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“Not all those who wander are lost. ”
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Abstract

La precipitazione riveste un ruolo cruciale nel determinare il ciclo idrologico, il
clima e le condizioni atmosferiche. Alla luce dei cambiamenti climatici in corso,
si stima un’accentuazione degli episodi di piogge intense, con conseguenti sfide in
diversi ambiti socio-economici. Il nostro studio ambisce a migliorare l’accuratezza
delle stime pluviometriche basate su dati satellitari attraverso metodi di apprendi-
mento automatico, ponendo un’enfasi specifica sulla stagione monsonica in Viet-
nam.

Mediante l’uso dell’algoritmo Random Forest, abbiamo elaborato un modello
che integra dati provenienti dal satellite geostazionario FengYun-4A con quelli dei
radar terrestri. Questo approccio sfrutta sia i valori diretti dei canali che le differenze
dei canali infrarossi, oltre a combinazioni spazio-temporali di pixel adiacenti, per
stimare vari gradi di precipitazione. Abbiamo inoltre utilizzato un modello digitale
di elevazione come variabile supplementare, considerando la relazione inversa che
esiste tra altitudine e intensità della precipitazione.

L’algoritmo è stato ottimizzato per funzionare sia in condizioni diurne che not-
turne, tenendo conto della mancanza di dati dai canali visibili durante la notte. Il
nostro studio è stato calibrato su una griglia con una risoluzione spaziale di 4 km e
una risoluzione temporale di 1 ora, concentrandoci su ottobre 2020, un periodo in cui
il Vietnam ha sperimentato piogge di intensità notevole. Per garantire l’affidabilità
delle nostre analisi, abbiamo effettuato un’accurata pre-elaborazione e validazione
dei dati satellitari.

La nostra metodologia inizia identificando i pixel con e senza pioggia, avanza
per classificare varie classi d’intensità di precipitazione e infine effettua una regres-
sione all’interno di ogni classe. Durante la valutazione delle prestazioni, gli output
del nostro modello sono stati confrontati con le misurazioni dei pluviometri e altri
benchmark regionali di precipitazione usando varie metriche.

Le analisi basate sull’algoritmo Random Forest hanno evidenziato una tendenza
del modello a favorire dati spaziali piuttosto che valori di canali isolati. Oltre alle
combinazioni di canali infrarossi tradizionalmente citate nella letteratura, il nos-
tro modello sembra prediligere anche alcuni canali visibili durante le ore diurne.
I risultati iniziali mostrano che le capacità del nostro modello sono comparabili,
se non superiori, ai prodotti pluviometrici ottenuti dai geostazionari FengYun-4A
e GeoKompsat-2A già disponibili sul territorio Vietnamita. Nonostante ciò, esistono
delle complessità residue: ci sono difficoltà nella classificazione di eventi di pioggia
estrema, data la loro bassa frequenza, e le stime di regressione tendono a normaliz-
zare eccessivamente la reale distribuzione delle precipitazioni, avvicinandola ai suoi
valori medi.

L’obiettivo principale è creare un modello di stima delle precipitazioni ad alta
risoluzione in tempo quasi reale, specializzato per le regioni tropicali frequente-
mente colpite da tifoni. Integrando osservazioni da terra e dati satellitari, il nostro
modello può riconoscere efficacemente le relazioni non lineari tra variabili atmos-
feriche e spettrali. Tuttavia, per garantire un funzionamento ottimale, il modello
attuale necessita di ulteriori perfezionamenti e dati aggiuntivi.
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Abstract

Precipitation is pivotal in shaping the water cycle, weather, and climate. With
the advent of climate change, extreme precipitation events are anticipated to inten-
sify, presenting challenges across socio-economic realms. This research seeks to bol-
ster the precision of satellite-based precipitation assessments using machine learning
techniques, spotlighting Vietnam’s wet season.

Leveraging the robust, interpretable, and popular Random Forest algorithm, we
have constructed a model that integrates geostationary satellite data from the Chi-
nese FengYun-4A and ground-based radars. This model combines pure channel val-
ues, infrared channel differences, spatial patterns from pixel neighbourhoods, and
temporal differences to predict precipitation. A digital elevation model was incor-
porated as an auxiliary variable, given its inverse relationship with rainfall intensity.

Notably, the algorithm adjusts for daytime and nighttime conditions, consider-
ing the absence of visible channels at night. We have calibrated our study using a 4
km spatial and 1-hour temporal resolution, with a focus on October 2020—a month
marked by intense precipitation in Vietnam. A thorough preprocessing and valida-
tion of the satellite data were conducted to ensure the quality of subsequent steps.

Our methodology starts by identifying raining vs. non-raining pixels, advances
to classify rain intensities, and finally conducts regression within each class. Perfor-
mance assessment will compare our model’s outputs against rain gauge measure-
ments and other regional precipitation benchmarks using various metrics.

Insights from the Random Forest algorithm revealed a preference for spatial data
over singular channel values. In addition to the commonly used infrared channel
combinations found in the literature, our model also appears to favour several vis-
ible channels during the daytime. Preliminary results indicate our model’s perfor-
mance aligns closely with, if not surpasses, the rain products obtained by the geosta-
tionary satellites FengYun-4A and GeoKompsat-2A already available over Vietnam.
However, challenges remain, particularly in the classification of extreme rain events
due to their rarity, and in regression estimates that tend to diminish the true rainfall
distribution around its average values.

The primary goal is to develop a high-resolution estimate model for rainfall in
tropical regions, which are often impacted by typhoons. By integrating ground ob-
servations and satellite data, machine learning effectively captures nonlinear rela-
tionships between atmospheric and spectral variables. However, the existing model
demands further enhancements and additional data for optimal performance.
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Introduction

Precipitation plays a pivotal role in the Earth’s hydrological cycle, influencing ecosys-
tems, human endeavours, and a myriad of processes that sustain life on our planet
[64]. Accurate measurements of precipitation are thus not only of academic inter-
est but bear significant implications for fields ranging from agriculture and water
management to public health and disaster mitigation and adaptation [58]. Histor-
ically, researchers have relied on traditional methods like rain gauges to measure
rainfall. While effective in localized settings, they often falter in providing compre-
hensive spatial and temporal data [25]. Ground-based radar systems have bridged
this gap to some extent, offering more extensive coverage. While radars have proven
effective in capturing rainfall data over wider regions, they are not without limita-
tions. Issues such as attenuation during intense precipitation episodes, the inability
to capture data from challenging terrains, and occasional discrepancies during light
rainfall episodes underscore the need for enhanced methodologies in quantitative
precipitation estimation (QPE) [5]. Yet, as weather patterns evolve due to factors
like climate change, there is a burgeoning need to refine and expand our precipita-
tion measurement techniques [65].

In the realm of QPE, there exists a pressing need for methodologies that are both
comprehensive and precise. Addressing this need, the present research proposes
an innovative approach that integrates remote sensing data with machine learning
(ML) techniques. This amalgamation offers a holistic, accurate, and adaptable solu-
tion for QPE, with potential implications for refined weather predictions, strategic
water resource management, and nuanced climate modelling [38]. The central aim
of this study is to augment QPE methodologies by synergizing multispectral satel-
lite data within a machine learning framework. By doing so, it seeks to harness
the combined strengths of radar and satellite data, mitigating their individual con-
straints, and producing an output that is superior in accuracy and utility.

The geographical context of this research is Vietnam, a region that bears the brunt
of heavy rainfall during its monsoon season, frequently exacerbated by tropical cy-
clones. This unique climatic condition provides a fitting backdrop for the study’s
objectives. To lay the groundwork for our research, the initial phase involves the
application of the proposed ML model to a dataset from October 2020, a month that
was notably characterized by several episodes of heavy precipitation [33].

In this study, inspired by the study of Hirose et al. 2019 [19], we employed a
sophisticated stacked model approach, wherein multiple random forest classifiers
were sequentially implemented. Initially, these classifiers were tasked with segre-
gating precipitation into distinct categories. Subsequent to this classification, a ded-
icated random forest regressor was deployed for each distinct class. For the calibra-
tion of our models, we utilized radar-based QPE as the ground truth. The feature set
was primarily derived from multispectral satellite data, with an emphasis on their
spatio-temporal derivations. Additionally, after thorough analysis, we integrated
the digital elevation model into our feature set, recognizing its significance given the
intricate relationship between precipitation patterns and Vietnam’s orography. The
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Random Forest framework allowed for a deeper investigation into feature impor-
tances, providing clarity on their individual contributions during model training.
This understanding was pivotal for the subsequent feature selection. However, it
must be noted that the model’s performance on unseen data did not entirely meet
expectations. We observed certain anomalies, particularly a tendency to converge
rain rate distributions around class medians and challenges in effectively classifying
extreme precipitation rates due to the rarity of such instances. Yet, upon juxtaposing
the aggregated results of all regressions against other prevailing rain products for
Vietnam (that were previously validated in the study of Roversi et al. 2023 [59]), our
model showcased reasonable fidelity. Notably, it outperformed the geostationary-
based products in certain metrics. Considering the nascent stage of our research,
these results are promising. There remains ample scope for model refinement, in-
cluding hyperparameter optimization and the incorporation of a more expansive
dataset.

In the subsequent chapters, readers will embark on a comprehensive exploration
of the challenges, methodologies, and potential solutions in the realm of quantita-
tive precipitation estimation. Beginning with a short overview in Chapter 1, we
shed light on the fundamental characteristics of rainfall, underscore the importance
of accurate precipitation estimation, and elucidate traditional methods of QPE. This
foundational understanding paves the way for an exploration of ML techniques,
culminating in a synopsis of the state-of-the-art in QPE using ML. Transitioning to
Chapter 2, we focus on our case study: Vietnam. Detailed descriptions of the re-
gion’s climate, and datasets utilized—including satellite data, ground reference data,
and other rain products—are provided. This chapter further outlines the method-
ological workflow, from preprocessing steps and feature engineering to the actual
ML algorithm setup and performance assessment. Lastly, Chapter 3 presents the
empirical results of our research. We initiate with a thorough preliminary analysis,
discussing data quality, feature correlations, and more, before delving into the out-
comes derived from the Random Forest models. We then wrap up with a conclusive
chapter discussing the study’s implications and avenues for future research.

Through this structured journey, we aim to offer a comprehensive perspective on
ML-based QPE, specifically tailored to the climatic context of Vietnam. By fusing the
strengths of satellite remote sensing and ML, this thesis strives to chart a forward-
looking course in the continually evolving field of QPE.
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Chapter 1

Quantitative Precipitation
Estimation

1.1 Overview

1.1.1 Basic Characteristic of Rainfall

According to the World Meteorological Organization (WMO) Guide to Meteorologi-
cal Instruments and Methods of Observation, precipitation encompasses both liquid
and solid water forms that condense from water vapour and descend from clouds or
deposit from air onto the ground. Precipitation intensity, typically measured in mil-
limetres per hour (mm/h), denotes the precipitation amount during a set interval.
Conversely, rainfall depth, in millimetres (mm), represents the cumulative precipi-
tation over a designated period, reflecting the hypothetical vertical depth of water
covering a flat Earth projection [54].

Rainfall is vital in the Earth’s hydrological cycle, which circulates water between
the atmosphere, land, and oceans. Formed from atmospheric water vapour con-
densation, warm, moist air rises, cools, and causes water vapour to condense into
droplets or ice crystals. These particles amalgamate, growing heavy enough to fall
as precipitation [11, 22].

The microphysics of rainfall encompasses intricate physical processes like nu-
cleation, growth, and collision-coalescence. Nucleation can be homogeneous (spon-
taneous droplet formation) or heterogeneous (formation on existing surfaces like
dust). Post-nucleation, droplets grow via mechanisms like diffusion or collision-
coalescence. The forming rain’s nature, whether from liquid droplets or ice crystals,
is termed the warm or cold rain process, respectively [11].

Rainfall types include stratiform and convective. Stratiform rainfall emerges
from extensive moist air layers that cool and result in widespread, consistent precip-
itation, often linked to large-scale weather systems. In contrast, convective rainfall
arises from rapid air rises due to instability, leading to intense, localized precipita-
tion, commonly accompanying thunderstorms. Other rain types include orographic
(air rising over mountains), frontal (warm meets cold air mass), and monsoonal (sea-
sonal wind reversal regions with distinct wet and dry seasons) [22, 12].

Precipitation displays a diverse range across the globe, influenced by factors such
as temperature, atmospheric circulation, and topography. Its global distribution
manifests distinctly in various regions like the equator, subtropics, mid-latitudes,
and polar zones. The equatorial belt, extending approximately 10 degrees on either
side of the equator, experiences abundant rainfall. This is attributed to the merging
trade winds and the presence of the Intertropical Convergence Zone (ITCZ). Con-
versely, the subtropics, ranging between 20 to 35 degrees both north and south of
the equator, are relatively arid due to dominant high-pressure systems that cause
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air to descend. The mid-latitudes, encompassing 35 to 60 degrees from the equator,
exhibit fluctuating precipitation patterns influenced by storm systems and weather
fronts. Polar areas, from around 60 degrees to the poles, see sparse precipitation be-
cause of the prevailing cold, dry air masses. Within the tropics, which combine the
equatorial and subtropical belts, rainfall patterns are majorly driven by the ITCZ’s
seasonal shifts and monsoonal circulations. However, annual variations in precipi-
tation volume and timing can occur due to inherent climate variability and broader
climate change trends [17].

1.1.2 The Importance of Precipitation

Precipitation, especially rainfall, is integral to the Earth’s climate system [17]. It gov-
erns the planet’s temperature, influences water distribution across its surface, and
sustains diverse ecosystems like forests, grasslands, and wetlands, all vital habitats
for myriad species [64].

Beyond natural ecosystems, precipitation is pivotal for human endeavours like
agriculture, industry, and daily living. It’s indispensable for hydroelectric power,
fuelling turbines to produce electricity, and for replenishing essential freshwater re-
sources for consumption and industrial activities [64].

Agriculture’s reliance on rainfall is evident, as it ensures crop growth and live-
stock health. Extreme events like heavy rainfalls or floods can devastate agricul-
ture by causing soil erosion, reducing fertility, and inducing waterlogged conditions
harmful to crops. Floodwaters can also contaminate the soil, impacting both crops
and water quality [58].

Shifts in precipitation patterns, be it long droughts or intense rainfalls, drasti-
cally affect ecosystems and human ventures. Droughts can reduce crop yields and
intensify wildfires, while intense rainfalls may result in floods and landslides. As the
climate crisis escalates, variations in these patterns, from heightened precipitation
events to extended droughts, become crucial. It underscores the need to fathom pre-
cipitation’s role in our climate system, urging refined estimations and predictions of
its characteristics [65].

Existing rainfall measurement techniques often falter due to sparse monitoring
infrastructure, potentially skewing precipitation estimates in regions with complex
terrains or variable rainfall patterns. Traditional devices, such as rain gauges and
radars, might miss out on capturing the full spectrum of precipitation types or the in-
tensity of extreme events [25]. Additionally, these methods may inadequately track
shifts in precipitation patterns stemming from climate change, as they tend to em-
phasize long-term averages over short-term variations [65]. The upcoming section
will explore both conventional and advanced quantitative precipitation estimation
(QPE) methods, highlighting their strengths and weaknesses. Recognizing the sig-
nificance of precipitation in our climate system, nature and human activities under-
scores the importance of refining QPE techniques.

1.2 Traditional Methods for QPE

The traditional methods for QPE have been developed over many years and in-
clude rain gauges, radars, and satellites, that can be grouped into ground-based and
spaceborne techniques. In recent years, there has been growing interest in combin-
ing multiple methods to improve the accuracy and reliability of QPE [21].
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As will be discussed in the following sections, these methods have different prin-
ciples, advantages, and limitations, and the choice of method for QPE depends on
the specific application and the availability of data [62].

1.2.1 Ground-based Sources

Rain Gauges

Rain Gauges (RG) are one of the oldest and most widely used methods for pre-
cipitation estimation. These methods rely on the measurement of precipitation at
ground-based weather stations that collect precipitation, which is then measured
and recorded at regular intervals.

Several RG types are available, with a few significant ones described below (more
details in [32]):

• Storage gauges are manual devices with a container that collects rainwater for
volume measurement over time. Some have automatic emptying systems with
siphon mechanisms, though they might miss some rainfall amounts during
rapid events.

• Tipping-bucket gauges are popular due to their cost-effectiveness and reliabil-
ity. They employ a balance and two equal buckets; rainfall causes one bucket
to tilt upon filling, registering an electrical impulse for measurement. Regular
maintenance to prevent funnel blockages is essential.

• Weighing gauges measure precipitation using a weight principle. While some
use the tipping-bucket mechanism for high-resolution measurements, this can
lead to underestimation during the tilting phase and demand more mainte-
nance.

• Catching-type gauges use a calibrated nozzle and optical sensor to detect falling
raindrop size and frequency. They work best for light rain but may struggle
with irregular water fluxes and need regular maintenance.

• Disdrometers sense individual hydrometeors without needing a container.
They offer data on particle size distribution and fall velocity, requiring mini-
mal maintenance. However, they lag behind traditional gauges in performance
due to non-standardized calibration methods.

The use of RG for precipitation estimation has several advantages, including
their accuracy, low cost, and ease of maintenance. Additionally, they can be used
to validate and calibrate other precipitation estimation methods. However, RGs also
have some limitations. For example, they provide point measurements of precipi-
tation that may not be representative of the surrounding area and they may not be
available in remote or inaccessible locations. Additionally, they may be subject to
measurement errors due to wind, evaporation, and other factors. Despite these limi-
tations, RG remains a valuable tool for precipitation estimation, particularly in areas
where other methods are not available or where high-precision measurements are
required for specific applications [32].

Radars

Radar, specifically RAdio Detection And Ranging, is a pivotal tool in QPE. While
traditional RG offers point measurements, they lack broad spatial representation. In
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contrast, weather radars offer comprehensive spatial and temporal insights from a
single site, enabling precise rainfall measurements across vast scales.

Polarimetric Doppler radar, a recent advancement, captures data in both hori-
zontal and vertical polarizations, offering richer details on precipitation particles.
These radars now oversee most populated regions globally, aiding in tasks from
flood prediction to climatology. Moreover, they play a crucial role in refining satel-
lite precipitation data and fostering algorithm innovations.

To interpret precipitation using radar, it’s crucial to understand how electromag-
netic signals from the radar interact with raindrops. This interaction is largely gov-
erned by the drop size distribution (DSD), which gives the average count of rain-
drops per size interval for every unit volume of air. The radar reflectivity factor,
denoted by Z, is derived from the DSD and is defined by:

Z =
∫

N(D)D6dD (1.1)

where N(D) represents the number of droplets with diameter D. The rain rate R,
when accounting for DSD and a raindrop’s terminal fall speed, can be connected to
Z using empirical relationships like the Marshall and Palmer relation:

R = aZb (1.2)

Here, a and b are coefficients which might change depending on the geographical
location and season [41].

Weather radar systems, commonly mounted on towers to avoid local obstruc-
tions, employ a directional antenna encased in a radome. These systems emit elec-
tromagnetic pulses that scatter upon hitting meteorological targets. Some scattered
energy reflects back as a radar echo. By incrementing the antenna’s elevation an-
gle with each rotation, the system captures volumetric atmospheric observations.
The returned power provides precipitation insights within the resolution volume,
influenced by precipitation particle types and their DSD. Radar resolution is de-
termined by pulse length and antenna beam widths. Pulse volume positioning
depends on antenna location, elevation angle, target range, and the radar beam’s
propagation path. As electromagnetic waves bend due to the atmosphere’s vertical
stratification, their trajectory can be predicted through temperature, moisture, and
pressure profiles. Ground-based radars typically use S, C, or X frequency bands,
each offering unique advantages. While S-band detects distant heavy rain, X-band
is hydrometeor-sensitive but faces signal attenuation. C-band strikes a balance in
reflectivity measurements, range, and cost.

Radar has several advantages, including its ability to provide high-resolution
measurements of precipitation over large areas. Additionally, it can provide infor-
mation on the spatial and temporal distribution of precipitation, as well as the in-
tensity and type of precipitation. Radar can also be used in real-time for nowcasting
and short-term forecasting of precipitation. However, there are some drawbacks to
using this method. One major issue is the potential for large observation errors to oc-
cur, which can be caused by a variety of meteorological, topographic, and technical
factors. These factors include the variability of the Z-R relationship, errors related to
the range of the radar signal due to the vertical variability of reflectivity and incom-
plete or non-uniform beam filling, attenuation caused by intervening precipitation,
ground clutter, beam blockage, and miscalibration of electronic components. Ad-
ditionally, radar-based QPE may not accurately estimate the intensity of light pre-
cipitation, such as drizzle, and may underestimate or miss convective precipitation
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events [5].

1.2.2 Spaceborne Sources

Satellites offer a formidable advantage in QPE with their global reach and frequent
observations. They employ both passive and active sensors; the former captures
Earth’s natural radiation while the latter transmits signals to Earth, recording their
reflection or scattering. Since the debut of meteorological satellites in 1960, many
have observed Earth, yet not all target precipitation specifically. Despite this, the
meteorological community has devised methods to extract precipitation data from
varied satellite readings. Maximizing data availability involves using Geostationary
(GEO) satellites with visible (VIS) and infrared (IR) sensors, and microwave (MW)
sounders on Low Earth Orbit (LEO) satellites.

Satellite-based QPE plays a pivotal role in diverse applications like flood and
weather forecasting, climate studies, and monitoring extreme weather events, par-
ticularly in regions underserved by ground measurements, such as the tropics and
polar areas. Its benefits include global coverage, frequent rain monitoring, insights
into precipitation patterns, types, intensities, and accessibility in remote areas.

However, it’s not without limitations. Factors like cloud interference and vari-
ability in precipitation particles can introduce errors. Light drizzles might be un-
derestimated, and convective events might be inaccurately portrayed. Enhancing
the precision of satellite-based QPE, especially for subtle rainfall events and in com-
plex terrains, remains a research priority. Validating satellite precipitation retrieval
against surface data is crucial for its accuracy [24].

GEO Satellites

GEO satellites provide frequent and regular images over a full disc of the Earth from
their location around the Equator. A constellation of about five GEO satellites is
needed for quasi-global coverage. The GEO suite of sensors provides consistent
observations every 30 minutes with a resolution of about 4 km around the Equator
(60°N-60°S). Nowadays, better resolutions are possible in some sensors. Meteorolog-
ical satellites first captured simple VIS/IR images of clouds to identify precipitation-
bearing systems. VIS imagery has the highest spatial resolution among remote sens-
ing techniques, but its potential products are constrained to daytime use only. As a
result, retrieval schemes have primarily focused on IR imagery. IR-based techniques
assume that clouds with lower cloud-top temperatures are taller and thicker, and
thus more likely to produce precipitation. However, the relationship between cloud-
top temperature and precipitation near the Earth’s surface is indirect and influenced
by regional variations and the cloud life cycle. Besides cloud top temperature, multi-
spectral VIS/IR techniques can provide information on cloud top height, pressure,
particle sizes, and phase [42, 43]. Although VIS/IR observations only provide infor-
mation on cloud-top properties, they offer frequent observations and good spatial
resolution. Multi-spectral channels may improve retrieval of cloud-top character-
istics, but the indirectness of cloud-top properties to surface precipitation persists
[24].

LEO Satellites

Direct observations of precipitation are possible using MW radiometers, which are
currently only deployed on LEO satellites due to the large antenna required for good
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spatial resolution. These measurements are available from about 10 LEO-based sen-
sors, providing less frequent observations with coarser spatial resolutions with re-
spect to GEO-based sensors. They provide typically two observations per day per
sensor at the same location.

Passive MW (PMW) sensors employ imaging or sounding frequencies, with
conically-scanning instruments favoured for precipitation retrievals. These sensors
detect atmospheric liquid water and ice. Lower frequencies (up to 40 GHz) are more
attuned to liquid hydrometeors, while higher frequencies (>40 GHz) detect ice par-
ticles. Over oceans, brightness temperatures (Tb) facilitate precipitation retrievals.
Over land, the use of high-frequency channels is necessitated by high emissivity.
While ice scattering reduces Tbs in intense events, not every cloud has ice, and the
upper cloud ice may not reliably indicate surface rainfall. Physical retrieval schemes
offer insights into surface precipitation and vertical profiles. However, PMW sensors
have resolutions inferior to IR sensors, necessitating multiple satellites for compre-
hensive precipitating system analyses [24].

Active MW (AMW) sensors emit MW energy pulses that backscatter from pre-
cipitation, yielding a vertical precipitation profile. Despite their precision, their lim-
ited numbers and narrow swath width compromise temporal sampling. Examples
include the Dual-frequency Precipitation Radar (DPR). While they deliver direct pre-
cipitation measurements, their periodicity and range restrict utility. Yet, they’re in-
strumental in data generation for PMW retrieval and calibration/validation, offering
valuable three-dimensional data for understanding precipitation systems [24].

1.2.3 Multi-Source Precipitation Products

While no single satellite precipitation product can comprehensively quantify surface
precipitation, given varying user needs, integrating data from multiple sources can
bolster accuracy. Merging disparate satellite observations primarily aims to refine
both the temporal and spatial accuracy of precipitation readings.

Global initiatives have advanced precipitation satellite missions, leveraging space-
based technology and integrating multiple data sources [68]. Notably, the Tropical
Rainfall Measuring Mission (TRMM) (1997-2015) was a US-Japan venture employ-
ing cutting-edge sensors to scrutinize tropical rainfall patterns. More details can be
found at https://gpm.nasa.gov/missions/trmm. Building on TRMM’s legacy, the
Global Precipitation Measurement (GPM) (initiated in 2014) enhances global precip-
itation tracking capabilities, playing an integral role in weather and climatic endeav-
ours. Further information is available at https://gpm.nasa.gov/missions/GPM.

LEO and GEO satellite systems are complementary and often used together to
gather precipitation data. In fact, no single satellite precipitation product can fully
capture the true surface precipitation, so combining multiple observations is seen
as a way to improve precipitation products. The PMW precipitation products tend
to be infrequent but more direct, while the IR products are less direct but more fre-
quent. Furthermore, the TRMM and GPM satellites used active and passive obser-
vations to reduce ambiguities by combining radar-radiometer observations in algo-
rithms to improve precipitation measurements. Currently, there are few primary op-
erational merged products that provide surface precipitation information at a scale
of approximately 10 km per 30 minutes or better. A prominent example, which will
also be utilized in this study, is NASA’s Integrated Multi-satellite Retrievals for GPM
(IMERG). These schemes have the potential to provide a continuous record of pre-
cipitation over time, but the generation of such products is complex and relies on
the accuracy of the original PMW retrievals [11, 68].

https://gpm.nasa.gov/missions/trmm
https://gpm.nasa.gov/missions/GPM
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Many satellite precipitation products also incorporate conventional surface data
to correct for any systematic bias in the satellite estimates, and newer techniques
have started to incorporate model information into their combined precipitation
products. However, all combination schemes are only as good as their components,
and large uncertainties can still exist in certain regions and situations. Satellite pre-
cipitation products often incorporate conventional surface data to correct bias and
ensure consistency. For instance, the IMERG products combine precipitation esti-
mates from multiple satellites and gauge analyses to produce global precipitation
products. These products have been widely used for various applications, including
weather forecasting, flood prediction, and water resource management [24].

Not only satellite retrievals are enhanced using multi-source products. The merg-
ing of rain gauge networks and radar measurements is done to improve the accu-
racy of rainfall estimates. Rain gauges measure precipitation at a single point, while
radars provide volumetric measurements of precipitation over a large area. By com-
bining the two, a more accurate representation of precipitation can be achieved.
However, there are challenges in merging the two datasets due to differences in
spatial and temporal scales and biases in the measurements themselves [5].

To integrate data from various sources like rain gauges, radar, and satellites,
one approach involves using statistical methods. This includes techniques such
as bias correction, Kriging-based approaches, linear regression, geographical differ-
ence analysis, Bayesian combination, Kalman filter calibration, and geographically
weighted regression. For instance, methods like weighted averaging or Bayesian
merging allocate weights to each QPE based on its reliability and accuracy, resulting
in a unified precipitation estimate. However, considering the uncertainties in each
QPE and the combination process is crucial. These uncertainties can stem from mea-
surement errors, sampling discrepancies, or interpolation issues. Thus, it’s essential
to both quantify these uncertainties and factor them into the integration process to
ensure dependable and precise QPE outcomes [11, 68].

1.3 Machine Learning Techniques for QPE

Conventional QPE methodologies, encompassing gauge, radar, and satellite-based
techniques, often encounter challenges in accuracy and dependability, especially in
intricate terrains or during severe weather patterns. Their inherent limitations arise
from reliance on mathematical relationships and stringent assumptions.

With the capability to discern patterns among multiple estimates and formu-
late a unified product, machine learning (ML) offers a promising avenue to bypass
some of the restrictions of traditional approaches. Recently, the application of ML
for QPE has gained traction, consistently demonstrating enhancements in the preci-
sion and trustworthiness of precipitation evaluations. Distinctly advantageous, ML
can adeptly handle complex, nonlinear relationships without the need for detailed
statistical models. It’s adaptive, able to learn from historical datasets and adjust to
evolving scenarios. Coupled with its prowess in efficiently crunching vast data vol-
umes, ML assures notable computational agility [38].

ML techniques, a subset of artificial intelligence (AI), possess the ability to learn
from data autonomously, enabling them to predict or decide without predefined
programming. Their applications span across diverse sectors, including meteorol-
ogy, hydrology, and climate science, with considerable promise evident in the do-
main of QPE. This section intends to furnish a comprehensive look into the ML



10 Chapter 1. Quantitative Precipitation Estimation

techniques tailored for QPE. We will delve into the foundational principles, enu-
merate their strengths and shortcomings, and spotlight specific case studies where
they have been instrumental for QPE.

1.3.1 Brief Introduction to ML

The methods based on ML involve teaching a computer to recognize patterns in
data and make estimates or decisions based on those patterns. There are two main
types of machine learning: supervised learning and unsupervised learning. In su-
pervised learning, the algorithm is trained on a labelled dataset, where the correct
output is provided for each input. The goal is to learn a mapping between the in-
put and output so that the algorithm can make accurate estimates on new, unseen
data. In unsupervised learning, the algorithm is trained on an unlabelled dataset,
where the correct output is not provided. The goal is to learn the underlying struc-
ture of the data and identify patterns or groupings. The ML models can also be di-
vided into parametric and non-parametric. Parametric models make assumptions
about the distribution of the data and have a fixed number of parameters, while
non-parametric models do not make any assumptions about the distribution of the
data and have a flexible representation of the model. Parametric models are typically
simpler and more computationally efficient, while non-parametric models are more
flexible in capturing complex relationships in the data but can be computationally
expensive and prone to overfitting [4].

ML has been increasingly applied in various fields, especially in QPE, since tra-
ditional methods are limited or unreliable. ML algorithms can be used to estimate
precipitation based on a variety of input data sources, including satellite imagery,
weather radar, and numerical weather prediction models. Moreover, it can also be
used to improve the accuracy of precipitation estimates by identifying patterns and
relationships between different variables, such as temperature, humidity, and topog-
raphy. Commonly used supervised ML algorithms for QPE are [4]:

• Artificial Neural Network (ANN) is a commonly used ML technique for QPE.
It’s a supervised learning algorithm inspired by the human brain’s structure
and function. It’s composed of interconnected neurons organized into layers
that process input data. The activation function determines the neuron’s out-
put based on its inputs and bias term. During training, the network adjusts
the weights and biases of each neuron to minimize the difference between its
output and the desired output using backpropagation. ANNs are known for
their ability to learn complex patterns from data and achieve high accuracy.
However, they can be computationally expensive and challenging to interpret
in some applications.

• Support Vector Machine (SVM) is a type of supervised machine learning algo-
rithm used for classification and regression tasks. SVMs find the hyperplane
that best separates the data into different classes or predicts the target variable
in regressions. They can handle non-linearly separable data by using a kernel
function. SVMs are known for their excellent generalization performance but
can be computationally expensive for large datasets and sensitive to hyperpa-
rameter tuning.

• Decision Trees (DT) are a type of supervised machine learning algorithm used
for classification and regression tasks. They use a tree-like model to represent
decisions based on input data features. The tree is constructed by recursively
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splitting the data into smaller subsets based on the value of a selected feature
to maximize information gain or minimize impurity. DTs are easy to interpret
and visualize but can be prone to overfitting. Ensemble methods like Random
Forest (RF) and Gradient Boosting (GB) are often used to improve their perfor-
mance. Random Forest combines multiple trees trained on different subsets
of the data and features, while Gradient Boosting builds trees sequentially to
correct errors. Random Forest is typically used for interpretability and speed,
while Gradient Boosting is used for high accuracy.

• Logistic and Linear Regression are both types of supervised machine learning
algorithms used for regression and classification tasks. Linear Regression is
used for predicting a continuous output variable, while Logistic Regression
is used for predicting a binary output variable. Both use a cost function and
optimization algorithm to adjust their parameters during training.

• K-Nearest-Neighbour (KNN) is a non-parametric supervised ML algorithm
used for classification and regression tasks. It classifies a new data point based
on the class that appears most frequently among its K nearest neighbours in
the training set. KNN is simple and easy to implement but can be sensitive
to the choice of the distance metric and the number of neighbours. It can be
useful in applications where a simple and interpretable model is desired and
when the data lacks a clear linear separation.

There are many examples of QPE products that utilize ML algorithms to improve
the accuracy and reliability of precipitation estimates. Each product has its unique
strengths and weaknesses, and the choice of which product to use depends on the
specific needs and applications of the user. For example, IMERG uses a combination
of satellite data and gauge observations to estimate precipitation on a global scale.
IMERG uses a combination of physical models and machine learning algorithms to
improve the accuracy of its estimates. PERSIANN-CCS - Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks-Cloud Classi-
fication System - is a QPE product developed by the University of California, Irvine.
It uses a combination of satellite data and ML algorithms to estimate precipitation.
PERSIANN-CCS is known for its high accuracy and ability to estimate precipitation
in regions with limited gauge observations. CHIRPS - The Climate Hazards Group
InfraRed Precipitation with Station data - is a QPE product developed by the Climate
Hazards Group at the University of California, Santa Barbara. It uses a combination
of satellite data and gauge observations to estimate precipitation on a global scale.
CHIRPS uses ML algorithms to interpolate gauge data and fill in gaps in the satellite
data, improving the accuracy of its estimates [68].

Advantages and Limitation of ML methods

Using ML in QPE can lead to many advantages [38]. ML algorithms can learn pat-
terns and relationships between different variables in precipitation data that may be
difficult or impossible for humans to identify. As a result, ML algorithms can often
provide more accurate precipitation estimates than traditional methods. ML algo-
rithms can process large amounts of data quickly and efficiently, making it possible
to analyze data from multiple sources and generate precipitation estimates in near-
real-time. They can be applied to a variety of input data sources, including satellite
imagery, weather radar, and numerical weather prediction models. This flexibility
allows for more comprehensive and accurate precipitation estimates, even in regions
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where traditional measurement methods are limited or unreliable. ML algorithms
can adapt to changing precipitation patterns and weather conditions, allowing for
more accurate and timely precipitation estimates in both short-term and long-term
forecasting.

However, ML models still have some challenges to be addressed [4]. The accu-
racy of ML algorithms depends heavily on the quality of input data. If the input
data is incomplete, inaccurate, or biased, the ML algorithm may produce inaccurate
or unreliable precipitation estimates. ML algorithms require large amounts of data
to train and validate the model, which can be a challenge in regions where data is
limited or difficult to obtain. Additionally, the complexity of their operations can
hinder the identification and correction of model errors or biases. ML algorithms
often lack interpretability, making it challenging to discern the reasoning behind a
specific precipitation estimate. When the model is overly complex and fits the train-
ing data too closely, the model can be prone to overfitting, which can lead to poor
performance on new, unseen data. Lack of standardization in ML can yield biased
models, especially when trained on mismatched data sources. Ensuring data con-
sistency often requires intensive preprocessing. For optimal QPE results, a unified
guideline for data handling and model tuning is essential. Reproducibility is crit-
ical in ML because it allows others to verify the results and test the validity of the
model. However, reproducing the results of an ML model can be challenging due to
the complexity of the models, the randomness in the training process, and the use
of different hardware and software environments. Reproducibility can be improved
by documenting the code and using publicly available datasets in the training step
[9].

Despite these limitations, ML has the potential to significantly improve precip-
itation estimation accuracy, particularly in regions where traditional measurement
methods are limited or unreliable. As a result, researchers and practitioners are in-
creasingly turning to ML algorithms to improve QPE accuracy and reliability [38].

1.3.2 State of the art

Data Sources

We begin by examining the diverse data sources referenced in prior research for
QPE. The choice of data is often influenced by desired spatial-temporal resolutions
and data availability.

• Satellite-Based Data: Studies have leveraged IR, Near-IR, and VIS channels
from satellites such as MSG SEVIRI, Himawari-8 AHI, Fengyun-4A AGRI, and
GOES-16. The appeal of these sources lies in their fine temporal and spatial
granularity, enabling regional precipitation estimates [2, 16, 19, 48, 49, 60, 61,
70, 3, 44, 56, 8, 13].

• MW Channels: Deployed on LEO satellites like GMI on GPM, Aqua AMSR-E,
and others, MW channels detect precipitation particle size and shape, facilitat-
ing assessments of precipitation intensity and type [8, 35, 36, 57, 10].

• Radar-Based Data: Ground-based radar and DPR have furnished insights on
precipitation’s intensity, verticality, and movement. Both ground-based and
space-borne radar data have been harnessed as validation benchmarks for ML
models [13, 63, 45, 19, 10].
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• Rain Gauges & Disdrometers: Renowned for pinpoint accuracy, rain gauges
offer localized precipitation measurements. Disdrometers, meanwhile, eluci-
date the size distribution of precipitation particles. Both have played a pivotal
role as ground truths in ML model validation [13, 29, 48, 49, 61, 60, 70, 63, 56,
34, 45, 47].

• Precipitation Products: The literature references products like IMERG, CHIRPS
and PERSIANN-CDR for QPE [29, 3, 67, 28, 47]. Derived from satellite and
ground-based observations, these products offer varying spatial-temporal pre-
cipitation estimates. Notably, some have been utilized as benchmark data in
ML model training and evaluation [70, 57, 35, 67, 36].

• Soil Moisture Products: Satellite-based measures of soil water content serve
as indirect indicators of precipitation in some studies [29].

• Forecast & Reanalysis Data: Products like GFS, ERA, and MERRA, which
present also non-rain parameters like temperature and humidity, aid in under-
standing precipitation-friendly atmospheric conditions [70, 10, 34].

• Digital Elevation Models (DEM): Providing insights on regional topography,
DEMs are useful in pinpointing probable precipitation zones [47, 34, 67, 35, 3].

Spatial and Temporal Information

In QPE studies, spatial resolution significantly influences the accuracy and reliabil-
ity of precipitation estimates. Different data sources often lead to varying spatial
resolutions. Addressing this, some researchers have unified the data by reprojecting
maps onto a standard grid using techniques like cubic spline interpolation [34, 28],
bilinear resampling [44], and averaging [67, 35, 61, 8]. The resulting resolutions typ-
ically span 3 to 6 km [13, 8] or 0.05° to 0.25° [29, 19, 70]. An outlier in these studies is
[35], opting for a coarser 15 and 45 km resolution.

Another key consideration is parallax correction, which can impact QPE’s pre-
cision. Various methods have been employed to adjust for parallax, including ref-
erencing cloud top height [3] and aggregating radar pixels—5x5 for higher clouds
and 3x3 for others [49, 61]. However, many studies overlook the mention of parallax
correction.

Lastly, study areas in QPE research exhibit a broad range: from specific regions
[13, 29, 28, 47] to whole countries [67, 8, 16, 48, 57, 35, 44, 31, 45], and even broader
areas [70, 39, 3].

In QPE studies, the chosen time intervals critically shape the estimates’ accuracy
and reliability. Studies have explored varied time intervals, from specific seasons
like the rainy season [13, 48, 60, 70, 3, 36, 39, 46], a single year [44, 8], multiple years
[48, 10, 35, 28, 47, 16], to particular rainfall events or non-consecutive days [34, 57,
45].

Temporal resolution varies: some studies capture data in sub-hourly intervals,
such as 10 or 30 minutes [2, 8, 13, 19], others opt for hourly [35, 34, 45] or daily
resolutions [29, 28, 47]. Moreover, models often differentiate based on time, discern-
ing between day and night [61, 60, 44, 31, 34, 56], or seasonally, like summer versus
winter [8].
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Samples and Classes

In QPE studies, preprocessing is pivotal as the quality of data samples directly af-
fects outcomes. Some studies pruned the sample pool due to data quality, missing
entries, or a pixel-per-scene threshold [8, 3, 63, 16, 35, 44]. Techniques like rain or
cloud masking [44, 16, 70, 35, 67], random undersampling [10], and grayscale level
reduction [44] have been employed for computational optimization. Data normal-
ization [3, 36] and cross-validation during training or hyperparameter adjustment
are also common procedures [61, 63, 34, 45, 44, 36].

For classification in QPE, varied classes are used. Some studies differentiate sim-
ply between rain and no rain [48, 67], others between stratiform and convective rain
[61, 10]. Rain rate categories range from general classifications like light to heavy
[29, 49, 70] to detailed divisions based on radar reflectivity intervals [2, 48]. To tackle
class imbalances, approaches like SMOTE oversampling [70, 46], random undersam-
pling [13, 3, 10], and bootstrap resampling [10] have been used.

Features

In QPE studies, satellite-based features predominantly inform precipitation esti-
mates. Researchers commonly use spectral data like Tb, reflectances, and related
derivatives from IR, Near-IR, water vapour, and VIS channels [2, 8, 16, 19, 13, 48, 49,
70, 3, 67, 44, 56, 34, 39, 31, 46], as well as MW channels [8, 57, 10, 35, 36]. From spec-
tral data, various cloud attributes—like water path, type, mask, temperature, and
texture—were extracted [16, 48, 61, 60, 3, 34, 39, 31, 46]. For texture analysis, features
such as homogeneity and contrast were derived from the grey-level co-occurrence
matrix, and entropy from the grey-level difference vector [61, 60, 44, 56, 39]. Soil
moisture [29] and surface emissivity [10] also served as satellite-based predictors in
some studies.

Furthermore, features span a wide range of sources to train ML models. From
Rain gauges, metrics like rainfall intensity and the proximity of gauges to a given
pixel are utilized [13, 47]. Data from radar, such as Surface Rain Intensity and Re-
flectivity at various elevations, offer additional insights [13, 45]. Combined precipi-
tation products also contribute to the feature set [29, 28, 47].

Geographic information, which encompasses land-water differentiation, eleva-
tion, and various topographical indices, is integrated into the models [3, 35, 67, 34,
47]. Spatiotemporal features, such as the solar zenith angle and localized time and
positioning data, play a role in these studies [8, 13, 70, 3, 10, 35, 34]. Additionally,
Weather parameters, ranging from temperatures at various altitudes to metrics in-
dicating atmospheric stability, enrich the ML models [70, 10, 34, 46].

ML Models

In QPE research, ML models cater to both classification and regression challenges.
For classification, models such as logistic regression [3, 10], K nearest neighbors [2],
multilayer perceptron [8, 48, 61, 3, 10, 44], and others including random forest and
support vector machine [19, 70, 10, 60, 61, 67] have been deployed. For regression,
tools such as K nearest neighbor [28, 45], linear regression [49, 3, 28], and several
others, including multilayer perceptron and gradient boosting [48, 57, 3, 44, 36, 28,
45, 39, 36], have been utilized.

While many researchers have embraced hyperparameter tuning using methods
like grid search [57, 36, 28], others have opted for default ML function parameters.
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Moreover, feature selection plays a crucial role in enhancing model efficiency.
Approaches include feature ranking [67, 35, 63, 46], selective feature utilization [44],
inter-feature correlation assessments [36], and principal component analysis [39].

Performance Assessment

Performance in QPE models is assessed using a variety of metrics tailored for both
classification and regression tasks. Classification metrics encompass a wide range,
from the probability of detection and false alarm ratio to more specialized metrics
like the equitable threat score and Area Under the Curve of the Receiving Operat-
ing Curve. Similarly, regression tasks might involve the use of simple metrics like
the correlation coefficient, and more advanced ones, such as Kling-Gupta efficiency,
among others.

The actual performance of these QPE models doesn’t remain limited to a singular
context. Various conditions are tested, such as: 1) Different altitudinal conditions
[67]. 2) Surface variations like terrestrial, aquatic, or coastal zones [36, 8, 46]. 3)
Different climatic zones [28]. 4) Locale variations, such as urban vs. rural settings
[34].

The evaluation often includes analyzing accumulated rain rates over different
timeframes, ranging from short durations like 3 hours to longer ones, like a month.
This aids in comparing rain gauges and observing temporal trends [48, 61, 67, 56].
To test resilience, some studies have incorporated Gaussian noise into their datasets
[36]. Unique approaches, like calibrating the probability density function of model
outputs, have been implemented in some research [39]. Rain rate retrieval can also
be categorized into various classes for a more detailed analysis [29]. Lastly, a bench-
marking approach is common, where new models are pitted against previously es-
tablished ones from the literature to ascertain their relative efficacy.
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Chapter 2

Materials & Methods

2.1 Case Study Description

Vietnam is a long, narrow country in Southeast Asia, stretching over 1,600 kilometres
from north to south. It has a diverse climate and geography, with many ecosystems
and natural resources. The study specifically focuses on the wet season, as this is the
time when the country is most vulnerable to heavy rainfall.

2.1.1 Vietnam’s Climate

Vietnam has a unique geographical and climatic profile, situated between two promi-
nent monsoon regions: the South Asian and East Asian monsoons. Stretching from
low-lying plains to mountainous terrains, the country experiences a tropical mon-
soon climate characterized by seasonal shifts in weather patterns. The land is abun-
dant with water resources, including nine major river systems and two significant
gulfs, making hydrology a key issue for the region. During the summer months, the
South Asian monsoon dominates the climate, bringing hot and wet conditions, es-
pecially to the southern parts of the country. This monsoon is influenced by various
atmospheric pressure centres like the Asiatic Low and the Australian High. These
conditions contribute to tropical cyclones, a common hazard during this season. On
the other hand, the winter months, stretching from November to March, are affected
by the cold and dry East Asian monsoon. Cold surges originating from the Siberian
High significantly lower temperatures in Vietnam, particularly in the northern and
central regions. The rainy season usually starts in May and ends in October, al-
though there are variations depending on the region within Vietnam. Overall, the
rainy season contributes to over 80% of the annual rainfall in the country [51].

In Figure 2.1, the right-hand plot distinctly illustrates the annual mean climato-
logical patterns for temperature and precipitation. The data reveals that the wet sea-
son, spanning from May to October, coincides with the period of highest mean tem-
peratures, ranging between 25 to 27.5°C. Conversely, the dry season from November
to April experiences the lowest mean temperatures, falling within a range of 20 to
25°C.

The left-hand plot of Figure 2.1 provides a comprehensive visualization of Viet-
nam’s diverse climate regions using the Köppen-Geiger climate classification. The
northern areas predominantly feature a temperate climate characterized by dry win-
ters and hot summers, though higher altitudes experience milder summers. The cen-
tral lowlands primarily exhibit a tropical climate, notably monsoonal and, to some
extent, rainforest conditions. In contrast, the southern regions are largely influenced
by a tropical monsoon climate, with pockets of temperate conditions corresponding
to the highlands.
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FIGURE 2.1: Left: Köppen-Geiger climate classification map for Viet-
nam (1980-2016) [1]. 1-km resolution climate maps are available here:
https://www.gloh2o.org/koppen/. Right: Monthly Climatology of
Mean-Temperature and Precipitation in Vietnam from 1991-2020. Im-
age taken from https://climateknowledgeportal.worldbank.org/

country/vietnam.

2.1.2 Study period

The year 2020 was marked by an unprecedented frequency of tropical cyclones af-
fecting Vietnam. A total of ten major cyclonic events—Sinlaku, Noul, Linfa, Nangka,
Saudel, Molave, Goni, Atsani, Etau, and Vamco—impacted the country (see Figure
2.2 for chronological order and Figure 2.3 for their respective tracks). Each of these
storms was remarkable for its intensity, accompanied by exceptional levels of pre-
cipitation and elevated wind speeds. The month of October, in particular, witnessed
a surge in severe meteorological incidents with devastating humanitarian and finan-
cial impacts [37].

In October 2020, the province of Thua Thien Hue and other regions in central
Vietnam were severely affected by a sequence of tropical cyclones, including Linfa,
Nangka, Ofel, Saudel, and Molave. This spate of storms caused unparalleled flood-
ing and landslides. According to the Vietnamese Center for Disaster Prevention
and Search and Rescue, tropical storm Linfa established a new rainfall record, with
accumulations reaching up to 2,290 mm in Thua Thien Hue [52]. Notably, this ex-
treme meteorological activity culminated in the loss of over 30 lives, the submersion
of hundreds of thousands of residences, and financial damages estimated at $86.29
million [15]. Typhoon Molave was the fourth event in this series, with winds of ap-
proximately 161 km/h. This resulted in extensive structural damage, including the
destruction of 90,000 homes, and also triggered several landslides. During this pe-
riod, the rainfall levels in central Vietnam were without precedent; Danang recorded
a total monthly rainfall of approximately 1.52 meters, while Hue reported an even
more staggering 2.61 meters [33]. At the end of October, Super Typhoon Goni made
landfall, albeit in a weakened state, becoming the fifth cyclone to impact Vietnam

https://www.gloh2o.org/koppen/
https://climateknowledgeportal.worldbank.org/country/vietnam
https://climateknowledgeportal.worldbank.org/country/vietnam
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within a single month. Despite its diminished intensity, Goni caused unusual flood-
ing in coastal cities like Nha Trang and Quy Nhon, thereby worsening the existing
hydro-meteorological crisis [33].

Given the unique meteorological characteristics exhibited during this period, it
serves as an invaluable case study for exploring the challenges of QPE in tropical
cyclones affecting Vietnam. Consequently, the training dataset for the random forest
model was deliberately selected to span the period from October 1 to October 26,
2020. The testing dataset covers the interval from October 27 to October 31, 2020, as
delineated by the grey boxes in Figure 2.2.

FIGURE 2.2: Coloured boxes show the chronological sequence of
tropical storms impacting Vietnam in 2020, each annotated with its
maximum sustained wind speed. The grey boxes within the figure
denote the divisions between the training and testing datasets used

for the random forest models.

FIGURE 2.3: Typhoon tracks affecting Vietnam in 2020 [55].
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2.2 Datasets

In this section, we present the datasets utilized for the analysis. Firstly, we illustrate
the geostationary satellite data employed for QPE in the Vietnam region. The satel-
lite data underwent calibration using radar data, which served as our ground truth.
Lastly, we validated the ML model against pluviometer data, considered the gold
standard, and compared its accuracy with other rainfall products.

2.2.1 Satellite Data

The Chinese Fengyun-4A (FY-4A) satellite was chosen for its alignment with Viet-
nam’s longitude, notably minimizing parallax error compared to Hanoi’s longitude
of 106°E. Despite similar capabilities across regional geostationary satellites, FY-4A’s
position at 104.7°E negates the need for parallax correction, ensuring more accurate
data for our analysis.

The sensor employed for precipitation estimation is the Advanced Geosynchronous
Radiation Imager (AGRI). As detailed in Table 2.1, AGRI is capable of measuring ra-
diances across 14 distinct channels, ranging from 0.47 µm to 13.5 µm. The spatial
resolution varies from 0.5/1 km for the VIS and near-IR (NIR) channels to 2–4 km
for the IR channels. Each channel is designed to retrieve specific types of infor-
mation, ranging from cloud and vegetation coverage to water vapour and surface
temperature.

The first six channels are categorized as part of the primary group of Visible
channels, given that their units are specified in Reflectance (%). It’s worth noting,
however, that channels 4, 5, and 6 actually belong to the shortwave IR spectrum.
Channels 7 to 14 are IR channels, expressed in Tb (K), encompassing mid-wave,
longwave IR, and water vapor (WV) channels.

Channel Type
Central

wavelength
Bands

Spatial
resolution

Main
purpose

1 VIS/NIR 0.47 µm 0.45∼0.49µm 1 km Aerosol
2 VIS/NIR 0.65 µm 0.55∼0.75µm 0.5-1 km Fog, Cloud
3 VIS/NIR 0.825 µm 0.75∼0.90µm 1 km Vegetation
4 Short-Wave IR 1.375 µm 1.36∼1.39µm 2 km Cirrus
5 Short-Wave IR 1.61 µm 1.58∼1.64µm 2 km Cloud, snow
6 Short-Wave IR 2.25 µm 2.1∼2.35µm 2-4 km Cirrus, aerosol
7 Mid-Wave IR 3.75 µm 3.5∼4.0µm (high) 2 km Fire
8 Mid-Wave IR 3.75 µm 3.5∼4.0µm (low) 4 km Land surface
9 WV 6.25 µm 5.8∼6.7µm 4 km High level water vapour
10 WV 7.1 µm 6.9∼7.3µm 4 km Middle level water vapour
11 Long-Wave IR 8.5 µm 8.0∼9.0µm 4 km Water vapour, cloud
12 Long-Wave IR 10.7 µm 10.3∼11.3µm 4 km Surface temperature
13 Long-Wave IR 12.0 µm 11.5∼12.5µm 4 km Surface temperature
14 Long-Wave IR 13.5 µm 13.2∼13.8µm 4 km Cloud thickness

TABLE 2.1: Main characteristics of all the channels available in FY-4A
AGRI sensor. Information is taken from the official website of the Na-
tional Satellite Meteorological Center: https://fy4.nsmc.org.cn/
nsmc/en/instrument/AGRI.html. VIS: Visible; NIR: Near Infrared;

IR: Infrared; WV: Water Vapour.

https://fy4.nsmc.org.cn/nsmc/en/instrument/AGRI.html
https://fy4.nsmc.org.cn/nsmc/en/instrument/AGRI.html
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FIGURE 2.4: VIS (upper plot) and IR (lower plot) Channel maps for a
specific time step.
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In this study, the values from these channels serve as features for our ML models,
as will be detailed in Section 3.1.1 of the Results & Discussion Chapter. For the
scope of this introductory section, we present snapshots of channel data categorized
into Infrared (IR) and Visible (VIS) spectra. These snapshots are depicted in Figure
2.4. This visual representation allows us to observe the distinct information each
channel captures. While some channels accentuate cloud structures, others are more
revealing of terrestrial characteristics.

2.2.2 Rain Products: Ground Reference Data

In this section, we provide an overview of the precipitation products employed in
this study. Particular emphasis is placed on the radar data, which serves as the
ground truth for calibrating the RF models. Additionally, we discuss the rain gauges
used for subsequent validation, as they are often considered the gold standard in
QPE. We also explore other rain products available in Vietnam to evaluate the effec-
tiveness of the model developed in this study. A summary of the key characteristics
of all these precipitation products can be found in Table 2.2 at the end of this Section.

FIGURE 2.5: Location of the radars and rain gauges over Vietnam.
Image taken from [59].

Radar

In 2020, Vietnam’s weather radar infrastructure featured 5 dual-polarization units
situated in cities such as Viet Tri, Nha Trang, Quy Nhon, Pleiku, and Pha Din Pass.
Additionally, the network included 3 single-polarization C-band radars in Dong Ha,
Tam Ky, and Nha Be, along with 2 single-polarization S-band radars in Phu Lien
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and Vinh. The data for this study was sourced from these 10 radar locations and
was partly drawn from the outcomes of the Vietnam National Research Project.

Prior to integrating this radar data into QPE calculations, a quality assurance pro-
cess was undertaken to eliminate basic errors. The radar-based precipitation assess-
ments were created using one-hour cumulative radar intensity, as per the original
methodology developed by the Japanese Meteorological Agency [40]. This method
was further tailored for the Vietnamese context by [26] and the Authority of Mete-
orology and Climate. These customizations included decoding the initial raw radar
data and adjusting specific parameters.

The radar data offers hourly coverage across most of mainland Vietnam at a 1-
kilometer resolution. Instrument density is at its highest in the Hanoi and Quy Nhon
regions, whereas it is less comprehensive in central Vietnam and in the Ho Chi Minh
area in the south (as illustrated in Figure 2.5).

Rain Gauges

The Vietnamese rain gauge network is a collaborative effort involving multiple enti-
ties, including the Viet Nam Meteorological and Hydrological Administration, as
well as other partners. This expansive network features around 1300 automatic
weather stations (AWS) scattered throughout the country, as shown in Figure 2.5.
However, the network’s density varies and is subject to occasional interruptions, re-
sulting in an operational count of approximately 800-900 rain gauges at any given
moment. These gauges take measurements every 10 minutes, which are then aggre-
gated to calculate hourly average rainfall rates in millimetres per hour (mm/h).

FIGURE 2.6: Left: Shortest Distance in Kilometers to the Nearest Pop-
ulated Grid Cell with an AWS. Right: Frequency Distribution of Grid

Cells Containing 1, 2, 3, or 4 AWS Units.

On average, the closest operational rain gauge is situated about 8.6 kilometers
away, with the majority of the AWS spaced less than 30 kilometers apart. This dis-
tribution is depicted in the left-hand plot of Figure 2.6, which shows the minimum
distance to the nearest populated grid cell. The right-hand side of Figure 2.6 illus-
trates the distribution of AWS within the FY-4A satellite grid used in this study.
Specifically, the vast majority of grid cells (1083) contain just one AWS, while 69 cells
contain two, six cells have three, and one cell contains four AWS.
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We considered only those grid cells that had at least one rain gauge. A signif-
icant majority of AWS stations remained operational for over 80% of the research
duration. However, there was a minor subset, comprising about 10%, that delivered
valid data for less than half of the study period; these stations were subsequently
omitted from the AWS dataset. If more than one AWS were present within a grid
cell the average value was considered.

2.2.3 Other Rain Products

Geostationary satellite-based products

GeoKompsat-2A (GK-2A), operated by the Korea Meteorological Administration’s
National Meteorological Satellite Center, has been functional since December 2018
at longitude 128.2° E. The satellite’s Advanced Meteorological Imager (AMI) has 16
spectral channels ranging from visible to thermal infrared (0.47 to 13.3 µm). It offers
a 2 km spatial resolution at nadir for its infrared channels and scans the full disk
area every 10 minutes. GK-2A’s rain rate estimation employs Tb from five specific
bands and utilizes probability density functions from recent GPM-DPR data to im-
prove precipitation estimates [69]. The data for this study is sourced from the AMI
Level-2 rainfall rate product, version 1.6.0.4, with technical documentation primarily
available in Korean.

FY-4A AGRI characteristics are described in Section 2.2.1. While the specific al-
gorithms used by FY-4A are not publicly disclosed, it’s noted that the current version
does not include a calibration step, and future updates may incorporate radar mea-
surements [69]. The rainfall product from FY-4A is known as "FY4A AGRI L2 QPE"
and is generated by version 1.0 of the respective software.

IMERG

The IMERG algorithm, version 3IMERGH_6.3, from the GPM Mission, offers surface-
level precipitation estimates by integrating data from multiple satellites in both low-
earth and geostationary orbits. These data are captured using the IR and MW parts
of the spectrum. Version V06B of the IMERG products consists of three distinct runs:
Early, Late, and Final. For a detailed explanation of the IMERG algorithm, refer to
[20].

The complexity of the calibration procedures and quality controls escalates from
the Early run to the Final run, accompanied by an increase in latency. The Early
run, made available four hours post-data collection, is solely dependent on satellite
data. The Late run, released 14 hours after data collection, incorporates additional
satellite overpass data that were unavailable during the first four hours. Lastly, the
Final run is published after a lag of 3.5 months and undergoes calibration with the
Global Precipitation Climatology Centre’s monthly monitoring analysis.

For the purposes of this study, we focused on the Early and Final runs, follow-
ing the analysis adopted in [59]. The Early run offers a near-real-time (NRT) amal-
gamated product, while the Final run delivers the most accurate satellite-derived
precipitation estimates for the region. We utilized the "precipitationCal" variable to
extract rainfall data, which is available on a 0.1° × 0.1° grid on an hourly basis.

ERA5-Land

ERA5 is a cutting-edge reanalysis product created by the European Centre for Medium-
Range Weather Forecasts (ECMWF) [18]. One of its sub-components, ERA5-Land, is
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specifically tailored to capture land-based variables. In this research, we utilized the
"Total Precipitation" variable from ERA5-Land, which features a one-hour temporal
resolution and a spatial resolution of 0.1°.

This Total Precipitation variable in ERA5-Land is calculated as the sum of two
components: large-scale precipitation, computed by the model at scales beyond the
individual grid box, and convective precipitation, which is computed within smaller
spatial scales by the convective scheme of the ECMWF Integrated Forecasting Sys-
tem. To align with ERA5-Land’s finer spatial resolution, the original precipitation
data from ERA5, with an approximate resolution of 31 km, is rescaled using linear
interpolation based on a triangular mesh.

It’s crucial to recognize that the Total Precipitation figure from ERA5-Land rep-
resents the water depth distributed uniformly across each grid box. Consequently,
this value may not align precisely with point-specific, instantaneous observations.

Overview of Key Rain Product Features

Dataset Period Grid
resolution

Temporal
sampling Coverage Data

source Latency

Rain Gauges 2008 - point
(avg. dist.: 8.6 km) 10 min/1 hour country-wide tipping bucket ∼10 min/

30 min-1 hour
Radars 2019 - 1 km 1 hour country-wide C- and S-band 15-30 min
FY-4A 2017 - 4 km (nadir) 1h/3h/6h full disk VIS-IR NRT
GK-2A 2018 - 2 km (nadir) 10 min full disk IR+DPR NRT
IMERG

Early run 2000 - 0.1◦×0.1◦ 30 min 90◦N-90◦S MW+DPR+IR 4 hours

IMERG
Final run 2000 - 0.1◦×0.1◦ 30 min 90◦N-90◦S MW+DPR+IR

+rain gauges 3.5 months

ERA5-Land 1950 - ∼9 km 1 hour global ECMWF model 2-3 months

FY-4A RF October
2020 4 km (nadir) 1 hour from 7◦N-101◦E

to 24◦N-111◦E FY-4A+radars hours

TABLE 2.2: Overview of the key attributes of the precipitation data
sets used for calibration, test and validation of the ML models. The
information is obtained here [59]. The final row additionally provides
details on the precipitation product obtained from the RF models in

this study.

The key attributes of various rain products are summarized in Table 2.2. The table
outlines essential characteristics such as the original period of data availability, grid
resolution, temporal resolution, spatial coverage, and data source—specifying the
instruments, spectral channels, or models used to derive the product. Additionally,
the table indicates the latency required to convert raw data into the final rain prod-
uct. It’s noteworthy that rain gauges, radar, and certain satellite products exhibit
low latency, often approaching near-real-time capabilities, due to minimal process-
ing requirements. In contrast, products like IMERG and ERA necessitate extended
processing time.

The final row of Table 2.2 contrasts these features with the product developed in
this study, referred to as FY-4A_RF. This product leverages FY-4A satellite data via an
RF model. Specifically, the study employs a spatial resolution of 4 km (native to the
FY-4A) and a temporal resolution of 1 hour, focusing on the Vietnam region using a
radar mask, since the radar product was used for calibration. While the initial model
training takes several hours (accounting for data download, preparation, feature
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extraction, and model preprocessing and training), subsequent product generations
are faster, with latency mainly stemming from executing the ready-to-use model for
estimates and the preparation of new unseen data.

2.2.4 Digital Elevation Model

FIGURE 2.7: Left: DEM map with radar mask applied, enhanced with
hill-shading to better highlight mountainous regions. Right: His-
togram illustrating the frequency distribution of altitudes above sea

level, using the same colourmap as employed in the map.

The DEM was provided with an initial spatial resolution of 0.04° in both latitude
and longitude. Although this resolution is relatively low, it originates from NASA’s
ASTER Global Digital Elevation Model V003. The native resolution of the ASTER
product is one arc-second, equivalent to about 30 meters at the equator. This indi-
cates that the DEM has undergone some form of preprocessing to achieve its current
resolution. For more details about the original data source, you can refer to the
NASA ASTER website (https://asterweb.jpl.nasa.gov/).

The initial DEM image covered Southeast Asia but was cropped to emphasize
Vietnam. We used a version of the DEM, aligned with the 4 km FY-4A grid and
masked using a radar mask. Figure 2.7’s left panel showcases this tailored DEM
for Vietnam, while the right displays an altitude distribution. Vietnam’s topogra-
phy is mostly under 1000 meters, with exceptions reaching 2500 meters. Fansipan
Mountain, the nation’s tallest at 3,144 meters, isn’t depicted likely due to the DEM’s
coarseness. The histogram also shows a peak at sea level, reflecting marine areas.

https://asterweb.jpl.nasa.gov/
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2.3 Analysis Workflow

This section is designed to outline the analytical process in a step-by-step manner.
We begin with preliminary procedures that include quality assurance and outlier
removal from the dataset. Subsequently, we delve into feature engineering, which
prepares the data for the ML algorithms. The setup of the RF model, including both
classification and regression tasks, is then elaborated upon. Finally, we evaluate the
performance of these models using a variety of metrics. All the main analysis steps
are reported in Figure 2.8 and will described in detail in the next sections.

FIGURE 2.8: Diagram Illustrating the Key Phases of the Analysis
Workflow: From Raw Data Acquisition to Quality Assessment, Fea-
ture Engineering, Random Forest Configuration, and Final Product

Validation.

The analyses were performed on a workstation featuring a 64-bit architecture
(x86_64) equipped with an Intel(R) Core(TM) i7-7700 CPU, consisting of 8 CPUs
operating at a base frequency of approximately 800.819 MHz. This system boasted
15GB of RAM and operated on Ubuntu 18.04.6 LTS.

The primary software tools utilized were based on Python 3.10. Key among these
was the Dask package (https://docs.dask.org/en/stable/), which facilitated ef-
ficient processing of sizable datasets without exhausting memory. The Satpy li-
brary (https://satpy.readthedocs.io/en/stable/index.html) was employed for
FY-4A data manipulation, while the machine learning workflows leveraged the ca-
pabilities of scikit-learn (https://scikit-learn.org/stable/index.html). Addi-
tionally, general computations and data visualizations were achieved using the numpy,
scipy, pandas, matplotlib, and seaborn libraries.

2.3.1 Preprocessing Steps

First, we downloaded the data files, checking and redownloading any corrupted
files. We then assessed the dataset for missing temporal intervals and visualized data
distribution to detect outliers, using a log-scaled density function and a temporal
trend plot. We also produced spatial snapshots at certain time intervals. In the next
subsection, we detail the preprocessing for our primary datasets, FY-4A and radar,
which formed the foundation for our model training and testing.

https://docs.dask.org/en/stable/
https://satpy.readthedocs.io/en/stable/index.html
https://scikit-learn.org/stable/index.html
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The additional rainfall products used exclusively for validation (AWS, IMERG
Early and Final, ERA5-Land, and the FY-4A and GK-2A rain products) were previ-
ously prepared for the study as cited in [59]. Therefore, no additional preprocessing
was required for this work.

FY-4A

After downloading the October 2020 files, we assessed for any gaps. Figure 2.9
shows the missing files in red on the left. While we have data for most hourly 15-
minute intervals, October 2nd and 3rd were exceptions with no available files. The
right side of the figure showcases the file distribution within each hour. Most files
fall within the hour’s first quarter (00:00 to 14:59), with a notable absence in the third
quarter (30:00 to 44:59).

FIGURE 2.9: Left: File Coverage of FY-4A L1 data for October 2020.
A red square indicates a missing 15-minute interval file. Right: His-
togram illustrating the availability of files in each hourly quarter in

October 2020.

Subsequently, the data were spatially restricted to encompass the area of Viet-
nam, specifically bounded by the longitude and latitude coordinates:

lonmin = 101◦E, latmin = 7◦N, lonmax = 110◦E, latmax = 24◦N (2.1)

To achieve greater temporal consistency and in alignment with the methodology
outlined in [59], we opted to rescale all data to a one-hour resolution by averaging
the values for all channels within each hourly time span.

Afterwards, we assessed the frequency of missing values for each channel of the
FY-4A data across all time steps within the Vietnam area. Bad-quality scan lines
are automatically masked and replaced with NaN (’Not a Number’) based on the
quality flags provided by the dataset. The findings are illustrated in Figure 2.10. No-
tably, the proportion of missing values is generally quite low, consistently falling be-
low 0.1. An exception occurred at a specific time—23:00 on October 8, 2020—where
channels 13 and 14 exhibited approximately 20% missing values. However, as this
anomaly was limited to a single time step, it is unlikely to impact the overall analy-
sis, given that grid cells with NaN values are excluded from the dataset.
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FIGURE 2.10: The graph displays the proportion of missing (’NaN’)
values for each FY-4A time step in October 2020. This proportion is
derived by comparing the number of ’NaN’ grid cells over Vietnam
to the region’s total cell count. This evaluation was conducted across

all 14 satellite channels.

Then, we focused on the VIS channels, calculating their hourly average through-
out the day. This helped determine when reflectance was under 5%, distinguishing
between daytime (with VIS channels) and nighttime (without VIS channels). As
shown in Figure 2.11, even the lowest average reflectance stayed above the 5% mark
from 00:00 to 09:00 UTC. The 09:00 UTC value, however, reflects an average for the
09:00 to 09:59 interval. Thus, we’ve defined daytime as 00:00 to 10:00 UTC and night-
time from 10:00 UTC to 00:00 UTC. In local terms, this equates to 7:00 AM to 5:00
PM. An unexpected peak between 15:00 and 18:00 UTC seems to be a data anomaly,
possibly due to an acquisition error. This doesn’t affect our analysis since the VIS
channels are excluded during that interval, which is considered nighttime.

FIGURE 2.11: Daily Trend of VIS Channels: We averaged the values
at each time step for the entire October 2020. The coloured curves
show reflectance for each VIS channel (1-6), with black vertical lines

marking the transition between day and night.
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Radar

We reviewed the data for corrupted or missing files, finding 20 missing time steps.
Thus, out of a month’s 744 hours, 724 were processed successfully. We adjusted
the data resolution from 1 km to 4 km to align with the satellite grid, using linear
interpolation. The radar mask was also adapted to this grid for data filtering.

The histogram from the October 2020 rain gauge data, shown in Figure 2.12
(Left), reveals that most rainfall is under 100 mm/h, though events around 200
mm/h also occur. Given this distribution, setting a threshold of 150 mm/h for the
radar rain product is justified. To avoid potential outliers in the radar data within
this range, it’s prudent to stay below this threshold.

In order to distinguish between dry and wet rain rates, we examined the prob-
ability density function of radar data for rates below 1 mm/h, as illustrated in the
right-hand plot of Figure 2.12. We set the threshold at 0.1 mm/h, which serves as
a pivotal point between two different distribution regimes: a flat distribution that
likely represents noise and a decreasing distribution that is characteristic of actual
rain rates.

FIGURE 2.12: Left: Precipitation Rate Distribution from Rain Gauge
Data, October 2020. Right: Precipitation Rate Distribution from
Radar Data, October 2020 (rates < 1 mm/h). The vertical red line

differentiates dry from wet rain rates.

2.3.2 Features Engineering

The features used in the RF model were carefully selected to capture a broad range
of information. They span from spectral characteristics to spatial and temporal vari-
ations, providing a comprehensive picture that enhances the model’s predictive ca-
pability. Together, these features create a multi-dimensional, comprehensive feature
space that aims to provide the RF model with the best opportunity for accurate esti-
mates.

• Spectral Channels:

Reflectance Values for VIS Channels (1-6): As indicated in Table 2.1, the model
utilizes values from the visible, near-infrared, and short-wave IR channels,
which are available as reflectances. These values play a key role in captur-
ing the characteristics of both the surface and the atmosphere during daylight
hours.
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Brightness Temperature for IR Channels (7-14): Brightness temperature from
infrared channels is used for features, allowing the model to account for ther-
mal variations. These are essential for understanding weather patterns and are
applicable for both day and night.

• Spatial Features:

Spatial Combination using a Sliding Window: To incorporate spatial context,
a sliding window approach was implemented. A window size of 5x5 pixels
was used to scan the data grid. From each window, two key statistics were
computed:

(1) Mean Value: The average of all the pixel values within the window.

(2) Standard Deviation: A measure of the dispersion of the pixel values within
the window.

These spatial features enable the model to understand local variations, enrich-
ing the feature space.

• Temporal Features:

For each pixel location, the difference between its value and the value at the
same location in the previous time step was calculated. This feature captures
temporal changes, adding a dynamic element to the model. Note that the first-
time step and any time step following a file gap are discarded to ensure con-
sistency in this calculation.

• Channel Differences:

Differences between all possible combinations of the IR channels were calcu-
lated. These features can capture interactions between different thermal prop-
erties, adding another layer of complexity to the model.

• Ancillary Data:

Digital Elevation Model. The DEM provides a static feature that represents the
elevation of each pixel location. It’s a crucial variable for understanding how
topography affects weather patterns and other phenomena.

Features Type Day Night
Spectral Channels 14 8
Spatial Features 28 16

Temporal Features 14 8
Channel Differences 28 28

Ancillary Data 1 1
TOT 85 61

TABLE 2.3: Feature Count: Day vs. Night

Each feature was rigorously evaluated for its predictive utility. First, histograms
and average temporal trends were analyzed to assess the distribution and behaviour
of individual features over time. Second, to investigate the interdependence among
features, a correlation matrix was computed. This allowed us to identify highly
correlated features that might be redundant and could dilute the predictive power
of the model. After the preliminary assessment, the RF model yielded insights via
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its feature importance ranking, emphasizing the most pivotal features for precise
estimates. Feature selection was then executed using this ranking. In the subsequent
refinements of the RF model, only the top-ranked features were retained to enhance
the model’s efficiency, speed, and accuracy.

Details on the feature quality checks, the correlation matrix, and the feature im-
portance rankings and selection are elaborated upon in Chapter 3.

2.3.3 Machine Learning Models Setup

ML stands at the convergence of statistics, artificial intelligence, and computer sci-
ence, offering powerful tools for extracting meaningful insights from raw data. Within
the domain of QPE, ML techniques have the potential to revolutionize our under-
standing and estimation capabilities. In this research, we deploy a combination of
ML methods, specifically Random Forest Classifier (RFC) and Random Forest Re-
gressor (RFR), to enhance the quality of precipitation forecasts.

We posit that these advanced computational techniques are well-suited to handle
the inherent complexities of remote sensing data. This makes them a compelling
choice for rigorously testing and improving the reliability of various precipitation
measurement indices. The adaptability and robustness of these methods make them
particularly relevant for handling the diverse challenges presented by QPE.

For a comprehensive understanding of machine learning algorithms and their
implementation in Python through the Scikit-learn package, readers are referred to
the referenced textbook [50]

Random Forest

In the scope of this work, we leverage the RF algorithm as our primary supervised
ML model. RF is an ensemble-based algorithm built on decision trees (DT) [7, 6].
These trees are hierarchical models that recursively partition the feature space until
each region—termed a leaf—contains predominantly one target class.

In the development of our model, a conscious effort was made to counteract
overfitting, which is a common issue with individual DTs. By integrating an ensem-
ble of DTs, we fortified our model’s robustness. The ensemble approach of the RF
offers a substantial advantage: it averages the predictions across multiple DTs, lead-
ing to smoother decision boundaries and enhanced generalizability, as illustrated in
Figure 2.13.

Two pivotal elements underpin the effectiveness of the RF: bootstrapping and
bagging. Bootstrapping involves the random selection of data subsets for each DT,
ensuring diverse training sets. Bagging extends this concept to feature selection,
where not only are data instances randomly chosen but so are the features for every
DT. This dual randomness ensures that individual trees are distinct, contributing to
the model’s overall performance and resilience.

In the case of RFC, the Gini Impurity index serves as the default splitting crite-
rion. The Gini Impurity measures the homogeneity within a dataset and is used to
quantify how often a randomly chosen element from the set would be mislabeled if it
was randomly labelled according to the label distribution in the set. Mathematically,
the Gini Impurity G for a node containing N classes is calculated as follows:

G = 1 −
N

∑
i=1

p2
i (2.2)
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Here, pi is the probability of choosing an element belonging to class i within the
node. A Gini Impurity value of 0 indicates perfect purity (all elements are of the
same class), while higher values indicate increasing impurity. When constructing
the DT, the algorithm aims to partition the data in a way that minimizes the Gini
Impurity in the child nodes.

For RFR, the Mean Square Error (MSE) serves as the default splitting criterion.
MSE is a measure of the average of the squares of the errors between the observed
and predicted values. It is defined mathematically as:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2.3)

In this equation, n is the number of observations, yi is the actual value, and ŷi is
the predicted value for the ith observation. The goal is to minimize the MSE, which
would indicate that the model’s estimates closely match the actual data points. In
the context of RFR, each split aims to create child nodes with lower MSE values
compared to the parent node, thus refining the model’s predictive power.

In RF, feature importance (FI) is commonly evaluated using the Gini Impurity
Index or MSE method. This method gauges the utility of a feature by measuring
how frequently a feature is utilized to split the data and how effectively these splits
improve the model’s purity. Specifically, for every DT in the forest, each split’s con-
tribution to model purity is noted based on the feature responsible for the split. The
improvement is determined by assessing the difference in impurity (Gini impurity
for classifiers or variance for regressors) before and after the split, with this differ-
ence being weighted by the number of samples the split affects. By aggregating
these weighted improvements across all splits and all DTs where a particular feature
is utilized, an average importance value for that feature is derived, providing an in-
dication of its predictive power within the ensemble. It’s important to note that a
low FI score doesn’t necessarily imply the feature is uninformative; it may indicate
that another feature encapsulates similar information.

FIGURE 2.13: Decision boundaries found by averaging the predic-
tions of five randomized DTs. Image taken from [50].

The parameters for the RF algorithm are adjustable to fine-tune the model’s per-
formance. We will adhere to the naming conventions established by scikit-learn’s
built-in functions for clarity and consistency.
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• N_estimators

This parameter specifies the number of trees in the RF ensemble. A higher
number of trees generally leads to a more robust model but at the cost of longer
training times.

• Min_samples_leaf

This parameter specifies the minimum number of samples required for a leaf
node. Smaller leaf sizes allow the model to capture more fine-grained patterns,
but this could lead to overfitting.

• Min_samples_split

This parameter sets the minimum number of samples required to split an inter-
nal node. Higher values for ‘min_samples_split‘ make the decision tree more
constrained, as it will then have fewer but purer nodes.

• Max_depth

This parameter controls the maximum depth of each DT. If set to "None", the
nodes are expanded until they contain fewer than ‘min_samples_split‘ samples
or until they are pure, meaning they contain samples from only one class.

• Max_features

This parameter defines the number of features to consider when looking for the
best split. For classification tasks, the default is the square root of the number
of features, while for regression tasks, all features are considered by default.

• Max_samples

This parameter sets the number of samples to be used for training each base
estimator. If set to "None" all samples are used.

• Criterion

This parameter specifies the function used to measure the quality of a split in
the decision tree. For classification tasks, the Gini impurity is used by default,
while for regression tasks, the MSE is the default criterion.

Parameter Classifier Regressor
n_estimators 100 100
Max_depth None None
Min_samples_leaf 1 1
Min_samples_split 2 2
Max_features

√
n_ f eatures n_features

Max_samples None None
Criterion Gini MSE

TABLE 2.4: Default RF parameters from scikit-learn for our Classifiers
and Regressors.

The initial settings for the RF parameters deployed in our model’s first iteration
are outlined in Table 2.4. During preprocessing, which encompassed FI ranking and
feature selection, we adhered to the default RF model parameters. Our decision was
bolstered by the observation that FI ranking remained consistent even when key
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parameters were adjusted. In the final run, we fine-tuned a few parameters. We
set ‘min_samples_leaf‘ to 3 to mitigate overfitting, and adjusted both ‘max_features‘
and ‘max_samples‘ to 0.5 to capitalize on the bagging and bootstrap traits of RF.

For feature selection, we employed the FI ranking derived from the default RF
parameters. To expedite computation, we trained using a subset of 105 randomly
selected samples, except in the case of distinguishing heavy from extreme rainfall
due to the scarcity of extreme values (see Table 2.5). Starting with the highest FI
features, we incrementally added one feature per cycle, monitoring score variations
on the test set. An optimal number of features for each RF model was then chosen
based on a visual review of all metrics (refer to Section 2.3.4).

In summary, our RF implementation proves to be a robust and scalable choice
for tackling the complexities inherent in QPE, offering an optimal balance between
model complexity, speed and predictive power.

Stacked Models Algorithm

In the data preparation stage of this work, there are two primary focus areas: fil-
tering the data and constructing the feature matrix. Filtering begins by selectively
removing dry data points, which not only lightens the computational load but also
helps to balance the dataset. Data points falling outside of a predefined radar mask
are also excluded to ensure the geographical relevance of the study. To synchronize
the temporal aspect, only time steps that are available in both satellite and radar
datasets are considered for analysis. In addition, a NaN mask is generated by iden-
tifying the intersection of missing or undefined values in both radar and satellite
data sources.

Turning to the feature matrix, the initial data dimensions are in the form ‘(num-
ber of features, number of times, number of latitudes, number of longitudes)‘. This
multidimensional data is reshaped into a 2D matrix of dimensions ‘(number of fea-
tures, number of samples)‘ to fit conventional ML frameworks. Following the re-
shaping, the feature matrix is standardized by removing the mean and scaling the
data to have a unit variance. This standardization is particularly important for algo-
rithms that are sensitive to feature scaling, ensuring that no individual feature has
an outsized impact on the ML model’s learning process. These preprocessing mea-
sures lay the groundwork for the RF model, ensuring that it receives well-balanced
and high-quality data for robust QPE.

Rain Classes (mm/h) Training Test
Day Night Day Night

Dry [0, 0.1) 2332675 3348270 424284 617403
Wet [0.1, 150) 2423595 3725638 213863 359649
Light [0.1, 1) 1153884 1843756 96087 169813
Moderate [1, 5) 882732 1308203 79344 131786
Heavy [5, 30) 376463 555607 35240 54120
Extreme [30, 150) 10516 18072 3192 3930

TABLE 2.5: Rain Class Distribution for Train and Test Sets. Square
brackets include the boundary value, while round brackets exclude

it.
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FIGURE 2.14: Flowchart Illustrating the Multi-Layered Model Algo-
rithm: From Feature Matrix Construction to Predicting Rain Rates for

Specific Rain Classes Using Regression Techniques.

Table 2.5 presents the sample distribution across various rain classes for both
the training and test datasets during daytime and nighttime. These samples are
derived from grid cells that pass through radar mask filtering and other prepro-
cessing steps, and they are multiplied by the number of available time steps. The
table differentiates between ’dry’ and ’wet’ classes based on a 0.1 mm/h threshold.
Subsequent rows focus solely on ’wet’ classes, which are further categorized into
’Light’ (0.1-1 mm/h), ’Moderate’ (1-5 mm/h), ’Heavy’ (5-30 mm/h), and ’Extreme’
(30-150 mm/h). For the Random Forest Classifier, binary classifications are made be-
tween the following class pairs: ’dry vs wet’, ’light vs (moderate+heavy+extreme)’,
’moderate vs (heavy+extreme)’, and ’heavy vs extreme’. Our rain class delineations
were inspired by literature which typically categorizes rainfall as light, moderate,
or heavy [29, 49, 70]. However, we introduced an additional ’extreme’ class to ac-
count for particularly severe rainfall events that can have significant impacts. While
these classes are inherently imbalanced, reflecting the natural distribution of rainfall
intensities, we refrained from performing class balancing. We removed some dry
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pixels to ease computational demands but retained the natural skewness in rain rate
distribution, aiming for a model attuned to real-world rainfall patterns.

We provide a detailed explanation of our stacked models algorithm implemen-
tation below. Once the Feature Matrix is prepared, the initial classification step
comes into play, partitioning the data into two main categories: dry conditions and
wet conditions. The data corresponding to dry are set to zero. Within the wet data
subset, a subsequent classification occurs, distinguishing the data into "light rain"
and the remaining instances.

Subsequently, the dataset labelled as "light rain" is employed to fine-tune the
Feature Matrix, rendering it suitable for the subsequent regression analysis aimed at
predicting light rain rates. Simultaneously, the rainfall instances categorized as ex-
ceeding the threshold for "light rain" become pivotal in filtering the Feature Matrix.
These filtered instances then undergo another classification phase, discerning them
into "moderate rain" and the remaining cases.

The outcomes attributed to the "moderate rain" classification are harnessed to
facilitate the regression analysis tailored to predicting moderate precipitation rates.
Consequently, the remaining data instances - those surpassing the "moderate rain"
threshold will extract the corresponding samples from the Feature Matrix. This ex-
traction yields the separation of data in "heavy rain" and "extreme rain". Then, ded-
icated regression analyses are undertaken for both the "heavy rain" and "extreme
rain" categories.

Each step in Figure 2.14 represents an RF model, a classifier (diamond shape) and
a regressor (round shape), respectively. They were previously trained independently
using separate datasets.

2.3.4 Performance Assessment

A variety of statistical metrics were utilized following the in-depth analysis per-
formed in [59]. To assess the accuracy of the RF precipitation product after classi-
fications, we employed a suite of five categorical indices. Moreover, we used six
continuous scores to evaluate the quality of the estimated rainfall fields at the loca-
tions of the rain gauges when regressions were employed.

Categorical Metrics

Categorical metrics are frequently employed to gauge the efficacy of a model or tech-
nique in identifying precipitation events. The dichotomy between rainy and non-
rainy conditions or two rain classes was established by setting a threshold on both
the observed and predicted rainfall data. Using this threshold, a 2x2 contingency ta-
ble was constructed by comparing instances where the measured data and estimates
either exceeded or fell short of the threshold. In Table 2.6 True positive (TP) or ’hits’
and True Negative (TN) or ’correct rejections’ occupy the principal diagonal, while
False Negative (FN) or ’misses’ and False Positive (FP) or ’false alarms’ are situated
elsewhere in the matrix. In our classifications, the negative class selections are: dry
(for dry-wet), light (for light vs. moderate-heavy-extreme), moderate (for moderate
vs. heavy-extreme), and heavy (for heavy vs. extreme).

In this study, we evaluated precipitation products using a suite of indices. These
encompass the Probability of Detection (POD), which measures the proportion of
true positives to all actual positive events; False Alarm Ratio (FAR), the fraction of
false positives to predicted positives; Multiplicative Bias (BIAS), the ratio of pre-
dicted positives to actual positives; Critical Success Index (CSI), akin to POD but
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with true positives normalized by all samples excluding true negatives; and Equi-
table Threat Score (ETS), a refined CSI adjusted for expected random hits (HR) that
is defined as HR = [(TP+FN)x(TP+FP)]/[TP+FN+FP+TN]. Each of these metrics is
calculated from different components of the contingency table. Table 2.7 offers a de-
tailed guide to these indices, outlining their definitions, potential ranges, and ideal
values [53].

Actual Class
Positive Negative

Predicted Class
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

TABLE 2.6: Confusion Matrix

Name Equation Range of Values Optimum
Probability Of Detection POD = TP/(TP+FN) [0,1] (1)

False Alarm Ratio FAR = FP/(TP+FP) [0,1] (0)
Multiplicative Bias BIAS = (TP+FP)/(TP+FN) [0,∞] (1)

Critical Success Index CSI = TP/(TP+FN+FP) [0,1] (1)
Equitable Threat Score ETS = (TP-HR)/(TP+FN+FP-HR) [− 1

3 ,1] (1)

TABLE 2.7: List of Categorical metrics together with their definition,
range and ideal values.

Continuous Metrics

We also employed a suite of continuous indices to assess the precision of rainfall
products, directly comparing predicted values to their corresponding ground truths.
The comprehensive list is available in Table 2.8. Among these, the Correlation Coef-
ficient (CC) gauges the linear relationship between predicted and actual values; the
Coefficient of Variation (CV) measures the relative variability; Mean Error (ME) cap-
tures the average deviation of predictions from actuals; and Mean Absolute Error
(MAE) represents the average magnitude of these deviations, irrespective of direc-
tion. These metrics are foundational for evaluating model performance, as discussed
by Nurmi (2003) [53]. In addition to these, we also incorporated two less conven-
tional metrics: the Modified Kling-Gupta Efficiency (mKGE) and P50.

The Modified Kling-Gupta Efficiency (mKGE) is an adaptation of the original
KGE [14]. It calculates goodness-of-fit based on three dimensions: correlation, aver-
age ratio, and standard deviation ratio. The mKGE score is computed as one minus
the Euclidean distance from an ideal point in this three-dimensional space, with co-
ordinates (1, 1, 1) signifying perfect performance [27]. Notably, this modified version
normalizes the standard deviations relative to global averages, enhancing the met-
ric’s interpretability by making its components orthogonal.

The P50 index offers a practical measure of a product’s overall accuracy, calculat-
ing the likelihood that an estimated value will deviate from the actual measurement
by no more than 50%. This metric accommodates the inherent variability in high-
resolution precipitation products, offering a more lenient yet realistic evaluation
compared to traditional metrics. By allowing for a reasonable range of deviation,
P50 provides a more balanced assessment of a product’s efficacy [59].
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Name Equation
Range of

Values
Optimum

Correlation
Coefficient

CC = σo,e/σoσe [-1,1] (1)

Coefficient
of Variation

CV =
√

∑(ei−oi)2

N /µo [0,∞] (0)

Normalized mean
error, or bias

ME = ∑i(ei−oi)
N /µo [-∞, ∞] (0)

Normalized mean
absolute error

MAE = ∑i ||ei−oi ||
N /µo [0,∞] (0)

Modified Kling-Gupta
efficiency

mKGE = 1 -
√
(CC − 1)2 + (β − 1)2 + (γ − 1)2 [-∞, 1] (1)

Probability to have ei
inside ±50% of oi

P50 = n[ei | (0.5 x oi)≤ ei ≤ (1.5 x oi)]/N [0,1] (1)

TABLE 2.8: List of Continuous metrics together with their definition,
range of values and ideal values. e: estimate; o: observed; σ: standard
deviation: µ: mean; β = µe/µo: ratio of the averages; γ = σe/µe

σo/µo
is

the ratio of the normalized standard deviation; N: total number of
samples; n[x] is the number of the occurrences of x.
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Chapter 3

Results & Discussion

3.1 Preliminary Analysis

This chapter is devoted to presenting the principal findings of the thesis, beginning
with a preliminary analysis that serves as both a preprocessing step and a precursor
to the application of the RF model. This initial analysis offers valuable insights into
the data quality and sets the stage for subsequent discussions of the results. Specif-
ically, the quality of the datasets was evaluated through visual inspection of feature
distributions and temporal trends for both the predictor variables and target rain
products. A correlation matrix is also presented to explore the interrelationships be-
tween features, thereby shedding light on their significance within the feature space,
later revealed by the RF model. The Section concludes with an examination of the
relationship between precipitation levels and Vietnam’s topography.

3.1.1 Data Quality Check

VIS Channels

To commence our analysis, we initiate a quality control procedure for the features
under study, leveraging both their distribution and temporal trends. This quality
control encompasses the entirety of the data collected during October 2020, a period
that includes both training and test datasets. The aim is to ensure the integrity and
reliability of the features prior to employing them in subsequent analyses.

In Figure 3.1, we conduct a quality assessment of features associated with VIS
channels. Subfigure A1 illustrates the distribution of the VIS channels themselves,
ranging from C01 to C06. Notably, the first three channels—corresponding to wave-
lengths of 0.47, 0.65, and 0.825 micrometers—display a broader distribution extend-
ing into higher reflectance values. This suggests that these wavelengths are more
effectively reflected by either the Earth’s surface or its atmosphere. In contrast, the
remaining VIS channels (C04, C05, C06) exhibit distributions that are more concen-
trated around lower reflectance values.

Several factors may contribute to these disparities. Shorter wavelengths like 0.47,
0.65, and 0.825 µm interact more variably with terrestrial features, such as vegetation
and water bodies, leading to a broader distribution. Sensor sensitivity and variations
in solar irradiance across these wavelengths could also influence these distributions.
Furthermore, the impact of clouds and atmospheric particles varies across the spec-
trum, potentially skewing reflectance values.
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A1 B1

A2 B2

A3 B3

A4 B4

FIGURE 3.1: Data Quality Assessment for Features Related to Visible
Channels: This figure presents four key metrics—channel values (1),
mean of a 5x5 sliding window (2), standard deviation of a 5x5 sliding
window (3), and time difference between consecutive time steps (4).
The first column (A) depicts the probability density function on a log-
arithmic scale, while the second column (B) showcases the temporal
trend of these metrics, averaged over the spatial domain for the entire

time period considered (both training and test sets).
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In Subplot B1, the temporal trend of the features is visualized, with each hourly
time step representing the spatial mean across the Vietnam domain. A similar pat-
tern to that in Subplot A1 emerges here as well; notably, channels C01, C02, and
C03 exhibit higher reflectance values in comparison to the remaining channels. In-
triguingly, the data reveal a noticeable decline in reflectance levels during the latter
third of the month. This trend appears to correlate with a concurrent reduction in
radar-detected rain rates, as will be further elucidated in Figure 3.4 (right panel).
This synchronous decline in both reflectance and rain rates suggests a potential re-
duction in cloud cover during this period.

In Figure 3.1A2-B2, the mean values of the VIS channels are computed using a
5x5 sliding window. The resulting distributions bear a strong resemblance to those
in Subplot A1 but exhibit a more refined, smoother profile. The use of this averaging
technique acts as an effective spatial filter, dampening abrupt fluctuations while ac-
centuating the primary characteristics of the data. While the same filtering principle
applies to the temporal trends depicted in Subplot B2, its impact is less pronounced
due to the inherent averaging already present in these trend plots.

In the third row of Figure 3.1, the standard deviation calculated within a 5x5
sliding window is presented. Subplot A3 reveals the distribution of standard de-
viations for each channel. Notably, the first three channels exhibit higher levels of
standard deviation compared to the remaining channels, indicating greater variabil-
ity within their respective windows. Subplot B3 reinforces the observations made in
previous figures. Here, periods of lower reflectance correspond to lower standard
deviations, suggesting that intervals with reduced cloud cover or precipitation also
exhibit decreased spatial variability.

In Figure 3.1, Subplots A4 and B4 provide insights into the temporal differ-
ences between consecutive time steps for the VIS channels. The distributions ex-
hibit a symmetrical shape centred around 0 %, which aligns with expectations: the
reflectance may either increase or decrease over time, contingent on the evolution
of cloud systems. Notably, channels C01, C02, and C03 display a broader distribu-
tion compared to the other channels, which are largely confined within the range of
approximately -25 to 25 %. This observation is consistent with the distribution of
channel values discussed earlier and is further corroborated by the temporal trends
evident in Subplot B4.

The quality assessment of VIS channels reveals distinct differences in reflectance
properties and variability across various wavelengths. Channels with shorter wave-
lengths (C01, C02, and C03) not only exhibit higher reflectance values but also dis-
play broader distributions and higher standard deviations, indicating greater vari-
ability influenced by factors like terrain and cloud cover. These channels also align
with a noticeable temporal decline in reflectance, correlating with reduced rain rates,
hinting at less cloud cover later in the month. The use of a 5x5 sliding window for av-
eraging proves effective in refining the spatial profiles without significantly altering
temporal trends. Overall, the findings underscore the need for nuanced interpreta-
tion of VIS channels, particularly when dealing with temporal and spatial variabil-
ity, and suggest that channels with shorter wavelengths may offer more dynamic
insights into environmental conditions.
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IR Channels

In Figure 3.2, we examine the characteristics of the IR channels. Beginning with the
basic attributes—channel values—Subplot A1 reveals the distribution of Tb for each
channel. Notably, Channels 7 and 8, corresponding to 3.75 µm high and low reso-
lution, respectively, exhibit minor peaks at low Tb around 200 K. As these channels
operate at shorter wavelengths on the fringe of the IR spectrum, they are particu-
larly susceptible to variations during twilight periods. This unique feature in the
distribution is absent in the other channels and is likely a consequence of IR contam-
ination due to reflected solar radiation during day/night transitions. While satellite
sensors generally implement techniques to reduce such contamination, it’s worth
mentioning that we did not employ additional filtering in this study. Moreover,
Channels 7 and 8 reach the highest Tb, going up to 320 K. Channels 11, 12, and 13
exhibit a similar range, extending up to 300 K, but with distributions that differ in
width and shape. In contrast, Channels 9, 10, and 14 are more narrowly confined
and shifted towards lower Tb. These observations are corroborated by Subplot B1,
which delineates the temporal average trends. It becomes evident that Channels 7
and 8 typically register higher Tb, while Channels 9 and 10 consistently record lower
values. Intriguingly, the period corresponding to diminished cloud activity during
the third decade of the month—which coincides with decreased reflectance in the
visible channels—reveals elevated Tb in the IR channels. This is likely because IR
radiation is primarily emitted from the ground, which generally has a higher tem-
perature than the cloud tops. A subsequent drastic reduction in Tb correlates with
the onset of a typhoon featuring high convective clouds, reinforcing the complex
interplay between cloud dynamics and Tb observations.

In Figure 3.2, the IR-derived features exhibit similarities to those of the VIS chan-
nels. Specifically, Subplot A2, which represents the mean values computed us-
ing a 5x5 sliding window, mirrors the distribution shape of Subplot A1 but with a
smoother texture. Notably, the noisy peaks around 200 K are less pronounced in this
representation, although the overall configuration and placement of the distribu-
tions remain consistent. Subplot B2 largely reiterates the temporal trends observed
in Subplot B1.

Turning to the standard deviation, depicted in Subplots A3, the narrower dis-
tributions observed in Subplot A1 correspond to reduced standard deviations; for
instance, Channel 09 demonstrates this characteristic. The temporal trend in Sub-
plot B3 corroborates this observation, showing that periods of lower cloud cover
align with lower standard deviation values, as anticipated.

Finally, Subplots A4 and B4 focus on the temporal differences between consecu-
tive time steps for the IR channels. Interestingly, some distributions are not perfectly
symmetrical around 0 K but exhibit a slight skew towards negative values. This sug-
gests that the succeeding time step frequently exhibits a lower Tb than its predeces-
sor, possibly indicating vertical cloud development. The distributions for Channels
7 and 8 (C07 and C08) exhibit peculiar shapes, likely due to spurious values around
200 K associated with contamination. This anomaly is particularly evident in Sub-
plot B4, where Channel 7 displays a pronounced peak around October 25th, with
a spatial average nearing 15 K, substantially higher than its closest counterparts,
which do not exceed 5 K.
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A1 B1

A2 B2

A3 B3

A4 B4

FIGURE 3.2: Data Quality Assessment for Features Related to In-
frared Channels: This figure presents four key metrics—channel val-
ues (1), mean of a 5x5 sliding window (2), standard deviation of a
5x5 sliding window (3), and time difference between consecutive time
steps (4). The first column (A) depicts the probability density function
on a logarithmic scale, while the second column (B) showcases the
temporal trend of these metrics, averaged over the spatial domain for

the entire time period considered (both training and test sets).
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A

B

FIGURE 3.3: Data Quality Assessment for Infrared Channels differ-
ences. The upper plot (A) depicts the probability density function on
a logarithmic scale, while the lower plot (B) showcases the temporal
trend of these metrics, averaged over the spatial domain for the entire

time period considered (both training and test sets)

In Figure 3.3, the distributions and temporal trends of IR channel differences
are presented. These distributions vary significantly depending on the channel pair
in question. For instance, broader distributions, as seen in the C08-C09 pair, imply
disparate Tb values between the channels. In contrast, narrower distributions like
C12-C13 suggest closely aligned Tb measurements.

Furthermore, some distributions are centralized around 0 K, such as the C10-C14
pair, indicating that neither channel consistently registers higher or lower Tb values
than the other. Conversely, other channel pairs exhibit a more pronounced trend:
for example, the C07-C13 pair is predominantly positive, while the C09-C11 pair is
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mainly negative. These skewed distributions result from our choice to retain the
original values rather than use absolute differences, in order to preserve the distin-
guishable characteristics of each channel pair.

Much like the previously discussed temporal trends for other features, here too
we observe varying trends for each channel pair. Some pairs display more stable
values over time, while others exhibit oscillating behavior, influenced by both short-
term weather fluctuations and the diurnal cycle.

The analysis of IR channels presents intricate patterns of Tb, with Channels 7 and
8 standing out for their susceptibility to variations during twilight and for reaching
the highest Tb up to 320 K. This study highlights that IR channels are influenced
by a range of factors, including cloud activity, diurnal cycles, and possibly contam-
ination due to reflected solar radiation. Elevated Tb during periods of diminished
cloud activity corroborates that IR radiation is mainly emitted from the Earth’s sur-
face, which is generally warmer than cloud tops. The findings also show a com-
plex relationship between cloud dynamics, such as the onset of typhoons, and Tb
observations. Standard deviations and temporal trends further confirm these ob-
servations, revealing that reduced cloud cover is associated with lower standard
deviations. The study of IR channel differences offers additional nuance, showing
varying Tb measurements depending on the channel pair, which can be influenced
by short-term weather changes and diurnal cycles. These complexities in IR channel
characteristics underscore the importance of cautious interpretation and potential
filtering strategies for more accurate estimates.

Radar Rain Product

A B

FIGURE 3.4: A: Probability Density Function (PDF) of radar-derived
rain rates for October 2020, with outliers exceeding 150 mm/h re-
moved. B: Mean (orange) and Max (blue) Temporal trend of rain rates

as captured by radar during October 2020.

In an initial step, we conducted an analysis of the rain rate values for the designated
time frame, which is October 2020. Figure 3.4 presents two aspects of this data.
Firstly, it displays the Probability Density Function (PDF) of the rain rates, truncat-
ing values that exceed 150 mm/h. This outlier threshold was determined based on
the empirical observations from rain gauge data (refer to Section 2.3.1 for further
details). Secondly, the figure illustrates the temporal trend of rain rates throughout
the specified period. It is noteworthy that the rain rate distribution does not con-
form to any unconventional pattern; it exhibits a high concentration of lower values,
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which precipitously diminish as we move toward higher rain rates. Additionally, the
metrics of mean and maximum rain rates are fairly typical, except for a noticeable
reduction in precipitation between October 21 and 25.

3.1.2 Features Correlation Matrix

To complement the discussion on feature importance (that will be discussed in Sec-
tion 3.2.1), we also present the correlation matrix calculated from the samples used
in the training phase for each RF model. The correlation coefficients serve as indi-
cators of the relationships between features. High correlation (or anti-correlation)
between features could imply redundancy, meaning that one feature may not add
additional value to the RF model. By examining this matrix, we aim to better under-
stand the interdependencies among features and assess whether any of them can be
omitted without sacrificing model performance.

In subsequent sections, we will present plots exclusively from the wet/dry pixel
classification for both day and night scenarios. This decision stems from the ob-
servation that the correlation matrices for other classification and regression cases
exhibited similar patterns. To maintain brevity while adequately illustrating our
findings, we’ve chosen these representative examples. The consistency across ma-
trices is likely attributed to the correlation coefficients being influenced more by the
number of features shaping the samples rather than the specific case in question.

The upper plot of Figure 3.5 displays the correlation matrices for the daytime
models. As anticipated, we observe a significant correlation among features within
the same category, exemplified by the red squares along the diagonal—particularly
among the VIS channels for both the primary and derived features. However, there
are exceptions to this general trend. For example, within the VIS category, C05 shows
a mild anticorrelation with C04. When examining the derived features, discrepan-
cies are evident in the correlation levels among pairs of features like mean, standard
deviation, and time differences.

As previously discussed in Section 3.1.1, the correlation between channel values
and their corresponding mean within a 5x5 window closely resembles the correla-
tion among channel values or just the mean values themselves. This similarity in
correlation patterns suggests that including both channel values and their 5x5 win-
dow means may not contribute additional information for classification tasks. In
contrast, the correlation between channel values and standard deviations is less pro-
nounced, as is the case with time differences.

Interestingly, the VIS and IR channels generally show anticorrelation. This phe-
nomenon can be attributed to the likelihood that high reflectance levels may indicate
elevated cloud formation, resulting in lower Tb in the IR channels. An exception
here is C05, which shows a slight positive correlation with the IR channels. Addi-
tionally, the standard deviations of the IR and VIS channels are positively correlated,
suggesting that both types of spectra similarly capture changes in atmospheric con-
ditions.

Examining the IR channel differences reveals distinct patterns of correlation,
both within the channel differences themselves and with other features. To begin
with intra-channel correlations, pairs like C07-C011, C07-C012, and C07-C013 ex-
hibit strong correlations with C08-C011, C08-C012, and C08-C013 pairs. On the other
hand, certain pairs display negative correlation—specifically, C12-C14 and C12-C13
are negatively correlated with all pairs involving C09 and C10. Additionally, some
pairs demonstrate moderate levels of correlation. For example, C08-C09 has a mod-
erate correlation with C07-C11, C07-C12, and C07-C13.
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FIGURE 3.5: Correlation Matrices for daytime (upper) and nighttime
(lower) samples in the wet vs. dry classification training.
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Separately, the DEM features stand out for their low correlation with the rest of
the features. This is a promising observation, as the low correlation suggests that
DEM could serve as an important, independent variable in classification tasks.

The correlation matrix obtained with nighttime data is presented in the lower
plot of Figure 3.5. In this case, the matrix is altered because it lacks features related
to VIS channels.

Noticeably, high positive correlation exists among certain types of features —
specifically, channel values, time differences, means, and standard deviations are
closely interrelated, as indicated by intense red clusters in the correlation matrix.
The correlation between time differences and channel values (or their means) is only
modest. Conversely, standard deviation appears to be slightly anticorrelated with
other features, including channel values, time differences and means.

When examining the correlations among IR channel differences, the matrix struc-
ture becomes more intricate, displaying a variety of behaviours among the pairs
without any discernible overarching pattern. Notably, all differences involving C09
and C10 are highly correlated with each other and are highly anticorrelated with
the channel values and their means. In other instances, each feature exhibits unique
correlation characteristics relative to the others.

As for the DEM feature, it continues to show a low correlation with the rest of
the features, further highlighting its potential as an independent variable in classifi-
cation tasks.

In summary, the analysis of correlation matrices reveals a high degree of intra-
category correlation, particularly among VIS channels. This suggests limited ad-
ditional benefit in using both channel values and their corresponding 5x5 window
means, offering the potential for feature reduction. Standard deviations and time
differences show less correlation with other features, indicating their unique value
in the models. The DEM consistently exhibits a low correlation with other variables,
highlighting its potential as an independent variable. Overall, the matrices under-
score the importance of a diverse set of features to capture the complexity of weather
phenomena.

3.1.3 Elevation-Precipitation Interaction

In addition to utilizing spectral features derived from the VIS and IR channels of
the FY-4A satellite, we also included an ancillary feature: the DEM. Prior to incor-
porating DEM into the feature set, we conducted an initial analysis to investigate its
relationship with precipitation patterns. This was done to ascertain whether orog-
raphy plays a significant role in influencing rainfall in Vietnam. The results of this
study are presented in Figure 3.6.

Examining the boxplot in Figure 3.6, it becomes evident that as altitude increases,
there’s a subtle decline in precipitation levels. This trend is observable both in the
mean and maximum values of precipitation over the specified time period for both
training and testing data sets. The decline is illustrated through the distribution
of these values across different elevation categories: 0-200 meters (flat land), 200-600
meters (hills), 600-1000 meters (low mountains), and 1000+ meters (high mountains).

Upon scrutinizing the lower section of Figure 3.6, it becomes clear that data sam-
ples are less abundant for the higher elevation categories. This limited dataset for el-
evated regions poses challenges for generating reliable statistics in those cases. Fur-
thermore, a gradual decline in the wet ratio can be observed as one moves from flat
land areas (slightly above 0.2) to high mountain regions (around 0.15).
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FIGURE 3.6: Upper Plot: Box plot illustrating the distribution of
radar-derived rain rate across various elevation classes, with mean
values in blue and maximum values in orange. Each pair of distri-
butions was evaluated using a Wilcoxon-Mann-Whitney test. A nota-
tion of ’****’ indicates statistical significance with a p-value less than
or equal to 1.00× 10−4, whereas ’ns’ denotes non-significance. Lower
Plot: Depicts both the ratio of samples and the proportion of wet con-

ditions within each elevation class.
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As shown in the notations, there’s a statistically significant difference between
nearly all paired distributions in both the mean and maximum boxplots. This dif-
ference is substantiated by the results of the Wilcoxon-Mann-Whitney test, where
almost all of the assessed pairs display high statistical significance, registering a
p-value lower than 10−4. The only exceptions are the elevation pairs 200-600 and
600-1000, for which both mean and maximum distributions do not exhibit statistical
significance.

The trend of lower rainfall in mountainous areas, which may seem counterin-
tuitive, can be explained by the characteristics of typhoons that dominate the wet
seasons. These storms gather moisture and energy from the Pacific Ocean but ex-
pend much of it as rainfall upon making landfall on Vietnam’s coast. As a result, by
the time they reach the inland mountainous regions, their intensity is significantly
reduced, leading to less rainfall despite the orographic factors that might typically
enhance precipitation.

Given these findings, incorporating DEM as a feature in our model becomes
strategically important. The statistical evidence supports the notion that there is
a significant relationship between rainfall and elevation, making DEM a valuable
addition to our feature set.

3.2 Random Forests Outcomes

This section delves into the results of our RF models, applied to both daytime and
nighttime scenarios. We begin by emphasizing the most critical features, then pro-
ceed with feature selection based on FI ranking. Upon determining the optimal fea-
tures for each RF model, we undertake model training and testing. The model’s
efficacy is gauged through various metrics for classification and regression tasks. Fi-
nally, we validate our model’s rain estimates using Vietnam-specific pluviometers
and other rain datasets.

3.2.1 Features Importance Rankings

In this section, we examine the FI generated by RF models, utilizing default hyperpa-
rameters (see Table 2.4), across various classification and regression tasks. We focus
on the top half most influential features, and for easier comparison, these importance
scores are normalized against the highest-ranking feature. This implies that when
all features have high normalized scores, they are relatively equally important in the
RF model. On the other hand, if only the top features exhibit high scores while the
rest have low scores, it indicates that just a handful of features predominantly con-
tribute to the model’s training. Therefore, it’s crucial to consider both the ranking
and the relative scores of the features, rather than focusing solely on their absolute
values, which could be misleading when assessed in isolation.

It’s crucial to note that FI doesn’t equate to causality. While a high importance
score indicates a feature’s usefulness in accurate estimation, it doesn’t imply that the
feature causes a particular outcome in the target variable. However, understanding
these importances aids in model interpretation, and feature selection, and provides
valuable insights into the data and the issue being addressed.
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Classifications

Let’s begin with Figure 3.7, which displays the FI rankings for classification tasks.
Subplot 1.A focuses on the first half of all features for the ’wet vs dry’ classification
using daytime data. Notably, many top-ranking features are differences between IR
channels, such as C09-C12, C09-C11, and C10-C11. The features in focus are differ-
ences between the WV channels (Ch 9 and 10) and long-wave IR channels (Ch 11
and 12). Literature references these differences for retrieving cloud depths [42] and
for traditional rain estimates, such as the ’Kurino’ technique [30]. Notably, these
differences have also been leveraged in RF-based QPE studies to ascertain cloud top
height concerning the tropopause level [31, 46]. Interestingly, single-channel features
like the 5x5 window mean for C08 and channel values for C07 and C08, correspond-
ing to the spectral channel 3.75 µm, are also prominent. The first VIS-related feature,
the time difference of C02, ranks 13th, while the ancillary DEM feature is 29th. The
top 12 features have marked importance with scores above 0.4, but the relevance
wanes for the subsequent ones.

Moving on, we can contrast these findings with their nighttime equivalents, as
shown in Figure 3.7.1.B. Here, the most impactful features are the means of the 5x5
windows for channels C07 and C08, followed by their individual channel values.
These features hold a normalized score higher than 0.6. Subsequent features display
diminishing normalized scores below 0.5, tapering off to approximately 0.2 in the
first half of the ranking. Similar to the daytime scenario, prominent IR channel dif-
ferences like C10-C12 and C10-C13 make the list, as do time differences for C07 and
C08, reaffirming the significance of these channels. Notably, DEM holds a relatively
high rank, appearing in the 11th position. In comparison to the daytime scenario,
the significance of the differences between WV and IR channels diminishes, while
the 3.75 µm channel becomes more influential for the RF model. Although primar-
ily categorized as mid-wave IR, this channel also captures reflected solar radiations
during twilight periods, as evidenced in Section 3.1.1. It’s occasionally employed for
cloud phase differentiation during nighttime, especially when paired with other IR
channels [31]. Despite its limited conventional use in QPE, this channel is predomi-
nantly utilized for fire detection [23].

Subplot 2.A of Figure 3.7 reveals the feature importance rankings for the classi-
fication between light rainfall and higher rain rates for the daytime case. The top
five features in this case are all mean values from 5x5 windows of the following
channels: C01, C06, C02, C011, and C05. These are followed by the time difference
of C01, DEM, and the IR channel difference C09-C11. In contrast to the earlier sce-
nario, neither IR nor VIS channels distinctly dominate in this context. Both types
offer substantial contributions. In particular, the VIS/NIR channels 1 and 2 provide
significant input, as does the short-wave channel 6. Channel around 0.6 µm can pro-
vide information on the cloud water path [49]. Moreover, as reported in [43] visible
reflectances can help determine the cloud top glaciation. Additionally, the difference
between WV and IR channels that gives information on the cloud top height is still
noteworthy. In this instance, more than half of the features retain high importance
levels, well above a normalized score of 0.5. However, only the top five features
have importance scores exceeding 0.8, after which the scores gradually decline.

In the nighttime context depicted in Figure 3.7.2.B, the predominant feature is
the standard deviation obtained from a 5x5 window of channel C09. The mean from
the same 5x5 window of this channel also emerges as the third most significant fea-
ture. Given the absence of VIS information during the nighttime, IR channels associ-
ated with high- and middle-level water vapour become notably influential in the RF
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model. In this instance, DEM emerges as the second most important feature, playing
a critical role in the classification task. The list is further populated by other feature
derivatives such as standard deviations, means, and time differences across various
IR channels. Generally, the feature importance remains notably high, consistently
exceeding a normalized score of 0.6, with the top four features surpassing 0.8.

Figure 3.7.3.A presents the feature importance rankings for distinguishing mod-
erate rainfall from heavy and extreme categories during daytime. Notably, the top
features primarily originate from the mean values of various channels, with C06,
C05, C01, and C11 taking the first four spots. Out of the top 20 features, 13 are de-
rived from the mean of 5x5 windows. Also included within these top features are
standard deviations from 5x5 windows for channels C05, C04, C06, and C09. Ad-
ditional features include time differences for channels C01 and C02, as well as the
value for channel C06. Interestingly, most of these influential features come from
VIS channels. In this classification task, DEM ranks relatively low, appearing at the
29th position. Regarding feature scores, the first half of the listed features show high
normalized importance scores, all exceeding 0.6. While the top ten features display a
sharp drop in importance—ranging from close to 1 down to below 0.8—the remain-
ing features maintain a fairly stable score, hovering around 0.7.

Unlike the daytime scenario, the nighttime feature ranking (Figure 3.7.3.B) is
not solely dominated by mean-derived attributes. While the mean from channels
related to WV level, namely C09 and C10, occupy the first and third positions re-
spectively, the initial ranks are primarily filled by standard deviations, specifically
from channels 9, 10, 14, 8, 7, and 11. In addition to means and standard deviations,
time differences also make an appearance among the top 10 features, particularly for
channels C08 and C07. DEM is ranked 15th in this case. The overall normalized im-
portance scores remain high, consistently exceeding 0.7, and the significance levels
taper off gradually, without showing stark differences between the top-ranked and
subsequent features.

The final subplot, 4.A, in Figure 3.7 outlines the daytime feature importance
rankings for classifying between heavy and extreme rainfall. Predominantly, stan-
dard deviations of channels such as C05, C07, and C08 lead the rankings. The first
half of the list includes standard deviations from other VIS and IR channels as well.
Other notable features that perform well in this classification task include means
from channels like C08, C01, and C05, along with some time differences, such as
that of C08. DEM appears quite low in the rankings, securing the 35th position. In
terms of normalized importance scores, most features maintain a high score consis-
tently above 0.7. Starting from the top features, which hover around a 0.9 score,
there is a gradual decline in importance as we move down the list.

Figure 3.7.4.B presents the nighttime equivalent. Here, it’s evident that standard
deviations are pivotal in training the RF model; eight out of the first 10 features are
standard deviations of various channels such as C14, C07, and C11. These chan-
nels differ from those highlighted in the daytime scenario. Mean values from 5x5
windows also play a significant role, particularly for channels C08 and C07. In the
remaining top-ranked features, time differences and IR channel contrasts emerge.
Notably, in this instance, DEM does not make it into the top half of the feature rank-
ings. Similar to the daytime case, normalized scores generally remain high, tapering
off slightly to just above 0.7.
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1.A 1.B

2.A 2.B

3.A 3.B

4.A 4.B

FIGURE 3.7: Feature Importance Ranking for Classification Tasks: 1)
Wet vs. Dry, 2) Light vs. Moderate+Heavy+Extreme, 3) Moderate vs.
Heavy+Extreme, 4) Heavy vs. Extreme. Displayed for daytime (A)
and nighttime (B) training data, showing only the top half of features.
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From our comprehensive analysis of FI across daytime and nighttime classifica-
tion tasks, we can deduce several crucial observations. Primarily, the prominence
of features varies based on the specific classification objective, highlighting that dis-
tinct rainfall categories demand a specialized set of features for optimal distinction.
In essence, VIS channels are pivotal in categorizing varying intensities of rainfall
when accessible, though they aren’t as vital in detecting rain areas. For IR chan-
nels, the differences between WV-IR occasionally stood out, an anticipated outcome
given their correlation with cloud depth and consequently, cloud convectivity. Fur-
thermore, individual channels, particularly those associated with WV, along with
mid-wave IR channels, consistently proved to be of significance. The DEM rarely
emerges as significant, with the notable exception being in the detection of light
precipitation during nighttime. Features consistently hold importance across classi-
fications, but their significance varies. In ’light vs rest’ and ’moderate vs heavy and
extreme’, importance is more evenly spread, suggesting a diverse feature set for the
RF model. However, in ’wet vs dry’, the model leans more on a few top-ranking
features. The utility of means from 5x5 windows is evident in both daytime and
nighttime classifications, whereas standard deviations from 5x5 windows mainly
help discern heavy and extreme rain classes. Individual channel values often play a
secondary role, likely because they’re correlated with their corresponding means, as
indicated in the Correlation Matrix (Section 3.1.2). Hence, the models favour mean
values that capture information on a broader area, seeing individual channels as
redundant. Overall, these findings not only affirm the complexity of rainfall classifi-
cation tasks but also underline the necessity for a nuanced approach that considers
a range of features, varying both in nature and significance, for accurate and robust
modelling.

Regressions

Moving on to the regression model feature rankings within our RF framework, Fig-
ure 3.8.1.A presents the importance of various features for predicting light rain rates
during the daytime. The top two features are mean values derived from channels
C01 and C08, with DEM occupying the third spot. The remaining features represent
a blend of both VIS and IR channels, covering means, standard deviations, and time
differences. Notably, in the upper half of the rankings, pure channel values and IR
channel differences are relatively scarce. This suggests that spatiotemporal combi-
nations of channel values are predominantly crucial for this regression task. In terms
of feature importance scores, there’s a pronounced emphasis on the top few features;
the first three maintain scores above 0.9, after which there’s a gradual decline from
0.8 to approximately 0.4.

The nighttime scenario, as illustrated in Figure 3.8.1.B, offers a slightly different
landscape of feature importance. The most crucial feature in this case is the standard
deviation derived from a 5x5 window of channel C09. Additional standard devia-
tion features also occupy prominent positions in the ranking. Notably, DEM secures
a high rank, coming in at the second position. Other key features include the time
differences of channels C08 and C07, ranked 3rd and 8th respectively. IR channel
differences are somewhat more prevalent in the nighttime case, with the first one
(C12-C13) appearing at the 9th position. This difference corresponds to 10.7-12.0 µm
and it is sometimes used to gain information on cloud phase [31]. As for the impor-
tance scores, they notably peaked; the second feature scores above 0.9, but there is a
significant drop to below 0.8 at the third position, gradually tapering off to around
0.4.
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The task of regression for moderate rain is next in line for examination. Figure
3.8.2.A highlights the daytime scenario, where standard deviations of VIS channels
(C04, C05, and C06) jointly with DEM dominate the FI rankings. Subsequent to
these, other spatial combinations of channels, including both means and standard
deviations, contribute substantially. These contributions come from both VIS and
IR channels. While temporal differences and IR channel differences do make an
appearance in the upper half of the ranking, they are not found among the initial
top-ranking features. In terms of FI scores, there is a gradual decline, dropping to
below 0.6; however, there is no pronounced peak of highly important features at the
beginning of the list.

The nighttime situation is depicted in Figure 3.8.2.B. The top positions are pri-
marily occupied by features related to standard deviation, specifically from channels
9, 14, 07, 8, and 10. A mean feature from channel C10 also ranks highly, claiming the
3rd position. DEM is situated at the 7th spot on the list. Additionally, the rankings
include some time differences and IR channel differences (such as the C12-C13). No-
tably, no individual channel values are present in the upper half of the feature rank-
ing. Regarding normalized importance scores, the top feature attains a score of 1,
which then drops to below 0.8 for the second most important feature and contin-
ues to decline to below 0.4. In this scenario, it appears that a single feature plays a
significantly prominent role in the training process.

Figure 3.8.3.A presents the FI rankings for the regression task concerning heavy
rain rates during daytime. The top two features are the means derived from 5x5
windows of channels C09 and C05, followed by DEM. Subsequent high-ranking fea-
tures consist mainly of standard deviations and time differences across both VIS and
IR channels, along with additional mean values. Notably, IR channel differences and
individual channel values don’t appear until after the 28th position in the ranking.
In terms of normalized importance scores, there is a steady decline, dropping to be-
low 0.4 without any abrupt shifts. However, it’s worth noting that the score falls
below 0.8 after just the first five features.

In the nighttime scenario, Figure 3.8.3.B reveals a feature ranking that diverges
considerably from its daytime counterpart. The top four features are standard devi-
ations of channels C09, C08, C14, and C07, followed by an individual channel value
for C10, and then DEM. The remainder of the list is populated by spatiotemporal
features across various channels, as well as some differences in IR channels, like the
C12-C13 which is again the best-ranked among the IR channel differences. Notably,
there is a sharp drop in the normalized importance score from the first to the sec-
ond feature, with the latter hovering around 0.8. The scores then steadily decline,
tapering off to just below 0.5.

The final RF model under discussion focuses on the regression of extreme rain
classes. FI rankings for daytime samples are illustrated in Figure 3.8.4.A. The most
striking observation is that DEM emerges as the most critical feature. Following
DEM, we find the mean and standard deviation of a 5x5 window for channel C05.
After these top features, there is a noticeable decline in normalized importance scores,
dropping below 0.7. The subsequent rankings include a blend of spatiotemporal fea-
tures from both VIS and IR channels, as well as a handful of differences in IR chan-
nels (e.g. C07-C08). The importance scores for these features continue to gradually
diminish, ultimately nearing 0.3.
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1.A 1.B

2.A 2.B

3.A B

4.A 4.B

FIGURE 3.8: Feature Importance for Regression Tasks: 1) Light, 2)
Moderate, 3) Heavy, 4) Extreme. Displayed for daytime (A) and

nighttime (B) training data, showcasing the top half of features.
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In the corresponding nighttime ranking, presented in Figure 3.8.4.B, DEM re-
tains its position as the most critical feature. Closely following DEM is the mean
of a 5x5 window for channel C08, which holds a score just shy of 1. The next two
features—namely, the standard deviation of C11 and the mean of C10—have im-
portance scores ranging between 0.8 and 0.9. Subsequent features show a decline
in their importance scores, falling below 0.7 and gradually decreasing to nearly 0.3.
The list primarily consists of standard deviations initially, later diversifying to in-
clude a mixture of time differences, IR channel differences, and other spatiotemporal
features.

The analysis of FI rankings in the RF regression models for various classes of
rain—light, moderate, heavy, and extreme—reveals a complex interplay of influen-
tial variables. Consistently across all classes and time periods, the DEM stands out
as a critical factor, highlighting its importance in rain estimation tasks. For esti-
mates of extreme rainfall, the DEM emerges as the primary predictor, underscoring
the growing relevance of topographical elements in extreme weather phenomena.
Generally, IR channel differences variations hold less significance compared to rain
detection cases. Additionally, the RF models show a preference for spatial data over
straightforward channel values.

The disparity in FI scores highlights the model’s reliance: in certain scenarios, it
predominantly depends on a select few features (notably during nighttime), while
in others, the influence is more evenly spread, albeit less so for rainfall classification.
In essence, achieving a precise rain estimate model necessitates a varied feature set,
from DEM and channel spatial and temporal information. This underscores the im-
portance of amalgamating diverse data types for a deeper grasp of rainfall trends.

In the literature, various studies employing RF for rain/no-rain classification
sometimes present differing rankings of influential variables. For example, Min et
al. 2019 [46] identified the IR channel difference 11.2-12.3 µm as the most predictive
variable, followed by the IR difference 7.3-12.3 µm and individual values of IR chan-
nels 8.6 and 10.4 µm. These channels also outperformed other non-spectral features,
including meteorological variables and second-tier satellite retrievals. When Min et
al. conducted RF regressions, the prominence of these channels slightly diminished,
ceding ground to modelled weather variables. Yet, the top-ranking feature remained
the 7.3-12.3 µm difference.

Turini et al. 2019 [66] also highlighted the significance of the IR 10.8 µm in RF
classification, noting its utility in gauging cloud top temperatures and, consequently,
cloud heights. Other noteworthy channels included differences like 8.7-10.8 and
10.8-12.0, as well as combinations of water vapour with other IR channels. These
selections were associated with cloud water path data, correlating with deep con-
vective clouds that produce heavy rainfall. However, a paramount observation from
Turini et al. was the high impact of terrain-related features.

Zhang et al. 2021 discussed FI rankings but found satellite channels generally
less influential than features derived from weather modelling for both rain area de-
lineation and precipitation grade estimation. Interestingly, the Satellite Zenith Angle
emerged as a prominent feature. Among satellite channels, the IR difference 11.2-8.6
µm was highlighted as particularly significant.
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3.2.2 Feature Selection

Using the FI rankings from section 3.2.1, we derived the feature selection plots in
this section. From Figure 3.9, we observed the number of chosen features for each
classification task. While all categorical scores are provided for reference in Table
2.7, our primary metric for determining optimal feature count was the stringent ETS.
We aimed to avoid selecting too few features, especially when some metrics showed
high scores with minimal features. When scores stabilized, we selected the fewest
features to avoid overcomplication.

For the wet-dry classification, we chose 41 and 25 features based on the plateau
in the ETS growth. While most metrics exhibit similar trends, BIAS appears to im-
prove with fewer features. For the classification distinguishing light from higher
rain classes, we selected 15 and 19 features for day and night, respectively. ETS,
like most other metrics, reached a plateau. Notably, some metrics, such as POD and
BIAS for the nighttime scenario, declined with more features. For the classification
of moderate versus heavy and extreme rain, we chose 29 features for day and 30 for
night. The daytime selection was more straightforward, with ETS, CSI, POD, and
FAR reaching their optimal points. However, BIAS continued to rise; despite this,
we opted not to further increase the feature count to avoid added complexity. For
the nighttime scenario, only ETS and FAR plateaued, while other metrics improved
with more features. For the sake of simplicity, we capped the feature count early.
For the extreme versus heavy rainfall classification, the scarcity of extreme instances
made it more challenging. Our primary metric, ETS, was consistently zero, pre-
venting its use for decision-making. While BIAS began high with one feature and
continued to grow with the addition of more features, it never surpassed reasonable
limits. Consequently, we turned to FAR—which measures heavy rainfall misclassi-
fied as extreme, normalized to the predicted heavy counts. Based on the lowest FAR
values, we selected 22 features for daytime and 5 for nighttime scenarios.

For the regressions, feature selection results are depicted in Figure 3.10. Among
all metrics in this study (Table 2.8), mKGE stands out as our primary choice due to its
comprehensive and stringent nature. However, our selection wasn’t solely based on
this score. For instance, in the light rainfall regression, the optimal feature count is 30
for day and 20 for night. While mKGE indicates better results with fewer features,
other metrics like CC, CV, and MAE didn’t align. Thus, we opted for the feature
count where these metrics stabilized. For the moderate regression, features were
chosen at 16 and 29 for day and night scenarios, respectively. In the day setting of
the heavy regression, the mKGE peaked at its maximum, i.e., 17. This also aligned
with the highest CC and favourable values for CV and MAE. Even though other
metrics indicated better outcomes with fewer features, we opted against minimizing
feature count excessively. For the night scenario, 18 features were selected, striking
a balance between ME, CC, CV, and mKGE. While mKGE indicated a preference
for fewer features, it wasn’t consistent with other metrics, leading us to choose a
more median feature count. For the extreme regression, barring the scores for very
few features (up to 3), the metrics displayed a stable trend, particularly for p50, CV,
MAE, and ME. Given this, we primarily considered mKGE and CV for decision-
making. We chose 18 and 32 features for the day and night scenarios, respectively,
as these counts corresponded to points slightly above the average on their respective
curves.
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FIGURE 3.9: Feature selection is based on the FI rankings from section
3.2.1. Using this ranking, RF models were progressively trained by in-
crementally adding features, with performance measured on the test
set (See Table2.7). The optimal feature count is indicated by a vertical
black line. Columns A and B depict day and night scenarios, respec-
tively. Rows represent classification tasks: 1) wet vs. dry, 2) light vs.
the rest, 3) moderate vs. heavy+extreme, and 4) heavy vs. extreme.
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FIGURE 3.10: Feature selection is based on the FI rankings from sec-
tion 3.2.1. Using this ranking, RF models were progressively trained
by incrementally adding features, with performance measured on the
test set (See Table2.7). The optimal feature count is indicated by a ver-
tical black line. Columns A and B depict day and night scenarios, re-
spectively. Rows represent regression tasks on these rainfall classes:

1) light, 2) moderate, 3) heavy, and 4) extreme.
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3.2.3 Training and Test Results

The next section presents the model’s performance on training and test datasets. Us-
ing metrics from Section 2.3.4, we evaluate its classification and regression efficacy.
We also compare training and test metrics to check for overfitting.

Classifications

Based on the classification performance metrics presented in Table 3.1, we observe a
detailed comparison of scores for each task across both daytime and nighttime sce-
narios. The table also includes scores derived from the training dataset for context.
The evaluation metrics—POD, FAR, BIAS, CSI, and ETS—approach optimal values
as referenced in Table 2.7. While this suggests really good performance during the
training phase (except for the heavy vs extreme classification), it is important to
exercise caution in interpreting these results as evidence of generalization. Upon ex-
amining the scores obtained from the test dataset, which consists of unseen data, we
find that the model’s performance tends to degrade, sometimes significantly. These
disparities between training and test performance underscore the need for further
scrutiny, especially with regard to the model’s ability to generalize to new data.

Time Classification POD FAR BIAS CSI ETS
Train Test Train Test Train Test Train Test Train Test

Day
Wet vs

Dry
0.97 0.87 0.06 0.28 1.03 1.22 0.91 0.64 0.83 0.49

Day
Light vs

Moderate-Heavy-Extreme
0.95 0.68 0.05 0.37 1.00 1.06 0.90 0.49 0.80 0.11

Day
Moderate vs

Heavy-Extreme
0.83 0.33 0.01 0.53 0.84 0.70 0.82 0.24 0.76 0.09

Day
Heavy vs
Extreme

0.11 0.00 0.00 0.29 0.11 0.00 0.11 0.00 0.11 0.00

Night
Wet vs

Dry
0.95 0.83 0.08 0.33 1.03 1.23 0.88 0.59 0.77 0.40

Night
Light vs

Moderate-Heavy-Extreme
0.96 0.62 0.05 0.40 1.01 1.04 0.91 0.44 0.83 0.08

Night
Moderate vs

Heavy-Extreme
0.78 0.22 0.01 0.60 0.79 0.56 0.78 0.17 0.71 0.04

Night
Heavy vs
Extreme

0.00 0.00 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 3.1: Classification Performance Metrics for Day and Night:
The ’Train’ columns show scores from October 1-26, 2020, and the
’Test’ columns represent scores from October 27-31, 2020. Details of

categorical metrics can be found in Table 2.7.

For instance, in the case of wet vs. dry classification, a notable divergence exists
between the training and test metrics. The POD, which gauges the ability of the
model to correctly predict observed events, exhibits a drop to 0.87, which, while not
optimal, remains respectable. Similarly, FAR increased from 0.06 to 0.28. Turning
to BIAS, the value above 1, i.e. 1.22, hints at a tendency to under-predict the ’dry’
class, a conclusion further supported by the class distribution depicted in Figure
3.11.1.A. The CSI, calculated as the ratio of ’hits’ to all positive samples (both actual
and predicted), registers at 0.64. This value is adjusted in ETS to account for random
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chance, resulting in a reduced score of 0.49. In nighttime scenarios, we observe
a similar trend, albeit with slightly worse scores compared to daytime conditions.
Specifically, the POD drops to 0.83, the FAR rises to 0.33, BIAS further decreases to
1.23, CSI settles at 0.59, and ETS falls to 0.40. Figure 3.11.1.A presents the distribution
of samples for each class in ’dry vs. wet’ classification task, comparing the actual and
predicted distributions based on the daytime test dataset. The data indicates that
the model slightly underestimates the ’dry’ class and overestimates the ’wet’ class,
thereby tending to equalize the class distribution. Notably, the actual distribution
is skewed towards the ’dry’ class (with a ratio of approximately 0.6 to 0.4 for ’dry’
and ’wet,’ respectively), whereas the predicted distribution leans towards a more
balanced ratio. Similar behaviour is observed in the nighttime scenario, as shown in
Figure 3.11.1.B.

In the task of classifying light rain from higher-rate categories, the performance
metrics reveal notable shortcomings, particularly in daytime scenarios. For instance,
the POD accounts for merely 68% of true labels correctly predicted, reflecting a sig-
nificant area for improvement. Additionally, the FAR, which quantifies the propor-
tion of falsely predicted light rain events, escalates to 37%. On a somewhat posi-
tive note, the BIAS score is relatively commendable, hovering near 1, which sug-
gests that the distribution of the ’light’ rain class is well-estimated—a point further
corroborated by Figure 3.11.2.A. However, the CSI, representing the proportion of
’hits’ relative to all samples except false negatives (encompassing moderate, heavy,
and extreme categories), falls below 50%. Moreover, when adjusted for random
chance, the ETS experiences a drastic decline to 11%. Similar trends manifest in
nighttime scenarios, albeit with slightly inferior performance metrics. Specifically,
the POD drops to 62%, and the FAR rises to 40%. Similar to the daytime scenario,
the BIAS score is slightly above 1 (1.04), indicating an underestimation of light pre-
cipitation. Both the CSI and ETS scores further decline to 0.44 and 0.08, respectively.
In the daytime scenario, as illustrated in Figure 3.11.2.A, the actual distribution has
a marginally higher prevalence of ’moderate-heavy-extreme’ cases. However, the
RF model’s estimates appear to broaden this gap by underestimating the ’light’ cate-
gory and slightly overestimating the ’moderate-heavy-extreme’ category. This trend
is consistent with what is observed in the nighttime case, although with more similar
class distributions, as depicted in Figure 3.11.2.B.

In the task of differentiating moderate rain from heavy and extreme categories,
the model exhibits markedly worse performance metrics. For example, the POD
scores are quite bad, registering at 0.33 and 0.22 for daytime and nighttime scenarios,
respectively. The FAR also shows scores of 0.53 and 0.60 for daytime and nighttime.
Furthermore, the BIAS scores are quite far from the ideal value of 1 for both time
frames (0.70 for daytime and 0.56 for nighttime), indicating an unbalanced distribu-
tion between the true and predicted labels across classes. The CSI sets to a value of
0.24 for daytime and 0.17 for nighttime scenarios. However, it is important to note
that when adjusted for random hits, the ETS experiences an even more significant
drop, falling to 0.09 for daytime and 0.04 for nighttime. The class distribution for
the ’moderate vs. heavy+extreme’ classification task is depicted in Figure 3.11.3.A
for daytime scenarios. In this case, the true labels show a higher ratio for ’moder-
ate’ rain rates (approximately 0.7) compared to ’heavy+extreme’ rates (around 0.3).
The RF model’s estimates appear to exacerbate this gap: the predicted ratio for the
’moderate’ class increases to almost 0.8, while it decreases for the ’heavy+extreme’
class to approximately 0.2. A slightly worse behaviour is observed in the nighttime
case, as shown in Figure 3.11.3.B.
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FIGURE 3.11: Class Distribution for Daytime (A) and Nighttime (B)
Test Datasets: Blue bars show the percentage of actual labels in each
class, while orange bars reflect Random Forest estimates. Results are
presented for conditions: 1) Dry vs. Wet, 2) Light vs. Moderate-
Heavy-Extreme, 3) Moderate vs. Heavy-Extreme, and 4) Heavy vs.

Extreme.
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In the classification task aimed at heavy and extreme rainfall, the performance
metrics display unsatisfactory results. This can likely be attributed to the limited
data available for these specific rain rate categories. The FAR records a value of 0.29,
indicating a low tendency for the model to classify heavy rainfall pixels as extreme.
Strangely, for the nighttime scenario, the FAR displays a NaN value, which means
the predicted class for extreme rainfall is absent. Consequently, during nighttime,
the RF model fails to predict any extreme precipitation events. The rest of the scores
touch the lowest possible value of zero in the test dataset. This brings into focus the
model’s reliability concerns for heavy and extreme rainfall estimates, underscoring
the urgency to refine it, especially considering the critical importance of accurately
forecasting such extreme conditions. Figures 3.11.4.A and 3.11.4.B indicate a pro-
nounced imbalance between the two classes in both daytime and nighttime datasets.
Notably, the ratio of true labels for heavy rainfall stands close to 0.9, whereas for
extreme rainfall, it hovers around a mere 0.1. Such a significant disparity poses chal-
lenges in classification. Regrettably, the RF model amplifies this problem, correctly
classifying extreme labels to only a handful of pixels during the day and none dur-
ing nighttime. As a result, the model considerably underestimates extreme rainfall
events, a phenomenon that can be attributed to their sparse representation in the
dataset.

Our detailed assessment of the RF model across diverse rainfall classification
tasks reveals a spectrum of both strengths and weaknesses, offering insightful guid-
ance for subsequent improvements. While the training data yields encouraging
initial results, with performance metrics approaching ideal values, the model’s ef-
fectiveness reveals complexities when tested on unseen data, especially at different
times of the day. For tasks like ’wet vs. dry’, the results remain commendable. How-
ever, the performance gradually declines as the model classifies increasing rainfall
intensities, culminating in the least satisfactory outcomes when dealing with the
sparse class of extreme rainfall.

Regressions

For regression tasks, we detail the performance metrics for continuous variables in
Table 3.2. While the scores from the training dataset are predictably high, given
they originate from the calibration data, there’s a noticeable decline in the model’s
performance when evaluated on unseen data.

Time Regression CC CV ME MAE mKGE P50

Train Test Train Test Train Test Train Test Train Test Train Test
Day Light 0.90 0.09 0.35 0.63 0.00 0.08 0.29 0.53 0.50 -0.18 0.73 0.55
Day Moderate 0.90 0.15 0.28 0.46 0.00 0.01 0.23 0.39 0.47 -0.07 0.85 0.66
Day Heavy 0.89 0.04 0.30 0.58 0.01 0.04 0.22 0.45 0.48 -0.12 0.90 0.60
Day Extreme 0.85 0.07 0.20 0.52 0.01 -0.21 0.13 0.34 0.48 -0.24 0.99 0.83

Night Light 0.90 0.10 0.38 0.63 0.00 0.07 0.31 0.54 0.45 -0.20 0.72 0.54
Night Moderate 0.91 0.13 0.29 0.46 0.00 0.02 0.24 0.38 0.42 -0.13 0.83 0.67
Night Heavy 0.88 0.07 0.33 0.55 0.01 -0.04 0.25 0.41 0.42 -0.15 0.87 0.64
Night Extreme 0.86 0.16 0.20 0.44 0.01 -0.13 0.14 0.28 0.50 -0.19 1.00 0.92

TABLE 3.2: Regression Performance in Diurnal and Nocturnal Condi-
tions: The ’Train’ columns show scores from October 1-26, 2020, and
the ’Test’ columns from October 27-31, 2020. Continuous metrics are

detailed in Table 2.8.
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1.A 1.B

2.A 2.B

3.A 3.B

4.A 4.B

FIGURE 3.12: 2D Histogram of Predicted vs. Actual Values for Day-
time (A) and Nighttime (B) Test Datasets: Logarithmic scale aids clar-
ity, with color denoting bin frequency. The red diagonal line repre-
sents the ideal model. Rows show regression results for: 1) Light, 2)

Moderate, 3) Heavy, and 4) Extreme rain conditions.
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In the regression analysis for light rainfall, the CC is relatively low, registering
at 0.09 for daytime and 0.10 for nighttime scenarios. These figures suggest a lack of
strong correlation between actual and predicted labels. Conversely, the CV exhibits
values close to zero—specifically, 0.63 for both daytime and nighttime—indicating
relatively low data dispersion. The ME is also noteworthy, showing values near
the ideal zero mark at 0.08 and 0.07 for daytime and nighttime, respectively. This
suggests a slight overestimation, given the positive sign of the ME. However, the
MAE, which employs the absolute difference and therefore does not cancel out pos-
itive and negative deviations, reveals a somewhat higher score. This suggests that
the observed and estimated rain rates may not be as closely aligned as implied by
the ME, with MAE values standing at 0.53 for daytime and 0.54 for nighttime. The
mKGE presents negative values of -0.18 and -0.20, which are not so good. The im-
plications of these scores will be discussed further in Section 3.2.4. Lastly, the P50
metric, which is generally considered a more lenient measure, also yields mediocre
performance, with scores of 0.55 and 0.54 for daytime and nighttime scenarios, re-
spectively. One effective way to evaluate the performance of a regression model is
to juxtapose actual and predicted values on a scatter plot. Given the large number
of data points in our study, we employ a 2D histogram with logarithmic binning to
enhance the visual clarity of the plot. The daytime regression for light precipitation
is displayed in Figure 3.12.1.A. Here, it’s apparent that the predicted values are con-
fined to the range of 0.6-0.8 mm/h, while the actual values for light precipitation
vary widely from 0.1 to 1 mm/h. This suggests that the model tends to concentrate
the distribution of predicted rain rates around central values. Interestingly, a dis-
tinct vertical striping pattern is also evident, likely stemming from the fine-grained
distribution of low rain rates in the radar product (see Figure 2.12.B). A similar trend
is evident in the nighttime scenario, as illustrated in Figure 3.12.1.B.

The regression analysis for moderate rainfall displays modest improvements in
key metrics compared to its light rainfall counterpart. Specifically, the CC shows a
marginal increase, standing at 0.15 and 0.13 for daytime and nighttime scenarios.
Likewise, the CV is reduced to 0.46 for both time periods, suggesting a more corre-
lated and less dispersed relationship between the true and predicted labels. The ME
and the MAE also show enhancements, registering scores of 0.01 and 0.02 for ME and
0.39 and 0.38 for MAE, respectively. These improved scores indicate reduced nor-
malized differences between observed and predicted values in the moderate rainfall
scenario, while the positive sign of the ME suggests a slight overestimation. The P50
metric also exhibits a minor improvement, with scores of 0.66 for daytime and 0.67
for nighttime. The mKGE records values of -0.07 and -0.13. Figures 3.12.2.A and
3.12.2.B display the 2D histograms for the regression of moderate rain rates during
daytime and nighttime scenarios, respectively. Both figures exhibit similar patterns.
Similar to the case for light rain, the RF model tends to narrow the distribution to-
wards the central values, specifically between 2.5 and 4 mm/h, even though the
actual moderate rain rates span from 1 to 5 mm/h. Vertical striping patterns are also
observed in these graphs, albeit less prominently than in the light rain case. This re-
duced emphasis on striping could be attributed to the larger logarithmic bins, which
may not capture the fine structure of the distribution as effectively.

The regression results for heavy rainfall are less than impressive. Specifically, the
CC registers at 0.04 for daytime and 0.07 for nighttime, indicating a near absence of
correlation between predicted and actual values. The CV scores are 0.58 for daytime
and 0.55 for nighttime, suggesting a not-so-high degree of data dispersion. Then, we
observe 0.04 and -0.04 for ME, and 0.45 and 0.41 for MAE, respectively. The mKGE
records values of -0.12 and -0.15, while the P50 metrics are 0.60 for daytime and 0.64
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for nighttime. Although nighttime performance is somewhat better than daytime,
these metrics should be interpreted alongside the visual data presented in Figure
3.12.3.A-3.12.3.B for a more comprehensive understanding. Both figures are quite
similar in structure, allowing for a unified discussion. Like the previous cases, the
data points are mostly off the diagonal line, which represents the ideal location for
perfectly predicted values. The model primarily captures the central values of the
distribution, approximating rain rates only within the 10 to 25 mm/h range. Rates
within 5-10 mm/h and 25-30 mm/h are largely treated as noise, indicating that the
model fails to accurately represent these values.

The final regression task focuses on extreme rainfall. Notably, the CC for day-
time is 0.07, while it registers at 0.16 for nighttime. The CV scores are relatively
moderate, recording at 0.52 for daytime and 0.44 for nighttime. It is important to
highlight the ME values of -0.21 and -0.13, which indicate an underestimation of
rain rates for this category. Although the MAE shows the lowest values among the
tasks at 0.34 for daytime and 0.28 for nighttime, the mKGE presents scores of -0.24
and -0.19, which are not superior when compared to other regression tasks. The
P50 metrics, however, display promising performance, with scores of 0.83 for day-
time and 0.92 for nighttime. Generally, the model performs better during nighttime.
However, it’s essential to highlight that the dataset for extreme events is notably
limited. If the initial classification fails to detect extreme rainfall, even a reasonably
accurate regression becomes largely irrelevant. The comparison between the actual
and predicted labels for extreme rain is displayed in Figures 3.12.4.A and 3.12.4.B.
Both daytime and nighttime scenarios exhibit similar patterns, allowing for a joint
discussion. Once more, the RF model struggles to accurately represent values at the
extreme ends of the rain rate distribution. Predominantly, the predicted rain rates
are clustered within the 50-75 mm/h range. The earlier-observed striping patterns
are no longer discernible, likely because the log-bin size has increased to the point
where it obscures finer details in the distribution of rain rates.

In summary, while our RF model shows promise in predicting rainfall intensi-
ties, it faces challenges with unseen data and tends to bias estimates around median
values. It struggles to capture patterns like vertical striping in 2D histograms and
often misses extreme rainfall events due to limited data. For applications demand-
ing precision, refinements are essential, particularly in capturing extreme events and
detailed patterns.

3.2.4 Validation Results

The subsequent stage in evaluating the effectiveness of our RF models involves com-
paring their outputs with data from rain gauges and other available rainfall products
in Vietnam during the test period, from October 27 to 31, 2020. To start, we amal-
gamate the outcomes from multiple regression models to create a comprehensive
spectrum of rain rates, ranging from 0.1 mm/h to 150 mm/h, while accounting for
the continuous time period covering both day and night. Rain rates falling below
the 0.1 mm/h threshold are set to zero. This aggregated data forms the basis of our
rainfall product, which we have designated as FY-4A_RF. The evaluation presented
in this section follows the validation methodology outlined in the study by Roversi
et al. 2023, which is currently under review [59]. The figures included here have
been modified from that study to reflect the specific test period examined in this
work, as well as to incorporate the FY-4A_RF product, which is unique to this study.
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Spatial Distribution of Rain Gauges Data

To begin, let’s delve into a comprehensive analysis of the reference data, which in
this case is sourced from rain gauges. While Chapter 2 already covered the his-
togram of rain rate distribution in Figure 2.12, we further enrich this overview with
spatial statistics depicted in Figure 3.13. Consistent with Vietnam’s climatology, the
figure presents the spatial distribution of four key time-aggregated metrics, created
using the nearest neighbour algorithm for seamless spatial mapping. Over the 5-day
test period, the data reveals distinct regional trends: Central Vietnam experienced
the highest frequency of wet hours, while the northeast and northwest mountainous
areas were comparatively drier. There are also specific zones in the southern part of
the country that registered higher levels of precipitation. Moreover, the spatial dis-
tribution of maximum recorded rain rates and time-based standard deviations aligns
well with the patterns for average rain rates and frequency of wet hours. Specifically,
the highest values are concentrated in the central lowlands, which also coincide with
the typhoon’s landfall area. These regions additionally exhibit greater variability,
transitioning rapidly between dry conditions and extreme rainfall events.

FIGURE 3.13: Map displaying assorted statistics related to the AWS
reference dataset. (a) Count of wet hours in each grid cell. (b) Mean
rain rate (mm/h) during wet periods. (c) Peak rain rate (mm/h)
recorded during wet hours. (d) Variability in rain rate (mm/h)

throughout wet periods. Image adapted from [59].

Rain Products Snapshot

In our evaluation, let’s turn our attention to the spatial distribution of all the prod-
ucts involved in this validation stage. Figure 3.14 presents the rainfall rates for Octo-
ber 28, 2020, at 08:00 UTC. Notably, the figure reveals substantial variations in how
each data source captures the meteorological conditions. Specifically, this snapshot
captures the landfall of Typhoon Goni in Vietnam in late October 2020, as elaborated
in Section 2.1.2.

Using the rain gauge data in panel a as a reference, we observe the heaviest
rainfall in central Vietnam, featuring intense spikes just above latitude 15◦N. Radar
data in panel b exhibit similar trends but notably miss the peak values exceeding
40 mm/h. Geostationary satellites FY-4A and GK-2A (panels d and e, respectively)
display contrasting features. FY-4A underestimates the core rainfall intensity of the
cyclone, failing to capture the peak red zone, and also indicates regions with zero
rainfall. In contrast, GK-2A portrays the cyclone’s centre as intensely wet while
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estimating light rain over almost the entire observed area, resulting in a reduced
moderate rain zone compared to FY-4A.

The two versions of IMERG (panels f-g) exhibit closely related patterns, although
the Final run captures more intense rainfall near the cyclone’s centre. ERA5-Land
(panel h) is characterized by its smoothed transitions between different rainfall regimes,
rendering the areas affected by the typhoon more rounded compared to other prod-
ucts.

Finally, our focus shifts to panel c, showcasing the product developed in this
study, the FY-4A_RF. The cyclone’s shape is vividly represented, including a small
centralized area of intense rainfall. However, this product diverges notably from
FY-4A. It captures more heavy rainfall surrounding the cyclone’s centre and detects
lighter rain at a greater distance, showing a broader reach compared to even the
radar data.

FIGURE 3.14: Map displaying a spatial snapshot of all the available
products for the 28th of October 2020 at 08:00 UTC. (a) Rain gauges.
(b) Radars (c) FY-4A_RF (d) FY-4A (e) GK-2A (f) IMERG Early (g)

IMERG final (h) ERA5-Land. Image adapted from [59].

Probability Density Function

To initiate the comparative analysis with other rain products, we evaluated the prob-
ability density functions (PDFs) of all eight products’ estimations at AWS locations.
The PDFs were derived over a span of 5 days, encompassing all grid points with at
least one active AWS. We utilized a bin size of 2 mm/h, and limited the PDF to 100,
as subsequent rain rates lacked sufficient samples to construct statistically reliable
curves. The curves begin at approximately 1.2, as it represents the centroid of the
initial bin. The results are displayed in Figure 3.15.

The AWS data, indicated by a black line, maintains a consistent curve up to 30
mm/h. Minor inconsistencies at higher rainfall rates are likely due to noise, given
the smaller sample size. Radar data, marked by a green line, closely mirrors the
AWS measurements across a range of intensities and exhibits similar noise levels.
However, the radar data tend to slightly overestimate AWS measurements between
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1 and 20 mm/h, becoming too noisy to determine their relative positions at higher
rates.

FIGURE 3.15: The distributions of both observed and forecasted rain-
fall intensities are depicted as probability density functions (PDFs),
with the areas under the curves standardized to one. The distribution
related to our FY-4A_RF product is indicated by individual points
connected with a dashed line. The Rain Gauges distribution is repre-
sented by a bold black line, while other products are illustrated with
simple coloured lines. Both the x and y-axes are displayed on a loga-

rithmic scale. This image is adapted from [59].

The products from the geostationary satellites FY-4A and GK-2A, coloured in or-
ange and yellow respectively, exhibit a smooth trend at lower rates up to 10 mm/h,
beyond which the curve displays increased noise likely due to scarce data points.
Notably, FY-4A tends to underestimate rainfall rates up to approximately 2 mm/h
and then overestimate up to around 30 mm/h. In contrast, GK-2A exhibits the op-
posite behaviour, overestimating low rates and then underestimating higher ones.
GK-2A also extends its detection to higher rates, similar to AWS, whereas the FY-4A
PDF ceases around 50 mm/h.

The multi-platform IMERG products (Early run in light blue and Final run in
dark blue) align well with AWS measurements at low rates. However, they start to
diverge at 1.5 mm/h for the Early run and 3 mm/h for the Final run, consistently
underestimating higher rates. The Final run extends its estimates up to 50 mm/h,
whereas the Early run maxes out around 30 mm/h.

The model-based ERA5-Land product, depicted in red, initially parallels the
IMERG Early run up to 7 mm/h but then consistently underestimates rainfall com-
pared to AWS, capping at 30 mm/h.

Our product, FY-4A_RF, exhibits an anomalous trend, initially overestimating
rainfall up to 2.5 mm/h and then underestimating up to 10 mm/h. After a further
overestimation range at 10-11 mm/h, it underestimates higher rates, displaying a
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noisy and inconsistent curve. This wavering pattern is likely attributed to the ’stripe’
estimation approach used for various rainfall categories (light, moderate, heavy, ex-
treme), which concentrates the distribution around the midpoint of each class. Due
to the sparsity of extreme rainfall events, the PDF for this category exhibits only a
couple of points, suggesting that the model is not well-calibrated for such condi-
tions.

Hourly-based Scatterplots

In the following analysis, each of the seven rainfall products is scrutinized against
the benchmark measurements taken from rain gauges. We’ve preserved the highest
possible level of spatial and temporal detail within the scope of our study, with scat-
terplots represented in Figure 3.16. Subplot ’a’ uses logarithmic binning to detail the
distribution of reference rain rates. Subplots ’b’ to ’h’ provide scatterplots that juxta-
pose the performance of each product (depicted on the y-axis) against the reference
measurements (shown on the x-axis).

FIGURE 3.16: Distribution of rain rates across all evaluated hours and
chosen grid boxes. (a) Frequency chart based on AWS reference data.
(b-h) Density plots comparing various products (y-axis) with match-
ing AWS observations (x-axis): Radars (b); FY-4A (c); FY-4A_RF (d);
GK-2A (e); IMERG-Early (f); IMERG-Final (g); and ERA5-Land (h).

All axes are set to a logarithmic scale. Image adapted from [59].

Logarithmic binning offers a refined x-axis resolution compared to AWS rain
gauges, which predominantly have a 0.2 mm/h resolution, with a few having a
finer 0.1 mm/h resolution. This leads to distinct peaks in the histogram displayed
in Figure 3.16.a, resulting in observable vertical bands on the left margins on the rest
of the subplots.

The ground radar data are the only product demonstrating a strong correlation,
with most data points situated along the main diagonal. Nonetheless, there are some
outliers near the axes, indicating false alarms and missed detections. Subplots ’d’
and ’e’, which represent the geostationary products, show varying degrees of esti-
mation accuracy. The FY-4A data points are dispersed and not well-aligned with
the diagonal, displaying an inclination to overestimate precipitation rates. The GK-
2A, in contrast, generally underestimates rainfall, as confirmed by the PDF in Figure
3.15.

Both versions of IMERG reveal significant discrepancies from the benchmark
data at an hourly scale, as illustrated in Figures 3.16.f-g. The Final run of IMERG
shows data points more evenly distributed around the diagonal, particularly for rain
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rates below 10 mm/h. However, it struggles with correlation, especially at higher
rainfall rates. The Early run presents additional issues, most notably underestimat-
ing higher rainfall rates and seeming to cut off above 30 mm/h.

ERA5-Land also leans toward underestimation, particularly for rates exceeding
1 mm/h, and as the IMERG Early run, no estimates go beyond 30 mm/h.

Our own product, FY-4A_RF, exhibits the horizontal striping pattern previously
noted in its PDF. The data show limited correlation, with a predominance of vertical
and horizontal structures in the scatterplot. Evidently, data points tend to cluster
around the mid-range of each rain category: around 0.6-0.8 mm/h for light rain, 3-4
mm/h for moderate rain, and approximately 10 mm/h for heavy rain. This pattern
underscores the overall lack of correlation in the data. Additionally, the RF model
appears to cap the rain rate at the heavy class, with a few extreme points near 100
mm/h.

Performance Metrics

In Table 3.3, we present a comprehensive set of validation metrics for both categor-
ical and continuous evaluation. The categorical metrics specifically focus on the
classification task of distinguishing between dry and wet samples, using the AWS
product as a reference. It should be noted that our FY-4A_RF is a composite outcome
generated from prior regression models covering various precipitation intensities
ranging from light to extreme. Samples identified as dry were assigned a value of
zero.

Beginning with the FAR, ground radars exhibit the lowest score at 0.16, followed
by IMERG-Final with 0.39. All other products have values exceeding 0.40. Our
FY-4A_RF product does not fare the worst, registering at 0.47, but both GK-2A and
ERA5-Land scored 0.49, indicating nearly half of their classified ’wet’ samples were
actually ’dry’ according to the rain gauges.

For the POD, FY-4A_RF ranks second with a score of 0.65, surpassed only by
ERA5-Land at 0.78. Aside from GK-2A at 0.52, the remaining products all scored
below 0.5. Specifically, FY-4A scored a meagre 0.18, revealing that our FY-4A_RF
product substantially outperforms its Fengyun product counterpart in correctly pre-
dicting wet samples.

BIAS scores mirror these trends. FY-4A_RF, GK-2A, and ERA5-Land have scores
slightly above 1 (1.22, 1.03, and 1.54, respectively), indicating a slight overestimation
of actual wet samples. In contrast, the remaining products all score under 1, sug-
gesting they underestimate wet instances and are subpar in precipitation detection.
Notably, FY-4A registered the worst score at 0.30, while even ground radars posted
a mediocre 0.51.

The CSI and the ETS offer additional insights. ERA5-Land leads in CSI with 0.45,
followed by FY-4A_RF and ground radars at 0.41. GK-2A is also noteworthy with a
score of 0.35, while IMERG Early and Final, along with FY-4A, display poor scores
ranging from 0.16 to 0.26. In terms of ETS, which accounts for random hits, the
ranking sees minor alterations. Ground radars emerge as the top performer with a
score of 0.30, succeeded by ERA5-Land at 0.26 and our FY-4A_RF product at 0.25.
FY-4A continues to underperform, registering only 0.09.

In summary, when it comes to precipitation detection—i.e., the ability to distin-
guish between rainy and non-rainy conditions—ERA5-Land and radars are the most
reliable products. However, the Random Forest-based FY-4A_RF estimates also hold
their own, outperforming several other products, including FY-4A, in specific met-
rics.
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In evaluating the accuracy of estimated rain rates, we relied on continuous met-
rics as outlined in Section 2.3.4. This analysis was confined to ’wet’ samples, defined
as those with rain rates exceeding 0.1 mm/h, and aimed to quantitatively substan-
tiate observations made in Figure 3.16. The associated scores for these metrics are
detailed in Table 3.3.

Starting with the CC, Radar products exhibit the highest value of 0.69, corrob-
orating graphical evidence. Following the Radar, IMERG Early, IMERG Final, and
ERA5 also report commendable scores of 0.36, 0.42, and 0.43, respectively. Our FY-
4A_RF product trails with a score of 0.36, while the geostationary products report
the lowest correlation coefficients of 0.24 and 0.21.

In terms of the ME, our FY-4A_RF product performs relatively well, coming with
a score of -0.40. Only ERA5 behaves better with a ME of -0.42. All other products
exhibit more negative ME values, indicating that the estimated rain rates are, on
average, lower than the observed rates. Thus, underestimations are more prevalent
than overestimations. The least favourable ME scores are attributed to GK-2A and
IMERG Early, registering at -0.73 and -0.84, respectively.

Product FAR BIAS POD CSI ETS CC ME MAE CV p50 mKGE
Radars 0.16 0.51 0.42 0.39 0.30 0.69 -0.45 0.66 1.68 0.74 0.33
FY-4A_RF 0.47 1.22 0.65 0.41 0.25 0.36 -0.44 0.89 2.13 0.56 0.22
FY-4A 0.41 0.30 0.18 0.16 0.09 0.24 -0.60 1.03 2.41 0.68 -0.15
GK-2A 0.49 1.03 0.52 0.35 0.19 0.21 -0.73 0.92 2.40 0.50 -0.50
IMERG-Early 0.43 0.44 0.25 0.21 0.11 0.36 -0.84 0.92 2.25 0.53 -0.13
IMERG-Final 0.39 0.52 0.31 0.26 0.16 0.42 -0.67 0.89 2.13 0.53 -0.04
ERA5-Land 0.49 1.54 0.78 0.45 0.26 0.43 -0.42 0.79 2.05 0.21 0.22

TABLE 3.3: Comparative Analysis of both Categorical and Continu-
ous Metrics Scores: This table evaluates the performance of the ran-
dom forest-based rain product against other existing products, using

rain gauge data as the ground truth.

When considering the MAE, which focuses on the magnitude of the error irre-
spective of its direction, Radar leads with a score of 0.66. The following products
in ascending order are ERA5 (0.79), IMERG Final and FY-4A_RF (0.89), GK-2A and
IMERG Early (0.92). Although not outstanding, our product outperforms the origi-
nal FY-4A, which scored 1.03.

In the assessment of CV, which measures the dispersion as depicted in Figure
3.16, the Radar showcases the least variance with a score of 1.68. All other prod-
ucts surpass a CV of 2.0. Among them, ERA5 fares marginally better with a score
of 2.05 compared to our FY-4A_RF product, which registers at 2.13. Both IMERG
variants log scores of 2.25 (for the Early run) and 2.13 (for the Final run), while the
two geostationary products performed with the highest scores of 2.41 and 2.40.

Regarding the P50 score, some inconsistencies are evident. While Radar main-
tains its superior performance with a score of 0.74, ERA5 disappointingly registers at
0.21. Our FY-4A_RF scores 0.56, surprisingly falling short of the original FY-4A prod-
uct, which scored 0.68. GK-2A and both IMERG versions have comparable scores of
around 0.5.

The mKGE index warrants special attention as a comprehensive metric that en-
capsulates multiple measurements into a singular value. As detailed in source [27],
the mKGE index can be subdivided into three distinct components. These are rep-
resented on the x, y, and z axes of a three-dimensional graph: the CC, the ratio of
global mean values between the test and reference datasets (µe/µo, equivalent to 1
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+ ME), and the ratio of normalized standard deviations for each dataset ( σe/µe
σo/µo

). Cal-
culations for these metrics are carried out in comparison to the AWS as a reference
standard. An optimal point in this 3D representation occurs at coordinates (1, 1, 1)
when evaluating the reference against itself. This multi-faceted breakdown of the
mKGE index for the seven assessed products is visualized in Figure 3.17.

FIGURE 3.17: Visualization of mKGE decomposition in a 3D Eu-
clidean space. The optimal point at coordinates (1,1,1) is indicated
in black. The axis labelled (CC, 1, 1) is highlighted with a black
line. A plane representing µe/µo = 1 is shaded in semi-transparent
blue. Lighter, semi-transparent points indicate the projections of data
points onto this plane, and these projections are connected by dashed
lines. The scales for the three axes are not uniform. This image is

adapted from [59].

A broad observation shows that all product points lie below the plane where
µe/µo = 1, signifying that the mean values of all products are less than those of
the reference. Upon examining the distance from the black line (located at coordi-
nates CC,1,1), it’s apparent that all dots, except for ERA5 and FY-4A_RF, lie to their
right when viewed from above. ERA5 uniquely has a normalized standard devi-
ation lower than the AWS reference. Despite having a lower normalized standard
deviation than the reference, our product (FY-4A_RF) remains relatively close to the
black line. The most disparate product in terms of normalized standard deviation is
GK-2A. In terms of the CC, radar products exhibit the best performance, reaffirming
previous observations. The geostationary products are among those with the low-
est CC scores. While our product, the IMERG versions and ERA5 have similar CC
values. Specific mKGE values, as tabulated in Table 3.3, reveal that radar leads the
pack with an outstanding score of 0.33. Following radar, ERA5 and FY-4A_RF secure
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the second position with a score of 0.22. All remaining products recorded negative
mKGE scores, with GK-2A performing the worst at -0.50.

In summary, our comprehensive evaluation of rain rate estimation products,
grounded in the metrics laid out in Section 2.3.4, reveals a number of important find-
ings. Firstly, Radar products consistently outperform others across multiple metrics,
confirming their efficacy for estimating rain rates, and justifying its use as ground
truth for training our RF model. This aligns with its highest CC and lowest MAE
and CV scores. Second, ERA5 generally performs well but shows some inconsis-
tencies, particularly in the P50 score. Thirdly, our FY-4A_RF product demonstrates
a promising yet varied performance. With its low ME and MAE, it surpasses the
primary competitor, FY-4A, in several metrics and secures the second position in the
mKGE index, a comprehensive measure. However, there is room for improvement.
The geostationary products, along with our FY-4A_RF, yield the lowest CC scores,
pointing to limited accuracy in capturing the correlation with observed rain rates.
Furthermore, all tested products consistently underestimate rain rates, as evidenced
by the negative ME scores and positions below the µe/µo = 1 plane in the mKGE
decomposition. In terms of the mKGE index, a nuanced evaluation revealed Radar
as the best-performing product, with our FY-4A_RF not far behind. Notably, GK-2A
lags significantly in multiple metrics, most critically with a negative mKGE score,
highlighting its limitations in accurate rain rate estimations.

Time-averaged Analysis

The subsequent findings delve into an extended temporal analysis of the test dataset,
encompassing the full-time scale under consideration. Time-averaged rain rates
were computed for each grid point to facilitate this in-depth analysis. The resulting
map, visualized in Figure 3.18, displays these average rain rates in units of mm/h.
To produce a comprehensive spatial representation, we expanded the AWS data
from its designated grid box to the complete study area using a nearest-neighbour
algorithm. Areas where AWS stations are present but data is missing are marked in
grey on the map.

To enhance interpretability, Figure 3.19 graphically illustrates the biases in all
tested products, normalized against the AWS reference data. A colour gradient tran-
sitions from lighter to darker red to signify increasing overestimation, while shades
of blue indicate underestimation. The mean field derived from the AWS data during
the test period is displayed in both Figure 3.18.a and Figure 3.19.a, consistent with
the representation previously shown in Figure 3.13.b.

AWS data indicate that the highest average precipitation levels are centrally lo-
cated, exceeding 10 mm/h, with additional peaks in the southern region and the
driest areas in the northeast. Most products follow a similar spatial distribution but
have unique characteristics. For instance, radar product displays high central rain
rates but falls short of reaching the elevated levels observed in the south. This is
substantiated by the predominantly blue bias map, suggesting that radar generally
underestimates precipitation.

The geostationary satellites, FY-4A and GK-2A, show high central rain rates but
with a slight southeastern shift compared to AWS data. This localized overestima-
tion near the coast is particularly prominent for GK-2A, as evidenced by the bias
map in Figure 3.19.d-e. In contrast, IMERG products, displayed in Figure 3.18f-g, in-
dicate the highest average precipitation in central areas, albeit slightly more towards
the south. The bias maps, shown in Figure 3.19f-g, corroborate this behaviour.
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FIGURE 3.18: Mean maps of rain rates from these products: (a) AWS;
(b) Radar; (c) FY-4A_RF; (d) FY-4A; (e) GK-2A; (f) IMERG-Early; (g)

IMERG-Final; (h) ERA5-Land. Adapted from [59].

FIGURE 3.19: BIAS maps of rain rates from these products: (a) AWS;
(b) Radar; (c) FY-4A_RF; (d) FY-4A; (e) GK-2A; (f) IMERG-Early; (g)

IMERG-Final; (h) ERA5-Land. Adapted from [59].
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ERA5-Land reports elevated average rain rates in the central areas but falls short
when compared to rain gauge measurements, particularly in the southern regions.
The bias map reveals this strong underestimation in the south and a milder trend in
the central areas, interspersed with pockets of overestimation.

Our FY-4A_RF product, depicted in Figure 3.18.c, mirrors the patterns seen in
radar products, though it indicates elevated precipitation levels in the south. The
associated bias maps in Figure 3.19.b reveal a prevalent inclination to overestimate
rainfall, especially in the southern areas and certain northern regions, with a mild
underestimation evident in the central part of the country.

Figure 3.20 showcases scatterplots that juxtapose each product against AWS mea-
surements, restricting the analysis to grid boxes that were selected for quantitative
assessment—namely, those with at least one rain gauge. Panel ’a’ illuminates the
average reference distribution through the use of logarithmic bins, while panels ’b’
to ’h’ depict the seven products in the order previously illustrated in Figure 3.16.

Radar products remain the most closely aligned with the reference data, as indi-
cated by the preponderance of points along the scatterplot’s diagonal. Nevertheless,
they exhibit a tendency to underestimate higher rainfall intensities. IMERG variants
also tend to underestimate, with the Final run showing slightly better performance
at higher intensities.

Geostationary products generally exhibit a weaker correlation with the AWS ref-
erence at this scale. In regions of the scatterplots where lower rainfall intensities are
common, these products manifest distinct behaviours. For instance, GK-2A displays
a narrow value range with little variability, translating into minimal correlation with
AWS data, evident from its horizontally oriented distribution. Conversely, FY-4A
has a more expansive distribution of points that align better with the scatterplot’s
diagonal, indicating improved average correlation. Both satellites share similar pat-
terns for higher intensities but are limited by a certain threshold. Notably, the tail
end of FY-4A’s distribution is more densely populated than that of GK-2A.

FIGURE 3.20: Time-averaged rain rate distributions across grids. (a)
AWS frequency chart. (b-h) Density plots comparing products (y-
axis) to AWS observations (x-axis): Radars (b); FY-4A (c); FY-4A_RF
(d); GK-2A (e); IMERG-Early (f); IMERG-Final (g); ERA5-Land (h).

Logarithmic scale used. Adapted from [59].

ERA5-Land shows noticeable improvements in correlation, as evidenced by a
higher number of points aligning along the diagonal and reduced variance. How-
ever, challenges remain in capturing very high-intensity events.
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Regarding our product, FY-4A_RF, the averaging process yields an overall im-
provement, especially for lower rainfall rates. Points are more clustered along the
diagonal, and instances of missed detections are substantially reduced. However,
underestimation at higher rainfall rates persists.

In conclusion, the extensive temporal analysis of the test dataset has provided
critical insights into the performance and biases of various rainfall measurement
products in comparison to AWS reference data. Radar products consistently display
the strongest alignment with AWS data but fall short in estimating higher rainfall
intensities. Geostationary products like FY-4A and GK-2A show specific regional
biases, with FY-4A performing slightly better in terms of correlation. IMERG prod-
ucts also generally underestimate rain, although the Final run shows improvement
at higher intensities. ERA5 exhibits significant strides in correlation, particularly in
the central regions, but still struggles to capture extreme rainfall events accurately.

Our proprietary product, FY-4A_RF, benefits from the averaging process, dis-
playing improved alignment for lower rainfall rates and fewer instances of missed
detections. However, it still tends to underestimate higher intensities. The spatial
maps and bias representations further complement these findings, providing a nu-
anced understanding of each product’s strengths and limitations. Overall, while no
single product perfectly mirrors the AWS reference, each has its unique merits and
areas for improvement, underscoring the need for continual refinement and valida-
tion.
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Conclusion

Precise precipitation measurements are essential for understanding Earth’s hydro-
logical cycle, its impact on ecosystems, and human activities. Despite its importance,
accurate measurement is challenging, especially in areas with uneven rainfall or lim-
ited infrastructure. With climate change altering precipitation patterns, traditional
methods sometimes fall short. However, satellite remote sensing offers potential
solutions, providing more comprehensive data on precipitation trends.

This study aims to improve Quantitative Precipitation Estimation (QPE) by inte-
grating multispectral satellite data with a Random Forest machine learning model.
We calibrated our model using radar data, which correlates closely with rain gauge
measurements. Though rain gauges are the benchmark, radars offer broader cover-
age. To address radar limitations, especially during light rainfall or in challenging
terrains, we combined radar and satellite data. Intense rainfall can also impact radar
accuracy, emphasizing the importance of this integration.

Early training phases emphasized the importance of evaluating feature rankings
to discern model behaviours. Each task, whether classification or regression, exhib-
ited unique patterns. Both the visible and infrared channel groups were essential,
particularly when considering their spatial combinations through metrics such as
standard deviations and means of neighbouring pixels. The IR channel differences
also played a significant role in model training, specifically those IR combinations
that are related to cloud-top height, cloud phase and water vapour content. An
important ancillary feature in our study was the Digital Elevation Model (DEM).
Preliminary analyses showcased an inverse relationship between precipitation and
elevation in Vietnam. Specifically, higher altitudes displayed a statistically signifi-
cant decline in rainfall compared to lower plains. This pattern likely emerges from
typhoons making landfall near coasts, which typically coincide with flatlands. In
terms of feature importance, DEM consistently scored high, particularly in regres-
sion tasks, often securing top positions.

Our research employed Random Forest models, initialized using the default val-
ues for most of the parameters of the Scikit-learn package. Despite demonstrating
commendable performance during its training phase for both classification and re-
gression tasks, it experienced a noticeable decline when faced with unseen data.
This contrast suggests a potential overfitting issue, indicating the model’s potential
difficulty in generalizing beyond its training data. During validation against rain
gauge measurements, our model’s rain area classification was suboptimal, mispre-
dicting nearly half of the ’wet’ pixels with a False Alarm Ratio of 0.47. Moreover,
The regression results showed a notable issue, with the model often estimating pre-
cipitation around the median of each rainfall class, leading to a modest correlation
coefficient of 0.36 with the actual precipitation.

However, not all results were on the lower spectrum. Our model showcased
a performance that, in certain metrics, surpassed other rainfall products available
for Vietnam. Notably, those derived from the geostationary satellites FY-4A and,
to some extent, the GK-2A and IMERG versions. Specifically, our model achieved
a Probability of Detection score of 0.65, substantially outperforming the FY-4A’s
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0.18 and even radar-derived results, which stood at 0.42. Additionally, our model
recorded a Bias Score of 1.22 and an Equitable Threat Score of 0.25, presenting no-
table improvements over FY-4A’s respective scores of 0.30 and 0.09. Further, when
examining regression metrics, our model’s performance appeared to be at least on
par with, if not better than, other prevalent products in the domain. This was par-
ticularly evident when compared to the original product from FY-4A. To exemplify,
the Modified Kling-Gupta Efficiency for our model, termed FY-4A_RF, stood at 0.22.
This contrasts positively with several other products, excluding ERA5-Land and
radars, which showcased suboptimal, often negative, performances. In wrapping
up, this preliminary study underscores the potential viability of our model, espe-
cially when positioned against existing precipitation estimation methodologies for
the region.

Looking ahead to the future prospects of this study, it’s evident that our model
is in its nascent stages and warrants further refinements. A logical starting point
involves fine-tuning the Random Forest parameters through a systematic hyperpa-
rameter search. This will allow us to focus on key parameters that influence the
model’s complexity.

It’s also worth noting that our current model is based on a mere month of data.
To enhance its robustness, it’s prudent to expand the dataset across a more extended
time frame. A more extensive dataset will encapsulate a wider variety of rainfall
scenarios, inherently strengthening the model. Another issue observed was the dif-
ficulty in estimating the class of extreme rainfall due to the scarcity of this data. To
address this challenge, collecting more data from intense precipitation events and
implementing some form of class balancing might be beneficial.

Our ultimate ambition is the development of an operational platform capable
of delivering precise, high-resolution, and near-real-time rainfall estimates. Such a
system would offer dependable forecasts, even in remote regions bereft of advanced
weather instrumentation. Not only would this greatly aid early warning systems for
extreme weather phenomena, but it would also significantly enrich data assimilation
for extended forecasts and climatic models.

Through this study, we endeavour to contribute significantly to the domain of
QPE using ML, leveraging the power of Big Data and advanced remote sensing tech-
niques. These innovations are central to refining our understanding, estimation and
prediction of rainfall patterns.
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Nomenclature

AMW Active Microwave

AGRI Advanced Geosynchronous Radiation Imager

AMI Advanced Meteorological Imager

AI Artificial Intelligence

ANN Artificial Neural Network

AWS Automatic Weather Stations

CV Coefficient of Variation

CC Correlation Coefficient

CSI Critical Success Index

DT Decision Trees

DEM Digital Elevation Model

DSD Drop Size Distribution

DPR Dual-frequency Precipitation Radar

ETS Equitable Threat Score

HR Expected Random Hits

FAR False Alarm Ration

FN False Negative

FP False Positive

FI Feature Importance

FY-4A Fengyun-4A

GK-2A GeoKompsat-2A

GEO Geostationary

GPM Global Precipitation Measurement

GB Gradient Boosting

IR Infrared

ITCZ Intertropical Convergence Zone

KNN K-Nearest-Neighbour
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P50 Likelihood that an estimated value will deviate from the actual measurement
by no more than 50%

LEO Low Earth Orbit

ML Machine Learning

MAE Mean Absolute Error

ME Mean Error

MSE Mean Square Error

MW Microwave

mKGE Modified Kling-Gupta Efficiency

IMERG NASA Integrated Multi-satellite Retrievals for GPM

NRT Near Real Time

NaN Not a Number

PMW Passive Microwave

PERSIANN-CCS Precipitation Estimation from Remotely Sensed Information us-
ing Artificial Neural Networks-Cloud Classification System

PDF Probability Density Function

POD Probability of Detection

QPE Quantitative Precipitation Estimation

RADAR RAdio Detection And Ranging

RG Rain Gauge

RFC Random Forest Classifier

RFR Random Forest Regressor

RF Random Forest

SVM Support Vector Machines

Tb Temperature of Brightness

CHIRPS The Climate Hazards Group InfraRed Precipitation with Station data

TRMM Tropical Rainfall Measuring Mission

TN True Negative

TP True Positive

VIS Visible

WV Water Vapour

WMO World Meteorological Organization
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