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“Not all those who wander are lost. ”






Abstract

La precipitazione riveste un ruolo cruciale nel determinare il ciclo idrologico, il
clima e le condizioni atmosferiche. Alla luce dei cambiamenti climatici in corso,
si stima un’accentuazione degli episodi di piogge intense, con conseguenti sfide in
diversi ambiti socio-economici. Il nostro studio ambisce a migliorare 'accuratezza
delle stime pluviometriche basate su dati satellitari attraverso metodi di apprendi-
mento automatico, ponendo un’enfasi specifica sulla stagione monsonica in Viet-
nam.

Mediante 1'uso dell’algoritmo Random Forest, abbiamo elaborato un modello
che integra dati provenienti dal satellite geostazionario FengYun-4A con quelli dei
radar terrestri. Questo approccio sfrutta sia i valori diretti dei canali che le differenze
dei canali infrarossi, oltre a combinazioni spazio-temporali di pixel adiacenti, per
stimare vari gradi di precipitazione. Abbiamo inoltre utilizzato un modello digitale
di elevazione come variabile supplementare, considerando la relazione inversa che
esiste tra altitudine e intensita della precipitazione.

L’algoritmo e stato ottimizzato per funzionare sia in condizioni diurne che not-
turne, tenendo conto della mancanza di dati dai canali visibili durante la notte. Il
nostro studio e stato calibrato su una griglia con una risoluzione spaziale di 4 km e
una risoluzione temporale di 1 ora, concentrandoci su ottobre 2020, un periodo in cui
il Vietham ha sperimentato piogge di intensita notevole. Per garantire 1’affidabilita
delle nostre analisi, abbiamo effettuato un’accurata pre-elaborazione e validazione
dei dati satellitari.

La nostra metodologia inizia identificando i pixel con e senza pioggia, avanza
per classificare varie classi d’intensita di precipitazione e infine effettua una regres-
sione all’interno di ogni classe. Durante la valutazione delle prestazioni, gli output
del nostro modello sono stati confrontati con le misurazioni dei pluviometri e altri
benchmark regionali di precipitazione usando varie metriche.

Le analisi basate sull’algoritmo Random Forest hanno evidenziato una tendenza
del modello a favorire dati spaziali piuttosto che valori di canali isolati. Oltre alle
combinazioni di canali infrarossi tradizionalmente citate nella letteratura, il nos-
tro modello sembra prediligere anche alcuni canali visibili durante le ore diurne.
I risultati iniziali mostrano che le capacita del nostro modello sono comparabili,
se non superiori, ai prodotti pluviometrici ottenuti dai geostazionari FengYun-4A
e GeoKompsat-2A gia disponibili sul territorio Vietnamita. Nonostante cio, esistono
delle complessita residue: ci sono difficolta nella classificazione di eventi di pioggia
estrema, data la loro bassa frequenza, e le stime di regressione tendono a normaliz-
zare eccessivamente la reale distribuzione delle precipitazioni, avvicinandola ai suoi
valori medi.

L'obiettivo principale & creare un modello di stima delle precipitazioni ad alta
risoluzione in tempo quasi reale, specializzato per le regioni tropicali frequente-
mente colpite da tifoni. Integrando osservazioni da terra e dati satellitari, il nostro
modello puo riconoscere efficacemente le relazioni non lineari tra variabili atmos-
feriche e spettrali. Tuttavia, per garantire un funzionamento ottimale, il modello
attuale necessita di ulteriori perfezionamenti e dati aggiuntivi.
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Abstract

Precipitation is pivotal in shaping the water cycle, weather, and climate. With
the advent of climate change, extreme precipitation events are anticipated to inten-
sify, presenting challenges across socio-economic realms. This research seeks to bol-
ster the precision of satellite-based precipitation assessments using machine learning
techniques, spotlighting Vietnam’s wet season.

Leveraging the robust, interpretable, and popular Random Forest algorithm, we
have constructed a model that integrates geostationary satellite data from the Chi-
nese FengYun-4A and ground-based radars. This model combines pure channel val-
ues, infrared channel differences, spatial patterns from pixel neighbourhoods, and
temporal differences to predict precipitation. A digital elevation model was incor-
porated as an auxiliary variable, given its inverse relationship with rainfall intensity.

Notably, the algorithm adjusts for daytime and nighttime conditions, consider-
ing the absence of visible channels at night. We have calibrated our study using a 4
km spatial and 1-hour temporal resolution, with a focus on October 2020—a month
marked by intense precipitation in Vietnam. A thorough preprocessing and valida-
tion of the satellite data were conducted to ensure the quality of subsequent steps.

Our methodology starts by identifying raining vs. non-raining pixels, advances
to classify rain intensities, and finally conducts regression within each class. Perfor-
mance assessment will compare our model’s outputs against rain gauge measure-
ments and other regional precipitation benchmarks using various metrics.

Insights from the Random Forest algorithm revealed a preference for spatial data
over singular channel values. In addition to the commonly used infrared channel
combinations found in the literature, our model also appears to favour several vis-
ible channels during the daytime. Preliminary results indicate our model’s perfor-
mance aligns closely with, if not surpasses, the rain products obtained by the geosta-
tionary satellites FengYun-4A and GeoKompsat-2A already available over Vietnam.
However, challenges remain, particularly in the classification of extreme rain events
due to their rarity, and in regression estimates that tend to diminish the true rainfall
distribution around its average values.

The primary goal is to develop a high-resolution estimate model for rainfall in
tropical regions, which are often impacted by typhoons. By integrating ground ob-
servations and satellite data, machine learning effectively captures nonlinear rela-
tionships between atmospheric and spectral variables. However, the existing model
demands further enhancements and additional data for optimal performance.
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Introduction

Precipitation plays a pivotal role in the Earth’s hydrological cycle, influencing ecosys-
tems, human endeavours, and a myriad of processes that sustain life on our planet
[64]. Accurate measurements of precipitation are thus not only of academic inter-
est but bear significant implications for fields ranging from agriculture and water
management to public health and disaster mitigation and adaptation [58]. Histor-
ically, researchers have relied on traditional methods like rain gauges to measure
rainfall. While effective in localized settings, they often falter in providing compre-
hensive spatial and temporal data [25]. Ground-based radar systems have bridged
this gap to some extent, offering more extensive coverage. While radars have proven
effective in capturing rainfall data over wider regions, they are not without limita-
tions. Issues such as attenuation during intense precipitation episodes, the inability
to capture data from challenging terrains, and occasional discrepancies during light
rainfall episodes underscore the need for enhanced methodologies in quantitative
precipitation estimation (QPE) [5]. Yet, as weather patterns evolve due to factors
like climate change, there is a burgeoning need to refine and expand our precipita-
tion measurement techniques [65].

In the realm of QPE, there exists a pressing need for methodologies that are both
comprehensive and precise. Addressing this need, the present research proposes
an innovative approach that integrates remote sensing data with machine learning
(ML) techniques. This amalgamation offers a holistic, accurate, and adaptable solu-
tion for QPE, with potential implications for refined weather predictions, strategic
water resource management, and nuanced climate modelling [38]. The central aim
of this study is to augment QPE methodologies by synergizing multispectral satel-
lite data within a machine learning framework. By doing so, it seeks to harness
the combined strengths of radar and satellite data, mitigating their individual con-
straints, and producing an output that is superior in accuracy and utility.

The geographical context of this research is Vietnam, a region that bears the brunt
of heavy rainfall during its monsoon season, frequently exacerbated by tropical cy-
clones. This unique climatic condition provides a fitting backdrop for the study’s
objectives. To lay the groundwork for our research, the initial phase involves the
application of the proposed ML model to a dataset from October 2020, a month that
was notably characterized by several episodes of heavy precipitation [33].

In this study, inspired by the study of Hirose et al. 2019 [19], we employed a
sophisticated stacked model approach, wherein multiple random forest classifiers
were sequentially implemented. Initially, these classifiers were tasked with segre-
gating precipitation into distinct categories. Subsequent to this classification, a ded-
icated random forest regressor was deployed for each distinct class. For the calibra-
tion of our models, we utilized radar-based QPE as the ground truth. The feature set
was primarily derived from multispectral satellite data, with an emphasis on their
spatio-temporal derivations. Additionally, after thorough analysis, we integrated
the digital elevation model into our feature set, recognizing its significance given the
intricate relationship between precipitation patterns and Vietnam’s orography. The
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Random Forest framework allowed for a deeper investigation into feature impor-
tances, providing clarity on their individual contributions during model training.
This understanding was pivotal for the subsequent feature selection. However, it
must be noted that the model’s performance on unseen data did not entirely meet
expectations. We observed certain anomalies, particularly a tendency to converge
rain rate distributions around class medians and challenges in effectively classifying
extreme precipitation rates due to the rarity of such instances. Yet, upon juxtaposing
the aggregated results of all regressions against other prevailing rain products for
Vietnam (that were previously validated in the study of Roversi et al. 2023 [59]), our
model showcased reasonable fidelity. Notably, it outperformed the geostationary-
based products in certain metrics. Considering the nascent stage of our research,
these results are promising. There remains ample scope for model refinement, in-
cluding hyperparameter optimization and the incorporation of a more expansive
dataset.

In the subsequent chapters, readers will embark on a comprehensive exploration
of the challenges, methodologies, and potential solutions in the realm of quantita-
tive precipitation estimation. Beginning with a short overview in Chapter 1, we
shed light on the fundamental characteristics of rainfall, underscore the importance
of accurate precipitation estimation, and elucidate traditional methods of QPE. This
foundational understanding paves the way for an exploration of ML techniques,
culminating in a synopsis of the state-of-the-art in QPE using ML. Transitioning to
Chapter 2, we focus on our case study: Vietnam. Detailed descriptions of the re-
gion’s climate, and datasets utilized—including satellite data, ground reference data,
and other rain products—are provided. This chapter further outlines the method-
ological workflow, from preprocessing steps and feature engineering to the actual
ML algorithm setup and performance assessment. Lastly, Chapter 3 presents the
empirical results of our research. We initiate with a thorough preliminary analysis,
discussing data quality, feature correlations, and more, before delving into the out-
comes derived from the Random Forest models. We then wrap up with a conclusive
chapter discussing the study’s implications and avenues for future research.

Through this structured journey, we aim to offer a comprehensive perspective on
ML-based QPE, specifically tailored to the climatic context of Vietnam. By fusing the
strengths of satellite remote sensing and ML, this thesis strives to chart a forward-
looking course in the continually evolving field of QPE.



Chapter 1

Quantitative Precipitation
Estimation

1.1 Overview

1.1.1 Basic Characteristic of Rainfall

According to the World Meteorological Organization (WMO) Guide to Meteorologi-
cal Instruments and Methods of Observation, precipitation encompasses both liquid
and solid water forms that condense from water vapour and descend from clouds or
deposit from air onto the ground. Precipitation intensity, typically measured in mil-
limetres per hour (mm/h), denotes the precipitation amount during a set interval.
Conversely, rainfall depth, in millimetres (mm), represents the cumulative precipi-
tation over a designated period, reflecting the hypothetical vertical depth of water
covering a flat Earth projection [54].

Rainfall is vital in the Earth’s hydrological cycle, which circulates water between
the atmosphere, land, and oceans. Formed from atmospheric water vapour con-
densation, warm, moist air rises, cools, and causes water vapour to condense into
droplets or ice crystals. These particles amalgamate, growing heavy enough to fall
as precipitation [11, 22].

The microphysics of rainfall encompasses intricate physical processes like nu-
cleation, growth, and collision-coalescence. Nucleation can be homogeneous (spon-
taneous droplet formation) or heterogeneous (formation on existing surfaces like
dust). Post-nucleation, droplets grow via mechanisms like diffusion or collision-
coalescence. The forming rain’s nature, whether from liquid droplets or ice crystals,
is termed the warm or cold rain process, respectively [11].

Rainfall types include stratiform and convective. Stratiform rainfall emerges
from extensive moist air layers that cool and result in widespread, consistent precip-
itation, often linked to large-scale weather systems. In contrast, convective rainfall
arises from rapid air rises due to instability, leading to intense, localized precipita-
tion, commonly accompanying thunderstorms. Other rain types include orographic
(air rising over mountains), frontal (warm meets cold air mass), and monsoonal (sea-
sonal wind reversal regions with distinct wet and dry seasons) [22, 12].

Precipitation displays a diverse range across the globe, influenced by factors such
as temperature, atmospheric circulation, and topography. Its global distribution
manifests distinctly in various regions like the equator, subtropics, mid-latitudes,
and polar zones. The equatorial belt, extending approximately 10 degrees on either
side of the equator, experiences abundant rainfall. This is attributed to the merging
trade winds and the presence of the Intertropical Convergence Zone (ITCZ). Con-
versely, the subtropics, ranging between 20 to 35 degrees both north and south of
the equator, are relatively arid due to dominant high-pressure systems that cause



4 Chapter 1. Quantitative Precipitation Estimation

air to descend. The mid-latitudes, encompassing 35 to 60 degrees from the equator,
exhibit fluctuating precipitation patterns influenced by storm systems and weather
fronts. Polar areas, from around 60 degrees to the poles, see sparse precipitation be-
cause of the prevailing cold, dry air masses. Within the tropics, which combine the
equatorial and subtropical belts, rainfall patterns are majorly driven by the ITCZ’s
seasonal shifts and monsoonal circulations. However, annual variations in precipi-
tation volume and timing can occur due to inherent climate variability and broader
climate change trends [17].

1.1.2 The Importance of Precipitation

Precipitation, especially rainfall, is integral to the Earth’s climate system [17]. It gov-
erns the planet’s temperature, influences water distribution across its surface, and
sustains diverse ecosystems like forests, grasslands, and wetlands, all vital habitats
for myriad species [64].

Beyond natural ecosystems, precipitation is pivotal for human endeavours like
agriculture, industry, and daily living. It’s indispensable for hydroelectric power,
fuelling turbines to produce electricity, and for replenishing essential freshwater re-
sources for consumption and industrial activities [64].

Agriculture’s reliance on rainfall is evident, as it ensures crop growth and live-
stock health. Extreme events like heavy rainfalls or floods can devastate agricul-
ture by causing soil erosion, reducing fertility, and inducing waterlogged conditions
harmful to crops. Floodwaters can also contaminate the soil, impacting both crops
and water quality [58].

Shifts in precipitation patterns, be it long droughts or intense rainfalls, drasti-
cally affect ecosystems and human ventures. Droughts can reduce crop yields and
intensify wildfires, while intense rainfalls may result in floods and landslides. As the
climate crisis escalates, variations in these patterns, from heightened precipitation
events to extended droughts, become crucial. It underscores the need to fathom pre-
cipitation’s role in our climate system, urging refined estimations and predictions of
its characteristics [65].

Existing rainfall measurement techniques often falter due to sparse monitoring
infrastructure, potentially skewing precipitation estimates in regions with complex
terrains or variable rainfall patterns. Traditional devices, such as rain gauges and
radars, might miss out on capturing the full spectrum of precipitation types or the in-
tensity of extreme events [25]. Additionally, these methods may inadequately track
shifts in precipitation patterns stemming from climate change, as they tend to em-
phasize long-term averages over short-term variations [65]. The upcoming section
will explore both conventional and advanced quantitative precipitation estimation
(QPE) methods, highlighting their strengths and weaknesses. Recognizing the sig-
nificance of precipitation in our climate system, nature and human activities under-
scores the importance of refining QPE techniques.

1.2 Traditional Methods for QPE

The traditional methods for QPE have been developed over many years and in-
clude rain gauges, radars, and satellites, that can be grouped into ground-based and
spaceborne techniques. In recent years, there has been growing interest in combin-
ing multiple methods to improve the accuracy and reliability of QPE [21].
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As will be discussed in the following sections, these methods have different prin-
ciples, advantages, and limitations, and the choice of method for QPE depends on
the specific application and the availability of data [62].

1.2.1 Ground-based Sources
Rain Gauges

Rain Gauges (RG) are one of the oldest and most widely used methods for pre-
cipitation estimation. These methods rely on the measurement of precipitation at
ground-based weather stations that collect precipitation, which is then measured
and recorded at regular intervals.

Several RG types are available, with a few significant ones described below (more
details in [32]):

¢ Storage gauges are manual devices with a container that collects rainwater for
volume measurement over time. Some have automatic emptying systems with
siphon mechanisms, though they might miss some rainfall amounts during
rapid events.

¢ Tipping-bucket gauges are popular due to their cost-effectiveness and reliabil-
ity. They employ a balance and two equal buckets; rainfall causes one bucket
to tilt upon filling, registering an electrical impulse for measurement. Regular
maintenance to prevent funnel blockages is essential.

* Weighing gauges measure precipitation using a weight principle. While some
use the tipping-bucket mechanism for high-resolution measurements, this can
lead to underestimation during the tilting phase and demand more mainte-
nance.

* Catching-type gauges use a calibrated nozzle and optical sensor to detect falling
raindrop size and frequency. They work best for light rain but may struggle
with irregular water fluxes and need regular maintenance.

¢ Disdrometers sense individual hydrometeors without needing a container.
They offer data on particle size distribution and fall velocity, requiring mini-
mal maintenance. However, they lag behind traditional gauges in performance
due to non-standardized calibration methods.

The use of RG for precipitation estimation has several advantages, including
their accuracy, low cost, and ease of maintenance. Additionally, they can be used
to validate and calibrate other precipitation estimation methods. However, RGs also
have some limitations. For example, they provide point measurements of precipi-
tation that may not be representative of the surrounding area and they may not be
available in remote or inaccessible locations. Additionally, they may be subject to
measurement errors due to wind, evaporation, and other factors. Despite these limi-
tations, RG remains a valuable tool for precipitation estimation, particularly in areas
where other methods are not available or where high-precision measurements are
required for specific applications [32].

Radars

Radar, specifically RAdio Detection And Ranging, is a pivotal tool in QPE. While
traditional RG offers point measurements, they lack broad spatial representation. In
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contrast, weather radars offer comprehensive spatial and temporal insights from a
single site, enabling precise rainfall measurements across vast scales.

Polarimetric Doppler radar, a recent advancement, captures data in both hori-
zontal and vertical polarizations, offering richer details on precipitation particles.
These radars now oversee most populated regions globally, aiding in tasks from
flood prediction to climatology. Moreover, they play a crucial role in refining satel-
lite precipitation data and fostering algorithm innovations.

To interpret precipitation using radar, it’s crucial to understand how electromag-
netic signals from the radar interact with raindrops. This interaction is largely gov-
erned by the drop size distribution (DSD), which gives the average count of rain-
drops per size interval for every unit volume of air. The radar reflectivity factor,
denoted by Z, is derived from the DSD and is defined by:

Z= /N(D)DﬁdD (1.1)

where N(D) represents the number of droplets with diameter D. The rain rate R,
when accounting for DSD and a raindrop’s terminal fall speed, can be connected to
Z using empirical relationships like the Marshall and Palmer relation:

R=aZzb (1.2)

Here, a and b are coefficients which might change depending on the geographical
location and season [41].

Weather radar systems, commonly mounted on towers to avoid local obstruc-
tions, employ a directional antenna encased in a radome. These systems emit elec-
tromagnetic pulses that scatter upon hitting meteorological targets. Some scattered
energy reflects back as a radar echo. By incrementing the antenna’s elevation an-
gle with each rotation, the system captures volumetric atmospheric observations.
The returned power provides precipitation insights within the resolution volume,
influenced by precipitation particle types and their DSD. Radar resolution is de-
termined by pulse length and antenna beam widths. Pulse volume positioning
depends on antenna location, elevation angle, target range, and the radar beam’s
propagation path. As electromagnetic waves bend due to the atmosphere’s vertical
stratification, their trajectory can be predicted through temperature, moisture, and
pressure profiles. Ground-based radars typically use S, C, or X frequency bands,
each offering unique advantages. While S-band detects distant heavy rain, X-band
is hydrometeor-sensitive but faces signal attenuation. C-band strikes a balance in
reﬂectivity measurements, range, and cost.

Radar has several advantages, including its ability to provide high-resolution
measurements of precipitation over large areas. Additionally, it can provide infor-
mation on the spatial and temporal distribution of precipitation, as well as the in-
tensity and type of precipitation. Radar can also be used in real-time for nowcasting
and short-term forecasting of precipitation. However, there are some drawbacks to
using this method. One major issue is the potential for large observation errors to oc-
cur, which can be caused by a variety of meteorological, topographic, and technical
factors. These factors include the variability of the Z-R relationship, errors related to
the range of the radar signal due to the vertical variability of reflectivity and incom-
plete or non-uniform beam filling, attenuation caused by intervening precipitation,
ground clutter, beam blockage, and miscalibration of electronic components. Ad-
ditionally, radar-based QPE may not accurately estimate the intensity of light pre-
cipitation, such as drizzle, and may underestimate or miss convective precipitation
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events [5].

1.2.2 Spaceborne Sources

Satellites offer a formidable advantage in QPE with their global reach and frequent
observations. They employ both passive and active sensors; the former captures
Earth’s natural radiation while the latter transmits signals to Earth, recording their
reflection or scattering. Since the debut of meteorological satellites in 1960, many
have observed Earth, yet not all target precipitation specifically. Despite this, the
meteorological community has devised methods to extract precipitation data from
varied satellite readings. Maximizing data availability involves using Geostationary
(GEO) satellites with visible (VIS) and infrared (IR) sensors, and microwave (MW)
sounders on Low Earth Orbit (LEO) satellites.

Satellite-based QPE plays a pivotal role in diverse applications like flood and
weather forecasting, climate studies, and monitoring extreme weather events, par-
ticularly in regions underserved by ground measurements, such as the tropics and
polar areas. Its benefits include global coverage, frequent rain monitoring, insights
into precipitation patterns, types, intensities, and accessibility in remote areas.

However, it’s not without limitations. Factors like cloud interference and vari-
ability in precipitation particles can introduce errors. Light drizzles might be un-
derestimated, and convective events might be inaccurately portrayed. Enhancing
the precision of satellite-based QPE, especially for subtle rainfall events and in com-
plex terrains, remains a research priority. Validating satellite precipitation retrieval
against surface data is crucial for its accuracy [24].

GEO Satellites

GEO satellites provide frequent and regular images over a full disc of the Earth from
their location around the Equator. A constellation of about five GEO satellites is
needed for quasi-global coverage. The GEO suite of sensors provides consistent
observations every 30 minutes with a resolution of about 4 km around the Equator
(60°N-60°S). Nowadays, better resolutions are possible in some sensors. Meteorolog-
ical satellites first captured simple VIS/IR images of clouds to identify precipitation-
bearing systems. VIS imagery has the highest spatial resolution among remote sens-
ing techniques, but its potential products are constrained to daytime use only. As a
result, retrieval schemes have primarily focused on IR imagery. IR-based techniques
assume that clouds with lower cloud-top temperatures are taller and thicker, and
thus more likely to produce precipitation. However, the relationship between cloud-
top temperature and precipitation near the Earth’s surface is indirect and influenced
by regional variations and the cloud life cycle. Besides cloud top temperature, multi-
spectral VIS/IR techniques can provide information on cloud top height, pressure,
particle sizes, and phase [42, 43]. Although VIS/IR observations only provide infor-
mation on cloud-top properties, they offer frequent observations and good spatial
resolution. Multi-spectral channels may improve retrieval of cloud-top character-
istics, but the indirectness of cloud-top properties to surface precipitation persists
[24].

LEO Satellites

Direct observations of precipitation are possible using MW radiometers, which are
currently only deployed on LEO satellites due to the large antenna required for good
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spatial resolution. These measurements are available from about 10 LEO-based sen-
sors, providing less frequent observations with coarser spatial resolutions with re-
spect to GEO-based sensors. They provide typically two observations per day per
sensor at the same location.

Passive MW (PMW) sensors employ imaging or sounding frequencies, with
conically-scanning instruments favoured for precipitation retrievals. These sensors
detect atmospheric liquid water and ice. Lower frequencies (up to 40 GHz) are more
attuned to liquid hydrometeors, while higher frequencies (>40 GHz) detect ice par-
ticles. Over oceans, brightness temperatures (Tb) facilitate precipitation retrievals.
Over land, the use of high-frequency channels is necessitated by high emissivity.
While ice scattering reduces Tbs in intense events, not every cloud has ice, and the
upper cloud ice may not reliably indicate surface rainfall. Physical retrieval schemes
offer insights into surface precipitation and vertical profiles. However, PMW sensors
have resolutions inferior to IR sensors, necessitating multiple satellites for compre-
hensive precipitating system analyses [24].

Active MW (AMW) sensors emit MW energy pulses that backscatter from pre-
cipitation, yielding a vertical precipitation profile. Despite their precision, their lim-
ited numbers and narrow swath width compromise temporal sampling. Examples
include the Dual-frequency Precipitation Radar (DPR). While they deliver direct pre-
cipitation measurements, their periodicity and range restrict utility. Yet, they're in-
strumental in data generation for PMW retrieval and calibration/validation, offering
valuable three-dimensional data for understanding precipitation systems [24].

1.2.3 Multi-Source Precipitation Products

While no single satellite precipitation product can comprehensively quantify surface
precipitation, given varying user needs, integrating data from multiple sources can
bolster accuracy. Merging disparate satellite observations primarily aims to refine
both the temporal and spatial accuracy of precipitation readings.

Global initiatives have advanced precipitation satellite missions, leveraging space-
based technology and integrating multiple data sources [68]. Notably, the Tropical
Rainfall Measuring Mission (TRMM) (1997-2015) was a US-Japan venture employ-
ing cutting-edge sensors to scrutinize tropical rainfall patterns. More details can be
found at https://gpm.nasa.gov/missions/trmm. Building on TRMM'’s legacy, the
Global Precipitation Measurement (GPM) (initiated in 2014) enhances global precip-
itation tracking capabilities, playing an integral role in weather and climatic endeav-
ours. Further information is available at https://gpm.nasa.gov/missions/GPM.

LEO and GEO satellite systems are complementary and often used together to
gather precipitation data. In fact, no single satellite precipitation product can fully
capture the true surface precipitation, so combining multiple observations is seen
as a way to improve precipitation products. The PMW precipitation products tend
to be infrequent but more direct, while the IR products are less direct but more fre-
quent. Furthermore, the TRMM and GPM satellites used active and passive obser-
vations to reduce ambiguities by combining radar-radiometer observations in algo-
rithms to improve precipitation measurements. Currently, there are few primary op-
erational merged products that provide surface precipitation information at a scale
of approximately 10 km per 30 minutes or better. A prominent example, which will
also be utilized in this study, is NASA’s Integrated Multi-satellite Retrievals for GPM
(IMERG). These schemes have the potential to provide a continuous record of pre-
cipitation over time, but the generation of such products is complex and relies on
the accuracy of the original PMW retrievals [11, 68].
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Many satellite precipitation products also incorporate conventional surface data
to correct for any systematic bias in the satellite estimates, and newer techniques
have started to incorporate model information into their combined precipitation
products. However, all combination schemes are only as good as their components,
and large uncertainties can still exist in certain regions and situations. Satellite pre-
cipitation products often incorporate conventional surface data to correct bias and
ensure consistency. For instance, the IMERG products combine precipitation esti-
mates from multiple satellites and gauge analyses to produce global precipitation
products. These products have been widely used for various applications, including
weather forecasting, flood prediction, and water resource management [24].

Not only satellite retrievals are enhanced using multi-source products. The merg-
ing of rain gauge networks and radar measurements is done to improve the accu-
racy of rainfall estimates. Rain gauges measure precipitation at a single point, while
radars provide volumetric measurements of precipitation over a large area. By com-
bining the two, a more accurate representation of precipitation can be achieved.
However, there are challenges in merging the two datasets due to differences in
spatial and temporal scales and biases in the measurements themselves [5].

To integrate data from various sources like rain gauges, radar, and satellites,
one approach involves using statistical methods. This includes techniques such
as bias correction, Kriging-based approaches, linear regression, geographical differ-
ence analysis, Bayesian combination, Kalman filter calibration, and geographically
weighted regression. For instance, methods like weighted averaging or Bayesian
merging allocate weights to each QPE based on its reliability and accuracy, resulting
in a unified precipitation estimate. However, considering the uncertainties in each
QPE and the combination process is crucial. These uncertainties can stem from mea-
surement errors, sampling discrepancies, or interpolation issues. Thus, it’s essential
to both quantify these uncertainties and factor them into the integration process to
ensure dependable and precise QPE outcomes [11, 68].

1.3 Machine Learning Techniques for QPE

Conventional QPE methodologies, encompassing gauge, radar, and satellite-based
techniques, often encounter challenges in accuracy and dependability, especially in
intricate terrains or during severe weather patterns. Their inherent limitations arise
from reliance on mathematical relationships and stringent assumptions.

With the capability to discern patterns among multiple estimates and formu-
late a unified product, machine learning (ML) offers a promising avenue to bypass
some of the restrictions of traditional approaches. Recently, the application of ML
for QPE has gained traction, consistently demonstrating enhancements in the preci-
sion and trustworthiness of precipitation evaluations. Distinctly advantageous, ML
can adeptly handle complex, nonlinear relationships without the need for detailed
statistical models. It’s adaptive, able to learn from historical datasets and adjust to
evolving scenarios. Coupled with its prowess in efficiently crunching vast data vol-
umes, ML assures notable computational agility [38].

ML techniques, a subset of artificial intelligence (Al), possess the ability to learn
from data autonomously, enabling them to predict or decide without predefined
programming. Their applications span across diverse sectors, including meteorol-
ogy, hydrology, and climate science, with considerable promise evident in the do-
main of QPE. This section intends to furnish a comprehensive look into the ML
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techniques tailored for QPE. We will delve into the foundational principles, enu-
merate their strengths and shortcomings, and spotlight specific case studies where
they have been instrumental for QPE.

1.3.1 Brief Introduction to ML

The methods based on ML involve teaching a computer to recognize patterns in
data and make estimates or decisions based on those patterns. There are two main
types of machine learning: supervised learning and unsupervised learning. In su-
pervised learning, the algorithm is trained on a labelled dataset, where the correct
output is provided for each input. The goal is to learn a mapping between the in-
put and output so that the algorithm can make accurate estimates on new, unseen
data. In unsupervised learning, the algorithm is trained on an unlabelled dataset,
where the correct output is not provided. The goal is to learn the underlying struc-
ture of the data and identify patterns or groupings. The ML models can also be di-
vided into parametric and non-parametric. Parametric models make assumptions
about the distribution of the data and have a fixed number of parameters, while
non-parametric models do not make any assumptions about the distribution of the
data and have a flexible representation of the model. Parametric models are typically
simpler and more computationally efficient, while non-parametric models are more
flexible in capturing complex relationships in the data but can be computationally
expensive and prone to overfitting [4].

ML has been increasingly applied in various fields, especially in QPE, since tra-
ditional methods are limited or unreliable. ML algorithms can be used to estimate
precipitation based on a variety of input data sources, including satellite imagery,
weather radar, and numerical weather prediction models. Moreover, it can also be
used to improve the accuracy of precipitation estimates by identifying patterns and
relationships between different variables, such as temperature, humidity, and topog-
raphy. Commonly used supervised ML algorithms for QPE are [4]:

¢ Artificial Neural Network (ANN) is a commonly used ML technique for QPE.
It's a supervised learning algorithm inspired by the human brain’s structure
and function. It's composed of interconnected neurons organized into layers
that process input data. The activation function determines the neuron’s out-
put based on its inputs and bias term. During training, the network adjusts
the weights and biases of each neuron to minimize the difference between its
output and the desired output using backpropagation. ANNSs are known for
their ability to learn complex patterns from data and achieve high accuracy.
However, they can be computationally expensive and challenging to interpret
in some applications.

¢ Support Vector Machine (SVM) is a type of supervised machine learning algo-
rithm used for classification and regression tasks. SVMs find the hyperplane
that best separates the data into different classes or predicts the target variable
in regressions. They can handle non-linearly separable data by using a kernel
function. SVMs are known for their excellent generalization performance but
can be computationally expensive for large datasets and sensitive to hyperpa-
rameter tuning.

¢ Decision Trees (DT) are a type of supervised machine learning algorithm used
for classification and regression tasks. They use a tree-like model to represent
decisions based on input data features. The tree is constructed by recursively
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splitting the data into smaller subsets based on the value of a selected feature
to maximize information gain or minimize impurity. DTs are easy to interpret
and visualize but can be prone to overfitting. Ensemble methods like Random
Forest (RF) and Gradient Boosting (GB) are often used to improve their perfor-
mance. Random Forest combines multiple trees trained on different subsets
of the data and features, while Gradient Boosting builds trees sequentially to
correct errors. Random Forest is typically used for interpretability and speed,
while Gradient Boosting is used for high accuracy.

* Logistic and Linear Regression are both types of supervised machine learning
algorithms used for regression and classification tasks. Linear Regression is
used for predicting a continuous output variable, while Logistic Regression
is used for predicting a binary output variable. Both use a cost function and
optimization algorithm to adjust their parameters during training.

¢ K-Nearest-Neighbour (KNN) is a non-parametric supervised ML algorithm
used for classification and regression tasks. It classifies a new data point based
on the class that appears most frequently among its K nearest neighbours in
the training set. KNN is simple and easy to implement but can be sensitive
to the choice of the distance metric and the number of neighbours. It can be
useful in applications where a simple and interpretable model is desired and
when the data lacks a clear linear separation.

There are many examples of QPE products that utilize ML algorithms to improve
the accuracy and reliability of precipitation estimates. Each product has its unique
strengths and weaknesses, and the choice of which product to use depends on the
specific needs and applications of the user. For example, IMERG uses a combination
of satellite data and gauge observations to estimate precipitation on a global scale.
IMERG uses a combination of physical models and machine learning algorithms to
improve the accuracy of its estimates. PERSIANN-CCS - Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks-Cloud Classi-
fication System - is a QPE product developed by the University of California, Irvine.
It uses a combination of satellite data and ML algorithms to estimate precipitation.
PERSIANN-CCS is known for its high accuracy and ability to estimate precipitation
in regions with limited gauge observations. CHIRPS - The Climate Hazards Group
InfraRed Precipitation with Station data - is a QPE product developed by the Climate
Hazards Group at the University of California, Santa Barbara. It uses a combination
of satellite data and gauge observations to estimate precipitation on a global scale.
CHIRPS uses ML algorithms to interpolate gauge data and fill in gaps in the satellite
data, improving the accuracy of its estimates [68].

Advantages and Limitation of ML methods

Using ML in QPE can lead to many advantages [38]. ML algorithms can learn pat-
terns and relationships between different variables in precipitation data that may be
difficult or impossible for humans to identify. As a result, ML algorithms can often
provide more accurate precipitation estimates than traditional methods. ML algo-
rithms can process large amounts of data quickly and efficiently, making it possible
to analyze data from multiple sources and generate precipitation estimates in near-
real-time. They can be applied to a variety of input data sources, including satellite
imagery, weather radar, and numerical weather prediction models. This flexibility
allows for more comprehensive and accurate precipitation estimates, even in regions
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where traditional measurement methods are limited or unreliable. ML algorithms
can adapt to changing precipitation patterns and weather conditions, allowing for
more accurate and timely precipitation estimates in both short-term and long-term
forecasting.

However, ML models still have some challenges to be addressed [4]. The accu-
racy of ML algorithms depends heavily on the quality of input data. If the input
data is incomplete, inaccurate, or biased, the ML algorithm may produce inaccurate
or unreliable precipitation estimates. ML algorithms require large amounts of data
to train and validate the model, which can be a challenge in regions where data is
limited or difficult to obtain. Additionally, the complexity of their operations can
hinder the identification and correction of model errors or biases. ML algorithms
often lack interpretability, making it challenging to discern the reasoning behind a
specific precipitation estimate. When the model is overly complex and fits the train-
ing data too closely, the model can be prone to overfitting, which can lead to poor
performance on new, unseen data. Lack of standardization in ML can yield biased
models, especially when trained on mismatched data sources. Ensuring data con-
sistency often requires intensive preprocessing. For optimal QPE results, a unified
guideline for data handling and model tuning is essential. Reproducibility is crit-
ical in ML because it allows others to verify the results and test the validity of the
model. However, reproducing the results of an ML model can be challenging due to
the complexity of the models, the randomness in the training process, and the use
of different hardware and software environments. Reproducibility can be improved
by documenting the code and using publicly available datasets in the training step
[9].

Despite these limitations, ML has the potential to significantly improve precip-
itation estimation accuracy, particularly in regions where traditional measurement
methods are limited or unreliable. As a result, researchers and practitioners are in-
creasingly turning to ML algorithms to improve QPE accuracy and reliability [38].

1.3.2 State of the art
Data Sources

We begin by examining the diverse data sources referenced in prior research for
QPE. The choice of data is often influenced by desired spatial-temporal resolutions
and data availability.

¢ Satellite-Based Data: Studies have leveraged IR, Near-IR, and VIS channels
from satellites such as MSG SEVIRI, Himawari-8 AHI, Fengyun-4A AGRI, and
GOES-16. The appeal of these sources lies in their fine temporal and spatial
granularity, enabling regional precipitation estimates [2, 16, 19, 48, 49, 60, 61,
70, 3, 44, 56, 8, 13].

* MW Channels: Deployed on LEO satellites like GMI on GPM, Aqua AMSR-E,
and others, MW channels detect precipitation particle size and shape, facilitat-
ing assessments of precipitation intensity and type [8, 35, 36, 57, 10].

¢ Radar-Based Data: Ground-based radar and DPR have furnished insights on
precipitation’s intensity, verticality, and movement. Both ground-based and

space-borne radar data have been harnessed as validation benchmarks for ML
models [13, 63, 45, 19, 10].
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* Rain Gauges & Disdrometers: Renowned for pinpoint accuracy, rain gauges
offer localized precipitation measurements. Disdrometers, meanwhile, eluci-
date the size distribution of precipitation particles. Both have played a pivotal
role as ground truths in ML model validation [13, 29, 48, 49, 61, 60, 70, 63, 56,
34, 45, 47].

¢ Precipitation Products: The literature references products like IMERG, CHIRPS
and PERSIANN-CDR for QPE [29, 3, 67, 28, 47]. Derived from satellite and
ground-based observations, these products offer varying spatial-temporal pre-
cipitation estimates. Notably, some have been utilized as benchmark data in
ML model training and evaluation [70, 57, 35, 67, 36].

* Soil Moisture Products: Satellite-based measures of soil water content serve
as indirect indicators of precipitation in some studies [29].

¢ Forecast & Reanalysis Data: Products like GFS, ERA, and MERRA, which
present also non-rain parameters like temperature and humidity, aid in under-
standing precipitation-friendly atmospheric conditions [70, 10, 34].

* Digital Elevation Models (DEM): Providing insights on regional topography,
DEMs are useful in pinpointing probable precipitation zones [47, 34, 67, 35, 3].

Spatial and Temporal Information

In QPE studies, spatial resolution significantly influences the accuracy and reliabil-
ity of precipitation estimates. Different data sources often lead to varying spatial
resolutions. Addressing this, some researchers have unified the data by reprojecting
maps onto a standard grid using techniques like cubic spline interpolation [34, 28],
bilinear resampling [44], and averaging [67, 35, 61, 8]. The resulting resolutions typ-
ically span 3 to 6 km [13, 8] or 0.05° to 0.25° [29, 19, 70]. An outlier in these studies is
[35], opting for a coarser 15 and 45 km resolution.

Another key consideration is parallax correction, which can impact QPE’s pre-
cision. Various methods have been employed to adjust for parallax, including ref-
erencing cloud top height [3] and aggregating radar pixels—5x5 for higher clouds
and 3x3 for others [49, 61]. However, many studies overlook the mention of parallax
correction.

Lastly, study areas in QPE research exhibit a broad range: from specific regions
[13, 29, 28, 47] to whole countries [67, 8, 16, 48, 57, 35, 44, 31, 45], and even broader
areas [70, 39, 3].

In QPE studies, the chosen time intervals critically shape the estimates” accuracy
and reliability. Studies have explored varied time intervals, from specific seasons
like the rainy season [13, 48, 60, 70, 3, 36, 39, 46], a single year [44, 8], multiple years
[48, 10, 35, 28, 47, 16], to particular rainfall events or non-consecutive days [34, 57,
45].

Temporal resolution varies: some studies capture data in sub-hourly intervals,
such as 10 or 30 minutes [2, 8, 13, 19], others opt for hourly [35, 34, 45] or daily
resolutions [29, 28, 47]. Moreover, models often differentiate based on time, discern-
ing between day and night [61, 60, 44, 31, 34, 56], or seasonally, like summer versus
winter [8].
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Samples and Classes

In QPE studies, preprocessing is pivotal as the quality of data samples directly af-
fects outcomes. Some studies pruned the sample pool due to data quality, missing
entries, or a pixel-per-scene threshold [8, 3, 63, 16, 35, 44]. Techniques like rain or
cloud masking [44, 16, 70, 35, 67], random undersampling [10], and grayscale level
reduction [44] have been employed for computational optimization. Data normal-
ization [3, 36] and cross-validation during training or hyperparameter adjustment
are also common procedures [61, 63, 34, 45, 44, 36].

For classification in QPE, varied classes are used. Some studies differentiate sim-
ply between rain and no rain [48, 67], others between stratiform and convective rain
[61, 10]. Rain rate categories range from general classifications like light to heavy
[29, 49, 70] to detailed divisions based on radar reflectivity intervals [2, 48]. To tackle
class imbalances, approaches like SMOTE oversampling [70, 46], random undersam-
pling [13, 3, 10], and bootstrap resampling [10] have been used.

Features

In QPE studies, satellite-based features predominantly inform precipitation esti-
mates. Researchers commonly use spectral data like Tb, reflectances, and related
derivatives from IR, Near-IR, water vapour, and VIS channels [2, 8, 16, 19, 13, 48, 49,
70,3, 67,44, 56, 34, 39, 31, 46], as well as MW channels [8, 57, 10, 35, 36]. From spec-
tral data, various cloud attributes—like water path, type, mask, temperature, and
texture—were extracted [16, 48, 61, 60, 3, 34, 39, 31, 46]. For texture analysis, features
such as homogeneity and contrast were derived from the grey-level co-occurrence
matrix, and entropy from the grey-level difference vector [61, 60, 44, 56, 39]. Soil
moisture [29] and surface emissivity [10] also served as satellite-based predictors in
some studies.

Furthermore, features span a wide range of sources to train ML models. From
Rain gauges, metrics like rainfall intensity and the proximity of gauges to a given
pixel are utilized [13, 47]. Data from radar, such as Surface Rain Intensity and Re-
flectivity at various elevations, offer additional insights [13, 45]. Combined precipi-
tation products also contribute to the feature set [29, 28, 47].

Geographic information, which encompasses land-water differentiation, eleva-
tion, and various topographical indices, is integrated into the models [3, 35, 67, 34,
47]. Spatiotemporal features, such as the solar zenith angle and localized time and
positioning data, play a role in these studies [8, 13, 70, 3, 10, 35, 34]. Additionally,
Weather parameters, ranging from temperatures at various altitudes to metrics in-
dicating atmospheric stability, enrich the ML models [70, 10, 34, 46].

ML Models

In QPE research, ML models cater to both classification and regression challenges.
For classification, models such as logistic regression [3, 10], K nearest neighbors [2],
multilayer perceptron [8, 48, 61, 3, 10, 44], and others including random forest and
support vector machine [19, 70, 10, 60, 61, 67] have been deployed. For regression,
tools such as K nearest neighbor [28, 45], linear regression [49, 3, 28], and several
others, including multilayer perceptron and gradient boosting [48, 57, 3, 44, 36, 28,
45, 39, 36], have been utilized.

While many researchers have embraced hyperparameter tuning using methods
like grid search [57, 36, 28], others have opted for default ML function parameters.
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Moreover, feature selection plays a crucial role in enhancing model efficiency.
Approaches include feature ranking [67, 35, 63, 46], selective feature utilization [44],
inter-feature correlation assessments [36], and principal component analysis [39].

Performance Assessment

Performance in QPE models is assessed using a variety of metrics tailored for both
classification and regression tasks. Classification metrics encompass a wide range,
from the probability of detection and false alarm ratio to more specialized metrics
like the equitable threat score and Area Under the Curve of the Receiving Operat-
ing Curve. Similarly, regression tasks might involve the use of simple metrics like
the correlation coefficient, and more advanced ones, such as Kling-Gupta efficiency,
among others.

The actual performance of these QPE models doesn’t remain limited to a singular
context. Various conditions are tested, such as: 1) Different altitudinal conditions
[67]. 2) Surface variations like terrestrial, aquatic, or coastal zones [36, 8, 46]. 3)
Different climatic zones [28]. 4) Locale variations, such as urban vs. rural settings
[34].

The evaluation often includes analyzing accumulated rain rates over different
timeframes, ranging from short durations like 3 hours to longer ones, like a month.
This aids in comparing rain gauges and observing temporal trends [48, 61, 67, 56].
To test resilience, some studies have incorporated Gaussian noise into their datasets
[36]. Unique approaches, like calibrating the probability density function of model
outputs, have been implemented in some research [39]. Rain rate retrieval can also
be categorized into various classes for a more detailed analysis [29]. Lastly, a bench-
marking approach is common, where new models are pitted against previously es-
tablished ones from the literature to ascertain their relative efficacy.
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Chapter 2

Materials & Methods

2.1 Case Study Description

Vietnam is a long, narrow country in Southeast Asia, stretching over 1,600 kilometres
from north to south. It has a diverse climate and geography, with many ecosystems
and natural resources. The study specifically focuses on the wet season, as this is the
time when the country is most vulnerable to heavy rainfall.

2.1.1 Vietnam’s Climate

Vietnam has a unique geographical and climatic profile, situated between two promi-
nent monsoon regions: the South Asian and East Asian monsoons. Stretching from
low-lying plains to mountainous terrains, the country experiences a tropical mon-
soon climate characterized by seasonal shifts in weather patterns. The land is abun-
dant with water resources, including nine major river systems and two significant
gulfs, making hydrology a key issue for the region. During the summer months, the
South Asian monsoon dominates the climate, bringing hot and wet conditions, es-
pecially to the southern parts of the country. This monsoon is influenced by various
atmospheric pressure centres like the Asiatic Low and the Australian High. These
conditions contribute to tropical cyclones, a common hazard during this season. On
the other hand, the winter months, stretching from November to March, are affected
by the cold and dry East Asian monsoon. Cold surges originating from the Siberian
High significantly lower temperatures in Vietnam, particularly in the northern and
central regions. The rainy season usually starts in May and ends in October, al-
though there are variations depending on the region within Vietnam. Overall, the
rainy season contributes to over 80% of the annual rainfall in the country [51].

In Figure 2.1, the right-hand plot distinctly illustrates the annual mean climato-
logical patterns for temperature and precipitation. The data reveals that the wet sea-
son, spanning from May to October, coincides with the period of highest mean tem-
peratures, ranging between 25 to 27.5°C. Conversely, the dry season from November
to April experiences the lowest mean temperatures, falling within a range of 20 to
25°C.

The left-hand plot of Figure 2.1 provides a comprehensive visualization of Viet-
nam’s diverse climate regions using the Koéppen-Geiger climate classification. The
northern areas predominantly feature a temperate climate characterized by dry win-
ters and hot summers, though higher altitudes experience milder summers. The cen-
tral lowlands primarily exhibit a tropical climate, notably monsoonal and, to some
extent, rainforest conditions. In contrast, the southern regions are largely influenced
by a tropical monsoon climate, with pockets of temperate conditions corresponding
to the highlands.
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Képpen-Geiger climate classification map for Vietnam (1980-2016)

Monthly Climatology of Mean-Temperature and Precipitation in
Vietnam from 1991-2020
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FIGURE 2.1: Left: Koppen-Geiger climate classification map for Viet-

nam (1980-2016) [1]. 1-km resolution climate maps are available here:

https://www.gloh20.org/koppen/. Right: Monthly Climatology of

Mean-Temperature and Precipitation in Vietnam from 1991-2020. Im-

age taken from https://climateknowledgeportal .worldbank.org/
country/vietnam.

2.1.2 Study period

The year 2020 was marked by an unprecedented frequency of tropical cyclones af-
fecting Vietnam. A total of ten major cyclonic events—Sinlaku, Noul, Linfa, Nangka,
Saudel, Molave, Goni, Atsani, Etau, and Vamco—impacted the country (see Figure
2.2 for chronological order and Figure 2.3 for their respective tracks). Each of these
storms was remarkable for its intensity, accompanied by exceptional levels of pre-
cipitation and elevated wind speeds. The month of October, in particular, witnessed
a surge in severe meteorological incidents with devastating humanitarian and finan-
cial impacts [37].

In October 2020, the province of Thua Thien Hue and other regions in central
Vietnam were severely affected by a sequence of tropical cyclones, including Linfa,
Nangka, Ofel, Saudel, and Molave. This spate of storms caused unparalleled flood-
ing and landslides. According to the Vietnamese Center for Disaster Prevention
and Search and Rescue, tropical storm Linfa established a new rainfall record, with
accumulations reaching up to 2,290 mm in Thua Thien Hue [52]. Notably, this ex-
treme meteorological activity culminated in the loss of over 30 lives, the submersion
of hundreds of thousands of residences, and financial damages estimated at $86.29
million [15]. Typhoon Molave was the fourth event in this series, with winds of ap-
proximately 161 km/h. This resulted in extensive structural damage, including the
destruction of 90,000 homes, and also triggered several landslides. During this pe-
riod, the rainfall levels in central Vietham were without precedent; Danang recorded
a total monthly rainfall of approximately 1.52 meters, while Hue reported an even
more staggering 2.61 meters [33]. At the end of October, Super Typhoon Goni made
landfall, albeit in a weakened state, becoming the fifth cyclone to impact Vietnam
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within a single month. Despite its diminished intensity, Goni caused unusual flood-
ing in coastal cities like Nha Trang and Quy Nhon, thereby worsening the existing
hydro-meteorological crisis [33].

Given the unique meteorological characteristics exhibited during this period, it
serves as an invaluable case study for exploring the challenges of QPE in tropical
cyclones affecting Vietnam. Consequently, the training dataset for the random forest
model was deliberately selected to span the period from October 1 to October 26,
2020. The testing dataset covers the interval from October 27 to October 31, 2020, as
delineated by the grey boxes in Figure 2.2.

o) I O
Storms

Sinlaku Noul Linfa Saudel  Goni Etau
Nangka Molave Atsani Vamco
| | | | ]
01 Aug 2020 01 Sept 2020 01 Oct 2020 01 Nov 2020 1 Dec 2020

FIGURE 2.2: Coloured boxes show the chronological sequence of

tropical storms impacting Vietnam in 2020, each annotated with its

maximum sustained wind speed. The grey boxes within the figure

denote the divisions between the training and testing datasets used
for the random forest models.
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FIGURE 2.3: Typhoon tracks affecting Vietnam in 2020 [55].
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2.2 Datasets

In this section, we present the datasets utilized for the analysis. Firstly, we illustrate
the geostationary satellite data employed for QPE in the Vietnam region. The satel-
lite data underwent calibration using radar data, which served as our ground truth.
Lastly, we validated the ML model against pluviometer data, considered the gold
standard, and compared its accuracy with other rainfall products.

2.2.1 Satellite Data

The Chinese Fengyun-4A (FY-4A) satellite was chosen for its alignment with Viet-
nam’s longitude, notably minimizing parallax error compared to Hanoi’s longitude
of 106°E. Despite similar capabilities across regional geostationary satellites, FY-4A’s
position at 104.7°E negates the need for parallax correction, ensuring more accurate
data for our analysis.

The sensor employed for precipitation estimation is the Advanced Geosynchronous
Radiation Imager (AGRI). As detailed in Table 2.1, AGRI is capable of measuring ra-
diances across 14 distinct channels, ranging from 0.47 um to 13.5 ym. The spatial
resolution varies from 0.5/1 km for the VIS and near-IR (NIR) channels to 2-4 km
for the IR channels. Each channel is designed to retrieve specific types of infor-
mation, ranging from cloud and vegetation coverage to water vapour and surface
temperature.

The first six channels are categorized as part of the primary group of Visible
channels, given that their units are specified in Reflectance (%). It’s worth noting,
however, that channels 4, 5, and 6 actually belong to the shortwave IR spectrum.
Channels 7 to 14 are IR channels, expressed in Tb (K), encompassing mid-wave,
longwave IR, and water vapor (WV) channels.

Channel Type Central Bands Spatie.ll Main
wavelength resolution purpose

1 VIS/NIR 0.47 ym 0.45~0.49um 1 km Aerosol
2 VIS/NIR 0.65 um 0.55~0.75um 0.5-1 km Fog, Cloud
3 VIS/NIR 0.825 ym 0.75~0.90um 1 km Vegetation
4 Short-Wave IR | 1.375 um 1.36~1.39um 2 km Cirrus
5 Short-Wave IR 1.61 ym 1.58~1.64um 2 km Cloud, snow
6 Short-Wave IR 225 um 2.1~2.35um 2-4 km Cirrus, aerosol
7 Mid-Wave IR 3.75 ym 3.5~4.0um (high) 2 km Fire
8 Mid-Wave IR 3.75 um 3.5~4.0pum (low) 4 km Land surface
9 \4A% 6.25 um 5.8~6.7um 4 km High level water vapour
10 WV 71 um 6.9~7.3um 4 km Middle level water vapour
11 Long-Wave IR 8.5 um 8.0~9.0um 4 km Water vapour, cloud
12 Long-Wave IR 10.7 ym 10.3~11.3um 4 km Surface temperature
13 Long-Wave IR 12.0 ym 11.5~12.5um 4 km Surface temperature
14 Long-Wave IR 13.5 ym 13.2~13.8um 4 km Cloud thickness

TABLE 2.1: Main characteristics of all the channels available in FY-4A
AGRI sensor. Information is taken from the official website of the Na-
tional Satellite Meteorological Center: https://fy4.nsmc.org.cn/
nsmc/en/instrument/AGRI.html. VIS: Visible; NIR: Near Infrared;
IR: Infrared; WV: Water Vapour.
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FIGURE 2.4: VIS (upper plot) and IR (lower plot) Channel maps for a
specific time step.
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In this study, the values from these channels serve as features for our ML models,
as will be detailed in Section 3.1.1 of the Results & Discussion Chapter. For the
scope of this introductory section, we present snapshots of channel data categorized
into Infrared (IR) and Visible (VIS) spectra. These snapshots are depicted in Figure
2.4. This visual representation allows us to observe the distinct information each
channel captures. While some channels accentuate cloud structures, others are more
revealing of terrestrial characteristics.

2.2.2 Rain Products: Ground Reference Data

In this section, we provide an overview of the precipitation products employed in
this study. Particular emphasis is placed on the radar data, which serves as the
ground truth for calibrating the RF models. Additionally, we discuss the rain gauges
used for subsequent validation, as they are often considered the gold standard in
QPE. We also explore other rain products available in Vietnam to evaluate the effec-
tiveness of the model developed in this study. A summary of the key characteristics
of all these precipitation products can be found in Table 2.2 at the end of this Section.
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FIGURE 2.5: Location of the radars and rain gauges over Vietnam.
Image taken from [59].

Radar

In 2020, Vietnam’s weather radar infrastructure featured 5 dual-polarization units
situated in cities such as Viet Tri, Nha Trang, Quy Nhon, Pleiku, and Pha Din Pass.
Additionally, the network included 3 single-polarization C-band radars in Dong Ha,
Tam Ky, and Nha Be, along with 2 single-polarization S-band radars in Phu Lien
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and Vinh. The data for this study was sourced from these 10 radar locations and
was partly drawn from the outcomes of the Vietham National Research Project.

Prior to integrating this radar data into QPE calculations, a quality assurance pro-
cess was undertaken to eliminate basic errors. The radar-based precipitation assess-
ments were created using one-hour cumulative radar intensity, as per the original
methodology developed by the Japanese Meteorological Agency [40]. This method
was further tailored for the Vietnamese context by [26] and the Authority of Mete-
orology and Climate. These customizations included decoding the initial raw radar
data and adjusting specific parameters.

The radar data offers hourly coverage across most of mainland Vietnam at a 1-
kilometer resolution. Instrument density is at its highest in the Hanoi and Quy Nhon
regions, whereas it is less comprehensive in central Vietnam and in the Ho Chi Minh
area in the south (as illustrated in Figure 2.5).

Rain Gauges

The Vietnamese rain gauge network is a collaborative effort involving multiple enti-
ties, including the Viet Nam Meteorological and Hydrological Administration, as
well as other partners. This expansive network features around 1300 automatic
weather stations (AWS) scattered throughout the country, as shown in Figure 2.5.
However, the network’s density varies and is subject to occasional interruptions, re-
sulting in an operational count of approximately 800-900 rain gauges at any given
moment. These gauges take measurements every 10 minutes, which are then aggre-
gated to calculate hourly average rainfall rates in millimetres per hour (mm/h).
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FIGURE 2.6: Left: Shortest Distance in Kilometers to the Nearest Pop-
ulated Grid Cell with an AWS. Right: Frequency Distribution of Grid
Cells Containing 1, 2, 3, or 4 AWS Units.

On average, the closest operational rain gauge is situated about 8.6 kilometers
away, with the majority of the AWS spaced less than 30 kilometers apart. This dis-
tribution is depicted in the left-hand plot of Figure 2.6, which shows the minimum
distance to the nearest populated grid cell. The right-hand side of Figure 2.6 illus-
trates the distribution of AWS within the FY-4A satellite grid used in this study.
Specifically, the vast majority of grid cells (1083) contain just one AWS, while 69 cells
contain two, six cells have three, and one cell contains four AWS.
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We considered only those grid cells that had at least one rain gauge. A signif-
icant majority of AWS stations remained operational for over 80% of the research
duration. However, there was a minor subset, comprising about 10%, that delivered
valid data for less than half of the study period; these stations were subsequently
omitted from the AWS dataset. If more than one AWS were present within a grid
cell the average value was considered.

2.2.3 Other Rain Products
Geostationary satellite-based products

GeoKompsat-2A (GK-2A), operated by the Korea Meteorological Administration’s
National Meteorological Satellite Center, has been functional since December 2018
at longitude 128.2° E. The satellite’s Advanced Meteorological Imager (AMI) has 16
spectral channels ranging from visible to thermal infrared (0.47 to 13.3 um). It offers
a 2 km spatial resolution at nadir for its infrared channels and scans the full disk
area every 10 minutes. GK-2A’s rain rate estimation employs Tb from five specific
bands and utilizes probability density functions from recent GPM-DPR data to im-
prove precipitation estimates [69]. The data for this study is sourced from the AMI
Level-2 rainfall rate product, version 1.6.0.4, with technical documentation primarily
available in Korean.

FY-4A AGRI characteristics are described in Section 2.2.1. While the specific al-
gorithms used by FY-4A are not publicly disclosed, it’s noted that the current version
does not include a calibration step, and future updates may incorporate radar mea-
surements [69]. The rainfall product from FY-4A is known as "FY4A AGRI L2 QPE"
and is generated by version 1.0 of the respective software.

IMERG

The IMERG algorithm, version 3IMERGH_6.3, from the GPM Mission, offers surface-
level precipitation estimates by integrating data from multiple satellites in both low-
earth and geostationary orbits. These data are captured using the IR and MW parts
of the spectrum. Version V06B of the IMERG products consists of three distinct runs:
Early, Late, and Final. For a detailed explanation of the IMERG algorithm, refer to
[20].

The complexity of the calibration procedures and quality controls escalates from
the Early run to the Final run, accompanied by an increase in latency. The Early
run, made available four hours post-data collection, is solely dependent on satellite
data. The Late run, released 14 hours after data collection, incorporates additional
satellite overpass data that were unavailable during the first four hours. Lastly, the
Final run is published after a lag of 3.5 months and undergoes calibration with the
Global Precipitation Climatology Centre’s monthly monitoring analysis.

For the purposes of this study, we focused on the Early and Final runs, follow-
ing the analysis adopted in [59]. The Early run offers a near-real-time (NRT) amal-
gamated product, while the Final run delivers the most accurate satellite-derived
precipitation estimates for the region. We utilized the "precipitationCal" variable to
extract rainfall data, which is available on a 0.1° x 0.1° grid on an hourly basis.

ERA5-Land

ERAS5 is a cutting-edge reanalysis product created by the European Centre for Medium-
Range Weather Forecasts (ECMWF) [18]. One of its sub-components, ERA5-Land, is
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specifically tailored to capture land-based variables. In this research, we utilized the
"Total Precipitation" variable from ERA5-Land, which features a one-hour temporal
resolution and a spatial resolution of 0.1°.

This Total Precipitation variable in ERA5-Land is calculated as the sum of two
components: large-scale precipitation, computed by the model at scales beyond the
individual grid box, and convective precipitation, which is computed within smaller
spatial scales by the convective scheme of the ECMWF Integrated Forecasting Sys-
tem. To align with ERA5-Land’s finer spatial resolution, the original precipitation
data from ERA5, with an approximate resolution of 31 km, is rescaled using linear
interpolation based on a triangular mesh.

It’s crucial to recognize that the Total Precipitation figure from ERA5-Land rep-
resents the water depth distributed uniformly across each grid box. Consequently,
this value may not align precisely with point-specific, instantaneous observations.

Overview of Key Rain Product Features

Dataset Period Gnd. Tempqral Coverage Data Latency
resolution sampling source
. ) point . o . ~10 min/
Rain Gauges | 2008 (avg. dist.: 8.6 km) 10 min/1 hour | country-wide tipping bucket 30 min-1 hour
Radars 2019 - 1 km 1 hour country-wide C- and S-band 15-30 min
FY-4A 2017 - 4 km (nadir) 1h/3h/6h full disk VIS-IR NRT
GK-2A 2018 - 2 km (nadir) 10 min full disk IR+DPR NRT
IMERG 2000 - 0.1°x0.1° 30 min 90°N-90°S MW+DPR+IR 4 hours
Early run
IMERG 15000 - 0.1°x0.1° 30 min 90°N-90°s | MWHDPRHR 5 5 onths
Final run +rain gauges
ERA5-Land | 1950 - ~9 km 1 hour global ECMWF model | 2-3 months
October . from 7°N-101°E
FY-4A RF 2020 4 km (nadir) 1 hour to 24°N-111°E FY-4A+radars hours

TABLE 2.2: Overview of the key attributes of the precipitation data

sets used for calibration, test and validation of the ML models. The

information is obtained here [59]. The final row additionally provides

details on the precipitation product obtained from the RF models in
this study.

The key attributes of various rain products are summarized in Table 2.2. The table
outlines essential characteristics such as the original period of data availability, grid
resolution, temporal resolution, spatial coverage, and data source—specifying the
instruments, spectral channels, or models used to derive the product. Additionally,
the table indicates the latency required to convert raw data into the final rain prod-
uct. It’s noteworthy that rain gauges, radar, and certain satellite products exhibit
low latency, often approaching near-real-time capabilities, due to minimal process-
ing requirements. In contrast, products like IMERG and ERA necessitate extended
processing time.

The final row of Table 2.2 contrasts these features with the product developed in
this study, referred to as FY-4A_RF. This product leverages FY-4A satellite data via an
RF model. Specifically, the study employs a spatial resolution of 4 km (native to the
FY-4A) and a temporal resolution of 1 hour, focusing on the Vietnam region using a
radar mask, since the radar product was used for calibration. While the initial model
training takes several hours (accounting for data download, preparation, feature
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extraction, and model preprocessing and training), subsequent product generations
are faster, with latency mainly stemming from executing the ready-to-use model for
estimates and the preparation of new unseen data.

2.24 Digital Elevation Model
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FIGURE 2.7: Left: DEM map with radar mask applied, enhanced with

hill-shading to better highlight mountainous regions. Right: His-

togram illustrating the frequency distribution of altitudes above sea
level, using the same colourmap as employed in the map.

The DEM was provided with an initial spatial resolution of 0.04° in both latitude
and longitude. Although this resolution is relatively low, it originates from NASA’s
ASTER Global Digital Elevation Model V003. The native resolution of the ASTER
product is one arc-second, equivalent to about 30 meters at the equator. This indi-
cates that the DEM has undergone some form of preprocessing to achieve its current
resolution. For more details about the original data source, you can refer to the
NASA ASTER website (https://asterweb. jpl.nasa.gov/).

The initial DEM image covered Southeast Asia but was cropped to emphasize
Vietnam. We used a version of the DEM, aligned with the 4 km FY-4A grid and
masked using a radar mask. Figure 2.7’s left panel showcases this tailored DEM
for Vietnam, while the right displays an altitude distribution. Vietnam’s topogra-
phy is mostly under 1000 meters, with exceptions reaching 2500 meters. Fansipan
Mountain, the nation’s tallest at 3,144 meters, isn’t depicted likely due to the DEM’s
coarseness. The histogram also shows a peak at sea level, reflecting marine areas.

2500
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2.3 Analysis Workflow

This section is designed to outline the analytical process in a step-by-step manner.
We begin with preliminary procedures that include quality assurance and outlier
removal from the dataset. Subsequently, we delve into feature engineering, which
prepares the data for the ML algorithms. The setup of the RF model, including both
classification and regression tasks, is then elaborated upon. Finally, we evaluate the
performance of these models using a variety of metrics. All the main analysis steps
are reported in Figure 2.8 and will described in detail in the next sections.

- Download Data - Stacked Models Algorithm
- Spatiotemporal Resolution - Features Selection
- Quality Check - Models Training
- Day-Night Division - Models Testing
Preprocessing Random Forest
Features Engineering Validation

- Compute Features
- Check Single Features

- Spatial Maps and Distribution
- Performance Metrics

- Check Features Relationship
- Create Feature Matrix

- Scatterplots
- Time-Averaged Comparison

FIGURE 2.8: Diagram Illustrating the Key Phases of the Analysis

Workflow: From Raw Data Acquisition to Quality Assessment, Fea-

ture Engineering, Random Forest Configuration, and Final Product
Validation.

The analyses were performed on a workstation featuring a 64-bit architecture
(x86_64) equipped with an Intel(R) Core(TM) i7-7700 CPU, consisting of 8 CPUs
operating at a base frequency of approximately 800.819 MHz. This system boasted
15GB of RAM and operated on Ubuntu 18.04.6 LTS.

The primary software tools utilized were based on Python 3.10. Key among these
was the Dask package (https://docs.dask.org/en/stable/), which facilitated ef-
ficient processing of sizable datasets without exhausting memory. The Satpy li-
brary (https://satpy.readthedocs.io/en/stable/index.html) was employed for
FY-4A data manipulation, while the machine learning workflows leveraged the ca-
pabilities of scikit-learn (https://scikit-learn.org/stable/index.html). Addi-
tionally, general computations and data visualizations were achieved using the numpy,
scipy, pandas, matplotlib, and seaborn libraries.

2.3.1 Preprocessing Steps

First, we downloaded the data files, checking and redownloading any corrupted
files. We then assessed the dataset for missing temporal intervals and visualized data
distribution to detect outliers, using a log-scaled density function and a temporal
trend plot. We also produced spatial snapshots at certain time intervals. In the next
subsection, we detail the preprocessing for our primary datasets, FY-4A and radar,
which formed the foundation for our model training and testing.
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The additional rainfall products used exclusively for validation (AWS, IMERG
Early and Final, ERA5-Land, and the FY-4A and GK-2A rain products) were previ-
ously prepared for the study as cited in [59]. Therefore, no additional preprocessing
was required for this work.

FY-4A

After downloading the October 2020 files, we assessed for any gaps. Figure 2.9
shows the missing files in red on the left. While we have data for most hourly 15-
minute intervals, October 2nd and 3rd were exceptions with no available files. The
right side of the figure showcases the file distribution within each hour. Most files
fall within the hour’s first quarter (00:00 to 14:59), with a notable absence in the third
quarter (30:00 to 44:59).

File Coverage Interval Coverage

1 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 00:00-14:59 15:00-29:59 30:00-44:59 45:00-59:59
Hours (UTC) Quarter (UTC)

FIGURE 2.9: Left: File Coverage of FY-4A L1 data for October 2020.

A red square indicates a missing 15-minute interval file. Right: His-

togram illustrating the availability of files in each hourly quarter in
October 2020.

Subsequently, the data were spatially restricted to encompass the area of Viet-
nam, specifically bounded by the longitude and latitude coordinates:

lOI’lmm - 1010E, lﬂtmm - 7ON, lonmux - 1100E, latmax - 24ON (2.1)

To achieve greater temporal consistency and in alignment with the methodology
outlined in [59], we opted to rescale all data to a one-hour resolution by averaging
the values for all channels within each hourly time span.

Afterwards, we assessed the frequency of missing values for each channel of the
FY-4A data across all time steps within the Vietnam area. Bad-quality scan lines
are automatically masked and replaced with NaN ("Not a Number’) based on the
quality flags provided by the dataset. The findings are illustrated in Figure 2.10. No-
tably, the proportion of missing values is generally quite low, consistently falling be-
low 0.1. An exception occurred at a specific time—23:00 on October 8, 2020—where
channels 13 and 14 exhibited approximately 20% missing values. However, as this
anomaly was limited to a single time step, it is unlikely to impact the overall analy-
sis, given that grid cells with NaN values are excluded from the dataset.
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FIGURE 2.10: The graph displays the proportion of missing ('NaN’)

values for each FY-4A time step in October 2020. This proportion is

derived by comparing the number of 'NaN’" grid cells over Vietnam

to the region’s total cell count. This evaluation was conducted across
all 14 satellite channels.

Then, we focused on the VIS channels, calculating their hourly average through-
out the day. This helped determine when reflectance was under 5%, distinguishing
between daytime (with VIS channels) and nighttime (without VIS channels). As
shown in Figure 2.11, even the lowest average reflectance stayed above the 5% mark
from 00:00 to 09:00 UTC. The 09:00 UTC value, however, reflects an average for the
09:00 to 09:59 interval. Thus, we’ve defined daytime as 00:00 to 10:00 UTC and night-
time from 10:00 UTC to 00:00 UTC. In local terms, this equates to 7:00 AM to 5:00
PM. An unexpected peak between 15:00 and 18:00 UTC seems to be a data anomaly,
possibly due to an acquisition error. This doesn’t affect our analysis since the VIS
channels are excluded during that interval, which is considered nighttime.
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FIGURE 2.11: Daily Trend of VIS Channels: We averaged the values

at each time step for the entire October 2020. The coloured curves

show reflectance for each VIS channel (1-6), with black vertical lines
marking the transition between day and night.
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Radar

We reviewed the data for corrupted or missing files, finding 20 missing time steps.
Thus, out of a month’s 744 hours, 724 were processed successfully. We adjusted
the data resolution from 1 km to 4 km to align with the satellite grid, using linear
interpolation. The radar mask was also adapted to this grid for data filtering.

The histogram from the October 2020 rain gauge data, shown in Figure 2.12
(Left), reveals that most rainfall is under 100 mm/h, though events around 200
mm/h also occur. Given this distribution, setting a threshold of 150 mm/h for the
radar rain product is justified. To avoid potential outliers in the radar data within
this range, it’s prudent to stay below this threshold.

In order to distinguish between dry and wet rain rates, we examined the prob-
ability density function of radar data for rates below 1 mm/h, as illustrated in the
right-hand plot of Figure 2.12. We set the threshold at 0.1 mm/h, which serves as
a pivotal point between two different distribution regimes: a flat distribution that
likely represents noise and a decreasing distribution that is characteristic of actual
rain rates.

Rain Rate PDF
interp_raingauge_202010 histogram T

=== Thresheld wet/dry

Density

100 150 200 250

Precipitation Rate (mm/h) Rain Rate

FIGURE 2.12: Left: Precipitation Rate Distribution from Rain Gauge

Data, October 2020. Right: Precipitation Rate Distribution from

Radar Data, October 2020 (rates < 1 mm/h). The vertical red line
differentiates dry from wet rain rates.

2.3.2 Features Engineering

The features used in the RF model were carefully selected to capture a broad range
of information. They span from spectral characteristics to spatial and temporal vari-
ations, providing a comprehensive picture that enhances the model’s predictive ca-
pability. Together, these features create a multi-dimensional, comprehensive feature
space that aims to provide the RF model with the best opportunity for accurate esti-
mates.

* Spectral Channels:

Reflectance Values for VIS Channels (1-6): As indicated in Table 2.1, the model
utilizes values from the visible, near-infrared, and short-wave IR channels,
which are available as reflectances. These values play a key role in captur-
ing the characteristics of both the surface and the atmosphere during daylight
hours.
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Brightness Temperature for IR Channels (7-14): Brightness temperature from
infrared channels is used for features, allowing the model to account for ther-
mal variations. These are essential for understanding weather patterns and are
applicable for both day and night.

¢ Spatial Features:

Spatial Combination using a Sliding Window: To incorporate spatial context,
a sliding window approach was implemented. A window size of 5x5 pixels
was used to scan the data grid. From each window, two key statistics were
computed:

(1) Mean Value: The average of all the pixel values within the window.

(2) Standard Deviation: A measure of the dispersion of the pixel values within
the window.

These spatial features enable the model to understand local variations, enrich-
ing the feature space.

¢ Temporal Features:

For each pixel location, the difference between its value and the value at the
same location in the previous time step was calculated. This feature captures
temporal changes, adding a dynamic element to the model. Note that the first-
time step and any time step following a file gap are discarded to ensure con-
sistency in this calculation.

¢ Channel Differences:

Differences between all possible combinations of the IR channels were calcu-
lated. These features can capture interactions between different thermal prop-
erties, adding another layer of complexity to the model.

¢ Ancillary Data:

Digital Elevation Model. The DEM provides a static feature that represents the
elevation of each pixel location. It’s a crucial variable for understanding how
topography affects weather patterns and other phenomena.

Features Type Day | Night
Spectral Channels 14 8
Spatial Features 28 16

Temporal Features | 14 8
Channel Differences | 28 28
Ancillary Data 1 1
TOT 85 61

TABLE 2.3: Feature Count: Day vs. Night

Each feature was rigorously evaluated for its predictive utility. First, histograms
and average temporal trends were analyzed to assess the distribution and behaviour
of individual features over time. Second, to investigate the interdependence among
features, a correlation matrix was computed. This allowed us to identify highly
correlated features that might be redundant and could dilute the predictive power
of the model. After the preliminary assessment, the RF model yielded insights via
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its feature importance ranking, emphasizing the most pivotal features for precise
estimates. Feature selection was then executed using this ranking. In the subsequent
refinements of the RF model, only the top-ranked features were retained to enhance
the model’s efficiency, speed, and accuracy.

Details on the feature quality checks, the correlation matrix, and the feature im-
portance rankings and selection are elaborated upon in Chapter 3.

2.3.3 Machine Learning Models Setup

ML stands at the convergence of statistics, artificial intelligence, and computer sci-
ence, offering powerful tools for extracting meaningful insights from raw data. Within
the domain of QPE, ML techniques have the potential to revolutionize our under-
standing and estimation capabilities. In this research, we deploy a combination of
ML methods, specifically Random Forest Classifier (RFC) and Random Forest Re-
gressor (RFR), to enhance the quality of precipitation forecasts.

We posit that these advanced computational techniques are well-suited to handle
the inherent complexities of remote sensing data. This makes them a compelling
choice for rigorously testing and improving the reliability of various precipitation
measurement indices. The adaptability and robustness of these methods make them
particularly relevant for handling the diverse challenges presented by QPE.

For a comprehensive understanding of machine learning algorithms and their
implementation in Python through the Scikit-learn package, readers are referred to
the referenced textbook [50]

Random Forest

In the scope of this work, we leverage the RF algorithm as our primary supervised
ML model. RF is an ensemble-based algorithm built on decision trees (DT) [7, 6].
These trees are hierarchical models that recursively partition the feature space until
each region—termed a leaf—contains predominantly one target class.

In the development of our model, a conscious effort was made to counteract
overfitting, which is a common issue with individual DTs. By integrating an ensem-
ble of DTs, we fortified our model’s robustness. The ensemble approach of the RF
offers a substantial advantage: it averages the predictions across multiple DTs, lead-
ing to smoother decision boundaries and enhanced generalizability, as illustrated in
Figure 2.13.

Two pivotal elements underpin the effectiveness of the RF: bootstrapping and
bagging. Bootstrapping involves the random selection of data subsets for each DT,
ensuring diverse training sets. Bagging extends this concept to feature selection,
where not only are data instances randomly chosen but so are the features for every
DT. This dual randomness ensures that individual trees are distinct, contributing to
the model’s overall performance and resilience.

In the case of RFC, the Gini Impurity index serves as the default splitting crite-
rion. The Gini Impurity measures the homogeneity within a dataset and is used to
quantify how often a randomly chosen element from the set would be mislabeled if it
was randomly labelled according to the label distribution in the set. Mathematically,
the Gini Impurity G for a node containing N classes is calculated as follows:

G=1-Y p} (22)
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Here, p; is the probability of choosing an element belonging to class i within the
node. A Gini Impurity value of 0 indicates perfect purity (all elements are of the
same class), while higher values indicate increasing impurity. When constructing
the DT, the algorithm aims to partition the data in a way that minimizes the Gini
Impurity in the child nodes.

For RFR, the Mean Square Error (MSE) serves as the default splitting criterion.
MSE is a measure of the average of the squares of the errors between the observed
and predicted values. It is defined mathematically as:

1 .
MSE = = Y (vi—9:)?

i=1

(2.3)

In this equation, n is the number of observations, y; is the actual value, and #; is
the predicted value for the i'" observation. The goal is to minimize the MSE, which
would indicate that the model’s estimates closely match the actual data points. In
the context of RFR, each split aims to create child nodes with lower MSE values
compared to the parent node, thus refining the model’s predictive power.

In RF, feature importance (FI) is commonly evaluated using the Gini Impurity
Index or MSE method. This method gauges the utility of a feature by measuring
how frequently a feature is utilized to split the data and how effectively these splits
improve the model’s purity. Specifically, for every DT in the forest, each split’s con-
tribution to model purity is noted based on the feature responsible for the split. The
improvement is determined by assessing the difference in impurity (Gini impurity
for classifiers or variance for regressors) before and after the split, with this differ-
ence being weighted by the number of samples the split affects. By aggregating
these weighted improvements across all splits and all DTs where a particular feature
is utilized, an average importance value for that feature is derived, providing an in-
dication of its predictive power within the ensemble. It’s important to note that a
low FI score doesn’t necessarily imply the feature is uninformative; it may indicate
that another feature encapsulates similar information.
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FIGURE 2.13: Decision boundaries found by averaging the predic-
tions of five randomized DTs. Image taken from [50].

The parameters for the RF algorithm are adjustable to fine-tune the model’s per-
formance. We will adhere to the naming conventions established by scikit-learn’s
built-in functions for clarity and consistency.
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N_estimators

This parameter specifies the number of trees in the RF ensemble. A higher
number of trees generally leads to a more robust model but at the cost of longer
training times.

Min_samples_leaf

This parameter specifies the minimum number of samples required for a leaf
node. Smaller leaf sizes allow the model to capture more fine-grained patterns,
but this could lead to overfitting.

Min_samples_split

This parameter sets the minimum number of samples required to split an inter-
nal node. Higher values for ‘min_samples_split’ make the decision tree more
constrained, as it will then have fewer but purer nodes.

Max_depth

This parameter controls the maximum depth of each DT. If set to "None", the
nodes are expanded until they contain fewer than “min_samples_split’ samples
or until they are pure, meaning they contain samples from only one class.

Max_features

This parameter defines the number of features to consider when looking for the
best split. For classification tasks, the default is the square root of the number
of features, while for regression tasks, all features are considered by default.

Max_samples

This parameter sets the number of samples to be used for training each base
estimator. If set to "None" all samples are used.

Criterion

This parameter specifies the function used to measure the quality of a split in
the decision tree. For classification tasks, the Gini impurity is used by default,
while for regression tasks, the MSE is the default criterion.

Parameter Classifier Regressor
n_estimators 100 100
Max_depth None None
Min_samples_leaf 1 1
Min_samples_split 2 2
Max_features \/n_features | n_features
Max_samples None None
Criterion Gini MSE

TABLE 2.4: Default RF parameters from scikit-learn for our Classifiers
and Regressors.

The initial settings for the RF parameters deployed in our model’s first iteration
are outlined in Table 2.4. During preprocessing, which encompassed FI ranking and
feature selection, we adhered to the default RF model parameters. Our decision was
bolstered by the observation that FI ranking remained consistent even when key
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parameters were adjusted. In the final run, we fine-tuned a few parameters. We
set ‘min_samples_leaf’ to 3 to mitigate overfitting, and adjusted both ‘max_features’
and ‘max_samples’ to 0.5 to capitalize on the bagging and bootstrap traits of RE.

For feature selection, we employed the FI ranking derived from the default RF
parameters. To expedite computation, we trained using a subset of 10° randomly
selected samples, except in the case of distinguishing heavy from extreme rainfall
due to the scarcity of extreme values (see Table 2.5). Starting with the highest FI
features, we incrementally added one feature per cycle, monitoring score variations
on the test set. An optimal number of features for each RF model was then chosen
based on a visual review of all metrics (refer to Section 2.3.4).

In summary, our RF implementation proves to be a robust and scalable choice
for tackling the complexities inherent in QPE, offering an optimal balance between
model complexity, speed and predictive power.

Stacked Models Algorithm

In the data preparation stage of this work, there are two primary focus areas: fil-
tering the data and constructing the feature matrix. Filtering begins by selectively
removing dry data points, which not only lightens the computational load but also
helps to balance the dataset. Data points falling outside of a predefined radar mask
are also excluded to ensure the geographical relevance of the study. To synchronize
the temporal aspect, only time steps that are available in both satellite and radar
datasets are considered for analysis. In addition, a NaN mask is generated by iden-
tifying the intersection of missing or undefined values in both radar and satellite
data sources.

Turning to the feature matrix, the initial data dimensions are in the form ‘(num-
ber of features, number of times, number of latitudes, number of longitudes)’. This
multidimensional data is reshaped into a 2D matrix of dimensions ‘(number of fea-
tures, number of samples)’ to fit conventional ML frameworks. Following the re-
shaping, the feature matrix is standardized by removing the mean and scaling the
data to have a unit variance. This standardization is particularly important for algo-
rithms that are sensitive to feature scaling, ensuring that no individual feature has
an outsized impact on the ML model’s learning process. These preprocessing mea-
sures lay the groundwork for the RF model, ensuring that it receives well-balanced
and high-quality data for robust QPE.

Rain Classes (mm /h) Training Test

Day Night Day Night
Dry [0,0.1) 2332675 | 3348270 | 424284 | 617403
Wet [0.1,150) 2423595 | 3725638 | 213863 | 359649
Light [0.1,1) 1153884 | 1843756 | 96087 | 169813
Moderate [1,5) 882732 | 1308203 | 79344 | 131786
Heavy [5,30) 376463 | 555607 | 35240 | 54120
Extreme (30, 150) 10516 18072 3192 3930

TABLE 2.5: Rain Class Distribution for Train and Test Sets. Square
brackets include the boundary value, while round brackets exclude
it.
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FIGURE 2.14: Flowchart Illustrating the Multi-Layered Model Algo-
rithm: From Feature Matrix Construction to Predicting Rain Rates for
Specific Rain Classes Using Regression Techniques.

Table 2.5 presents the sample distribution across various rain classes for both
the training and test datasets during daytime and nighttime. These samples are
derived from grid cells that pass through radar mask filtering and other prepro-
cessing steps, and they are multiplied by the number of available time steps. The
table differentiates between ‘dry” and ‘wet’ classes based on a 0.1 mm/h threshold.
Subsequent rows focus solely on ‘wet’ classes, which are further categorized into
"Light” (0.1-1 mm/h), "Moderate’ (1-5 mm/h), "Heavy’ (5-30 mm/h), and "Extreme’
(30-150 mm /h). For the Random Forest Classifier, binary classifications are made be-
tween the following class pairs: ‘dry vs wet’, ‘light vs (moderate+heavy+extreme)’,
‘moderate vs (heavy-+extreme)’, and 'heavy vs extreme’. Our rain class delineations
were inspired by literature which typically categorizes rainfall as light, moderate,
or heavy [29, 49, 70]. However, we introduced an additional "extreme’ class to ac-
count for particularly severe rainfall events that can have significant impacts. While
these classes are inherently imbalanced, reflecting the natural distribution of rainfall
intensities, we refrained from performing class balancing. We removed some dry
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pixels to ease computational demands but retained the natural skewness in rain rate
distribution, aiming for a model attuned to real-world rainfall patterns.

We provide a detailed explanation of our stacked models algorithm implemen-
tation below. Once the Feature Matrix is prepared, the initial classification step
comes into play, partitioning the data into two main categories: dry conditions and
wet conditions. The data corresponding to dry are set to zero. Within the wet data
subset, a subsequent classification occurs, distinguishing the data into "light rain"
and the remaining instances.

Subsequently, the dataset labelled as "light rain" is employed to fine-tune the
Feature Matrix, rendering it suitable for the subsequent regression analysis aimed at
predicting light rain rates. Simultaneously, the rainfall instances categorized as ex-
ceeding the threshold for "light rain" become pivotal in filtering the Feature Matrix.
These filtered instances then undergo another classification phase, discerning them
into "moderate rain" and the remaining cases.

The outcomes attributed to the "moderate rain" classification are harnessed to
facilitate the regression analysis tailored to predicting moderate precipitation rates.
Consequently, the remaining data instances - those surpassing the "moderate rain"
threshold will extract the corresponding samples from the Feature Matrix. This ex-
traction yields the separation of data in "heavy rain" and "extreme rain". Then, ded-
icated regression analyses are undertaken for both the "heavy rain" and "extreme
rain" categories.

Each step in Figure 2.14 represents an RF model, a classifier (diamond shape) and
aregressor (round shape), respectively. They were previously trained independently
using separate datasets.

2.3.4 Performance Assessment

A variety of statistical metrics were utilized following the in-depth analysis per-
formed in [59]. To assess the accuracy of the RF precipitation product after classi-
fications, we employed a suite of five categorical indices. Moreover, we used six
continuous scores to evaluate the quality of the estimated rainfall fields at the loca-
tions of the rain gauges when regressions were employed.

Categorical Metrics

Categorical metrics are frequently employed to gauge the efficacy of a model or tech-
nique in identifying precipitation events. The dichotomy between rainy and non-
rainy conditions or two rain classes was established by setting a threshold on both
the observed and predicted rainfall data. Using this threshold, a 2x2 contingency ta-
ble was constructed by comparing instances where the measured data and estimates
either exceeded or fell short of the threshold. In Table 2.6 True positive (TP) or ’hits’
and True Negative (TN) or "correct rejections” occupy the principal diagonal, while
False Negative (FN) or ‘'misses” and False Positive (FP) or "false alarms’ are situated
elsewhere in the matrix. In our classifications, the negative class selections are: dry
(for dry-wet), light (for light vs. moderate-heavy-extreme), moderate (for moderate
vs. heavy-extreme), and heavy (for heavy vs. extreme).

In this study, we evaluated precipitation products using a suite of indices. These
encompass the Probability of Detection (POD), which measures the proportion of
true positives to all actual positive events; False Alarm Ratio (FAR), the fraction of
false positives to predicted positives; Multiplicative Bias (BIAS), the ratio of pre-
dicted positives to actual positives; Critical Success Index (CSI), akin to POD but
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with true positives normalized by all samples excluding true negatives; and Equi-
table Threat Score (ETS), a refined CSI adjusted for expected random hits (Hg) that
is defined as Hi = [(TP+FN)x(TP+FP)]/[TP+FN+FP+TN]. Each of these metrics is
calculated from different components of the contingency table. Table 2.7 offers a de-
tailed guide to these indices, outlining their definitions, potential ranges, and ideal

values [53].
Actual Class
Positive Negative
. Positive True Positive (TP) False Positive (FP)
Predicted Class Negative | False Negative (FN) | True Negative (TN)
TABLE 2.6: Confusion Matrix
Name Equation Range of Values | Optimum

Probability Of Detection POD = TP/(TP+FN) [0,1] @)
False Alarm Ratio FAR = FP/(TP+FP) [0,1] 0)
Multiplicative Bias BIAS = (TP+FP)/(TP+FN) [0,00] (1)
Critical Success Index CSI = TP /(TP+EN+FP) [0,1] @)
Equitable Threat Score | ETS = (TP-Hg)/(TP+FN+FP-Hg) [—%,1] (@)

TABLE 2.7: List of Categorical metrics together with their definition,
range and ideal values.

Continuous Metrics

We also employed a suite of continuous indices to assess the precision of rainfall
products, directly comparing predicted values to their corresponding ground truths.
The comprehensive list is available in Table 2.8. Among these, the Correlation Coef-
ficient (CC) gauges the linear relationship between predicted and actual values; the
Coefficient of Variation (CV) measures the relative variability; Mean Error (ME) cap-
tures the average deviation of predictions from actuals; and Mean Absolute Error
(MAE) represents the average magnitude of these deviations, irrespective of direc-
tion. These metrics are foundational for evaluating model performance, as discussed
by Nurmi (2003) [53]. In addition to these, we also incorporated two less conven-
tional metrics: the Modified Kling-Gupta Efficiency (mKGE) and P50.

The Modified Kling-Gupta Efficiency (mKGE) is an adaptation of the original
KGE [14]. It calculates goodness-of-fit based on three dimensions: correlation, aver-
age ratio, and standard deviation ratio. The mKGE score is computed as one minus
the Euclidean distance from an ideal point in this three-dimensional space, with co-
ordinates (1, 1, 1) signifying perfect performance [27]. Notably, this modified version
normalizes the standard deviations relative to global averages, enhancing the met-
ric’s interpretability by making its components orthogonal.

The P50 index offers a practical measure of a product’s overall accuracy, calculat-
ing the likelihood that an estimated value will deviate from the actual measurement
by no more than 50%. This metric accommodates the inherent variability in high-
resolution precipitation products, offering a more lenient yet realistic evaluation
compared to traditional metrics. By allowing for a reasonable range of deviation,
P50 provides a more balanced assessment of a product’s efficacy [59].
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Name Equation Ré:ﬁleegf Optimum
Cooffcint CC =ty /00 SR Y
st v T osi | ®

S e e i =i | 0
Nt as - Ll om0
M"diﬁ:&ligg‘ffupta mKGE=1-/(CC— 1)+ (B—1)+ (y—1)2 | [-c0,1] (1)
Pi‘;ﬂ;f;gﬁg"/ho""fvj %1 Pey=nfer | (05x0)< e < (1.5x0)]/N [0,1] 1)

TABLE 2.8: List of Continuous metrics together with their definition,
range of values and ideal values. e: estimate; o: observed; ¢: standard
oe/ He
0o/ po
the ratio of the normalized standard deviation; N: total number of
samples; n[x] is the number of the occurrences of x.

deviation: y: mean; B = p./p,: ratio of the averages; v = is
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Chapter 3

Results & Discussion

3.1 Preliminary Analysis

This chapter is devoted to presenting the principal findings of the thesis, beginning
with a preliminary analysis that serves as both a preprocessing step and a precursor
to the application of the RF model. This initial analysis offers valuable insights into
the data quality and sets the stage for subsequent discussions of the results. Specif-
ically, the quality of the datasets was evaluated through visual inspection of feature
distributions and temporal trends for both the predictor variables and target rain
products. A correlation matrix is also presented to explore the interrelationships be-
tween features, thereby shedding light on their significance within the feature space,
later revealed by the RF model. The Section concludes with an examination of the
relationship between precipitation levels and Vietnam’s topography.

3.1.1 Data Quality Check
VIS Channels

To commence our analysis, we initiate a quality control procedure for the features
under study, leveraging both their distribution and temporal trends. This quality
control encompasses the entirety of the data collected during October 2020, a period
that includes both training and test datasets. The aim is to ensure the integrity and
reliability of the features prior to employing them in subsequent analyses.

In Figure 3.1, we conduct a quality assessment of features associated with VIS
channels. Subfigure Al illustrates the distribution of the VIS channels themselves,
ranging from CO01 to C06. Notably, the first three channels—corresponding to wave-
lengths of 0.47, 0.65, and 0.825 micrometers—display a broader distribution extend-
ing into higher reflectance values. This suggests that these wavelengths are more
effectively reflected by either the Earth’s surface or its atmosphere. In contrast, the
remaining VIS channels (C04, C05, C06) exhibit distributions that are more concen-
trated around lower reflectance values.

Several factors may contribute to these disparities. Shorter wavelengths like 0.47,
0.65, and 0.825 um interact more variably with terrestrial features, such as vegetation
and water bodjies, leading to a broader distribution. Sensor sensitivity and variations
in solar irradiance across these wavelengths could also influence these distributions.
Furthermore, the impact of clouds and atmospheric particles varies across the spec-
trum, potentially skewing reflectance values.
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FIGURE 3.1: Data Quality Assessment for Features Related to Visible

Channels:

This figure presents four key metrics—channel values (1),

mean of a 5x5 sliding window (2), standard deviation of a 5x5 sliding

window (3), and time difference between consecutive time steps (4).

The first column (A) depicts the probability density function on a log-

arithmic scale, while the second column (B) showcases the temporal

trend of these metrics, averaged over the spatial domain for the entire
time period considered (both training and test sets).
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In Subplot B1, the temporal trend of the features is visualized, with each hourly
time step representing the spatial mean across the Vietham domain. A similar pat-
tern to that in Subplot Al emerges here as well; notably, channels C01, C02, and
CO03 exhibit higher reflectance values in comparison to the remaining channels. In-
triguingly, the data reveal a noticeable decline in reflectance levels during the latter
third of the month. This trend appears to correlate with a concurrent reduction in
radar-detected rain rates, as will be further elucidated in Figure 3.4 (right panel).
This synchronous decline in both reflectance and rain rates suggests a potential re-
duction in cloud cover during this period.

In Figure 3.1A2-B2, the mean values of the VIS channels are computed using a
5x5 sliding window. The resulting distributions bear a strong resemblance to those
in Subplot Al but exhibit a more refined, smoother profile. The use of this averaging
technique acts as an effective spatial filter, dampening abrupt fluctuations while ac-
centuating the primary characteristics of the data. While the same filtering principle
applies to the temporal trends depicted in Subplot B2, its impact is less pronounced
due to the inherent averaging already present in these trend plots.

In the third row of Figure 3.1, the standard deviation calculated within a 5x5
sliding window is presented. Subplot A3 reveals the distribution of standard de-
viations for each channel. Notably, the first three channels exhibit higher levels of
standard deviation compared to the remaining channels, indicating greater variabil-
ity within their respective windows. Subplot B3 reinforces the observations made in
previous figures. Here, periods of lower reflectance correspond to lower standard
deviations, suggesting that intervals with reduced cloud cover or precipitation also
exhibit decreased spatial variability.

In Figure 3.1, Subplots A4 and B4 provide insights into the temporal differ-
ences between consecutive time steps for the VIS channels. The distributions ex-
hibit a symmetrical shape centred around 0 %, which aligns with expectations: the
reflectance may either increase or decrease over time, contingent on the evolution
of cloud systems. Notably, channels C01, C02, and C03 display a broader distribu-
tion compared to the other channels, which are largely confined within the range of
approximately -25 to 25 %. This observation is consistent with the distribution of
channel values discussed earlier and is further corroborated by the temporal trends
evident in Subplot B4.

The quality assessment of VIS channels reveals distinct differences in reflectance
properties and variability across various wavelengths. Channels with shorter wave-
lengths (C01, C02, and C03) not only exhibit higher reflectance values but also dis-
play broader distributions and higher standard deviations, indicating greater vari-
ability influenced by factors like terrain and cloud cover. These channels also align
with a noticeable temporal decline in reflectance, correlating with reduced rain rates,
hinting at less cloud cover later in the month. The use of a 5x5 sliding window for av-
eraging proves effective in refining the spatial profiles without significantly alter