
ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

Department of Computer Science and Engineering
Artificial Intelligence

Leveraging Large Language Model Distillation to Enhance

Zero-Shot Named Entity Recognition and Classification

Master Thesis in
Natural Language Processing

Supervisor

Prof. Cluadio Sartori

Co-supervisors

Prof. Gianluca Moro

Giacomo Frisoni
Marcos Martínez Galindo

Candidate

Alessio Cocchieri

Second Session
Academic Year 2022 – 2023

KEY WORDS

Large Language Models

Natural Language Processing

Zero-shot Learning

Named Entity Recognition

Knowledge Distillation

Abstract

Named entity recognition and classification (NERC) is a crucial task in
natural language processing. Annotations help a lot in this task but, in the
real world, annotations are chronically difficult to obtain and generalization
to unseen types loom large. Embracing zero-shot learning becomes essential
to surmount the absence of training examples. However, substantial prior
knowledge is required to achieve remarkable outcomes, particularly in domain-
specific scenarios. Although large language models (LLMs) hold great potential,
computational cost and inefficiency severely hamper their applicability, favoring
smaller specialized networks. In this paper, we propose JUICER, the first LLM
distillation framework for zero-shot NERC in resource-constrained environments.
Mechanically, JUICER transfers LLM knowledge to BERT-based models with a
preliminary fine-tuning process centered on generative data augmentation above
massive pre-training corpora. Generalizability is further promoted by injecting
textual target class descriptions through cross-attention. We conduct extensive
experiments on three zero-shot adapted BIO-format datasets. In this pursuit,
we center our distillation process on biomedicine and assess adaptability to
news and legal domains. Our knowledge-distilled models outperform state-of-
the-art baselines across all benchmarks up to 0.27 macro-averaged F1 points,
proving the benefit of numerous observed classes. Compared to zero-shot and
reparametrized LLMs, we achieve superior overall results across all datasets
using 510× fewer parameters. Interestingly, when trained in cross-domain
setups, JUICER models experience a further increase of up to 0.07 points.

v

Introduction

The task of named entity recognition and classification (NERC) entails the
identification of named entity mentions and their subsequent categorization into
specific entity-types from a predefined set. Despite the upswing in harnessing
the expressive power of pre-trained language models [1], existing solutions
often require substantial datasets and prioritize a limited subset of frequently
encountered classes (e.g., person, location, and organization) [2]. In real-
world scenarios, NERC applications frequently confront challenges related to
specialized domains, grappling with a scarcity of readily available labels for
non-standard classes, while constantly encountering emerging new targets.
Within this landscape, the practicality of adopting or recurrently retraining
state-of-the-art (SOTA) models becomes hindered. Simultaneously, the creation
of comprehensive ground-truth annotations proves resource-intensive, liable to
human errors and inconsistencies that could impact the efficacy of models. As
a result, there is a shift in the focus toward zero-shot learning (ZSL) [3], which
requires networks to extrapolate, adjust to entities not encountered during
training, and effectively transfer knowledge derived from observed classes. Prior
knowledge emerges as a crucial determinant of success [4].

Embracing the in-context learning approach, large language models (LLMs)1

have showcased remarkable achievements by generating high-quality text tai-
lored to specific directives [5]. Benefiting from extensive pre-training on sub-
stantial volumes of unprocessed text, LLMs serve as valuable reservoirs of
knowledge to fortify NERC in zero-shot learning scenarios. Conversely, the
considerable dimensions of these models, ostensibly correlated with their per-

1The literature has yet to establish consensus on the minimum scale for LLMs, but we
consider ≥ 1B parameters.

vii

viii Introduction

formance [6], present significant challenges during deployment. To illustrate,
the deployment of a 175B LLM necessitates a dedicated infrastructure with at
least 350GB of GPU RAM [7]. Furthermore, the latest state-of-the-art LLMs
now exceed 500B [8], considerably escalating computational demands. This
situation renders equivalent resources prohibitively expensive for most product
teams, particularly those aiming for efficient low-latency inference. This is
where small language models (SLMs) come into play, offering a more feasible,
transparent, and effective alternative. Due to their limited capacity, researchers
have delved into innovative training methodologies, with a focus on knowledge
distillation (KD) playing a prominent role.

We postulate that LLMs encapsulate pertinent task knowledge that would
otherwise require a substantial number of human-labeled instances for SLMs
to attain. Expanding on this concept, we introduce Juicer, an innovative
framework that strengthens the proficiency of SLMs in zero-shot NERC by using
KD from LLMs. Initially, we utilize a frozen LLM to create an extensive and
varied domain distillation dataset through example-guided data augmentation
on raw corpora, thus bridging the void resulting from manual annotation.
Following this, we employ a dual-phase KD process. In the first phase, a BERT-
based student model is trained to replicate the unbounded entity annotations
inferred by the teacher LLM using the synthetic dataset. In the second phase,
the student model is fine-tuned to specialize in the downstream NERC domain.

We conduct experiments using zero-shot-adapted versions of three widely
used NERC datasets: MedMentions [9], OntoNotes 5.0 [10], and LegalNER [11].
To adhere to the ZSL requisites [12], we painstakingly ensure the absence of
any entity class overlap between training, validation, and test sets, specifically
reserving the scarcer types for evaluation purposes. Our distillation procedure
is centered on biomedicine, with a subsequent assessment of its adaptability
to other domains. Remarkably, our findings demonstrate that high-quality,
extensive synthetic data derived from LLMs, even when tailored to a specific
domain, have a positive impact on enhancing the predictive capability of models.
This enhancement applies to foreseeing entities across various classes and fields.
Our distilled models achieve a token-level macro F1 score of 0.32 in MedMen-
tions, 0.46 in OntoNotes, and 0.38 in LegalNER, markedly outperforming the

Introduction ix

previous SOTA ZSL SLMs and LLMs in inference mode. Moreover, compared
to fine-tuned reparameterized LLMs, our models demonstrate superiority or
comparability while maintaining a significantly reduced architectural size, 510×
smaller. Further improvements are realized through cross-domain fine-tuning,
resulting in improved scores of 0.07 and 0.05 on OntoNotes and LegalNER
respectively.

Building upon the contextual foundation we have laid out, the forthcom-
ing chapters of this thesis provide an in-depth exploration of our research,
elucidating our methodologies, and presenting our findings:

• Chapter 1 - Theoretical Framework: In this foundational chapter,
we lay the groundwork for understanding the core concepts that underpin
our research. We begin by exploring the significance of NER as an
information processing task. Then, we delve into the world of LLMs,
providing an overview of their role in modern language processing. This
chapter serves as the gateway to our thesis, equipping readers with
the necessary knowledge to better understand the investigations in the
subsequent chapters.

• Chapter 2 - Related Work: In this chapter, we navigate the landscape
of existing research and studies that have paved the way for our inves-
tigation. A comprehensive review of the relevant literature sheds light
on the fundamental concepts and approaches in the field, establishing a
context for our work.

• Chapter 3 - Method: This chapter provides an in-depth exploration
of our proposed methodology, Juicer. We dissect the details of how we
harness large language models and their knowledge distillation to enhance
zero-shot NERC capabilities of SLMs. Step by step, we elucidate the
process of crafting our framework and the rationale behind its design.

• Chapter 4 - Experimental Setup: In this chapter, we detail the exper-
imental setup used for our research. We provide insights into the datasets
employed for evaluation, the metrics used to measure performance, imple-
mentation specifics, and hyperparameters. This comprehensive account of

x Introduction

our experimental configuration sets the stage for the subsequent chapter
where we present our results.

• Chapter 5 - Results and Discussion: Within this chapter, we present
the outcomes of our experiments and analyses. We delve into the data,
revealing the quantitative and qualitative results that underscore the
efficacy of our approach. Through comprehensive discussions, we provide
insightful interpretations of these results, leading to a deeper understand-
ing of the implications and contributions of our research.

• Conclusion and Future Work: Wrapping up our thesis, this final
part synthesizes the key findings, implications, and contributions of our
research. We reflect on the significance of our work and its potential
impact. In addition, we chart the course for future research directions,
identifying unexplored avenues and opportunities to build upon the
foundation we have established.

The content of this thesis pertains to the research carried out throughout
my internship at the IBM Research Lab in Dublin, within the framework of
the IBM Accelerated Discovery program.2

2https://research.ibm.com/topics/accelerated-discovery

https://research.ibm.com/topics/accelerated-discovery

Index

1 Theoretical Framework 1
1.1 Named Entity Recognition . 1
1.2 Large Language Models . 2
1.3 Prompt Engineering . 3
1.4 In-context Learning . 5
1.5 Generative Parameters Configuration 6

1.5.1 Max New Tokens . 6
1.5.2 Decoding Strategy . 6
1.5.3 Top-k . 7
1.5.4 Top-p . 8
1.5.5 Temperature . 8

1.6 Fine-tuning . 9
1.7 Different Types of LLMs . 11

1.7.1 Autoencoding . 11
1.7.2 Autoregressive . 12
1.7.3 Sequence-to-Sequence . 13

1.8 Limits of LLMs . 13

2 Related Work 17
2.1 Zero-shot NERC . 17

2.1.1 Leveraging Entity-type Descriptions 18
2.2 Towards Affordable LLMs . 19

2.2.1 PEFT . 20
2.2.2 LoRA . 21
2.2.3 QLoRA . 22
2.2.4 Knowledge Distillation 23
2.2.5 Sequence-level Knowledge Distillation 25
2.2.6 Machine-to-Corpus-to-Machine Paradigm 26

xi

xii INDEX

2.3 The Pile . 27
2.4 BLOOM . 27

3 Method 29
3.1 Task Definition . 30
3.2 Teacher Model Selection . 30
3.3 Synthetic BIO-format Dataset 31

3.3.1 Prompt-based Tagging 35
3.3.2 Filtering . 36
3.3.3 BIO-format Instances . 36
3.3.4 Data Statistics . 37

3.4 Entity-type Descriptions . 38
3.5 Student Network . 38
3.6 Training . 39

4 Experimental Setup 41
4.1 Datasets . 41
4.2 Metrics . 43
4.3 Baselines . 43
4.4 Implementation Details . 44
4.5 Hyperparameters . 44

5 Results and Discussion 47
5.1 Analysis of Results . 47

5.1.1 Juicer vs SMXM . 47
5.1.2 Juicer vs LLMs . 49
5.1.3 Cross-domain Fine-tuning 51
5.1.4 KP and KF Trade-off . 51

5.2 Discussion . 53

Conclusion and Future Work 55

Acknowledgements 57

Bibliography 59

List of Figures

1.1 BERT for NER and token classification in BIO format. 2
1.2 Zero-shot inference of LLMs. 3
1.3 Typical key components of a well-designed prompt. 4
1.4 Different types of In-context Learning. 5
1.5 Comparing Greedy and Random decoding strategies. 7
1.6 Comparing Top-p and Top-k sampling strategies. 8
1.7 Comparing different temperature settings. 9
1.8 Overview of the Fine-tuning process. 10
1.9 Model architectures and pre-training objectives. 12

2.1 Zero-shot named entity recognition and classification. 19
2.2 Illustration of Low-Rank Adaptation and its impact. 22
2.3 Overview of Knowledge Distillation process. 24
2.4 Sequence-level KD. 25
2.5 Two input prompt examples for generating annotated datasets

with GPT-3. 26

3.1 The Juicer framework. 29
3.2 Juicer pipeline for dataset construction. 35
3.3 Random entity-type sampling during Knowledge Pre-training. . 40

4.1 Class occurrences in {MedMentions/OntoNotes/LegalNER}-ZS. 42

5.1 Per-class token-level macro-F1 on the test set. Models are fine-
tuned on each benchmark dataset separately. 50

5.2 Token-level F1 comparison between Juicer KP and Juicer

KP+KF over pre-training steps. 52

xiii

List of Tables

2.1 Additional RAM GPU needed to train 1B parameters. 21

3.1 Large Language Model comparison on prompt completion. . . . 32
3.2 Large Language Model comparison on term description generation. 33
3.3 Experimented prompts during Teacher Model selection. 34
3.4 Pseudo-label statistics. 37

4.1 Comparative overview of zero-shot datasets. 42
4.2 Prompts used in PEFT and ICL processes for 7B and largest

versions of BLOOM, LLaMA 2, and Falcon, respectively. . . . 45
4.3 Explored hyperparameters along with their empirical search grid. 46

5.1 Test set (a) and Dev set (b) performance comparison with token-
level (T) and span-level (S) macro-averaged recall (R), precision
(P), and F1. 48

xiv

Chapter 1

Theoretical Framework

1.1 Named Entity Recognition

Named-entity recognition (NER), also referred to as named entity identifi-
cation, entity chunking, or entity extraction, represents a pivotal subtask in
information processing, focusing on the identification and categorization of
crucial information (entities) within text. These entities encompass any words
or word sequences that consistently reference a particular concept or entity.
The NER process centers on a fundamental two-step approach: (i) detecting a
named entity and (ii) categorizing it. During the detection process, the model
identifies tokens or sequences of tokens that form an entity, with each token
representing a word or a word piece. Commonly utilized tagging formats, such
as the IOB format (short for for inside, outside, beginning) and also known as
the BIO format, are employed to demarcate the boundaries of entities within
the text. While there are several variants of the IOB format, in this work, we
employ the widely recognized IOB2 format, which involves labeling tokens at
the beginning of a chunk with the prefix B-, tokens within a chunk with the
prefix I-, and tokens unrelated to any chunk with the tag O (Figure 1.1b).
Throughout this thesis, our focus centers on Named Entity Recognition and
Classification (NERC). The "C" in NERC underscores the critical aspect of
"Classification". This places significant emphasis not only on recognizing named
entities within text but also on classifying them into predetermined categories

1

2 Chapter 1. Theoretical Framework

(a) BERT model for NER.
Source: [13].

International Business Machine is based in Armonk

B-org I-org I-org B-locO O O

(b) Example of token classification in BIO format
applied to a sentence.

Figure 1.1: BERT for NER and token classification in BIO format.

(a) demonstrates the adaptation of BERT’s architecture for NER, where a
distinct output embedding is added for each token. (b) provides an illustrative
example of token classification following the IOB2 format. In this example,
International and Armonk are prefixed with B- since they represent the first
token of their respective entities, while Business and Machine are prefixed with
I- as they are successive tokens within the entity.

or types. While NER and NERC are often used interchangeably, the NERC
framework distinctly highlights the classification component.

In our research, we leverage BERT-based models for NER tasks. What
distinguishes BERT for text classification from its application to the NER
problem is the manner in which we configure the model’s output. For text
classification, we exclusively utilize the embedding vector output generated
from the special [CLS] token. However, when employing BERT for NER tasks,
we harness the embedding vector output from all tokens, facilitating token-level
text classification (Figure 1.1a). This enables us to predict the entity associated
with each individual token, aligning with our NER objectives.

1.2 Large Language Models

Large language models (LLMs) refer to large, general-purpose language
models that can be pre-trained and then fine-tuned for specific purposes. The

1.3. Prompt Engineering 3

term large indicates two meanings: (i) the enormous size of the training data
set (sometimes up to petabyte scale), (ii) the tremendous number of parameters.
An LLM is essentially a Transformer-based neural network [14] and is trained
to solve common NLP tasks like text classification, question-answering, text
summarization and text generation. The goal of the model is to predict the
text that is likely to follow. With the advent of transformers and transfer
learning, the adaptation of language models for various tasks initially required
only a modest extension of the network’s final layers (the head) and subsequent
fine-tuning. However, this approach has now become outdated. Modern
developments have evolved to the extent that a multitude of tasks can be
effectively executed using the same LLM by simply switching the instructions
within the prompt.

From this perspective, effective prompts are key, while skill in crafting
them (Prompt Engineering) is crucial to harness the potential of LLM. The
complexity and efficacy of a model can be evaluated based on its parameter
count—indicating the range of factors it accounts for during output generation.
To familiarize themselves with the intricacies and interconnections of language,
extensive data pre-training is undertaken for LLMs. Pre-training necessitates
substantial computational resources and cutting-edge hardware to accomplish
this crucial step. Using techniques such as Fine-tuning and In-context learning,
these models can be adapted for downstream (specific) tasks.

1.3 Prompt Engineering

LLM

Completion

Classify the following review:
This film was so boring...
Sentiment: Negative

Prompt

Classify the following review:
This film was so boring...
Sentiment:

Figure 1.2: Zero-shot inference of LLMs.

The term prompt refers to the input text provided to the model, while
the process of generating text is termed as inference, and the resulting text is
termed as the completion (Figure 1.2). The full amount of text or the memory

4 Chapter 1. Theoretical Framework

Instruction

Context
(external info)

Prompter input

Output indicator

Large Language Models (LLMs) are transformer-based architecture renowned
for their exceptional performance in text generation. Developers can easily
harness their power through libraries like Hugging Face's transformers,
OpenAI's, and Cohere's, enabling a wide range of NLP applications.

Question: What are some of the libraries that provide access to Large

Language Models (LLMs)?

Please, provide the response based on the given context. If the question
cannot be answered using the available information, reply with "I don't know."

Answer:

Figure 1.3: Typical key components of a well-designed prompt.

This image illustrates a structured prompt utilized for instructing language models.
Instructions provide directives that guide the model’s actions and define its task.
Context represents additional knowledge sources, which can be manually inserted or
retrieved from databases, APIs, or other means. Prompter Input typically refers to
a query input into the system by a human user (the prompter). Output Indicator

serves as a marker indicator for the beginning of the to-be-generated text.

that is available to use for the prompt is called the context window. It is often
necessary to iteratively refine the language or structure of your prompt to
achieve the desired behavior from the model. This iterative effort to develop
and enhance the prompt is called prompt engineering.

Prompt Engineering involves designing and crafting effective input instruc-
tions to guide the language model towards the generation of desired responses.
The main goal of prompt engineering is to influence the behavior of the lan-
guage model. These prompts can be in the form of questions, statements, or
incomplete sentences. Effective prompt engineering involves a combination
of experimentation, understanding the underlying task, analyzing the model
behavior, and iteratively refining the prompts to achieve the desired results.
Although there is no one-size-fits-all formula for crafting effective prompts, four
key components are commonly found in well-designed prompts, as illustrated
in Figure 1.3.

1.4. In-context Learning 5

ICL - Zero Shot

Classify the following review:
This film was so boring...
Sentiment:

ICL - One Shot

Classify the following review:
This film was so boring...
Sentiment: Negative
Classify the following review:
It was amazing!!!
Sentiment:

ICL - Few Shot

Classify the following review:
This film was so boring...
Sentiment: Negative
Classify the following review:
It was amazing!!!
Sentiment: Positive
Classify the following review:
Not so bad, not so good...
Sentiment:

Figure 1.4: Different types of In-context Learning.

In the image, various prompts are presented for conducting sentiment analysis using
LLMs. Sentences highlighted in violet serve as examples to guide the model in
generating completions. Sentences highlighted in green are used as new input for
classification. Left Image: The model is tasked with sentiment classification without
any provided examples. Center Image: A single example is included within the
context window to aid the model in its classification task. Right Image: Multiple
examples are presented to further assist the model in performing sentiment analysis.

1.4 In-context Learning

The two fundamental approaches for imparting knowledge to an LLM
encompass: (i) Parametric knowledge, wherein knowledge resides within the
model’s learned weights or parameters during training, and (ii) Source knowledge,
referring to any information supplied to the model during inference through
the input prompt, which includes context and example-guided prompts. In-
context learning (ICL) refers to the ability of LLMs to learn and improve
their performance on a specific task or dataset by fine-tuning them on a small
amount of relevant data. This approach is also known as Zero-/one-/few-shot
learning based on the number of examples within the context window (Figure
1.4). Traditionally, training a machine learning model requires a large amount
of labeled data, where the model learns to recognize patterns and relationships
between inputs and outputs. However, with ICL, the goal is to train a model
that can quickly adapt to new situations or tasks with minimal additional data
within the input prompt.

LLMs have been shown to be particularly suitable for ICL [15]. The largest

6 Chapter 1. Theoretical Framework

models demonstrate remarkable proficiency in zero-shot inference, successfully
handling a diverse array of tasks for which they weren’t explicitly trained.
This proficiency arises from their training on vast volumes of text data, which
equips them to encode language at multiple levels of abstraction. Consequently,
they can effortlessly transfer their acquired knowledge to novel contexts and
tasks, showcasing their adaptability and flexibility. In contrast, smaller models,
typically only excel at a limited number of tasks, primarily those closely
resembling their training tasks. However, smaller models can significantly
enhance their performance through one-shot or few-shot inference methods.

1.5 Generative Parameters Configuration

Each model exposes a set of configuration parameters that can influence
the model’s output during inference. In this section, we will go through their
exploration to understand how they can actually affect the final decision of the
model.

1.5.1 Max New Tokens

Among these parameters, max_new_tokens stands out as one of the most
straightforward. It serves as a mechanism to restrict the total number of tokens
the model will generate. Think of it as a limit on the number of iterations the
model will undergo in the decision-making process. It’s important to note that
this value isn’t set in stone; the model may generate fewer tokens than the
specified maximum if another stopping condition is met, such as predicting the
end of a sequence.

1.5.2 Decoding Strategy

The output from the transformer’s softmax layer represents a probability
distribution across the entire vocabulary of words utilized by the model. In
the default mode, most large language models employ a technique known as
greedy decoding for next-word prediction. This approach is straightforward: the
model always selects the word with the highest probability. While effective for

1.5. Generative Parameters Configuration 7

0.30 dog

0.10 cat

0.05 horse

0.01 wolf

Greedy

Softam
x

output

0.30 dog

0.10 cat

0.05 horse

0.01 wolf

Random Sampling

Softam
x

output

Figure 1.5: Comparing Greedy and Random decoding strategies.

In the left panel, we illustrate the greedy approach where the word/token with the highest
probability is selected. In contrast, the right panel showcases random sampling, a
strategy where a token is chosen using a randomized weighting based on the probabilities
of all tokens. In this example, there is a 30% chance of selecting dog, but horse is
the token actually chosen.

short text generation, it can lead to repetitive words or sequences. To generate
more natural and creative text that avoids word repetition, alternative controls
are necessary. One such method is random sampling. Instead of consistently
choosing the most probable word, random sampling involves selecting an output
word randomly, weighted by its probability distribution. For instance, if a word
like horse has a probability score of 0.05, random sampling assigns a 5% chance
for it to be selected. This sampling technique reduces the likelihood of word
repetition. However, depending on the specific settings, random sampling may
introduce excessive creativity, resulting in text that veers into unrelated topics
or includes nonsensical words. A comparison between the two approaches is
illustrated in Figure 1.5.

1.5.3 Top-k

Another sampling technique called top k can be employed to mitigate the
potential side-effects of pure random sampling. With top k, you can control the
options available to the model while introducing some variability. By specifying
a top k value, you instruct the model to consider only the k tokens with the
highest probability for selection. For instance, if you set k = 3, the model will
choose from the three most probable options. It does so by applying probability

8 Chapter 1. Theoretical Framework

0.30 dog

0.10 cat

0.05 horse

0.01 wolf

Top-p sampling (p = 0.40)

Softam
x

output

0.30 dog

0.10 cat

0.05 horse

0.01 wolf

Top-k sampling (k = 3)

Softam
x

output

Figure 1.6: Comparing Top-p and Top-k sampling strategies.

In the left image, we demonstrate the top-p approach, where an output is selected using
a random-weighted strategy from the consecutive results with the highest probabilities,
ensuring that the cumulative probability remains <= p. On the right, we illustrate the
top-k approach, where an output is chosen from the top-k results obtained by applying
a random-weighted strategy based on their probabilities.

weighting, and that’s why in Figure 1.6 (right), cat is selected as the next
word. This approach allows the model to maintain a degree of randomness
while preventing the selection of highly improbable completion words.

1.5.4 Top-p

Alternatively, the top-p setting provides another method to control random
sampling by limiting the predictions to those whose combined probabilities do
not surpass a specified value, denoted as p. For example, as shown in Figure
1.6 (left), if you set p = 0.4, you include options like dog and cat because their
individual probabilities of 0.3 and 0.1 add up to 0.4. The model then employs
the random probability weighting approach to select from these tokens. In
summary, while top-k lets you determine the number of tokens to randomly
choose from, top-p allows you to specify the total probability that the model
should consider when making its selection.

1.5.5 Temperature

Another parameter that allows control over the model’s output randomness
is known as temperature (t). This parameter plays a crucial role in shaping

1.6. Fine-tuning 9

cat dog horse wolf cat dog horse wolf cat dog horse wolf

temperature < 1 temperature = 1 temperature > 1

Figure 1.7: Comparing different temperature settings.
With a low temperature (t < 1), the probability distribution becomes sharply peaked, as
seen in the red bars. Most of the probability concentrates on a single word, such as
dog. When random sampling is applied to this distribution, the generated text becomes
less random, closely following the most likely word sequences the model learned during
training. Conversely, setting a higher temperature (t > 1) results in a broader and
flatter probability distribution for the next token (blue bars). This encourages the
model to produce text with a higher degree of randomness and variability, fostering
more creative-sounding output. Leaving t = 1 (yellow bars) retains the default softmax
function, utilizing the unaltered probability distribution.

the probability distribution that the model calculates for the next token.
Temperature acts as a scaling factor applied within the final softmax layer of
the model, directly influencing the shape of the probability distribution for
the next token. Unlike top-k and top-p parameters, altering the temperature
directly impacts the model’s predictions. In general, a lower temperature leads
to a less-random generated text, while a higher temperature produces text with
a higher degree of randomness and variability (Figure 1.7).

1.6 Fine-tuning

ICL has a couple of limitations. First, it may not consistently produce
desired results for smaller models, even when incorporating five or six examples.
Second, any examples included in the prompt consume precious space within the
context window, diminishing the available space for other valuable information.
Fine-tuning is a supervised learning process that makes use of labeled examples

10 Chapter 1. Theoretical Framework

LLM

LLM completion

Classify the following review:
This film was so boring...
Sentiment: Neutral

Actual Label

Classify the following review:
This film was so boring...
Sentiment: Negative

Loss: Cross-Entropy
Prompt

Classify the following review:
This film was so boring...
Sentiment:

Instruction-formatted dataset

Figure 1.8: Overview of the Fine-tuning process.

In this instance, the model misclassifies a negative review as neutral, necessitating

corrective action. It initiates a comparison between the completion and training

label distributions, forming the basis for loss calculation using standard cross-entropy.

The resulting loss updates model weights via backpropagation across multiple epochs,

enhancing its performance.

to update the weights of the LLM with two primary objectives:

1. Behavior Enhancement:

• Improving Consistency : Adapting the LLM to respond more consis-
tently in various contexts.

• Focusing Abilities : Enhancing specific capabilities, such as modera-
tion or conversational skills.

2. Knowledge Acquisition:

• Enhancing Conceptual Knowledge: Increasing the LLM’s under-
standing of new, specific concepts.

• Correcting Previous Misinformation: Rectifying inaccuracies or
outdated information within the model’s knowledge base.

Fine-tuning with instruction prompts is the most common way to fine-
tune LLMs these days, where instruction refers to the description of tasks.

1.7. Different Types of LLMs 11

Henceforth, when referring to fine-tuning in the context of LLMs, it implies
instruction fine-tuning (IT). It involves updating all of the model’s weights and
is commonly referred to as full fine-tuning. This process leads to the creation
of a new model version with updated weights. IT is a technique that involves
fine-tuning pre-trained LLMs on a collection of instruction-formatted datasets
[16]. Tuning in this way, LLMs can generalize to unseen tasks by following
new instructions, thus boosting ICL performance [16]. Figure 1.8 provides an
illustrative example of the fine-tuning process.

This simple yet effective idea has sparked the success of subsequent works
in the realm of NLP, such as ChatGPT, InstructGPT [17], FLAN [16, 18].

1.7 Different Types of LLMs

Transformer models encompass three distinct variations: encoder-only mod-
els, encoder-decoder models, and decoder-only models. These variations un-
dergo training with diverse objectives, equipping them with specialized capa-
bilities for various tasks. Figure 1.9 provides a comparative overview of these
model architectures alongside their respective pre-training objectives.

1.7.1 Autoencoding

Encoder-only models, also referred to as autoencoding models, undergo
pre-training via Masked Language Modeling (MLM). In this training approach,
tokens within the input sequence are randomly masked by making use of
mask tokens (e.g. <MASK>), and the primary objective is to predict these
masked tokens in order to reconstruct the original sentence. This process
is commonly known as a denoising objective. Autoencoding models excel in
capturing bidirectional representations of the input sequence, enabling them
to comprehend the complete context of a token rather than solely considering
preceding words. These models find application in various natural language
processing tasks, including sentence classification tasks such as sentiment
analysis, as well as token-level tasks like NER and word classification. Prominent
examples of autoencoding models include BERT and RoBERTa [13, 19]

12 Chapter 1. Theoretical Framework

Autoregressive: CLM

The child ?

Autoencoding: MLM

The child is
<MASK> to school

Seq-to-Seq: Span Corruption

The child <X>
school

Original text

The child is
going to school
[...]

LLM
encoder-only

LLM
decoder-only

LLM
encoder-decoder

The child is
going to school

The child is

The child <X>
is going to school

Figure 1.9: Model architectures and pre-training objectives.

Summary of different model architectures and targets of the pre-training objectives. Au-
toencoding models employ Masked Language Modeling and correspond to the encoder
in the original Transformer, suitable for tasks like text classification. Autoregressive
models, based on Causal Language Modeling, use the decoder for text generation.
Sequence-to-sequence models leverage both encoder and decoder components for various
pre-training objectives, aimed at tasks such as translation and summarization.

1.7.2 Autoregressive

Decoder-only models are commonly referred to as autoregressive models.
These models undergo a pre-training process utilizing Causal Language Modeling
(CLM), where the primary objective is to predict the next token in a sequence
based solely on the preceding tokens. This predictive task is commonly termed
full language modeling in academic literature. Decoder-based autoregressive
models differ significantly from their encoder-based counterparts. They mask
the input sequence and can only access information from tokens that precede
the one currently under consideration. As a consequence, these models lack
knowledge of the sentence’s end and instead progress through the input sequence
token by token, predicting each subsequent token individually. Unlike encoder-
based architectures, decoder-only models operate within a unidirectional context.
Through extensive training on a vast corpus of textual data, these models acquire
the ability to generate coherent and contextually appropriate text. While they
are frequently employed for text generation tasks, it is worth noting that larger

1.8. Limits of LLMs 13

decoder-only models exhibit robust zero-shot inference capabilities, allowing
them to excel across a wide spectrum of natural language processing tasks.
Prominent examples of decoder-based autoregressive models in the field of
natural language processing include GPT and BLOOM [20, 21].

1.7.3 Sequence-to-Sequence

The final variant within the transformer model family is the sequence-to-
sequence model, which amalgamates both the encoder and decoder components
from the original transformer architecture. These models exhibit varying
pre-training objectives across different implementations. For instance, one
prominent sequence-to-sequence model, T5 [22], employs span corruption during
the encoder’s pre-training phase, where it randomly masks sequences of input
tokens. These masked sequences are then replaced by a distinct token referred
to as the Sentinel token (e.g. <X>). Sentinel tokens are special tokens introduced
into the model’s vocabulary but do not correspond to any specific word in the
input text. Subsequently, the decoder’s role is to reconstruct the sequences of
masked tokens in an auto-regressive manner, with the output consisting of the
Sentinel token followed by the predicted tokens. Sequence-to-sequence models
find applications in tasks such as translation, summarization, and question-
answering, proving particularly valuable when dealing with text input and text
output. In addition to T5, another noteworthy encoder-decoder model in this
category is BART [23].

1.8 Limits of LLMs

In the realm of LLMs, it is imperative to acknowledge and address the
inherent limitations that accompany their unparalleled language generation
capabilities. These limitations extend beyond the scope of language itself,
venturing into critical domains such as reliability, bias, and environmental
impact. In particular, we can distinguish several critical points:

• Hallucinations and Bias: LLMs have the main goal of producing
language that will be perceived as natural by humans. They are not

14 Chapter 1. Theoretical Framework

designed to produce truthful information. As a result, being trained on
large amounts of data, these models can inadvertently perpetuate false
or inaccurate information (a.k.a. hallucinations). Additionally, they are
not immune to bias, including race, gender, and sex bias, often reflecting
the biases present in their training data. Instances where these models
generate racist or sexist comments underscore the critical need for vigilant
data curation and ongoing model evaluation.

• Context Window: Another limitation arises from the practical con-
straints of the context window. Each large language model has finite
memory, allowing it to process only a specific number of tokens as input.
For example, LLaMA 2 is constrained by a limit of 4096 tokens [24],
which translates to roughly 3K words. Inputs exceeding this token limit
challenge the model’s ability to provide meaningful responses, highlighting
the importance of brevity and clarity in interactions with these models.

• System Cost: The development and utilization of LLMs require substan-
tial investment. This encompasses not only computational resources but
also human expertise in the form of engineers, researchers, and scientists.
The sheer resource intensity of these models makes them accessible primar-
ily to large enterprises with substantial means. For instance, projects like
Megatron-Turing from NVIDIA and Microsoft are estimated to involve
total costs nearing $100 million [25]. These financial barriers can limit
the democratization of LLM technologies.

• Environmental Impact: LLMs, particularly during training, exert
a considerable environmental footprint. The cooling requirements of
these systems further escalate their energy usage and environmental
impact. A notable study equated the training of BERT [13] on GPU
to the environmental impact of a trans-American flight [26]. These
environmental concerns underscore the need for sustainable practices in
the development and deployment of LLMs.

• Reasoning: The term reasoning in LLMs pertains to their ability to
logically derive conclusions and draw inferences using the data they have

1.8. Limits of LLMs 15

been trained on. This skill is vital for generating coherent and meaningful
text. Progress in NLP suggests that as these models increase in size, they
might demonstrate enhanced reasoning abilities [27, 28]. Although the
introduction of Chain of Thoughts (CoT) [29] has undeniably improved
their reasoning skills through step-by-step thinking, the exact scope of
this enhancement remains uncertain. For instance, they still struggle
with knowledge-demanding tasks that pose no issues for humans [30].

• Explainability: A significant limitation of LLMs lies in their lack of
explainability. These models, known for their complexity and black-
box nature, often provide outputs without clear insights into how they
reached their decisions or predictions. Achieving explainability in LLMs
is a pressing challenge due to their intricate inner workings. The ability
to offer human-understandable explanations for their outputs is crucial
for building trust among users and ensuring alignment with ethical and
human expectations.

Chapter 2

Related Work

2.1 Zero-shot NERC

As already anticipated (see Section 1.1), NERC is a fundamental NLP
task that entails the identification and categorization of named entity men-
tions within textual data into predefined entity-types. These named entities
encompass words or textual spans that represent tangible entities in the real
world, encompassing individuals’ names, organizational entities, geographical
locations, temporal expressions, numerical values, and more.

A pervasive challenge encountered in numerous real-world applications is
the scarcity of annotated data for specific entity classes, rendering traditional
supervised learning approaches impractical. This motivates the focus on the
zero-shot setting [31, 32], wherein annotated data for the classes of interest is
unavailable. ZSL methodologies are pivotal in mitigating this data scarcity
challenge by enabling the learning of models capable of transferring knowledge
from observed classes in the training dataset to novel, previously unseen classes.

In this research endeavor, we delineate two primary avenues of investigation:

(i) augmenting the comprehension of target entity classes by providing
supplementary contextual details.

(ii) harnessing the robust generalization capabilities of LLMs

Within the first realm, Aly, Vlachos, and McDonald [33] have illustrated the
advantages of infusing manually crafted textual descriptions of entity classes

17

18 Chapter 2. Related Work

into the model’s encoders. Concurrent studies have delved exclusively into
specific aspects of NERC, such as named entity typing [34]. Meanwhile, Nguyen,
Gelli, and Poria [35] have leveraged knowledge graphs to imbue the model
with a nuanced understanding of the intricate interconnections between entities
spanning diverse domains.

Moving to the second domain, it is essential to recognize that LLMs, due
to the inherent distinction between sequence labeling and text generation, still
lag behind supervised encoder-only SLMs in classification tasks [24]. Wang et
al. [36] introduced a GPT-3 prompting strategy aimed at identifying entity
mentions within the text without classifying them. In contrast, our approach
tackles zero-shot NERC by integrating elements (i) and (ii), involving the
training of SLMs on LLM-distilled datasets and enriched with artificially
generated entity-type descriptions.

The subsequent paragraph will provide a detailed exploration of the utiliza-
tion of entity-type descriptions to address the first pathway, while Section 2.2
will dive into the methodology employed to tackle the second.

2.1.1 Leveraging Entity-type Descriptions

Aly et al. [33] propose an innovative approach to address zero-shot NERC.
This approach involves harnessing entity-type descriptions as additional contex-
tual cues to aid the model in identifying previously unseen entity-types during
the training phase. During the testing phase, the model is provided with two
key inputs: a sentence and a set of target entity classes, each accompanied by
a corresponding description. The primary objective is to recognize and clas-
sify entities within these target classes. The significance of these descriptions
becomes evident when considering the example depicted in Figure 2.1.

To operationalize this concept, Aly et al. propose an architectural framework
for NERC that employs cross-attention mechanisms between the input sentence
and the entity-type descriptions, leveraging transformer models [14]. The
implementation of cross-attention allows entities like Shantou Harbour to
attend to relevant information within the type description of the Facility class,
thereby generating representations that encapsulate the contextual relationship

2.2. Towards Affordable LLMs 19

Figure 2.1: Zero-shot named entity recognition and classification. Source: [33].

When presented with the input sentence Shantou Harbour, a natural river

seaport, opens to the South China Sea and a target class Facility,

and armed with a description like Names of human-made structures:

infrastructure (streets, bridges), [...], the model can establish a connection

between the class Facility and the specific entity Shantou Harbour without relying

on annotated examples encountered during training.

between the entity and its associated description within the sentence.
For a more comprehensive understanding of this approach, further insights

will be presented in Chapter 3.

2.2 Towards Affordable LLMs

Our primary goal is to develop a framework that enhances the performance
of language models in performing NERC in a zero-shot setting, with a specific
emphasis on domain-specific scenarios. As previously discussed, in the zero-
shot approach, models must make the most of their existing knowledge to
classify entities that were not encountered during the training phase, especially
when dealing with specific and complex entities. LLMs can be particularly
valuable in this context because they possess a wealth of knowledge that can

20 Chapter 2. Related Work

be leveraged to achieve this objective. One of the most significant challenges
associated with LLMs is their high cost and resource-intensive training process.
To address these deployment challenges, practitioners often opt for deploying
smaller specialized models using one of two common paradigms: fine-tuning or
knowledge distillation (KD).

The primary distinction between these approaches lies in the way the
model is trained. Fine-tuning involves training our model on a human-labeled
dataset, refining its parameters to adapt to a specific task. On the other hand,
distillation involves training our model using a dataset generated by LLMs.
Notably, fine-tuning has been evolving towards the direction of Parameter-
Efficient Fine-Tuning (PEFT) [37], which involves training only a subset of the
total model parameters compared to the full fine-tuning approach where all
model weights are updated.

In this section, we will compare PEFT and KD to highlight their differences
and implication.

2.2.1 PEFT

Full fine-tuning necessitates memory not only for model storage but also for
housing various other parameters vital to the training phase. You must also be
able to allocate memory for optimizer states, gradients, forward activations,
and temporary memory throughout the training process (Table 2.1). These
additional components can be many times larger than the model and can
quickly become too large to handle on consumer hardware. For instance, to
train a 1B parameter model at 32-bit full precision, you will need approximately
80 gigabyte of GPU RAM. In contrast to full fine-tuning, where every model
weight is updated during supervised learning, parameter efficient fine-tuning
methods only update a small subset of parameters. Some PEFT techniques
freeze most of the model weights and focus on fine-tuning a subset of existing
model parameters, for example, particular layers or components. This makes
the memory requirements for training much more manageable. In fact, PEFT
can often be performed on a single GPU. Furthermore, traditional full fine-
tuning yields a distinct model version for each task, each with the same size

2.2. Towards Affordable LLMs 21

Component Bytes per parameter

Model Parameters (weights) + 4 bytes
Adam Optimizer (2 states) + 8 bytes

Gradients + 4 bytes
Activation and Temporary Memory + 8 bytes

TOTAL 4 bytes + 20 extra bytes

Table 2.1: Additional RAM GPU needed to train 1B parameters.

as the original model. This approach can lead to storage challenges when
fine-tuning for multiple tasks.

Conversely, PEFT involves training lightweight task-specific weights (only a
few megabytes in size) for each task. These task-specific weights can be easily
swapped during inference, enabling seamless adaptation of the base model
to multiple tasks while addressing storage concerns. Among various PEFT
methods, Low-Rank Adaptation (LoRA) has gained significant popularity in
recent research [38].

2.2.2 LoRA

LoRA is a technique that streamlines the fine-tuning process by reducing
the number of parameters that need training. This is accomplished by pre-
serving the original model’s parameters as frozen while introducing a pair of
rank decomposition matrices (Figure 2.2a). The dimensions of these compact
matrices are set so that their product forms a matrix with the same dimensions
as the weights they are intended to modify. The original weights of the LLM
remain fixed, while the smaller matrices undergo training. During inference,
the two low-rank matrices are multiplied together, yielding a matrix with the
same dimensions as the frozen weights. This product is then added to the
original weights, effectively updating them in the model. Consequently, a LoRA
fine-tuned model is obtained, specialized for the desired task. Importantly,
this fine-tuned model retains the same parameter count as the original model,
ensuring minimal to negligible impact on inference latency. Figure 2.2b shows

22 Chapter 2. Related Work

(a) Low-rank decomposition of
initial weights. Source: [38].

k
512

64

d

Transformer
Vaswani et al.

LoRA with
rank r = 8

Total params
(r x k) + (d x r) =

(8 x 64) + (512 x 8) =
4608

Total params
d x k =

512 x 64 =
32768

512
64

(b) LoRA impact on Transformer architecture.

Figure 2.2: Illustration of Low-Rank Adaptation and its impact.

(a) demonstrates the low-rank decomposition into trainable matrices A and B,
while maintaining the initial pretrained weights frozen. (b) showcases LoRA’s
ability to achieve an impressive 86% reduction in trainable parameters compared
to the standard Transformer architecture.

the actual impact of LoRA over transformer architecture described in Attention
is all you need [14], leading to a reduction of 86% of trainable parameters.

2.2.3 QLoRA

In recent times, there has been a significant push in research towards making
LLMs more accessible and efficient. This effort has led to the development of
QLoRa [39], a groundbreaking advancement that enables users to run models
with exceptional efficiency, utilizing 4-bit precision. QLoRA achieves this
by employing 4-bit quantization to compress a pretrained language model.
In this process, the parameters of the LLM are quantized to 4-bit precision,
significantly reducing the memory footprint and computational requirements.
These quantized parameters are then locked or frozen in place, preserving their
efficiency gains. To adapt the model for specific tasks, QLoRA introduces a
relatively small number of trainable parameters (a.k.a. Low-Rank Adapters, as
discussed in Section 2.2.2). These adapters are added to the model and are
designed to work in tandem with the quantized pretrained language model.

2.2. Towards Affordable LLMs 23

During fine-tuning, QLoRA efficiently backpropagates gradients through the
frozen 4-bit quantized pretrained language model into the Low-Rank Adapters.
This approach allows users to leverage the benefits of both quantization and fine-
tuning, achieving remarkable efficiency while tailoring the model’s capabilities
to their desired tasks. However, it’s crucial to consider certain practical
implications of (Q)LoRA. During inference, (Q)LoRA mandates the complete
loading of the entire model into memory, even when dealing with models
that have billions of parameters. Additionally, as LoRA constitutes a form
of fine-tuning, it relies on human-labeled data for implementation. As we
have emphasized throughout our discussion, domain-specific scenarios often
grapple with a scarcity of available labeled data. This constraint underscores
the compelling choice of KD as the most natural and pragmatic solution for
our specific case. KD enables us to harness existing knowledge, including the
valuable insights encoded within LLMs, without the stringent requirement for
extensive domain-specific labeled data.

2.2.4 Knowledge Distillation

KD is a general-purpose method for training a smaller student model to
mimic the behavior of a slower, larger, but better-performing teacher [40, 41].
Originally introduced in 2006 in the context of ensemble models [42], it was
later popularized in 2015 by Hinton et al. [41] that generalized the method
to deep neural networks and applied it to image classification and automatic
speech recognition. Given the trend toward pre-training language models with
ever-increasing parameter counts, knowledge distillation has also become a
popular strategy to compress these huge models and make them more suitable
for building practical applications [43, 44, 45]. By transferring the knowledge
from a powerful but computationally expensive teacher model to a smaller
student model, knowledge distillation enables the student model to achieve
competitive performance with significantly lower computational requirements.

The process is visually depicted in Figure 2.3. The fundamental concept
behind KD involves enhancing the ground truth labels by incorporating a
distribution of soft probabilities derived from the teacher model. These soft

24 Chapter 2. Related Work

TEACHER STUDENT

training data

Knowledge
Distillation

soft labels

softmax softmax

soft predictions

softmax

hard predictions hard labels
(ground truth)Distillation

Loss
Student

Loss

external
applications

Figure 2.3: Overview of Knowledge Distillation process.

The knowledge distillation process entails a larger Teacher Model, fine-tuned on
training data, guiding a smaller Student Model. The Teacher’s fixed weights generate
predictions for the training data, as does the student. The transfer of knowledge
between the teacher and the student is based on minimizing the distillation loss,
achieved by introducing a temperature parameter t (typically t > 1) to broaden
the softmax distribution (see Section 1.5.5). Simultaneously, the student refines its
predictions using ground truth data without temperature adjustment. The student
loss, which represents the gap between the student predictions and the ground truth, is
computed. The combined distillation and student losses serve to update the student’s
weights via backpropagation.

probabilities are essentially a reflection of the teacher’s confidence in its predic-
tions and can reveal nuanced relationships between different intents or classes.
When the teacher assigns high probabilities to multiple intents, it suggests that
these intents are not only relevant, but might also be close to each other in the
feature space. By training the student model to mimic these soft probabilities,
we aim to transfer some of the dark knowledge embedded in the teacher’s pre-
dictions. This dark knowledge encompasses valuable insights, such as intra-class
relationships or fine-grained distinctions, which go beyond what can be learned
from the standard hard labels provided in the training data. In essence, KD

2.2. Towards Affordable LLMs 25

enables the student model to leverage the teacher’s expertise, making it more
adept at capturing intricate patterns. This specific variant of KD, in practice,
is often more effective for encoder-only models like BERT, especially when the
teacher model has a lot of representation redundancy. This is because encoder-
only models tend to capture valuable semantic and contextual information in
their representations, which can be effectively distilled into a smaller model.

2.2.5 Sequence-level Knowledge Distillation

Figure 2.4: Sequence-level KD.
In sequence-level distillation, the student

network is trained on the output from

beam search of the teacher network that

had the highest score. Source: [46].

For sequence-to-sequence or genera-
tive models, the concept of sequence-
level distillation was introduced by
Kim and Rush [46]. The student is
trained on the teacher-generated data,
which is the result of running beam
search and taking the highest-scoring
sequence with the teacher model (Fig-
ure 2.4). This approach involves gen-
erating a synthetic output by perform-
ing inference with the teacher model,
which is then used to train the student
model. Sequence-level distillation is
efficient as it only requires running
the typically large teacher model once.
Prior studies have highlighted the suc-
cess of sequence-level distillation. For
instance, Costajussà et al. [47] effectively employed sequence-level distillation
to shrink the size of NLLB, a machine translation system, to just 600 million
parameters. Similarly, Wu et al. [48] utilized a sequence-level distillation
strategy, training multiple decoder-decoder and decoder-only models on a mas-
sive dataset of 2.58 million examples generated by gpt-3.5-turbo. The results
demonstrate performance comparable to Alpaca [49], despite the significantly
smaller size of the models.

26 Chapter 2. Related Work

Figure 2.5: Two input prompt examples for generating annotated datasets with
GPT-3. Source: [50].

The image demonstrates how GPT-3 can be leveraged to annotate an unsupervised
dataset. Each prompt consists of n labeled data points for n-shot learning, along with
the task input for label generation.

2.2.6 Machine-to-Corpus-to-Machine Paradigm

Recent publications have moved away from directly imitating teacher prob-
abilities. Instead, similar to us, they adopt a machine-to-corpus-to-machine
paradigm, wherein models are trained using substantial volumes of annotations
generated by LLMs [4, 50, 51, 52, 53, 54]. The larger teacher model is used to
generate a training dataset with noisy pseudo-labels, while the smaller student
model is trained over the newly generated data. This approach leverages the
power of LLMs to create annotations for unlabeled data (Figure 2.5), which are
then utilized to train other models. These surrogate annotations, while not
originating from human annotators, serve as valuable proxies for ground truth
in scenarios where labeled data is scarce or absent. Thus, it is no surprise that
this new paradigm has found resonance in our research work by bridging the
gap of missing labeled data through the guidance of LLM-generated annota-
tion. Moreover, the machine-to-corpus-to-machine paradigm is well-suited for
harnessing the rich knowledge reservoirs possessed by LLMs. These models can
distill their nuanced understanding of language and domain-specific intricacies
into the generated annotations, imbuing the student model with a deeper and
more sophisticated comprehension of the task at hand. The one limitation that
this approach often faces is its reliance on large amounts of unlabeled data
required to create a useful noisy training dataset.

2.3. The Pile 27

2.3 The Pile

Recent advancements in the realm of general-purpose language modeling
have highlighted the effectiveness of training massive models on extensive
text corpora to enhance their utility in downstream applications [55, 56, 57].
Furthermore, research has underscored the pivotal role of augmented training
dataset diversity in bolstering the overall cross-domain knowledge and down-
stream generalization capabilities of large-scale language models [57, 58, 59].
In response to this perspective, the Pile dataset has been introduced [60].
Comprising an impressive 825.18 GiB of English text data, the Pile dataset
has been meticulously crafted to facilitate the training of large-scale language
models. It amalgamates 22 diverse and high-quality datasets, encompassing
both well-established NLP datasets and a collection of novel additions. In
addition to its primary role in facilitating the training of LLMs, the Pile dataset
assumes an equally significant role as a comprehensive benchmark for evaluating
the cross-domain knowledge and generalization capabilities of language models.
In the context of our current work, our focus has primarily centered on a
specific subset of the Pile dataset: PubMed Abstracts. This subset comprises
abstracts extracted from a staggering 30 million publications in PubMed, a
prominent online repository for biomedical articles managed by the National
Library of Medicine. Notably, PubMed also encompasses MEDLINE, extending
its coverage to encompass biomedical abstracts dating back to 1946. As we
will expound upon in Section 3.3.4, this dataset has proven to be of paramount
importance in our distillation process. It not only encompasses entities per-
tinent to the biomedical domain but also encapsulates entities from various
domain-specific contexts. This diverse representation enhances the adaptability
of our zero-shot model to novel domains.

2.4 BLOOM

BLOOM is a large multilingual language model introduced by the BigScience
project [61]. It represents a pioneering 176-billion-parameter open-access lan-
guage model. It stands as a testament to the collaborative efforts of a global

28 Chapter 2. Related Work

community of over a thousand researchers hailing from +70 countries and
+250 institutions. This colossal decoder-only Transformer model was metic-
ulously trained on the ROOTS corpus, an extensive dataset encompassing
a staggering 59 languages, including 46 natural languages and 13 program-
ming languages. Notably, BLOOM’s release marked a significant milestone,
especially for languages like Spanish, French, and Arabic, where it became
the first language model to breach the 100-billion-parameter threshold. The
extensive pre-training phase spanned 117 days, reflecting the dedication and
perseverance of the research community. BLOOM has demonstrated its mettle
by achieving competitive performance across a diverse range of benchmarks,
further solidifying its status as a pivotal asset in natural language understand-
ing. In our research, we harnessed BLOOM as the teacher model in our
knowledge distillation process, leveraging its expansive language coverage and
formidable capabilities. This strategic choice allows us to effectively transfer
its vast pre-trained knowledge to smaller models like BERT, thereby enhancing
their performance in zero-shot NERC. In the upcoming chapters, we delve into
the rationale behind selecting BLOOM over other LLMs and provide deeper
insights into its advantages in our specific research context.

Chapter 3

Method

We propose that LLMs contain valuable prior knowledge, potentially reduc-
ing the need for extensive human-labeled data for training SLMs. Expanding
on this concept, we present JUICER, a novel framework designed to bolster
SLMs’ zero-shot NERC capabilities through KD from LLMs (Figure 3.1).

Figure 3.1: The Juicer framework.

First, we leverage a frozen
LLM to craft a comprehensive
and diverse domain distillation
dataset via example-guided data
augmentation on raw corpora,
bridging the gap left by man-
ual annotation. To counter-
act the excessive confidence of
the LLM and mitigate hallucina-
tion concerns, we propose multi-
ple verification strategies to nor-
malize pseudo-labels and filter
out meaningless cases. Subse-
quently, we follow a two-stage
KD pipeline in which a BERT-
based student model is (i) trained to mimic the type-unbounded entity annota-
tions decoded by the teacher LLM on the synthetic dataset and (ii) specialized
on the downstream NERC domain.

29

30 Chapter 3. Method

To fulfill the ZSL constraints [12], we meticulously prevent any overlap
between entity classes across training, validation, and test sets, reserving the
rarest types for evaluation. Importantly, we incorporate textual descriptions
of target entity-types as a supplementary input signal. Their representations
are merged with the provided sentence through cross-attention, allowing SLMs
to better disambiguate and make informed predictions about classes not seen
during training. To this end, we further exploit LLMs to automatically generate
entity-type descriptions with a multiview domain-aware technique. As antici-
pated during the introduction, we tested our method with the zero-shot-adapted
versions of three widely used NERC datasets: MedMentions [9], OntoNotes 5.0
[10], and LegalNER [11]. We focus our distillation procedure on biomedicine,
testing adaptability to the other domains.

3.1 Task Definition

We formulate NERC as a sequence labeling task. Given a sentence s =

{t1, . . . , tn} comprising n tokens and a description dc for each entity class
c ∈ Ctest in the test set, we predict a sequence of annotations ŷ ∈ (Ctest)n. The
classification of a token at position i is determined by argmaxc∈Ctest Fθ(s, ti,dc),
where F models the semantic affinity between ti and dc in the context of s.
Parameters θ must be acquired without labeled data for Ctest, but with labeled
data and descriptions for training classes in Ctrain. Juicer augments the
training data with a wealth of LLM-generated examples; each input-output pair
<s̃, ỹ> refers to a sentence s̃ from an external corpus R and a target sequence
ỹ linked to a large volume of artificial classes C̃ and their descriptions. Note
that C̃ ∩ Ctrain ∩ Cdev ∩ Ctest

= ∅.

3.2 Teacher Model Selection

The first step of our work was to define the best suited LLM for our purposes.
We tested four LLMs as potential knowledge distillation teacher networks:

• Flan-T5-xxl, 11B, [62], T5 [22] encoder-decoder model fine-tuned on a

3.3. Synthetic BIO-format Dataset 31

mixture of +1,000 tasks.1

• Flan-UL2, 20B, encoder-decoder model based on the T5 architecture,
trained on a collection of datasets via Flan prompting [63]. It is initial-
ized with the UL2 checkpoint [64], which combines various pre-training
paradigms together (Mixture-of-Denoisers).2

• BLOOM [61], 176B, open source GPT-3 [57], autoregressive decoder-only
model for next token prediction trained on 46 different languages and 13
programming languages (Section 2.4).3

• BLOOMZ [65], 176B, BLOOM model fine-tuned on crosslingual task
mixture.4

We contrasted their performances in zero-shot NERC proficiency and term
description generation. Testing LLMs in entity-mention descriptions rather than
entity-class ones was a strategic decision to precisely gauge their effectiveness.
Given that the mentions provide a richer and more detailed perspective than
class-oriented assessments, this strategy enabled us to capture the intricacies
and variations within the data. Bloom surfaced as the sole LLM demonstrating
precise adherence to multi-task prompts (Table 3.1) while crafting rich term
descriptions (Table 3.2). Table 3.3, instead, shows all the experimented prompts
for each task.

3.3 Synthetic BIO-format Dataset

The following paragraphs break down the LLM-to-dataset workflow, visually
summarized in Figure 3.2. Orienting our focus to biomedicine, we set R by
randomly sampling 50K instances5 from the PubMed Abstracts subdataset
of the Pile (Section 2.3), which includes the abstracts of PubMed/MEDLINE
publications from 1946 to the present day (English language). Although Juicer

1https://huggingface.co/google/flan-t5-xxl
2https://huggingface.co/google/flan-ul2
3https://huggingface.co/bigscience/bloom
4https://huggingface.co/bigscience/bloomz
5A number of passages known to be sufficient for satisfactory NERC distillation [2].

https://huggingface.co/google/flan-t5-xxl
https://huggingface.co/google/flan-ul2
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloomz

32 Chapter 3. Method

Prompt Flan-T5 Bloom
List me the entities and the corresponding
class within the following sentence:
Ledipasvir-sofosbuvir and sofosbuvir plus
ribavirin in patients with chronic hepatitis
C and bleeding disorders.
Please, use the following output format
as example: entity_1 (Class_1), entity_2
(Class_2), ...

ledipasvir-
sofosbuvir,
sofosbuvir, rib-
avirin

Ledipasvir-
sofosbuvir
(Drug), ribavirin
(Drug), chronic
hepatitis C
(Medical condi-
tion), bleeding
disorders (Medi-
cal condition)

Context: The novel To Kill a Mockingbird by
Harper Lee is a classic of American literature,
telling the story of a young girl named Scout
growing up in the 1930s in the fictional town of
Maycomb, Alabama.
Domain: literature
Named Entities: To Kill a Mockingbird (Literary
work), Harper Lee (Author), American literature
(Literary genre), young girl (Character),
Scout (Character), 1930s (Historical period),
fictional town (Geographic feature), Maycomb
(Geographic feature), Alabama (Geographic
feature)

Context: The Hubble Space Telescope is a
powerful tool used by astronomers to observe
the universe from Earth’s orbit, allowing for
high-resolution images of distant galaxies and
other celestial objects.
Domain: astronomy and astrophysics
Named Entities: Hubble Space Telescope
(Scientific instrument), astronomers
(Occupation), universe (Astronomy), Earth’s
orbit (Astrophysics), high-resolution images
(Technology), distant galaxies (Astronomy),
celestial objects (Astronomy)

Context: Ledipasvir-sofosbuvir and sofosbuvir
plus ribavirin in patients with chronic
hepatitis C and bleeding disorders
Domain:

Named Entity:
Hepatitis C
Named Entity:
Hepatitis C virus
(HCV)
Named Entity:
Hepatitis C
(Virus)
Named Entity:
Ledipasvir-
sofosbuvir,
cirrhotic, geno-
type 1
Named En-
tity: hepatitis
C, Treatment,
Sofosbuvir,
Rivabrin

Domain:
medicine
Named Entities:
Ledipasvir-
sofosbuvir
(Drug), ribavirin
(Drug), chronic
hepatitis C
(Medical condi-
tion), bleeding
disorders (Medi-
cal condition)

Table 3.1: Large Language Model comparison on prompt completion.

While Flan-T5 does not exhibit the capability to simultaneously handle multiple
tasks, such as named entity recognition, named entity classification, and domain
classification, BLOOM demonstrates proficiency in handling both two tasks and three
tasks concurrently.

3.3. Synthetic BIO-format Dataset 33

Term Flan-T5 Flan-UL2 Bloom BloomZ
headache a severe pain in the

head
a pounding pain in
the head

It is a common
and complex dis-
order that is as-
sociated with sig-
nificant disability,
reduced quality of
life, and high eco-
nomic burden.

headache is a com-
mon symptom

intranasalThe passage of an
object or substance
into the nose.

Breathing in an ob-
ject or substance
through the nose.

Intranasal is a term
that describes a
drug that is ad-
ministered into the
nasal cavity. It
is often used to
describe a nasal
spray, nasal drop,
or nasal gel.

The drug is
administrated
intranasally, mean-
ing it is sprayed
into the nose.

oxytocin hormone that is re-
leased during sex

The hormone oxy-
tocin is produced
by the pituitary
gland.

Oxytocin is a
neuropeptide
hormone that is
synthesized in the
hypothalamus and
released into the
bloodstream. It is
also produced in
the brain, uterus,
and placenta.

The human body
produces a hor-
mone called oxy-
tocin. The hor-
mone is released
during orgasm.

trigeminal
ganglia

The trigeminal
ganglia is a group
of three ganglia,
each located in the
cranium.

There are three
ganglia in the
skull known as the
trigeminal ganglia.

The trigeminal
ganglion (TG) is a
collection of nerve
cell bodies located
in the trigeminal
ganglion fossa,
which is a small
dural depression
on the lateral as-
pect of the middle
cranial fossa.

A ganglion is a col-
lection of nerves.
The trigeminal gan-
glia are the collec-
tion of nerves that
control the facial
muscles.

Prompt: Question: In {{domain}}, what is {{term}}? Answer:

Table 3.2: Large Language Model comparison on term description generation.

34 Chapter 3. Method

ID Prompt
1 Named Entity Recognition
1.1 Context: {{sentence}}

List me all the entities:
1.2 Context: {{sentence}}

Entities:
1.3 Context: {{sentence}}

List me all the terms:
1.4 Context: {{sentence}}

Terms:
1.5 Which are the entities in the following sentence? {{sentence}}
1.6 Which are the terms in the following sentence? {{sentence}}
1.7 Which are the most relevant entities in the following sentence? {{sentence}}
1.8 Which are the most relevant terms in the following sentence? {{sentence}}
1.9 Question: Which are the relevant terms inside the following sentence? {{sentence}}

Answer:
2 Named Entity Classification
2.1 Context: {{sentence}}

Term: {{term}}
Category:

2.2 Term: {{term}}
Category:

2.3 Term: {{term}}
Class:

2.4 Context: {{sentence}}
Question: What is the category of the following term? {{term}}
Answer:

2.5 Question: What is the category of the following term? {{term}}
Answer:

2.6 Question: What is the class of the following term? {{term}}
Answer:

2.7 Context: {{sentence}}
Question: To what category {{term}} belongs to?
Answer:

2.8 Question: To what category {{term}} belongs to?
Answer:

2.9 Question: To what class {{term}} belongs to?
Answer:

3 Multi-Task
3.1 List me the entities and the corresponding class within the following sentence:{{sentence}}.

Please, use the following output format as example: entity_1 (Class_1), entity_2 (Class_2), ...
3.2
∗

Context: The novel “To Kill a Mockingbird” by Harper Lee is a classic of American literature,
telling the story of a young girl named Scout growing up in the 1930s in the fictional town of
Maycomb, Alabama.
Domain: literature
Named Entities: To Kill a Mockingbird (Literary work), Harper Lee (Author), American literature
(Literary genre), young girl (Character), Scout (Character), 1930s (Historical period), fictional
town (Geographic feature), Maycomb (Geographic feature), Alabama (Geographic feature)

Context: The Hubble Space Telescope is a powerful tool used by astronomers to observe the
universe from Earth’s orbit, allowing for high-resolution images of distant galaxies and other
celestial objects.
Domain: astronomy and astrophysics
Named Entities: Hubble Space Telescope (Scientific instrument), astronomers (Occupation),
universe (Astronomy), Earth’s orbit (Astrophysics), high-resolution images (Technology), distant
galaxies (Astronomy), celestial objects (Astronomy)

Context: {{sentence}}
Domain:

3.2.N Different number of BLOOM-generated in-context learning examples (i.e., k = 1, 3, 4, 5).

Table 3.3: Experimented prompts during Teacher Model selection.

3.3. Synthetic BIO-format Dataset 35

Context: The Hubble Space Telescope is a powerful tool used by
astronomers to observe the universe from Earth's orbit, allowing for high-
resolution images of distant galaxies and other celestial objects.
Domain: astronomy and astrophysics
Named Entities: Hubble Space Telescope (Scientific instrument),
astronomers (Occupation), universe (Astronomy), Earth's orbit
(Astrophysics), high-resolution images (Technology), distant galaxies
(Astronomy), celestial objects (Astronomy)In

-c
on

te
xt

 le
ar

ni
ng

ex
am

pl
es

Domain: medicine
Named Entities: Ledipasvir-sofosbuvir (Drug),
plus (Coordinating Conjunction) ❌, ribavirin (Drug),
chronic hepatitis C (Medical condition), bleeding
disorders (Medical condition)

Temp

["Ledipasvir-sofosbuvir", "and", "sofosbuvir",
"plus", "ribavirin", "in", "patients", "with", "chronic",
"hepatitis", "C", "and", "bleeding", "disorders", "."]

["Drug", "O", "O", "O", "Drug", "O",
"O", "O", "MedC", "MedC", "MedC",
"O", "MedC", "MedC", "O"]

Drug

Consider the top-k occurrent domains; e.g., k=2

Question: In medicine, what is drug?
Answer:

Context: Ledipasvir-sofosbuvir and sofosbuvir plus ribavirin in
patients with chronic hepatitis C and bleeding disorders.

Drug is any chemical substance which, when administered to
an organism, alters its physiological functions.

Drug is a substance that is used to treat disease or to prevent
illness in humans or other animals. A drug may be a natural
product, such as an extract from a plant, or may be a synthetic
compound. Drugs can be administered in many ways.

Question: In pharmacology, what is drug?
Answer:

Figure 3.2: Juicer pipeline for dataset construction.

The image illustrates the Juicer pipeline for constructing the transfer dataset (i.e.,
silver entity labels and type descriptions). Reported examples are from the Pile PubMed
Abstracts. The white boxes denote LLM prompts. ⊕ stands for string concatenation.

is model-agnostic, we select BLOOM-176B as the LLM teacher.6

3.3.1 Prompt-based Tagging

We approximate expert labelers by few-shot prompting [57] on an off-the-
shelf LLM. We run sentence segmentation on top of R, resulting in a total of
≈600K transfer sentences. Then, we curate a prompt template to simultane-
ously operate (i) entity recognition, (ii) entity classification, and (iii) domain

6Please note that at the time of building the transfer dataset, BLOOM had the distinction
of being the largest Open LLM available and one of the top-notch LLMs in general (FALCON

and LLaMa were not yet published). With 1.6TB of preprocessed text, BLOOM was also
one of the LLMs trained with more data, making it perfect for this work [66, 67]. We also
tested smaller LLMs to contrast the results and preferred Bloom for its ability to handle
multi-task prompts and produce more accurate descriptions.

36 Chapter 3. Method

extraction (see Table 3.1). The prompt starts with k packed demonstrations,
which serve to regulate the output format—vital for parsing—and provide direct
evidence about the task. In light of rigorous prompt engineering, Context:
[sentence]\n Domain: [keyword]\n Named Entities: [mention (label)]
emerges as our preferred choice. After the demonstration, an incomplete in-
stance is appended, asking the LLM to infer missing domain and entity tags.
We shape our data under an open-world assumption, liberating the LLM from
predefined entity-types, thus maximizing C̃ coverage. Drawing from empirical
findings, we set k = 2; we maintain zero-shot constraints by incorporating
general off-target examples from BLOOM itself.

3.3.2 Filtering

We devise a series of critic rules to control the accuracy and confidence of
the knowledge being transferred:

• We exclude sentences accompanied by improperly formatted generations
or without any positive annotations—1.44% of the total.

• We filter out recognized entities not mentioned in the input sentence.
• We remove entities with a mention solely composed of stopwords, verbs,

conjunctions, or prepositions.
• We use lemmatization to tackle the complexity arising from entity men-

tions having different labels, such as synonyms or inflected forms. For
example, patients, male patient, and old patients can all be assigned to the
root patient. To contain distillation classes and mitigate inconsistencies,
we normalize the predicted labels with the most frequent class for each
lemma at the corpus level; in the event of a tie for rank 1, the decision is
made randomly.

• We discard irrelevant entity classes with only one occurrence (e.g., 21, ®,
+/), ≈500 cases.

3.3.3 BIO-format Instances

We parse the filtered LLM output and represent named entities in BIO
format (see Section 1.1). Since the LLM thrives on free generation, the derived

3.3. Synthetic BIO-format Dataset 37

annotations are not accompanied by offset indices communicating their token
position in the original sentence. When a predicted entity mention repeatedly
occurs in the input, all mention tokens receive the same class. Any predicted
entity-type overlapped with Ctrain, Cdev, or Ctest is overwritten with the negative
class (O).

3.3.4 Data Statistics
,

Property Distributions

sentences entity-type distribution

0 0.2 0.4 0.6 0.8 1·104
100
102
104
106

domain distribution

0 500 1,000 1,500 2,000 2,500
100
101
102
103

591,363

entities
2,063,280

distinct entity-types
10,273

distinct mention–type links
806,525

distinct domains
2,813

Frequency Entity-types
Top 1%
(82%)

Biological process, Medical condition, Medical procedure, Occupation, Chemical
compound, Disease, Protein . . .

2%–10%
(15%)

Environmental hazard, Sleep disorder, Book, Edition, Ability, Public health
intervention, Drink . . .

11%–100%
(3%)

Plant process, Anatomical entity, Biomedical field, Health care technology,
ECG finding, Habit, Political science . . .

Frequency Domains
Top 1%
(33%)

medicine, biochemistry, psychology, oncology, neuroscience, microbiology, phar-
macology . . .

2%–10%
(48%)

ecology, virology, molecular biology, nursing, orthopedics, pediatrics, obstetrics
and gynecology . . .

11%–100%
(19%)

pharmacovigilance, medicinal chemistry, human computer interaction, social
media, food and drink . . .

Table 3.4: Pseudo-label statistics.

Table 3.4 analyzes our transfer BIO-format dataset. The distributions of
entity-types and domains exhibit a pronounced heavy-tailed pattern, where the
top 1% accounts for 82% and 33% of the cumulative frequencies, respectively.
Although primarily anchored in biomedicine, we unveil a broad spectrum of
classes that span various disciplines. Among these, are politics, law, finance,
literature, history, music, and math. A noteworthy observation is the existence

38 Chapter 3. Method

of granularity variations within particular entity-types, e.g., Protein and Gene
are subsets of Biological entity. These attributes greatly enhance the dataset’s
potential to universally capture LLM capabilities.

3.4 Entity-type Descriptions

As extra guidance during F training, descriptions establish a more explicit
connection between ti and the expected class yi. For instance, given a sentence
Pantoprazole is commonly prescribed to reduce stomach acid production and
a class Drug, the description Drug is any chemical substance which, when
administered to an organism, alters its physiological functions can help the
model to make the clue, even without previous exposure to training examples.
Plural domains could offer separate definitions for a specific class, granting
more opportunities to absorb LLM knowledge. For this reason, we devise a
prompting technique oriented to multi-view descriptions. Formerly collected
domain labels are used to count the predominant fields in which each entity-type
finds mention. For every class ỹ, we request the LLM to generate individual
descriptions linked to the two leading domains (Figure 3.2). Our prompt
template is Question: In [domain], what is [class]? Answer:. Ultimately,
the outputs are concatenated following their ranking sequence. The average
number of tokens per multi-view description is 45.

3.5 Student Network

Our SLM is based on pre-trained BERT-large [13]. Juicer’s F modeling
parallels the cross-attention encoder (X-ENC) presented by Aly et al. [33].
For notational convenience, we use C to refer to target classes, regardless of
whether they come from a gold dataset or are synthetically generated. With
every dc, X-ENC produces a vector representation vi,c ∈ Rh for each token ti

in sentence s:

v1,c, . . . ,vn,c = X-ENC(s,dc), (3.1)

3.6. Training 39

where h = 1024 and the input tuple (s,dc) is structured in the form [CLS] s

[SEP] dc. The vector vi,c is transformed through a learnable linear layer to
quantify the likelihood li,c ∈ R that the token ti belongs to the entity class c:

li,c = vi,c ⋅ ω
T
+ b. (3.2)

In the quest to identify entities other than classifying them, we append the
token scores with the likelihood of belonging to the negative class cneg:

li = (li,c1 ; . . . ; li,c∣C∣ ; li,cneg
). (3.3)

To derive cneg, we use the same class-aware encoding as in [33]. After undergoing
Softmax, the top-scoring class is chosen.

3.6 Training

The Juicer distillation process unfolds in two stages, in which the model
is first trained on the vast LLM-generated data and then specialized with a few
supervised data. We call these steps Knowledge Pre-training and Knowledge
Fine-tuning, shortened KP and KF. In both cases, we manage the label imbal-
ance induced by cneg by incorporating class weights qc into the cross-entropy
loss:

L = −
C

∑
c

qc ⋅ yi,c ⋅ log(p(ŷi,c)), (3.4)

where yi,c is the truth label and p(yi,c) is the Softmax probability for class
c. We consistently set q to 1 for positive classes, while for the negative class,
we fine-tune it as a hyperparameter, taking the ratio # entities

non-entity words
in the

training data as a reference factor. Given the small number of consecutive
entities belonging to the same class (≈ 1.22% on average across all datasets),
we remove all I- and B- prefixes, resulting in a single label per entity class. We
employ two regularization techniques. First, during training, we selectively
obscure the entire entity to be classified from the input s with a probability mp

tuned as a hyperparameter. Entity masking prevents X-ENC from overfitting
and stimulates the model to internalize the entity context for affinities with
class descriptions. Second, at each KP step, we only treat a random assortment

40 Chapter 3. Method

Disease
Symptom
Medication
Procedure
Anatomy
Lab Test
Drug
Gene
Mutation
Protein
Pathogen
Allergy
Diagnostic Test
Vaccine
Dosage
Side Effect
Treatment
Clinical Trial
Medical Device
Adverse Event
Body System
Medical Specialty

Disease
Symptome
Anatomy
Drug
Gene
Protein
Pathogen
Allergy
Vaccine
Dosage

Final sub-dataset

Entity-types
extracted randomly

Knowledge
Pretraining

Sub-sampling of original dataset
based on extracted entity-types

n = 10

Figure 3.3: Random entity-type sampling during Knowledge Pre-training.

In each iteration of the pre-training process, a randomly selected subset of entity-types,
typically ranging between 10 and 15 (here n = 10), is chosen. Subsequently, the dataset
undergoes a filtering process, wherein only the data points associated with at least one
entity-type from the selected subset are retained. The model is trained over the new
subset and this iterative process is repeated, with each iteration involving the selection
of a fresh set of entity-types. The primary objective of this approach is to train the
model incrementally by focusing on smaller, manageable subsets of entity-types in
each iteration. By doing so, we ensure that the model acquires expertise in a phased
manner, gradually expanding its knowledge base over multiple iterations.

of entity-types, ranging between 10 and 15 (Figure 3.3). Subsequently, we filter
the original dataset to retain only those data points associated with at least
one of the extracted entity-types. If this results in an excess of data points,
we set an upper limit of 50k samples, selecting them randomly in such cases.
Any other positive tags outside the extracted entity-types are reclassified as
negative (’O’). Iteratively exposing the SLM to different subsets of entity-types
contributes positively to the target and domain adaptability, aligning well with
the zero-shot NERC mission.

Chapter 4

Experimental Setup

4.1 Datasets

To gauge Juicer holistically, we conduct experiments on three hetero-
geneous English NERC datasets: MedMentions [9], OntoNotes 5.0 [10], and
LegalNER [11]. MedMentions (CC0 license) holds 4K biomedical abstracts and
a fine-grained class ontology rooted in the Unified Medical Language System
(UMLS). OntoNotes 5.0 (LDC license) is a large-scale multigenre corpus tar-
geting domain-general entity-types, including values. LegalNER (MIT license)
annotates Indian court judgments published between 1950 and 2022. Building
on the recommendations of Xian et al. [12], we create zero-shot adapted versions
of these benchmarks (identified by the -ZS suffix). In pursuit of this, we adhere
to the conversion protocol suggested by Aly et al. [33], alternatively leaving
the rarest classes in the dev and test sets. The chosen types are guaranteed to
be not trivial to recognize; we omit classes whose surface form displays regu-
lar patterns (e.g., Percent, Date). Annotations on split-disconnected classes
are eliminated. An overview of the data distribution is shown in Table 4.1
and Figure 4.1. Regarding class description sources, we draw on the UMLS
Metathesaurus for MedMentions and annotation guidelines for OntoNotes and
LegalNER.

41

42 Chapter 4. Experimental Setup

MedMentions-ZS OntoNotes-ZS LegalNER-ZS
Train Dev Test Train Dev Test Train Dev Test

sentences 26,770 1,289 1,048 41,475 1,358 387 6,615 1,150 1,450
words ♠ 701,070 37,297 29,783 1,072,041 39,349 11,145 469,231 43,258 51,973
entities 113,158 1,710 1,430 86,927 1,735 480 16,175 1,445 1,998
compound entities 51,264 837 705 51,481 516 469 15,528 1,237 1,987
consecutive entities of same class 2,787 5 14 339 11 0 154 7 6
♠ Yielded with NLTK [68].

Table 4.1: Comparative overview of zero-shot datasets.

B
IO

.
F
U

N
C

.

C
H

E
M

IC
A

L

H
E
A

L
T

H
.
A

C
T

.

A
N

A
T

.
S
T

R
U

C
T

.

F
IN

D
IN

G

S
P
A
T

.
C

O
N

C
.

IN
T

E
L
.
P
R
O

P
.

R
E
S
E
A

R
C

H
A

C
T

.

E
U

K
A

R
Y

O
T

E

P
O

P
.
G

R
O

U
P

M
E
D

.
D

E
V

IC
E

O
R
G

.

IN
J
.
O

R
P
O

IS
.

C
L
IN

.
A
T

T
R

.

V
IR

U
S

O
C

C
.
O

R
D

IS
C

.

B
A

C
T

E
R

IU
M

P
R
O

F
.
O

R
O

C
C

.

F
O

O
D

B
O

D
Y

S
U

B
S
T

.

B
O

D
Y

S
Y

S
T

E
M

10
1

10
2

10
3

10
4

2
5
0
0
7

2
2
3
6
0

1
4
7
7
9

1
2
5
7
5

9
8
2
4

7
5
1
1

5
9
9
6

5
4
4
5

4
9
2
2

3
5
7
4

1
1
6
5

4
5
2

4
3
4

4
0
4

2
2
4

1
9
6

4
4
8

3
6
0

3
2
1

2
1
2

8
9

P
E
R

S
O

N

O
R
G

G
P
E

D
A
T

E

N
O

R
P

P
R
O

D
U

C
T

E
V

E
N

T

L
A
W

L
O

C

W
O

R
K

O
F

A
R
T

F
A

C

10
1

10
2

10
3

10
4

2
2
0
3
5

2
4
1
6
3

2
1
9
3
8

1
8
7
9
1

1
2
7
7

2
1
4

1
7
9

6
5 1
7
9

1
6
6

1
3
5

R
E
S
P
O

N
D

E
N

T

P
E
T

IT
IO

N
E
R

O
T

H
E
R

P
E
R

S
.

C
O

U
R
T

L
A
W

Y
E
R

P
R
O

V
IS

IO
N

O
R
G

J
U

D
G

E

S
T
A
T

U
T

E

G
P
E

W
IT

N
E
S
S

P
R

E
C

E
D

E
N

T

C
A

S
E

N
U

M
B
E
R

10
1

10
2

10
3

10
4 3

3
5
8

2
7
7
2

2
7
0
2

2
6
0
0

2
4
9
8

2
2
4
5

8
1
6

3
3
3

2
9
6

5
6
9

5
2
8

5
0
5

3
9
6

(train set, dev set, test set)

Figure 4.1: Class occurrences in {MedMentions/OntoNotes/LegalNER}-ZS.

4.2. Metrics 43

4.2 Metrics

We address the challenge of sample imbalance between classes by employing
per-class averaged scores. Thus, our model evaluations include macro-averaged
precision, recall, and F1 metrics, assessed at both token and span levels. At the
token level, we evaluate the model’s ability to correctly classify individual tokens
within the text, allowing us to assess fine-grained performance across all tokens.
Conversely, at the span level, we assess the model’s capability to correctly
identify and classify entire spans or sequences of tokens that represent named
entities or specific linguistic structures. Span-level evaluation provides insights
into the model’s ability to capture broader context and semantic meaning
within the text. This dual evaluation ensures a comprehensive assessment of
model performance, accounting for variations in class distribution and providing
a balanced view of its effectiveness across different levels of granularity.

4.3 Baselines

We head-to-head compare Juicer with SLMs and LLMs, considering two
scenarios: fine-tuned on the benchmark dataset’s training set and left in a
pure zero-shot configuration. We begin by comparing Juicer to SMXM [33].
SMXM is based on the BERT-large model, comparable to Juicer without KP.
Due to inconsistencies, we re-compute all metrics. There are three primary
motivations for this: (i) After re-building non-public SMXM -ZS datasets,
we register discrepancies in entity occurrences. (ii) There is no possibility of
verifying the actual descriptions used by the original work. (iii) The authors
employ different hyperparameters depending on the dataset, including batch
size values exceeding our hardware capabilities. This re-evaluation addresses
these concerns and allows for a more accurate comparison.

On the other hand, as extensively discussed in Section 2.2, PEFT emerges
as a compelling alternative to KD. Notably, recent work by Liu et al. [69]
underscores the superior cost-effectiveness of PEFT compared to ICL. While
PEFT incurs higher inference costs than JUICER, the potential for low-rank
adaptation of a more potent LLM suggests the possibility of achieving signifi-
cantly enhanced results. In a practical scenario, we contemplate the utilization

44 Chapter 4. Experimental Setup

of smaller LLM versions, such as the 7B variant of BLOOM, LLaMA 2, and
Falcon. This choice allows us to replicate real-world contexts while harnessing
the efficiency gains offered by QLoRA. However, for the sake of a comprehensive
analysis, we also consider comparing our JUICER model against the largest
versions of BLOOM (176B), LLaMA 2 (70B), and Falcon (40B) in the
context of one-shot ICL.12 Table 4.2 illustrates the prompts adopted for PEFT
and ICL processes with the three LLMs. During Juicer KP, we select the
latest checkpoint for each unseen dev/test evaluation split because the absence
of gold examples prevents us from measuring improvements in a specific domain.

4.4 Implementation Details

We run each experiment on a cluster of OS Linux workstations, using
multiple Nvidia Tesla v100 GPUs with 32GB of dedicated memory. Juicer

is developed using PyTorch 1.9. We execute 30 KP steps, 4 epochs each. A
new set of target classes is extracted at the beginning of each KP step. KP
completion requires 6 days of computation (100K daily processed sentences)
with 8 GPU and a total of 400GB VRAM. KF is performed up to 3 epochs,
with early stopping activated.3 On average, fine-tuning a Juicer model takes
8 hours on a single GPU and 20GB VRAM occupation. In both KP and KF,
we use 2 as batch size and 0.7 as mp; we leave 42 as the default training seed.

4.5 Hyperparameters

For the sake of replicability, complete hyperparameters are provided. Ta-
ble 4.3 lists all hyperparameters examined in the inference and fine-tuning
phases, highlighting the final values. The parameters of the linear classification
layer ωT have been randomly initialized from a uniform distribution U(−

√
b,
√
b)

with b = 1

in-features
. Span-level scores are computed with the seqeval library.4

1During our experiments, Falcon’s 40B version was the largest available; it’s worth noting
that the 180B version is now the largest available.

2Throughout this discussion, we refer to zero-shot LLMs in the context of one-shot ICL.
3We find these training settings sufficient for adequately exemplifying Juicer behavior.
4https://github.com/chakki-works/seqeval

https://github.com/chakki-works/seqeval

4.5. Hyperparameters 45

1 Zero-Shot Large Language Model Baselines
Instruction:
From the input sentence extract instances of the following labels
[FAC, LOC, WORK_OF_ART].
Return the output in the following format:
Entity 1 (label1), entity 2 (label2) ...

Input: In recent years, advanced education for professionals
has become a hot topic in the business community.
Named Entities: recent years (DATE)

###Input: {{sentence}}
Named Entities:

2 QLORA Fine-tuned Large Language Model Baselines (Train set example for
MedMentions-ZS)
Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.

Instruction: From the input context below extract instances
of the following labels: ’Biologic_Function’, ’Chemical’,
’Health_Care_Activity’, ’Anotomical_Structure’, ’Finding’,
’Spatial_Concept’, ’Intellectual_Product’, ’Research_Activity’,
’Eukaryote’, ’Population_Group’, ’Medical_Device’

Input:
DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in
cystic fibrosis

Response:
DCTN4 (Chemical), chronic Pseudomonas aeruginosa infection
(Biologic_Function), cystic fibrosis (Biologic_Function)

Table 4.2: Prompts used in PEFT and ICL processes for 7B and largest versions
of BLOOM, LLaMA 2, and Falcon, respectively.

(1) presents the prompt employed for zero-shot inference using the larger variants of
LLMs. Specifically, we utilize a single example extracted from the training dataset to
steer the LLM’s completion. (2) illustrates the formatted prompt for fine-tuning the
7B models on each respective dataset. In this instance, we provide an example from
the training set used for fine-tuning on MedMentions-ZS.

46 Chapter 4. Experimental Setup

Hyperparameter Search space

BLOOM-176B inference — entities and domains

decoding_method sample
max_new_tokens {50∗, 70, 100}
min_new_tokens 1
stream false
temperature {0.1∗, 0.5, 0.7, 0.8}
top_k {1, 3, 5, 7, 10∗, 20}
top_p {0.7, 0.8, 0.9, 1∗}

BLOOM-176B inference — descriptions

decoding_method sample
max_new_tokens {25, 50∗, 70, 100, 150}
min_new_tokens 1
stream false
temperature {0.1, 0.5∗, 0.6, 0.7, 0.8, 0.9}
top_k {1, 3, 5∗, 7, 10, 20}
top_p {0.7, 0.8, 0.9, 1∗}

BERT-large knowledge pre-training

min_sample_class 10
max_sample_class 1
max_description_length 150
max_sequence_length 300
mask_probability 0.7
num_pretrain_steps 30
linear_dropout 0.5
linear_units_symbol 100
adam_epsilon 1e-8
max_grad_norm 1.0
default 4e-6
epochs 4
batch 2
val_steps 1

BERT-large knowledge fine-tuning

MedMentions-ZS and LegalNER-ZS
max_description_length 100
max_sequence_length 200
OntoNotes-ZS
max_description_length 150
max_sequence_length 300
All
mask_probability {0.3, 0.7∗}
linear_dropout 0.5
linear_units_symbol 100
adam_epsilon 1e-8
max_grad_norm 1.0
lr 4e-6
epochs 3
batch 2
val_steps 1

Table 4.3: Explored hyperparameters along with their empirical search grid.

∗ marks the final picked values.

Chapter 5

Results and Discussion

5.1 Analysis of Results

Our core results are presented in Table 5.1a and Table 5.1b, showcasing
one run per experiment for the test and dev sets, respectively. To prevent
redundancy, our result discussion in this section focuses primarily on the test
set. However, it’s worth noting that the dev set results (Table 5.1b) are fairly
similar, therefore we can safely assume that our models have a reasonable
generalisation power. For a more granular per-class analysis, we refer readers
to Figure 5.1, which provides a detailed breakdown of the results for test set.

In the tables, the term zero-shot represents SML without the KF phase,
while it denotes LLMs that utilize ICL at inference time instead of PEFT. For
clarity, all results discussed in this section will refer to token-level evaluation,
which is the most common approach in NER, as it provides a finer-grained
analysis of model performance.

5.1.1 Juicer vs SMXM

As expected, the zero-shot SMXM, which has not undergone fine-tuning
specifically for zero-shot learning, falls short due to its lack of examples for
the downstream task. In contrast, the zero-shot Juicer model shines brightly,
outperforming the zero-shot SMXM across all three datasets: achieving a
+0.21 macro-F1 improvement on MedMentions-ZS, +0.29 on OntoNotes-ZS,

47

48 Chapter 5. Results and Discussion

(a) Test set results
MedMentions-ZS ♠ OntoNotes-ZS LegalNER-ZS Avg
T S T S T S T S

�
Large Language Models Size ♢ R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 F1 F1

Zero-shot

BLOOM 176B 0.28 0.26 0.14 0.11 0.26 0.11 0.29 0.23 0.22 0.16 0.18 0.14 0.13 0.32 0.17 0.09 0.27 0.13 0.18 0.13 - -
FALCON 40B 0.12 0.53 0.15 0.09 0.53 0.12 0.12 0.37 0.17 0.07 0.19 0.09 0.03 0.68 0.05 0.03 0.67 0.04 0.12 0.08 - -
LLaMA 2 70B 0.21 0.61 0.30 0.17 0.53 0.25 0.67 0.09 0.13 0.06 0.58 0.10 0.24 0.21 0.19 0.17 0.19 0.17 0.21 0.17 - -
Fine-tuned (QLORA)

BLOOM 7B 0.42 0.27 0.30 0.22 0.35 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.04 0.07 0.04 0.25 0.07 0.12 0.11 3.12
FALCON 7B 0.41 0.21 0.25 0.16 0.34 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.02 0.03 0.02 0.29 0.03 0.09 0.08 3.13
LLaMA 2 7B 0.49 0.35 0.39 0.28 0.42 0.33 0.97 0.07 0.11 0.06 0.90 0.09 0.51 0.41 0.39 0.37 0.46 0.38 0.30 0.27 3.10

T S T S T S T S
�

Small Language Models Size R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 F1 F1

Zero-shot

SMXM 345M 0.09 0.02 0.03 0.05 0.01 0.01 0.06 0.04 0.05 0.01 0.00 0.00 0.10 0.02 0.04 0.04 0.00 0.01 0.04 0.01 0.02
Juicer (Ours) ⋅ KP 345M 0.41 0.20 0.24 0.18 0.12 0.14 0.62 0.24 0.34 0.16 0.18 0.17 0.41 0.19 0.23 0.20 0.12 0.13 0.27 0.15 0.02
Fine-tuned

SMXM 345M 0.46 0.19 0.24 0.33 0.11 0.16 0.19 0.18 0.19 0.13 0.09 0.10 0.24 0.25 0.21 0.21 0.22 0.18 0.21 0.15 0.02
Juicer (Ours) ⋅ KP + KF 345M 0.63 0.23 0.31 0.45 0.16 0.23 0.62 0.37 0.46 0.49 0.25 0.33 0.37 0.45 0.38 0.30 0.32 0.31 0.38 0.29 0.02
Cross-domain fine-tuned

Juicer (Ours) ⋅ KP

+ KF (Onto) + KF (Med) 345M 0.43 0.20 0.27 0.38 0.17 0.22 0.65 0.31 0.42 0.45 0.17 0.24 0.32 0.19 0.28 0.38 0.15 0.21 0.32 0.22 0.02
+ KF (Onto) + KF (Leg) 345M 0.37 0.27 0.24 0.19 0.15 0.16 0.34 0.32 0.33 0.28 0.19 0.22 0.34 0.40 0.43 0.39 0.33 0.35 0.33 0.24 0.02
+ KF (Med) + KF (Onto) 345M 0.46 0.22 0.29 0.35 0.16 0.22 0.68 0.43 0.53 0.57 0.29 0.39 0.50 0.23 0.31 0.39 0.21 0.27 0.38 0.29 0.02
+ KF (Med) + KF (Leg) 345M 0.18 0.17 0.13 0.13 0.10 0.10 0.43 0.46 0.44 0.33 0.25 0.27 0.23 0.59 0.37 0.40 0.33 0.36 0.31 0.24 0.02
+ KF (Leg) + KF (Onto) 345M 0.42 0.26 0.23 0.18 0.12 0.14 0.49 0.30 0.37 0.42 0.22 0.28 0.32 0.20 0.29 0.41 0.20 0.27 0.30 0.23 0.02
+ KF (Leg) + KF (Med) 345M 0.29 0.16 0.20 0.26 0.13 0.16 0.52 0.33 0.40 0.37 0.17 0.23 0.26 0.30 0.31 0.42 0.21 0.28 0.30 0.20 0.02

(b) Dev set results
MedMentions-ZS ♠ OntoNotes-ZS LegalNER-ZS Avg
T S T S T S T S

Large Language Models Size ♢ R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 F1 F1

Zero-shot

BLOOM 176B 0.25 0.31 0.21 0.11 0.28 0.14 0.26 0.13 0.15 0.09 0.06 0.07 0.30 0.38 0.33 0.18 0.27 0.21 0.23 0.14
FALCON 40B 0.06 0.36 0.08 0.03 0.27 0.05 0.13 0.31 0.18 0.05 0.12 0.07 0.08 0.33 0.13 0.05 0.25 0.09 0.13 0.07
LLaMA 2 70B 0.29 0.51 0.35 0.19 0.42 0.25 0.06 0.71 0.11 0.04 0.37 0.07 0.43 0.63 0.48 0.34 0.53 0.39 0.31 0.24
Fine-tuned (QLORA)

BLOOM 7B 0.17 0.53 0.19 0.13 0.37 0.15 0.03 0.86 0.05 0.03 0.79 0.06 0.19 0.61 0.28 0.16 0.47 0.23 0.17 0.15
FALCON 7B 0.08 0.34 0.11 0.07 0.26 0.10 0.01 0.77 0.02 0.01 0.65 0.01 0.01 0.28 0.03 0.01 0.18 0.02 0.05 0.04
LLaMA 2 7B 0.25 0.44 0.27 0.20 0.36 0.22 0.29 0.66 0.14 0.27 0.48 0.11 0.42 0.71 0.51 0.35 0.62 0.41 0.31 0.25

T S T S T S T S
Small Language Models Size R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 F1 F1

Zero-shot

SMXM 345M 0.10 0.02 0.03 0.03 0.00 0.01 0.08 0.01 0.02 0.00 0.00 0.00 0.09 0.03 0.04 0.02 0.00 0.01 0.03 0.01
Juicer (Ours) ⋅ KP 345M 0.48 0.17 0.24 0.22 0.10 0.13 0.48 0.15 0.20 0.22 0.09 0.11 0.57 0.19 0.24 0.30 0.08 0.12 0.23 0.12
Fine-tuned

SMXM 345M 0.42 0.22 0.20 0.28 0.12 0.13 0.17 0.14 0.14 0.15 0.07 0.09 0.22 0.47 0.25 0.11 0.18 0.12 0.20 0.11
Juicer (Ours) ⋅ KP + KF 345M 0.58 0.27 0.32 0.41 0.18 0.22 0.43 0.20 0.26 0.35 0.14 0.18 0.58 0.61 0.59 0.39 0.35 0.37 0.39 0.26
Cross-domain fine-tuned

Juicer (Ours) ⋅ KP

+ KF (Onto) + KF (Med) 345M 0.56 0.22 0.34 0.40 0.21 0.25 0.78 0.26 0.42 0.46 0.16 0.24 0.79 0.31 0.39 0.44 0.14 0.21 0.38 0.23
+ KF (Onto) + KF (Leg) 345M 0.30 0.25 0.26 0.20 0.17 0.17 0.26 0.17 0.34 0.27 0.23 0.25 0.78 0.58 0.64 0.55 0.39 0.45 0.41 0.29
+ KF (Med) + KF (Onto) 345M 0.50 0.27 0.32 0.36 0.18 0.21 0.56 0.32 0.40 0.44 0.21 0.28 0.77 0.35 0.47 0.34 0.14 0.20 0.40 0.23
+ KF (Med) + KF (Leg) 345M 0.20 0.18 0.19 0.16 0.17 0.12 0.49 0.38 0.42 0.34 0.32 0.32 0.52 0.62 0.52 0.30 0.31 0.30 0.38 0.25
+ KF (Leg) + KF (Onto) 345M 0.38 0.19 0.24 0.23 0.11 0.15 0.38 0.16 0.31 0.34 0.15 0.21 0.79 0.33 0.45 0.33 0.14 0.20 0.33 0.19
+ KF (Leg) + KF (Med) 345M 0.43 0.19 0.32 0.32 0.20 0.22 0.66 0.30 0.41 0.36 0.17 0.22 0.73 0.38 0.49 0.55 0.19 0.28 0.41 0.24

♠The benchmark most aligned with the transfer dataset domain.
♢ Reparameterization is applied, trained parameters for BLOOM, FALCON, LLaMA 2 are 0.06%, 0.03%, and 0.12%, respectively.
�Average inference time per sample (seconds).

Table 5.1: Test set (a) and Dev set (b) performance comparison with token-level
(T) and span-level (S) macro-averaged recall (R), precision (P), and F1.

Bold and underline denote the best and second best scores.

5.1. Analysis of Results 49

and +0.19 on LegalNER-ZS. Furthermore, zero-shot Juicer even surpasses
the fine-tuned SMXM version, reflecting the value of the KP stage introduced
in this work, with a remarkable +0.15 macro-F1 increase on OntoNotes-ZS,
+0.02 on LegalNER-ZS and being on par on MedMentions-ZS. It’s evident that
the KF step provides substantial benefits to SMXM, but it’s worth noting that
all the fine-tuned models of Juicer consistently outperform the fine-tuned
SMXMs across all three benchmarks: achieving a +0.06 macro-F1 gain on
MedMentions-ZS, +0.27 on OntoNotes-ZS, and +0.17 on LegalNER-ZS.

5.1.2 Juicer vs LLMs

Throughout our experiments, we consistently observed that LLMs tend to
encounter challenges when it comes to NERC. These challenges manifest in
various ways, including the discovery of unnecessary labels or the omission
of essential ones. Additionally, LLMs sometimes exhibit hallucinations, in-
troducing complexity in the post-processing phase. Consequently, they may
not be the most suitable choice for NERC tasks. Despite these challenges,
the largest LLM variants still manage to perform reasonably well, achieving
scores that are on par with fine-tuned baseline models. Notably, the fine-tuned
LLaMA 2 (7B) model stands out with an impressive macro-F1 score of 0.39
on MedMentions-ZS. However, it’s worth acknowledging that LLMs might
have encountered these datasets during their intense pre-training, potentially
affecting the zero-shot integrity of our experiments. On the contrary, supervised
LLMs face notable difficulties when applied to OntoNotes-ZS and LegalNER-ZS
datasets. Specifically, BLOOM (7B) and FALCON (7B) models tend to extract
training classes during inference rather than the specific ones required for
evaluation phase.

Impressively, when looking at the bigger picture, our Juicer models consis-
tently achieve the highest overall macro-F1 scores. In addition to their robust
performance, our Juicer models offer the advantage of a compact architec-
ture, significantly reducing inference time. In fact, our inference process is
157× faster, contributing to a more environmentally friendly and sustainable
approach to AI.

50 Chapter 5. Results and Discussion

Zero-shot models Fine-tuned models
BLOOM FALCON LLaMA 2 BLOOM FALCON LLaMA 2
Juicer (Ours) SMXM Juicer (Ours)

BACTERIUM BODY
SUBST.

BODY
SYSTEM

FOOD PROF.
OR OCC.
GROUP

0

20

40

60

F
1

(%
)

MedMentions-ZS

FAC LOC WORK
OF

ART

0

20

40

F
1

(%
)

OntoNotes-ZS

GPE PRECEDENT CASE
NUM-
BER

WITNESS

0

20

40

60

80

F
1

(%
)

LegalNER-ZS

Figure 5.1: Per-class token-level macro-F1 on the test set. Models are fine-tuned
on each benchmark dataset separately.

5.1. Analysis of Results 51

5.1.3 Cross-domain Fine-tuning

Starting from a KP Juicer, we want to validate the influence of a greater
amount of high-quality data with a two-step fine-tuning process. Our results
unveiled that this extended procedure doesn’t consistently enhance model
performance and surprisingly, in some cases, can even produce inferior results
compared to the traditional KP+KF method. The influence of this two-step
fine-tuning process appears to vary depending on the dataset combinations
used. For example, Leg+Onto leads to deteriorated scores in both LegalNER-
ZS and OntoNotes-ZS, while Onto+Leg conspicuously bolsters results in
LegalNER-ZS, though not for OntoNotes-ZS. Interestingly, the inclusion of the
MedMentions-ZS (Med) dataset generally led to a decline in overall performance.
This phenomenon might be attributed to the unique nature of the MedMentions-
ZS dataset, where the SLM becomes exposed to domain-specific entities and
faces challenges in leveraging distilled knowledge effectively. However, there were
instances where combining the MedMentions-ZS dataset with the OntoNotes-
ZS dataset (Med+Onto) yielded impressive results, notably achieving a
macro-F1 score of 0.53 in OntoNotes-ZS. This outcome suggests a potential
alignment in classes and descriptions between these datasets, resulting in
improved performance. Our exploration of extended fine-tuning procedures
highlights the nuanced interplay between datasets and the potential for varied
outcomes. While some combinations may not yield the expected benefits, others
can lead to substantial improvements in model performance, underscoring the
complexity of knowledge transfer in NERC tasks.

5.1.4 KP and KF Trade-off

Figure 5.2 offers a comprehensive view of the dynamic relationship between
the KF F1 scores and the duration of the KP phase. The trends depicted in
the figure provide compelling insights into how the length of the KP phase
directly impacts zero-shot performance. Notably, the trends underscore a key
observation: as the duration of KP extends, there is a corresponding increase
in zero-shot performance. This relationship implies that a more extensive and
thorough KP phase equips the model with a richer understanding of the domain,

52 Chapter 5. Results and Discussion

Juicer ⋅ KP + KF Juicer ⋅ KP

12 14 16 18 20 22 24 26 28 30

15

20

25

30

Pre-training Steps

F
1

(%
)

MedMentions-ZS

12 14 16 18 20 22 24 26 28 30

30

40

Pre-training Steps

F
1

(%
)

OntoNotes-ZS

12 14 16 18 20 22 24 26 28 30
10

20

30

40

Pre-training Steps

F
1

(%
)

LegalNER-ZS

Figure 5.2: Token-level F1 comparison between Juicer KP and Juicer

KP+KF over pre-training steps.

enhancing its ability to perform effectively in zero-shot scenarios.

Furthermore, the consistent gains observed during the KF phase further
validate the efficacy of incorporating a specialization window after the knowl-
edge distillation process. This specialized phase allows the model to fine-tune
its capabilities and align its knowledge with the specific requirements of the
downstream task, resulting in improved overall performance. Figure 5.2 high-

5.2. Discussion 53

lights the significance of a well-balanced KP and KF approach, emphasizing
that the investment in KP can yield substantial benefits in terms of zero-shot
NERC performance.

5.2 Discussion

The data’s quality significantly impacts the final model’s performance in
KD. Methods like automatic filters, LLM ensembling, and manual curation
can enhance data quality. Notably, this work’s focus is on developing a fully
unsupervised and automatic approach to improve zero-shot models, prioritizing
efficiency and saving human time. While the exploration of multiple LLMs
remains a potential avenue for future research, the current strategy involves
the use of automatic filters and further fine-tuning of the model over human-
labeled zero-shot datasets. This approach clearly demonstrates the advantages
of utilizing high-quality data over distilled datasets, as evidenced by the results
presented in Table 5.1.

The choice of the LLM for distillation holds a significant influence on the
outcomes, necessitating the selection of the most suitable model. As the zero-
shot setting demands substantial prior knowledge to detect unseen entities
during inference, larger LLMs offer a distinct advantage. With its capacity to
memorize vast amounts of data, a larger LLM like BLOOM is imbued with
extensive general world knowledge. This relationship between LLM size and
knowledge capacity is well-documented [66, 67], contingent upon the training
data. In addressing the question of why we opted for a substantial LLM in our
study, which primarily aims to reduce LLM-related costs and requirements, we
conducted assessments using smaller LLMs for comparison. These assessments
revealed a deterioration in the quality of the generated data when we attempted
to reduce the number of model weights.

While our primary focus remains on reducing the demands associated with
LLM usage, we intentionally included BLOOM in our evaluations to enable
comparisons with the most proficient open-access LLM available. Importantly,
it should be noted that the JUICER approach maintains model agnosticism,
allowing for the distillation of smaller LLMs when circumstances warrant such

54 Chapter 5. Results and Discussion

an approach. Furthermore, the results demonstrated significant improvements
in OntoNotes-ZS, which belongs to a general domain, and LegalNER-ZS,
which pertains to the legal field. These domains differ considerably from
PubMed, which focuses on biomedicine. On the contrary, the enhancements
observed in MedMentions, a closely related dataset to PubMed within the
biomedical domain, were less prominent and aligned with its specific domain
characteristics. This divergence in results can be attributed to two primary
factors: (i) the LLM choice and (ii) the dataset complexity. First, the LLM
used will extract the entities in its own way, and depending on its training,
the entities extracted might be more generic (e.g., Medical Condition) or more
specific (e.g., Eukaryote). Thus, depending on the alignment between the data
generated by the teacher model and the final dataset used in the evaluation,
the results may not improve even if the data are in the same domain. This
phenomenon extends to the descriptions: if the pre-training data’s descriptions
are straightforward for the model to comprehend but those within the final
dataset are more intricate, it can adversely impact the model’s performance.

Conclusion and Future Work

The culmination of our research journey highlights the significant contri-
butions and achievements of Juicer in the realm of zero-shot NERC. We
embarked on this exploration in response to the pressing challenges of an-
notation scarcity and the need for models to generalize effectively to unseen
entity-types. In this endeavor, embracing zero-shot learning became not just a
choice but a necessity to navigate the absence of training examples. The core
innovation of Juicer lies in its role as the first LLM distillation framework
designed explicitly for zero-shot NERC in resource-constrained environments.
We systematically transferred knowledge from LLMs to BERT-based models,
enhancing their performance in zero-shot NERC. The key to this success was
a preliminary fine-tuning process focused on generative data augmentation
using vast pre-training corpora, followed by the injection of textual target
class descriptions through cross-attention. Our extensive experiments across
three zero-shot adapted BIO-format datasets, with a particular focus on the
biomedical domain and assessment of adaptability to news and legal domains,
yielded remarkable results. Juicer outperformed state-of-the-art baselines
across all benchmarks by up to 0.27 macro-averaged F1 points, showcasing its
ability to excel across numerous observed classes. Even more impressively, when
compared to zero-shot and reparameterized LLMs, Juicer achieved superior
overall results with 510× fewer parameters. This reduction in model size, com-
bined with a 157× faster inference process, not only enhances efficiency but also
contributes to a more sustainable approach to AI. In our comparative analysis,
we found that LLMs, while promising, face challenges in NERC tasks, such as
discovering unnecessary labels, omitting essential ones, and even generating
incorrect annotations. Among the largest zero-shot LLM variants, only the

55

56 Chapter 5. Results and Discussion

fine-tuned LLaMA 2 (7B) model achieved an impressive macro-F1 score of
0.39 on MedMentions-ZS. However, concerns may arise regarding the zero-shot
constraint’s integrity since we cannot verify whether the model encountered
the MedMentions data during its intensive pre-training phase. Nevertheless,
supervised LLMs encountered notable difficulties, in particular when applied to
the OntoNotes-ZS and LegalNER-ZS datasets, potentially due to entity-types
in the train set that might bear similarities with those in the test set. Conse-
quently, the LLMs might erroneously associate test set mentions with familiar
training set entity-types, leading to classification inaccuracies. A striking aspect
of Juicer is its ability to provide robust performance while maintaining a
compact architecture. The environmental benefits of such efficiency are not
to be underestimated, marking a shift towards more sustainable AI practices.
In our exploration of cross-domain fine-tuning procedures, we unveiled the
intricate interplay between datasets and the potential for varied outcomes.
While some combinations may not yield the expected benefits, others can
lead to substantial improvements in model performance. This underscores the
complexity of knowledge transfer in NERC tasks.

In conclusion, Juicer represents a step forward in the field of zero-shot
NERC. It not only outperforms previous state-of-the-art zero-shot learning
solutions but also excels in the challenging full zero-shot setting. Its remark-
able performance surpasses even the largest and most powerful LLMs while
maintaining an impressively compact architecture allowing for substantial cost
reductions, faster inference times, and a reduced environmental footprint. All
this reinforces the idea that efficient, lightweight neural networks can still
emerge as formidable competitors for NERC tasks.

As future work, we will focus on enhancing Juicer’s adaptation capabilities
by leveraging a diverse range of domain-specific data sources. We will refine
the pre-training process, striving for greater efficiency and effectiveness in
adaptation to various domains. Moreover, we are committed to exploring
ensemble approaches that harness the collective power of multiple LLMs. These
ensemble techniques will not only enhance our model’s performance but also
enable us to extract higher-quality data during the entity extraction process,
further improving the accuracy and robustness of zero-shot NERC.

Acknowledgements

The completion of this thesis represents the culmination of a rewarding
journey that has been enriched by the invaluable contributions of many indi-
viduals and organizations. I am deeply grateful to all those who have played a
significant role in shaping this work.

First and foremost, I would like to express my profound gratitude to my
dedicated supervisor, Professor Claudio Sartori, whose guidance, expertise,
and support have been the cornerstone of this research.

I extend my heartfelt thanks to my co-supervisor, Professor Gianluca

Moro, and his team at DISI UniBo NLP. Their generous sharing of resources,
expertise, and support have been instrumental in the successful execution of
experiments and the development of my research approach. I would like to
extend a special acknowledgment to Giacomo Frisoni, whose expert insights
and valuable advice have significantly shaped the trajectory of this work.

I am deeply appreciative of my IBM tutor, Marcos Martínez Galindo,
whose guidance and unwavering support during my internship at IBM Research
Lab were instrumental in bringing this project to fruition.

I would like to express my gratitude to my IBM Manager, Vanessa Lopez,
for providing me with the incredible opportunity to embark on this enriching
internship. Your trust in my abilities and dedication to nurturing talent is truly
commendable.

57

58 Acknowledgements

To my family, who have been my pillars of strength throughout this academic
journey, I extend my deepest thanks. Your love, encouragement, and unwavering
belief in me have been my constant motivation.

Last but not least, I acknowledge the collaborative nature of this endeavor,
and it is important to highlight that the rights and ownership of any code and
output generated as a result of this collaborative effort are attributed to IBM.
This underscores the vital role of IBM in facilitating the successful completion
of this research.

This thesis stands as a testament to the collective efforts of all these
remarkable individuals and organizations. Thank you for being an integral part
of this academic endeavor.

Alessio Cocchieri

October, 2023

Bibliography

[1] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep
learning for named entity recognition. IEEE Trans. Knowl. Data Eng., 34
(1):50–70, 2022.

[2] Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhao Chen, et al. Universalner:
Targeted distillation from large language models for open named entity
recognition. CoRR, abs/2308.03279, 2023.

[3] Gabriele Picco, Marcos Martinez Galindo, Alberto Purpura, Leopold
Fuchs, et al. Zshot: An open-source framework for zero-shot named
entity recognition and relation extraction. In ACL (Volume 3: System
Demonstrations), pages 357–368, Toronto, Canada, July 2023. ACL. doi:
10.18653/v1/2023.acl-demo.34. URL https://aclanthology.org/2023.

acl-demo.34.

[4] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, et al.
Distilling step-by-step! outperforming larger language models with less
training data and smaller model sizes. In ACL (Findings), pages 8003–8017.
ACL, 2023.

[5] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, et al. A survey for in-context
learning. arXiv preprint arXiv:2301.00234, 2022.

[6] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, et al.
Scaling laws for neural language models. CoRR, abs/2001.08361, 2020.

[7] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, et al. Alpa:

59

https://aclanthology.org/2023.acl-demo.34
https://aclanthology.org/2023.acl-demo.34

60 Bibliography

Automating inter- and intra-operator parallelism for distributed deep
learning. CoRR, abs/2201.12023, 2022.

[8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
et al. Palm: Scaling language modeling with pathways. CoRR,
abs/2204.02311, 2022.

[9] Sunil Mohan and Donghui Li. Medmentions: A large biomedical corpus
annotated with UMLS concepts. In AKBC, 2019.

[10] Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, et al.
Towards robust linguistic analysis using ontonotes. In CoNLL, pages
143–152. ACL, 2013.

[11] Prathamesh Kalamkar, Astha Agarwal, Aman Tiwari, Smita Gupta, et al.
Named entity recognition in Indian court judgments. In NLLP, pages
184–193, Abu Dhabi, United Arab Emirates (Hybrid), December 2022.
ACL. doi: 10.18653/v1/2022.nllp-1.15. URL https://aclanthology.

org/2022.nllp-1.15.

[12] Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata.
Zero-shot learning - A comprehensive evaluation of the good, the bad and
the ugly. IEEE Trans. Pattern Anal. Mach. Intell., 41(9):2251–2265, 2019.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding,
2019.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2023.

[15] Qingxiu Dong et al. A survey on in-context learning, 2023.

[16] Jason Wei et al. Finetuned language models are zero-shot learners, 2022.

[17] Long Ouyang et al. Training language models to follow instructions with
human feedback, 2022.

https://aclanthology.org/2022.nllp-1.15
https://aclanthology.org/2022.nllp-1.15

Bibliography 61

[18] Hyung Won Chung et al. Scaling instruction-finetuned language models,
2022.

[19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach, 2019.

[20] Alec Radford and Karthik Narasimhan. Improving language understanding
by generative pre-training. 2018. URL https://api.semanticscholar.

org/CorpusID:49313245.

[21] BigScience Workshop et al. Bloom: A 176b-parameter multilingual lan-
guage model, 2023.

[22] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, et al. Exploring
the limits of transfer learning with a unified text-to-text transformer. J.
Mach. Learn. Res., 21:140:1–140:67, 2020.

[23] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel-
rahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension, 2019.

[24] Hugo Touvron et. al. Llama 2: Open foundation and fine-tuned chat
models, 2023.

[25] J. Simon. Large language models: A new moore’s law?, October 26
2021. URL https://huggingface.co/blog/large-language-models.
Retrieved February 10, 2023.

[26] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and
policy considerations for deep learning in nlp, 2019.

[27] Jason Wei et al. Emergent abilities of large language models, 2022.

[28] Karl Cobbe et al. Training verifiers to solve math word problems, 2021.

[29] Jason Wei et al. Chain-of-thought prompting elicits reasoning in large
language models, 2023.

https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://huggingface.co/blog/large-language-models

62 Bibliography

[30] Karthik Valmeekam et al. Large language models still can’t plan (a
benchmark for llms on planning and reasoning about change), 2023.

[31] Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata.
Zero-shot learning—a comprehensive evaluation of the good, the bad and
the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence,
41(9):2251–2265, 2019. doi: 10.1109/TPAMI.2018.2857768.

[32] Wei Wang, Vincent W. Zheng, Han Yu, and Chunyan Miao. A survey of
zero-shot learning: Settings, methods, and applications. ACM Trans. Intell.
Syst. Technol., 10(2), jan 2019. ISSN 2157-6904. doi: 10.1145/3293318.
URL https://doi.org/10.1145/3293318.

[33] Rami Aly, Andreas Vlachos, and Ryan McDonald. Leveraging type descrip-
tions for zero-shot named entity recognition and classification. In ACL/IJC-
NLP, pages 1516–1528, Online, August 2021. ACL. doi: 10.18653/v1/2021.
acl-long.120. URL https://aclanthology.org/2021.acl-long.120.

[34] Rasha Obeidat, Xiaoli Fern, Hamed Shahbazi, and Prasad Tadepalli.
Description-based zero-shot fine-grained entity typing. In Proceedings
of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 807–814, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1087. URL https://aclanthology.org/N19-1087.

[35] Hoang-Van Nguyen, Francesco Gelli, and Soujanya Poria. Dozen: Cross-
domain zero shot named entity recognition with knowledge graph. In
Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’21, page 1642–1646,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450380379. doi: 10.1145/3404835.3463113. URL https://doi.org/

10.1145/3404835.3463113.

[36] Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei

https://doi.org/10.1145/3293318
https://aclanthology.org/2021.acl-long.120
https://aclanthology.org/N19-1087
https://doi.org/10.1145/3404835.3463113
https://doi.org/10.1145/3404835.3463113

Bibliography 63

Zhang, Jiwei Li, and Guoyin Wang. Gpt-ner: Named entity recognition
via large language models, 2023.

[37] Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down
to scale up: A guide to parameter-efficient fine-tuning, 2023.

[38] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation
of large language models, 2021.

[39] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer.
Qlora: Efficient finetuning of quantized llms. CoRR, abs/2305.14314, 2023.

[40] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model
compression. In Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and
Dimitrios Gunopulos, editors, KDD, pages 535–541. ACM, 2006. ISBN 1-
59593-339-5. URL http://dblp.uni-trier.de/db/conf/kdd/kdd2006.

html#BucilaCN06.

[41] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in
a neural network, 2015.

[42] Cristian Buciluundefined, Rich Caruana, and Alexandru Niculescu-Mizil.
Model compression. In Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD
’06, page 535–541, New York, NY, USA, 2006. Association for Comput-
ing Machinery. ISBN 1595933395. doi: 10.1145/1150402.1150464. URL
https://doi.org/10.1145/1150402.1150464.

[43] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li,
Fang Wang, and Qun Liu. Tinybert: Distilling bert for natural language
understanding, 2020.

[44] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Dis-
tilbert, a distilled version of bert: smaller, faster, cheaper and lighter,
2020.

http://dblp.uni-trier.de/db/conf/kdd/kdd2006.html#BucilaCN06
http://dblp.uni-trier.de/db/conf/kdd/kdd2006.html#BucilaCN06
https://doi.org/10.1145/1150402.1150464

64 Bibliography

[45] Young Jin Kim and Hany Hassan Awadalla. Fastformers: Highly efficient
transformer models for natural language understanding, 2020.

[46] Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation.
In EMNLP, pages 1317–1327. ACL, 2016.

[47] NLLB Team and Marta R. Costa jussà et al. No language left behind:
Scaling human-centered machine translation, 2022.

[48] Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed,
and Alham Fikri Aji. Lamini-lm: A diverse herd of distilled models from
large-scale instructions, 2023.

[49] Rohan Taori et al. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[50] Shuohang Wang, Yang Liu, Yichong Xu, Chenguang Zhu, et al. Want
to reduce labeling cost? GPT-3 can help. In EMNLP, pages 4195–
4205, Punta Cana, Dominican Republic, November 2021. ACL. doi:
10.18653/v1/2021.findings-emnlp.354. URL https://aclanthology.org/

2021.findings-emnlp.354.

[51] Peter West, Chandra Bhagavatula, Jack Hessel, Jena Hwang, et al. Sym-
bolic knowledge distillation: from general language models to common-
sense models. In NAACL, pages 4602–4625, Seattle, United States,
July 2022. ACL. doi: 10.18653/v1/2022.naacl-main.341. URL https:

//aclanthology.org/2022.naacl-main.341.

[52] Ryan Smith, Jason A. Fries, Braden Hancock, and Stephen H. Bach. Lan-
guage models in the loop: Incorporating prompting into weak supervision.
CoRR, abs/2205.02318, 2022.

[53] Priyanka Agrawal, Chris Alberti, Fantine Huot, Joshua Maynez, et al.
Qameleon: Multilingual QA with only 5 examples. CoRR, abs/2211.08264,
2022.

https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2021.findings-emnlp.354
https://aclanthology.org/2021.findings-emnlp.354
https://aclanthology.org/2022.naacl-main.341
https://aclanthology.org/2022.naacl-main.341

Bibliography 65

[54] Zhen Guo, Peiqi Wang, Yanwei Wang, and Shangdi Yu. Dr. llama: Improv-
ing small language models on pubmedqa via generative data augmentation.
CoRR, abs/2305.07804, 2023.

[55] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion
parameter language models using model parallelism, 2020.

[56] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.
URL https://api.semanticscholar.org/CorpusID:160025533.

[57] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al.
Language models are few-shot learners. In NeurIPS, 2020.

[58] Microsoft. Turing-nlg: A 17-billion-parameter language model,
2020. URL https://www.microsoft.com/en-us/research/blog/

turing-nlg-a-17-billion-parameter-language-model-by-microsoft/.
Microsoft Blog.

[59] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel
Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song,
Ulfar Erlingsson, Alina Oprea, and Colin Raffel. Extracting training data
from large language models, 2021.

[60] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, et al. The
pile: An 800gb dataset of diverse text for language modeling. CoRR,
abs/2101.00027, 2021.

[61] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, et al.
BLOOM: A 176b-parameter open-access multilingual language model.
CoRR, abs/2211.05100, 2022.

[62] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, et al. Scaling
instruction-finetuned language models. CoRR, abs/2210.11416, 2022.

https://api.semanticscholar.org/CorpusID:160025533
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

66 Bibliography

[63] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, et al. The flan collection:
Designing data and methods for effective instruction tuning. In ICML,
volume 202 of PMLR, pages 22631–22648. PMLR, 2023.

[64] Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, et al. UL2:
unifying language learning paradigms. In ICLR. OpenReview.net, 2023.

[65] Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts,
et al. Crosslingual generalization through multitask finetuning. In ACL
(1), pages 15991–16111. Association for Computational Linguistics, 2023.

[66] Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, and Armen
Aghajanyan. Memorization without overfitting: Analyzing the training
dynamics of large language models, 2022.

[67] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee,
et al. Quantifying memorization across neural language models.
arXiv, abs/2202.07646, 2022. URL https://api.semanticscholar.org/

CorpusID:246863735.

[68] Steven Bird and Edward Loper. NLTK: The natural language toolkit.
In ACL, pages 214–217, Barcelona, Spain, July 2004. ACL. URL https:

//aclanthology.org/P04-3031.

[69] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao
Huang, Mohit Bansal, and Colin Raffel. Few-shot parameter-efficient
fine-tuning is better and cheaper than in-context learning, 2022.

https://api.semanticscholar.org/CorpusID:246863735
https://api.semanticscholar.org/CorpusID:246863735
https://aclanthology.org/P04-3031
https://aclanthology.org/P04-3031

	Theoretical Framework
	Named Entity Recognition
	Large Language Models
	Prompt Engineering
	In-context Learning
	Generative Parameters Configuration
	Max New Tokens
	Decoding Strategy
	Top-k
	Top-p
	Temperature

	Fine-tuning
	Different Types of LLMs
	Autoencoding
	Autoregressive
	Sequence-to-Sequence

	Limits of LLMs

	Related Work
	Zero-shot NERC
	Leveraging Entity-type Descriptions

	Towards Affordable LLMs
	PEFT
	LoRA
	QLoRA
	Knowledge Distillation
	Sequence-level Knowledge Distillation
	Machine-to-Corpus-to-Machine Paradigm

	The Pile
	BLOOM

	Method
	Task Definition
	Teacher Model Selection
	Synthetic BIO-format Dataset
	Prompt-based Tagging
	Filtering
	BIO-format Instances
	Data Statistics

	Entity-type Descriptions
	Student Network
	Training

	Experimental Setup
	Datasets
	Metrics
	Baselines
	Implementation Details
	Hyperparameters

	Results and Discussion
	Analysis of Results
	Juicer vs SMXM
	Juicer vs LLMs
	Cross-domain Fine-tuning
	KP and KF Trade-off

	Discussion

	Conclusion and Future Work
	Acknowledgements
	Bibliography

