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1

Abstract

Individuals with complex communication needs often face speech barriers that

hinder social inclusion. As said by I. Estrada, ”If a child cannot learn the

way we teach, maybe we should teach the way they learn”. This philosophy

guides our research, which focuses on empowering children with autism and

other communication disorders to effectively utilize Augmentative and Alter-

native Communication Systems, better predicting their needs. Recent multi-

modal AI breakthroughs have opened up new avenues for enhancing the lives

of these individuals. In this context, we introduce PictoViLT, a Vision-and-

Language Transformer Encoder fine-tuned on text datasets and ARASAAC

pictograms. Our approach involves employing various self-supervised mask-

ing techniques that transition from single to multiple text tokens, effectively

addressing the challenge of predicting the next pictogram. PictoViLT breaks

the strict dependence on WordNet concept sequences as input, being able to

manage natural language and pictogram sequences directly. In-depth exper-

iments conducted on various datasets, grounded on commonsense resources

and verbalized knowledge graphs, reveal significant enhancements compared

to prior state-of-the-art models. In contrast to PictoBERT and statistical n-

gram models, PictoViLT achieves up to +0.60 Top-1 accuracy points. Ulti-

mately, token–patch alignments and attention areas make predictions inter-

pretable.
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Chapter 1

Enhancing Autism

Communication via AAC

Technology

The new millennium has seen an increase in awareness of autism due to more

media attention and a rapidly growing body of knowledge published in pro-

fessional journals.

Pediatricians must be able to detect signs of autism spectrum disorders, as well

as a strategy to methodically evaluate them [20].

Autism spectrum disorder (ASD) is the broader spectrum of clinical charac-

teristics that now define autism.

ASD is not rare; According to the article by Johnson et al. (2007) [20], many

pediatricians care for several children, with 44% of them caring for at least 10

children. In 2007, the raging of 8-year-old children passed from 1 to 303 and

became 1 in 94 at 14 sites in the USA.

We can speak about the ”autism epidemic”, one of the most challenging public

health issues today.

Following years of research, autism first appeared in the Diagnostic and Sta-

tistical Manual of Mental Disorders DSM-III in 1980 and was modified in

DSM-IV in 1994.
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ASD is a neurodevelopmental condition with highly heritable biological roots,

although its exact causes are not yet clear.

Social impairments, warning symptoms of ASD, are usually used as clinical

signs to detect autism.

The idea is to identify the condition in the first years of life, but usually, symp-

toms remain unnoticed until the kid is in the classroom and the instructors ob-

serve difficulties with relationships with peers.

Poor social skills make it difficult to communicate emotions, while the absence

of communication skills leads to ”speech delay”. No desire to communicate,

and nonverbal corrective actions, such as gestures, are linked to the absence

of speech. This time its exact causes remain mysterious.

About 30% of the children start speaking, then give up, followed by a decrease

in skills.

The article by Almeida et al. [2], enhances the use of high-tech devices for

Augmentative and Alternative Communication (AAC) in the home setting.

This study considers the research problem of how to promote assistive tech-

nology (AT) use by children with cognitive limitations.

This study aims to analyze children’s performance and their interaction with

their caregivers to improve practices regarding the use of AT.

AAC systems must be customized to meet users’ needs, in terms of ease of

use and learning, and each device must fit the age and personality of its users.

Due to the COVID-19 epidemic, 2020 and the years that followed were ex-

ceptionally challenging for children with disabilities, as adversity can come in

multiple forms.

Distance learning and communication, whether due to scarce resources, nov-

elty, isolation, or little or no digital literacy, made interacting and learning for

most students challenging enough.
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AT is likely to promote communication, autonomy, and inclusion of chil-

dren with cognitive and/or motor disabilities. It opens a wide range of op-

portunities to learn and participate in all settings of life, as long as caregivers

have an active role in the implementation of AAC devices and the promotion

of their regular use at home.

The failure to provide appropriate AAC technology, strategies, and services

means a loss of opportunities for the individual and for society. There are

many strategies that educators use to help a child communicate.

Visual aids have been used successfully to help children with autism commu-

nicate.

A picture system called AAC Media allows teachers to take pictures to help

students in the spectrum communicate.

In the work by Erlani et al.(2018) [11], the use of AAC media has a positive

impact on the skills of autistic students in musical dynamics.

As described by Zhao et al.(2023)[58], proposed a Mixed Reality-based wear-

able AAC device that shows high usability.

The results of the study by Andzik et al. [3] demonstrate that paraeducators

also need to be prepared to help children with CCN.

Before the intervention, the student was rarely observed initiating interactions

with their AAC devices and paraeducators were rarely observed offering op-

portunities to initiate or providing support to help the student initiate.

Following training, data from each paraeducator indicated an increased rate

when providing the communication intervention, and as a result, the student

showed an increase in the targeted intervention, initiation.

The results of the intervention highlight the need for explicit teaching when

promoting initiation among students with autism who use AAC.

The study by Yalim et al. [54], brings to mind the meltdowns of autistic chil-

dren, in which they express their emotions through prolonged or loud sobs and

screams, even to the point of self-harm.

Parents of autistic children have faced many implications and difficulties as a
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result of this.

Children with autism encounter it when they are in a room or place where they

meet many people, whenever they hear a loud noise, or when they are in cir-

cumstances where it is difficult for them to express their feelings or emotions.

This study found an obsession in autistic children that could trigger melt-

downs, and it was hard to change because of the close way the obsessions

and autistic children’s daily routines are linked.

The school must prepare preschool teachers and exceptional education teach-

ers who will instruct special needs children and children with autism, particu-

larly strategies for handling meltdowns, to support parents.

According to the Barker et al. [4] article, peer use of AAC as additional input

led to a huge profit in speaking skills, but teacher use of AAC during instruct-

ing was associated with less positive growth.

The lack of training reported by teachers highlights the need for further re-

search to promote the use of AAC in preschool, including facilitating interac-

tions between AAC users.

The study by Tosun et al. [51] aimed to determine the preferences of indi-

viduals with ASD, determine how the preference assessment sessions were

conducted, and which AAC system the participants preferred to use among

the commonly used AAC systems:

• sign language;

• speech-generating device;

• picture exchange-based systems;

Most of the participants with autism spectrum disorder preferred speech-generating

devices compared to sign language and picture systems.

In addition, most of the participants tended to prefer the AAC systems they

learned the fastest.

The findings show that people with ASD prefer to use speech generating de-

vices when requesting an object or action.
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The incidence of autism is increasing dangerously rapidly, but diagnosing

autism still requires a lot of time and a lot of money.

Early autism diagnosis might be very helpful for treating patients with appro-

priate medical care at the appropriate time.

The advancement of machine learning (ML) algorithms and AI has made it

possible to identify autism quite early.

Although numerous research studies have been conducted using different tech-

niques, they have not led to definitive conclusions about the ability to predict

the characteristics of autism in different age groups.

Symptoms of ASD have been identified in one out of the 60 children in the

US, based on an investigation released by the Organization for Prevention and

Control of Disease (CDC).

Autism is believed to affect 2.65% of all school-age children in the nation-

state of Korea in the survey carried out by Ravishankar et al. (2023) [48].

Figure 1.1 illustrates how ASD corresponds to a category of neurological

disorders characterized by a lack of interpersonal connection that continues

throughout a person’s life in addition to daily and restrictive activities.

Investigations employing neurological approaches, such as Positron emission

Figure 1.1: ASD [48] is related to a group of neurological conditions whose
symptoms include a lack of social connection that lasts their entire lives as
well as monotonous, constrained activities.
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tomography (PET) or the use of magnetic resonance imaging (MRI), have pro-

vided an enormous amount of illumination onto the neurological factors be-

hind ASD.

The use of ML approaches is currently being extensively used to classify indi-

viduals suffering from Autism and typical control (TC), to analyze biological

facts using MRI information, and to predict the likelihood of the disease.

A small sample comprising less than 250 samples from previous ML exami-

nations obtained an impressively high precision in the classification of 65%–

96.27%.

The use of support vector machines (SVM), logistic regression (LR), ran-

domly generated forests, linear discriminant analysis (RDA), as well as deep

neural networks, are among the classification approaches employed in the as-

sociated examinations.

In order to improve the classification accuracy of patients with autism based

on the full Autism Brain Imaging Data Exchange dataset in the work of Wang,

C., et al. (2019) [52], the process consists of three basic steps:

• The resting-state functional magnetic resonance imaging data to calcu-

late the functional connectivity (FC) based on the automated anatomi-

cal; labeling atlas with 116 brain regions.

• the SVM-recursive feature elimination algorithm to select the top 1000

features from the primitive FC features.

• trained a stacked; sparse auto-encoder with two hidden layers to extract

the high-level latent and complicated features from the 1000 features;

Finally, the optimal features obtained were fed into the softmax classifier.

Autism is a category of early developmental deficiency that’s challenging to

detect, especially in young children, due to its symptoms being contingent on

children’s cognitive responses.

Failure to recognize and address autism between ages 2-5 makes treatment in
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later stages more complex.

Many parents consider it challenging to describe any of their kid’s symptoms.

The faster diagnosis of autism is when a child presents only an earlier symp-

tom as in Table 1.2.

The prevalence of ASD has significantly risen in recent decades, suggesting

Figure 1.2: Table of significant signs of ASD.

an autism epidemic as clarified in the work of Chiarotti et al. (2020) [6].

Monitoring ASD helps estimate its occurrence and explore variations over

time and regions. Prevalence data are gathered globally from health and edu-

cation databases or specific studies.

A review of ASD prevalence estimates since 2014 reveals considerable global

variability due to methodological differences in case detection.

Despite this variability, there’s a consistent increase in prevalence within each

region, particularly around the 2010s. Data sources impact prevalence esti-

mates, with teacher/parent reports leading to higher estimates.

The population-based and administrative data methods each have advantages

and disadvantages. Geographical area and study source contribute to preva-

lence differences. Environmental factors and genetic risks also influence ASD

prevalence.

The article by Studer et al. (2017) [46] addresses the challenges in implement-

ing early intensive behavioral intervention for autism in Switzerland, high-

lighting deficiencies in acceptance and government support.

It highlights a major gap between the US and most European countries and it
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wants to be a Swiss pilot project.

The authors share their experience from an intervention center, while also not-

ing obstacles within schools and the education system. The article underscores

the need for greater efforts in Early Intensive Behavioral Intervention (EIBI),

recommending additional funding, improved training, and consistent guide-

lines.

EIBI is a type of intensive behavioral therapy used to treat children with ASD

in the early stages of their life, typically during infancy or early preschool

age. Therapy’s primary goal is to promote the development and improvement

of social, communicative, and behavioral skills in children with autism. EIBI

also involves the active involvement of parents and caregivers in the child’s

learning process, enabling strategies to be applied outside of therapy sessions.

The current diagnostic criteria for the autism spectrum in DSM-5 and the stan-

dardized diagnostic tools for autism lead to significant clinical heterogeneity

and uncertainty, which could hinder fundamental research on autism mecha-

nisms.

To improve clinical specificity and refocus research on authentic autism pre-

sentations, new diagnostic criteria are needed for prototypical autism between

ages 2 and 5.

The research work by Mottron et al. (2023) [34] includes autism within other

non-dominant, familiarly aggregated phenomena that share asymmetrical de-

velopmental bifurcations, such as twin pregnancy, left-handedness, and breech

presentation/delivery.

According to thismodel, the nature, trajectory, and structure of positive/negative

signs of autism would arise from the polarized question of whether language

and information processing occur in a socially distorted manner.

Prototypical autismwould follow a canonical developmental trajectory inwhich

a gradual decline in social bias in processing incoming information, evident

at the end of the first year, bifurcates into a prototypical autistic presentation

in the second half of the second year of life.
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This bifurcation event is followed by a plateau during which these atypical-

ities exhibit maximal stringency and distinctiveness, and eventually, in most

cases, partial normalization.

During the plateau period, the orientation toward information processing is

significantly altered, with an absence of bias for social information, contrast-

ing with a high interest in complex, unbiased information, regardless of its

social or non-social nature.

Integrating autism into asymmetrical developmental bifurcations would ac-

count for the absence of harmful neurological and genetic markers and the

presence of familial transmission in authentic autism presentations.

From a technological standpoint, people with CCN fundamentally regard

AAC boards as assistive technology tools.

CCN individuals are those who have trouble communicating and expressing

themselves, such as those who have intellectual disabilities, cerebral palsy,

aphasia, or autism spectrum disorder.

They are who:

• experience significant fatigue speaking;

• requires spelling or grammar support;

• communicate at very slow rates;

The AAC is a way of expression different from spoken language, that aims at

increasing (augmentative) and/or compensating (alternative) the difficulties of

communication and language of many people with disabilities.

AAC does not conflict with the rehabilitation of normal speech; instead, it en-

hances it.

In addition, it could contribute to its success wherever possible. Therefore,

you should not wait to introduce it while a child is young, as soon as you see

problems with spoken language development, or as soon as an illness or acci-

dent has damaged it.
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There is no evidence that the use of AAC impairs or interferes with speech

development or recovery.

Artificial sound communicators, personal computers, and tablets with special-

ized software allowing different kinds of access suited for individuals with

severely limited mobility are instances of support items for communication.

Additionally, they make it easier to include various pictographic and ortho-

graphic sign systems as well as other outgoing methods, including voice out-

put. They might also employ conventional resources such as books and mes-

sage boards.

The system of symbols for ACC is divided into gestural and graphic.

For those who are illiterate due to age or disability, pictographic methods are

applied. They offer the advantage of allowing communication to progress

from a very basic degree, adaptable for those with low cognitive abilities or

in the very early stages, to a very rich and advanced level. However, they

will never be as full and flexible as the level that can be achieved with the

use of written language. Pictographic System of Communication (PSC) and

ARASAAC are the twomost popular pictographic systems in which sentences

typically would include a sequence of standardized pictures.1

Support products for communication can be categorized into basic and tech-

nological types. Communication boards, which include surfaces with various

materials holding graphic symbols (such as photographs, pictograms, letters,

words, and sentences), serve as basic support products.

When symbols are distributed across different pages, they are referred to as

communication books.

The use of support systems is effective when combined with additional fac-

tors, such as appropriate educational and therapeutic environments that enable

the subject to be immersed in a supportive language environment, surrounded

by sensitive and competent interlocutors, and engaged in meaningful and en-

riching activities.
1https://arasaac.org

https://arasaac.org
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Consequently, the most effective technique is the predictive task. The tool

helps them to communicate by selecting and arranging pictograms in sequence

to make up a sentence.

Such boards have enabled CCN adults and children to communicate and par-

ticipate in a wide range of environments and activities denoting the same bar-

riers.

The boards show pictograms divided into categories as “persons”, “objects”,

“food”, and “adjectives”.

The AAC board is made of a content area with a selectable pictogram and a

phrase area where the selected pictograms of the sentence are as in Figure 1.3.

The user may open many category folders or pass many pages to find a spe-

cific pictogram while pictograms near the needed one can act as distractors in

searching activities.

Several investigations have been done in this area on Language Model

(LM), including from statistical to neural network models.

The foundational work of this thesis is about the use of a BERT transformed-

based model, introduced by Devlin et al. (2018) [8], to tackle the challenge of

”predicting the next pictogram” as described in the research paper by Pereira

et al. [40].

Our contributions helpmove from single-modal AI approaches tomulti-modal

AI which maximizes their benefits.

The state-of-the-art model within the Multimodal AI area is analyzed and ex-

amined in the next chapter, which culminates with an in-depth description of

our starting point solution.

The key to reducing the difficulties and simplifying the use of these devices

is to find a strategy to ensure that the user will find the required pictogram

quickly.
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Figure 1.3: The AAC system [40]: a content area (large rectangle at the bot-
tom) with the selectable pictograms and a phrase area (blue rectangle at the
top) that presents the selected pictograms to form the sentence.



Chapter 2

State of the Art

Multi-modeAI represents a pivotal advancement in the field, seamlessly blend-

ing diverse data sources to amplify our capacity for comprehension and pre-

diction. This innovative approach effectively surmounts the constraints asso-

ciated with single-mode AI systems, heralding a new era of possibilities.

The strength of multi-mode AI becomes apparent in its unique ability to

facilitate a level of detailed perception akin to human cognition. This remark-

able feat is achieved through its adaptability to data presented in various for-

mats, allowing for nuanced and human-like understanding.

The journey towards achieving multi-mode AI excellence traces a path of

evolution in the AI landscape. It encompasses a transformative progression

that begins with the advent of the LM and neural networks, culminating in the

powerful Transformer architecture. This convergence of Natural Language

Processing (NLP) and Computer Vision (CV) represents the pinnacle of this

evolutionary trajectory, propelling AI capabilities to unprecedented heights.

At the heart of this transformation lies the pivotal role of multimodal mod-

els. These models, shaped by the flexibility of data in diverse formats, exhibit

a remarkable capacity to adapt to a wide array of tasks. Their versatility makes
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them indispensable in harnessing the full potential of multi-mode AI.

The evolution from Statistical LM to advanced neural models, exempli-

fied by the likes of BERT, reaches its apex with the emergence of Large LMs

(LLMs). These formidable LLMs not only enhance our ability to interpret

data but also significantly bolster the reasoning capabilities of AI models.

2.1 Open Challenges

Transitioning into the realm of multimodal AI brings forth a set of intriguing

challenges that demand innovative solutions and research efforts.

Challenges include explainability and interpretability in multi-modal models,

aligning text and images without labels, and processing multiple input modal-

ities together to achieve better and more comprehensive results.

• Interpretability and Explainability: Explainability and interpretabil-

ity are critical to understanding howVision-and-Language (VL) models

combine textual information.

The Python library Xplique [12] provides a demonstration of this ne-

cessity by improving the explainability of deep learning (DL) models

via techniques like gradient-weighted class activation mapping.

• Alignment with Unlabeled Attention: Models learn to link text words

to visual regions without human annotations, using multi-task pretrain-

ing techniques, including the newMaskedVisual-tokenModeling (MVM)

task [13] that retrieves visual tokens from masked frames to learn text-

image correlation.

• Multimodal Models Another crucial aspect is the construction of end-

to-end learning pipelines that integrate LLMs with other modules (e.g.

graph Neural Network (GNN), custom layers, and external memories)
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to improve the understanding and representation of multimodal data.

A large-scale memory encodes multimodal world knowledge via a uni-

fied encoder in ReVEAL to deliver effective advanced information re-

trieval results.

Other examples of architectures are BERT-like transformers integrated

with additional layers to process multimodal inputs combined with deep

metric learning to create latent spacewhere inputs are separately embed-

ded [33].

Exploring another direction, Graph modeling, still little explored for vi-

sual data, could be used to incorporate commonsense and domain facts

from external knowledge bases and to train networks capable of work-

ing directly on structured and unambiguous semantic representations.

The introduction of Vision GNN architecture by Han et al. [15], to ex-

tract graph-level features for visual tasks, revolutionizes image process-

ing.

• Memory consumption Managing computational resources efficiently

is a paramount concern in the realm of DL, and the study by Raschka

et al. [27] stands as a testament to the ongoing endeavors to address

memory consumption issues while preserving model effectiveness and

precision.

2.2 LLM and Transformer: Shaping the Future

of AI Models

In the ever-evolving landscape of AI models, it’s crucial to examine how

LLMs and Transformers have come to redefine the field. The rise of LLM

models, exemplified by the popularity of the pre-trained Transformer-based

GPT-4 [36], signifies a significant milestone. These models are not limited
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to NLP but extend their reach into diverse domains, including CV and graph

learning. In CV, Vision Transformer (ViT) plays a pivotal role, transform-

ing images into a series of patches akin to word embeddings, while Graph

Transformer Networks are reshaping graph-related tasks without the need for

domain-specific knowledge.

Furthermore, the survey conducted by Zhou et al. (2023) [59] underscores

the extensive study of Pretrained LMs across the three major AI fields: NLP,

CV, and GL. Concurrently, we mustn’t overlook the significance of bidirec-

tional encoders like BERT, which predict masked words and contextual sen-

tences, albeit with certain limitations. On the other hand, autoregressive de-

coders, exemplified by GPT, excel in text generation but may lack the abil-

ity to capture bidirectional interactions effectively. This rapid evolution of

models necessitates refined toolkits like LLaMA2-Accessory [56], designed

to facilitate pre-training, fine-tuning, and implementation of LLMs. Addition-

ally, exploring the dynamic field of CV task pre-training through techniques

like Auto-supervised learning (SSL) brings us closer to achieving more robust

models, in Figure 2.1, thanks to the transferability of representations learned

during pretraining to subsequent supervised tasks.

Figure 2.1: The general pipeline for SSL. The top part represents the pretrain-
ing, and the bottom stream obtains transferred parameters from above to learn
downstream supervised tasks.
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2.3 Multimodal Large Language Model

The rise in popularity of the Multimodal Large Language Model (MLLM)

marks a significant shift in the field of AI. This transformation is exempli-

fied by the evolution of chatGPT into a multimodal entity with the advent of

IDEFICS [23]. It’s the first open ChatGPT-style multimodal model based on

Flamingo, seamlessly integrating both images and text to generate conversa-

tional outputs.

The core idea behind this multimodal approach is to enhance model in-

terpretability. By fostering interaction between visual and textual modalities,

MLLMs facilitate the creation of meaningful semantic links between linguis-

tic tokens and the visual elements within images. This, in turn, contributes

to a deeper understanding of complex models, enhancing their reliability in

critical domains such as medical care and autonomous driving.

Several studies have delved into the abstract reasoning capabilities of mul-

timodal models. Notably, KILOGRAM [19] underscores the significance of

fine-tuning and detailed dataset descriptions. These elements favor the estab-

lishment of semantic connections between different parts of images andwords.

In their work, Ji et al. introduced a visually annotated tangram dataset aimed

at assessing the abstract reasoning capabilities of multimodal models. This

study demonstrates that the integration of visual and linguistic representations

significantly enhances abstract reasoning abilities, unlocking new possibilities

in the analysis of complex data. It further emphasizes the pivotal role of the

fine-tuning phase in optimizing multimodal models.

The comprehensive MLLM survey conducted by Yin et al. in 2023 [55]

further explores the integration of LLM with the visual world. This survey
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encompasses various model types and approaches, including Multimodal In-

struction Tuning (M-IT), Multimodal In-Context Learning (M-ICL), andMul-

timodal Chain-of-Thought (M-CoT). These approaches offer fresh perspec-

tives on human-software interaction and open doors to novel applications and

capabilities in the realm of AI, including enhanced reasoning abilities.

2.3.1 Multimodal CoT

LLMs have demonstrated impressive complex reasoning abilities when han-

dling multimodal input converted to text. However, this transformation can

result in a loss of information, which necessitates a closer examination of their

functioning within multimodal models.

LLMs serve as the foundation for cutting-edge solutions, serving as the

primary processing unit in multimodal models. Notably, LLMs have excelled

in complex reasoning tasks by generating intermediate reasoning steps before

arriving at a final answer, popularizing the CoT reasoning technique.

The M-CoT paradigm represents a significant advancement in reasoning

approaches, as it involves multimodal input and breaks down complex tasks

into a series of intermediate reasoning steps. However, it’s worth noting that

earlier LLMs with fewer than 100 billion parameters sometimes produced hal-

lucinatory results, leading to errors in answer deduction.

To address this issue, a transition to multimodality was adopted, wherein

the inference of the answer benefits from better reasoning generated based

on multimodal information. MLLMs have effectively mitigated this problem

within the M-CoT framework. These MLLMs produce output that combines

rationale with input, providing models with limited parameters the capability

to yield meaningful results. This approach leverages visual features to reduce
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the risk of erroneous conclusions.

An illustrative example of M-CoT reasoning is presented in the article

by Zhang et al. [57]. The authors introduce a framework known as M-CoT

Reasoning, which leverages the synergy between language and vision. They

employ diverse learning strategies that outperform models like GPT-3.5 and

even human performance on reasoning tasks.

Another noteworthy contribution to M-CoT prompting is introduced by

Huang et al. in their work involving Kosmos-1 [18]. This approach harnesses

intermodal transfer to enhance performance in perception-language tasks. The

process involves two stages: initially, the prompt takes an image and guides

themodel to generate a rationale. Subsequently, themodel is providedwith the

rationale and a task-aware prompt to produce the final results. This approach,

as exemplified in Figure 2.2, significantly contributes to the accuracy of tasks

like Visual-QA by ensuring that the model accurately describes the content of

the image in text to predict the answer.

2.3.2 Retrieval-Enhanced Multimodal Language Models

Speaking of a learning pipeline based on LLM integrated with modules like

external memory, we refer to the model mentioned below. A new paradigm in

knowledge-based information retrieval is ReVEAL from the article by Hu et

al. [17]. This multimodal model leverages a combination of memory, encoder,

retriever, and generator to deliver effective advanced information retrieval re-

sults. The effectiveness of multimodal architectures is obtained through the

pre-training and fine-tuning phases.
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Figure 2.2: Kosmos-1 [18] can tackle challenging question-answering and rea-
soning problems by first generating a rationale thanks to M-CoT prompting.

2.3.3 Video Modality

In the realm of multimodal models, as explored in the article by Fu et al.

[13], our focus now shifts to the dynamic interplay between video and text

inputs. The VIOLET model demonstrates how the link between text and im-

age is learned through the pre-training phase on masking tasks for both text

and images, as illustrated in Figure 2.3. It represents a major step forward in

understanding temporal dynamics in video through the use of transformers.

Based on the Video Swin Transformer, it extracts spatial and temporal repre-

sentations of images across patches, then uses a Language Embedder and a

Cross-Modal Transformer to merge the multimodal information.

2.3.4 One model for all modalities

Emu, cited in Sun et al. [47] represents a major advance in multimodal com-

puting through the adoption of a unified architecture leveraging LLMs.
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Figure 2.3: VIOLET [13] components include VT, LE, and CT, using a dis-
crete VAE to extract discrete visual tokens in order to implement different
strategies during large-scale text and image pretraining.

In order to anticipate the following visual or textual token in an autoregressive

fashion, this model learns from videos and images intermingled with text.

Interspersing images with text gives an intuitive representation of the com-

plex concept, improving the ability for multimodal learning and anchoring to

real-world concepts.

On a broader front, UnIVAL, introduced by Shukor et al. [45], tackles the

challenge of unifying text, audio, and video modes within a unified model,

emphasizing the efficiency of pre-training on diverse multimodal tasks. It

mixes text, graphics, video, and audio into one structure with 0.25 billion pa-

rameters. UnIVAL is efficiently pre-trained on a wide range of multimodal

tasks while other work shows that multimodal models can learn text-image

associations without the pretraining step.

In contrast, TVLT by Tang et al. [49] represents a significant advance

in multimodal learning without the use of text. This end-to-end VL trans-

former operates on low-level visual cues and audio data to learn multimodal

representations. Avoiding text-based modules like tokenization or automatic

speech recognition, it learns from the reconstruction of masked visual patches

or audio spectrograms. Compared to text-based models, TVLT is significantly

faster at inferences and requires fewer parameters, demonstrating its ability to
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learn visual-linguistic representations from audiovisual inputs without the ex-

plicit use of text.

Yet, Schwettmann et al. from 2023 [43] reveal a surprising twist in the nar-

rative. They show how LMs, originally intended for textual data, can expand

their expertise into the visual domain through a transferable learning mecha-

nism, illustrating the adaptability of LLMs to multimodal contexts. Surpris-

ingly, LMs demonstrate the ability to extend the representations learned in one

modality to other modalities. A transformer-based LM, originally intended for

text, can acquire visual knowledge through a transferable learningmechanism.

This involves a self-supervised visual encoder and a linear projection trained

on image-to-text translation tasks.

Moving into the realm of CV, the framework shown in Figure 2.4, LENS

by Berrios et al. 2023 [5], is a modular approach to CV problems leverag-

ing the power of LLMs. The LLM reasons on the output of a set of visual

modules that return textual information about the image. It’s a modular so-

lution integrating language and vision skills. The visual module extracts tex-

tual information using pre-trained visual models, text is the input to the LLM

enabling tasks such as object detection. The strength of LENS lies in elimi-

nating the gap between the different modalities at zero cost since it does not

require multimodal pretraining phases or extra data. The model works ”cross-

domain” without additional cross-domain pretraining phases satisfying CV

tasks by exploiting the abilities of LMs that operate on descriptions of visual

inputs without further vision-language alignments.

Lastly, the recently published work of Lei et al. (2023) [24] presents ViT-

LENSwhich extends the capabilities of a pre-trained ViT to perceive and com-

prehend diverse modalities beyond 2D images. It employs Modality Embed-

ding and the Perceiver architecture to map modality-specific data into the pre-

trained ViT input space. Then the encoded output of ViT is aligned with the
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feature extracted from the data’s anchor text/image/text-image, through an off-

the-shelf foundation model. This novel approach enables a pretrained ViT to

integrate and understand diverse modalities beyond images while leveraging

its knowledge from the pretraining to better comprehend and interpret these

modalities. The 3D Shape Encoder in VIT-LENS includes a point embedding

layer, a Perceiver, and a pretrained CLIP-ViT model. To ensure optimal en-

coding of 3D point clouds, heuristic designs are employed: partitioning input

point clouds into patches and mapping them into point embeddings, followed

by using the Perceiver to distill these embeddings into latent embeddings for

input to CLIP-ViT. The Perceiver architecture plays a crucial role, iteratively

distilling inputs into a latent bottleneck, making it versatile for handling var-

ious modalities. ViT-LENS uses the Perceiver to map input signals from dif-

ferent modalities into CLIP-ViT’s input space. For representation alignment,

a contrastive loss function is applied to triplets of 3D point clouds, rendered

images, and associated text descriptions enhancing representation learning for

3D data and enabling omni-modal capabilities efficiently as in Figure 2.5.

Figure 2.4: In the [5] LENS framework, visual modules retrieve a textual
description for an image, used by the LLM reasoning module to generate an
answer to a query.
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Figure 2.5: ViT-LENS architecture [24]: the capabilities of the pretrained ViT
are extended by Modality Embedding and the Perceiver architecture. The en-
coded output of ViT is alignedwith the feature extracted from the data’s anchor
text/image/text-image, through the foundation model.

2.4 Applications ofMultimodalModels AcrossVar-

ious Contexts

In today’s world, multimodal models play a crucial role in various applica-

tions, ranging from robotic coordination to medical analysis. In this section,

we will explore some of these key applications.

2.4.1 Applications inRoboticCoordination andHuman-Robot

Interaction

Multimodal models have found a wide range of applications, including robotic

coordination, cascade agents, and robotic industrial field guiding systems.

These models exhibit a remarkable ability to collaborate with both real and

virtual robots, highlighting their versatility in human-robot interaction sce-

narios.

A notable contribution in this domain is the work of Driess et al. [10], where

the MLLM PaLM-E introduced to coordinate real and virtual robots is pre-

sented. This innovative model is designed to facilitate coordination between
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real and virtual robots and is trained on a combination of vision-language

tasks. By demonstrating its capability to transfer knowledge from visual lan-

guage domains to decision-making processes, PaLM-E empowers robots to

efficiently perform planning tasks. It’s a decoder-only LLM that generates

textual completions autoregressively given a prefix or prompt based on PaLM

as the pre-trained LM but Embodied. The main architectural idea of PaLM-E

is to inject continuous, embodied observations such as images, state estimates,

or other sensor modalities into the language embedding space of a pre-trained

LM.

It is trained in task VL, demonstrating skills in sequential reasoning and math-

ematical operations, and transfers knowledge from planning robots to answer-

ing questions.

2.4.2 Medical Applications of Multimodal Models

In this subsection, we delve into the application of multimodal models in the

medical field, specifically focusing on the analysis of medical images and vi-

sual conversations within the medical-surgical context.

Moon et al. [32] have undertaken extensive research in multimodal rep-

resentational learning tasks within the medical domain, utilizing radiological

images and unstructured relationships.

One notable outcome of their work is the introduction of MedViLL, a

BERT-basedmodel featuring innovativemultimodal attentionmasking scheme.

MedViLL has showcased its superior performance across four crucial sub-

tasks: diagnosis classification, medical report-image retrieval, answeringmed-

ical visual questions, and generating radiological reports (see Figure 2.6).
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XrayGPT, a conversational medical model developed by Thawakar et al.

(2023) [50], takes a unique approach by combining vision and languagemodal-

ities to analyze and respond to inquiries regarding chest radiographs (Figure

2.7).

This model aligns visual features and textual information by leveraging a pre-

trained medical vision encoder called Med-Clip and a medical LLM based

on Vicuna. By incorporating interactive summaries from radiology reports,

XrayGPT demonstrates exceptional conversational capabilities, underpinned

by a deep understanding of chest radiographs. This enhances the performance

of LLM in the medical context.

In an August 2023 article by Google Health AI [7], authored by Corrado

and Matias, the implications of multimodality in medical AI are explored.

The article showcases various approaches to incorporating multimodality into

LLMs, highlighting the potential of multimodal medical LLMs to integrate

diverse data modalities and enhance diagnostic and analytical capabilities in

medical settings.

Furthermore, the article underscores the significance of Med-PaLM, a LM

developed byGoogle. Med-PaLM effectively harnesses structured knowledge

and clinical multimedia content, such as that from the United States Medical

Licensing Examination (USMLE), to enhance the accuracy of medical ques-

tion answering. In particular, Med-PaLM 2 has demonstrated a notable in-

crease in accuracy compared to its previous version when tackling USMLE-

style questions.
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Figure 2.6: MedViLL [32]: the left image highlights the extracted attention
regions (a), the right image compares the generated report and the original
report on the same chest radiograph image (b).

Figure 2.7: XrayGPT [50] architecture in which a radiographic image is pro-
cessed through three sequential components: 1. Frozen medical visual en-
coder to extract diagnostic information, 2. Adaptive linear transform layer to
align visual features with the LLM, and 3. Medical LLM to generate a detailed
summary based on the features and prompt provided.

2.5 PictoBERT: Bridging the Gap in AAC Com-

munication

AAC has seen remarkable advancements in recent years, with predictive mod-

els playing a crucial role in transforming the landscape. These models offer

innovative solutions to assist individuals with CCN in constructing sentences

with pictograms, thereby enhancing their communication efficiency. In this

section, we delve into the state of the art in AAC predictive models and then
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introduce PictoBERT, a powerful Transformer-based model designed to im-

prove the efficiency of this predictive task.

2.5.1 State of the Art in AAC Predictive Models

The primary focus of this debate is to delve into the current state of the AAC

field, moving away from a broader perspective.

Predictive models play a pivotal role in AAC, offering a solution to the

challenge of selecting the next pictogram based on the previous one. These

predictive methods hold significant potential to assist AAC users in various

ways:

• Sentence Construction: Predictive models reduce the number of se-

lections required to construct a sentence, enhancing communication ef-

ficiency;

• Spelling Support: They provide spelling support for individuals who

struggle with spelling words;

• Grammatical Assistance: Predictive models offer grammatical sup-

port, particularly beneficial for those with morphosyntax difficulties,

promoting coherent communication;

• Enhanced Communication Rate: By suggesting the next pictogram,

these models accelerate the communication rate, making interactions

more fluid.

In the realm of pictogram prediction in AAC, there have been notable devel-

opments, primarily focusing on semantic grammar [31] and knowledge graphs

[41] as the foundational approaches. These approaches leverage the seman-

tic relationships between words, incorporating ontology-based knowledge and

semantic roles to make predictions. However, it’s essential to note that these

mechanisms are not purely probabilistic. They return pictogram sets without

specifying which is the most appropriate [39]. Key points to highlight include:
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• Lexical-SemanticHierarchy: These approaches prioritize lexical-semantic

knowledge hierarchy, reducing ambiguity compared to relying solely on

grammatical classes;

• Static Grammar Structure: The use of static grammar structures can

necessitate processing the entire construction pipeline when changing

vocabulary, highlighting potential limitations.

One approach involves completing the grammatical structure of a sentence,

often starting from a semantic role such as the verb. For example, the Colour-

ful Semantics’ structure sequence involves Agent, Verb, Theme, Location,

Recipient, Manner, and Time. This structured approach can resemble a fill-

in-the-blank task, enhancing predictability.

Statistical LMs, incorporating unigrams and bigram models containing

word usage knowledge, have demonstrated improved results for communica-

tion systems [35]. These models are applied to pictograms, utilizing a corpus

of sentences related to various locations as a training dataset for constructed

LMs to make location-aware pictogram predictions [14].

Prediction granularity can vary, focusing on the pictogram itself or its part-

of-speech (POS) tag in the n-gram statistical LM [16]. This granular approach

improves the immediate availability of desired pictograms.

Furthermore, word-sense language modeling is introduced, particularly

relevant forWord-SenseDisambiguation tasks. For instance, SenseBERT [26]

combinesword and super-sense embeddings to predictmaskedwords and their

super-senses. This approach, however, introduces some ambiguity due to the

nature of super-senses. Super-sense is a WordNet cluster of senses and may

be useful to suggest classes of pictograms but is very ambiguous.

To address the multi-sense language modeling challenge, Gated Recurrent

Units and Graph Attention Networks [25] are employed at the granularity of
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WordNet word senses. WordNet uses the granularity of word senses to gen-

erate two probability distributions at each place in the corpus, one covering

the vocabulary of words and one covering the vocabulary of senses, both of

which achieve an accuracy greater than 22%.

The prediction is based on the previous words and not on earlier word senses,

so there can be ambiguity when transforming pictograms, that are better rep-

resented by a word sense, into a word.

2.5.2 PictoBERT: Transformers for next pictogram predic-

tion

The foundation of our exploration into PictoBERT begins with the ground-

breaking work of Pereira et al. [40]. Their research offers a compelling solu-

tion grounded in the BERT transformer model, aimed at addressing the intri-

cate challenge of predicting the next pictogram in a sentence under construc-

tion. In this context, pictograms represent graphical depictions of concepts,

each adornedwith labels denoting actions, objects, persons, animals, or places.

The primary goal is to enhance the performance of AAC boards, which facil-

itate communication for individuals with CCN.

PictoBERT revolves around two pivotal concepts: word-sense usage and

modified BERT input embeddings. These concepts underpin its capacity to

outperform traditional n-gram models. The paramount feature contributing

to its success is transfer learning, which endows PictoBERT with remarkable

flexibility for fine-tuning to meet diverse application demands.

As previously discussed, the landscape of predictivemodels inAACpresents

various approaches, including statistical LMs based on n-grams, semantic

grammar knowledge bases utilizing fill-in-the-blank techniques, and transformer-

based models like BERT. PictoBERT stands out due to its ability to provide



2.5 PictoBERT: Bridging the Gap in AAC Communication 33

contextualized predictions, a feature that empowers it to consider the entire

sentence’s context when predicting the next pictogram, distinguishing it from

other solutions that lack this contextual depth.

PictoBERT leverages the power of WordNet word senses, which serve as

the foundation for constructing a corpus dedicated to representing pictograms.

In this context, the refined task is predicting the next word sense. A key archi-

tectural innovation involves modifying the BERT embedding layer to refresh

its vocabulary using ARES, which facilitates the transition to a vocabulary

rooted in word senses.

The corpus used is part of the Child Language Data Exchange System

(CHILDES) corpus transformed into theword-sense corpus Semantic CHILDES

(SemCHILDES). The model should be embedded into the AAC tool. The cor-

pus is discussed in detail in section 3.2.1.

The assessment of PictoBERT’s performance in comparison to n-gram

models is based on intrinsic metrics, including perplexity (PPL), which mea-

sures the comprehension level of the LM, and the Top-N metric, evaluating

how often the expected pictograms rank within the Top-N predicted outcomes.

During the evaluation process, the PictoBERT vocabulary was customized

to use only the pictograms present in the ARASAAC database. This cus-

tomization is crucial to adapt the model to the specific needs of users. Fur-

thermore, the model underwent a fine-tuning process using a portion of the

SemCHILDES corpus. This additional training step contributed to achieving

superior results in overall evaluation metrics.

ARASAAC is a valuable resource offering graphic and material assets un-

der a Creative Commons license, designed to enhance communication and

cognitive accessibility. This initiative garners support from the Department
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of Culture, Sports, and Education of the Government of Aragon (Spain), with

a specific focus on fostering innovation and professional training. The models

are compared over ARASAAC pictograms.

Customization is a vital aspect of PictoBERT’s applicability, catering to

diverse user needs. The model’s adaptability is exemplified through fine-

tuning experiments, which showcase its ability to conform to varying settings,

depending on user or group requirements.

In Figure 2.8, we provide visual examples of pictograms along with their

correspondingword senses, illustrating the content-related descriptions of these

graphical representations.

Figure 2.8: Pictogram prediction bu PictoBERT [40]: The top four pic-
tograms for each sentence, along with their probability and WordNet defini-
tions, demonstrate the potential for predicting pictograms in similar settings.
When the gender is male or neutral, the models behave differently. The out-
come is directly influenced by the training corpus and vocabulary employed.

In the following paragraphs, we delve into the internal workings of Picto-

BERT, shedding light on its main components and innovations.
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A fundamental aspect of PictoBERT’s design involves a significant over-

haul of the BERT model’s vocabulary and embedding layer. The first step in

this process is the incorporation of WordNet word sense vocabulary, which

fundamentally transforms BERT’s original vocabulary from a word piece-

based structure to a word sense-based one. This shift is pivotal for achieving

a deeper understanding of language and context within the AAC domain. To

facilitate this transition, a trained Word Level tokenizer, integrated with the

SemCHILDES dataset, is employed. This tokenizer is responsible for split-

ting the tokens in a sentence based on whitespace and encoding the corpus,

making it compatible with PictoBERT’s input requirements. However, merely

updating the vocabulary isn’t sufficient. The embeddings layer, responsible

for converting tokens into vector representations, must also be adapted to ac-

commodate the new vocabulary. This crucial step ensures that PictoBERT

comprehends the nuances of word senses and functional words.

Additionally, context-AwaRe Embeddings of Senses (ARES) is computed

using BERT, ensuring that the embeddings exist in the same vector space.

ARES embeddings serve two purposes: one set is computed from contextual

examples, while the other is derived from glossary definitions. The integration

of ARES embeddings replaces the original BERT embeddings, following the

below guideline.

When a word sense from the vocabulary is identified, the vector corre-

sponding to its sense key in ARES is obtained and inserted into the Picto-

BERT embedding layer. In the case of functional words, BERT’s original

embeddings remain in use. Word embeddings play a pivotal role in represent-

ing text in a numerical form, assigning a d-dimensional real-valued vector to

each word in a text corpus. This vector essentially encodes the meaning of

the word. The introduction of ARES by Scarlini et al. in 2020 provided a

semi-supervised method for generating word sense embeddings in WordNet.
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WordNet, developed byMiller et al. in 1995, is a lexical database that cate-

gorizes nouns, verbs, adjectives, and adverbs into synsets, which are groups of

synonyms. Each synset represents a distinct concept, complete with a glossary

definition and various lexical relationships, such as meronymy, hypernymy,

and hyponymy. For each word sense present in WordNet, ARES identifies oc-

currences of these senses in a text corpus and computes their embeddings using

BERT. This approach considers the entire context of a sentence to produce

word embeddings. Furthermore, ARES computes embeddings for the glos-

sary definitions of word senses by averaging BERT representations for words

found in these definitions. The final representation is a 2048-dimensional vec-

tor, split into two aspects: contextualized (first 1024 positions), derived from

usage examples, and gloss-based (last 1024 positions), computed from glos-

sary definitions.

However, it is important to note thatWordNet does not includeword senses

for functional words, such as pronouns, prepositions, conjunctions, and deter-

miners. Moreover, BERT’s special tokens, including [CLS], [MASK], [PAD],

[UNK], and [SEP], are also considered.

To address the representation of multi-word expressions with a single pic-

togram, WordNet provides word senses for some popular expressions, such as

”good morning” but not for all. In cases where ARES lacks embeddings for

such expressions, PictoBERT utilizes BERT’s tokenizer to tokenize the ex-

pression and subsequently computes its representation by averaging the em-

beddings from BERT. For example, the expression ”I am fine” is tokenized

into ”I” ”am” and ”fine”, and the embeddings of each token are extracted from

BERT’s embeddings layer. These embeddings are then aggregated into amean

vector, resulting in the expression’s embedding representation.

To integrate these different embeddings, PictoBERT employs a vocabu-

lary, denoted as V , comprising tokens representing word senses and functional
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words. The embeddings in ARES, denoted asA, is of dimensionalityRd»Dk,

where d = 1024 (considering one of ARES sides), and Dk = 206, 949(the

number of word senses in WordNet). Meanwhile, BERT’s original embed-

dings, represented as B, have dimensions of Rh»Dd, where h is the hidden

states’ size and Dd is the BERT vocabulary size. Finally, a new embedding

matrix, P , with dimensions Rh»Dv, where Dv = |V | represents the Pic-

toBERT vocabulary size. For each token ti in V , the matrix P is populated

using A embeddings if ti represents a word sense, or B embeddings if it rep-

resents a functional word, following the algorithm outlined in Figure 2.10. In

cases where ti is neither in A nor B, the ARES mean vector A is assigned to

its position. This action accommodates customized word sense identifiers in

the vocabulary, considering that AAC users may employ regional terms that

might not be present in ARES.

Despite these advancements, there are inherent limitations in WordNet,

such as the absence of word senses for functional words like pronouns, prepo-

sitions, conjunctions, and determiners. Additionally, some multi-word ex-

pressions may not have embedding representation in ARES.

To address these issues, PictoBERT employs BERT’s tokenizer to tokenize

such expressions and computes their representations by averaging the embed-

dings from BERT. This ensures that even regional or specialized terms can be

accommodated within PictoBERT’s vocabulary.

PictoBERT is pre-trained using the SemCHILDES dataset with specific

hyperparameters. The training follows a similar pattern to BERT, with 15% of

tokens selected for prediction, replaced with [MASK] tokens, random tokens,

or left unchanged. During pre-training, if the ith token is selected, it is replaced

with the [MASK] token 80% of the time, with a random token 10% of the time,

and remains unchanged 10% of the time.

One of the remarkable features of PictoBERT is its adaptability. It can
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be customized to suit the specific needs of users by training a new tokenizer

and updating the embedding layer. This adaptability is essential for accom-

modating diverse user vocabularies and preferences. The mapping process

transforms the input sequence of pictograms into a sequence of word senses,

as PictoBERT operates on word senses as input. This mapping must be per-

formed iteratively each time a user inserts a new pictogram into the sentence,

with a [MASK] token added to the end of the constructed sentence. However,

inherent ambiguities in language may persist.

For example, a pictogram representing ”lunch” may have multiple senses,

potentially leading to confusion. In such cases, the AAC developer may de-

sign the system to ask the user for disambiguation, ensuring that the intended

meaning is accurately conveyed.

Conversely, when transitioning from word sense to pictograms, some limita-

tions may arise, resulting in the loss of certain pictograms in the user’s vo-

cabulary. To mitigate this, alternative methods, such as setting a probability

threshold or selecting the top-k predictions, can be employed to enhance user

experience.

The inference process in PictoBERT involves several key steps. First, the

input sequence is tokenized, which transforms the word-senses and functional

words into numerical representations based on their positions in the embed-

dings matrix. Additionally, numerical references to the [CLS] and [SEP] to-

kens are added to the sequence’s beginning and end.

Next, PictoBERT processes the tokenized sentence and generates a vector

representation for each token, including the masked token, using the atten-

tion mechanism. These vector representations are crucial for understanding

the context and relationships between tokens. At the top classification layer,
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Figure 2.9: Workflow chart exploiting PictoBERT for predicting pictograms
in AAC systems: the input is the user’s selected sentence, the AAC maps the
pictograms to word-senses and functional words to pass them as input to Pic-
toBERT; the model tokenizes the sentence and makes predictions; the model’s
outputs are mapped to pictograms; the suggested pictograms are showed bask
to the user.

Figure 2.10: The procedure for the embedding update is based on Algorithm
1 in the creation of PictoBERT models. It explains how ARES embedding
replaces BERT embedding.

the model further processes the vector representations to approximate the vo-

cabulary tokens. It generates a probability distribution across the vocabulary,

which helps in predicting the next pictogram or word sense to complete the

sentence. This process of predicting the next element is a fundamental aspect
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of PictoBERT’s functionality.

It’s essential to acknowledge the limitations of the starting point of this

research. These limitations are the following; The corpus used, derived from

children’s speech, is not inherently an AAC dataset. It may not fully repre-

sent the language used in AAC boards. To provide a real evaluation, further

testing by AAC users is necessary to assess its practical utility. Implementing

an entire AAC system that effectively integrates PictoBERT is a complex en-

deavor that extends beyond the scope of this work. PictoBERT is compared

with statistical N-gram LMs, presenting a challenging comparison due to the

unavailability of datasets from previous studies.

A statistical LM N-gram is a method used to predict words or tokens in a

text based on the probabilities of word sequences. These models assess how

frequently specific word sequences appear in the training data to make pre-

dictions. In essence, N-gram LMs provide a way to capture the likelihood of

word combinations based on their observed frequencies in the training data.

By considering different N values (e.g., 2-gram, 3-gram, and so on), these

models adapt to varying levels of context and sequence length, thus improv-

ing their ability to generate accurate predictions within a given context.

However, increasingN also increases themodel’s complexity and demands

more training data to cover all possible word sequences. Furthermore, raising

N may result in larger and heavier models, which require more computational

resources for both training and real-time applications.

This section outlines various directions for using PictoBERT in practical

AAC applications. It emphasizes the significance of fine-tuning the model to

accommodate the diverse needs of AAC users. Fine-tuning can be carried out

with smaller datasets or even on tasks unrelated to pictogram prediction. For
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instance, an AAC developer can collect the sentences constructed by a user

in an AAC system and use them as training data for PictoBERT, tailoring the

model to the specific user’s communication style and preferences.

In conclusion, PictoBERT demonstrates its superiority over n-gram-based

models in terms of linguistic comprehension, despite requiring more time and

computational resources. The evaluation, conducted using various metrics,

consistently showcases PictoBERT’s exceptional performance.

Moreover, PictoBERT exhibits remarkable adaptability, making it a valu-

able tool for enhancing communication among individuals with CCN. Its flex-

ibility extends to diverse user settings and activities, illustrating its potential

to cater to the unique needs of the AAC user population. It can be fine-tuned

with ease using various types of data, further underlining its versatility and

applicability in real-world AAC scenarios.



Chapter 3

Proposed Solution

This thesis work is an extension of the mentioned research, introducing Pic-

toViLT, a model that integrates textual and visual data as input to fine-tune a

ViLT multimodal transformer. Through various masking strategies, my study

evaluates the performance of PictoViLT, comparing it with PictoBERT and

statistical n-grams LMs.

The prefixed goal is to surpass PictoBERT as a fundamental AAC tables com-

munication methodology for CCN individuals.

The part of the code representative of how the concepts discussed in this

Chapter were implemented can be found in the next Chapter 4, where illustra-

tions of Python code detailing the structure of the main classes used and the

logic of certain functions are provided.
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3.1 Architecture between BERT and ViLT

3.1.1 A Deep Dive into PictoBERT

BERT BERT, as described in Devlin et al.’s work (2019) [9], is designed

to condition both left and right contexts simultaneously in all layers, aiming

to pre-train deep bidirectional representations from unlabeled text. Conse-

quently, the pre-trained BERT model can be enhanced with just one addi-

tional output layer to provide state-of-the-art models for various tasks, such as

question-answering and language inference, without necessitating significant

task-specific architectural changes.

Themodel is pre-trained using unlabeled data across a range of pre-training

tasks. The pre-trained parameters form the basis of themodel, and labeled data

from downstream tasks is used to fine-tune each parameter.

BERT is a multi-layer bidirectional Transformer encoder available in two

model sizes: base (L=12, H=768, A=12, Total Parameters=110M), which

shares the same size as the OpenAI GPT model, and large (L=24, H=1024,

A=16, Total Parameters=340M). It has long been understood that increasing

the model size leads to continuous improvements in large-scale tasks such as

machine translation and language modeling.

BERT transformer employs bidirectional self-attention, whereas the GPT

Transformer uses constrained self-attention, allowing each token to attend

only to the context on its left. A ”sequence” here refers to the input token se-

quence, which can be a single sentence or two sentences combined. It utilizes

WordPiece embeddings (Wu et al., 2016 [53]) with a vocabulary of 30,000

tokens. Each sequence begins with a special classification token [CLS]. The

final hidden state corresponding to this token serves as the aggregate sequence
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representation for classification tasks. The input representation for each token

is constructed by summing the respective token, segment, and position embed-

dings, see Figure 3.1.

Figure 3.1: Workflow chart exploiting BERT input embeddings are the sum
of the token embeddings, the segmentation embeddings, and the position em-
beddings.

BERT is pre-trained through two unsupervised tasks: Masked LanguageModel

(MLM) and Next Sentence Prediction (NSP). A deep bidirectional model has

proven to be more powerful than a left-to-right model. The MLM procedure

is employed to train a deep bidirectional representation, wherein a portion of

input tokens is randomly masked, and predictions are made for these masked

tokens. The final hidden vectors for the masked tokens are passed through an

output softmax over the vocabulary, similar to a standard LM.

In all experiments, approximately 15% of all WordPiece tokens in each

sequence are randomly masked. It’s important to note that not all ”masked”

words are replaced with the [MASK] token. The training data generator ran-

domly selects 15% of token positions for prediction. If the i-th token is chosen,

it’s replaced with the [MASK] token 80% of the time, a random token 10% of

the time, or remains unchanged 10% of the time.

To train a model that comprehends sentence relationships, the model is

pre-trained for a binarized next-sentence prediction task. Specifically, when

selecting sentences A and B for each pretraining example, 50% of the time B
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is the actual next sentence following A, while 50% of the time it’s a random

sentence from the corpus. The pretraining dataset comprises BooksCorpus 1

and English Wikipedia. 2

Fine-tuning is straightforward due to the self-attention mechanism in the

Transformer, which enables BERT tomodel various downstream tasks, whether

they involve single text or text pairs, by replacing the appropriate inputs and

outputs.

BERT uses the self-attention mechanism to unify these two stages because

encoding a concatenated text pair with self-attention effectively incorporates

bidirectional cross-attention between the two sentences. For each task, task-

specific inputs and outputs are integrated into the model, and all parameters

are fine-tuned end-to-end. The solutions make use of the BertForMaskedLM

model. 3

PictoBERT:TheEvolution The PictoBERT contextualized and glossmodel,

after updates, comprises 317 million trainable parameters and uses token se-

quences that pass through an embedding layer, encoding tokens into vector

representations through an attentionmechanism, resulting in 1024-dimensional

vector representations for each input token. The base pre-trained LM for Pic-

toBERT is bert-large-uncased, 4 with the following parameters (see Figure

3.2):

• 24-layer;

• 1024 hidden dimension;

• 16 attention heads;

• 336M parameters.

1BooksCorpus
2English Wikipedia
3BertForMaskedLM on Hugging Face
4BERT large uncased on Hugging Face

https://yknzhu.wixsite.com/mbweb
https://en.wikipedia.org/wiki/English_Wikipedia
https://huggingface.co/docs/transformers/model_doc/bert##transformers.BertForMaskedLM
https://huggingface.co/bert-large-uncased
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Figure 3.2: BERT Encoder architecture: inputs are encoded as vectors via
the embedding layer, which subsequently sends those vectors to the encoder
layers. In BERT-large, the size of the hidden state is 1024, instead of 768 in
BERT-base.

For classification tasks, the model utilizes vector representations to approx-

imate vocabulary tokens, generating a probability distribution across the vo-

cabulary. The output includes a sequence of vectors aligned with input to-

kens, including the vector associated with the ”[MASK]” token. During train-

ing, BERT’s pre-trained weights are loaded, and the training loss function for

BERT, calculated over 15% of randomly selected tokens, is cross-entropy.

3.1.2 Embracing Multimodality: Analysis of PictoViLT

In the realm of language and vision, the pre-train-and-fine-tune paradigm has

evolved, giving rise to a category of models known as VL Pre-training (VLP).

VLP models undergo pre-training involving Image Text Matching (ITM) and

MLM objectives on images paired with their corresponding textual descrip-

tions. Following this pre-training phase, they are fine-tuned for VL tasks that

necessitate the integration of two modalities.
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ViLT represents a significant departure from traditional Transformer ar-

chitectures like BERT. Notably, its handling of visual data is devoid of con-

volutional layers, making it as straightforward as processing textual inputs.

This characteristic confers upon ViLT a remarkable speed advantage, making

it several times faster than its counterparts in the VLP domain.

The initial step in ViLT’s processing involves segmenting the input im-

age into patches and flattening it. Subsequently, the embeddings for textual

and visual modalities are combined through vector addition with their respec-

tive mode-specific embedding vectors. This merged sequence is then passed

through linear projection and positional embedding.

The vector representing the context, denoted as z undergoes iterative up-

dates acrossD-depth Transformer layers until the final contextualized sequence

is achieved. Additionally, the pooled representation of the image, which en-

capsulates the entire multimodal input, is obtained through linear projection

and hyperbolic tangent applied to the first index of the sequence.

Within the Visual Embedding Schema, both textual and image data un-

dergo linear embedding. The input image is sliced into patches and flattened

as shown in the architecture overview of Figure 3.3.

Images are transformed into patches, word token sequences are encoded

into vector representations using an attention mechanism, and text and image

embeddings are unified into a sequence referred to as z − zero. Each input

token within this sequence is represented as a 768-dimensional vector.

An important aspect of ViLT’s architecture is the application of Layer

Normalization (LN). Unlike BERT, where LN occurs after Multi-Head Self-

Attention and Multi-Layer Perceptron layers, ViLT employs LN before these
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Figure 3.3: In the ViLT [21] architecture overview, the visual processing in-
volves dividing an image into patches of fixed size, linearly embedding each
patch, adding position embeddings, and subsequently feeding this sequence
of vectors into a conventional Transformer encoder combined with text em-
beddings.

layers. This variation plays a critical role in ViLT’s functioning.

ViLT-B/32 is a specific instantiation of the model with distinctive parame-

ters, such as a hidden size (H) of 768, a layer depth (D) of 12, a patch size (P )

of 32, anMLP size of 3,072, and 12 attention heads. Its training involves tasks

such as ITM andMLM. ITM introduces a randomization element by replacing

aligned images with different images with a 50% probability. Simultaneously,

MLM tasks involve predicting the correct labels of masked text tokens based

on their contextualized vector representations.

To implement this solution, ViltForMaskedLM, 5 derived from the pre-

trained ViLT-B/32 model, is employed for MLM tasks. The model under-

goes training for 200,000 steps, utilizing diverse datasets, including Google

Conceptual Captions [44], SBU Captions [37], Microsoft COCO [29], and

Visual Genome [22]. The optimization process leverages the AdamW opti-

mizer with a base learning rate of 10−4 and weight decay of 10−2. Learning

rate scheduling incorporates a warm-up phase for the initial 10% of training

steps, followed by a linear decay to zero for the remainder of training. It’s im-

portant to note that customizing hyperparameters for specific tasks may yield
5ViltForMaskedLM on HugginFace

https://huggingface.co/dandelin/vilt-b32-mlm
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further improvements in downstream performance.

Lastly, as part of preprocessing, input images are resized to ensure that the

shorter edge measures 384 pixels while preserving the aspect ratio by keeping

the longer edge under 640 pixels.

To effectively process textual inputs, ViLT-B/32 relies on the bert-base-

uncased tokenizer for tokenization. This tokenizer ensures that text inputs are

appropriately segmented into tokens, facilitating subsequent processing steps.

ViLT-B/32’s patch projection results in 240 patches for images with a res-

olution of 384x640 pixels. During pre-training, a maximum of 200 patches

are sampled. Positional embeddings (Vpos) withinViT-B/32 are interpolated to

match individual image sizes, with patches appropriately padded for batch

training. It’s noteworthy that the resulting image resolution is four times

smaller than the 800×1333 size utilized by other VLP models to feed their vi-

sual embedders. The textual embedding-related parameters in ViLT are initial-

ized from scratch rather than being derived from a pre-trained BERT model.

This choice is made because using pre-trained BERT parameters solely for text

embeddings led to weaker performance in VL tasks [21]. ViLT-B/32 is pre-

trained with text embeddings initialized from scratch for 100,000 or 200,000

steps using 64 NVIDIA V100 GPUs with a batch size of 4,096. For down-

stream tasks, training involves ten epochs with a batch size of 256 for VQAv2

and retrieval tasks, and 128 for NLVR2.
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3.2 Dataset

3.2.1 SemChildes

Using word senses, as introduced by Schwab et al. (2020) [42], provides a

more precise representation of concepts since single words can often be am-

biguous. Therefore, we associate pictograms with word-senses, making the

task akin to word-sense language modeling. Consequently, for PictoBERT

it’s needed a dataset that labels word-senses for nouns, verbs, adjectives, and

adverbs.

To address this, the CHILDES, 6 MacWhinney [30] is turned into a mul-

tilingual corpus containing around 2 million sentences transcribed from chil-

dren’s speech. Given its conversational nature, it’s decided to use this corpus

for training. To make this feasible, a portion of CHILDES is labeled with

word-senses using SupWSD (Papandrea et al., 2017 [38]). Specifically, sen-

tences in North American (NA-Eng) are selected, resulting in a dataset called

SemCHILDES, comprising 955,000 labeled sentences. The labeling involved

assigning SemCHILDES summary a sense-key to each content word (i.e.,

verbs, nouns, adjectives, and adverbs), while functional words were retained

in their original form. For example, the sentence ”I am a little butterfly”. was

transformed into ”i be%2:42:03:: a little%3:00:01:: butterfly%1:05:00::.”

However, the sentences tend to be shorter, with 201,062 of them hav-

ing four tokens and an average sentence length of six. This characteristic

aligns with CHILDES, which features children’s speech and typically yields

shorter sentences compared to corpora sourced from newspapers, books, or

Wikipedia articles, as used in training BERT. Additionally, SemCHILDES

includes lemma and POS tag annotations for each word. It comes in two

versions: NA-Eng and UK-Eng, containing sentences from British English
6CHILDES Wikipedia

https://en.wikipedia.org/wiki/CHILDES
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Num Sentence
1 troop%1:14:03:: be%2:42:03:: call%1:10:01:: .
2 watch%1:06:00:: this .
3 wow%1:10:00:: , look_at%2:31:00:: .
4 a tractor%1:06:00:: .
5 a tractor%1:06:00:: , .
6 what be%2:42:06:: this ?
7 what be%2:42:06:: this ?
8 what do%2:41:01:: you think%2:31:01:: it be%2:42:06:: ?
9 a ball%1:06:01:: !
10 what do%2:41:01:: you think%2:31:01:: it be%2:42:06:: ?
11 a ball%1:06:01:: .
12 maybe%4:02:00:: it be%2:42:06:: a ping-pong%1:04:00:: ball%1:06:01:: .

Table 3.1: Group of SemCHILDES sentences.

CHILDES.

Regarding the division of the North American part of SemCHILDES, it’s

split in 98-1-1 for training, validation, and testing purposes. The training and

validation splits were utilized during pre-training, and the training split helped

adjust the model weights, while the validation split served to assess perfor-

mance during training. As in Figure 3.4, it’s composed by:

• large corpus sentences;

• small sentences of mean length of 6 tokens per sentence;

• conversational form to adapt to the conversational task of predicting

pictogram.

Figure 3.4: SemCHILDES summary.

Used to train Word Level Tokenizer which splits tokens in a sentence by

whitespace. Sentences of 4 tokens are the most frequent, appearing 201,062

times. Each phrase is made up of word senses that are interspersed with pro-

nouns and punctuation as in Table 3.1. For each sentence has been counted the

number of tokens inside it on the right column of Figure 3.4 and is reported in

the Table below 3.2.
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Num tokens Num Sentence
4 201,062
5 178,838
3 164,641
6 131,612
7 92,104
...
64 1
74 1
59 1
86 1
65 1

Table 3.2: SemCHILDES dataset: the number of tokens per sentence is shown
on the left column, and the number of sentences with that amount of tokens is
displayed on the right column.

The bar graph in Figure 3.5 highlights a concentration of sentences in the

first 10 x-axis locations by relating the number of sentences on the y-axis to

the number of tokens per phrase on the x-axis.

Figure 3.5: Graph distribution of sentence length in SemCHILDES dataset.

Table 3.3 shows the dataframe dataset with examples of the first 6 sen-

tences and their number of tokens.

To map ARASAAC pictograms to WordNET 3.0 word-senses, there is a CSV

file with the association between word, word-sense, and pictogram id as in

Figure 3.4. SemCHILDES is adapted to fit the ARASAAC vocabulary of



3.3 Other Datasets 53

Sentence len
troop%1:14:03:: be%2:42:03:: call%1:10:01:: . 4

watch%1:06:00:: this . 3
wow%1:10:00:: , look_at%2:31:00:: . 4

a tractor%1:06:00:: . 3
a tractor%1:06:00:: , . 4

what be%2:42:06:: this ? 4

Table 3.3: SemCHILDES table of sentence and their length. It’s a dataframe
with 955,489 rows x 2 columns.

Unnamed: 0 Unnamed: 0.1 word pictogram_id synset word_senses Unnamed: 6
0 0 pavement 2247.0 04215402-n pavement%1:06:01:: NaN
1 1 sidewalk 2247.0 04215402-n sidewalk%1:06:00:: NaN
4 4 carpet 2249.0 04118021-n carpet%1:06:00:: NaN
5 5 rug 2249.0 04118021-n rug%1:06:00:: NaN
6 6 pillow 2250.0 03938244-n pillow%1:06:00:: NaN

Table 3.4: Word-sense - ARASAAC mapping table.

length 8,259, deleting tokens not in the ”word-sense” column vocabulary of

length 3,880.

3.3 Other Datasets

The SemChildes dataset was used to transition from word-senses to words

through the ARASAAC mapping for correlation definition. However, several

challenges and issues arose during this process:

• Not all word-senses present in SemChildes are covered by theARASAAC

mapping and were therefore discarded;

• In cases where a word-sense had a corresponding word and a pictogram

ID in the ARASAAC mapping, it did not always have a corresponding

pictogram ID in the pictogram directory. Consequently, there was not a

pictogram available for every word;

• Some words corresponded to multiple word-senses, but they shared the

same pictogram ID, resulting in a loss of singularity.

To ensure the quality of the data, the following data-cleaning operations

were performed:
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Dataset Num. Sentences
Train 555,359

Validation 5,667
Test 5,667

Table 3.5: Training, validation and test dataset split.

Unnamed: 0 Unnamed: 0.1 word pictogram_id synset word_senses Unnamed: 6
27074 27074 daddy 31146.0 0998806-n daddy%1:18:00:: NaN
27076 27076 daddy 31146.0 10080869-n father%1:18:00:: NaN

Table 3.6: Discrepancy between word and word-sense.

• Removal of sentences containing proper_noun;

• Handling of NaN values in the word-sense column;

• Elimination of duplicated sentences.

The dataset comprises a total of 566,693 sentences, which were divided

into training, testing, and validation datasets. The dataset dimensions are as

in Table 3.5.

Figure 3.6: Daddy pictogram.

As illustrated in Table 3.6, certain words have the same meaning and share

a pictogram ID, as seen in Figure 3.6, yet they possess different values in the

word-sense column.

Other datasets considered for experimentation included the Corpus for

Knowledge-Enhanced LM Pre-training (KELM) [1], 7 the Constrained Text

GenerationChallenge forGenerative Commonsense Reasoning (CommonGen)
7KELM Hugging Face

https://huggingface.co/datasets/kelm
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dataset [28], 8 and Conceptual Captions [44]. 9

3.3.1 Image Captioning

Image captioning datasets serve as invaluable resources in the realm of CV

and NLP, bridging the visual and textual domains. These datasets are care-

fully curated collections of images paired with descriptive captions, and they

play a pivotal role in training and evaluating models capable of understanding

and generating textual descriptions for visual content.

One such noteworthy dataset is Conceptual Captions, a vast repository

comprising approximately 3.3 million images meticulously annotated with

captions. What sets Conceptual Captions apart from many other image cap-

tioning datasets is its unique origin. Instead of adhering to the curated style

of traditional image caption annotations, the images and their associated raw

descriptions are harvested directly from the vast expanse of the internet. Con-

sequently, these captions represent a wide spectrum of styles, reflecting the

diversity of content available online.

The process of constructing Conceptual Captions involves the extraction

of raw descriptions from the Alt-text HTML attribute associated with web

images. Subsequently, these descriptions undergo a sophisticated automatic

pipeline. This pipeline is meticulously designed to extract, filter, and trans-

form candidate image/caption pairs. The ultimate aim is to strike a delicate

balance between the cleanliness, informativeness, fluency, and learnability of

the resulting captions.

Conceptual Captions is not merely a repository of images with captions;

it is a treasure trove of insights into the world of image captioning. In the
8CommonGen Hugging Face
9Conceptual Captions Hugging Face

https://huggingface.co/datasets/common_gen
https://huggingface.co/datasets/conceptual_captions
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sections that follow, we delve into a comprehensive analysis of this dataset,

focusing primarily on the captions themselves. Our analyses provide fasci-

nating insights, such as the distribution of caption lengths. For instance, the

shortest sentence in Conceptual Captions comprises amere three tokens, while

the longest stretches to an impressive 39 tokens. On average, a caption in this

dataset consists of approximately 10.4 tokens, as evidenced by the data in Fig-

ure 3.9.

This observation is further validated by the dotted red line in the bar chart

depicted in Figure 3.8, which underscores the mean token length of Concep-

tual Captions. Furthermore, Figure 3.10 offers a glimpse into the density of

sentences within various token length ranges, revealing that the majority of

sentences fall within the 5-15 token range.

For a more nuanced perspective, we also examine the distribution of pic-

togram density per Conceptual Captions sentence in Figure 3.7. This analy-

sis provides valuable insights into how pictograms are distributed across the

dataset, shedding light on their contextual usage within the captions.

Figure 3.7: Distribution of pic-
togram density per Conceptual
Captions sentence.

Figure 3.8: Conceptual Caption to-
ken count per sentence with aver-
age token count.
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Figure 3.9: Statistical values over
Conceptual Captions dataset. Min,
max, and average of token count in
the dataset’s sentences.

Figure 3.10: Conceptual Captions
sentence distribution over tokens
density.

3.3.2 Verbalized Knowledge Graphs

Verbalized Knowledge Graphs, or Verbalized KGs for brevity, represent an

innovative and transformative approach in the domain of data-to-text genera-

tion. This exciting field involves the art and science of transforming structured

knowledge graph triples, typically in the format of (subject, relation, object),

into coherent and human-readable natural language sentences. The driving

force behind Verbalized KGs is to bridge the semantic gap between raw data

in structured form and the expressive power of human language.

KELM Among the remarkable datasets that harness the capabilities of Ver-

balized KGs, KELM dataset stands out. This dataset is a testament to the

synergy between structured knowledge and natural language, comprising En-

glish KG data expertly converted into paired natural language text.

The KELM dataset is truly expansive, encompassing an impressive 18

million sentences. These sentences correspond to approximately 45 million

triples derived from the knowledge graph, illustrating the richness and depth

of the underlying data. Within KELM, you’ll encounter an impressive reper-

toire of 1,500 distinct relations, underscoring the diversity and breadth of the

knowledge encapsulated in this corpus.
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Notably, KELM goes beyond mere data-to-text generation. The gener-

ated sentences within this dataset have undergone meticulous preprocessing,

and each has been thoughtfully associated with corresponding pictogram IDs.

This strategic linkage opens up exciting possibilities for multimodal applica-

tions that fuse textual and visual information.

For KELM, the generated sentences have been preprocessed and associ-

atedwith pictogram IDs. The data frame contains the sentence, pictogram ID’s

list, and tokens of the sentence found in pic_map["word"]. The sentences

undergo a series of preprocessing steps. These steps are designed to enhance

readability, coherence, and linguistic fidelity. The preprocessing phases in-

clude:

• Conversion to lowercase: Standardizing the text for consistency.

• URL removal: Eliminating web addresses for clarity.

• Mention removal: Removing mentions to maintain focus.

• Genitive replacement: Substituting genitive (’s) with ”of” for preci-

sion.

• Parentheses removal: Enhancing sentence flow by omitting parenthe-

ses and their contents.

• Dash transformation: Replacing dashes with spaces to improve legi-

bility.

• Abbreviation expansion: Converting acronyms into their full forms

for clarity and context.

• Symbol removal: Eliminating unnecessary symbols and maintaining

linguistic purity.

• Verb lemmatization: Standardizing verbs for consistency, while re-

taining punctuation.
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KELM sentences exhibit distinctive characteristics that offer insights into

their structure and composition. On average, a sentence in the dataset consists

of approximately 13.84 tokens, as depicted in Figure 3.11.

Figure 3.11: KELM sentence length.

Furthermore, the mean number of tokens per sentence hovers around 6.96,

highlighting the dataset’s versatility and suitability for various natural lan-

guage tasks (Figure 3.12).

Figure 3.12: KELM token count
per sentence with average token
count.

Figure 3.13: Distribution of pic-
togram density per KELM sen-
tence.

For a deeper understanding of sentence structure, Figure 3.13 presents

a bar chart illustrating the distribution of sentence lengths in terms of pic-

tograms. Strikingly, a significant portion of sentences in KELM comprises
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exactly three pictograms, showcasing a unique structural characteristic of this

dataset.

CommonGen CommonGen is a task designed for evaluating machines’ ca-

pabilities in generative commonsense reasoning, and it is associated with a

benchmark dataset tailored for this purpose. The primary objective is to as-

sess the ability of machines to generate coherent sentences describing every-

day scenarios using a predefined set of common concepts.

In the context of this study, we delve into an analysis of the target column

within the CommonGen dataset. Notably, this analysis focuses on the charac-

teristics of the generated sentences

Figure 3.14: Statistical values over
CommonGen dataset. Min, max,
and average of token count in the
dataset’s sentences.

Figure 3.15: CommonGen sen-
tence distribution over tokens den-
sity.

The dataset encompasses sentences with varying lengths. The shortest

sentence in the dataset comprises 5 tokens, while the longest extends to 23

tokens. On average, sentences consist of 10.5 tokens, as illustrated in Figure

3.14.

This average sentence length is further supported by the dotted red line in

the bar chart presented in Figure 3.16. Additionally, Figure 3.15 reveals that
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Figure 3.16: CommonGen token
count per sentence with average to-
ken count.

Figure 3.17: Distribution of pic-
togram density per CommonGen
sentence.

the majority of sentences cluster in the 7.5-12.5 token range. Furthermore,

Figure 3.17 illustrates the distribution of pictogram density within Common-

Gen sentences, providing valuable insights into the dataset’s composition.

To better understand this distribution, it’s essential to consider percentiles

as well. For instance, 25% of the dataset contains sentences with two or fewer

tokens, while the median sentence length falls at four tokens. Additionally,

75% of the data includes sentences with five tokens or fewer. At the end, we

proceed with CommonGen for describing everyday scenario sentences.

Figure 3.18: CommonGen sentence distribution over numbers of pictograms.

Analysis of images is generally represented in bar chart 3.20. Figure 3.18

shows there aren’t sentences with more than 14 pictograms, here is a mean of

4 pictograms assigned to a sentence in Table 3.7.
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Figure 3.19: CommonGen number
of pictograms boxplot.

Figure 3.20: CommonGen fre-
quency of pictograms number with
Mean, Min and Max statistics.

Statistics Values
Count 54,890.00
Mean 3.92
Std 1.94
Min 1.00
25% 2.00
50% 4.00
75% 5.00
Max 14.00

Table 3.7: Statistical Summary of Pictogram Assignments per Sentence.

The minimum is 1 and the max is 14, 25% of sentences have <=2 pic-

tograms, 50% have <= 4 pictograms and 75% of sentence has <=5 pictograms

shown in boxplot Figure 3.19.

For the fine-tuning of PictoViLT, the training dataset was downsampled

to 10,000 items, the validation dataset to 2,000 items, and the test dataset to

50 items. This downsampling was done to reduce execution time, with the

training set comprising approximately 83% of the total data, the validation set

approximately 17%, and the test set approximately 0.4%.
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3.4 Text Data Processing

Regarding text data processing for PictoViLT, a critical component is the

ViltProcessor, combinedwith the pretrained dandelinvilt-b32-mlmmodel.
10 This versatile processor seamlessly combines the functionalities of BertTokenizerFast,
11 and ViltImageProcessor,12 streamlining the text and image data prepa-

ration pipeline.

The ViltProcessor, 13 as depicted in the Hugging Face documentation,

efficiently handles both textual and visual input, encoding and transforming

them into a compatible format for downstream tasks. It operates with a vo-

cabulary of considerable size, boasting 30,522 unique tokens, ensuring its ef-

fectiveness in processing diverse textual data.

Text encodingwith ViltProcessor adheres to specific parameters. Padding

is applied to ensure a consistent maximum length of 40 tokens, and truncation

is employed to manage text length, maintaining the desired format for model

input.

What makes this text-processing pipeline even more remarkable is the in-

corporation of a customized vocabulary. This custom vocabulary, derived

from a combination of NLTK tokenizer and ViltProcessor tokenizer, is tai-

lored to our dataset’s unique linguistic characteristics. 14

The custom vocabulary is constructed by including all the distinct words

present in our dataset, each tokenized using the NLTK tokenizer. This vocab-

ulary serves as the foundation for a word-ID dictionary, as illustrated in Table
10ViLT on HuggingFace
11BertTokenizerFast
12ViltImageProcessor
13ViltProcessor on Hugging Face
14NLTK documentation

https://huggingface.co/dandelin/vilt-b32-mlm
https://huggingface.co/docs/transformers/v4.33.2/en/model_doc/bert##transformers.BertTokenizerFast
https://huggingface.co/docs/transformers/v4.33.2/en/model_doc/vilt##transformers.ViltImageProcessor
https://huggingface.co/docs/transformers/model_doc/vilt##transformers.ViltProcessor
https://www.nltk.org/api/nltk.tokenize.html
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3.21, facilitating seamless mapping between words in our custom vocabulary

and their corresponding IDs in the ViltProcessor’s extensive vocabulary.

Furthermore, our customized vocabulary streamlines the data by removing

words and symbols that do not find application in our specific solution. This

selective pruning can be observed by comparing it with the older vocabulary,

as showcased in Table 3.22.

Word ID
determine 5646
casualties 8664
swords 10689
module 11336
skate 17260
shop 4497

dangers 16796
shelf 11142
sermon 18408
herd 14906

Figure 3.21: Customized word-ID
dictionary.

Word ID
##� 30307

expeditionary 15372
unused74 750
##rite 17625
keeps 7906
whoa 23281

unused971 976
1857 8204
##ux 5602
cadiz 26342

Figure 3.22: ViltProcessor proces-
sor vocabulary.

Overall, the integration of the ViltProcessor, coupled with the creation

of a tailored vocabulary, plays a pivotal role in optimizing text data processing

for PictoViLT. These components enable efficient encoding, tokenization, and

customization, laying the foundation for robust multimodal understanding and

communication.

3.5 Masking

3.5.1 PictoBERT

During training During the training of PictoBERT, a robust masking strat-

egy is implemented to enhance the model’s language understanding.
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The first step involves loading a trained tokenizer specifically designed

for the task. This tokenizer defines special tokens like [MASK], [CLS], and

[SEP] and plays a pivotal role in token manipulation during training.

The dataset, previously split and prepared, is loaded for training. It com-

prises sequences of tokens, attention masks, and special tokens” masks, which

are fundamental for further processing.

Data collation is a critical phase where the masking strategy comes into

play. 15 The DataCollatorForLanguageModeling is employed, 16 which

replaces a fraction of tokens (controlled by MLM probability 0.15) in each

batch with the [MASK] token.

Data loaders are configured to manage batch processing and apply the data

collation. These loaders streamline the efficient training of PictoBERT.

During ARASAAC fine-tuning The masking strategy plays a pivotal role

in PictoBERT’s ability to comprehend and generate ARASAAC-enriched tex-

tual descriptions. It involves randomly masking a fraction of tokens within

input sequences, prompting the model to predict these missing tokens. The

choice of parameters in the masking strategy is carefully calibrated to opti-

mize the model’s performance.

Notably, the MLM_PROBABILITY parameter is set to 0.15, reflecting a delib-

erate choice tomask approximately 15% of tokens within each input sequence.

This aligns harmoniously with established practices, ensuring an appropriate

balance between masked and unmasked tokens to facilitate meaningful learn-

ing.

15Data Collator on Hugging Face
16DataCollatorForLanguageModeling

https://huggingface.co/docs/transformers/main_classes/data_collator
https://huggingface.co/transformers/v4.8.1/main_classes/data_collator.html##datacollatorforlanguagemodeling
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Furthermore, tokens are masked using the [MASK] token, serving as a

placeholder for the tokens to be predicted. The code intricatelymanages the to-

ken replacement process, preserving the structure and semantics of ARASAAC-

enriched sentences while enabling themodel to learn the relationships between

words and pictograms effectively.

Additionally, the code accounts for label generation, whereby labels corre-

sponding to the original tokens are created andmasked appropriately. This nu-

anced approach ensures the model’s training process is well-guided, enabling

it to excel in generating accurate and contextually relevant textual descriptions

for multimodal inputs.

3.5.2 PictoViLT

VILTDataset, an integral component of our architecture, is designed as a spe-

cialized subclass of torch.utils.data.Dataset. This dataset plays a piv-

otal role in VL models, which require a harmonious fusion of textual and vi-

sual data during the training process. Here, we delve into the inner workings

of this dataset, shedding light on its core functionalities.

Tokenization and Pair Generation Our ViltDataset class operates on

sentences, treating them as the raw material for model training. The first

step involves processing and tokenizing these sentences. When a match is

identified between a word in the sentence and an associated image, the magic

truly unfolds. In such cases, we embark on the creation of text-image pairs,

introducing masked tokens that are integral to the model’s learning process.

However, it’s important to note that phrases devoid of matches are gracefully

discarded, ensuring that our training data remains relevant and purposeful.
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Tokenization and Variable Initialization The crux of our dataset lies in

the tokenization of sentences using the processor’s tokenizer. This process

entails the initialization of several vital variables, including pid (pictogram

ID), target labels, masked sentences, and masked tokens. These variables are

instrumental in shaping the subsequent steps of our data preparation.

Mapping andTokenMatching The next phase involves ameticulous search

for token indices within the sentence that corresponds to words present in a

data frame. This search relies on the intricate mapping between words and

pictogram IDs. If successful matches are identified:

• In cases where a solitarymatch is found, we pinpoint thematching index

with precision;

• When multiple matches occur, a random index is thoughtfully selected

from the available options. This random selection is facilitated through

a method that returns a randomly chosen element from the provided

sequence.

Pictogram IDRetrieval andMasking With thematchingword in our grasp,

we proceed to retrieve the corresponding pictogram ID. However, before pro-

ceeding further, we perform a crucial check to ensure that the image path as-

sociated with the pictogram exists. Only when this path is confirmed to exist

do we initiate the masking process. The token that corresponds to the pic-

togram is discreetly masked, setting the stage for the model’s assimilation of

this masked information.

Encoding and Key Components The result of these intricate steps is the

creation of an encoding object, which serves as the input to our model. This

encoding object comprises several key components:

• Input IDs: This section contains the token IDs of the text after tok-

enization.
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• Attention Mask: This component is pivotal for guiding the model’s

attention during processing, indicating which tokens should be consid-

ered (with a value of 1) and which should be ignored (with a value of

0).

• Pixel Values: Here, we encapsulate the normalized pixel values of the

associated image, facilitating their integration into the model’s under-

standing.

• Position IDs: This section provides crucial information about the po-

sitions of tokens within the text, enabling the model to decipher the

context accurately.

• Labels: For specific tasks, such as text mask labeling, this segment

contains token IDs that guide the model’s predictions and learning.

Masking Strategies Within our dataset, we employ various masking strate-

gies for fine-tuning, each tailored to specific learning objectives. These strate-

gies include:

• Logic 1 - masking 1 token with [MASK];

• Logic 2 - masking 1 token with [MASK], another vocab word or left

unchanged;

• Logic L3 - masking multi-tokens.

Logic 1 is the simplest approach that involves the masking of only the first

word associated with a pictogram ID. It forms the foundation of our masking

logic.

Logic 2 is more complex. An array of tokens to mask, a list containing

all the tokens in the tokenized sentence that have an associated image, will be

tokens candidates for masking. Next, it’s checked whether the tokens to mask

list is not empty with if tokens to mask. This is a check to make sure there are
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tokens available for masquerading. If it’s not empty, a token from this list is

randomly selected with a random choice method over the list. This token will

be the token to mask. The index of the token to be masked in the tokenized

sentence is then determined. The pictogram ID associated with the token to

be masked is retrieved from the mapping table.

A random number is generated with the random function to determine

what masking action to apply to the token. If the number is less than 0.8,

the token is replaced with ”[MASK]”. This happens in 80% of cases. If the

number is between 0.8 and 0.9, the token is replaced with a random token

taken from the list of custom vocabulary keys. This happens in 10% of cases

and the rest of 10% of the time, keep the token unchanged. The tokenized sen-

tence is changed to masked tokens based on the conditions described above.

The matched indices list is filtered to exclude tokens [CLS], [SEP], and [PAD]

ensuring that that these special tokens are not considered for masking.

In multi-masking of Logic 3, the sentence is tokenized, tokens with im-

ages, and in the mapping table are put into ”tokens with images”. The per-

centage of tokens with image are chosen to be replaced in the code, and the

number of tokens is rounded up to the nearest integer. Of the chosen tokens, is

the logic of BERT on how to mask the tokens. The selected token is replaced

with [MASK] 80% of the time, replaced with a randomly selected token from

custom vocabulary 10% of the time, and left unchanged 10% of the time. The

matched indices list is filtered to exclude special tokens, not useful for mask-

ing.

For each chosen token, the pictogram is stored in a list. All the pictograms

in the list are concatenated and fed to the model. The percentage to mask is

80% and rounded up because some sentences have very few tokens to mask

(for example 2 and with percentage=40%, the number of tokens is equal to 0.8
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Logic Sentence Masked Tokens Masked Sentence
1 young patient clinic 1, young [MASK] patient clinic.
2 airplanes be taxi take airport 1, taxi -> bilingual airplanes be bilingual take airport.
3 white domestic goat rest on grass 4, goat rest on grass white domestic [MASK] [MASK] [MASK] [MASK]

Table 3.8: Masking examples on 3 different sentences for each model version.

and so 0 tokens are masked). This code randomly selects a subset of tokens to

mask by the specified percentage, gets their indices into the tokenized phrase,

replaces the tokens with ”[MASK]” or a random token based on a randomly

generated value, and returns the modified tokenized phrase as a string. The 2

characteristics are a fixed percentage of masking and co-linking images along

the x-axis into a single image.

Table 3.8 shows some masked sentences for the 3 logics.

3.6 Image Processing

In the domain of image processing, specifically tailored for PictoViLT, a series

of carefully orchestrated steps are undertaken to prepare the original pictogram

images for multimodal analysis. These actions ensure uniformity and optimal

integration with the accompanying textual data.

The journey begins with the original pictogram images, each boasting di-

mensions of 500x500. To align them with the default picture dimension ex-

pected by the ViltProcessor, they are efficiently scaled down to 384x384,

enabling seamless compatibility.

Subsequently, the scaled images are divided into patches, each sized at

128x128, organized in a 3x3 grid pattern. This partitioning strategy allows for

a more granular analysis of the images, enhancing the model’s understanding

of their visual components. Now, the encoded representation of these patches

is generated, utilizing specific parameters. The patch size is configured at 16,
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while the grid size is set at 24.

So each image is divided into 24x24 patches as in Figure 3.24 rendering

Figure 3.23: Pictogram with green background.

all pictograms uniforming all pictogram images also them with a not-white

background like it in Figure 3.23.

Figure 3.24: Extracted patches on pictogram.

Each patch undergoes a meticulous examination to determine its informa-

tion content. Patches containing valuable information are assigned a value of

1, while those that are monochromatic receive a value of 0. Notably, patches
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assigned a value of 1 retain their original color, preserving their visual char-

acteristics. Conversely, patches with a value of 0 assume a black color, effec-

tively serving as the background. Every pixel without useful information is

black and it’s like the background as in Figure 3.25.

Figure 3.25: Overlaid pictogram.

The journey continues with loading these processed images from the Over-

laid directory. To facilitate further analysis, the pixel values are normalized to

the range [0,1] by dividing them by 255.0. Subsequently, they are transformed

into torch tensors of type float32 and rearranged to adhere to the correct dimen-

sions (C, H, W), resulting in a structured tensor representation of the image.

The true synergy of multimodal understanding emerges as text and image

encoding converge. A dedicated processor adeptly manages the coexistence

of textual and visual data, culminating in a holistic encoding that encapsulates

both domains. Furthermore, this encoding includes a ”pixel values” field that

is enriched with the image tensor, seamlessly merging textual and visual in-

formation.



3.6 Image Processing 73

In the context of masking L3, a strategic concatenation of the images

follows, adhering to the order in which they appear in the tokenized sen-

tence. This cohesive fusion is achieved after resizing the images to a uni-

form 384x384 dimension, ensuring harmonious integration. Specific tokens,

namely [”arch”, ”on”, ”ceiling”, ”.”], are thoughtfully chosen for masking,

as they are arranged in the sequence illustrated in Figure 3.26. This strategic

alignment is depicted in the resulting image patches, as showcased in Figure

3.27.

Figure 3.26: Concatenated image input for Masking Logic 3.

Figure 3.27: Extracted patches on the concatenated image.

This meticulous image processing pipeline for PictoViLT should harmo-

nize visual and textual information, setting the stage for a comprehensive and

multimodal understanding of the data.
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3.7 Training - PictoBERT

In our training approach for PictoBERT, we adopt a set of well-considered hy-

perparameters, which are consistently applied to both the gloss and contextual

versions of the model. These hyperparameters play a crucial role in shaping

the training process, ensuring that the model can effectively learn from the

data.

Firstly, we tokenize the semCHILDES dataset using a maximum token

length of 32. To accomplish this, we make use of a JSON file known as

childes_all_new as our tokenizer. We load this pretrained tokenizer with

the help of the PreTrainedTokenizerFast 17 class from the Hugging Face

Transformers library.

Training tokenizer In order to facilitate the utilization of a distinct vocab-

ulary for BERT, the development of a new tokenizer is imperative. Tokeniza-

tion, as an initial step before feeding data into a LM, involves the segmen-

tation of sentences into individual tokens according to predefined rules, and

subsequently converting these tokens into numerical representations for the

model’s processing. Initially, BERT employs a Word Piece tokenizer that dis-

sects sentences into words or subwords (e.g., ”playing” becomes "play##"

and "##ing").

To accommodate the integration of word-senses into the model, we em-

barked on training a Word Level tokenizer, which segments sentence words

based on whitespace, thereby enabling the incorporation of sense keys into the

process. We harnessed Hugging Face’s tokenizers library for this endeavor.
18

The construction of the tokenizer involved the following key steps:

• Creating the Tokenizer Model: We configured a Tokenizer using the
17PreTrainedTokenizerFast on Hugging Face
18Tokenizer on Hugging Face

https://huggingface.co/docs/transformers/main_classes/tokenizer##transformers.PreTrainedTokenizerFast
https://huggingface.co/docs/transformers/main_classes/tokenizer##tokenizer
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WordLevel model, with an unknown token defined as ”[UNK]” to rep-

resent unrecognized terms.

• Incorporating Special Tokens: Special tokens such as ”[SEP]” (sepa-

rator), ”[CLS]” (classification), ”[PAD]” (padding), ”[MASK]” (mask-

ing), and ”[UNK]” (unknown) were incorporated into the tokenizer’s

vocabulary.

• Pre-tokenization Strategy: We employed the WhitespaceSplit pre-

tokenizer, which splits the input text based on whitespace. 19

• Post-processing forCompatibility: To ensure compatibilitywith BERT

processing, we implemented post-processing using BertProcessing.
20

This step involved specifying token IDs for special tokens like ”[SEP]”

and ”[CLS]”.

The next phase entailed training the tokenizer, which involved the follow-

ing steps:

• WordLevel Training: We utilized a WordLevelTrainer, with the pro-

vision of special tokens, notably ”[UNK]” to facilitate the training pro-

cess.

• Training from Examples: The tokenizer was trained using a collection

of examples, enabling it to learn the vocabulary from the provided data.

• Vocabulary Size: Upon completion of training, the tokenizer acquired

a vocabulary size corresponding to the number of unique tokens in the

training data.

• Saving the Tokenizer: To enable its future usage, the trained tokenizer

was exported as a JSON file.

This meticulously crafted tokenizer forms a critical component of our Pic-

toBERT model, empowering it to process text data while accommodating
19 WhitespaceSplit
20BertProcessing

https://huggingface.co/docs/tokenizers/api/pre-tokenizers##tokenizers.pre_tokenizers.WhitespaceSplit
https://huggingface.co/docs/tokenizers/api/post-processors##tokenizers.processors.BertProcessing
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word-sense information for enhanced performance in word-sense language

modeling tasks.

3.8 Fine-Tuning

3.8.1 PictoBERT

In this section, we delve into the intricate process of adapting a pre-trained

LM, known as PictoBERT to cater to a specific vocabulary associated with

ARASAAC pictograms. The overarching goal of this endeavor is to enable

PictoBERT to effectively comprehend and generate text using the specialized

lexicon of ARASAAC.

Data Preparation Our journey commences with the meticulous preparation

of data. We import essential libraries, such as NLTK, requests, JSON, pandas,

and more. The cornerstone of our data is the ARASAAC pictogram dataset,

thoughtfully stored in a JSON file named ARASAAC_All_pictograms. This

dataset serves as the bedrock upon which we build our adaptation process. To

streamline our efforts, we initialize an empty list named pictograms_dic to

house vital information about each pictogram, including its associated words

and synsets.

Mapping ARASAAC to WordNet The heart of this adaptation lies in the

intricate process ofmappingARASAAC synsets to their counterparts inWordNet—

a renowned lexical database. To facilitate this, we’ve crafted a specialized

function named wordnet_map that connects the dots. For each pictogram, we

embark on a dual-pronged journey:

• Personal Pronoun Category: Pictograms classified under the ”per-

sonal pronoun” category are bestowed with a collection of keywords.

We graciously embrace these keywords, acknowledging their signifi-

cance, and add them to our treasure trove, pictograms_dic.
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• Synsets Exploration: Pictograms are also associated with synsets—a

set of synonymous words or phrases. Here, we tread into the domain of

WordNet. For each synset, we embark on a quest to uncover its Word-

Net counterpart. This connection furnishes us with a lemma—a foun-

dational form of a word—essential for our adaptation journey. This

invaluable lemma is documented in our treasure trove as well.

Saving theMapping Once our journey through the vast realm ofARASAAC

pictograms concludes, wemeticulously compile pictograms_dic into a struc-

tured DataFrame. 21 This structured dataset is then bestowed with perma-

nence in the form of a CSV file, aptly named arasaac_mappings.

Adaptation for SemCHILDES Our odyssey extends to SemCHILDES, an-

other realm of linguistic exploration. To bridge the gap between ARASAAC

and SemCHILDES vocabularies, we transmute the ARASAAC vocabulary to

a format harmonious with SemCHILDES, ensuring linguistic continuity.

Sentence Filtering As we navigate through our linguistic voyage, we en-

counter textual data within a file named all_mt_2.txt. To ensure relevance

and coherence, wemeticulously filter sentences, retaining only those that align

with our adapted vocabulary. Sentences bereft of relevant vocabulary or com-

prising solely of punctuation are gracefully excluded from our journey.

Tokenizer Creation The creation of a custom tokenizer becomes our next

imperative. Leveraging the Tokenizers library, we craft a tokenizer specifi-

cally tailored to our adapted vocabulary. This tokenizer bears the hallmark of

inclusion, with special tokens like ”[SEP]” and ”[CLS]” at its core.

Dataset Preparation Our filtered sentences are divided into three distinct

sets: training, validation, and testing. The tailored tokenizer goes to work,
21DataFrame

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
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meticulously tokenizing each sentence. The resulting tokenized data is pre-

served, and ready for the next leg of our journey. This transformation unfolds

with precision, ensuring that each sentence is transformed into a sequence of

tokens, with a maximum length of 16 tokens per sequence—a restriction that

maintains efficiency and coherence.

Loading Pre-trained Models The synergy between our custom adaptation

and pre-existing linguistic powerhouses takes center stage. We introduce two

distinguished models: PictoBERT and BERT. The choice of the PictoBERT

version, whether ”contextual” or ”gloss” offers versatility based on specific

requirements. BERT a prominent pre-trained model, stands as a stalwart com-

panion.

Loading PictoBERT Tokenizer A critical step in our journey is the incor-

poration of the PictoBERT tokenizer. This tokenizer, encapsulated in a JSON

file, becomes an essential part of our linguistic toolkit.

Updating Embeddings Layer Our adaptation reaches a pinnacle with the

harmonization of embeddings. The adapted vocabulary ismeticulously aligned

with the PictoBERTmodel. Words absent from both PictoBERT andWordNet

vocabularies find solace in embeddings from an external Word2Vec source.

The PictoBERT embeddings layer is updated to accommodate these adapta-

tions, a pivotal moment in our journey.

Saving the Adapted Model Our odyssey culminates with the preservation

of our meticulously adapted PictoBERT model. It receives a distinguished

name, pictobert-ARASAAC signifying its tailored nature for the ARASAAC

vocabulary. This adapted model is now poised to embark on its own linguistic

adventures.
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Fine-Tuning PictoBERT This process involves fine-tuning themodel using

carefully selected hyperparameters to ensure optimal performance in our spe-

cific linguistic domain. A recap of all the pipeline of PictoBERT’s fine-tuning

is in Figure 3.28.

Figure 3.28: The flow diagram [40] depicts the process of fine-tuning Picto-
BERT for the pictogram prediction task. PictoBERT allows users to modify
its language to match their own set of pictograms.

PictoBERT Adaptations for CommonGen Dataset Several key adapta-

tions were made to ensure PictoBERT’s compatibility and optimal perfor-

mance with the CommonGen dataset. PictoBERT is fine-tuned on a Com-

monGen Wordsense dataset.

Core variables for the training process were established. These include

the maximum number of training epochs, batch size, number of data-loading

workers, and learning rate. Metrics such as percentiles and specific values

were defined to assess themodel’s performance. Thesemetrics serve as bench-

marks for gauging the effectiveness of the model.

To facilitate fine-tuning, a LitBertClassifier class was crafted, inherit-

ing from pl.LightningModule. This class encompasses a BERT-based clas-

sificationmodel, augmented with an additional classifier tailored for theMLM
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task.

Data loaders for training, validation, and testing were established. These

loaders handle the loading of preprocessed data and apply appropriate colla-

tion functions, including input masking.

PictoBERT’s fine-tuning commenced under the PyTorch Lightning frame-

work. Callbacks were instituted to monitor the learning rate and save check-

points based on validation loss, ensuring efficient training.

A comprehensive evaluation of PictoBERT’s performance was conducted

using a dedicated test dataset. The model’s results were then compared with

those of n-gram-based models for a thorough assessment. The evaluation pro-

cess encompassed several stages. A test dataset was loaded from a previously

saved pickle file. Various functions were defined to handle input data, includ-

ing data data_collator2 and top_n_data_collator, facilitating data preparation

for the model. The MyDataset class was formulated to encapsulate input data

in a format compatible with PyTorch DataLoader. Two DataLoaders, namely

the test_dataloader and test_dataloader_lm, were created to facilitate model

testing. The PictoBERT function was employed to evaluate the performance

on the test set, calculating essential metrics such as Top-N results and PPL.

A battery of tests was also conducted on the PictoBERT model using the

test DataLoader. These tests included loss calculation, softmax computation

to derive probabilities of masked words, and an assessment of Top-N perfor-

mance. The results of PictoBERT’s model performance were collected and

organized into a top dictionary for further analysis.

Furthermore, information pertaining to previously trained n-gram models

was loaded and stored in pickle files, enabling their utilization in evaluating
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the test dataset. The evaluation encompassed various metrics, including Top-

N performance and PPL, ultimately resulting in a comprehensive results list

that captured the performance values of PictoBERT models and n-gram mod-

els across multiple evaluation criteria.

3.8.2 PictoViLT

Within the PictoViLT project, the journey begins with the utilization of a pre-

trained model, originally designed for vision-related tasks and NLP. However,

our endeavor revolves around its fine-tuning to adapt to a distinct, bespoke

task, employing a carefully curated dataset tailored to our specific needs.

At the core of our adaptation process lies the model class, equipped with

a suite of essential methods designed to facilitate the training and evaluation

of our fine-tuned model. This class embraces key parameters, including the

training data loader, the designated computing device, the learning rate, and

the weight decay.

The training process unfolds as follows:

• Model Preparation: The training process commences with meticulous

preparation. We initiate this phase by signaling the model’s readiness

for training using the command self.model.train(). This step sets

the stage for the acquisition of knowledge.

• Forward Pass and Loss Calculation: As the training unfolds, our

model engages in a meticulous examination of each batch within the

training data loader. With each batch, our model undertakes a forward

pass, adeptly calculating the loss associated with the input data. This

loss is accumulated, contributing to the computation of the total loss.
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• Gradient Computation: A pivotal moment arrives as a crucial back-

ward pass is executed. During this phase, gradients are computed with

precision. These gradients play a fundamental role in the refinement of

the model’s parameters, enabling it to learn and adapt effectively.

• Information Documentation: Throughout the entire training journey,

we leave no detail undocumented. Critical information, such as the

loss incurred at each batch and memory consumption, is meticulously

recorded. This information serves as a compass, guiding our under-

standing of the model’s performance and resource utilization.

Upon completing the training on all batches, we embark on the pivotal task of

computing the average loss across the entire training dataloader, a metric of

paramount importance.

The evaluation process, on the other hand, follows a distinct trajectory:

• Transition to Evaluation Mode: The evaluation process embarks on

a unique trajectory. It commences with the graceful transition of the

model into evaluation mode, achieved through the command

self.model.eval(). This mode signals the model’s readiness for a

meticulous performance assessment.

• Forward Pass and Calculations: Within the confines of the validation

dataloader, the model embarks on a purposeful journey. For each

batch encountered, the model executes a single forward pass, deftly cal-

culating both the loss and its predictions. This intricate calculation lays

the foundation for rigorous evaluation.

• Loss Integration and Accuracy Calculation: The evaluation process

is a quest for precision. As the model processes each batch, the cal-

culated loss is meticulously integrated into the total loss, ensuring that

no detail escapes scrutiny. Additionally, the model’s accuracy is com-

puted through a meticulous comparison of its predictions with the actual

labels.
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• Insightful Documentation: Similar to the training phase, the evalua-

tion phase is not devoid of meticulous documentation. We vigilantly

record valuable insights, including accuracy metrics and memory con-

sumption. These insights serve as beacons, illuminating our understand-

ing of the model’s performance and resource utilization.



Chapter 4

Implementation

Here are reported Python code implementations of themain concepts explained

in Chapter 3. Each code snippet refers to a specific section, where concepts

are dealt with in a deep way.

Figure 4.1 showcases the essential hyperparameter settings employed dur-

ing the training of PictoBERT. Section 3.7 lists hyperparameter sets for train-

ing, Section 3.8.1 for fine-tuning.

1 MAX_EPOCHS = 10
2 WARMUP_STEPS = int(MAX_EPOCHS * 0.15)
3 BATCH_SIZE = 112
4 LEARNING_RATE = 1e-04
5 NUM_WORKERS = 4
6 GPUS = torch.cuda.device_count()
7 PRECISION = 16 if torch.cuda.device_count() > 0 else 32
8 MLM_PROBABILITY= 0.15

Figure 4.1: PictoBERT hyperparameters settings for training.

Figure 4.2 illustrates the step of loading the PictoBERT tokenizer described

in Section 3.7 for Tokenizer childes_all_new and for tokenizer_arasaac

in Section 3.8.1 and Section .

Figure 4.3 provides a concise overview of the training process for PictoBERT.

Section 3.7 focuses on the PictoBERT training logic shown below.
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1 #the 2 tokenizer paths.
2 TOKENIZER_PATH = "childes_all_new.json"
3 TOKENIZER_PATH = "tokenizer_arasaac.json"
4 from transformers import PreTrainedTokenizerFast
5 loaded_tokenizer = PreTrainedTokenizerFast(tokenizer_file=TOKENIZER_PATH)
6 loaded_tokenizer.pad_token = "[PAD]"
7 loaded_tokenizer.sep_token = "[SEP]"
8 loaded_tokenizer.mask_token = "[MASK]"
9 loaded_tokenizer.cls_token = "[CLS]"
10 loaded_tokenizer.unk_token = "[UNK]"

Figure 4.2: PictoBERT tokenizer loading.

1 #Logger
2 from pytorch_lightning import loggers as pl_loggers
3 tb_logger = pl_loggers.TensorBoardLogger("logs",name=MODEL_VERSION)
4

5 #Checkpoint
6 checkpoint_callback = ModelCheckpoint(
7 dirpath="checkpoints",
8 filename='bert-large-{epoch:02d}-{train_loss:.2f}-{val_loss:.2f}',
9 mode='min',
10 monitor="val_loss",
11 save_last=True)
12

13 #Trainer
14 trainer = pl.Trainer(
15 accelerator='gpu',
16 max_epochs=MAX_EPOCHS,
17 logger=tb_logger,
18 callbacks=[checkpoint_callback],
19 precision=PRECISION)
20

21 #2 PictoBERT version models
22 MODEL_VERSION = "contextual"
23 MODEL_VERSION = "gloss"
24

25 #Call model version
26 model = LitBertClassifier(MODEL_VERSION)
27

28 #Train
29 trainer.fit(model, train_dataloader, val_dataloader)

Figure 4.3: Training PictoBERT code.

Figure 4.4 illustrates the management of datasets for training, validation, and

testing within the PictoBERT framework. In Section 4, there are deeper ref-

erences to this code.

Figure 4.6 provides the code to create data loaders used in the PictoBERT
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1 class MyDataset(Dataset):
2 def __init__(self, examples):
3 self.input_ids = examples['input_ids']
4 self.attention_mask = examples['attention_mask']
5 self.special_tokens_mask = examples['special_tokens_mask']
6

7 def __len__(self):
8 return len(self.input_ids)
9

10 def __getitem__(self, idx):
11 input_ids = tensor(self.input_ids[idx])
12 attention_mask = tensor(self.attention_mask[idx])

13 special_tokens_mask = tensor(self.special_tokens_mask[idx])
14 return {
15 "input_ids":input_ids,
16 "attention_mask":attention_mask,
17 "special_tokens_mask":special_tokens_mask}
18

19 import pickle
20 tds = pickle.load(open('train_data.pt','rb'))
21 vds = pickle.load(open('val_data.pt','rb'))
22 tsds = pickle.load(open('test_data.pt','rb'))
23

24 train_dataset = MyDataset(tds)

25 val_dataset = MyDataset(vds)
26 test_dataset = MyDataset(tsds)

Figure 4.4: PictoBERT dataset managing.

framework, described in Section 4 and in the following Section 3.8.1.

Figure 4.6 presents a code snippet for a tokenize function used in the Picto-

BERT framework. It is exploited in Section and Section .

The Python function depicted in Figure 4.7 evaluates the performance of a

PictoBERTmodel on the test data. It is referred to computed results in the fol-

lowing Section 5.2. It calculates the Top-N accuracy by comparing predicted

and actual labels, recording losses, and sorting predictions. The function is

essential for assessing the model’s effectiveness and ability to provide accu-

rate predictions.
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1 from torch.utils.data import DataLoader
2 from torch.utils.data.distributed import DistributedSampler
3 from transformers import DataCollatorForLanguageModeling
4

5 data_collator = DataCollatorForLanguageModeling(
6 tokenizer=loaded_tokenizer, mlm_probability=MLM_PROBABILITY)
7 train_dataloader = DataLoader(
8 train_dataset,
9 batch_size=BATCH_SIZE,
10 num_workers=NUM_WORKERS,
11 pin_memory=True,
12 collate_fn=data_collator,

13 drop_last = True,
14 shuffle=True)
15

16 val_dataloader = DataLoader(
17 val_dataset,
18 batch_size=BATCH_SIZE,
19 num_workers=NUM_WORKERS,
20 pin_memory=True,
21 collate_fn=data_collator,
22 drop_last = True)
23

24 test_dataloader = DataLoader(

25 test_dataset,batch_size=BATCH_SIZE,
26 num_workers=NUM_WORKERS,
27 collate_fn=data_collator,
28 pin_memory=True,
29 drop_last = True)

Figure 4.5: PictoBERT dataloader.

1 max_len = 32
2 #function to tokenizer
3 def tokenize_function(tokenizer,examples):
4 # Remove empty lines
5 examples = [line for line in examples if len(line) > 0
6 and not line.isspace()]
7 bert = tokenizer(
8 examples,
9 padding="max_length",
10 max_length=max_len,
11 return_special_tokens_mask=True,
12 truncation=True)

13 ngram = tokenizer(examples,add_special_tokens=False).input_ids
14 return bert,ngram

Figure 4.6: PictoBERT tokenize function.
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1 def run_pictobert(model):
2 topn = [1,^^I9,^^I18,^^I25,^^I36]
3 ...
4 with torch.no_grad():
5 for batch in tqdm(test_dataloader):
6 if torch.cuda.is_available():
7 output = pictobert(batch['input_ids'].to('cuda:0'),

labels=batch['labels'].to('cuda:0'),↪→
8 attention_mask=batch['attention_mask'].to('cuda:0'))
9 else:
10 output = pictobert(batch['input_ids'],

labels=batch['labels'],attention_mask=batch['attention_mask'])↪→

11 losses.append(float(output[0].detach().cpu()))
12 predictions = F.softmax(output[1], dim=-1)
13 labels = batch['labels']
14 masked = batch['input_ids']
15 n = masked.detach().cpu().numpy()
16 predicted = predictions.detach().cpu().numpy()[n ==

loaded_tokenizer.mask_token_id]↪→
17

18 ids = np.argsort(-1*predicted,axis=1)
19

20 for ti, first in enumerate(topn):
21 count = 0

22 for i, data in enumerate(ids):
23 if labels[masked == loaded_tokenizer.mask_token_id][i].item() in

data[:first]:↪→
24 count += 1
25 isin = count/predicted.shape[0]
26 topn_values[ti].append(isin)
27

28 ...

Figure 4.7: PictoBERT Top-N accuracy and PPL evaluator method.
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MyModel class in Figure 4.8 serves as a foundational blueprint for fine-

tuning VL models. It encapsulates the entire lifecycle of model adaptation,

encompassing training, evaluation, and the monitoring of crucial metrics such

as loss and accuracy. Once the model is finely attuned, it stands ready for

future applications, poised to excel in its specialized domain.

1 class MyModel:
2 ...
3 def train(self, train_dataloader, device, learning_rate, weight_decay):
4 self.model.train()
5 ...
6 optimizer = torch.optim.AdamW(self.model.parameters(), lr=learning_rate,

weight_decay=weight_decay)↪→
7 for batch in tqdm(train_dataloader):
8 batch = {k:v for k,v in batch.items()}
9 optimizer.zero_grad()
10 outputs = self.model(**batch)
11 loss = outputs.loss
12 train_loss += loss.item()
13 loss.backward()
14 optimizer.step()
15 ...
16 train_loss /= len(train_dataloader)
17 #self.model.save_pretrained(save_path)
18 return train_loss
19

20 def eval(self, val_dataloader, device):
21 self.model.eval()
22 ...
23 criterion = nn.CrossEntropyLoss()
24

25 for batch in tqdm(val_dataloader):
26 batch = {k:v for k,v in batch.items()}
27 input_ids = batch['input_ids']
28 attention_mask = batch['attention_mask']
29 labels = batch['labels']
30 with torch.no_grad():
31 outputs = self.model(**batch)
32

33 loss = criterion(outputs.logits.view(-1,
len(processor.tokenizer.vocab)), labels.view(-1))↪→

34 val_loss += loss.item()
35 ...
36 max_idx = torch.argmax(outputs.logits, dim=-1)
37 predicted_labels = max_idx.squeeze(-1)
38 correct_predictions += (predicted_labels == labels).sum().item()
39 true_labels.extend(labels.tolist())
40 predictions.extend(predicted_labels.tolist())
41 ...
42 return validation_loss, accuracy

Figure 4.8: PictoViLT Model class of Logic 1 with focus on train and valida-
tion methods.
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The code below, in Figure 4.9, is a representation in the Python program-

ming language of the VILTDataset class used for the management and en-

coding of multimodal data, see Section 3.4 and Section 3.6 for fine-grained

descriptions. This is the VILTDataset backbone for Logic 1; the other two

classes are for managing masking strategies 2 and 3.

1 #class dataset of Logic 1 but there are for logic 2 and 3
2 class VILTDataset(torch.utils.data.Dataset):
3 def __init__(self, sentence, processor, vocab, df, mapping, masked_prob=0.15,

max_length=40):↪→
4 ...
5 def __getitem__(self, idx):
6 ...
7 masked_sentence = tokenizer.convert_tokens_to_string(tokenized_sentence)
8 matched_indices = [i for i in range(len(tokenized_sentence))
9 if (pic_map["word"] == tokenized_sentence[i]).any()]
10 if matched_indices:
11 if len(matched_indices) == 1:
12 i = matched_indices[0]
13 else:
14 i = random.choice(matched_indices)
15

16 matched_rows = pic_map[pic_map['word'] == tokenized_sentence[i]]
17 row = matched_rows.sample(n=1)
18 pid = int(row["pictogram_id"].item())
19 ...
20 if os.path.exists(image_path):
21 masked_token = tokenized_sentence[i]
22 tokenized_sentence[i] = "[MASK]"
23 masked_sentence

=tokenizer.convert_tokens_to_string(tokenized_sentence)↪→
24

25 image = Image.open("Overlaid_Images/" + str(pid) + ".png")
26 normalized_image = np.array(image, dtype=np.float32) / 255.0
27 masked_image_float_tensor =

torch.tensor(np.array(normalized_image),
dtype=torch.float32).permute(2, 0, 1)

↪→
↪→

28 pixel_values= masked_image_float_tensor
29

30 #encoding
31 encoding = self.processor(image, masked_sentence,

padding="max_length", max_length=40, truncation=True,
return_tensors="pt")

↪→
↪→

32 for k, v in encoding.items():
33 if is instance(v, torch.Tensor):
34 encoding[k] = v.squeeze()
35 encoding["labels"] =

torch.tensor(self.processor.tokenizer(sentence,
padding='max_length', max_length=40)["input_ids"])

↪→
↪→

36 encoding['pixel_values']=pixel_values
37 encoding['pixel_values'].squeeze(0)
38 return encoding
39 return None

Figure 4.9: PictoViLT VILTDataset class of Logic 1.
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Here, in Figure 4.10, there is the code snippet for the instantiation of

datasets for training, validation set, and test set in VILTDataset class and

DataLoader. For details, see Section 3.5.2 and Section 3.8.2.

1 #Call of VILTDataset class. It's repeated for validation and test sets.
2 train_dataset =VILTDataset(
3 sentence=word_sentence_train,processor=processor,
4 vocab=vocab_custom, df=df_train, mapping=pic_map)
5 #dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values',

'labels'])↪→
6 BATCH_SIZE = 32 #or another dimension
7 #during each epoch, data will be presented in a random order
8 #to the model with #shuffle=T
9 #It's repeated for validation and test sets.
10 train_dataloader= DataLoader(
11 train_dataset,collate_fn=collate_fn, batch_size=BATCH_SIZE, shuffle=True)

Figure 4.10: PictoViLT ViltDataset class of Logic 1 method call.

As described in Section 3.4, the logic for constructing Customized vocab-

ulary involves NLTK Python library.

1 import nltk
2 nltk.download('punkt')
3

4 from nltk.tokenize import word_tokenize
5 # Tokenize sentences using the NLTK tokenizer
6 tokenized_sentences = [word_tokenize(sentence) for sentence in sw]
7

8 # Create custom vocabulary using tokenized words
9 vocab = set()
10 for tokens in tokenized_sentences:
11 vocab.update(tokens)
12

13 #Creating the word-ID dictionary using the processor vocabulary
14 vocab_id_mapping = {}
15 for word in vocab:
16 if word in processor.tokenizer.vocab:
17 word_id = processor.tokenizer.vocab[word]
18 vocab_id_mapping[word] = word_id

Figure 4.11: PictoViLT custom vocabulary creation.

As introduced in Section 5.1, here is the logic used to compute PPL and Top-N

accuracy for PictoViLT evaluation.

The Python code snippet depicted in Figure 4.13 illustrates the inference
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1 def topn_accuracy(model, test_dataloader, topn_values, model_version):
2 ...
3 with torch.no_grad():
4 for batch in test_dataloader:
5 input_ids = batch['input_ids']
6 attention_mask = batch['attention_mask']
7 labels = batch['labels']
8 pixel_values = batch['pixel_values']
9

10 # Get model predictions for text
11 outputs = model.model(input_ids=input_ids,
12 attention_mask=attention_mask, pixel_values=pixel_values,
13 labels=labels)
14 total_loss += outputs.loss.sum().item()
15 total_examples += input_ids.size(0)
16 predictions = F.softmax(outputs.logits, dim=-1)
17 masked_positions = input_ids == processor.tokenizer.mask_token_id
18

19 #Calculate Top-N predictions
20 for i, topn in enumerate(topn_values):
21 topn_predictions = torch.topk(outputs.logits, k=topn,

dim=-1).indices[:,:, :topn]↪→
22 for j, data in enumerate(topn_predictions):
23 mask_positions = torch.nonzero(masked_positions[j]).squeeze(1)
24 label = labels[j][mask_positions].unsqueeze(1)
25 data_masked = data[mask_positions]
26 if (label == data_masked).any().item():
27 topn_correct[i] += 1
28

29 #Calculate accuracy percentages
30 topn_accuracies = [c / total_examples for c in topn_correct]
31 #PPL
32 ppl = torch.exp(torch.tensor(total_loss / total_examples)).item()
33 ...
34 df = pd.DataFrame([res_dict], columns=['top-1', 'top-9', 'top-18',
35 'top-25', 'top-36', 'PPL', 'Model version'])
36 return df

Figure 4.12: PictoViLT Top-N accuracy and PPL computation method.

method within the PictoViLT model. This method is designed to generate

inferences by predicting tokens and their associated scores for a given input

sentence and image features. The process involves sampling the top-k tokens

from the model’s output, decoding them, and ranking them based on their

scores. The unique tokens are tracked to ensure diversity, and the scores are

both non-normalized and normalized to provide insight into token importance.

Finally, the predicted tokens, their scores, and normalized scores are printed

for analysis and further use. This code segment is instrumental in understand-

ing the inner workings of PictoViLT’s inference generation process.
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In Section 5.3, the inferences examples.

1 def vilt_generate_inference(model, sentence, image_features, k):
2 ..
3 unique_tokens = set() # Set to keep track of unique tokens
4 for i, token in enumerate(top_k.indices):
5 input_ids[0, masked_index] = token
6 outputs = model.model(input_ids, pixel_values=image_features)
7 logits = outputs.logits[0, masked_index, :]
8 probs = F.softmax(logits, dim=-1)
9 decoded_token = tokenizer.decode(torch.argmax(probs))
10 if decoded_token not in unique_tokens and not

decoded_token.startswith("["):↪→
11 predicted_tokens.append(decoded_token)
12 # Add the score to the list
13 predicted_scores.append(probs[token].item())
14 unique_tokens.add(decoded_token)
15 # Check if we have enough predicted tokens
16 if len(predicted_tokens) == k:
17 break
18 # Sort predicted tokens and scores based on scores
19 #in descending order (non-normalized scores)
20 predicted_tokens_sorted, predicted_scores_sorted =

zip(*sorted(zip(predicted_tokens, predicted_scores), key=lambda x: x[1],
reverse=True))

↪→
↪→

21 predicted_scores_sorted = [round(score, 7) for score in
predicted_scores_sorted]↪→

22 # Normalize scores using the sum of scores
23 score_sum = sum(predicted_scores_sorted)
24 predicted_scores_normalized = [score / score_sum for score in

predicted_scores_sorted]↪→
25 # Round the normalized scores to 4 decimal places
26 predicted_scores_normalized = [round(score, 7) for score in

predicted_scores_normalized]↪→
27 # Print predicted tokens and scores with textual representation
28 print("Predicted Tokens and Scores:")
29 for token, score, normalized_score in zip(predicted_tokens_sorted,

predicted_scores_sorted, predicted_scores_normalized):↪→
30 print(f"Token: {token}, Score: {score}, normalized scores:

{normalized_score}")↪→
31 return predicted_tokens_sorted, predicted_scores_normalized

Figure 4.13: PictoViLT generate inference method.
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Figure 4.14 shows the interactive HTML method within the PictoViLT

codebase. This method, part of the Python class, enables the dynamic display

of pictograms and textual content in response to user interactions. It cov-

ers functions for displaying pictograms, generating inferences, and rendering

HTML representations of pictograms and text. This code is integral to the

interactive and user-friendly aspects of the PictoViLT system, enhancing its

accessibility and usability. It is reported for PictoViLT but is exploited also

for PictoBERT, as is remembered in the following Paragraph 5.2, while Figure

5.7 shows its functioning.

1 class Pictogram(object):
2 ...
3 def show_pictograms():
4 pictograms = {}
5 #if are at step 0, it shows all pictograms
6 #giving the possibility to select one
7 if len(sentence) == 0:
8 for i, row in arasaac_mapping.sample(32).iterrows():
9 pictogram_id = row['pictogram_id']
10 image_path = "Pittograms/{}.png".format(int(pictogram_id))
11 if os.path.exists(image_path):
12 pictogram = Pictogram(pictogram_id, label=row['word_senses'],

word=row['word'], callback=do_something)↪→
13 pictograms[row['word']] = pictogram._repr_html_()
14 else:
15 text, picto_id = prepare_input(sentence)
16 image_path = "Pictograms/{}.png".format(int(picto_id))
17 if os.path.exists(image_path):
18 image = Image.open(image_path)
19 image = image.convert("RGB")
20 encoding = processor(image, text, return_tensors="pt")
21 print(sentence)
22 #call vilt_generate_inference method
23 predicted_tokens, scores = vilt_generate_inference(model, text,

encoding.pixel_values, 16)↪→
24 ...

Figure 4.14: PictoViLT html interactive method.
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Results

5.1 Experimental setup

In this section, we delve into the experimental setup and evaluation metrics

used to assess the performance of our models. We utilize the Weights and

Biases platform to track experiment results, enabling comprehensive analysis

of model training. 1

PictoBERT pre-training setting PictoBERT is pre-trained using the Sem-

CHILDES dataset with specific hyperparameters, including a batch size of

128 sequences, each containing 32 tokens. The optimizer used is the same as

BERT, with a learning rate of 1×10−4, L2weight decay set at 0.01, and a linear

decay of the learning rate. Training is performed on a 16 GB NVIDIA Tesla

V100 GPU for 500 epochs, with each epoch taking approximately 20 minutes.

PictoBERT training setting During training, we formed batches compris-

ing 128 sequences, each containing 4,069 tokens.

Randommasking with mlm probability was applied to these batches using the

DataCollatorForLanguageModeling. To optimize the training process, we
1wandb

https://www.wandb.com
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employed the Adam Weigth Decay Optimizer, with a learning rate of 1e-4,

and included beta1=0.9 and beta2=0.999 for effective weight updates. Fur-

thermore, L2 weight decay with a factor of 0.01 was introduced, along with a

linear decay strategy for the learning rate. Training processes for PictoBERT

versions were executed on a powerful server infrastructure, specifically utiliz-

ing an NVIDIA GEFORCE 3090 graphics card.

For n-gram LM settings, a set of variables is initialized to facilitate the

computation of cross-entropy and PPL. These models are created with vary-

ing orders, spanning from 2 to 10. Within a for loop that iterates across

these orders, several essential steps occur. Firstly, the training data under-

goes transformation into sequences of n-grams, each conforming to a specific

order, while also incorporating left-padding using the ”[PAD]” symbol. Next,

an n-gram LM, employing Maximum Likelihood Estimation, is instantiated,

trained on the prepared n-gram training data, and then persistently stored as a

file, denoted as order-gram_modelwhere order signifies the model’s order.

Subsequently, the evaluation metrics are meticulously computed.

PictoBERT fine-tuning setting The hyperparameters chosen for fine-tuning

are:

• Maximum Epochs: 10

• Batch Size: 32

• Number of Workers: 4

• Learning Rate: 1 × 10−6

• MLM Probability: 0.15

• Accumulate Grad Batches: 4

This setting is referred to ARASAAC Fine-tuning and also to the Common-

Gen word-sense dataset for the comparison with PictoViLT. Optimizers and
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learning rate reduction schedulers were configured for the training process.

The choice of optimizer was AdamW, known for its effectiveness in fine-

tuning transformer models. Several hyperparameters and configurations were

meticulously tuned to attain optimal results during

PictoViLT Fine-tuning setting Fine-tuning with Google Colab and after on

the server. 2 In the specific context of fine-tuning on Colab, we meticulously

select the following hyperparameters to guide our model:

• Learning Rate: A judiciously chosen learning rate of 1 × 10−4 is set,

strategically orchestrating the pace of our model’s adaptation. This crit-

ical parameter guides the model’s adjustment process with precision.

• Epochs: Our fine-tuning journey spans across twometiculously planned

epochs. This deliberate choice ensures that our model benefits from an

ample training period, allowing it to grasp the intricacies of our special-

ized task effectively.

• Batch Size: Each batch, thoughtfully constructed, encompasses 8 se-

quences. This batch size strikes an elegant balance between compu-

tational efficiency and the model’s overall effectiveness. It facilitates

efficient processing while preserving the model’s capacity to capture

nuances.

It’s worth noting that the fine-tuning process is executed onColab’s formidable

A100GPU—ahigh-performance graphics processing unit crafted byNVIDIA.

This powerhouse boasts a staggering 19 teraflops of computational power and

over 40GB of high-bandwidth memory, rendering it an ideal companion for

our computational tasks.

2Google Colab

https://colab.research.google.com/?utm_source=scs-index
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Additionally, we have transitioned our computational tasks to a server en-

vironment, making use of the Docker tool for containerization. 3 This tran-

sition includes the fine-tuning of the PictoViLT model on the server, and the

results of this fine-tuning process are summarized in Table 5.5. Our workflow

now involves running code within these containers and utilizing the Slurm

job scheduler for efficient resource management. 4 In this fine-tuning setup,

we used a batch size of 32 and down-sampled the training dataset to 10,000

items, conducting training over 10 epochs. Similarly, the validation dataset

was down-sampled to 2,000 items for evaluation throughout the 10 epochs.

L1 fine-tuning computations were executed on a TITAN XP graphics card

while L2 and L3 fine-tuning were performed using an NVIDIA GEFORCE

3090 graphics card, which boasts 11GB of memory, and a batch size of 32.

Evalutaion metrics In the context of evaluating LMs such as n-grams, Pic-

toBERT, and PictoViLT, two key metrics, PPL, and Top-N accuracy, play a

crucial role.

PPL measures the LM’s aptitude for predicting sequences by quantifying

its degree of uncertainty when handling a dataset. A lower PPL signifies more

consistent and accurate predictions. While theoretically ranging from 1 to in-

finity, practical PPL values generally span from low positives to higher digits,

contingent on the model’s complexity and text characteristics. Lower PPL

values are generally preferred, with values close to 1 indicating high predic-

tion confidence and adherence to the actual word distribution within the text.

PPL serves as a crucial gauge of an LM’s predictive quality and its capacity

to capture the inherent text structure.

3Docker
4Slurm Web

https://www.docker.com/
http://137.204.107.40:37339/slurm/guide
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In contrast, Top-N accuracy evaluates a model’s proficiency in generating

correct words within the first N predictions. For example, top-1 accuracy ver-

ifies if the first predicted word is correct, while top-8 accuracy checks if any of

the first five predictions are accurate. Top-N accuracy metrics vary according

to the specific N value chosen for evaluation, and these metrics are expressed

as percentages ranging from 0 to 100. Higher Top-N accuracy values reflect

superior model performance. Considering multiple Top-N accuracy metrics

provides a comprehensive assessment of the model’s capabilities, with top-1

accuracy focusing on the primary prediction, and top-5 accuracy determining

if the correct answer is among the top five predictions.

When comparing PictoBERTwith n-gramLMs, cross-entropy comes into

play. This metric quantifies how effectively an LM predicts word probabilities

relative to the actual word distribution in the text. Lower cross-entropy scores

signify better alignmentwith the real-world distribution and are awidely adopted

measure of a model’s predictive prowess. However, in the context of compar-

ing transformer-based models like PictoBERT and PictoViLT, cross-entropy

takes a backseat as the primary metric. Instead, metrics such as Top-N accu-

racy and PPL are favored for assessing prediction accuracy and coherence.

Thesemetrics are pivotal for LM evaluation, as they gauge predictive qual-

ity and coherence, facilitating performance assessment across various NLP

tasks. Subsequent sections delve into the results achieved by PictoViLT in

Section 5.3 and by PictoBERT in Section 5.2. Additionally, they offer a com-

parative analysis and insights into PictoViLT’s interpretability in Section 5.3

and Section 5.3, respectively.
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5.2 PictoBERT

Figure 5.1 and Figure 5.2 illustrates the training and validation loss trends

for Contextualized PictoBERT, with the x-axis representing the training steps

across epochs and the y-axis denoting the corresponding loss values.

Figure 5.1: Training Progress of
Contextualized PictoBERT: The x-
axis represents the training steps
across multiple epochs, while the
y-axis denotes the corresponding
loss values, offering insights into
the optimization process.

Figure 5.2: Validation Analysis for
Contextualized PictoBERT: The x-
axis signifies the training steps dur-
ing different epochs, while the y-
axis visually represents the valida-
tion loss.

The train loss initiates at a value of 16.5 at step 1 and maintains a range

of around 16-20. Around step 500, it undergoes a significant drop from 21

to 5.5. Subsequently, it continues its descent, reaching a value of 2.86 at step

4999.

Conversely, the validation loss begins around 14.6 at step 0 and gradu-

ally decreases to approximately 4.7 around the 1k-step mark. It then exhibits

oscillations, fluctuating between 5 and 4.7 for a brief period. Afterward, it

sharply drops to approximately 4.2 around step 1400, followed by additional

segments of oscillations within a certain range. Finally, it undergoes a steady

linear decline, culminating at a value of 2.55 around step 5k.

The training results for Gloss PictoBERT are presented in Figure 5.3, which

shows the progression of the training loss. Similarly, the fluctuation in the val-

idation loss for Gloss PictoBERT is depicted in Figure 5.4.
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Figure 5.3: Training Progress of
Gloss-Enhanced PictoBERT: the
model’s performance evolves dur-
ing training, with the x-axis repre-
senting training steps across multi-
ple epochs and the y-axis showcas-
ing the corresponding loss values.

Figure 5.4: Validation Analysis for
Gloss-Enhanced PictoBERT: The
x-axis indicates training steps dur-
ing different epochs, while the y-
axis represents the validation loss.

The train loss originates at a value of 7.4 and exhibits oscillations within

the range of 7.8 up to step 500. It then experiences a drop to 6 around step

520. Subsequently, it continues to oscillate but gradually decreases, ultimately

reaching a value of 1.99 at step 5k. On the other hand, the validation loss

commences at 7 at step 9, displaying oscillations in the range of 7.5 to 7.1. It

then enters a linear decreasing phase with a notable drop to 3.7 at step 960.

It continues this pattern, alternating between oscillations within a range and

linear decline until it reaches a value of 1.6 at step 5k.

For fine-tuning, we provide additional information in Figure 5.5 and Fig-

ure 5.6.

These figures shed light on the fine-tuning process for Contextualized Picto-

BERT and Gloss PictoBERT.

During fine-tuning, PictoBERT contextualized exhibits a training loss that

initiates at 1.2 and undergoes oscillations between 0 and 3 until step 17k,

where it reaches a value of 1.9. In contrast, the validation loss starts at 2

and gradually decreases to 1.4 by step 17k.

In the fine-tuning phase, PictoBERT gloss training loss exhibits oscilla-

tions within the range of 0.5 to 4, starting from 2.5 and reaching 1.7 by step

18k. It reaches its maximum value of 3.9 in three distinct steps. On the other

hand, the validation loss decreases from 0.9 to 0.8 by step 19k.
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Figure 5.5: Contextualized
Fine-Tuning of PictoBERT.
The x-axis represents steps,
while the y-axis shows the
corresponding loss values.

Figure 5.6: In this figure,
we provide a detailed view
of the fine-tuning process for
Gloss PictoBERT. It displays
the model’s training progress,
with the x-axis denoting train-
ing steps during various epochs
and the y-axis presenting the
loss values.

Type Train Loss Val Loss Batch Size Epochs Time
CT train 2.71 2.55 112 10 50m
GL train 1.99 1.67 112 10 1h
CT ft 1.21 1.45 32 10 2h12m
GL ft 1.74 0.88 32 10 1h

Table 5.1: Training and Fine-Tuning Performance Metrics This table presents
a comparative overview of training and fine-tuning performance metrics for
two variants of PictoBERT: Gloss (GL) and Contextual (CT). It includes met-
rics such as training loss, validation loss, batch size, number of epochs, and
time taken for each variant.

Complementing the visual representation of the loss trends, Table 5.1 presents

a comprehensive overview of the loss values for each model, offering a de-

tailed reference for further analysis.

Analyzing PictoBERT’s Performance Wedelve into the evaluation of Pic-

toBERT in comparison to n-grams LM on the test set, employing two distinct

modes:

• Pre-trained;

• Fine-tuned over ARAASAC vocabulary.
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Model Version Cross-entropy PPL
PictoBERT contextualized embeddings 2.523259 12.469173

PictoBERT gloss embeddings 3.133908 22.963542
n-gram (order=2) 5.506213 246.216936
n-gram (order=3) 4.340335 76.733222
n-gram (order=4) 3.951958 52.037178
n-gram (order=5) 3.888771 48.850834
n-gram (order=6) 3.887938 48.810126
n-gram (order=7) 3.894768 49.144648

Table 5.2: Pre-trained n-grams vs PictoBERT evaluated with PPL and Cross-
entropy metrics over test set. Highlighted in green are the better values for
each column.

top-1 top-9 top-18 top-25 top-36 PPL Model version
0.351562 0.653061 0.732621 0.767060 0.804369 29.978450 Fine-tuned PictoBERT contextualized
0.337372 0.632972 0.711256 0.747768 0.786511 32.814500 Fine-tuned PictoBERT gloss
0.134942 0.434831 0.528973 0.576123 0.622162 78.350966 n-gram (order=2)
0.226703 0.484204 0.542785 0.565010 0.589617 24.272996 n-gram (order=3)
0.242896 0.443086 0.486744 0.503413 0.524210 17.333698 n-gram (order=4)
0.233688 0.424671 0.465788 0.481981 0.502302 16.470492 n-gram (order=5)

Table 5.3: Fine-tuned onARASAACmapping of n-grams vs PictoBERT eval-
uated with PPL and Top N accuracy over test set. Highlighted in green are the
better values for each column.

Comparative Analysis The evaluation is carried out using models trained

on the test dataset, comprising the following models:

• PictoBERT (contextualized embeddings);

• PictoBERT (gloss embeddings)

• n-gram order 2-7 (n-gram models)

The test file is test_childes_all.pt and the tokenizer path is

childes_all_new.json. In Table 5.2, we observe that contextualized Pic-

toBERT exhibits lower PPL and Cross-Entropy values. Notably, the exper-

imental results for cross-entropy and PPL of pretrained n-gram LM models,

when compared to contextualized PictoBERT and gloss models, align closely

with the values reported in the paper [40] in their Table 2.

We compare the fine-tuned PictoBERT and n-grammodels on theARASAAC

mapping using the test dataset, as presented in Table 5.3. Notably, the Top-N
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accuracy values align closely with those reported in the paper [40], as indi-

cated in Table 6. However, there are discrepancies in the PPL values, with

contextualized PictoBERT registering a higher value of 10.4 compared to the

paper, and other values showing an approximately 10% increase relative to

their reported results.

Embarking on Interactive Pictogram Inference To put PictoBERT’s prac-

tical utility on display, we provide an illustrative example of pictogram infer-

ence. Using the best performingmodel, PictoBERT contextualized, fine-tuned

on ARASAAC mappings, Figure 5.7 showcases an interactive HTML inter-

face, revealing the top 16 predicted pictograms for a given sentence.

Figure 5.7: PictoBERT HTML interface. It employs an HTML interactive
method to display the top 16 predicted pictograms corresponding to a given
sentence.

5.3 PictoViLT

In this section, we dive into the intricate details of PictoViLT, fine-tuned with

the masking technique L1, L2, and L3, designed to enhance its performance

and capabilities. Our analysis is presented in a structured manner, providing

a comprehensive overview of various aspects.
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Logic 1 Based on the L1 logic, the training loss for Masking L1 over 2

epochs is meticulously visualized in Figure 5.8.

It is crucial to note that the final training loss attains an impressive value

of 0.001366, underscoring the model’s effectiveness in optimizing its under-

standing of the data.

Understanding resource utilization is essential to assess the feasibility and

efficiency of any model. In the case of PictoViLT with Masking L1, we ob-

serve a memory consumption of 4823.625 MB, crucial for scalability and de-

ployment considerations. The overall trend ofmemory consumption is thought-

fully illustrated in Figure 5.9, providing insight intomemory dynamics through-

out the training process.

Figure 5.8: This figure provides
a comprehensive overview of the
training loss during the L1 fine-
tuning process of the PictoViLT
model. The plot visualizes the
progressive reduction in training
loss over 2 epochs, reflecting the
model’s ability to optimize its un-
derstanding of the data.

Figure 5.9: The chart captures the
dynamic allocation of memory re-
sources, offering insights into the
model’s memory utilization trends
throughout the training process.

GPU utilization is another critical facet, especially in contemporary DL

applications. To this end, we meticulously monitor and present GPU-related

metrics. Figures 5.10 and 5.11 provide a clear representation of GPU power

usage in watts and GPU temperature in degrees Celsius, respectively. These

metrics shed light on the computational demands and thermal characteristics
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of PictoViLT during Masking L1 fine-tuning.

Figure 5.10: This figure delves
into the GPU power consump-
tion during the L1 fine-tuning
of PictoViLT. By visualizing the
power usage in watts, we gain a
deeper understanding of the com-
putational demands imposed by the
model, which is crucial for re-
source management and optimiza-
tion.

Figure 5.11: Thermal management
is a critical aspect of model train-
ing, and this figure sheds light
on the GPU temperature dynam-
ics during the L1 fine-tuning pro-
cess. Monitoring temperature in
degrees Celsius provides essential
insights into the model’s thermal
behavior and potential cooling re-
quirements.

During fine-tuning of PictoViLT’s Logic 1, the training loss starts around

15 at step 0, steadily decreasing to approximately 0 by step 3k. This descent

includes a rapid drop around step 100. GPU memory consumption remains

stable at around 5000 MB throughout, with GPU power usage fluctuating be-

tween 47W and 50W and an average temperature of 40°C.

Logic 2 We embark on a detailed exploration of the fine-tuning process for

the PictoViLT model using L2 masking. Figure 5.12 serves as our guide,

showcasing how the model’s training loss evolves over a span of 2 enlight-

ening epochs. Figure 5.13 offers us a glimpse into the art of memory utiliza-

tion by the PictoViLT model during L2 masking fine-tuning. It provides a

vivid picture of how the model strategically allocates and manages memory

resources. The last loss is 0.02871, memory 8055.371 MB in Figure 5.13.

GPU power usage in W in Figure5.14 while temperature values in the chart of

Figure 5.15.

Figure 5.14 serves as our compass, tracking the power usage of the GPU
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Figure 5.12: This figure presents
the training progress of the Pic-
toViLT model during L2 mask-
ing fine-tuning. It illustrates how
the training loss evolves over a
span of 2 epochs, reflecting the
model’s adaptation and learning
process during this phase.

Figure 5.13: Here, we visual-
ize the memory consumption of
the PictoViLT model throughout
the L2 masking fine-tuning. The
graph provides information on how
memory resources are allocated
and managed during the training
process.

throughout the L2 masking fine-tuning process. Figure 5.15 acts as our ther-

mometer, recording theGPU’s temperature in degrees Celsius during L2mask-

ing fine-tuning. These thermal cues provide a deeper understanding of how

the model’s training impacts the GPU’s thermal dynamics.

Similarly, in the PictoViLT fine-tuning for Logic 2, the training loss fol-

Figure 5.14: This figure tracks the
power usage of the GPU during
the L2 masking fine-tuning pro-
cess. By monitoring power con-
sumption in watts, we gain an un-
derstanding of the computational
demands placed on the GPU

Figure 5.15: his figure displays the
GPU’s temperature in degrees Cel-
sius throughout L2 masking fine-
tuning, providing insights into the
model’s thermal behavior.

lows a consistent descent to approximately 0. Memory consumption averages

around 8100MB, with an average temperature of 40°C, and power usage hov-

ers around 10W.
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Logic 3 Here, we embark on a captivating exploration of the PictoViLT

model’s L3 masking fine-tuning.

Our journey begins with Figure 5.16, a visual representation of the model’s

training progress during L3 masking fine-tuning. This chart illustrates the

evolution of the training loss over 2 insightful epochs. In particular, the fi-

nal training loss stands at 0.05948, reflecting the model’s adaptation during

this phase. Figure 5.17 offers a glimpse into the PictoViLT model’s mem-

ory consumption during L3 masking fine-tuning. The graph provides insights

into how memory resources are allocated and managed, shedding light on the

model’s memory prowess. Memory consumption is 7556.656 MB.

Figure 5.16: L3 fine-tuning train-
ing loss. It showcases how the
training loss evolves over a span
of 2 insightful epochs, providing
valuable insights into the model’s
adaptation and learning process
during this phase.

Figure 5.17: L3 fine-tuning mem-
ory consumption. It provides in-
sights into allocating and man-
aging memory resources, shed-
ding light on the model’s memory
prowess.

Figures 5.18 and 5.19 act as our guides, tracking the GPU’s power usage

in watts and its temperature in degrees Celsius throughout L3 masking fine-

tuning. These metrics offer valuable insights into the model’s computational

demands and thermal dynamics during this phase.

In the PictoViLT fine-tuning for Logic 3, the training loss exhibits a grad-

ual decline, reaching approximately 0, mirroring the patterns observed in Logic

1 and Logic 2. Memory utilization averages around 7600 MB, while GPU
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Figure 5.18: L3 fine-tuning GPU
power usage. By monitoring
power consumption, we gain a
deeper understanding of the com-
putational demands placed on the
GPU.

Figure 5.19: L3 fine-tuning GPU
temperature in C° chart provid-
ing valuable information about the
model’s thermal dynamics during
this phase.

Label Train Loss Memory Usage
Logic 1 0.0014 4,823 MB
Logic 2 0.0287 8,055 MB
Logic 3 0.0595 7,556 MB

Table 5.4: Results of metrics for logical models. It is a comprehensive
overview of the performance metrics for the three logical models. These met-
rics include training loss and memory usage for each logic. The table serves
as a valuable reference point to assess the effectiveness of these models.

power usage fluctuates between 10W and 40W, with GPU temperature aver-

aging 60°C.

Comparisons The performancemetrics for the three logicalmodels are sum-

marized in Table 5.4 below. 2 While Logic 1 demonstrates impressive train-

ing loss and memory management, Logic 2 and Logic 3 exhibit slightly higher

training losses, with optimized memory management.

During the fine-tuning process for Logic 1, we observed a significant re-

duction in the training loss, which decreased from an initial value of 14.28 to a

final value of 0.018, see Figure 5.20. This training phase lasted approximately

10 hours and 25 minutes, comprising 3,000 steps, equivalent to approximately

40 minutes per epoch.

In contrast, in Figure 5.22, the validation loss demonstrated a more modest
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improvement, decreasing from 0.024 to 0.021, with a corresponding accuracy

rate of approximately 35%.

These computations were equipped with 16GB of memory, see Figure

5.21, and the entire fine-tuning process for L1 took approximately 52 minutes.

Figure 5.20: L1 Train loss. Figure 5.21: L1 Memory usage.

Figure 5.22: L1 Accuracy over validation.

In the training phase for Logic 2 (L2), we executed a total of 2,000 steps,

with the entire process taking approximately 16 hours to complete. During

this time, the training loss exhibited a significant reduction, decreasing from

an initial value of 15.11 to a final value of 0.0138, see Figure 5.23.

However, in contrast to the training loss, the validation loss showed a slight

increase, moving from 0.03 to 0.04 in Figure 5.25, along with an accuracy rate

of 39%.

Remarkably, the validation process consumed a substantial amount of mem-

ory, approximately 88GB in Figure 5.24, yet it was completed efficiently in

approximately 1 hour and 40 minutes.

In the case of Logic 3 (L3), the training phase involved a total of 2,000

steps, spanning a period of 19 hours. During this extensive training session,
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Figure 5.23: L2 Train loss. Figure 5.24: L2 Memory usage.

Figure 5.25: L2 Accuracy over validation.

the training loss experienced a substantial drop, dropping from an initial value

of 15.2 to a final value of 0.12. The training for Logic 3 was conducted on an

NVIDIA GEFORCE 3090 graphics card, equipped with 13GB of RAM.

On the other hand, the validation loss exhibited an increase from 0.1 to 0.3,

resulting in an accuracy rate of approximately 37.8% as in Figure 5.26.

Notably, the validation process required a significant amount of memory, ap-

proximately 112GB, and took approximately 2 hours and 40 minutes to com-

plete.

Figure 5.26: L3 Accuracy over validation.

The results in Table 5.5 offer insight into PictoViLT’s performance under

different fine-tuning logics. In L1, the model achieved efficient training but

showed room for improvement in validation metrics. L2 showed a notable
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Train Loss Time Memory Steps Val Loss Accuracy Val Memory

0.02 10h 15GB 3k 0.02 35% 16GB
0.01 16h 11GB 2k 0.04 39% 88GB
0.12 19h 13GB 2k 0.32 38% 112GB

Table 5.5: The table presents the results of on-server fine-tuning for Pic-
toViLT. The table summarizes key metrics, including train loss, training time,
memory usage during training, number of steps, validation loss, accuracy, and
validation memory consumption

reduction in train loss but a slight increase in validation loss, while L3 had

the longest training duration and exhibited a significant increase in validation

loss.

Inference In this section, we explore the results of top-k inference using Pic-

toViLT under three different fine-tuning logics: Logic 1, Logic 2, and Logic 3.

Figure 5.27: Baby pictogram.

Table 5.6 presents the top-10 word predictions generated by PictoViLT for

the baby pictogram, in Figure 5.27 under each logic.

For the first row of predictions, Table 5.7 displays the normalized proba-

bility distributions (softmax) of model output scores.

After fine-tuning on the server, the inferences are these in Table 5.8.
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Logics Top-10
1 look, baby, horse, bear, man, pig, dog, cow, calf, puppy
2 city, baby, shoo,t look, move, drink, character, job, toy
3 day, job, baby, tub, bathroom, spotlight, sheep, pet, stall

Table 5.6: Top-10 word predictions for the baby pictogram under three fine-
tuning logics.

Token Normalized prob.
look 0.1058363
baby 0.1058284
horse 0.1057948
bear 0.1057407
man 0.1057398
pig 0.1055579
dog 0.1054733
cow 0.1042075
calf 0.0822827
puppy 0.0735386

Table 5.7: Normalized probabilities for each word in the sequence.

Logics Top-10
1 man, person, boy, child, character, cartoon, drawing, baby, dog, symbol
2 baby, body, look, seal, swim, move, puppy, bone, bath, litter
3 float, bone, swim, tattoo, baby, move, bath, tub, canoe, knee

Table 5.8: Updated top-10 word predictions for the baby pictogram after
server fine-tuning.

For the sentence ”it is bread cut with [MASK]” representing a cutting bread

Figure 5.28: Bread pictogram.

pictogram, the inferences are detailed in Table 5.9.

”You can use this [MASK].” is the starting sentence on the ketchup pic-

togram in Figure 5.29, the inferences are detailed in Table 5.10.

All of those token predictions ought to be evaluated having the awareness
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Logics Top-10
1 paper, hands, hand, pieces, butter, fingers, scissors, finger, slices, knife
2 bone, dough, butter, cut, fry, peel, pieces, knife, garlic, cuts
3 skin, butter, dough, pepper, hand, flour, sugar, salt, knife, garlic

Table 5.9: Top-10 word predictions for the cutting bread pictogram sentence
after server fine-tuning.

Figure 5.29: The ketchup pictogram.

Logics Top-10
1 product, one, bottle, color, bag, icon, item, label, water, bottles
2 bag, cover, season, cap, bottle, label, lid, pouch, oil, salt
3 stuff, bag, jar, honey, oil, water, top, pepper, drink, bottle

Table 5.10: Top-10 word predictions for the bottle of ketchup sentence after
server fine-tuning.

that the word ”ketchup” is not included in the dataset.

The top-k inference results for the baby pictogram demonstrate variations

in word predictions under different fine-tuning logics. L1, L2, and L3 logics

produce distinct predictions, highlighting the impact of fine-tuning strategies

on model behavior. These results provide insights into the model’s adaptabil-

ity and potential suitability for specific tasks based on the chosen fine-tuning

approach.

When fine-tuned on theConceptual Captions dataset, PictoViLTwas tested

with the baby pictogram, resulting in Table 5.11. Tried PictoViLT fine-tuned

on Conceptual Captions dataset to infer on baby pictogram, the table shows
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Logics Top-10
1 run, dog, jump, exercise, goat, template, swimmer, wet, puddle, snail
2 letter, photograph, bench, teenager, movie, balance, document, temple, fold, code
3 seal, stamp, tattoo, baby, sleep, wardrobe, wheelchair, balance, bob

Table 5.11: Inference results for the baby pictogram using PictoViLT fine-
tuned on the Conceptual Captions dataset.

the worst results respect to CommonGen dataset.

Notably, when fine-tuned on the Conceptual Captions dataset, the model’s

performance on the baby pictogram differs from that on the CommonGen

dataset.

Interpretability This section discusses the interpretability of the PictoVILT

model, which seamlessly integrates text and image processing. This integra-

tion enables the model to generate predictions for [MASK] tokens within text,

while simultaneously highlighting relevant areas within an associated image.

The interpretability process involves several key steps. A method calcu-

lates text and image embeddings using the ViLT model, two types of embed-

dings, textual and visual, are then combined with attention masks to identify

which parts of the text and images are important to the model.

To discern the crucial connections between text and images, attentionmasks

are employed. These masks reveal which parts of the text and images hold sig-

nificance for the model’s understanding.

The distances between text and images are computed. A variant of Earth

Mover’s Distance is utilized to compute a transport matrix that outlines how

text tokens correspond to image patches. This matrix is instrumental in estab-

lishing relationships between text and images during the inference process.

The images are resized to dimensions suitable for processing by the model,

ensuring that their original appearance remains intact.

A cosine distance matrix is computed to measure the similarity between
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embedding vectors, particularly between text and image embeddings. This

matrix helps in assessing the degree of similarity between two vectors.

During inference, the ViLT model completes the [MASK] tokens within

text. At the same time, it generates an image with highlighted regions based on

the associations between text and images. This highlighting provides valuable

insights into how the model perceives and interprets the content.

During inference, an initial image is opened, scaled to the size required

by the model, and used as input. The VILT model is then used to infer the

[MASK] token into the text, completing it. Next, the highlight area of the re-

sulting image is calculated based on the relationship between the text and the

images. To evaluate all logic’s attention behavior, the ViLT model is switched

between each of them.

Masking logits are extracted from the model output taking into account only

text features. Logits are transformed into probabilities through a softmax, ob-

taining the probability values for each word of the vocabulary. The token with

the highest probability is selected and its index is substituted into the text en-

coding.

The interpretability interface, shown in Figure 5.30, is realized using the

Gradio open source library to create ML applications. 5 The framework is

applied to analyze the ViLT-based model’s behavior when given a pictogram

and a caption containing [MASK] tokens to be filled, see Figure 5.31. The ap-

plication visually demonstrates where the model’s attention is focused when

predicting a specific word in the caption. This insight enhances our under-

standing of the model’s decision-making process and its ability to connect

textual and visual information.

To gain insight into how attention operates within the three masking logic
5Gradio

https://www.gradio.app/
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Figure 5.30: Gradio interface. There is a text box for the
input-masked sentence, a text box for the word we want to
focus on, and an image box for the pictogram input. It shows
the predicted token for MASK and the image with highlighted
patches as output.

Figure 5.31: Gradio interface: default pictograms table ready
to click inference examples.

models, we start our analysis with a ketchup pictogram, as shown in Figure

5.29.

Starting with Logic 1, as shown in Figure 5.32, the model focuses its at-

tention on the word ”bottle”, highlighting the contours of the bottle itself, as

demonstrated in Figure 5.33. Notably, this attention is precise, even when ex-

amining the ”tch” token, as seen in Figure 5.35.

Moving to Logic 2, illustrated in Figure 5.36, the model’s attention is drawn

to the predicted token ”bottle”. However, the focus here shifts more towards

the label, as evident in Figure 5.37, compared to the L1 example. For the ”ke”

token, as depicted in Figure 5.38, L2’s attention shifts away from the bot-

tle’s shape, narrowing down to the central portion, including the label (Figure

5.39).

Now, examining Logic 3 in Figure 5.40, the model’s attention centers on the
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Figure 5.32: L1 visualization app
for ketchup pictogram.

Figure 5.33: L1 attention on
ketchup pictogram.

Figure 5.34: L1 visualization app
for ketchup pictogram on ”tch” to-
ken.

Figure 5.35: L1 attention on ”tch”
of ketchup pictogram.

predicted ”ke” token. However, it sharply focuses on the first two letters of

the bottle label, as shown in Figure 5.41, omitting the bottle’s contour and the

rest of the label, a notable shift from the L2 example.

Let’s explore the model’s behavior further using a pictogram of a girl, as

displayed in Figure 5.42.

In Figure 5.44, when examining Logic 1, the model’s attention gravitates
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Figure 5.36: L2 visualization app
for ketchup pictogram.

Figure 5.37: L2 attention on pre-
dicted ”bottle” token of ketchup
pictogram.

Figure 5.38: L2 visualization app
for ketchup pictogram.

Figure 5.39: L2 attention on pre-
dicted ”ke” token of ketchup pic-
togram.

towards the word ”wants” emphasizing the girl’s eyes. For Logic 2, as illus-

trated in Figure 5.46, the model’s attention on ”bite” corresponds to the girl’s

mouth expression, with candy in front.5.46.

Interestingly, Logic 1 and Logic 3 produce the same prediction for this sen-

tence, as seen in Figure 5.47. However, the attention patterns differ signif-

icantly between the two. In Figure 5.48, L1 highlights the facial shape and

tongue, while L3 focuses on the eyes and tongue, as depicted in Figure 5.49.
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Figure 5.40: L3 visualization app
for ketchup pictogram. Figure 5.41: L3 attention on pre-

dicted ”ke” token of ketchup pic-
togram.

Figure 5.42: Girl pictogram.

Figure 5.43: L1 visualization app
for girl pictogram.

Figure 5.44: L1 attention on pre-
dicted ”wants” token of girl pic-
togram.
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[htbp]

Figure 5.45: L2 visualization app
for girl pictogram.

Figure 5.46: L2 attention on pre-
dicted ”bite” token of girl pic-
togram.

Figure 5.47: L1 - L3 Visualization app for girl pictogram.

Figure 5.48: L1 attention on pre-
dicted ”girl” token of girl pic-
togram.

Figure 5.49: L3 attention on pre-
dicted ”girl” token of girl pic-
togram.

Lastly, let us delve into the sentence ”It is bread cut with [MASK].” corre-

sponding to the pictogram in Figure 5.28.
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In the L2 model, as shown in Figure 5.50, the attention is directed towards

the word ”cut”, particularly focusing on the patches of the knife, especially

its tip, as illustrated in Figure 5.51. However, for the word ”bread”, as seen

in Figure 5.52, L2’s attention shifts toward the brown parts of the bread, as

depicted in Figure 5.53.

Figure 5.50: L2 visualization app
for bread pictogram.

Figure 5.51: L2 attention on pre-
dicted ”cut” token of bread pic-
togram

Figure 5.52: L2 visualization app
for bread pictogram.

Figure 5.53: L2 attention on pre-
dicted ”bread” token of bread pic-
togram.

However, in Figure 5.52, the ”bread” attention of the L2 model is focused on

the brown parts of the bread in Figure 5.53.
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5.4 Comparisons

In this section, we compare in detail PictoBERT and other models using the

test set. Before conducting these comparisons, PictoBERT underwent specific

modifications to adapt to the CommonGen dataset, known for its word-sense-

based challenges. These adaptations are described below.

Evaluating PictoViLT: Unveiling its Performance Metrics To fully as-

sess the capabilities of PictoViLT, a meticulous evaluation strategy has been

devised. The primary objective is to gauge its performance in terms of both

Top-N accuracy and PPL, see Section 5.1.

A fundamental aspect of the evaluation process revolves around the mea-

surement of accuracy, initializing counters to zero to record correct predictions

at each Top-N level.

At the outset, a meticulous examination of the test dataset is conducted.

This scrutiny includes keeping tabs on the total number of examples contained

within the dataset. Furthermore, a crucial variable known as ”total loss” is

monitored. This variable serves as an aggregation point for the losses com-

puted by the model across all test examples.

The evaluation process is a meticulous and iterative endeavor. It works

by iterating through the test dataloader, which provides batches of test data.

Each batch, a treasure trove of insights, consists of essential components: in-

put IDs, an attention mask to spotlight pertinent tokens, target labels for model

evaluation, and pixel values that encode the associated images.

At the heart of the evaluation lies the execution of a forward pass through

the PictoViLT model. Fueled by the input data, this forward pass unfolds the

model’s predictive prowess, culminating in a set of predicted logs.
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A pivotal step in the evaluation process is accumulating the total loss. This

aggregation involves the summation of losses stemming from each test batch,

painting a comprehensive picture of the model’s performance.

The core of evaluation hinges on the model’s predictions. These predic-

tions, derived by applying the softmax function to the model’s logits, repre-

sent the estimated probabilities for each class. To scrutinize and dissect these

predictions, a masked position mask is meticulously crafted. It identifies the

positions within the input where the tokens were originally masked.

With predictions in hand, the next step is to harness the power of Top-N

predictions. For each predefined Top-N value, the model undertakes the task

of computing predictions. This feat is accomplished through the utilization of

the torch top-k function, meticulously applied to the logits.

With the Top-N predictions in tow, a meticulous comparison unfolds. The

focus is on the masked positions within the input. For each example residing

within the batch, if at least one of the Top-N predictions aligns with the actual

label at a masked location, it is unequivocally counted as a correct prediction

for the corresponding Top-N value.

The assessment does not stop at accuracy alone; it delves deeper. PPL

is computed as the exponential of the average total loss divided by the total

number of test examples; PPL provides valuable insights into the model’s pre-

dictive nuances.

The results of this comprehensive evaluation are meticulously compiled

into a structured dictionary format. This record encapsulates vital data, in-

cluding PPL and accuracy percentages for each predefined Top-N value.
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top-1 top-9 top-18 top-25 top-36 PPL Parameters Model version
0.906977 0.953488 0.953488 0.976744 1.000000 1.001929 135M PictoViLT Logic 1
0.680000 0.700000 0.700000 0.700000 0.700000 1.002402 135M PictoViLT Logic 2
0.920000 0.960000 0.980000 0.980000 0.980000 1.026120 135M PictoViLT Logic 3
0.351562 0.653061 0.732621 0.767060 0.804369 29.978450 312M Fine-tuned PictoBERT contextualized
0.337372 0.632972 0.711256 0.747768 0.786511 32.814500 312M Fine-tuned PictoBERT gloss
0.065407 0.414669 0.522940 0.582632 0.646611 267.772432 4.7M byte n-gram (order=2)
0.254961 0.638355 0.740117 0.784093 0.821718 87.607856 4.7M byte n-gram (order=3)
0.368630 0.726465 0.803937 0.838387 0.872837 55.007657 4.7M byte n-gram (order=4)
0.406731 0.742499 0.812351 0.845214 0.876965 48.823797 4.7M byte n-gram (order=5)

Table 5.12: Performance metrics comparison. Better results for each metric
are highlighted in green color.

To furnish an organized view of the evaluation outcomes, the results dic-

tionary undergoes a transformation into a Pandas DataFrame—an organized

tableau that succinctly presents the findings.

The crux of this evaluation endeavor centers on the three-logic models.

These models undergo scrutiny across an array of Top-N values, including

top-1, top-9, top-18, top-25, and top-36 accuracy, as well as PPL.

Table comparisons: Analysis of metrics To offer a concise yet compre-

hensive view of the evaluation results, we present the findings in Table 5.12.

The Table’s rows are dedicated to contrasting the performance of various

models across these metrics. Each row represents a distinct model variant

under evaluation, and the corresponding metrics provide insights into their

capabilities.

The PictoViLT 3 Logics model’s performances are evaluated over a batch

size of 8 and epochs 2.

Logic 1 impresses with its top-1 accuracy, soaring to 90.70%, showcas-

ing its ability to make precise top-ranked predictions. Its PPL hovers around
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top-1 top-9 top-18 top-25 top-36 PPL Model version
0.978261 1.00 1.0 1.00 1.00 1.002157 Logic 1
0.580000 0.70 0.7 0.72 0.74 1.004225 Logic 2
0.500000 0.72 0.8 0.82 0.84 1.040458 Logic 3

Table 5.13: Evaluation metrics comparison table with 16 batch sizes and 10
epochs fine-tuning. In green color are the better values for each column.

1.00, reflecting its clarity in predictions. Logic 2 exhibits balanced perfor-

mance across various Top-N values, maintaining competitive accuracy. Its

PPL, although slightly above 1.00, demonstrates its overall coherence. Logic

3 emerges as a formidable contender, boasting high accuracy figures across

Top-N values. Its PPL, while marginally higher, reinforces its capability.

Fine-tuned PictoBERT Contextualized presents moderate accuracy and a

relatively high PPL, indicating its sensitivity to context. Fine-tuned Picto-

BERT Gloss aligns closely with contextualized PictoBERT, showing similar

accuracy patterns and a marginally higher PPL.

N-gram (Order=2) shows limited accuracy and higher PPL, while n-gram (Or-

der=3) improves accuracy and lowers PPL. n-gram (Order=4) enhances accu-

racy further, and n-gram (Order=5) culminates with improved accuracy and

respectable PPL.

The model evaluations are further segmented into distinct training sce-

narios. Two such scenarios, captured in Table 5.13 and Table 5.14, provide

insights into the impact of batch size and epochs on model performance.

Top-N accuracy and PPL comparisons of 3 Logics models with RGB im-

age conversion fine-tuned with 16 batch sizes and over 10 epochs, see Table

5.13.

Top-N accuracy and PPL comparisons of 3 Logics models with RGB im-

age conversion fine-tuned with 32 batch size and over 2 epochs, see Table

5.14.
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top-1 top-9 top-18 top-25 top-36 PPL Model version
0.9375 1.00 1.00 1.00 1.00 1.000316 Logic 1
0.6200 0.74 0.74 0.74 0.74 1.001896 Logic 2
0.5000 0.72 0.78 0.84 0.84 1.017408 Logic 3

Table 5.14: Evaluation metrics comparison table with 32 batch sizes and 2
epochs fine-tuning. Green values are the best for each metric reported.

top-1 top-9 top-18 top-25 top-36 PPL Model version
0.954545 1.00 1.00 1.00 1.00 1.000402 Logic 1
0.880000 0.88 0.88 0.88 0.88 1.000309 Logic 2
0.940000 0.96 0.98 0.98 0.98 1.004670 Logic 3

Table 5.15: Evaluation metrics comparison table with 32 batch sizes and 8
epochs fine-tuning. Better results in green.

Model top-1 incr. top-9 incr. top-18 incr. top-25 incr. top-36 incr. PPL decr.
Logic 1 0.602983 0.346939 0.267379 0.232940 0.195631 28.978048
Logic 2 0.528438 0.226939 0.147379 0.112940 0.075631 28.978141
Logic 3 0.588438 0.306939 0.247379 0.212940 0.175631 28.973780

Table 5.16: Table reports improvements for each Top-N accuracy obtained by
all 3 logics variants of PictoViLT respect to PictoBERT contextualized. Better
values for each column are highlighted in green.

Transitioning to the domain of 32 batch sizes and 2 epochs (Table 5.14),

Logic 1 consistently achieves impressive Top-N accuracy, underlining its ro-

bustness. Logic 2 maintains stability in accuracy, with a notable boost in top-

25 and top-36 performance. Logic 3 shows remarkable strides in accuracy,

especially in top-25 and top-36 categories. PPL remains reasonably steady,

reaffirming the models’ adaptability.

In addition, when comparing the results with 8 epochs of fine-tuning (Ta-

ble 5.15), Logic 1’s Top-N accuracy remains consistent. Logic 2 maintains

its stability across all metrics, while Logic 3 continues to show remarkable

progress in top-25 and top-36 accuracy. These findings suggest that longer

fine-tuning may have a positive impact on the models’ performance

To summarize, better performance is for batch size 32 and 8 epochs. So,

in the following Table 5.16 the analysis of the improvement of each logic in
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Model Mean Improvement
Logic 1 0.329374
Logic 2 0.218265
Logic 3 0.306265

Table 5.17: Table reports the improvement mean obtained by all 3 logics vari-
ants of PictoViLT with respect to PictoBERT contextualized over the Top-N
accuracy. The green line contains the best result.

Sentence Masked
be build rail. be build rail [MASK]

be life throw pillow be life throw [MASK]
shoot leave on young branch move wind shoot leave on young branch move [MASK]

how to bedroom grey wall how to bedroom grey [MASK]
church morning break over lake church morning break over [MASK]

beautiful couple cabin beautiful couple [MASK]

Table 5.18: Table reports test dataset sentences where the only last token is
masked to make a comparison between PictoViLT and PictoBERT for the
”Next pictogram prediction” task.

Top-N accuracy with respect to PictoBERT contextualized.

Table 5.17, representing the mean of improvement given by the 3 Pic-

toViLT’s logics with respect to PictoBERT contextualized over Top-N accu-

racy, shows that Logic 1 reports a higher improvement followed by Logic 2.

Based on the average of accuracymetrics, Logic 1 surpasses the state of the

art by an improvement of approximately 0.33, while when evaluated on top-1

accuracy, it outperforms it by amore significant margin of approximately 0.60.

Considering that the starting point task is the ”Next Pictogram prediction”,

to make a more coherent comparison between PictoBERT and our solution,

We tested top-N accuracy and PPL of PictoViLT logic 1 (the best) over the

test set where always last token is masked. In Table below 5.18 an example

of test dataset sentences where the last pictogram is masked.

To evaluate the improvement of our solution in the next sentence prediction

task, we evaluate our best PictoViLT model Logic 1 over a test set where the
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Model top-1 incr. top-9 incr. top-18 incr. top-25 incr. top-36 incr. PPL decr.
Logic 1 0.977273 1.0 1.0 1.0 1.0 1.000478

Table 5.19: Table reports improvements for each Top-N accuracy obtained by
PictoViLT Logic 1 over the last token masked sentences test set demonstrating
better performance for the next sentences prediction task.

last token’s sentence is masked. The results of evaluation metrics are in Table

5.19.



Conclusions

This thesis presented the process of design, development, and analysis of the

results of a fine-tuned VL transformer model PictoViLTwith 3 different mask-

ing logics, from single token to multi-tokens to outperform PictoBERT in the

next sentence prediction task. We started from the study of PictoBERT in its

two embedding versions and the training and fine-tuning were re-performed

on the dataset adapted to the ARASAAC mappings.

Starting from the evaluation metrics’ values, Top-N accuracy and PPL, of

the model compared to the n-gram statistical LM, a solution was developed

that exploits a text dataset associated with the ARASAAC pictograms but this

time abandoning the word-sense, strength of PictoBERT.

The results obtained demonstrate an average improvement in accuracy val-

ues of +0.30 for all 3 logics while logic 1, with masking of only one token per

sentence, stands out for bringing a +0.60 improvement on top-1 accuracy.

PictoViLT demonstrates that the transition to multimodal strengthens the

ability to understand the concept model thanks to semantic text-image asso-

ciations. We wanted to delve deeper into how the model focused attention

on different areas of the image based on the selected words of the associated

sentence, verifying the interpretability of the model.

Models were then tested for making different inferences from a masked
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sentence. The models were run on Colab and servers with different combina-

tions of batch sizes and epochs demonstrating the best results with a greater

number of epochs (8) and a larger batch size (32).

The objective achieved is part of the AAC, where integrated with a mo-

bile application becomes a fundamental support for people with CCN. The

integrated framework has the potential to change the social participation of

these people by simplifying their communication with others and speeding up

learning.

5.5 Limitations and Future Improvements

Compared to single-modal AI, the integration of several sources of data on

which models are trained results in a more comprehensive understanding of

the context and a more accurate prediction.

5.5.1 Limitations

Dataset Constraints Despite that, one limitation pertains to the datasets

containing words related to ARASAAC pictograms, which may be restricted.

Symbolic Limitations Due to the need to adhere to conventional symbols,

pictograms may, in certain contexts, be less illustrative and less effective in

representing complex concepts. Furthermore, the same pictograms exhibit

limitations in terms of explicability.

It could be essential to develop techniques that enable the creation ofmore spe-

cific visual representations, such as conjunction or personalized pictograms.
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5.5.2 Future Improvements

Technical Advancements Future researchmay look at ways to developWord-

Net graphs to connect concepts within sentences by employing Graph Neural

Networks like Edge Aggregated Graph Attention Networks for integrated rep-

resentations.

ViLT might be improved by adding a cross-attention layer to integrate such

representations with text and pictograms.

Integration into Applications and Community Engagement As a future

development, the predictive models explored in this thesis, particularly Pic-

toVILT, can be seamlessly integrated into an AAC system application. An

example of an existing AAC application is reported in Figure 5.54. 6

Figure 5.54: Screenshots of theLeelooAAC app acquired from the Play Store.
App for kids with a carefully crafted design with the ability to read the phrases
generated by a Text-To-Speech system which allows multiple voices’ selec-
tion.

Integration of AI models, such as PictoVILT, into the application can be

seen as the core AI logic that operates within the framework. The use of an
6Leeloo

https://assistivecards.com/leeloo/
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integrated framework provides the flexibility to seamlessly introduce new fea-

tures or modifications, thereby enhancing its educational capabilities and en-

abling adaptation to individual user requirements. Furthermore, envisioning a

forthcoming release of an integrated application, we foresee the potential es-

tablishment of a thriving user community. This community would play a vital

role by providing feedback on existing functionalities and, even more impor-

tantly, by contributing innovative ideas and recommendations for potential

features to implement. Such a collaborative community would significantly

benefit from a similar open-source platform.

With continuous support and the implementation of novel and effective

functionalities, this integrated framework has the potential to become a rec-

ognized and widely used tool within the community dedicated to the education

of individuals facing communication difficulties.
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