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Abstract

This Master thesis is focused on the study of cosmological implications of type IIB
string compactifications. In particular we will consider brane-antibrane inflation [1]
which is one of the first and most-studied realizations of inflation in string theory. The
model however suffers from two main issues: (i) the lack of a fully supersymmetric for-
mulation of the effective field theory in terms of a Kähler potential and a superpotential;
(ii) the infamous η-problem due to the non-perturbative stabilization of the volume
modulus. We will follow the idea of Burgess and Quevedo [32] which proposed a super-
symmetric formulation of the effective action of brane-antibrane inflation together with
a mechanism to stabilize the volume mode at perturbative level based on RG-effects.
In [32] these perturbative corrections are however just field theory-inspired without a
proper string theory motivation. In this Master thesis we will put these perturbative
corrections on more solid grounds by exploiting all known results in α′ and string loop
corrections to the effective action of type IIB string compactifications. In this way we
will improve the results of Burgess and Quevedo finding a way to stabilize the moduli
in brane-antibrane inflation just using known perturbative corrections. Our results open
up the possibility to implement a hybrid inflation scenario where the volume mode can
act as a waterfall field to end inflation, leading to a post-inflation minimum where the
supersymmetry breaking scale is much lower than the inflationary scale.
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Chapter 1

Introduction

The goal of physics has always been to capture the workings of the universe starting
from the largest structures of the universe to the smallest particles in the universe. The
story of physics started when early hominids (according to current understanding of an-
thropology, an early Hominid species like Homo Naledi had culture and religion) looked
up in the sky and wondered about the existence of the universe. Existence of culture
and religion does indicate that ”we” did start to think about ”us”. Modern humans did
think about science and physics starting from the Greeks, Indians, Medieval Europeans
and Arab counterparts. Nevertheless, what we call the scientific revolution started in
the 16th and 17th century. Nicolas Copernicus, Galileo Galilei, Huygens, Newton and
many others revolutionized our understanding of the world around us. Development of
the theories on electricity and magnetism went in the hands of Faraday, Ohm, Gauss,
Hertz, Marconi while being unified by James Clark Maxwell in the 19th century. This
was a marvelous achievement as it was the first ever unification-merging of two funda-
mental forces of nature so as we thought.1We now know that in our 4 dimensional world,
the force of electricity and magnetism are actually a single fundamental force of nature.
Then came the first quantum revolution which was started off when Max Planck used
quanta to explain black-body radiation which was put into a much more firm ground by
Albert Einstein when he used it to explain photoelectric effect and who later became a
great adversary of the theory. Bohr’s quantized energy level of hydrogen atom, Heisen-
berg’s matrix mechanics and uncertainty principle and the wave mechanics (thus the
Schrödinger equation) by Schrödinger really put the theory of quantum mechanics in a
very solid position. It also enjoyed various experimental success in a short amount of
time in the early 20th century. In the early 1900 another theory also developed which
challenged Newton’s idea of space, time and gravity. It was the special theory of rel-
ativity in 1905 and the general theory of relativity in 1915 by Albert Einstein. Field
theoretic version of quantum mechanics-QFT brought about unimaginable accuracy to

1Here in Bologna, Augusto Righi did fundamental research in the field of Electromagnetism as well.
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measurements at the subatomic level. The revolutions in QFT were carried forward by
Dirac, Dyson, Feynman, Schwinger, Weinberg, Salam, Glasshow, Coleman among many
others. The three of the four fundamental forces of nature- Electromagnetism, Strong
and Weak nuclear force are described pretty well by the framework of quantum field
theory which we call the standard model. The observation of a particle in 2012 which
we call the Higgs boson is one of the latest additions to the gigantic amount of success
of standard model. On the other hand, Einstein relativity describes the universe at the
cosmological scales up to a very good approximation. Observation of gravitational waves
from black-hole mergers and its formation, perihelion of mercury, gravitational lensing
are one of many success stories of relativity. Let us get back to the sub-atomic level
again. The interactions in the standard model are measured by coupling constants. The
unification of the three couplings corresponding to the three forces does tend to unify at
a high energies. We already know that electromagnetism and weak interactions tend to
unify in a single force which we call the electroweak force at energies of order 100 GeV.
Does this mean, at much larger energies we have a unification of all the four fundamental
forces of nature?

1.1 Why Quantum Gravity?

The dream carried forward from last section runs into major difficulty when we try to
view gravity as a force and by describing it in the language of quantum field theory. Let
us see what happens when we treat gravity as a quantum field i.e a spin 2 field.2 For
that, let us consider the d-dimensional version of the Einstein-Hilbert action

S
(d)
EH =

1

16πG∗

∫
ddx
√
−detgR (1.1)

Here, G∗ is the d dimensional version of the Newton’s constant. Let us do some dimen-
sional analysis before we proceed further. First, since the action should dimensionless
we should be very careful with the dimensions. The dimension of the measure is

[d]

and the dimension of the Ricci scalar R is [-2]. Metric gµν and its determinant is di-
mensionless (obvious from the line element dimension analysis ds2 = gµνdxµdxν). The
important takeaway from this dimensional analysis is that the dimension of the modified
Newton’s constant is

[G∗] = 2− d (1.2)

2A theorem by Weinberg says that a theory of spin 2 particle must describe gravitation as it couples
to stress-energy tensor in a way gravity does.
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The above scaling might look harmless at first but we soon run into difficulties. Consider,
the fluctuations of the metric:

gµν = ηµν + hµν

Here, ηµν is our flat Lorentzian metric(Classical saddles) and hµν captures the fluctuations
around the classical saddles. The fluctuations of the metric produce some perturbations
to the above Einstein-Hilbert term :

S
(d)
EH = SClassical + Sfluctuations/perturbations (1.3)

The fluctuating/perturbing part involves some derivatives of h and is written as:

Sfluctuations/perturbations =
1

16πG∗

∫
ddx[(∂h)2 + (∂h)2h+ ....] (1.4)

Notice that the dimension of G∗ has to be changed in every term if we want our action to
be dimensionless. Most importantly, as we know from renormalization in quantum field
theory, G∗ has got a bad mass dimension in d=4 and the theory is non-renormalizable.
This is the first motivation of an urge for a quantum theory of gravity-a unification of
all the known fundamental forces of nature. In the remainder of the section we will try
to highlight the problems/shortcomings of the most successful theory of human history-
the theory of standard model.

• Quantum gravity and unification: As we saw in the calculation above, having
a quantum field theory of gravity is a hopeless case (maybe not as an effective
field theory?). The standard model, thus, do not contain gravity and our hope of
describing all of the four fundamental forces of nature using a single framework is
not an enlightening one. Quantum effects of gravity are certainly there as using
a classical (general relativity) theory of gravity does not explain (semi-)classical
problems like black-hole information paradox, dark matter, dark energy and infla-
tion.

• Why questions: Why is the gauge group of standard model SU(3) ⊗ SU(2) ⊗
U(1)? Why are there four interactions and why 3+1 spacetime - dimensions? The
last question also translates into the question of the 3 + 1 spacetime dimensions
”emerging” from something and the stability of them. This forces us to look for a
quantum gravity theory which can explain them.

• Parameter issue: The standard model has around 20 parameters.3 This is a
quote from a biography of Fermi (Pope of Physics- Segre and Hoerlin)

Even if we have a lot of parameters, it would be nice to have them arise naturally.
This also motivates us to look beyond standard model.

3Although some particle physicists tell us that there are only one - the Higgs Mass
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Figure 1.1: Fermi’s Quote

• The hierarchy problem: The hierarchy problem is the question of why the scale
of the forces of nature so different i.e why is gravity so much weaker than the
electroweak interactions

Mew ≈ 102GeV, Mpl
4 ≈ 1019GeV =⇒ Mew

Mpl
≈ 10−15.

A reason could be that gravity is weaker in some dimensions (in theories with extra-
dimensions). This is another reason we should be looking beyond the standard
model.

• The cosmological constant problem: We know that the expansion of the uni-
verse is accelerating and observations tell us that the cosmological constant is very
small and positive. The current estimate is around Λ ≈ 10−120M4

pl. If the universe
is described by an effective local quantum field theory down to the Planck scale,
then we would expect a cosmological constant of the order of M4

pl. Thus we are
off by an order of 120 magnitudes and this is arguably the biggest puzzle in all of
physics.

These problems (along with a few others not listed above) motivate us to look for a
more elegant theory where standard model and gravity can arise naturally. Of course,
we can study gravitational interactions by viewing it as an effective quantum field theory
which might make the situation a bit better. But, wouldn’t it be better to have a UV-
complete (no divergences) theory containing both standard model and gravity which
attempts to answer all of the above reservations of the standard model that we posed?

1.2 Why String theory and What is String Theory?

Let us briefly highlight the history of string theory before going into the question - why
string theory?

String theory was actually proposed as a model of strong interactions. In 1968,
Gabriele Veneziano introduced a four particle scattering amplitude for the strong force

4In this section only we denote the Planck mass in 4 dimensions as Mpl. In all of the subsequent
discussions we use M4
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and it was later interpreted as a one dimensional string in 1969-70 by Nambu, Neilson
and Susskind. Later, the success of QCD and experimental issues put the theory outside
the community’s radar.

In 1974, John H. Schwarz and Joël Scherk, in separate work from Tamiaki Yoneya,
investigated the characteristics of string vibrations resembling bosons. They made a
significant discovery: these properties precisely matched those of the graviton.This put
string theory back in business and thus the study of Bosonic string theory. As we know,
bosonic string theory has a critical dimension of D=26, has tachyons in the spectrum
and no fermions. The theory explained a lot of things but these issues were not to be
ignored.

Considering supersymmetry in the theory gave birth to the first superstring revo-
lution (1984–1994). The theory has fermions, no tachyons and lives in 10 spacetime
dimensions. Michael Green, John H. Schwarz, Edward Witten, Philip Candelas, Gary
Horowitz and the so called ”Princeton String Quartet” (for the discovery of heterotic
string) David Gross, Jeffrey Harvey, Emil Martinec, and Ryan Rohm. The second super-
string revolution(1994–2003) started with the discovery of M-theory by Edward Witten
which is an 11-dimensional supergravity theory and he found evidences that different
superstring theory were different limits of this M-theory. Duality relationships between
the string theories like S-duality, T-duality, U-duality, Mirror symmetry were also discov-
ered. Polchinski’s discovery of D-branes, Maldacena’s AdS/CFT correspondence spiked
interest in the theory. Notable discoveries and solutions to various problems were pro-
posed by Edward Witten, Ashoke Sen, Cumrun Vafa, Maldacena, Joseph Polchinski and
many others.

Let us now discuss what success does string theory has.

• Unification: The unification of gravity and standard model occurs in a consistent
fashion in the UV complete theory.

• Parameter Issue: There is only one parameter in the theory which is the string
length ls. All the other couplings arise as vacuum expectation value of fields.

• The hierarchy problem: Roughly speaking, string theory, being an extra-dimensional
theory, solves the hierarchy problem by the idea that gravity is not weaker in extra
dimensions but rather a stronger force.

There are other success stories of string theory like the derivation of Bekenstein-
Hawking entropy. The cosmological constant problem is also being addressed and there
are proposed solutions like KKLT [34] and LVS [13],[14] which tells us about vacuum
stabilization in string theory and a possible way to address the cosmological constant
problem. This master thesis addresses this vacuum stabilization issue as well. Keeping
this motivation aside, we will now try to understand string theory and move on to the
work of this thesis.
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Broadly speaking there are two kinds of string theory- Bosonic String theory and
Superstring Theory. We will mainly focus on superstring theory so we roughly sketch
the idea of bosonic string theory here. Bosonic String theory is described by the Polyakov
action

SPOLY =
−1
4πα′

∫
d2σ
√
−hhαβ∂αX.∂βX (1.5)

The action has the following symmetries alongside Poincare symmetries :

• Reparametrization invariance (diffeomorphisms)

• Weyl invariance

Reparametrization invariance and Weyl invariance helps us to take the action in a con-
venient form

SPOLY =
−1
4πα′

∫
d2σ∂αX.∂

αX (1.6)

The equations of motion is ∂α∂αX
µ = 0. Bosonic String theory has tachyons in the

spectrum and no fermions. To include fermions and remove tachyons, we need Super-
symmetry. One of the approaches to incorporate supersymmetry in string theory is called
Ramond-Neveu-Schwarz (RNS) formalism. We introduce supersymmetry in the world-
sheet by pairing bosonic fields Xµ(σ, τ) with Ψµ(σ, τ). The RNS action in light-cone
gauge is

SRNS =
1

π

∫
d2σ(2∂+X∂−X +Ψ+∂−Ψ+ +Ψ−∂+Ψ−) (1.7)

This theory is obviously invariant under supersymmetry and lives in 10 spacetime di-
mensions. The first massless spectrum contains a symmetric tensor Gµν , anti-symmetric
tensor Bµν (called the Kalb-Ramond field) and a scalar field called the dilaton ϕ. These
come from a imposing boundary conditions on the closed string such as:

ψM
± (τ, σ + ℓ) =

{
ψM
± (τ, σ) Ramond (R)

−ψM
± (τ, σ) Neveu-Schwarz (NS)

(1.8)

Roughly speaking choice of these boundary conditions lead to different string theories.

1.3 Different String Theories And Their Low Energy

Limits

There are five different consistent string theories which are: Type I, Type IIA, Type
IIB, Heterotic SO(32) and Heterotic E8 × E8. These string theories are related to each
other via different dualities as displayed in the figure (1.2). The low energy limit of
each of the five string theories or M-theory is governed by supergravity theories and we

9



Figure 1.2: Different String Theories And Dualities

can extract interesting quantum gravity characteristics from these supergravity theories.
In this section, we will look at the spectrum of each of the five string theories with
particular emphasis to type IIB string theory which is the purpose of this thesis and
which is phenomenologically very interesting.

1.3.1 Type IIA

The low-energy limit of Type IIA string theory is Type IIA supergravity. In this discus-
sion, we will focus only on the bosonic part. As far as superstring theory is concerned,
we can divide the fields in two sectors from which they arise. This comes from the choice
of boundary conditions in the worldsheet. We have two choices for the fermion part on
the worldsheet, one is a choice of periodic boundary condition which leads to Ramond-
Ramond (RR) sector fields and other is a choice of anti-periodic boundary condition
which leads to Neveu-Schwarz sector (NS-NS) fields. In the case of Type IIA,

NS-NS Sector: Gµν , B
(2)
µν ,Φ.

In the NS-NS sector, we have the metric Gµν , the anti-symmetric two-form field which

is sometimes called the Kalb-Ramond field B
(2)
µν and the dilaton Φ.

RR Sector: C
(1)
µ , C

(3)
µνρ.

In the RR sector, we have a one form field and a three form field C
(1)
µ and C

(3)
µνρ

10



respectively. Now, we can write the field strength of these form fields as follows:

F (p) = dc(p−1) for p = 2, 4

F̃ (2) = F (2) ;H(3) = dB(2)

F̃ (4) = F (4) − c(1) ∧H(3)

(1.9)

This will help us write the type IIA action. Let us separate out the NS-NS part and
RR part. The NS-NS part is

SNS−NS =
1

2κ210

∫
d10x
√
−Ge−2Φ (RG + 4Gµν∂µΦ∂νΦ

−1

2
× 1

3!
Gµµ′

Gνν′Gρρ′H(3)
µνρH

(3)
µ′ν′ρ′

) (1.10)

and R-R part is

SR−R =
−1
2κ210

∫
d10x
√
−G
[
1

4
F (2)
µν F

(2)
µ′ν′G

µµ′
Gνν′

+
1

2

1

4!
F̃

(4)
µ′ν′ρ′σ′F̃

(4)
µνρσG

µµ′
Gνν′Gρρ′σσσ′

] (1.11)

In addition to the two pieces above, there is a third piece which we call the Chern-
Simons term which can be written as:

SCS =
−1
4κ210

∫
B(2) ∧ F (4) ∧ F (4) (1.12)

1.3.2 Type IIB

Let us now talk about type IIB supergravity which is the low-energy limit of type IIB
string theory. The models we discuss in this thesis and the new model we construct in
this thesis is in the framework of type IIB string theory. Similar to the previous analysis
on type IIA, we discuss the bosonic part and discuss the field contents arising from two
sectors i.e RR and NS-NS.

NS-NS Sector: Gµν , B
(2)
µν ,Φ.

In the NS-NS sector, we have the metric Gµν , the anti-symmetric two-form field which

is sometimes called the Kalb-Ramond field B
(2)
µν and the dilaton Φ. This is exactly the

same as type IIA.

RR Sector: C(0), C
(2)
µν , C

(4)
µνρσ.

The R-R sector is different in this case. We have a 0-from field C(0), a 2-form field
C

(2)
µν and a 4-form field C

(4)
µνρσ. We define the field strengths, again, as follows:

11



F (1) = dC(0), F (3) = dC(2), F (5) = dC(4);H(3) = dB(2)

F̃ (1) = F (1), F̃ (3) = F (3) − C(0) ∧H(3)

F̃ (5) = F (5) − 1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F (3)

(1.13)

The NS-NS part is identical to type IIA

SNS−NS =
1

2κ210

∫
d10x
√
−Ge−2Φ (RG + 4Gµν∂µΦ∂νΦ

−1

2
× 1

3!
Gµµ′

Gνν′Gρρ′H(3)
µνρH

(3)
µ′ν′ρ′

) (1.14)

and the R-R part is:

SR−R =
−1
2κ210

∫
d10x
√
−G

[
1

2
GµνF̃ (1)

µ F̃
(1)
2 +

1

2

1

3!
Gµµ′

Gνν′Gρρ′F̃ (3)
µνρF̃

(3)
µ′ν′ρ′

+
1

2
× 1

5!
Gµµ′

G2ν′Gρρ′Gσσ′
Gτττ ′F̃ (5)

µνρστ F̃
(5)
µ′ν′ρ′σ′τ ′

(1.15)

In addition to the two pieces above, there is a third piece which we call the Chern-
Simons term which takes the following form in IIB:

SCS = − 1

4κ210

∫
C(4) ∧H(3) ∧ F (3). (1.16)

There are two moduli fields in the action Φ and C(0)(both have no potential term).
We can combine these two into a single piece and observe something interesting. Let us
introduce the following new definitions:

τ ≡ C(0) + ie−Φ, G(3) ≡ F (3) − τH(3) (1.17)

Note that, Im τ = e−Φ. Let us now observe the kinetic term in this case,

∂µτ = ∂µC
(0) + i∂µe

−Φ = ∂µC
(0) − ie−Φ∂µΦ (1.18)

Similarly,

∂µτ̄ = ∂µC
(0) + ie−Φ∂µΦ. (1.19)

Thus,

∂µτ∂µτ̄ =
(
∂µC

(0)
)2

+
(
e−Φ∂µΦ

)2
= ∂µC

(0)∂µC(0) + e−2Φ∂µΦ∂
µΦ

(1.20)
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Using,
F̃ (1) = dC(0) = ∂µC

(0)dxµ

F̃ (1)
µ = ∂µC

(0),
(1.21)

we get
1

(Imτ)2
∂µτ∂

µτ̄ = e2ΦF̃ (1)
µ F̃ µ(1) + ∂µΦ∂

µΦ. (1.22)

Also,

G(3)
µνρḠ

(3)
µ′ν′ρ′ =

(
F (3)
µνρ − τH(3)

µνρ

) (
F

(3)
µ′ν′ρ′ − τ̄H

(3)
µνρ′

)
=F (3)

µνρF
(3)
µ′ν′ρ′ − τ̄F

(3)
µνρH

(3)
µ′ν′ρ′ − τH

(3)
µνρF

(3)
µ′ν′ρ

+ τ τ̄H(3)
µνρH

(3)
µ′ν′ρ′

(1.23)

Thus, in terms of the τ field, we can write the type IIB action as

SΠB =
1

2κ210

∫
d10x
√
−g
[
Rg −

1

2

1

(Imτ)2
gµν∂µτ∂ν τ̄

− 1

2

1

3!

1

(Imτ)
gµµ

′
gνν

′
gρρ

′
G(3)

µνρḠ
(3)
µ′ν′ρ′

−1

2

1

5!
gµµ

′
gνν

′
gρρ

′
gσσ

′
gδδ

′
F̃

(5)
µνρσδF̃

(5)
µ′ν′ρ′σ′δ′

]
− i

8κ210

∫
C(4) ∧G(3) ∧ Ḡ(3)

(Imτ)
.

(1.24)

Notice that we wrote the metric in a different form. This canonical formalism is achieved
by

Gµν = eΦ/2gµν ⇒ gµν = e−Φ/2Gµν (1.25)

The Riemann tensors are related by →

RG = e−Φ/2
[
Rg − 2

4
(d− 1)□Φ− (d−1)(d−2)

16
gµν∂µΦ∂νΦ

]
In d=10,

RG = e−Φ/2
[
Rg −

g

2
□Φ− g

2
gµν∂µΦ∂νΦ

]
. (1.26)

RG + 4Gµν∂µΦ∂νΦ

=e−Φ/2

[
Rg −

9

2
□Φ− 9

2
gµν∂µΦ∂νΦ

]
+ 4e−Φ/2gµν∂µΦ∂νΦ

=e−Φ/2

[
Rg −

9

2
□Φ +

(
4− 9

2

)
gµν∂µΦ∂νΦ

]
=e−Φ/2

[
Rg −

9

2
□Φ− 1

2
gµν∂µΦ∂νΦ

]
(1.27)
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Thus, the NS-NS part of the action takes the form:

SNS−NS =
1

2κ210

∫
d10x
√
−g
[
Rg −

1

2
gµν∂µΦ∂νΦ−

1

12
e−Φgµµ

′
gµν

′
gρρ

′
H(3)

µνρH
(3)
µ′ν′ρ′

]

(1.28)
And the R-R part of the action takes the form,

SRR =
−1
2κ210

∫
d10x
√
−ge5Φ/2

{
1

2
e−Φ/2gµνF̃ (1)

µ F̃ (1)
ν +

1

2 · 3!
e−3Φ/2gµµ

′
gνν

′
gρρ

′
F̃ (3)
µνρF̃

(3)
µ′ν′ρ′

+
1

2 · 5!
e−5Φ/2gµµ

′
gνν

′
gρρ

′
gσσ

′
gττ

′
F̃ (5)
µνρστ F̃

(5)
µ′ν′ρ′σ′τ ′

}
(1.29)

Type IIB action is invariant under SL(2, R). SL(2, R) is the group of real 2× 2 matrices
with determinant one. A matrix(

a b
c d

)
∈ SL(2, R) ; ad− bc = 1

This acts on fields as

τ → aτ + b

cτ + d
(1.30)

and keeps other fields except G(3) invariant:

G(3) → G(3)

cτ + d
. (1.31)

1.3.3 Type I

The action in the context of the Type I theory is derived by eliminating all the degrees
of freedom from the Type IIB theory that exhibit an odd behavior under world-sheet
parity. In other words, we retain only those states in the Type IIB theory that remain
unchanged when subjected to world-sheet parity transformations. If Ω = world sheet
parity then, Type I ∼ IIB/Ω. We cannot do the same projection exercise for type IIA
since gravitinos in that theory has opposite chirality. The field contents in type I theory
are

• NS-NS Sector : Gµν ,Φ

• R-R Sector : C(2)

• 32 D-9 branes (this gives rise to SO(32) gauge fields which are coming from open
strings )
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A few comments are due. First, in the NS-NS sector, the Kalb-Ramond field is not
invariant under the worldsheet parity operator and thus is not present in type I theory.
Same occurs for other fields in R-R and we are left only with C(2). Second, we have
added the 32 D9 branes, because by projecting out the odd parity states, we generate
negative RR charge which is only cancelled by adding the D9 branes. The fields in NS-
NS and R-R Sectors come only from the closed string spectrum whereas SO(32) gauge
fields come from the open string spectrum. Type I theory is unique because in this, both
open as well as closed strings state contribute whereas in the other 4 theories, only closed
strings, state contribute. The NS-NS part of the action is

SNS−NS =
1

2κ210

∫
d10x
√
−Ge−2Φ [RG + 4Gµν∂µΦ∂νΦ] (1.32)

and the R-R part is

SR−R =
−1
2κ210

∫
d10x
√
−G

[
1

2

1

3!
Gµµ′

Gνν′Gρρ′F̃ (3)
µνρF̃

(3)
µ′ν′ρ′

]
(1.33)

and the gauge theory part is

Sgauge =
−1
2κ210

CI

2!

∫
d10x
√
−Ge−Φ

[
Gµµ′

Gνν′TrV (FµνFµ′ν′)
]
. (1.34)

Here,
F̃ (3) = dC(2) − CIω

(3)(A)

ω(3)(A) = TrV

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
CI =

α′

4

Fµν = F a
µνT

a = Fµν is Yang-Mills field strength.

Also, the trace is over the vector representation of SO(32) with TrV
(
T aT b

)
= δab Using,

Gµν = eΦ/2gµν , we can also write the action in canonical form as follows:

SI =
1

2κ210

∫
d10x
√
−g
[
Rg −

1

2
gµν∂µΦ∂νΦ−

1

2

1

3!
eΦgµµ

′
gνν

′
gρρ

′
F̃ (3)
µνρF̃

(3)
µ′ν′ρ′

−CI

2!
eΦ/2gµµ

′gνν
′

TrV (FµνFµ′ν)

] (1.35)

1.3.4 Heterotic Theory

There are two heterotic supergravity theories based on two different groups: SO(32), E8×
E8. The number of generators of SO(32) is 496. The field contents in type I theory are
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• NS-NS Sector : Gµν , B
(2)
µν ,Φ

• Gauge Fields : Aa
u a = 1, . . . , 496

The action can be written as:

S =
1

2κ210

∫
d10x
√
−Ge−2Φ [RG + 4Gµν∂µΦ∂νΦ

− 1

2

1

3!
Gµµ′

Gνν′Gρρ′H̃(3)
µνρH̃

(3)
µ′ν′ρ′ −

CH

2!
Gµµ′

Gνν′TrV (FµνFµ′ν′)
(1.36)

where, Fµν = F a
µνT

a is non-Abelian field strength. We have, CH = α′

4
for heterotic

supergravity H(3) = dB(2). Thus,

H̃(3) = H(3) − CHω
(3)(A)

ω(3)(A) = Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
(1.37)

As obvious, the two heterotic theories differ because of the generators T a satisfying
different algebra. In terms of canonical metric gµν ,

S =
1

2κ210

∫
d10x
√
−g
[
Rg −

1

2
gµν∂µΦ∂νΦ−

1

2

1

3!
e−Φgµµ

′
gνν

′
gρρ

′
H̃(3)

µνρH̃
(3)
µ′ν′ρ′

−CH

2!
e−Φ/2gµµ

′
gνν

′
TrV (FµνFµ′ν′)

]
(1.38)

Type I and SO(32) Heterotic theories are dual to each other, if we identify

ΦI = −ΦH

C
(2)
I = B

(2)
H

AI = AH

gIµν = gHµν

The duality can be argued to hold as follows -

ΦI = −ΦH ⇒ eΦI = e−ΦH

⇒ gIS =
1

gHS
.

This implies that when type I coupling is small, the Heterotic coupling is strong.
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As an example, let us see how standard model can arise from the Heterotic theories.
We will briefly overview this as a concluding remark. Let us start with SO(32) heterotic
theory. It has a gauge group SO(32) and in needs to break in order to have our standard
model.

SO (32)→ SO (12)× SO (20)

496→ (66, 1) + (12, 20) + (1, 190)

and SO(12) can be broken further to achieve the standard model.

SO(12)→ SO(8)× SO(4)

→SO(8)× SU(2)× U(1)1

→SU(3)× SU(2)× U(1)1 × U(1)2 × U(1)3

1.4 String Compactification

The main focus of this thesis is moduli stabilization in type IIB string and we will
therefore focus mainly on compactification of type IIB and its moduli space.

As we saw in the previous discussions, superstring theory is a quantum theory of
gravity living in 10 spacetime dimensions. Therefore, we need to compactify the extra
dimensions (a short discussion on compactification is given in the appendix) to describe
the four dimensional world around us. The 10 dimensional manifold is roughly compact-
ified as follows:

R1,3 ×M6 (1.39)

We call this compactification of type IIB on a background R1,3×M6 andM6 is called
the compactification manifold which is 6 dimensional. We usually compactify on a special
kind of manifold called the Calabi-Yau (CY) manifold (discussed briefly in appendix A)
as we are interested in Ricci flat manifolds. The reason for that is we want stable tachyon
free solutions preserving some supersymmetry ([53] has interesting recent discussions).
CY3 manifolds admit SU(3) holonomy. As discussed in the appendix, they contain a
closed (1, 1)-form J called the Kähler form and a unique holomorphic (3, 0)-form Ω3.

Reducing 10D N = 2 Type IIB SUGRA with 32 supercharges on a CY threefold CY3
we recover 4DN = 2 SUGRA with 8 supercharges. For the metric on R1,3 × CY3,

ds2 = ηµνdx
µ ⊗ dxν + gmn dym ⊗ dyn (1.40)

Here, the xµ, µ, ν, . . . = 0, . . . , 3, are the 4 dimensional space coordinates, while
ym,m, n, . . . = 4, . . . , 9, are internal coordinates on CY3. In the Kaluza-Klein (KK)
compactifications, we expand the 10D fields into eigenmodes on CY3. Let us consider
the simple example of a scalar field φ(x, y). We assume that there exists a basis of
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eigenfunctions χ(k)(y) of the 6D Laplacian ∆
(6)
y on the internal space so that we can

write

φ(x, y) =
∞∑

k=−∞

φ(k)(x)χ(k)(y), ∆(6)
y χ(k)(y) = λkχ

(k)(y)

The equation of motion for φ becomes

∆(10)φ =
(
∆(4)

x +∆(6)
y

)
φ =

∞∑
k=−∞

(
∆(4)

x + λk
)
φ(k)(x)χ(k)(y) = 0

If the eigenvalue is zero, we have a massless field or a moduli field. In case of form
fields if we have a massless or moduli field if the ”6 dimensional part” of the form is
harmonic. Harmonic forms let us relate this to Dolbeult cohomology groups Hp,q (X3,C)
which can be determined from the Hodge decomposition

Hk (X3,C) =
⊕

p+q=k

Hp,q (X3,C) , hp,q = dim (Hp,q (X3,C))

hp,q are called Hodge numbers and they tell us how many moduli fields are there. Let
us write different sector fields in terms of the moduli fields.

• NSNS-sector: Expanding the Kähler form J , dilaton ϕ and Kalb-Ramond 2-form
B2:

J = taωa, ϕ = ϕ(x), B2 = B2(x) + baωa,

where ωa ∈ H1,1 (CY3) , a = 1, . . . , h1,1 (CY3), is a basis of harmonic (1, 1)-forms.
We therefore find the 4D scalars ϕ(x) and bα(x) as well as a 4D 2-form B2(x). Fur-
ther, there are h1,2 (X3) complex structure deformations parametrised by complex
moduli Uα, α = 1, . . . , h1,2, as obtained from expanding the holomorphic 3-form Ω3

• RR-sector: The p-form fields in this sector can be expanded as

C0 = C0(x),

C2 = C2(x) + caωa,

C4 = Qa
2 ∧ ωα + V α(x) ∧ αα − Vα(x) ∧ βα + ρaω̃

a,

where a = 1, . . . , h1,1 (CY3) and (αα, βα) ∈ H3 (CY3) , α = 1, . . . , h1,2 (CY3). The
ω̃a ∈ H2,2 (CY3) are harmonic forms Poincaré dual to the ωa.

As we mentioned in the beginning of the section, we work with N = 2 supersymmetry
in 4 dimensions but we need to truncate the number of supersymmetry to 1 in order to
construct phenomenologically viable models. This is done with the help of orientifolds
which is briefly mentioned in the beginning of section (2.1).
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1.5 Cosmology and String Cosmology

We live in a universe whose expansion rate is accelerating. To discuss the physics of
the universe, we resort to Einstein equations of general relativity. Solutions of the field
equations of general relativity tells us the geometry of specific portion of space time
we are dealing with. Some of the examples could be solving Einstein equation for a
spherically symmetric body, a black hole, a free particle. The solutions tells us how
these objects curve the space time manifold. To write a metric for the universe, we need
to incorporate our experimental and theoretical observations in the solution. This is
provided by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric.

We thus start our journey of equations with the famous FLRW metric

ds2 = dt2 − a2(t)
[

dr2

1− kr2
+ r2dΩ2

]
(1.41)

A few comments about the metric

• Here, we have used symmetries, isotropy and homogeneity, to reduce 10 inde-
pendent components of the metric tensor to a single function a(t) and constant
curvature parameter k.

• We do not have a g0i components as it would break isotropy.

• Using scaling symmetry of the FLRW, we can set the scale factor today as a≡
a(t0) ≡ 1.

• We have the usual ”big bang” singularity when a goes to 0.

Friedmann Equations

The famous Einstein equations Gµν = 8πGTµν governs the dynamics of our universe. The
requirements of homogeneity and isotropy also constraints the the energy momentum
tensor and it constraints it to be that if a perfect fluid.

T µν = (ρ+ P )UµUν − P µν

δ (1.42)

Here, ρ is the energy density of the fluid and P is the pressure of the fluid. We can
write the energy momentum tensor conservation equation as :

∇µT
µ
ν = 0

Plugging in the surviving Christoffel symbols of the FLRW and our energy momentum
tensor components we obtain the continuity equation:
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ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 (1.43)

We can use the continuity equation to find out how matter densities are effected due
to the expansion. With a simple calculation we can conclude the following:

• For matter dominated universe, we have ρmatter ∝ a−3.

• For radiation dominated universe, we have ρradiation ∝ a−3

• For dark energy dominated universe, ρvacuum ∝ a0

We are now in position to calculate the Einstein equations for our system.
Let us start with the G0

0.

G0
0 = g00G00

8πG(T 0
0 ) = 3

[
(
ȧ

a
)2 +

k

a2

]
8πGρ = 3

[
(
ȧ

a
)2 +

k

a2

]
Finally, we arrive at the first Friedmann equation(

ȧ

a

)2

=
8πG

3
ρ− k

a2
(1.44)

Using a similar analysis for Gi
j, we arrive at the second Friedmann equation

ä

a
= −4πG

3
(ρ+ 3P ) (1.45)

Using Hubble parameter i.e H =
ȧ

a
, we can rewrite the first Friedmann equation as

H2 =
8πG

3
− k

a2
(1.46)

1.5.1 Problems of Modern Big Bang Cosmology

This beautiful standard Big bang cosmology picture has a few problems. These include
the flatness problem, the horizon problem, the baryon asymmetry problem, the issue of
spacetime singularity and the problem of topological defects. The Baryon asymmetry
problem is the problem of having a disproportionate matter and antimatter around us.
Modern BB cosmology does not explain why we have such a large number of matter
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compared to antimatter. The problem of topological defects (monopoles, cosmic strings
and domain walls) is that in the early universe these relics would be produced in very
high amounts (1 monopole per nucleon or 1 monopole per 109 photons). Standard BB
cosmology does not explain why we have not seen them (current estimation is ratio
of monopole per nucleon is less than 10−30). We will elaborately discuss the flatness
problem and the horizon problem now.

1.5.2 Flatness problem

We can rewrite the Friedmann equation in terms of a dimensionless density parameter
Ω where

Ω =
ρ

ρc
. (1.47)

The first Friedmann equation is

H2 =
8πG

3
− k

a2

Using the idea that scale factor a(t) is 1 now and for a flat universe (k=0), we get
the critical density today:

ρc =
3H2

8πG
(1.48)

Dividing the first Friedmann equation by H2 we can rewrite the the equation it terms
of the density parameter:

Ω− 1 =
k

a2H2
(1.49)

Using ρ ∝ t−2 and a(t) ∝ tp,

Ω(t)− 1

Ω
∝ t2(1−p)

As t −→ 0, Ω −→ 1 which implies that as time approaches the big bang singularity,
we approach a k ∼ 0 regime. Standard BB cosmology does not have an explanation for
this!

Horizon Problem

Another problem which pops out of our standard BB cosmology is the horizon problem.
Before we go into the details, let us first make things convenient for us. We can write
the FLRW metric in the following form:
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ds2 = a2(τ)
[
dτ 2 − dχ2

]
(1.50)

Here, we made the following redefinitions:

• We defined conformal time τ as dτ ≡ dt

a(t)

• We redefined the radial coordinate as dχ ≡ dr√
1− kr2

• Using the freedom of our isotropic universe, we defined coordinates having only
radial coordinates and thus we got rid of the angular dependence in the FLRW.

The horizon problem requires us to define the the concept of a particle horizon.
Particle horizon is defined as the greatest comoving distance from which an observer at
time t will be able to receive light signals from is

XPH(τ) = τ − τi =
∫

dt

a(t)
(1.51)

It can also be written as

XPH(τ) =

∫ tf

ti

dt

a(t)

=

∫ a

ai

da

ȧa

=

∫ lna

lnai

(aH)−1d ln a

(1.52)

Here, (aH)−1 is called the comoving Hubble radius (radius of a comoving sphere
which increases during expansion) and it tells us if particles can communicate to each
other now. The above relation for particle horizon relates the causal structure of space

time with the comoving Hubble radius. Using constant equation of state w ≡ ρ

P
, we get

(aH)−1 = H−1
0 a

1
2
(1+3w). Plugging all these in the expression for physical horizon:

XPH =
2H−1

0

1 + 3w
a

1
2
(1+3w)

=
2

1 + 3w
aH−1

0

(1.53)

Now, let us take a moment and look at the physics from the historical (universe’s
history) and experimental observations. Approximately 380,000 years after the big bang,
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Figure 1.3: Horizon problem

the universe cooled down and allowed the very first atoms (of course hydrogen) to form
and finally the photons decoupled from the hot dense plasma. The decoupling of the
photons means we are finally able to look at the baby universe. This radiation is called
the Cosmic Microwave Background Radiation (CMBR). Surprisingly, the radiation is
almost perfectly isotropic which means if we look at two different parts of the sky they
give almost exactly similar temperature. This put’s an interesting and troublesome
problem at our table. If the CMB fluctuations are this much correlated, they must have
been in causal contact. If we draw the past light-cones of two distinct points (say two
points separated by more than a degree) they do not have enough time to communicate
causally (104 disconnected patches). But we just mentioned that they have the same
temperature and this is not possible without being in causal contact. This is the famous
horizon problem.

1.5.3 String Cosmology: Ideas and a toy model

As we discussed, the low energy limit of each of the five superstring theories is a 10
dimensional supergravity theory. In this discussion we will focus on type II superstring
theory (Metric GMN , dilaton ϕ and a two form BMN). The Einstein-Hilbert action
of General Relativity is complimented by a new contribution from the dilaton and the
action is given by

S = − 1

2κ210

∫
d10x
√
−ge−ϕ(R + ∂αϕ∂αϕ) (1.54)

Where, S is the action given in the string frame in which the string length ls as our
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fundamental unit. Ricci-Scalar R appears with dilaton (ϕ) dependent prefactor and of
course it varies with dilaton in the string frame. We also have:

κ10 =
1

2
(2π)4(α′)4 ≈ l8s

gs = eϕ (String coupling related to dilaton)

We can also write the equation in Einstein frame with the Planck length as the funda-
mental unit. It is interesting and important to see how these two frames are related. In
the discussion below we will use the subscript E to denote the Einstein frame.

∫
dDx
√
−ge−ϕR =

∫
dDx
√
−gE(RE + ...)

gµν = e2wϕgE,µν√
−g = eDwϕ√gE

where we related the two metrics by using Weyl rescaling.
Scalar curvatures in the two frames are related by

R = e−2wϕ(RE − 2w(D − 1)∇2ϕ− w2(D − 2)(D − 1)∂αϕ∂αϕ
√
−ge−ϕR = e(Dw−1−2w)ϕ

√
−gE(RE − 2w(D − 1)∇2ϕ− w2(D − 2)(D − 1)∂αϕ∂αϕ)

Note,

Dw − 1− 2w = 0

=⇒ w =
1

D − 2

and therefore,

S = −M
D−2
D

2

∫
dDx
√
−gE(RE −

1

D − 2
∂αϕ∂αϕ) (1.55)

FLRW-form can be generalized to D dimensions. In both the frames, they are related as
follows

ds2E = e2wϕds2 (1.56)

= e2wϕ(dt2 − a2dx⃗2) (1.57)

≡ (dt2E − a2Edx⃗2) (1.58)
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Where,

aE = e−wϕa

dtE = e−wϕdt

Note that the two forms are physically equivalent. We will now perform the analysis
in string frame. Let us assume a spatially homogeneous FLRW space time. Ricci scalar
in this case is

R = −(D − 1)(D − 2)
ȧ2

a2
− 2(D − 1)

ä

a

The action has a remarkable symmetry i.e the following transformation leaves my
action invariant:

a(t)→ 1

a(t)

ϕ→ ϕ(t)− 2(D − 1) ln a(t)

Let us verify this symmetry,

√
ge−ϕ(R + ϕ̇2) = aD−1e−ϕ(−(D − 1)(D − 2)

ȧ2

a2
)− 2(D − 1)

ä

a
+ ϕ̇2

= aD−1e−ϕ((D − 1)(D − 2)
ȧ2

a2
− 2(D − 1)

ȧ

a
ϕ̇+ ϕ̇2)

= aD−1e−ϕ((D − 1)(D − 2)
ȧ2

a2
− 2(D − 1)

ȧ

a
ϕ̇+ ϕ̇2) + total derivatives

= aD−1e−ϕ(−(D − 1)
ȧ2

a2
+ (ϕ̇− (D − 1)

ȧ

a
)2 + total derivatives

Now, we have,

aD−1e−ϕ → a−(D−1)e−ϕ+2(D+1) ln a

= aD−1e−ϕ

ȧ

a
→ a

d

dt
(
1

a
) = − ȧ

a
ϕ→ ϕ(t)− 2(D − 1) ln a(t)

ϕ̇ =
2(D − 1)

a(t)ȧ
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Figure 1.4: Relating Big Bang solutions [4]

Now plugging these in,

aD−1e−ϕ(−(D − 1)
ȧ2

a2
+ (ϕ̇− (D − 1)

ȧ

a
)2

→ aD−1e−ϕ(−(D − 1)
ȧ2

a2
+ ϕ̇− 2(D − 1)

ȧ

a
+ ((D − 1)

ȧ

a
)2

→ aD−1e−ϕ(−(D − 1)
ȧ2

a2
+ (ϕ̇− (D − 1)

ȧ

a
)2

We thus have an invariance of the action and thus if a(t) and ϕ(t) solves the equation
of motion so does 1

a(t)
and ϕ(t)−2(D−1) ln a. There is also another interesting symmetry

t→ −t

With these two symmetries at hand, we can relate two different solutions. The
obvious thing to do would be to first focus on the scale factor then from a given solution
a(t), we can construct two new ones!

a(t)→ 1

a(t)
H(t)→ −H(t)

a(t)→ 1

a(t)
H(t)→ −H(−t)

The basic foundation of string cosmology provides us with enough symmetries so that
physics can be traced back in time through the Big Bang into the pre-Big Bang where
many of the conditions for the post-Big Bang are determined naturally. This suggests
that we should take on expanding pre-Big Bang theory and can match it with post Big-
Bang theory. The figure 1.4 provides a clearer picture about relating different solutions.
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Note that this picture is in String frame, things are a bit different in the Einstein
frame. Let us see an explicit example. We start with matter in a definite equation of
state P = wp. Our action has to account for the addition of matter and assume it
becomes:

S = − 1

2R2
4

∫
d4x
√
−g(e−ϕ(R + ∂αϕ∂αϕ) +matter)

In Einstein frame, Friedmann equations takes the form:

H2
E =

1

3M2
4

(
M2

4

2

1

2
(
dϕ

dtE

2

) + PE)
[
D = 4]

Note that in the above equation we considered D=4. We are interested in the difference
between the string frame and the Einstein frame. Let us now move to the string frame,

aE = e−wϕa [w =
1

D − 2
]

dtE = e−wϕdt

Incorporating the above changes,

HE = e
ϕ
2 (H − 1

2
ϕ̇2)

dϕ

dtE
= e

ϕ
2 ϕ̇

√
−gEρE = e−2ϕ

√
−gρE =

√
−gρ

Thus we obtain the Friedmann equation in string frame.

H2 = −1

6
ϕ̇2 +Hϕ̇+

1

3M2
4

eϕρ (1.59)

And continuum equation for matter, ρ = ρ0a
−3(1+w).

The lagrangian can be written in terms of the scale factor as

L = −a3e−ϕ(−6 ȧ
2

a2
+ 6

ȧ

a
ϕ̇− ϕ̇2)

= 6aȧ2e−ϕ − 6ȧa2ϕ̇e−ϕ + a3ϕ̇2e−ϕ
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We can use the ansatz a ∼ tα and ϕ = β ln(t) + constant. Let us first find the Euler-
Lagrange equations and then use the ansatz to obtain an expression in terms of α and
β.

∂L

∂ϕ
− d

dt
(
∂L

∂ϕ̇
) = 0

(6aȧ2 − 6ȧa2ϕ̇+ a3ϕ̇2)(−e−ϕ) +
d

dt
(6ȧa2e−ϕ − 2a3ϕ̇e−ϕ) = 0

−12α2 − β2 + 6αβ − 2β + 6α = 0 = 0

To fully determine α and β we need one more equation. Luckily, we still have not
use the continuity equation. From our continuity equation, we get

β − 3(1 + w)α = −2
The solution to α and β is

α =
2ω

1 + 3ω2
& β =

6ω − 2

1 + 3ω2

As an example, let us assume that matter is only in the form of radiation ω = 1/3. Thus,

α = 1
2

; β = 0
a ∼ t1/2 ;ϕ = constant

This implies we have a standard non-inflationary radiation dominated post big bang
scenario. In particular, we have decreasing Hubble constant i.e

H = ȧ/a = 1/2t > 0 (1.60)

ä = − 1

4t2
< 0 &thus

ä

ȧ
< 0 (1.61)

Applying our symmetry transformation,

a ∼ (−t)1/2 ϕ = −6 ln(−t)1/2 + constant

note that the above transformation is valid for t < 0. We get,
H = ȧ/a = −1/2t > 0

ä

ȧ
=

3

2 + 2
> 0. .

Here, Ḣ = 1
2t2

> 0 implies growing curvature. So, we have an inflating universe
with growing curvature & coupling as t→ O− followed by constant radiation dominated
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cosmology which we considered as an example. The plot twist to this is that description
a bit different in Einstein frame. There are no differences in post Bigbang scenario. In
pre-bigbang phase,

dtE ∼ (−t)3/2dt⇒ tE ∼ −(−t)5/2

aE ∼ (−t)3/2 × (−t)1/2 = −t ∼ (−tE)2/5

If we compute the derivatives,

a′E ∼ −(−tE)−3/5 < 0

a′′E ∼ −(−tE)−8/5 < 0

This implies that the physical picture in Einstein frame is that of a contracting
universe in the pre-Big Bang scenario whereas we had an expanding universe in the
string frame [3].

1.6 Inflation and Brane-Antibrane Inflation

One of reasons of our long discussion of horizon problem is that it will help us define
inflation and address the problem head on. A simple solution to the horizon problem
is a phase of decreasing Hubble radius in the early universe. Shrinking Hubble sphere
requires a strong energy condition violating liquid 5.

Inflation is basically a period which had a shrinking Hubble sphere and a mechanism
to achieve XPH ≫ (aH)−1. With this intuition, we are in position to define inflation as
the phase with

d

dt
(aH)−1 < 0. (1.62)

With the definition at hand, let us analyze a few things. The decreasing Hubble
sphere definition of inflation is related to another popular definition of inflation which
commonly describes inflation as a period of rapid acceleration.

d

dt
(aH)−1 = − ä

(ȧ)2

Thus, we get

ä > 0 (1.63)

This is the reason why inflation is often described as a period of rapid acceleration
but the important thing to ask here is what amount of rapid acceleration or inflation will

5SEC is a requirement TµνU
µUν +

1

2
T ≥ 0. Any fluid with negative pressure violates it
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solve our horizon problem? Put in another way, how long does inflation need to occur?
At the very least, we need inflation to occur so that our entire observable universe fits
into the comoving Hubble radius at the beginning of inflation that is

(a0H0)
−1 < (aIHI)

−1 (1.64)

Here, subscript I denotes the beginning of inflation. Let us assume the universe is
radiation dominated (ignoring matter and dark energy domination eras for now) since
the end of inflation to get a sense of what duration of inflation we are after. For radiation,
we have H ∝ a−2. Therefore,

a0H0

aEHE

∼ a0
aE

(
aE
a0

)2

=
aE
a0

∼ T0
TE

∼ 10−28

(aIHI)
−1 > (a0H0)

−1 ∼ 1028(aEHE)1

Here, E denotes the end of inflation. Therefore, we need the Hubble radius to shrink
by at least 1028 during inflation in order to get rid of the horizon problem. If H is
constant during inflation i.e HI = HE, then

aE
ai

> 1028

ln

(
aE
ai

)
> 64

(1.65)

This is famously called the 60 e-folds of inflation. This is an enormously large number
by which the scale factor at the beginning and end of inflation would increase.

Before going into discussion about the dynamics of the inflaton field, it is important
to define the two parameters : the ϵ and η parameters. Let us get back into our definition

of inflation
d

dt
(aH)−1 < 0. Now,

d

dt
(aH)−1 = − ȧH + aḢ

(aH)2

= −1

a
(1− ϵ)
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Here, we have defined ϵ ≡ − Ḣ

(H)2
. Our definition of inflation forces it to be

ϵ = − Ḣ

(H)2
< 1 (1.66)

The parameter ϵ should remain small for sufficiently long time for inflation to solve
the horizon problem. We define the η parameter which measures if ϵ remains small for
enough Hubble times:

η ≡ d ln ϵ

dN
=

ϵ̇

Hϵ
(1.67)

Here, dN = d ln a = Hdt and it measures the number of e-folds N of inflationary
expansion. For, ∥η∥ < 1 fractional change of ϵ per Hubble time is small and inflation
persists long enough. These two parameters will be of pivotal use throughout our upcom-
ing discussion as they indicate if inflation occurs slowly enough and if this slow enough
rate is there for a sufficient amount of time.

1.6.1 The dynamics of the Inflaton Field

Let us define a scalar field Φ(t, x) as our inflaton field which is minimally coupled to
gravity. If our inflaton field dominates the universe i.e it drove inflation and is the
driving/influencing the evolution of FLRW then we can write out the energy momentum
tensor of this scalar field and equate it with the one we obtained before. The energy
momentum tensor for this case is:

Tµν = ∂µΦ∂νΦ− gµν
(
1

2
gαβ∂αΦ∂βΦ− V (Φ)

)
(1.68)

Symmetries of our FLRW metric require that the background value of our inflaton
field should depend only on time Φ = Φ(t). From our previous discussion, the symmetries
of FLRW tells us that the energy momentum tensor for the universe should be that of a
perfect fluid. Let us equate the two and plug them into the Friedmann equations.

For the case T 0
0 = ρΦ, we obtain

ρΦ =
1

2
˙(Φ)

2
+ V (Φ) (1.69)

So the total energy density is actually a sum over total potential and kinetic energy
of the inflaton field.

For the case T i
j = −PΦδ

i
j ,

PΦ =
1

2
˙(Φ)

2
− V (Φ) (1.70)
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The first Friedmann equation H2 =
ρΦ
3M2

4

becomes

H2 =
1

3M2
4

(
1

2
˙(Φ)

2
+ V (Φ)

)
(1.71)

Taking the derivative of the above equation with respect to t,

2HḢ =
1

3M2
4

(
Φ̇Φ̈ + V ′(Φ)Φ̇

)
Now,

Ḣ = −ρΦ + PΦ

2M2
4

= −1

2

˙(Φ)
2

2M2
4

Using this, we obtain the Klein Gordon equation for the Inflaton field:

Φ̈ + 3HΦ̇ + V ′ = 0 (1.72)

The second term acts like a friction term and the derivative of the potential obviously
acts like a force term. A detail analysis would be done in the following section in which
we discuss the famous slow roll inflation.

Slow-Roll Inflation

Let us first accumulate what we have at hand which will motivate our upcoming discus-

sion, we got Ḣ = −1

2

˙(Φ)
2

M2
4

and we defined ϵ ≡ − Ḣ

(H)2
which was must be less than 1.

Plugging the value of the derivative of H here we get,

ϵ =
1

2

( ˙Φ)2

M2
4H

2

Thus, for ϵ < 1 we need to have the kinetic term small and make small contribution
to the total energy. This is called the Slow-Roll Inflation. In order for this condition to
persist, the acceleration of the scalar field has to be small. We define another quantity

δ ≡ − Φ̈

HΦ̇
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Let us now compute our second important parameter η ≡ ϵ̇

Hϵ
. Taking the derivative

of ϵ, we find ϵ̇ =
Φ̇Φ̈

M2
4H

2
− (Φ̇)2Ḣ

M2
4H

3
. Plugging all these,

η = 2(ϵ− δ) (1.73)

Thus, the parameters ϵ ≪ 1 and ∥δ∥ ≪ 1 guarantee ∥η∥ ≪ 1, and they altogether
guarantee that inflation occurs and persists long enough.

Now, let us apply these ”slow-roll” approximations in to our scalar field theory equa-
tions and study the dynamics. Let us apply them step by step.

• Firstly, ϵ≪ 1 implies (Φ̇)2

2
≪ V and our Friedmann equation becomes :

H2 ≃ 1

3M2
4

V (1.74)

• Secondly, our KG equation is modified as due to ∥δ∥ ≪ 1 i.e we can neglect the
kinetic term due to the acceleration being small,

3HΦ̇ ≃ −V ′ (1.75)

Plugging these into our slow-roll parameters ϵ and η, we obtain

ϵ =
M2

4

2

(
V ′

V

)
(1.76)

∥η∥ =M2
4

(
∥V ′′∥
V

)
(1.77)

Note that the expressions that we obtained are for generic potentials V. So, we can
easily study if a specific potential V satisfies the criteria for a slow-roll inflation if they
satisfy our slow-roll conditions which are ϵ≪ 1 and ∥η∥ ≪ 1.

1.6.2 Toy Models of Inflation

In this section we discuss two interesting toy models which give rise to our desired
inflation and which will be relevant for our discussion on brane-antibrane inflation.
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Figure 1.5: Chaotic Inflation from [2]

1.6.3 Chaotic Inflation

An interesting thing to note is that a potential like V (Φ) =
1

2
m2Φ2 can generate enough

inflation. It makes us wonder if any power of Φ can generate required inflation. This
brings us to an important class of models where Φ is just a simple monomial.

V (Φ) = µ4−pΦp (1.78)

Here, p > 0 and µ is a parameter with mass dimension. It is interesting to see
that a simple term like this solves such a big issue. We can thus calculate the slow-roll
parameters

ϵ =
M2

4

2

(
V ′

V

)2

=
p2

2

(
M4

Φ

)2

Similarly, we can compute η

η = p(p− 1)

(
M4

Φ

)2

It is very easy to see (from the above equations and figure 1.5) that slow-roll conditions
can be easily satisfied.

1.6.4 Hybrid Inflation

Hybrid inflation provides an interesting natural way to end inflation alongside enjoying
the features of a slow-roll potential. It provides a method to end inflation by coupling
the Inflaton field Φ to an additional field Ψ (sometimes called a ”waterfall field”). As a
simple example, let us consider a simple potential of two fields of the form:
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V (Φ,Ψ) = V (Φ) + V (Ψ) +
1

2
gΦ2Ψ2

Here, V (Φ) is a slow-roll potential and the form of V (Ψ) is

V (Ψ) ≡ 1

4λ

(
M2 − λΨ2

)2
In the potential, we make the following assumption V (Φ) ≪ (

M4

4λ
). This is because

we want the dominant energy contribution to the inflationary potential to come from the
false vacuum of the potential V (Ψ). It is noteworthy that the interaction term between
the two fields induces an effective mass for the value of the waterfall field in terms of the
inflaton field which is

M2
Ψ = −M2 + gΦ2

The mass of the waterfall field vanishes at the special point Φs ≡
M
√
g
. For Φ > Φs,

the field is stabilized at Ψ = 0 and we can reduce the effective theory into a potential

of the form Veff ∼
M4

4λ
+ V (Φ). But when Φ approaches Φc from above, the effective

description must involve both fields. Lastly, when Φ < Φs, the field is tachyonic and we
no longer have inflation as the potential no longer satisfies the slow-roll conditions.

1.6.5 End of Inflation and Reheating

Another interesting part of this inflation fairy tale is that of ending inflation and pro-
ducing the universe as we see today. During inflation, most of the energy density of
the universe is in the form of the inflaton potential and obviously inflation ends when
the inflaton potential steepens and the inflaton field has a dominating kinetic term. Re-
member that when inflation ends, the inflaton field (by an unspecified mechanism) must
transfer its energy to our Standard Model fields. This process is called reheating. Let
us see an example below.

If we look at the graph of V (Φ), when inflation ends the kinetic term dominates over
the potential term i.e the field Φ oscillates at the bottom. We can approximate V (Φ) as

V (Φ) ≃ 1

2
m2(Φ)2

Using this, we can write our KG equation as

(Φ̈) + 3HΦ̇ + V ′(Φ) = 0

(Φ̈) + 3HΦ̇ = −m2Φ
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Next, we can make the approximation that H−1 ≫ m−1 because the expansion time
scale soon becomes larger than the oscillation time scale. This let us ignore the friction
term. Moreover, if we remember our continuity equation

ρ̇Φ + 3HρΦ = −3HPΦ

= −3

2
H(m2(Φ)2 − (Φ̇)2)

The right-hand side averages to zero over one oscillation period, and writing out the
Hubble parameter in terms of the scale factor gives us the following ρΦ ∝ a−3. Besides
the scalar field oscillations and energy density evolution becoming similar to that of
matter, there are other ways of reheating as well. Another way of inflaton transferring
energy to Standard Model particles is through the inflaton fields decaying into other
particles.

1.6.6 Brane Dynamics and the DBI action

D-branes are dynamical objects in String theory. They usually arise when we fix the
boundary conditions for open strings. Similar to a string action (Polyakov action), we
can also have an action for branes. Defining coordinates ζa, where a=0,1,.....,p on the
brane. The following action will be in terms of the dynamics of the action in the brane
”worldvolume”. Fields on the branes are basically embeddings on the spacetime Xµ and
gauge fields Aa. If we just focus on the embedding part for now, we can write the action
as follows:

SP = −TP
∫
dp+1ζe−ϕ

√
G

where TP is the tension of the Dp brane. The exponential dependence e−ϕ = g−1
s due to

the action being an open string tree level action. The determinant of the induced metric
on brane, Gab, is the pullback of the spacetime metric, Gµν , to the brane.

T-duality rules mixes components of the embeddings into worldvolume gauge fields
so the above action is not sufficient. We need to take this into account the kinetic term of
transverse fields (fields oscillating transverse to the brane) ∂aX

m where m=p+1,....,D-1
will become derivative of gauge fields 2πα′∂aAm. For the gauge field part, a combination
of Bab + 2πα′Fab works (in the sense that it preserves gauge symmetry). It is easy to
check it.

1

2πα′

∫
µ

B +

∫
∂M

A
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Where we have written the gauge field in forms
∫
A =

∫
Aadζ

a. It is evident that the
action is invariant under the gauge transformation δA = δλ but δB = δζ gives a surface
term which is only cancelled by the following transformation.

δA = − ζ

2πα′

There are many ways to deduce the complete worldvolume action. One of them is
to use a technique like the string sigma model. The easy one out that we follow here is
using the rules of T-duality.

Let us start with a simple example and build our case. Consider D2 branes extended
in x1 and x2 direction and let there be a constant gauge field F12. Let us choose a gauge
A2 = X1F12 and T-dualize along x2 direction i.e X ′2 = 2πα′X1F12. Thus, the resulting
D-brane is tilted by θ = tan−1(2πα′F12) to the x2 axis. This gives an extra geometric
factor in D1 brane worldvolume action.

S ∼
∫
D1

ds =

∫
dX1

√
1 + (∂1X ′2)2 = −

∫
dX1

√
(1 + 2πα′F12)2

We are always boost the D-brane to be aligned with coordinate axes and then rotate
to bring it into a block diagonal form. This brings us to the Born-Infield action.

S ∼
∫
dPX(det(ηµν + 2πα′Fµν))

1
2 (1.79)

We are now in position to derive the Dirac-Born-Infield (DBI) action. We do a
compactification and label the compactified directions as Xm where m=p+1,....,D-1.
We label the non-compact directions as Xa where a=0,....,p. We neglect the derivatives
with respect to the compactified directions because we compactified on ”small circles”.
Now, the matrix whose determinant is in the Born-Infield action has the matrix form

(
W −AT

A M

)
Here, N = ηab+2πα′Fab,M = δmn and A = 2πα′∂aAM . We can write the determinant

as |M ||N + ATM−1A| which takes our action into the form

S ∼
∫
dP+1X(det(ηab + ∂aX

m∂bXm + 2πα′Fab))
1
2

This is up to a numerical factor which usually comes from the volume of the torus we
compactified on. The differential term comes from using T-duality rules 2πα′AM = XM .
Plugging generic metric, anti-symmetric two form and our dilaton and using a general
coordinate ζa, we can write the DBI action as
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SDBI = −TP
∫
dP+1ζe−ϕ(det(Gab +Bab + 2πα′Fab))

1
2

The exponential comes up since all of this physics arises at open string tree level.
One of the last things that we need to discuss is about D-branes being ”charged

objects”. This is important because in the brane-antibrane picture presented in [1], the
D-branes are R-R charged. Let us briefly discuss them here. Scalar field Φ, metric Gµν

and anti-symmetric tensor Bµν are common to IIA and IIB string theories (they arise
from NS-NS sector). Closed strings couple ”electrically” to Bµν . It can be written in the
following way

v1

∫
M2

B(2)

where v1 = (2πα′)−1, µ2 is the worldsheet and ζa are the worldsheet coordinates.
Also, B(2) = Bab dζ

adζb, where Bab is the pullback of Bµν . By Hodge duality, we can
form its magnetic dual dB(6) = ∗dB(2). Similar to the electric case, we can couple the
magnetic dual to a 5 dimensional extended object (sometimes called NS5 brane which is
an NS-NS charged object) by

v5

∫
M6

B(6)

Here, M6 is the world volume of the 5d extended object. Since, we are interested in
R-R charged object, let us move on to there. Potentials in the R-R sector are

type IIA : C1, C3, C5, C7

type IIB : C0, C2, C4, C6, C8

Dp branes are p dimensional extended objects which couple to all these via an electric
coupling of the form (thus R-R charged)

µP

∫
MP+1

CP+1 (1.80)

In type IIA string theory there are stable Dp branes with p even and in type IIB
string theory there are stable Dp branes with p odd. The above action is also called
Chern-Simons action and it is the higher dimensional generalization of a charged particle
coupled to a gauge potential. Lastly

SDP = SDBI + SCS

This completes bosonic action for D-branes.
We lastly turn our focus on the brane-antibrane inflation. It is a string theory derived

model (probably the first rigorously derived one) and most importantly has all the nice
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properties of inflationary dynamics. It also has a geometric interpretation for the inflaton
field and also provides a mechanism to end inflation. The model presented by Majumdar
et al in [1] is done for general branes and in a brane cosmology set up (although they
discuss the idea in a string theory set up as well). In the following discussion, we will
restrict ourselves to a string theory (type IIA and IIB) point of view i.e we will reproduce
their calculation keeping 10 space-time dimensions in mind. The basic understanding is
that our universe in one of the D3 branes where the extra dimensions are compactified (in
a fashionM10 =M4 × X6). Standard model physics (gauge interactions) are localized
in this brane. Let us see how inflation fits into the picture. The idea is that standard BB
cosmology is reproduced after two brane collisions. We have a net attractive interaction
if the two branes are oppositely R-R charged i.e. brane and anti-brane interaction. Our
inflaton field here is basically a scalar function of inter-brane distance. We can thus
compute the effective potential and see if it reproduced the required amount of inflation
as discussed in the previous sections. We start from the following action

S = Sbulk + SDp + SD̄p

Here, Sbulk is the 10 dimensional bulk action specified by the choice of superstring
theory we are interested in. The other two actions are (p+1) dimensional Dp brane and
D̄p brane action. The exact form can be obtained by expanding the DBI action

SDBI = −
∫
Σ

dP+1ζ
√
|γ|(Tp + ..) (1.81)

Here, TP ∼ λ
−(P+1)
s e−

ϕ
2 is the D-brane tension and the induced metric γiµν = ∂µX

A
i ∂νX

B
i gAB

where the embedding is XA
i (ζ). Here, the indices µ and ν runs from 0 to P. Lastly, index

’i’ specifies the two branes and takes values 1 and 2. Let us now assume that the two
branes are parallel. We can write the embeddings XA

i as XA
i = (ζµ, Xm

i ) where we have
separated out the coordinates of the transverse position Xm

i where m goes from p+1 to
9. We are interested in the relative motion Y m (our speculated inflaton) which is

Y m = (Xm
1 −Xm

2 )

Motion of center of mass is X̄m ≡ (Xm
1 +Xm

2 ) then in terms of X1 and X2, we can
write Xm

1 = 1
2
(X̄m +Xm) and Xm

2 = 1
2
(X̄m − Y m).

Now, our induced metric γiµν = ∂µX
A
i ∂νX

B
i gAB can be written in terms of brane

separation and the center of mass

γ1µν = hµν +
1

4
∂µY

m∂νY
ngmn +

1

4
∂µX̄

m∂νX̄
ngmn +

1

2
∂µX̄

m∂νY
ngmn

γ2µν = hµν +
1

4
∂µY

m∂νY
ngmn +

1

4
∂µX̄

m∂νX̄
ngmn −

1

2
∂µX̄

m∂νY
ngmn
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Our main interest lies in inter-brane separation so expanding
√
γ in terms of ∂µY

m

will make the action in a convenient form for studying inflation

SDp + SD̄p
= −

∫
dP+1ζ

√
hTP (2 +

1

4
hµν∂µY

m∂νY
νgmn + ....) (1.82)

We have a kinetic term at hand and a weird potential term contribution ζ
√
hTP2. We

need to include the inter-brane potential energy. The dominant interaction between two
branes at large distances is due to the exchange of massless bulk modes which includes
the metric, dilaton and any massless bosons which couple to the brane. The potential

decreases like a Newtonian potential, i.e. V ∼ 1

Y d⊥−2
where d⊥ = d − P + 3 is the

number of spatial dimensions transverse to the brane. The potential between two branes
is thus in a form similar to the gravitational potential. The energy per area is given by

E

Ap

= −β( 1

M2
10

)
T 2
P

Y d⊥−2

Here, M10 is the 10 dimensional Planck’s constant. The 10 dimensional Planck’s
constant is related to the 4 dimensional one via M2

4 = M2
10V⊥V∥. V⊥ and V∥ are the

volumes of transverse and parallel directions/dimensions to the brane respectively. The
volumes can be written as

V⊥ ≡ rd⊥⊥

V∥ ≡ rp−3
∥

The constant β in the potential expression above is an order unity constant from
string theory which has the following form

β = π− d⊥
2 Γ

d⊥−2

2

Before proceeding with the compactification, a few comments are due. The first is
that Majumdar et al. [1] considered the transverse volume V⊥ as an adjustable parameter
so that its size can give us valuable insights to study cases where and if inflation occurs.
Second, the compactification done below will change give an expression for Planck mass in
different dimensions that we used above. As an example the following equation provides
a sneak peak into the compactification method again:

M2
10

2

∫
d4xd6y

√
−g(R + ...) ∼ M2

4

2

∫
d4x(R + ...)

The action we will be compactifying is

SD+D̄ = −
∫
d4xdP−3y

√
−γTP (2 +

1

4
gmnγ

ab∂aY
m∂bY

n + ...)
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This gives rise to the long desired expression of the potential.

V ≡ 2TPV∥ −
β

M2
10

T 2
PV∥

Y d⊥−2
(1.83)

Let us canonically normalize our scalar field (i.e the separation) so that we have a
canonical expression for the kinetic term. We redefine as follows:

ϕ =

√
TPV∥
2

Y

Also, we define the constants A and B to aid our calculation.

V = 2TPV∥ −
β

M2
10

T 2
PV∥

Y d⊥−2
≡ A− B

Y d⊥ − 2

We are now in position to compute the slow-roll parameters and see if they give rise
to inflation. The first and second derivative of the potential needs to be computed. The
first derivative is

V ′ =
∂V

∂ϕ
=

2√
TPV∥

(d⊥ − 2)
β

yd⊥−1

Now, let us compute the ϵ parameter.

ϵ =
M2

4

2

(
V ′

V

)2

=
M2

4

2

 2√
TPV∥

β

Y d⊥−1

2TPV∥ − β
M2

10
T 2
P

V∥
Y d
⊥−2

2

=
M2

4

TPV∥

(
B

A
(d⊥ − 2)

1

Y d⊥−1

)2

=
M2

10V⊥V∥
TPV∥

T 2
P

4

β2

M4
10

(d⊥ − 2)

(
1

Y d⊥−1

)2

=
β2

4
(d⊥ − 2)2

TP
M2

10

1

Y d⊥−2

V⊥
Y d⊥

Thus, it can be approximated as

ϵ ∼ gs

(
ls
Y

)d⊥−2 (r⊥
Y

)d⊥
(1.84)

Let us now compute the second slow-roll parameter η:
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η =M2
4

V ′′

V

∼ −2M2
4

1

TpV∥

B

A
(d⊥ − 2)(d⊥ − 1)

1

Y d⊥

= −β(d⊥ − 2)(d⊥ − 1)
(r⊥
Y

)d⊥
∼
(r⊥
Y

)d⊥
(1.85)

For inflation to occur, we need ϵ ≪ 1 and ∥η| ≪ 1. ϵ ≪ 1 is easy to hold because
even if Y ≤ r⊥ because there are other factor like ls and gs which keep ϵ very small.
Problem arises when we want ∥η| ≪ 1 because it would imply Y ≫ r⊥ but the brane
separation cannot be larger than the size of the compactified dimensions! Therefore,
inflation cannot occur in this way. In [1], they did there calculation for general branes
but for branes in string theory, they identified a case (of course when the separation
size is less than the size of the compactified dimensions) where inflation will occur and
provides a mechanism to end inflation and give standard BB evolution.

The inflationary scenario

In this section, we will consider the case when the separation is comparable the radius
of the compactified dimension i.e Y ∼ r⊥. We assume the special case when the com-
pactified transverse manifold is a d⊥ dimensional torus. So, when the brane-antibrane
separation Y is comparable to r⊥, the potential receives contribution from the p-brane
(or more clearly the antibrane) images. We study the potential in the covering space of
the torus. The potential becomes of the form

V (r̄) = A−
∑
i

B

|r̄ − r̄i|d⊥−2

r̄ and r̄i denote the positions of the p-branes and anti-branes in our d⊥ dimensional
coordinate space. The above sum is over the lattice sites occupied by the brane images
and we have labelled them by i. It is easy to see that the first and second derivative of
the potential vanishes when the antibrane is at the centre of a hyper-cubic cell (denoted
by r̄0.

∂V

∂ra

∣∣∣∣
r̄=r̄0

= (d⊥ − 2)
∑
i

B (r0 − ri)a
(r̄0 − r̄i)d⊥

The first derivative vanishes due to the reflection symmetry of the lattice and this
implied the net force on the antibrane at this point also vanishes. It is unusual and
remarkable that the second derivative also vanishes.
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Figure 1.6: Square torus depicting the brane-antibrane positions. Filled up circle repre-
sents branes and unfilled one antibrane

∂2V

∂ra∂rb

∣∣∣∣
r̄=r0

= (d⊥ − 2)
∑
i

B

(ri − ri) d⊥
[δab− d⊥ (r0 − ri)a

(r0 − ri)b
(r̄0 − r̄i)2

]

In [1], it is explicitly shown that the second derivative also vanishes for both the cases
when a and b are equal and when they are not.

Let us now consider the motion of the antibrane when it is at the centre of a hyper-
cubic cell (the figure below clarifies it).

We can expand the potential in terms of a power series of the displacement from the
centre. Thus from the arguments presented above, we make the following considerations
before expanding our potential in terms of small antibrane displacement z.

• Symmetry arguments makes all odd powers vanish.

• Quadratic term also vanishes as discussed above.

• Leading order contribution is thus from the quartic term.

Expanding out the potential in powers of z

V (z) = A− 1

4
Cz4 (1.86)

where, A is the same as before and C = γM−2
10 T

2
p V∥r

−(2+d⊥)
⊥ . Here, γ is an order 1

constant and M−2
10 =

V⊥V∥
M2

4

. We can thus compute the slow-roll parameters again.
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η =M2
4

V ′′

V

=M2
4

−3cz2

A− Cz4

4

∼ −3CM
2
4 z

2

2TpV∥

= −3γ(r⊥)−2z2

= −3γ
(
z

r⊥

)2

Thus, the requirement of slow-roll parameter ∥η| << 1 is guaranteed for sufficiently
small z. Now, we address the question of colliding branes in the next section.

1.6.7 Brane Collisions and End of Inflation

In the final stages, when the branes and anti-branes are on the annihilation track, we need
to make a few more additions other than just the separation. The amplitude for brane-
antibrane annihilation develops a negative mode when distance between them shrinks
to M−1

S i.e Y∼ M−1
S signals the appearance of a tachyonic open string connecting the

brane and the antibrane. Initially, the open string mode was massive, became massless
at smaller separations and ultimately became tachyonic. Complete form of the potential
is not known but limiting values are. It is conjectured to be of the approximate form

V (Y, T ) =
1

4α′

(
Y 2

2π2α′ − 1

)
T 2 + cT 4 + · · · . (1.87)

Few comments about the above potential:

• When Y = Yc =
√
2α′π, then mass term vanishes and when Y < Yc, the modes

become tachyonic.

• In this system of branes, at some point, a pair of branes will be at a separation close
to the equilibrium point and gives rise to inflation by dominating the expansion of
the universe and giving a naturally beautiful geometric picture for initial conditions
for inflation.

• It is important to note that most of the times Dp and D̄p branes will interact
and annihilation will occur giving rise to p-2 branes and the process goes on until
the Brandenberger-Vafa mechanism (discussed in appendix) permits. So, the BV
mechanism leaves only D3 in the picture and thus gives a natural explanation of
our universe confined to a D3 and inflation.
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• Lastly and most importantly, the potential has two fields Y and T and thus has all
the beautiful features of hybrid inflation built in. So, when branes are far apart,
potential is parabolic and tachyon field is localized at the bottom of the potential
at T=0. This is when inflation occurs. Once the separation reaches Yc, the tachyon
field is in the picture and it provides the necessary ingredients to end inflation.

So the story goes as follows. Large dimensional branes annihilate quite quickly leading
to a population of D3 branes only. Since due to the argument presented in the appendix,
D3 branes cannot be annihilated further in a superstring theory. We thus have 4 large
dimensions and 6 compactified ones. Ultimately, we have the particular brane-antibrane
collision which causes inflation. Our universe is that particular brane and our standard
model lives in that brane.

1.6.8 Warped Brane-Antibrane Inflation

In this section, we briefly discuss the warped brane-antibrane inflationary scenario. In
the original paper [1], they didn’t consider moduli stabilization. Moduli are basically
massless fields and would create huge problems if we do not produce a potential term for
them. The problem with that is, in the moduli stabilization mechanism we have to turn
on fluxes and fluxes can backreact on the metric and give us a deviation from the usual
Calabi-Yau. Thus, the resulting compactification deviates from the usual Calabi-Yau
(some torsion classes do not vanish) and becomes a ”warped” Calabi-Yau

ds2 =

(
1 +

e4A

V2/3

)−1/2

ds24 +

(
1 +

e4A

V2/3

)1/2

ds2CY (1.88)

This warped inflationary scenario was originally proposed in [35] (popularly called
the KKLMMT proposal) to evade the problem of the eta parameter being order 1 after

flux compactification. Let us denote W :=
(
1 + e4AVV−2/3

)−1/2
which is called the

warp factor. In the KKLMMT proposal, they suggested that the anti-D3 brane in this
inflationary scenario which energetically prefers to sit at the tip of the warped throat
and the D3 brane being BPS is free to move and experiences no position dependent
forces. Combining brane tension term with the Coulomb interaction between a mobile
D3 brane and the anti-D3 brane sitting in a warped environment gives the candidate
brane-antibrane inflationary potential

V = 2T3
(
e−4ρV2/3

)(
1− 27

64π2

2T3
(
e−4ρV2/3

)
|φ|4

)
=: Ω

(
1− bΩ

|φ|4

)
(1.89)

.
Here,
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Ω =
ce−4ρM4

4

V4/3
, c =

(2π)11g3s
2

and b =
27

64π2
(1.90)

The slow-roll parameters for this motion in the regime bΩ≪ |φ|4 are

ε =
M2

4

2

(
Vφ
V

)2

≃ 8b2
(
ΩM4

|φ|5

)2

and η =
M2

4Vφφ
V

≃ −20bΩM2
4

|φ|6
(1.91)

Ideally, we can make the warp factor buried in Ω as small as we want and produce the
required e-foldings. This is what makes this KKLMMT proposal much more attractive.
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Chapter 2

Moduli Stabilization in Type IIB

As we saw in the section on string compactifications, the compactification on Calabi-Yau
or in general compactifications give rise to a lot of moduli or scalar fields. These scalar
fields in general need to have a potential or it would create unobserved modifications
of gravity and fifth force problems. We call this process of generating potential for the
moduli fields- moduli stabilization.

In section 1.3.2, we saw the action and fields in type IIB string theory. The type IIB
compactification in CY3 folds results in N = 2 supergravity in 4 spacetime dimensions.
We then use orientifolds to reduce the amount of supersymmetry to N = 1. The number
of Kähler moduli is h11(CY3) where h is the Hodge number. But introducing orientifolds
mods out half the amount so the Kähler moduli is τa where a = 1, 2, 3...., h11+ . Also, the

complex structure moduli Uα counted by h2,1− (CY3). Let us first focus on the moduli
fields arising from the RR sector. The RR sector gives rise to fields Cp where p = 0, 2, 4.
The C0 piece is combined with the dilaton to form the axio-dilaton multiplet:

S = e−ϕ + iC0 ≡
1

gs
+ iC0 ≡ s+ iC0. (2.1)

Other R-R and NS-NS p-form potentials can be expanded as follows:

B2 = bivi, C2 = civi, C4 = ρaµ̃
a + . . . (2.2)

Here, bi, ci and ρa are various axions and i=0,1,2,... h11− . We can describe the
dynamics of the N = 1 type IIB 4D effective supergravity theory can be described by
using the following chiral variables (Uα, S,Ga, Ti) as:

Uα = vα − iuα, S = e−ϕ + iC0 = s+ iC0, Gi = ci + Sbi,

Ta =
(
τa −

s

2
k̂aijb

ibj
)
+ i

(
ρa + k̂aijc

ibj +
1

2
C0k̂aijb

ibj
)
,

(2.3)
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where τa = 1
2
kabct

btc is an Einstein frame 4-cycle volume. The tree-level Kähler
potential Ktree can be expressed in the following manner which depends logarithmically
on the various moduli fields as follows:

Ktree = − ln

(
−i
∫
X

Ω ∧ Ω̄

)
− ln

(
S + S̄

)
− 2 ln(V), (2.4)

Here, Ω is the holomorphic 3-form which gives rise to the complex structure moduli.
Also, the internal volume V of the CY threefold can be given in terms of the two-cycle
volume moduli as follows:

V =
1

6
kabct

atbtc

where kabc denotes the classical triple intersection numbers on X.
With the field strengths as discussed in section 1.3.2 and fluxes, we have the tree-level

superpotential which was written by Gukov, Vafa and Witten (hence the name GVW)
[38] as follows:

W0 =

∫
CY3

G3 ∧ Ω (Uα) .

Combining all of them we can write the F-term superpotential into the familiar
supergravity form as

V = eK

(∑
A,B

(DAW )KAB̄
(
DB̄W̄

)
− 3|W |2

)
, (2.5)

where DA is the Kähler covariant derivative which is DA = ∂A + KA. The sum
above runs over all the moduli fields in the theory. With all of these at hand, let us
study the interesting moduli stabilization in type IIB string theory. This chapter is
organized as follows. First, we talk about the challenges we face when stabilizing the
moduli fields in type IIB string theory. We will then move on to the proposed solutions
in literature including the KKLT construction, the Large Volume Scenario and a few
possible perturbative stabilization proposals. We then built on this and present our
perturbative stabilization mechanism in the following chapter.

2.1 Issues in Moduli Stabilization

As we see from GVW superpotential, it depends on the complex structure moduli Ualpha

and the axio-dilaton S. Using the tree-level Kähler potential and superpotential, through
the standard two-step procedure, one initially fixes the axio-dilaton S and the complex
structure moduli Uα via the supersymmetric (flatness) conditions imposed to preserve
the supersymmetry,

DSW0 = 0 , DUαW0 = 0 .
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.
On the contrary, the Kähler moduli or the volume modulus remain unfixed as the

superpotential does not depend on them. Thus, at the classical level the effective po-
tential for Kähler moduli remain unfixed. This is the so called no-scale structure. To
fix this issue and to generate the potential for the Kähler moduli we need to consider
quantum corrections on top of the tree-level ones. As we know from supersymmetric
renormalization theorems, the Kähler potential can receive both perturbative and non-
perturbative corrections whereas the superpotential can only receive non-perturbative
ones. The perturbative corrections are perturbative expansion of α′ (higher derivative
ones) and in string coupling gs which are like the loop corrections. Perturbative analysis
is done in this master thesis. Non-perturbative effects are used in models like KKLT and
LVS and it is briefly discussed in the appendix as well.

2.2 KKLT Construction

The KKLT (Kachru, Kallosh, Linde and Trivedi) [34] proposal is one of the widely
accepted solution of dS construction. In this section, I will briefly overview their main
idea. We know that the F-term potential is

V = eK

(∑
A,B

KAB̄DAWDBW − 3|W |2
)

(2.6)

Here, as usual,KAB̄ is the inverse Kähler metric andDA is the Kähler covariant derivative
which is DA = ∂A +KA. The sum runs over all moduli in the system. W is the familiar
Gukov-Vafa-Witten (GVW) superpotential [38] which is of the form:

W =

∫
M

G3 ∧ Ω (2.7)

G3 is the imaginary self-dual flux and Ω is the nowhere vanishing unique holomorphic
3-form present in Calabi-Yau compactifications. The tree-level Kähler potential is of the
form

Ktree = − ln

(
−i
∫
X

Ω ∧ Ω̄

)
− ln

(
S + S̄

)
− 2 ln(V), (2.8)

We consider only one Kähler moduli in our system with T = τ + iρ and V ∼ τ 3/2

K = −3 ln τ (2.9)

The complex-structure moduli and the dilaton is fixed by the tree-level results but the
Kähler potential is not due to the no-scale cancellation

Kτ τ̄DτWDτW = 3|W |2 (2.10)
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and the potential becomes of the form

V = eK

(∑
i,j

Kij̄DiWDjW

)
(2.11)

The non-perturbative correction to the super-potential is

W = W0 + Ae−aT (2.12)

For a supersymmetric minima, DTW = 0.

0 = Dτ

(
W0 + Ae−aτ

)
= ∂τ

(
W0 + Ae−aτ

)
+ (∂τK)

(
W0 + Ae−aτ

)
= aAe−a +

3

2

1

τ

(
W0 + Ae−a

) (2.13)

Thus,

W0 = −Ae−aτ

(
2

3
aτ + 1

)
(2.14)

Since, we are looking at a supersymmetric vacuum, the potential has an AdS minima at

VAdS = −3eKW 2

= −a
2A2e−2aτ

6τ

(2.15)

Since, the vacuum is AdS, we need to uplift the vacuum to dS. In their famous paper by
KKLT, the uplifting of the vacuum is done via adding anti-branes. The antibrane D̄3
breaks supersymmetry explicitly and give a positive contribution to the scalar potential.
The anti-brane term is proportional to 1

τ3
(this is what they did in their initial paper.

In recent papers, terms proportional to 1
τ2

were added). The potential is finally of the
following form and is vacuum is dS.

V =
aAe−aτ

3τ

(
aAτe−aτ + 2W0 + Ae−aτ

)
+
D

τ 3
(2.16)

One of the criticisms of the KKLT proposal is that whether the exponentially smallW0 is
a reasonable assumption. Even though this seems unnatural but given the large number
of flux vacua, some of them might accidentally realize small values. Another possible
argument against KKLT comes in the form of the stability of the anti-branes (see [39]).
Nevertheless, the KKLT proposal should be regarded as a road-map for a fully moduli
stabilized scenario. Below we show a plot of AdS and uplifted dS vacua obtained from
KKLT analysis. Here, real part of T is our τ .
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Figure 2.1: (a) The supersymmetric AdS vacuum, and (b) the uplifted dS vacuum from
[40]

2.3 Large Volume Scenario

The large volume scenario or LVS ([13],[14]) does better in this regard which includes
an α′ correction to describe the moduli stabilization for generic W0. It has been argued
that in this type IIB setting the leading correction to Kähler potential can compete with
non-perturbative corrections to the superpotential and give us very large volume moduli
stabilization.

A toy model of LVS can be realized with two Kähler moduli τb and τs where τb
controls the overall volume and τs describe geometric holes corresponding to blow-up
modes. This is sometimes called a ”Swiss-Cheese” CY. The Kähler potential for such a
model takes the form

K = −2 ln

(
V +

ζ

2g
3/2
s

)
(2.17)

with the leading correction (at order α′3) ζ > 0 or positive. This forces the CY to
have a negative Euler-characteristic. This correction is discussed in further detail in the
next chapter. As for the superpotential, it includes a nonzero positive contribution W0

in addition to the the non-perturbative corrections. Since, τb is much bigger than τs we
can neglect the non-perturbative correction to it (or not even consider them at all). The
superpotential takes the form

W = W0 + As e
−asTs (2.18)

where the co-efficient as takes the value
2π
N

for gaugino condensation and 2π for Euclidean
D3 branes. After stabilizing the axion at Im(Ts) = π/as, we obtain the following scalar

potential considering V ≃ τ
3/2
b
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V ≃
λa2s |As|2

√
τse

−2asτs

V
− µasW0Asτse

−asτs

V2
+
νξ |W0|2

g
3/2
s V3

(2.19)

Instead of going into a detailed quantitative analysis, let us look at the potential
qualitatively and analyze where the potential might have a minima. For τb ← ∞, the
second term dominates and we have the potential approach zero. Moreover for smaller
values of ν and τs the other terms dominate and thus we have a minima at negative
value corresponding to an AdS minima. Like KKLT, we have to uplift this to get a dS
minima as well. We make the following comments regarding the case:

• The LVS minima occurs between a competition between the α′ correction and the
non-perturbative effect.

• LVS does better than KKLT in two specific areas- the need for very fine tuning of
W0 and the fact that the α′ correction is needed to be included which is expected
from supergravity limit.

• The uplifting mechanisms in case of LVS are anti-branes, magnetized branes, addi-
tional α′ corrections, T-branes [18] and etc. Ref. [23] lists all the cases where and
how uplifting can be achieved.

• LVS is robust against further α′ and gs corrections ([16], [24], [25], [26], [29], [30]).

• Loop corrections were exploited for inflationary purposed by Cicoli et al. in [15]
where they considered a K3-fibred CY and used the loop corrections to generate
an inflationary potential.

2.4 Perturbative Stabilization

Perturbative stabilization is based on the idea that the Kähler moduli can be stabilized
using perturbative effects only. As seen in the previous section, the KKLT and LVS
scenarios use non-perturbative effects to stabilize the Kähler moduli. An interesting
method of perturbative stabilization based on RG group re-summation technique was
introduced by Burgess and Quevedo [32]. We will briefly present their idea here and
finally comment about another perturbative stabilization model done in Type IIB/F-
theory framework by Antoniadis et al. [27].

2.4.1 RG Induced Modulus Stabilization

The perturbative analysis by Burgess and Quevedo starts off by considering the ac-
cidental symmetries present in all of the ten-dimensional string derived supergravities
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[33]. According to analysis presented in the paper by Burgess, Cicoli et al. [33], all
ten-dimensional supergravities have two accidental scaling symmetries which are broken
order by order in perturbation theory and 11-dimensional supergravity has one acciden-
tal symmetry. They used this accidental scale invariance to write the Kähler potential
as follows

e−K/3 = τ − k + h

τ
+ · · · (2.20)

and the ellipses denote higher order terms in 1/τ . The analysis by Burgess and Quevedo
rests on the idea that the factors k and h have logarithmic dependence on τ i.e k(ln τ)
and h(ln τ). The logarithmic dependence were initially inspired by the results obtained
in [37], [24], [25]. We will justify this later using renormalization group technique, but
let us first see what happens if we do such an approximation. We know that the scalar
potential is given as

V = eK
[
K T̄ TDTWDTW − 3|W |2

]
(2.21)

. The Kähler covariant derivative becomes

DTW = WT +KTW ≃
(
−3

τ
+ · · ·

)
w0. (2.22)

Plugging all of them into the scalar potential, we get

V ≃ −3kT T̄

P2
|w0|2 + · · · =

3 (k′ − k′′)
τ 4

|w0|2 +O
(
τ−5
)

(2.23)

where, P := e−K/3 = τ − k + · · · and the primes are derivatives with respect to the
logarithm of τ . The leading contribution in the large τ regime comes from the 1

τ4
term

and let us consider that term for now.

V (τ) ≃ U(ln τ)

τ 4
(2.24)

where, U(ln τ) = −3τ 2kT T̄ |w0|2 = 3 (k′ − k′′) |w0|2.
Now, coming back to logarithmic dependence of k. They put forward the point that k

can acquire the logarithmic dependence on τ through the running of some dimensionless
coupling αg with perturbative expansion of the form

k ≃ k0 + k1αg +
k2
2
α2
g + · · ·

which can be expressed with an renormalization group equation

τ
dαg

dτ
= β (αg) = b1α

2
g + b2α

3
g + · · · (2.25)
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Figure 2.2: V (τ) vs τ plot as found in([32])

. For small αg,

αg(τ) =
αg0

1− b1αg0 ln τ
(2.26)

For a particular integration constant, denoted as αg0 = αg(τ = 1), we need to focus
on the ln τ dependence. It is essential to note that the derivation of this dependence
only disregards additional terms involving powers of αg present in equation. As a result,
for large values of τ , this relationship remains valid without any restrictions imposed by
higher-order terms involving α2

g ln τ . This renormalization-group re-summation is crucial
because it allows us to have confidence in the minima of the potential that occur when
ln τ is on the order of 1/αg.

Now, let us get to the main point. To compute the derivatives of k with respect to
τ , we obtain expressions like k′ = (k1 + k2αg + · · · ) β (αg). Similarly, we can calculate
k′′ in a similar manner. Employing these expressions results in the following expression
for U :

U ≃ U1α
2
g − U2α

3
g + U3α

4
g + · · · (2.27)

This equation represents an approximation for U with terms involving different powers
of the parameter αg. The coefficients take the values U1 = 3k1b1 |w0|2, U2 = 3(k1b2 +
k2b1− k1b21) and so on. They showed that if these coefficients satisfy a mild hierarchy i.e∣∣∣∣U1

U2

∣∣∣∣ ∼ ∣∣∣∣U2

U3

∣∣∣∣ ∼ O(ϵ), (2.28)

we can expect a minima. Here, ϵ is much less than 1. They obtained dS and AdS
minima for different values of k1, k2 and k3.
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2.4.2 Perturbative Stabilization based on Logarithmic Correc-
tions

Now, we will present a model of perturbative stabilization as put forward by Antoniadis
et al. in [25] based on their previous work [26],[27] and [28]. Consider a correction to
the Kähler potential as follows

K = −2 ln
(
τ

3
2 + βf [τ ]

)
(2.29)

where, β is some co-efficient and f [τ ] is some function of the Kähler modulus. βf [τ ] is
assumed to be much smaller than the τ 3/2. The superpotential with no non-perturbative
corrections is again denoted by W0 and thus our scalar potential stands:

VF (τ) =
βW 2

0

2τ 9/2
(
3f [τ ]− 4τf ′[τ ] + 4τ 2f ′′[τ ]

)
+O

(
η2
)

(2.30)

Antoniadis et al. obtained logarithmic corrections at α′3 but next order in gs whose
results we will summarise in the next chapter. For now, let us go forward with the
assumption that:

f [τ ] = ln(τ) (2.31)

Inserting a small scale parameter µ inside the log correction term gives f [τ ] = ln (µ4τ).
This is similar to adding a constant to the Kähler potential. Now,

K = −2 ln
(
V + ξ + β ln(V) +O

(
1

V

))
= −2 ln

(
V + β ln

(
µ6V

)
+O

(
1

V

))
(2.32)

where the parameter µ ≡ eξ/6β. In the case of β < 0, we can find a minima of the
potential in terms of V , which in the large volume limit is:

Vmin = e13/3/µ6 ; V min
F =

βW2
0

3V3
min

(2.33)

Since, the minima exists for β < 0 and from the potential we can see that it assumes a
negative value at the minima hence it is an AdS minima. Antoniadis and collaborators
then used D-term contributions coming from magnetized fluxes which is proportional to
1/(τ 3) to uplift the potential to dS. The contribution is as follows

VDi
=
di
τ 3i

(2.34)

The sum is over three Kähler moduli. The correction term arise from three intersecting
D7 branes and thus τi is the corresponding world-volume modulus with the constants di
being positive. With V = (τ1τ2τ3)

1/2, the scalar potential is as follow

Vtot =
3βW 2

0

V3

(
ln
(
Vµ6

)
− 4
)
+
d1
τ 31

+
d2
τ 32

+
d3τ

3
1 τ

3
2

V6
(2.35)
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Figure 2.3: Plot of V vs V

Minimising with respect to τ1 and τ2 and fixing:

τi
τj

=

(
di
dj

)1/3

,

and the scalar potential becomes:

Vtot =
3βW2

0

V3

(
ln
(
Vµ6

)
− 4
)
+ 3

d

V2
; d = (d1d2d3)

1/3 . (2.36)

Now, minimizing with respect to volume with the requirement,

V min
tot =

3ηW2
0

V3
min

+
3d

V2
min

> 0 (2.37)

The plot gives us a better look at their calculations. Here, ϱ = d
ηµ6W2

0
and only the lowest

curve corresponds to an AdS minima.
This model proposed by Antoniadis and collaborators does better than non-perturbative

proposals as we naively expect perturbative corrections to be stronger than non-perturbative
ones. As we will see in our perturbative model, the need to include D-term or even non-
perturbative corrections is not necessary at all.

2.4.3 Perturbative Stabilization based on Loop Corrections

Based on the loop corrections [44] (which will be discussed in detail in the following
section), the authors proposed a volume stabilization method in [45]. We will shortly
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discuss this in this section. First, the consider the tree-level no scale Kähler potential:

K(T, T̄ ) = −3 ln
(
T + T̄

)
(2.38)

In the realm of string theory’s perturbation theory, the emergence of the no-scale Kähler
potential linked to the volume modulus T can be traced back to the examination of
sphere diagrams. These diagrams are expanded to their primary order in α′. This Kähler
potential, however, undergoes multiple adjustments, some of which become evident even
at the disk level, corresponding to the contributions at the tree-level originating from
open strings. More specifically, at the disk level, it becomes evident that modifications
occur within the logarithmic argument. These modifications are driven by a function
reliant on the collective open string scalars, denoted as A and the complex structure
moduli identified as U .

K(T, T̄ ) = − ln[T + T̄ ]

disk−→ K(T, T̄ , A, Ā, U, Ū) = − ln[T + T̄ + f(A, Ā, U, Ū)],

This can be considered the classical tree-level Kähler potential at leading order in α′.
Beyond leading order in α′, there is a correction known at order α′3 (which is the

BBHL piece). Beyond leading order in the string coupling, the corrections in are one-
loop corrections from Klein bottle, annulus, and Möbius strip diagrams, that are typically
suppressed by (T + T̄ )−1 and (T + T̄ )−2, with coefficients that depend on the complex
structure and axio-dilaton as well as on open string moduli. These corrections ruin the
no-scale structure and ”hopefully” generate a potential for the volume moduli. Putting
everything together,

K =− 3 ln
[
T + T̄ + f1(A, Ā, U, Ū)

]
+

1

T + T̄

[
f2(A,A,U, U)

S + S̄
+ . . .

]
+

1

(T + T̄ )3/2
[
α(S + S̄)3/2 + . . .

]
+

1

(T + T̄ )2
[
f3(A, Ā, U, Ū) + . . .

]
+ . . . ,

(2.39)

The potential for U and S is generated by GVW superpotential, so writing the F-term
superpotential only in terms of A and T ,

V = eK
(
K T̄ TKT̄KT +K T̄AKT̄KA +KĀTKĀKT +KĀAKĀKA − 3

)
|W |2 (2.40)

Taking these points into consideration, the scalar potential that arises when we establish
DSW = DUW = 0, while simultaneously having DρW ̸= 0 ̸= DAW (resulting in
spontaneous supersymmetry breaking),

V =
1

(T + T̄ )3

[
c1

(T + T̄ )3/2
+

c2
(T + T̄ )2

+ . . .

]
|W |2
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The potential is then minimized with respect to A and T, and to obtain a minima at
large volumes, we require ∣∣∣∣c2c1

∣∣∣∣≫ 1.

In [45], they then considered the specific case of T6/ (Z2 × Z2) orientifold. Assuming
f(A, Ā, U, Ū) = 0 at the minimum, they found at perturbative minima at

Re(T )|min ∼
(
ED7
2 (0, U)

)2
(Re(S))3

(2.41)

The value of the potential at the Minima (which they checked for certain numerical
values) is negative corresponding to a AdS minima.
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Chapter 3

A Model of Perturbative
Stabilization

This chapter contains the original work of this master thesis. In the first chapter we
will discuss all the perturbative corrections that have been computed in literature. In
the following section, we incorporate them into our Kähler potential and F-term scalar
potential and find the corresponding minima. We present two cases, one in which we do
not consider moduli redefinitions [24] and in the one we do. We find the minima and in
the final section we consider the warped brane-antibrane scenario and see if the slow-roll
conditions are satisfied. In this chapter, we also follow the notations and identities put
forward in the beginning of chapter 2. We will tend to use everything in terms of Kähler
moduli τ , inverse string coupling s instead of their chiral superfields multiplets. This
was already done when we discussed KKLT, LVS and the perturbative models.

3.1 All Known Perturbative Corrections

3.1.1 BBHL α′3 Correction

The prepotential for the Kähler deformations receives worldsheet corrections as computed
by Candelas et al. [47]. The leading correction to the Kähler potential comes from the
O(α′3) R4 term and can be captured by a shift ζ in the volume V . This was shown
by Becker, Becker, Hack and Louis [42] and hence the name BBHL. We can derive the
equation of motion for the dilaton to order α′3 from the 10d action:

S =

∫
d10x

√
−g10e2ϕ

(
R + 4(∂ϕ)2 + α′3J0

)
(3.1)

which has a solution ϕ = ϕ0 + ζ(3)Q/16. Here, Q is defined through the 6d Euler
integrand χ =

∫
CY3

d6x
√
gQ. When we compactify with 6 compact dimensions, α′3-
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corrections are incorporated in the redefinition of 4D dilaton:

e−2ϕ4 = e−
1
2
ϕ10(V + ζ̂/2).

Here, V is the Calabi-Yau volume in the Einstein frame and the correction ζ̂ thus
appears as a shift in the overall volume. The volume and the correction term is given
by:

V =
1

3!
κijkt

itjtk, ζ̂ = − ζ(3)χ(X)

2(2π)3g
3/2
s

. (3.2)

Note that we can relate the Einstein-frame volumes with corresponding string-frame
quantities as V = g

−3/2
s Vs and ti = g

−1/2
s tis, where subscript s denotes the string frame

quantities. The tree-level Kähler potential is

K = −2 lnV (3.3)

The volume along with α′ correction shifts as follows:

V → V +
ζ̂

2
≡ V +

ζ

2

(
S + S̄

2

)3/2

≡ V +
ζ

2g
3/2
s

(3.4)

Thus, our Kähler potential with α′3 correction is

K = −2 ln (V +
ζ

2g
3/2
s

) (3.5)

In terms of the 4-cycles τ , the Kähler potential is (V ∼ τ 3/2)

K = −3 ln τ − ζs3/2

τ 3/2
(3.6)

Lastly, this is the correction which was used in LVS models [13],[14] to generate a
minima for the τ moduli.

3.1.2 Higher-Derivative F 4-corrections

The BBHL correction appears at two-derivative level by entering the Kähler potential.
There are additional α′3 corrections coming from higher derivative O(F 4) effects. It was
computed by Westphal et al. in [46].

They are argued to be generic for a given CY orientifold model (although for certain
CY with specific topologies, they might be absent). The scalar potential can be expressed
in the following simple form:

VF 4 = −g
2
s

4

λ |W0|4

g
3/2
s V4

Πit
i, (3.7)
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where the ti ’s are 2-cycle volumes, λ is a combinatorial factor and the Πi ’s are topological
numbers, also called second Chern numbers, defined as:

Πi =

∫
Di

c2(X)

We can sandwich all of these combinatorial factors and topological numbers into a
single constant and write the scalar potential as

VF 4 = −g
2
s

4

λ |W0|4

g
3/2
s V 4

Πit
i ≡ C

s2τ 11/2
. (3.8)

These corrections were exploited for inflation by Cicoli et al. in [48] and by Pramod
and Leontaris for moduli stabilization in [29].

3.1.3 Perturbative String Loop Corrections

String loop corrections (corrections in g2s) were computed by Berg, Haack and Körs in
[44] for toroidal orientifolds. They computed two corrections which goes as:

K = −2 ln(V)− ζs3/2

V
+

3∑
i=1

E (KK)
i (U, Ū)

4τis
+

3∑
i ̸=j ̸=k

E (W )
k (U, Ū)

4τiτj
. (3.9)

Here, alongside the tree-level term we have written the α′3 corrections as well. Here,
U denotes the complex structure moduli, s is the real part of the axio-dilaton, and the
two coefficients are both functions of the complex structure moduli. Let us explain how
both corrections arise for toroidal case and then we make a conjecture about the CY
case based on reasonable assumptions.

The first loop correction with superscript (KK) occurs at α′2 and it is due to the ex-
change of Kaluza-Klein (KK) modes between D7-branes (or O7-planes) and D3-branes
(or O3-planes, both localized in the internal space). The toroidal orientifold case com-
puted in [44] and presented for moduli stabilization purposes in [43] , the correction is
suppressed by the dilaton (s = g−1

s in our analysis) and a Kähler modulus τi which is re-
lated to the volume of the 4-cycle wrapped by the D7-branes (or O7-planes, respectively).
Figure 3.1 gives us a look at how these terms might arise.

The second loop correction is due to the exchange of winding modes (or winding
strings) between intersecting stacks of D7-branes (or between intersecting D7-branes
and O7-planes). The figure 3.2 is an example of winding corrections being present for
two Kähler moduli. These corrections arise from intersection between small 4 -cycle τs
and the large 4-cycle τb. In the case of toroidal orientifolds, the term is suppressed by
two Kähler moduli.

Now, let us motivate the case for CY. In the toroidal case, the KK correction term is
suppressed by one Kähler modulus and it might not be the case for CY. This is because,
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Figure 3.1: Cartoon diagram for the exchange of KK modes between two D7-branes
which gives us the KK correction term.

Figure 3.2: Winding correction for two moduli [43].
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toroidal orientifolds are special in the sense that their volume is simply V ∼ tiτi with
no sum over i. This motivates us to conjecture that in the CY case, the term might be
suppressed by a factor of V instead. Thus, following [44], we can conjecture

Calabi-Yau: ∆Kgs
!∼
∑

KKm
−2
KK

sV
∼
∑
a

gaK (t, s) E (K)
a

S1V

and

∑
Wm−2

W

V
∼
∑
q

gqW (t, s) E (W )
q

V

(3.10)

Here, the sums run over KK and winding states, respectively. E (K) and E (W ) are some
unknown functions of the complex structure and open string moduli, t stands for the
2-cycle volumes and the functions gK (t, s) and gW (t, s) determine the scaling of the KK
and winding mode masses with the Kähler moduli and the dilaton. In the paper by Cicoli
et al. [16], they considered these corrections in the context of CYs and its implications
for LVS. Let us now the form of the corrections they used and make it relevant for our
case.

δKKK
(gs) ∼

h1,1∑
i=1

g(U)

(
alt

l
)
eφ

V
=

h1,1∑
i=1

CKK
i (U, Ū)

(
ailt

l
)

Re(S)V
(3.11)

δKKK
(gs) ∼

At1

sV
(3.12)

where we have re-defined all the constant terms as A. Now, we can write the volume
as V = (1/6)kijktitjtk and 4-cycle as τi =

∂V
∂ti

. This tells us that t ∼ τ 1/2 and V ∼ τ 3/2.
Plugging all this above we get,

δKKK
(gs) ∼

A

sτ
(3.13)

Since we only consider one Kähler modulus, we will use the above form in our Kähler
potential.

Similarly, the winding corrections can be written as

δKW
(gs) ∼

h1,1∑
i=1

CWi (U, Ū)

(ailtl)V
(3.14)

and redefining all constants as B, we write the form which we use for our calculations

δKW
(gs) ∼

B

τ 2
(3.15)

63



Figure 3.3: Logarithmic corrections from [30]

3.1.4 Logarithmic Corrections

In this section, we present another one loop atO(α′3, g2s) correction which occurs at strong
gravity and which we will be incorporating in our Kähler potential. These corrections
arise when we consider higher order curvature terms arising at the fourth power of R
into our 10 dimensional action. Including this R4 term in the action,

SIIB
10D ⊃

1

(2π)7α′4

∫
M10

e−2ϕ10R(10) −
6

(2π)7α′

∫
M10

(
−2ζ(3)e−2ϕ10 − 4ζ(2)

)
R4

(10) ∧ e2.

(3.16)
Here, R10is the 10 dimensional Ricci scalar and ϕ10 is the 10 dimensional dilaton.

Compactifying on CY3, we get a tree-level and one loop generated Einstein-Hilbert action

Sgrav =
1

(2π)7α′4

∫
M4×CY3

e−2ϕ10R(10) +
χ

(2π)4α′

∫
M4

(
2ζ(3)e−2ϕ10 + 4ζ(2)

)
R(4) (3.17)

Here, M4 are the four non-compact dimensions and the Euler character depends on
three powers of R as follows:

χ =
3

4π3

∫
CY3

R ∧R ∧R (3.18)

From this analysis, ref. [25] computed a non-zero contribution at 1 loop from three
graviton scattering. Figure 3.3 depicts the corrections at 1 loop induced by three graviton
scattering on a stack of three D7-branes.

As discussed in the previous chapter on perturbative stabilization, this logarithmic
correction was used to stabilize Kähler moduli perturbatively. Including this correction
alongside BBHL, the Kähler potential stands:

K = −2 ln (V +
ζs3/2

2
+Ds−1/2 lnV) (3.19)
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In terms of τ ,

K = −3 ln(τ)− 1

τ 3/2

[
ζ +

3D ln τ√
s

]
(3.20)

Here, D is the co-efficient of the log correction term.

3.1.5 Moduli Redefinitions

Until now, we studied the loop and α′ corrections. In this section, we present the work
by Conlon and Pedro [24] where the considered field redefinitions that can occur at the
loop level and which can modify the moduli and thus the Kähler potential. They studied
how this might effect LVS and we will briefly discuss that in this section as well.

In string compactifications, it is a well-established characteristic that the definitions
of moduli undergo modifications at the 1-loop level. However, it is important to note
that these redefinitions do not take place universally across all scenarios.

τnew = τold − α ln(V) (3.21)

The redefined moduli depends on the old moduli and some logarithmic correction. This
idea stems from the running of gauge couplings in string theory [41]. With this moduli
redefinition, let us see what happens in LVS when we consider them. This discussion is
heavily based on the paper [24]. Let us choose our familiar Swiss-cheese CY with two
moduli τb and τs and do a redefinition of τs.

K = −2 ln
[
1

λ

(
τ
3/2
b − [τs − α ln(V)]3/2

)
+
ζs3/2

2

]
(3.22)

The F-term scalar potential is,

V =
3

4
|W0|2

ζλ3

g
3/2
s

(
1−

6α
√
τs

ζλ

)
1

τ
9/2
b

+
8

3

a2|A|2λ2e−2aτs

τ
3/2
b

√
τs

(
1− α

2τs
ln(V)

)
−

− λ2

τ 3b
2aτs

(
ĀW0 + AW̄0

)
e−aτs

(
1− α

τs
ln(V)

) (3.23)

Note that, W0 is the superpotential and the exponential suppression term of the moduli
is the non-perturbative correction term present in LVS. Conlon and Pedro found out that
for small values of α (0 < α < 3× 10−3) the LVS minima holds. We can do the same
exercise of redefining the τb and the Kähler potential would as follows:

K = −2 ln
[
1

λ

(
[τb − β ln(V)]3/2 − τ 3/2s

)
+
ζs3/2

2

]
(3.24)
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In this case, the scalar potential becomes:

V =
3 |W0|2 λ3ζ
4g

3/2
s τ

9/2
b

+
9 |W0|2 βλ2

2τ 4b
+

8a2|A|2λ2√τse−2aτs

3τ
3/2
b

−
aλ2τse

−2aτs (6β lnV + 3β + 2τb)
(
A
(
Ā+ eaτsW̄0

)
+ c.c.

)
τ 4b

(3.25)

In this case, the allowed range of of the redefining constant β (τnewb = τ oldb − β lnV) is
much smaller. LVS minima do not survive if the coefficient β takes on larger values.

3.2 Perturbative Stabilization of Kähler Moduli

Let us incorporate all the corrections to the Kähler potential as discussed in the previous
section. The Kähler potential becomes

K = −3 ln(τ) + A

sτ
− 1

τ 3/2

[
ζ +

3D ln τ√
s

]
+
B

τ 2
(3.26)

Here,

• A is the coefficient of the string loop correction coming from KK modes.

• B is the coefficient of the string loop correction coming from winding modes.

• D is the coefficient of logarithmic loop corrections at order O(α′3g2s) which are
present only when there is high curvature localised in the extra dimensions. D is
proportional to the D7-brane tension, hence D = D̂s.

• We will denote the coefficient of the order F 4 term in the scalar potential as C.

• Note that ζ scales as ζ = ζ̂s3/2

We will consider two scenarios in the subsequent discussion. In the first, we will not
consider modulus redefinition but in the next we will consider modulus redefinition.

3.2.1 No Modulus Redefinition

We take the Kähler potential above and compute the scalar potential.

Kτ =
1

2

(
− A

sτ 2
− 2B

τ 3
+

3ζ

2τ 5/2
− 3D√

sτ 5/2
+

9D ln(τ)

2
√
sτ 5/2

− 3

τ

)
(3.27)

The Kähler metric is

Kτ τ̄ =
1

4

(
2A

sτ 3
+

6B

τ 4
− 15ζ

4τ 7/2
+

12D√
sτ 7/2

− 45D ln(τ)

4
√
sτ 7/2

+
3

τ 2

)
(3.28)
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The inverse Kähler metric is

Kτ τ̄ =
4

2A
sτ3

+ 6B
τ4
− 15ζ

4τ7/2
+ 12√

sτ7/2
− 45 ln(τ)

4
√
sτ7/2

+ 3
τ2

(3.29)

Incorporating the order F 4 term which is

VF 4 = −g
2
s

4

λ |W0|4

g
3/2
s V 4

Πit
i ≡ C

s2τ 11/2
(3.30)

The F-term scalar potential is

V =
3 (ζ
√
s+ 3D ln(τ)− 8D)

4
√
s(τ)9/2

+
A2 − 6Bs2

3s2τ 5
− 3A (ζs+ 9D ln(τ)

√
s) + 4C

4s2τ 11/2

+
16A3 + 96ABs2 + 810ζs5/2 ln(τ)− 1080ζs5/2 + 135ζ2s3 + 1215s2 ln2(τ)

144s3τ 6

+
−3240s2 ln(τ) + 3888s2

144s3τ 6
+O

((
1

τ

)13/2
)

(3.31)

If we set all other coefficients corresponding to perturbative corrections A,B,C,D and ζ
to zero, we recover our usual no scale result. In the large τ case, the leading contribution
to the scalar potential is

V ≃ 3 (ζ
√
s+ 3D ln(τ)− 8D)

4
√
s(τ)9/2

(3.32)

3.2.2 With Modulus redefinition

Let us again consider the Kähler potential as before but label our Kähler modulus as
τold as we will do a modulus redefinition. LVS with moduli redefinition was considered
in Conlon and Pedro in [24] and it was proved to be robust with moduli redefinition as
well.

K = −3 ln(τold) +
A

sτold
− ζ

τ
3/2
old

− 3D
√
sτ

3/2
old

ln(τold) +
B

τ 2old
(3.33)

Now, let us do a modulus redefinition τold = τ +α ln τ . Here, τ is the redefined modulus
and we will base our calculations based on this. Our Kähler potential attains the following
form:

K = −3 ln(α ln(τ) + τ)− ζ

(α ln(τ) + τ)3/2
+

A

s(α ln(τ) + τ)

− 3D ln(α ln(τ) + τ)√
s(α ln(τ) + τ)3/2

+
B

(α ln(τ) + τ)2
(3.34)
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After taking derivatives with respect to our redefined Kähler modulus τ ,

Kτ =
1

2

(
3ζ
(
α
τ
+ 1
)

2(α ln(τ) + τ)5/2
−

3
(
α
τ
+ 1
)

α ln(τ) + τ
−

A
(
α
τ
+ 1
)

s(α ln(τ) + τ)2
−

2B
(
α
τ
+ 1
)

(α ln(τ) + τ)3
(3.35)

+
9
(
α
τ
+ 1
)
ln(α ln(τ) + τ)

2
√
s(α ln(τ) + τ)5/2

−
3
(
α
τ
+ 1
)

√
s(α ln(τ) + τ)5/2

)

The Kähler metric becomes

Kτ τ̄ =
1

4

(
− 3αζ

2τ 2(α ln(τ) + τ)5/2
−

15ζ
(
α
τ
+ 1
)2

4(α ln(τ) + τ)7/2
+

3α

τ 2(α ln(τ) + τ)
(3.36)

+
3
(
α
τ
+ 1
)2

(α ln(τ) + τ)2
+

αA

sτ 2(α ln(τ) + τ)2
+

2A
(
α
τ
+ 1
)2

s(α ln(τ) + τ)3

+
2αB

τ 2(α ln(τ) + τ)3
+

6B
(
α
τ
+ 1
)2

(α ln(τ) + τ)4
+

3α√
sτ 2(α ln(τ) + τ)5/2

− 9α ln(α ln(τ) + τ)

2
√
sτ 2(α ln(τ) + τ)5/2

+
12
(
α
τ
+ 1
)2

√
s(α ln(τ) + τ)7/2

−
45
(
α
τ
+ 1
)2

ln(α ln(τ) + τ)

4
√
s(α ln(τ) + τ)7/2

)

The inverse Kähler metric is

Kτ τ̄ =
4

− 3αζ
2τ2(α ln(τ)+τ)5/2

− 15ζ(α
τ
+1)

2

4(α ln(τ)+τ)7/2
+ 3α

τ2(α ln(τ)+τ)
+

3(α
τ
+1)

2

(α ln(τ)+τ)2

+
αA

sτ 2(α ln(τ) + τ)2
+

2A
(
α
τ
+ 1
)2

s(α ln(τ) + τ)3
+

2αB

τ 2(α ln(τ) + τ)3
+

6B
(
α
τ
+ 1
)2

(α ln(τ) + τ)4

+
3α√

sτ 2(α ln(τ) + τ)5/2
− 9α ln(α ln(τ) + τ)

2
√
sτ 2(α ln(τ) + τ)5/2

+
12
(
α
τ
+ 1
)2

√
s(α ln(τ) + τ)7/2

−
45
(
α
τ
+ 1
)2

ln(α ln(τ) + τ)

4
√
s(α ln(τ) + τ)7/2

(3.37)

Finally we are in position to calculate the F-term scalar potential. Incorporating the
order F4 term

VF 4 = −g
2
s

4

λ |W0|4

g
3/2
s V 4

Πit
i ≡ C

s2τ 11/2
(3.38)
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and finally the scalar potential is

V = −3α

τ 4
+

3(−8D +
√
sζ + 3D ln[τ ])

4
√
sτ 9/2

+
A2 − 6Bs2 − 6Asα + 27s2α2 + 18s2α2 ln[τ ]

3s2τ 5
+O

(
τ−11/2

)
(3.39)

In the large volume or large τ limit, the leading contribution to the scalar potential
comes from

V ≃ −3α

τ 4
+

3(s2ζ + 3D ln[τ ])

4
√
sτ 9/2

(3.40)

Note that, we have obtained a leading correction which occur at O(τ 4) in the scalar
potential. This has an interesting implication. First, this correction was not present
in LVS like models or and is certainly stronger than the BBHL piece unless α and gs
takes on extremely small values alongside ζ taking on larger values. Second, we have
two leading terms at O(τ 9/2) and they can compete in the minima. Moreover, we have
done better in the aspect that no non-perturbative correction is included here. In the
following section, we analyze the behaviour of this function and see which values of these
coefficients lets us find minima.

3.3 Vacua: dS, AdS, Runaway?

Let us now consider the leading corrections to the F-term scalar potential based on a
large volume approximation which we can write as

V = −3α

τ 4
+

3(s2ζ + 3D ln[τ ])

4
√
sτ 9/2

(3.41)

Let us calculate the minima by following a few steps. First, let us set α to zero (no
moduli redefinitions). The motivation behind this is that the term acts like an uplifting
term when we want to obtain dS vacua. We obtain

Vα=0 =
3(s2ζ + 3D ln[τ ])

4
√
sτ 9/2

(3.42)

For ease of analysis and looking for a large volume like case, let us redefine the
constants above

Vα=0 ≡
δ − γ ln[τ ])

τ 9/2
(3.43)

69



where, γ ≡ 9D
4
√
s
and δ ≡ 3s2ζ

4
√
s
. Setting V ′

α=0(τ) = 0, gives us the extrema which is

τ = exp

{
δ

γ

}
exp{(2/9)} (3.44)

Furthermore, for V ′′
α=0(τ) > 0 gives us the conditions that γ > 0 which forces D to

be positive. If we evaluate Vα=0 at the extrema, we get:

< V >α=0 =
−2γ
9τ 9/2

=
−D

2
√
sτ 9/2

Now, let us reinstate the modulus redefinition term that is α ̸= 0. This can act like an
uplifting term and thus Vup = −3α

τ4
. To act as an uplifting term, it should compete with

Vα=0. Therefore, Vup ∼ Vα=0 gives α ∼ D
6τ1/2

√
s
. Thus, to avoid runaway our parameter α

should roughly scale as state above. Which of these values of α gives us dS or AdS is given
as examples in the following section. The dS vacua we obtain has an interestingly small
value. Unlike KKLT proposal where another uplifting term is added whose coefficient
is finely tuned so that the vacuum energy is sufficiently small, our analysis gives a very
small value naturally for both the dS and AdS case.

Before going into that analysis, we will roughly point out why the values of our
constants α, s, ζ,D are not unreasonable and what restrictions they put in the theory.

• Considering α to be negative or positive is fine as moduli redefinitions occur up
to an overall factor of ln τ and the sign of the constant is irrelevant in the original
analysis as well.

• The range of values of s that we pick is also fine as the if it is less than 1 it
would signal the breaking of perturbative analysis. We should always consider it
to be more than 1 as s = 1/gs would otherwise imply gs is more than 1 and the
breakdown of perturbation theory.

• The positivity(and range of values) of ζ puts some topological restrictions on the
CY. It forces the CY to have negative Euler-characteristic. This is due to the
relation:

ζ =
−χ(X)ζ(3)

2(2π)3

where X is the compactification manifold.

• D is the co-efficient of the logarithmic loop corrections proposed by Antoniadis et
al. and it is fine to have it be negative.

70



Figure 3.4: V (τ) vs τ plot

3.3.1 Example 1: dS Case

We can find a dS minima and maxima at large volume. As an example, we choose the
following set of values and see what the extrema looks like

α = −0.33;
s = 10;

ζ = 1;

D = −10;

(3.45)

We find the following set of values

Local minimum value: 6.43048× 10−13;

Value of τ at local minimum: 211.535;

Local maximum value: 2.04672× 10−12;

Value of τ at local maximum: 315.434;

(3.46)

3.3.2 Example 2: AdS Case

Keeping our other values fixed as before, the AdS minima occurs for the following:

|α| < 0.33;

s = 10;

ζ = 1;

D = −10;

(3.47)

As an example, we take the following set of constants and plot the potential.
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Figure 3.5: V (τ) vs τ plot (AdS Minima)

α = −0.2;
s = 10;

ζ = 1;

D = −10;

(3.48)

Local minimum value: − 8.00341× 10−9;

Value of τ at local minimum: 63.666;
(3.49)

3.3.3 Example 3: Runaway

Keeping our other values fixed as before, the runaway part occurs for the following:

|α| > 0.34;

s = 10;

ζ = 1;

D = −10;

(3.50)

As an example we take the following set of values and observe the runaway or no-minima
case

α = −2;
s = 10;

ζ = 1;

D = −10;

(3.51)
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Figure 3.6: V (τ) vs τ plot

3.4 Application to Inflationary Dynamics

In this section, we will discuss how to embed inflation in our model. We will try to study
the brane-antibrane inflationary scenario as discussed at length in the first chapter. In
section 1.6.8 we discussed the warped brane-antibrane inflation. We will use this warped
brane-antibrane inflation which suffers the infamous eta problem when we try to do a
moduli stabilization using non-perturbative effects. We will try to see if brane-antibrane
inflation occurring in our model suffers the same fate. We will use the nilpotent superfield
formalism (as an example, we presented the nilpotent superfield to uplift the KKLT AdS
vacua in the appendix) in this analysis. We imagine that this superfield X satisfies the
nilpotency condition:

X2 = 0 (3.52)

and is chiral

D̄X = 0. (3.53)

Presence of this nilpotent superfield modifies our superpotential and Kähler potential.
Let us highlight the modification of our superpotential. In the following analysis, the
inflaton field, which is the brane-separation for brane-antibrane inflation, is denoted by
Φ.

W = W0 +XWX(Φ, Φ̄) with WX(Φ, Φ̄) = t− g

|Φ|4
+ · · · (3.54)

Here, the term WX captures the antibrane tension and Coulomb interaction between
the branes. Let us now consider the following Kähler potential with the the nilpotent
superfield in play:

K = −3 ln(τold) +
XX̄

τold
+

ΦΦ̄

τold
+

A

sτold
− 1

τ
3/2
old

[
ζs3/2 + 3D ln (τold)

√
s
]
+

B

τ 2old
(3.55)
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We do a moduli redefinition as before τold = τ − α ln τ . Let us proceed in finding the
F-term scalar potential.

V = eK(KT T̄DTW ¯DTW +KXX̄DXW ¯DXW ) +
C

s2τ
11/2
old

(3.56)

In many inflationary models, the nilpotent superfield vanishes during inflation and we
can set X=0. Using this and the nilpotency condition, in the large-volume limit, we find
the leading terms as follows:

V =
|WX |2

τ 2
+

2α|WX |2 ln τ
τ 3

+
A|WX |2

τ 3
(3.57)

Using the explicit form of WX , we find

V (Φ, τ) =

(
|t|2 − 2Re(̄tg)

|Φ|4

)(
1

τ 2
+

2α ln τ

τ 3
+
A

τ 3

)
(3.58)

We checked below if τ part of the potential is at the minima and for certain values of the
potential it does reside in a minima. We will denote the minima for τ as Vmin(τ) from
now on. Thus,

V (Φ, τ) =

(
|t|2 − 2Re(̄tg)

|Φ|4

)
Vmin(τ) (3.59)

Here, the factors t and g depends on the warping of the Calabi-Yau and goes as t ∼ e−2ρ

and g ∼ e−6ρ where ρ is the warp factor. Let us now evaluate the slow-roll conditions.

VΦ =
8Re(̄tg)

|Φ|5
Vmin(τ) (3.60)

VΦΦ =
−40Re(̄tg)
|Φ|6

Vmin(τ) (3.61)

ϵ =
M2

p

2

(
VΦ
V

)2

=
M2

p

2|Φ|2

(
8Re(̄tg)

|Φ|4|t|2 − 2Re(̄tg)

)
∼

M2
p

2|Φ|2

(
8e−8ρ

|Φ|4e−4ρ − e−8ρ

)2

=
M2

p

2|Φ|2

(
8e−2ρ

1− e−2ρ|Φ|4

)2

=
M2

p

2|Φ|10
(
8e−2ρ(1 + e−4ρ|Φ|4 + ...)

)2
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Thus, the warping factors make it possible to have ϵ≪ 1. Similarly,
It looks like the code you provided has a few issues. Here is the corrected version:

η =M2
p

(
VΦΦ

V

)
= −40M2

p

1

|Φ|2

(
Re(̄tg)

|Φ|4|t|2 − 2Re(̄tg)

)
∼ −40M2

p

1

|Φ|2
(
e−2ρ(1 + e−4ρ|Φ|4 + . . .)

)

Thus, |η| ≪ 1.
One of major problems in string inflationary scenarios is that it is futile to arrange

a potential in a possible slow-roll inflaton direction if the potential is much steeper in
other directions in field space. A slowly rolling field would prefer to evolve in the steepest
possible direction. We would thus need to check if τ is actually at the minima. Let us
write the scalar potential as follows

V (Φ, τ) ≡ V (Φ)V (τ) (3.62)

We will now check if V (τ) is stuck at the minima as inflation occurs. We write V (τ) as
follows:

V (τ) ≡
(
c

τ 2
+

2α ln τ

τ 3
+
A

τ 3

)
(3.63)

We have added a coefficient c to track which values of it would give would give us a
minima corresponding to a positive value at the minima. Note that, this is fine as we
can rescale other coefficients as well and bring out a constant in front of 1

τ2
term. We

found a positive value of the minima when the coefficients take the following values:

α = −0.3;
A = 0.1;

c =0.043;

(3.64)

Value at the minima : 5.90668× 10−6

The graph of the potential looks as follows:

3.4.1 Comments on eta problem

In this section, we will check if our model has an eta problem (eta problem is discussed in
the appendix). In [32], the brane-antibrane inflationary setup of Burgess and Quevedo
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Figure 3.7: V (τ) vs τ plot (Inflationary Minima)

did not contain any term proportional to the mass of the inflaton. In our setup, we
do generate a mass term but it is very much suppressed. Aligning our calculation with
equation (B.14) and (B.15),

K = −3 ln(τ − k) k = K+ (X +X)KX +XXKXX (3.65)

K = A+ α ln τ + ϕϕ KX = 0 KXX = 1 (3.66)

where K contains terms proportional to
1

τ
. For checking the eta problem, other

corrections in subleading order of τ are neglected.

eK =
1

(τ − k)3
=

1(
τ − A− α ln τ − ϕϕ−XX

)3 (3.67)

Let us now define P ≡ τ − ϕϕ

eK =
1

P3

(
1−

(
A+ α ln τ +XX

)
P

)−3

≃ 1

P3
+ 3

(
A+ α ln τ +XX

)
P4

(3.68)

Evaluating this expression at X = 0 and rewriting τ as τ = P + ϕϕ we get:

eK ≃ 1

P3
+ 3

(A+ α lnP)
P4

+ 3α
ϕϕ

P5
(3.69)

When inserted into the scalar potential, this would generate corrections to η that can be
small enough to evade the η-problem since they would scale as (note that the canonically

normalized field is Φc =
Φ
√
τold

):

δη ∼ α

P
≪ 1 for α≪ 1 and P ≫ 1 (3.70)
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Naively plugging in the numerics of the previous section also settles the case.
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Chapter 4

Concluding Remarks and Future
Directions

This master thesis started off by discussing the need for a quantum gravity theory and
why string theory is still a leading candidate. We also discussed the story of inflation, its
necessity and implication. Discussion then continued on the first string derived inflation-
ary scenario, the brane-antibrane inflation, followed by its implications. We then moved
on to discuss the moduli stabilization in type IIB scenario citing various proposals like
KKLT, LVS, RG induced moduli stabilization and so on.

The main work of this thesis is contained in chapter 3. Let us summarise the new
results of the master thesis:

• We consider all the known perturbative corrections in literature and try to stabi-
lized the Kähler moduli using these correction. The leading term of the potential
arises at O(τ 2) similar to what Burgess and Quevedo proposed in [32] (and hence
stabilized at that order in their proposal) but we do have other subsequent leading
terms at O(τ 3).

• We also studied different values of the coefficient which makes the value of the
potential at the minima positive or negative or a scenario where there is no minima
at all. These corresponds to an AdS and dS minima. We also briefly mention the
consequence of taking the coefficients as we do.

• Finally, we study the brane-antibrane inflation in our perturbatively moduli stabi-
lized scenario. We implement this using the nilpotent superfield formalism. The
volume modulus remains at a minima while inflation occurs by the help of the
inflaton field which is the brane-antibrane separation.

• Lastly, we check if the slow-roll conditions are satisfied and check for the eta prob-
lem. Both results are fortunately positive.
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In this work, we find an interesting result in the sense that the Kähler modulus
is stabilized perturbatively and we can obtain a dS vacuum using only perturbative
corrections. Let us now highlight some possible future directions of this work:

• It would be interesting to study more in detail the post-inflationary evolution of our
brane-antibrane inflationary model, paying particular attention to the reheating
process. This should involve the study of potential epochs of kinetic and matter
domination driven by the evolution of the volume modulus from its inflationary
minimum to the post-inflationary one.

• We worked with only one Kähler modulus in this thesis. The next line of action
could be to consider two Kähler moduli and study their stabilization.

• It will be interesting to see if we can consider a K3-fibred Calabi-Yau manifold
with two moduli and see if there can be a possibility to fix both moduli using
just perturbative corrections which can lead to a new version of the fibre inflation
scenario as implemented by Cicoli et al. in [15].

• Another possible direction is studying type IIA or Heterotic string theory frame-
works using known loop and α′ corrections and seek for a dS minima in a similar
fashion.

• Cosmological scenarios which lead to primordial black-hole formation (analogous
to the one done by Cicoli et al. in [49] and [50]) can be addressed in our model
with all the EFT constraints in play.

It will be interesting to study the future directions and what implications they might
have.
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Appendix A

Mathematical Background

A.1 Holonomy

Let M be a real manifold. Take some point P and a curve C which passes through P
and let a⃗ be some tangent vector at point P , i.e. a vector in tangent space at P . Now,
if we parallel transport the vector a⃗ along the curve C, it will come back as a different
vector, say a⃗′, where

a⃗′ = R(C )⃗a

where R(C) is a linear operator (matrix of same dimension as the tangent vector). The
operator R(C) is called the holonomy along C.

For a 2n-dimensional Riemannian manifold, the norm of the tangent vector is pre-
served under the parallel transport. Thus, the holonomy is

R(C) ⊂ SO(2n), C is contractible

R(C) ⊂ O(2n), C is non-contractible

If we take the collection of all holonomy, i.e. {R(C)} for all possible curves C through
P , then they form a group under multiplication. The group composition would be

Figure A.1: Holonomy

80



Figure A.2: Group Multiplication Law

R(C)R (C ′) = R (C · C ′) where C ·C ′ means that curve which is obtained by first travers-
ing C ′ and then traversing C.

A helpful way to look at holonomy group relevant for physics is the Berger classifica-
tion. Berger’s classification of the holonomy group is as follows: If M simply connected
Riemannian manifold, then either M is a product of lower dimensional manifold or M is
a symmetric space (a coset space G/H ) or one of the following:

1. Hol(M) = SO(n)

2. Hol(M) = U(k) ⊂ SO(2k) for n = 2k

3. Hol(m) = Sp(k) ⊂ SO(4k) fer n = 4k

4. Hol(M) = Sp(k) ⊂ S0(4k) for n = 4K

5. Hol(M) = Sp(k)Sp(1) ⊂ S0(4k) for n = 4K

6. Hol(M) = G2 ⊂ SO(7) for n = 7

7. Hol(M) = Spin(7) ⊂ 50(8) for n = 8

Let us make a few comments about relevant cases of holonomy in string compactifica-
tions. Manifold with holonomy U(k) is a Kähler manifold. Christoffels in a Kähler only
have holomorphic indices, so parallel transport does not transform holomorphic into anti-
holomorphic vectors. Manifolds with SU(k) holonomy are Calabi-Yau manifolds which
is special type of Kähler manifold.

A.2 Homology

A k-dimensional subspace Ck of a manifold M is called a k-cycle if it has no boundary
i.e

∂Ck = 0 (A.1)
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where ∂ is called the boundary operator. The 0 on the right hand side stands for an
empty set. For example, a 1 cycle will be a closed curve on the manifold. It may be
contractible or non-contractible. Roughly speaking, a contractible curve can be contin-
uously shrunk to a point in the manifold. Boundary of a boundary is always zero, i.e
∂ (∂Ck) = 0 (even if ∂Ck ̸= 0 ). Thus, every boundary can be viewed as a cycle. Though,
the reverse is not true in general.

k-dimensional subspace Ck is called exact if it is a boundary of some higher subspace
BK+1 i.e

Ck = ∂Bk+1 (A.2)

Using the idea that the boundary of a boundary vanishes, we can define an equivalence
relation as follows:

Ck
∼= C̃k are equivalent if Ck = C̃k + ∂Bk+1 (A.3)

Thus, if two k-cycles differ only by a boundary, then they are equivalent. This defines
a Homology class. Each element in a class k are equivalent. We can also construct a
group with it like the kth-homology group Hk(M) on a manifold M. Let us construct an
intuitive example below to help us

The region B2 has two distinct curves as boundary: C1 and C̃1 (L1&L2 are identified,
Hence, their contribution cancels), i. e.

∂B2 = C̃1 + c1 ⇒ C̃1 = C1 + ∂B2

A.3 Cohomology

If A(K) is a k-form, then we can write it as

A(k) =
1

k!
A(k)

m1
· · ·mkdx

m1 ∧ · · · ∧ dxmk (A.4)

An exterior derivative d takes a k form and turns it into a (k + 1)- form. Taking the
exterior derivative, we obtain

dA(k) =
1

k!
∂m0A

(k)
m1
· · ·mkdx

m0 ∧ dxm1 ∧ · · · ∧ dxmk (A.5)

Since the exterior derivative satisfies the nilpotency condition i.e d2 = 0, we have
d
(
dA(k)

)
= 0. Let us now motivate the idea of cohomology.

A k-form ω(k) is closed if dω(k) = 0. A k - form ω(k) is exact if ω(k) = dω(k−1) for
some (k − 1) - form ω(k−1). Therefore, we can form an equivalence class as follows:

ω(k) ∼= ω̃(k) if ω(k) = ω̃(k) + dω(k−1) (A.6)
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Thus, we say that two k-forms belong to the same cohomology class if they differ
by an exact k-form. The set of equivalence classes of ’k - forms’ form the cohomology
group Hk(R) or Hk(C). Let us now briefly talk about the complex cohomology group
Dolbeault cohomology. Before that, let us see what complex differential forms are:

If αr and βr are two real r-forms, the sum

γr ≡ αr + iβr

is termed a complex r-form. We denote the vector space of complex r-forms by Ωr
C(M).

The conjugate of γr is γ̄r ≡ αr− iβr.An (r, s)-form is a complex-valued differential form
with r holomorphic indices and s anti-holomorphic indices. In local coordinates, a basis
for (r, s) forms is

dzµ1 ∧ . . . ∧ dzµr ∧ dz̄ν̄1 ∧ . . . ∧ dz̄ν̄s ≡ dzM ∧ dz̄N̄

where we have defined the multi-indices M = (µ1 . . . µr) and N = (ν1 . . . νs). We denote
the vector space of (r, s)-forms on a manifold M by Ωr,s(M). An element γr,s of Ω

r,s(M)
can be written as

γr,s =
1

r!s!
γMNdzM ∧ dz̄N

The Dolbeault operators are maps ∂ : Ωr,s → Ωr+1,s and ∂̄ : Ωr,s → Ωr,s+1 whose
actions on γr,s are

∂γr,s =

(
∂

∂zκ
γMN

)
dzκ ∧ dzM ∧ dz̄N̄

∂̄γr,s =

(
∂

∂z̄κ̄
γMN

)
dz̄κ̄ ∧ dzM ∧ dz̄N̄ .

An (r, 0)-form γr,0 is said to be holomorphic if and only if

∂̄γr,0 = 0

Let Zr,s

∂̄
(M) denote the set of ∂̄-closed (r, s)-forms and Br,s

∂̄
(M) the set of ∂̄-exact

(r, s)-forms. The Dolbeault cohomology group is then defined as

Hr,s

∂̄
(M,C) ≡ Zr,s

∂̄
(M)/Br,s

∂̄
(M)

We can then define two types of Laplacians,

∆∂ = ∂∂† + ∂†∂, ∆∂̄ = ∂̄∂̄† + ∂̄†∂̄.

We denote by Hr,s

∂̄
(M) the set of ∂̄-harmonic (r, s)-forms, i.e. (r, s)-forms annihilated by

∆∂̄. Hodge’s theorem then states that Hr,s

∂̄
(M,C) ∼= Hr,s

∂̄
(M). The Hodge numbers are

the complex dimensions of the Dolbeault cohomology groups:

hr,s = dimHr,s

∂̄
(M,C).

By using the Hodge star, one finds that hr,s = hk−r,k−s on a manifold of complex dimen-
sion k.
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A.4 Duality Between Homology and Cohomology

A theorem in mathematics called de-Rham’s theorem says that rth-homology group
Hr(M) and the rth-cohomology group Hr(M) are dual vector spaces. We can motivate
this by defining an inner product (Σ, ω) : Hr(M)×Hr(M)→ R

(Σ, ω) ≡
∫
Σ

ω (A.7)

The above integral does not depend on the particular element of a homology or
cohomology class rather any element or every element of the specific class suffices. We
can use Stokes’ theorem, which states that for ω being an r-form and Cr is an r-chain,
then ∫

Cr

dω =

∫
∂Cr

ω, (A.8)

where ∂Cr is the boundary of Cr. An r-chain is a formal sum of r-cycles with real or
complex coefficients. Let us do the following exercise by adding an exact r-form ξ = dλ
to ω, and an r-boundary Π = ∂Λ to Σ.∫

Σ+Π

(ω + ξ) =

∫
Σ

ω +

∫
∂Σ

λ+

∫
Λ

dω +

∫
Λ

d2λ =

∫
Σ

ω (A.9)

Thus, the inner product we defined is independent of the choice of elements of either
of the cohomology or homology classes.

In a manifold of dimension D, a typical r-cycle and a typical (D − r)-cycle intersect
at a finite number of points. This intersection allows us to establish a pairing between
two homology groups as follows:

Hr(M)×HD−r(M)→ R. (A.10)

This pairing leads to a vector space isomorphism called Poincaré duality:

Hr(M) ∼= HD−r(M). (A.11)

Poincaré duality can also be understood in terms of cohomology as well. Given an
element ω in Hr(M) and an element η in HD−r(M), we can define a mapping Hr(M)×
HD−r(M)→ R as follows:

(ω, η) ≡
∫
M

ω ∧ η. (A.12)

This leads to the conclusion that

Hr(M) ∼= HD−r(M). (A.13)
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When combined with de Rham’s theorem, which relates cohomology and homology,
we can deduce that

HD−r(M) ∼= Hr(M) ∼= Hr(M) ∼= HD−r(M). (A.14)

The rth Betti number,

br ≡ dimHr(M,R), (A.15)

represents the count of nontrivial cohomology classes of r-forms onM or, equivalently,
the count of nontrivial homology classes of r-cycles. Poincaré duality implies that

br = bD−r. (A.16)

The Euler characteristic of M is calculated as the alternating sum:

χ(M) ≡
D∑
r=0

(−1)rbr. (A.17)

A.5 Kähler and Calabi-Yau Manifolds

Kähler manifolds are special kind of hermitian manifolds whose metric we can write
locally as

gαβ̄ = ∂α∂β̄K(z, z̄) (A.18)

Note that, the function K does not need to be a globally defined function. Roughly
speaking, we can stitch different K’s defined on some patches via some transformation
(which is clearly invariant)

K 7→ K + f
(
zi
)
+ f̄ (z̄ ı̄) (A.19)

.
With this metric, we can define a (1, 1)-form called a Kähler form as follows:

J = gαβ̄dz
α ∧ dz̄β̄ (A.20)

In Kähler manifolds, we can prove that the Kähler form is closed:

∂̄J = −∂ȳgαβ̄dzα ∧ dz̄γ̄ ∧ dz̄β̄
= −∂γ̄∂α∂β̄Kdzα ∧ dz̄γ̄ ∧ dz̄β̄

= 0

(A.21)
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Thus, J is ∂̄ closed and must be an element of H(1,1) cohomology. Thus, these
characterize the Kähler moduli space which is the reason of the number of Kähler moduli
being h1,1.

The Ricci form is defined by

R = iRµν̄dz
µ ∧ dz̄ν̄

The Ricci form of a Kähler manifold is then given by

R = i∂∂̄ ln g

Using d(∂̄ − ∂) = 2∂∂̄, it is easy to see that R is closed with respect to the ordinary
exterior derivative d, i.e. dR = 0. Because g is not a scalar, the equation above does not
imply that Ricci form R is exact. We can say that the Ricci form of a Kähler manifold
defines a de Rham cohomology class known as the first Chern class:

c1 ≡
1

2π
[R] ∈ H2(M,R)

This lets us define the long awaited Calabi-Yau manifold. A Calabi-Yau k-fold is
a compact Kähler manifold M of complex dimension k that is simply connected and
satisfies the following equivalent conditions:

• M admits a Kähler metric with holonomy in SU(k).

• There exists a nowhere-vanishing (k, 0)-form Ω on M .

• M admits a Kähler metric with vanishing Ricci curvature.

• The first Chern class c1(M) vanishes.

In the master thesis, we compactified our type IIB string theory on Calabi-Yau 3-fold
which has SU(3) holonomy, has a nowhere vanishing holomorphic three form Ω3 and is
a Ricci flat manifold which implies that the first Chern class vanishes.

86



Appendix B

String Theory Extras

B.1 Kaluza Klein Compactification

Consider a massless scalar field in 5 dimensions, the action is of the form

S5D =

∫
d5x∂Mϕ∂Mϕ (B.1)

Here, M = 0, 1, 2, 3, 4. Notice that in addition to our usual 4 space time dimensions,
we considered one extra spatial dimension. Let us set x4 = y and consider the extra
spatial dimension to be a circle of radius r, i.e. y = y + 2πr. Our space time is
thus M4 × S1. Since our extra-dimension is period in y, we can do a discrete Fourier
transformation and our Fourier series is:

ϕ (xµ, x) =
∞∑

n=−∞

ϕn (x
µ) exp

(
iny

r

)
(B.2)

Here, the Fourier expansion coefficients ϕn (x
µ) are functions of our 4 dimensional

coordinates and we thus have an infinite number of scalar fields. The equation of motion
is

∂M∂Mϕ = 0
∞∑

n=−∞

(
∂µ∂µ − n2

r2

)
φn (x

u) einy/n = 0(
∂u∂µ − n2/r2

)
ϕn

(
x4
)
= 0

(B.3)

We thus have an infinite number of Klein-Gordon equations for massive 4 dimensional

scalar fields. Each of them have mass m =
n2

r2
and only the zero mode is massless. We

have a tower (called the Kaluza-Klein tower) of massive states due to extra dimension
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S1. They are also called KK momentum states. The effective 4 dimensional action can
be obtained from the 5 dimensional action:

S5D =

∫
d4xdy

∑
n

(
∂µφn∂µϕ

∗
n −

n2

r2
|ϕn|2

)
= 2πr

∫
d4x (∂µϕ0∂µϕ

∗
0 + · · · ) = S4D + · · ·

(B.4)

We have thus reduced the 5D action to one 4D action for massless scalar fields plus
an infinite sum of massive scalar actions. If we focus on the zero modes and truncate
the higher momentum states, this is dimensional reduction. If we keep all the higher
momentum modes then we call this compactification.

B.2 Calabi-Yau Compactification

For Superstring theories, the 10 dimensional space M10 decomposes as M4 & M6 i.e

M10 =M4 ×M6

where, M4 is the non-compact 4d spacetime and M6 is internal space. Maximally sym-
metric solutions forM4 are as we know Minkowski, AdS and dS (R = 0, R < 0, &R > 0).
We want to preserve some supersymmetry which was the point of using Calabi-Yau man-
ifolds in the first place. Conditions for unbroken supersymmetry (N = 1) are as follows

• Invariant under supersymmetry means that the vacuum is annihilated by the
charges Qα (quantum mechanically) or classically speaking Qα leaves a particu-
lar background invariant.

• Only nontrivial transformation from fermionic variations

δϵ( fermion fields ) = 0

• If the vacuum expectation value of fermionic fields still vanish after performing
a supersymmetry variation than one obtains a bosonic equation of motion that
preserves supersymmetry.

• In order to obtain unbroken N = 1 local supersymmetry, the equation above needs
to hold for 4 linearly independent ε(x) forming a 4 component Majorana spinor.

• Supersymmetry transformation of the gravitino is proportional to the covariant
derivative of the supersymmetry parameter ϵ

δεψM = ∇Mε.

Non-vanishing ∇Mε. means broken supersymmetry that’s why this must vanish.
∇Mϵ = 0 is also called killing spinor equation.

88



• This implies unbroken N = 1 local supersymmetry needs a covariantly constant
spinor ϵ(x) into a product structure .

ε(x, y) = ξ(x)⊗ η(y)

where,ξ(x) is spacetime components which are Grassmann even and η(y) is CY/internal
ones are Grassmann odd.

Let us see what happens in the external space,

• The existence of covariantly constant spinor ξ(x) implies the vanishing of curvature
scalar.

• [∇µ,∇ν ] ξ =
1
4
{Reµνρσ Γρσξ = 0 and maximal summary ensures it.

• Supersymmetry contains the external space to be a 4d Minkowski spacetime. (AdS
can be supersymmetric but it still does not solve the cosmological constant prob-
lem).

Lastly for internal manifold

• ∇mη(x) = 0 is covariantly constant for M .

• This leads to the integrability conditions

[∇m,∇n] η = 1/4RmnpqΓ
pqη = 0

• This implies the internal manifold is Ricci-flat i.e Rmn = 0.

This is the main point of using Ricci flat manifolds. CY are these certain kind of
Ricci flat manifolds. Now, the 10 dimensional Lorentz group SO(1, 9) decomposes into

SO(1, 9)→ SO(1, 3)× SO(6)

Spinor representation 16 ∈ SO(1, 9) looks like 16 → (2/4) ⊕ (2̄, 4̄) where (2)&(2̄) are
Weyl spinors of SO(1, 3) which transform under SL(2,C) and (4)&(4̄)→Weyl spinors of
SO(6) Thus, this compactification is non-supersymmetry as the spinors are not invariant.

In order to preserve some supersymmetry, we need to select a particular manifold with
a reduced structure group i.e some sub-group of S0(6). SU(3) ⊂ SO(6) ∼= SU(4).where
SO(6) ∼= SU(4)under SU(3), Thus spinor representation 4 is decomposed as 4→ 3⊕ 1.
where 1 is singlet nowhere vanishing and globally well-defined invariant spinor.
→ SU(3) holonomy (CY3) preserves 1 supersymmetry in spacetime & SU(2) holonomy
preserves 2 supersymmetry in spacetime.

(4→ 2⊕ 1⊕ 1)
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B.3 T-duality

In appendix A, we saw compactification of extra-dimensions. In this section, we deal
with bosonic string theory to aid our purpose. As discussed, bosonic string theory lives in
26 dimensional spacetime. When we compactify (on a circle) say the 25th dimension, our
compact direction X25 has radius R and period 2πR. The momentum p25 takes discrete

values
n

R
where n is an integer. Note that strings, being one dimensional objects, can

wind around the compact dimension. First consider the case of closed strings. Under
σ ∼ σ + 2π, X25 does not stick to a single value, it can change by 2πwR where w is an
integer and called the winding number. The level matching is modified and becomes:

M2 =
n2

R2
+
w2R2

α′2 +
2

α′ (N + Ñ − 2) (B.5)

nw +N − Ñ = 0. (B.6)

In addition to the oscillator modes, the spectrum receives contribution from the usual
Kaluza-Klein momentum states and the winding states. Let us analyse the behaviour of
the spectrum. For larger and larger values of R, momentum states become lighter (in the
sense that it is easier to excite them) and winding states become heavier i.e. as R→∞
all of the winding states become infinity massive. For smaller values, the reverse is true.
As R→ 0, all of the momentum states (with n ̸= 0) become infinitely heavy. In a QFT
setup, we have done a dimensional reduction. Lastly, notice that the mass spectrum is
invariant under

n↔ w and R↔ R′ ≡ α′

R

Therefore string theory compactified on a circle of radius R is the T-dual theory of
a string theory compactified on a circle of radius R’. They basically describe the same
physics. The process of going from one string theory to another is called T-dualising.
Studying string dualities are a field of its own and irrelevant for our purposes. Let us
now intuitively modified the results that we need. Consider an open string case. Going
back into the R → 0 limit, non-zero momentum states go to infinite mass but there
are no winding states since open string theory does not have conserved winding around
periodic dimension. So, in this limit close strings live in D dimensions and open strings
live in D − 1 dimensions. This is not a problem since open strings can be confined into
a D − 1 hyperplane called D-branes. If we again compactify the 25th dimension, the
T-dualised direction X25 develop a Dirichlet boundary condition that is its endpoints
are fixed to a hyperplane.

X ′25(π)−X ′25(0) =
2πα′n

R
= 2πnR′
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The T-dualised coordinate at the endpoints are equal up to an integral multiple of
the periodicity of the dual dimension. Another beautiful artifact of the T-duality rules is
that for a compactified dimension say XM , we can switch between the embeddings XM

in the following way : XM = 2πα′AM .

B.4 Brandenberger-Vafa argument and the one pre-

sented in [1]

Branderberger and Vafa in [5] commented on the dimensionality of spacetime and they
argued that the worldsheet of two strings can meet in 4 spacetime dimensions but not in
larger ones. They usually miss each other in dimensions more than 4. Similar argument
can be extended to the brane-antibrane system. The argument can be generalised to
p-branes in D dimensions and we find the following critical dimension:

Dcritical = 2p+ 2 (B.7)

Interestingly, D3 branes will meet and annihilate each other in dimensions smaller
than or equal to 8 but miss each other in higher dimensions. So, in superstring theory
with 10 space time dimensions, D3 branes are on a stable footing. D5 branes will meet
and annihilate each other in dimensions smaller than or equal to 12. Thus, in type IIB
string theory, branes with p > 3 will meet and annihilate very quickly and leave us with
a system of D3 branes.

B.5 Anti-brane Uplifting of KKLT Using Nilpotent

Superfiled

The KKLT idea of using an antibrane was originally proposed in the paper [34] to uplift
the vacua to dS. Several developments occurred after the initial proposal and in [20] they
used a nilpotent chiral superfield in the antibrane for uplifting. Let us briefly sketch the
idea here.

Let us denote the nilpotent chiral superfield as X (nilpotency requires X2 = 0) and
it can be written as:

X = X0(y) +
√
2Ψ(y)θ + θθ̄F (y), (B.8)

where the only propagating degree of freedom is Ψ(y). This is ensured by the nilpo-
tency and chirality conditions. These has been exploited for inflationary purposes as
highlighted in [20]. For us, in this section, the exact form of X is not strictly necessary.

In this case, the Kähler potential becomes:

K = −3 ln (τ +XX̄) = −3 ln τ + X̄X

τ
(B.9)
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The superpotential with non-perturbative correction and the superfield X is

W = W0 + Ae−aτ + ρX (B.10)

and
W̄ = W̄0 + Ae−aτ + ρ̄X̄ (B.11)

Using this, we can calculate the scalar potential and obtain and uplifting term similar
to the analysis presented in section 2.2 on the KKLT proposal. In this case, we obtain
a term as follows:

V = VKKLT + Vuplift (B.12)

where,

Vuplift =
|ρ|2

τ 2
(B.13)

This nilpotent superfield formalism is used in this thesis for inflationary purposes.

B.6 Application of RG-Induced Moduli Stabilization

to Inflation

The inflationary case of this RG induced perturbative stabilization mechanism follows
the similar route to the one described in [32] and as discussed in chapter 2. As before,
we can expand the Kähler potential as:

e−K/3 = τ − k + h

τ
+ · · · , (B.14)

In this inflationary case,

k = K(Φ, Φ̄, ln τ) + (X + X̄)KX(Φ, Φ̄, ln τ) + X̄XKXX̄(Φ, Φ̄, ln τ) (B.15)

Similar to our analysis in chapter 3, X is a nilpotent chiral superfield and Φ is a
chiral superfield where ϕ acts as a potential inflaton candidate. Most general form of
superpotential is

W ≃ w0(Φ) +XwX(Φ, Φ̄) (B.16)

Denoting zA := {T,X}, the scalar potential is of the familiar supergravity form

V = eK
[
KĀBDAWDBW − 3|W |2

]
.

Leading terms in the scalar potential are:

V =
A |wx|2

P2
− 2Re (BwXw0)

P3
+
C |w0|2

P4
, (B.17)
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where (as before) P := τ − k + · · · and we keep in mind that each T derivative of k
costs a power of 1/P because k is a function of lnP rather than just ln τ . The coefficients
above are

A ≃ 1

3
KX̄X ,

B

P
≃ KX̄XKXT̄ and

C

P2
≃ −

3
(
KT T̄ − KX̄XKTX̄KXT̄

)
1 + 2KXX̄KXKX̄

,

Also, we assume A > 0 so the leading |wX |2 term is positive. Notice that the above
expression for V in the limit wX = kX = kXT̄ = 0 reduces to their standard RG procedure
F-term potential sans inflation. There are two stages of the above potential (a function
of two variables τ and ϕ): a late time dS stage and an early time inflationary stage.

In the late time stage, there should exist a configuration ϕ0 for which wX (ϕ0) = 0.
Thus, the leading term is proportional to P4 and the analysis of section 2.4.1 holds.

In the early time or inflationary regime, the wx is not zero and ϕ is away from ϕ0.
In general, the motion along τ is not slow-roll and it is stuck at a local minima during
inflation. The effective potential for ϕ is thus,

Veff (ϕ) ≃
(A−BD+)

2P2
+

|wX(ϕ)|2 =
(A−BD+)D

2
+

2 |w0|2
|wX(ϕ)|4 . (B.18)

The slow-roll parameters for evolution in the ϕ direction is

ε =
1

2

(
M4∂V/∂φ

V

)2

∼
(
BM3

4 τ+
C |w0|

∂wX

∂φ

)2

∼ τ 3+

(
BM3

4

C |w0|
∂wX

∂ϕ

)2

(B.19)

Thus, slow roll requires ∂wX/∂ϕ to be much smaller than order C |w0| /
(
BM3

4 τ
3/2
+

)
.

Evaluating η,

η =
M2

4

V

∂2V

∂φ2
∼ 1

H2
I

[
B |w0|
M2

4 τ
3
+

(
∂2wX

∂φ2

)
+
A

τ 2+

(
∂wX

∂φ

)2
]

∼ τ+

[
BM4

4 τ+
C |w0|

(
∂2wX

∂ϕ2

)
+
AM6

4 τ
2
+

C |w0|2

(
∂wX

∂ϕ

)2
]
.

(B.20)

The above equation implies that slow roll requires the derivatives of wX to satisfy∣∣∣∣∂wX

∂ϕ

∣∣∣∣≪ C |w0|
BM3

4 τ
3/2
+

∼ ϵ2M4

τ
3/2
+

and

∣∣∣∣∂2wX

∂ϕ2

∣∣∣∣≪ C |w0|
BM4

4 τ
2
+

∼ ϵ2

τ 2+

where we used w0 ∼ M3
4 and (B/A)2 ∼ C/A ∼ ϵ4M2

4 . Burgess and Quevedo in [32]
then went on to study the specific case of Brane-Antibrane inflation [1] in light of the
proposed stabilization. They found that their analysis had no η problem and satisfied
the EFT constraints as well.
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B.7 Eta Problem in String Inflation

In the initial brane-antibrane proposal of [1], the slow-roll potential got ruined after sta-
bilization of the Kähler moduli using the superpotential. This is a common problem in
string inflationary scenarios where the stabilization of the Kähler moduli using superpo-
tential (like KKLT or LVS), the slow-roll parameter η becomes order 1. This arises due
to the mechanism to fix the Kähler modulus also generates a mass term of the inflaton
field ϕ and it comes about from the Kähler potential. Let us see a sample case below.

The Kähler potential very generically depends on both τ and ϕ. Considering the
case, where

K ≃ −3 ln (τ − ϕϕ̄)

Constructing the F-term scalar potential,

V = eKV0

=
V0

(τ − ϕϕ̄)3

≃ V0
τ 3

[
1 +

3ϕ̄ϕ

τ
+ · · ·

]
≃ V0
τ 3

[1 + φ̄φ+ · · · ]

where we have canonically normalized the inflaton field as: φ ≡ ϕ√
3τ

. The terms

inside V0 (coming from the superpotential) has warp factors that allows small ϕ depen-
dence which in turn allows inflation to happen. The Hubble scale is fixed by V0 i.e
H2

I ≃ V/M2
4 ≃ V0/ (τ

3M2
4 ). Reinstating the M4 factors, that ϕ inevitably has a mass

contribution that is of order m2
ϕ ∼ V̂0/ (τ

3M2
4 ) ∼ H2

I which therefore contributes a factor
of order unity to the second slow-roll parameter η =M2

4Vφφ/V ≃ m2
ϕ/H

2
I . This is the fa-

mous η problem. Obviously, we do and can get rid of it by a particular finely tuned term
proportional to unwarped φφ̄ which cancels the mass term and there is no η problem.

In our construction presented in this thesis, we do not encounter any eta problems
as discussed in penultimate section of chapter 3.

B.8 Non-perturbative Corrections to the Superpo-

tential

Non-perturbative effects to the superpotential were used in the KKLT and LVS construc-
tions. Non-perturbative superpotential in M-theory and type IIB and heterotic string
theory were calculated by Witten [31]. A class of non-perturbative effects can arise from
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E3 instanton effects. Another non-perturbative effect can come from gaugino conden-
sation through D7 branes wrapping a suitable 4 cycle in the compactification manifold.
We can write both types of the non-perturbative terms as follows:

Wnp =
∑
b

Ab e
−abTb , (B.21)

where T is the volume multiplet. In general, the coefficients Ab can depend on the
the complex structure moduli U or the axio-dilaton S. But in most moduli stabilization
scenarios we consider them to be constants since U and S are already stabilized by GVW
superpotential. Coefficients in the exponent ab are equal to ab = 2π for E3-instanton
and ab = 2π/N for gaugino codensation where N being the rank of the corresponding
gauge group.

Moreover, subleading corrections to the Kähler moduli can be generated by something
called the poly-instanton contributions (used for inflationary purposes by Cicoli et al. in
[22]). These go like:

W poly
np =

∑
b

Ab e
−ab(Tb+

∑
c Ac e−acTc) (B.22)

Lastly, there are also non-perturbative corrections to the Kähler potential but it
outside the scope of this discussion.
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