer ()
{

timeT = new Thread (this) ;

running = true ;
l a s tWri ted = 0 ;

}

public void s t a r t ()
{

timeT . s t a r t () ;
}

public void stop ()
{

running = fa l se ;
}

@Override
public void run ()
{

while (running)

85

APPENDIX A. THE UPLOADMANAGER CLASS

{
cur rS ta t e . addUpRate (wr i tedBits−l a s tWri ted) ;

l a s tWri ted = wr i t edB i t s ;

try {
Thread . s l e e p (1000) ;

} catch (Inter ruptedExcept ion intExcp) {}
}

}
}

}

private class PermissionToken
{

private St r ing f i leName ;
private St r ing f i l ePa t h ;

private int index ;

private boolean permis s ion ;

public PermissionToken (St r ing fi leName , S t r ing f i l ePa th , int index)
{

this . f i leName = fi leName ;
this . f i l ePa t h = f i l ePa t h ;
this . index = index ;

this . pe rmis s ion = true ;
}

public void removePermission ()
{

this . pe rmis s ion = fa l se ;
}

public boolean getPermiss ion ()
{

return this . pe rmis s ion ;
}

public St r ing getName ()
{

return this . f i leName ;
}

public St r ing getPath ()
{

return this . f i l ePa t h ;

86

APPENDIX A. THE UPLOADMANAGER CLASS

}

public int getIndex ()
{

return this . index ;
}

public void incrementIndex ()
{

this . index++;
}

public void decrementIndex ()
{

this . index−−;
}

}
}

87

APPENDIX A. THE UPLOADMANAGER CLASS

88

Appendix B

The DatabaseGateway Class

This appendix shows the full implementation of the DatabaseGateway class.

public class DatabaseGateway
{

public boolean e x i s t s (S t r ing username)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
boolean retCode = fa l se ;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing mysqlQuery="SELECT␣∗␣" +

"FROM␣ use r s ␣" +
"WHERE␣username=’" +
username + " ’ " ;

Resu l tSet r e s=s t a t . executeQuery (mysqlQuery) ;

i f (r e s . next ())
retCode=true ;

89

APPENDIX B. THE DATABASEGATEWAY CLASS

s t a t . c l o s e () ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return retCode ;
}

public boolean checkCorrectnes s (S t r ing username , S t r ing password)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
boolean retCode = fa l se ;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing mysqlQuery="SELECT␣∗␣" +

"FROM␣ use r s ␣" +
"WHERE␣username=’" +
username +
" ’ ␣AND␣passwd=’" +
password + " ’ " ;

Resu l tSet r e s=s t a t . executeQuery (mysqlQuery) ;

i f (r e s . next ())
retCode=true ;

s t a t . c l o s e () ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return retCode ;

90

APPENDIX B. THE DATABASEGATEWAY CLASS

}

public int ge tAva i l ab l eS to rage (S t r ing username)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
int amount=−1;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing generatedQuery="SELECT␣p . space ␣" +

"FROM␣plans ␣ as ␣p , ␣ u s e r sp l an s ␣ as ␣u␣" +
"WHERE␣u . username=’" +
username + " ’ ␣" +
"AND␣u . plan=p . planname" ;

Resu l tSet r e s=s t a t . executeQuery (generatedQuery) ;
r e s . l a s t () ;

amount=re s . g e t In t (" space ") ;

s t a t . c l o s e () ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return amount ;
}

public int getUsedStorage (S t r ing username)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
int amount=−1;

try

91

APPENDIX B. THE DATABASEGATEWAY CLASS

{
dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing generatedQuery="SELECT␣u . usage ␣" +

"FROM␣usages ␣ as ␣u␣" +
"WHERE␣u . username=’" +
username + " ’ " ;

Resu l tSet r e s=s t a t . executeQuery (generatedQuery) ;
r e s . l a s t () ;

amount=re s . g e t In t ("u . usage ") ;

s t a t . c l o s e () ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return amount ;
}

public int updateUsedStorage (S t r ing username , int amount)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
int newAmount=−1;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))

92

APPENDIX B. THE DATABASEGATEWAY CLASS

{
Statement s t a t = conn . createStatement () ;
S t r ing generatedQuery="SELECT␣u . usage ␣" +

"FROM␣usages ␣ as ␣u␣" +
"WHERE␣u . username=’" +
username + " ’ " ;

Resu l tSet r e s=s t a t . executeQuery (generatedQuery) ;
r e s . l a s t () ;

newAmount=re s . g e t In t ("u . usage ") + amount ;

generatedQuery="UPDATE␣usages ␣ as ␣u␣" +
"SET␣u . usage=" +
newAmount + "␣" +
"WHERE␣u . username=’" +
username + " ’ " ;

s t a t . executeUpdate (generatedQuery) ;

s t a t . c l o s e () ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return newAmount ;
}

public boolean shareFo lder (S t r ing owner , S t r ing guest , S t r ing fu l lPa th)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
boolean retVal = fa l se ;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;

93

APPENDIX B. THE DATABASEGATEWAY CLASS

St r ing mysqlQuery="SELECT␣∗␣" +
"FROM␣ shar ing ␣" +
"WHERE␣owner=’" +
owner +
" ’ ␣AND␣ guest=’" +
guest +
" ’ ␣AND␣ f u l l p a t h=’" +
fu l lPa th + " ’ " ;

Resu l tSet r e s=s t a t . executeQuery (mysqlQuery) ;

i f (! r e s . next ())
{

s t a t = conn . createStatement () ;
S t r ing generatedQuery="INSERT␣INTO␣ shar ing ␣ (owner , ␣ guest , ␣" +

" fu l l pa th , ␣approved) ␣" +
"VALUES(’ " + owner + " ’ " +
" , ’ " + guest + " ’ " +
" , ’ " + fu l lPa th + " ’ " +
" ,0) " ;

s t a t . executeUpdate (generatedQuery) ;

s t a t . c l o s e () ;

re tVal = true ;
}

}

conn . c l o s e () ;
}
catch (Exception e) {}

return retVal ;
}

public boolean removeWebContacts (S t r ing owner , S t r ing fu l lPa th)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
boolean retVal = fa l se ;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

94

APPENDIX B. THE DATABASEGATEWAY CLASS

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing generatedQuery="DELETE␣FROM␣ shar ing ␣" +

"WHERE␣owner=’" + owner + " ’ ␣" +
"AND␣ f u l l p a t h=’" + fu l lPa th + " ’ " ;

s t a t . executeUpdate (generatedQuery) ;

s t a t . c l o s e () ;

re tVal = true ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return retVal ;
}

public boolean removeWebFolder (S t r ing guest , S t r ing fu l lPa th)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
boolean retVal = fa l se ;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing generatedQuery="DELETE␣FROM␣ shar ing ␣" +

"WHERE␣ guest=’" + guest + " ’ ␣" +
"AND␣ f u l l p a t h=’" + fu l lPa th + " ’ " ;

s t a t . executeUpdate (generatedQuery) ;

95

APPENDIX B. THE DATABASEGATEWAY CLASS

s t a t . c l o s e () ;

re tVal = true ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return retVal ;
}

public boolean removeGuestContact (S t r ing owner ,
S t r ing guest ,
S t r ing fu l lPa th)

{
Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
boolean retVal = fa l se ;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing generatedQuery="DELETE␣FROM␣ shar ing ␣" +

"WHERE␣owner=’" + owner + " ’ ␣" +
"AND␣ guest=’" + guest + " ’ ␣" +
"AND␣ f u l l p a t h=’" + fu l lPa th + " ’ " ;

s t a t . executeUpdate (generatedQuery) ;

s t a t . c l o s e () ;

re tVal = true ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

96

APPENDIX B. THE DATABASEGATEWAY CLASS

return retVal ;
}

public boolean approveSharedFolder (S t r ing owner ,
S t r ing guest ,
S t r ing fu l lPa th)

{
Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
boolean retVal = fa l se ;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing generatedQuery="UPDATE␣ shar ing ␣" +

"SET␣approved=1␣" +
"WHERE␣owner=’" + owner + " ’ ␣" +
"AND␣ guest=’" + guest + " ’ ␣" +
"AND␣ f u l l p a t h=’" + fu l lPa th + " ’ " ;

s t a t . executeUpdate (generatedQuery) ;

s t a t . c l o s e () ;

re tVal = true ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return retVal ;
}

public ArrayList<Str ing> getGuestContacts (S t r ing owner , S t r ing fu l lPa th)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
ArrayList<Str ing> r e t L i s t = new ArrayList<Str ing >() ;

97

APPENDIX B. THE DATABASEGATEWAY CLASS

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing mysqlQuery="SELECT␣ guest ␣" +

"FROM␣ shar ing ␣" +
"WHERE␣owner=’" +
owner +
" ’ ␣AND␣ f u l l p a t h=’" +
fu l lPa th + " ’ " ;

Resu l tSet r e s=s t a t . executeQuery (mysqlQuery) ;

while (r e s . next ())
r e t L i s t . add (r e s . g e tS t r i ng (" guest ")) ;

s t a t . c l o s e () ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return r e t L i s t ;
}

public boolean isApproved (St r ing guest , S t r ing fu l lPa th)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
boolean retCode = fa l se ;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

98

APPENDIX B. THE DATABASEGATEWAY CLASS

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing mysqlQuery="SELECT␣approved␣" +

"FROM␣ shar ing ␣" +
"WHERE␣ guest=’" +
guest +
" ’ ␣AND␣ f u l l p a t h=’" +
fu l lPa th + " ’ " ;

Resu l tSet r e s=s t a t . executeQuery (mysqlQuery) ;

while (r e s . next ())
i f (r e s . g e t In t ("approved")==1)

retCode = true ;

s t a t . c l o s e () ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return retCode ;
}

public ArrayList<Str ing> getWebFolders (S t r ing guest)
{

Connection conn = null ;
MysqlDataSource dataSource = new MysqlDataSource () ;
ArrayList<Str ing> r e t L i s t = new ArrayList<Str ing >() ;

try
{

dataSource . setServerName (GlobalVars . dbLocation) ;
dataSource . setPortNumber (GlobalVars . dbPort) ;
dataSource . setDatabaseName (GlobalVars . dbName) ;
dataSource . s e tUser (GlobalVars . dbUser) ;
dataSource . setPassword (GlobalVars . dbPassword) ;

conn = dataSource . getConnect ion () ;

i f (conn . i sVa l i d (0))
{

Statement s t a t = conn . createStatement () ;
S t r ing mysqlQuery="SELECT␣owner , ␣ fu l l pa th , ␣approved␣" +

99

APPENDIX B. THE DATABASEGATEWAY CLASS

"FROM␣ shar ing ␣" +
"WHERE␣ guest=’" +
guest + " ’ " ;

Resu l tSet r e s=s t a t . executeQuery (mysqlQuery) ;

while (r e s . next ())
{

r e t L i s t . add (r e s . g e tS t r i ng ("owner")) ;
r e t L i s t . add (r e s . g e tS t r i ng (" f u l l p a t h ")) ;

i f (r e s . g e t In t ("approved")==0)
r e t L i s t . add (" f a l s e ") ;

else
r e t L i s t . add (" true ") ;

}

s t a t . c l o s e () ;
}

conn . c l o s e () ;
}
catch (Exception e) {}

return r e t L i s t ;
}

}

100

APPENDIX B. THE DATABASEGATEWAY CLASS

101

Bibliography

[ama01] Amazon.com, Inc., Amazon S3 homepage. 2012, February 2012.
<http://aws.amazon.com/s3/>

[ant10] Anthony T. Velte, Toby J. Velte, and Robert Elsenpeter. Cloud Computing: A
Practical Approach. New York, McGraw-Hill, 2010, pp. 29-31.

[box01] Alexa Internet, Inc., Box.net homepage. 2012, February 2012.
<http://www.box.com>

[dro01] Dropbox, Inc., Dropbox homepage. 2012, February 2012.
<http://www.dropbox.com>

[euc01] Eucalyptus Systems, Inc., Eucalyptus homepage. 2011, February 2012.
<http://www.eucalyptus.com>

[fur10] Furht, Borko and, Escalante, Armando. Handbook of Cloud Computing. New
York, Springer, 2010, pp. 357-375.

[gog01] Google, Inc., Google Cloud Storage homepage. 2011, February 2012.
<https://developers.google.com/storage/>

[gog02] Google, Inc., Google Cloud Storage - Developers Guide (API v1.0). 2011, Febru-
ary 2012. <https://developers.google.com/storage/docs/reference/v1/developer-
guidev1>

[gog03] Google, Inc., Google Cloud Storage - Reference Methods (API v1.0). 2011, Febru-
ary 2012. <https://developers.google.com/storage/docs/reference-methods>

[icl01] Apple, Inc., iCloud homepage. 2012, February 2012. <http://www.icloud.com>

[ihd01] Gino Cappelli, iHD homepage. February 2012, February 2012. <http://www.i-
hd.eu>

[mil09] Miller, Michael. Cloud Computing: Web-Based Applications That Change the
Way You Work and Collaborate Online. Indianapolis, Que Publishing, 2009, pp. 80.

102

BIBLIOGRAPHY

[sch12] Schulz, Greg. Cloud and Virtual Data Storage Networking: Your journey to ef-
ficient and effective information services. New York, Taylor & Francis Group, 2012,
pp. 73-89.

[shr10] Shroff, Gautam. Enterprise Cloud Computing: Technology, Architecture, Appli-
cations. New York, Cambridge University Press, 2010, pp. 64-74.

[sye11] Syed A. Ahson and, Mohammad Ilyas. Cloud Computing and: Software Services.
New York, Taylor & Francis Group, 2011, pp. 20.

[sky01] Microsoft, Inc., Windows Live SkyDrive homepage. 2012, February 2012.
<http://skydrive.live.com>

103

	List of Figures
	List of Tables
	Introduction
	What is Google Cloud Storage?
	Goals of the thesis
	Related work
	Thesis outline

	Google Cloud Storage Technical Background
	Features and Capabilities
	High Capacity and Scalability
	Consistency
	RESTful API (Application Programming Interface)
	Authentication

	Structure
	Projects
	Buckets and Objects
	Hierarchy

	API Overview
	HTTP Requests
	Resumable uploads

	Design
	A statement of the problem
	Requirements analysis
	Functional requirements
	Non-Functional requirements
	Constraints

	Design choices
	General overview
	The Connection Controller
	The Upload Manager
	The Download Manager
	The Database Gateway
	The Google Storage Gateway

	The database

	Implementation
	Development Environment and choice of the programming language
	Libraries
	Classes
	The connection controller
	The google storage gateway
	The database gateway
	SSL security
	Multi-threading implementation
	The download manager
	The upload manager

	iHD application - GUI Description
	The Main Window
	Menu bar
	Header panel
	Navigation panel
	Scroller panel
	Footer panel

	The Configuration Assistant Dialog
	The Accounts Dialog
	Menu bar
	Edit Dialog

	Conclusion
	Thesis summary
	Future Work
	Acknowledgements

	The UploadManager Class
	The DatabaseGateway Class
	Bibliography

