ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI SCIENZE
Corso di Laurea in Informatica

Intellectual Property of Al systems:
a preliminary study

Relatore: Presentata da:
Chiar.mo Prof. Andrea Capriotti
Danilo Montesi

Correlatore:

Dott.

Flavio Bertini

Sessione 11
Anno Accademico 2022/2023



Sommario

Questa tesi esplora il quadro giuridico riguardante la protezione della proprieta intel-
lettuale nei sistemi di Intelligenza Artificiale (AI) allo stato dell’arte, sia in Italia che
in altre parti del mondo. La progettazione e lo sviluppo di tali sistemi richiedono la
creazione di modelli complessi e sofisticati, i quali, per essere tutelati adeguatamente,
richiedono diritti legali. Tuttavia, stabilire la proprieta intellettuale nei sistemi di Intel-
ligenza Artificiale e spesso un compito arduo, dato il carattere unico di tali modelli.

Nello specifico, in questo studio si porra particolare attenzione alle Reti Neurali Ar-
tificiali (ANN), un modello computazionale che si basa sulle reti neurali biologiche, al
fine di esplorarne il funzionamento e comprendere la natura della proposta che verra
trattata. L’obiettivo principale di questo studio preliminare, difatti, & quello di svilup-
pare una proposta concreta per favorire una protezione legale adeguata ed efficace per i
sistemi di Intelligenza Artificiale, in particolare per le Reti Neurali Artificiali.

Attraverso un’analisi del quadro giuridico relativo alla protezione del software nell’ambito
giuridico italiano, la tesi individua lacune e limitazioni nello stato attuale dei diritti di
proprieta intellettuale nei sistemi di AI. Sulla base di questa analisi, viene presentata
una proposta attentamente giustificata ed esposta per affrontare le sfide legali legate
alla protezione della proprieta intellettuale per le ANN. Inoltre, lo studio estende le sue
considerazioni ai quadri giuridici che regolamentano I’ATl in diverse giurisdizioni relative
ad altri paesi nel mondo, al fine di valutare la potenziale applicabilita e portata di questa
proposta.



Contents

1 Introduction

2 Software and Intellectual Property: state of the art

2.1
2.2

2.3

3.1
3.2
3.3
3.4
3.5

3.6

Software . . . . .. L
The Turing Machine . . . . . . . . .. .. ... .. ... ... ......
2.2.1 TImplementation . . . . . . ... .. L
2.2.2  Formal definition . . . . . ... oo
2.2.3 Software and the Turing Machine . . . . . . . . .. ... .. ...
Software IP in Italy: State of theart . . . . . .. ... .. ... .. ...
2.3.1 Copyright Law . . . . . .. .. .o
2.3.2  Limits of the copyright . . . . . .. .. .. ... ... ... ..
2.3.3 Patent protection for software inventions . . . . . . ... ... ..

Artificial Intelligence

A brief history of Artificial Intelligence . . . . . . .. ... .. ... ...
Intelligence and Artificial Intelligence concepts . . . . . . . . . . ... ..
Al types . . . . . e
Artificial Intelligence approaches . . . . . . . . ... ... ... ... ...
Machine Learning . . . . . . . . . ..o
3.5.1 Learning methods . . . . . . . .. .. ..o
3.5.2  The overfitting problem . . . . . ... ...
3.5.3 Biases in data generation . . . . . .. .. ... 0L
3.5.4 Transparent and opaque systems . . . . .. ... .. .. ... ..
3.5.5 Blackboxes . . . . ...
Artificial Neural Networks . . . . . . . . . ... ... ...
3.6.1 Introduction . . . . . . . ...
3.6.2 Artificial neuron and biological neuron . . . . ... .. ... ...
3.6.3 Topology of Artificial Neural Networks . . . . . . . .. ... ...
3.6.4 Learning methods . . . . . . . ... ... 0oL

— © 00 00 1 O UL Ut w W =

—_



4 Functioning of Artificial Neural Networks

4.1 Key steps to developing a Neural Network . . . . .. ... ... .. ...
4.2 Defining the problem . . . . . . . .. ... oL
4.3 Dataset preparation . . . . . . . ...
4.4  Setting network architecture . . . . . . .. ..o
4.5 Tralning . . . . . . Lo
4.5.1 The neural network . . . . . . .. ..o
452 Aresult example . . . . ... ...
4.5.3 Training process . . . . . . . . . ..o
4.5.4 Validation . . . . . . . ...
4.5.5 Cross-Validation . . . . . .. ... ... oL
4.6 Testing . . . . . . ..
4.7 Considerations . . . . . . . ...

5 Legal protection of Artificial Intelligence

5.1 Artificial neural networks and Turing Machines: a comparison . . . . . .
5.2 ANN intellectual property . . . . . . . .. ... ... ..
5.2.1 Network architecture . . . . . . . . ... ... 0L
522 Dataset . . . .. ..
5.2.3 Technical implementation . . . .. ... .. ... ... ......
524 Weights . . . . . . . .
5.2.5  Further explanations . . . . . ... . ... ... ... ...
5.3 Al intellectual property in Italy: State of theart . . . . . . . .. ... ..
5.3.1 Copyright . . . . . . .
5.3.2 Patents . . ...
5.3.3 Tradesecrets . . . . . . . . .. ...
5.4 Al intellectual property outside Italy . . . . . ... ... ... ... ...
5.4.1 Furopean Union. . . . . . . . . .. ... ...
5.4.2 United States of America . . . . . . . . . .. ... ... ...
54.3 Canada . . . . . . ...

6 Conclusions

31
32
32
33
35
36
38
38
39
45
46
46
48

49
50
o1
51
52
53
93
54
56
26
56
o8
29
29
29
61

63



List of Figures

2.1
2.2

3.1
3.2
3.3

3.4

3.5

3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8
4.9

5.1

A Turing Machine example . . . . . . .. ... ... ... ... ... ...
Turing Machine analogy with software programs . . . . . . . .. ... ..

An overview of Al, Artificial Neural Networks, and Machine Learning . .
Classical programming vs Machine Learning programming . . . . . . . .
The computer during the training is fed with labeled training data (input
X) and it has to grasp general patterns to match with the expected value
(Output Y) . . . oo
An example of the result of density-based clustering, a machine learning
technique that autonomously identify clusters in datasets based on their
density or proximity to each other . . . . . . . ... ... ... ... ...
ML methods spanning from simpler and more interpretable approaches to
more advanced algorithms [10] . . . . . . ... ...
Biological neuron vs artificial neuron . . . . . ... ... ...
Example of Artificial Neural Network . . . . . . . . ... ... ... ...
Feed-forward and recurrent topologies [16] . . . . . . .. ... ... ...

Some possible problems with the data [20] . . . ... ... ... ... ..
Initial network . . . . . . . ...
An example of the expected result . . . . . . . ... ... ... ... ...
The initialized parameters in the ANN . . . . ... ... ... ... ...
ANN with j; value computed. The green value is the result of the sum-
mation whilst in blue we find the propagated value computed through the
activation function . . . . . . . ...
Inside the artificial neuron firstly summation is computed and then the
activation function elaborate the result to produce an output . . . . . . .
Every value is calculated until the output layer, the output value propa-
gated istheredone . . . . . . . . ...
Visual representation of this phase . . . .. .. ... ... ... .....
An example of cross-validation . . . . . . .. ... ...

Comparison between a dog&cat classifier and a Turing Machine . . . . .



5.2 Exhibit Copyright-N in the Oracle Inc. vs Google case [22]



Chapter 1

Introduction

Artificial Intelligence, commonly known as Al, has emerged as one of the most transfor-
mative and disruptive technologies of the last few decades. From autonomous vehicles
and virtual assistants to healthcare and robotics, Al has revolutionized various industries
and has the potential to transform many more. However, as Al technologies continue to
evolve and become more popular and invested in, the need to establish laws and rules to
preserve and protect Al systems from competitors is becoming one of the most important
topics in this field.

One of the key challenges in this regard is the issue of intellectual property (IP)
rights in Al systems. The designing and the development of those systems involves the
creation of complex models, and the creators rightfully want the legal rights to protect
them. However, determining the ownership of intellectual property in Al systems can be
challenging due to the unique nature of each of those models. In order to safeguard them,
it is necessary to identify and protect crucial components commonly shared between those
systems, which are fundamental for their purpose and functioning, but this is not always
a straightforward task.

In particular, an Al model that is receiving significant attention in the last few years,
and therefore will be discussed in more depth in this thesis, is the Artificial Neural
Network (ANN). ANNs are a type of machine learning algorithm that are developed
after the “hardware” of the human brain and they have been used in a wide range of
cutting edge applications, including image recognition, speech recognition, and natural
language processing. As ANNs become more advanced and widely used, the need for
legal protection of their IP rights has become increasingly important.

The main aim of this thesis is to conduct an in-depth analysis of the legal framework
governing the protection of intellectual property in artificial intelligence systems in Italy.
Concurrently, European and international regulatory provisions will be taken into con-
sideration. The ultimate goal of this research is to develop a concrete proposal for an
adequate and effective legal protection system for such artificial intelligence systems.



Firstly, this paper is going to examine the current state of intellectual property laws
for software, which will provide a foundation for understanding the legal issues surround-
ing intellectual property rights in Al systems in Italy. Software has been a subject of
intellectual property protection for several decades, and the legal framework governing
software IP rights has evolved over time. The exploration of intellectual property laws
in the realm of software will establish the groundwork for an in-depth analysis of IP
protection in Al systems. By drawing comparisons between these two domains, the aim
is to discern the differences that underscore the need for more targeted regulations and
laws addressing Al system protection.

Furthermore, we will provide an overview of Artificial Intelligence, Artificial Neural
Networks, and Machine Learning to establish a foundation for proposing hypotheses on
how to protect ANNs and their development processes. By gaining a deeper under-
standing of these fields, it is possible to identify the legal challenges associated with IP
protection for ANNs, in order propose an effective solution to address them. This
proposal for the protection of Al systems, will be carefully justified and explained in
order to understand the reasons why it could be effective if it were possible to implement
it within Italy’s jurisdiction.

Finally, this thesis will examine the current state of the law on intellectual property
rights in Artificial Intelligence systems by analyzing the legal framework for IP protection
in various jurisdictions, in order to identify gaps and limitations within them. This anal-
ysis will provide insights into the legal implications of IP protection in AI and evaluate
our proposal in the basis of those regulations and laws.



Chapter 2

Software and Intellectual Property:
state of the art

Software is arguably one the most important component of modern technology, powering
everything from our smartphones to almost every device we’re using on a daily basis.

This technology has been rapidly evolving and developing over the past century, and
as a result, the need for new laws to regulate its protection has become increasingly
important.

The legal landscape surrounding software and intellectual property has undergone
significant changes over the years, as lawmakers have worked to adapt to new technologies
and emerging challenges. The aim of this chapter is to provide an overview of software
intellectual property and the functioning of the Turing Machine. This understanding is
essential for grasping the concept of source code and its legal protection in the state of
the art, a topic that will be explored further as it is crucial to understand it for our
proposal.

2.1 Software

Software is often described as a set of instructions, programs, and data that allows hard-
ware devices like computers and smartphones to perform specific tasks and functions.
These functions serve specific purposes and each of them are implemented using algo-
rithms which are step-by-step procedures that define the logic and instructions necessary
for solving problems.

Software power and capabilities are limited by two main factors:

1. The underlying hardware and the practical constraints of computing devices.



2. The computational infeasibility of certain problems.

The computational limit of mechanical computation is a fundamental concept in the
theory of computation, particularly in relation to what can and cannot be computed
using mechanical or algorithmic processes. It’s closely tied to the idea of decidability
and the Church-Turing Thesis which suggests that any effectively calculable function
(i.e., any function that can be computed by an algorithm) can be computed by a Turing
Machine, thus this thesis serves as a foundational principle in the this theory.

In practical terms, this means that if a problem can be mechanically computed using
an algorithmic process, it can be simulated by a Turing Machine. Conversely, if a
problem cannot be simulated by a Turing Machine, it is beyond the scope of mechanical
computation.



2.2 The Turing Machine

In 1936 a paper entitled On Computable Numbers, with an Application to the Entschei-
dungsproblem[1] written by Alan Turing revolutionized the field of computability the-
ory. This article’s aim was to address a fundamental question known as the Entschei-
dungsproblem (the decision problem), which basically seeks to determine if it exists an
effective method or algorithm that can decide, for any given mathematical statement or
formula, whether it is provable within a given formal system or not.

In this paper Turing came out with the concept of an idealized computing device
that could manipulate symbols on an infinite tape following a predetermined set of rules
that was able to solve any given computable problem. This notion was formalized by
introducing the concept of the Turing Machine a theoretical model that is capable of
solving any problem as long as there is an algorithmic procedure to solve it by simulating
the procedure itself.

This revolutionary theoretical device provided a unifying framework for understand-
ing computation, and revealed the limits of what can be algorithmically computed.

2.2.1 Implementation

The Turing Machine key components are:

e Tape: The tape is an infinite length strip divided into cells. Each cell has a fixed
size and can hold a symbol from a finite set of symbols. The tape serves as the
memory of the Turing Machine.

e Read-Write Head: The read-write head is positioned over a specific cell on the
tape and can read the symbol at that position, write a new symbol, and move left
or right along the tape.

e State Register: The state register keeps track of the current state of the Turing
Machine. It determines the behavior of the machine at any given moment.

e Transition Table: The transition table defines the rules or instructions for the
Turing Machine. It specifies the actions to be taken based on the current state and
the symbol read by the head.

The basic operations of this machine include:

e Reading/Writing the symbol in which the head is positioned.
e Moving the head to the left/right along the tape.

e Changing the state register.



Tape

L N b 0 1 0 1 b b o200

q
State Register

Figure 2.1: A Turing Machine example

2.2.2 Formal definition

A Turing Machine (one-taped and deterministic) is formally defined by a 7-tuple (Q,%, T,
J, qo,b,F) with the following meanings:

Q is the set of states. Each state is a unique configuration of the Turing Machine.

] is the input alphabet. It is a finite set of symbols that are read by the machine
on the tape.

I’ is the tape alphabet which includes ¥ and additional symbols used for tape
manipulation such as the blank character.

J is the transition function which is defined as: § : Q \ FF xI' - @ x I x {L,
R}.

It basically defines the behaviour of the machine by specifying what action the
machine should take based on the current state, the symbol read from the tape,
and the current direction of the read/write head. The transition function maps
(current state, tape symbol) pairs to (next state, symbol to write, direction to
move) triples.

qo € @ is the initial state of the machine.
b € I' is the blank character.

F C @ is the set of the final states (accepting states). If the machine ends in
these states, the input is accepted.



2.2.3 Software and the Turing Machine

It is possible to think of software programs as being analogous to a Turing Machine
by underscoring the core mechanism at the foundation of both. In fact the concept of
software programs aligns with the idea of a theoretical construct that takes an input,
processes it based on a set of instructions which basically corresponds to a program’s
source code, and produces an output.

This comparison underscores a shared objective: to process input data systematically
to generate meaningful output through a given function that encapsulates the instruction
to follow in order to fulfill the above mentioned objective, with the theoretical boundaries
of the Turing Machine model.

Turing Machine

Instructions

1 #include <iostream>
2 #include <math.h>
3 using namespace std;

4
5 int main()
Input 65 { Output
EEE—N 7 int x, y; >
8 int a = 1;
9 int b = 1;
10 int c = 1;
11 cin >> x;
12 y = a*pow(x, 2) + b*x + c;
13 return y;
14}

Figure 2.2: Turing Machine analogy with software programs



2.3 Software IP in Italy: State of the art

In the 1970s and 1980s, there were extensive discussions on whether the patent system,
the copyright system, or a sui generis system, should provide protection for computer
software.

In 1984 WIPO (World Intellectual Property Organization) officially adopted a def-
inition of software which was quite wide and approximate in order to fit the steady
development of Computer Science, and keep it valid over the course of the years. The
definition was the following:

Software is an organized and structured set of instructions or symbols, con-
tained in any form or medium (tape, disk, film, circuit), capable of directly
or indirectly causing a particular function, task or result to be performed or
obtained by an electronic information processing system.

In Ttaly there isn’t a specific law or organization like WIPO that actually addresses
in a generic what a software program really is, however they belong to the category of
intangible legal goods, as they are not consumable (and therefore not subject to wear
and tear) and can be used simultaneously by an indefinite number of subjects, without
their usefulness being diminished. From a legal point of view, therefore, software falls
within the intellectual creations, and as such it is protected either as:

e Work of authorship (pursuant to Article 2575 of the Italian Civil Code), and there-
fore subject to the copyright law.

e Industrial invention (pursuant to Article 2585 of the Italian Civil Code), and there-
fore subject to patent.

2.3.1 Copyright Law
According to the Article 2575 of the Italian Civil Code:

Formano oggetto del diritto di autore le opere dell’ingegno di carattere cre-
atiwo che appartengono alle scienze, alla letteratura, alla musica, alle arti
figurative, all’architettura, al teatro e alla cinematografia, qualunque ne sia il
modo o la forma di espressione [2424, n. 4, 2579, 2580).

This means that any creative work of authorship which belongs to the field of science,
literature, music, the the visual arts, architecture, theater, and cinematography, in any
form or expression, falls under the protection by the copyright law which is known as
Legge sul diritto d’autore (L. n. 633/1941).

In fact in the Article 2, Paragraph 8 of the above mentioned law, it is set out clearly
that:



In particolare sono comprese nella protezione: [...] 8) I programmi per elabo-
ratore, in qualsiast forma espressi purché originali quale risultato di creazione
intellettuale dell’autore. Restano esclusi dalla tutela accordata dalla presente
legge le idee e i principi che stanno alla base di qualsiasi elemento di un pro-
gramma, compresi quelli alla base delle sue interfacce. Il termine programma
comprende anche il materiale preparatorio per la progettazione del programma
stesso

This means that computer programs, in any form expressed, provided that they are
original as a result of the intellectual creation of the author are protected by this law.
Furthermore it states that the ideas and principles underlying any element of a program,
including those underlying its interfaces, are excluded from the protection granted by this
law. Finally it underlines that the term program also includes the preparatory material
for the design of the program itself.

It is worth to note that the protection provided by the Law n. 633/1941 implies that
just the expressive form of the software itself is protected. This means that the ideas,
the functions and algorithms on which the program is based are not safeguarded by this
specific law, therefore what it’s really being protected is the source code of a program as
it is considered to be like a literary work, just like books, as it is stated in article 1 of
this very same law:

[..] Sono altresi protetti i programmi per elaboratore come opere letterarie

Let’s keep in mind that is how a traditional source code is conceived and protected
in Italy, in order to understand some considerations on Al later in this thesis.

2.3.2 Limits of the copyright

It was previously stated that, through the Legge sul Diritto D autore, it is only possible
to protect the source code of a program but not the function that it computes. As we
mentioned earlier we can consider the code of a program as a set of instruction that a
Turing Machine follows in order to compute a specific function on a given input, but
what if we use a different code to give the very same instructions to the machine in order
to carry out the same output? The result given by our software product would be exactly
the same using a different code, therefore avoiding the copyright law infringement. It
would be just like rewriting a book using different words (code), keeping its original plot
(the computed function). Let’s see an example:

Consider the program P, written through the code C' designed to compute the func-
tion f representing the quadratic polynomial:

flx)=a*+22+1

9



For the sake of simplicity, we're going to take this exact same polynomial where all
coefficients are set to 1.

Let’s now consider a second program P’. This program is written through a different
code C’, however it computes a function f’ which is the same as f, so f(x) = f'(z) =
2?2 +2x + 1, hence we basically have two programs that do the same thing but written
differently as they carry out the same function. Let’s see these two different programs
written in C programming language:

Program P:
#include <stdio.h>

int calculate_polynomial (int input) {
int result = input * input + input + 1;
return result;

int main() {
int x_value = 5;
int function_result = calculate_polynomial(x_value);
printf ("Foo result for x = %d: %d\n", x_value, function_result);
return O;

Program P’:
#include <stdio.h>
int main() {
int num = 5;
int result = num * num + num + 1;

printf ("Result for num = %d: %d\n", num, result);
return O;

This obviously applies both to codes written in the same language and codes written
in different languages for example Java and Python:

Program P written in Python:

10



def compute_function(x):
return x*x2 + x + 1

x_value = 5
result = compute_function(x_value)
print (£"f ({x_value}) = {result}")

Program P’ written in Java:

public class FunctionCalculator {
public static void main(String[] args) {
int xValue 5;
int result = computeFunction(xValue);
System.out.println("f(" + xValue + ") =" + result);

public static int computeFunction(int x) {
return x*x + x + 1;

3

Our observation leads us to the conclusion that the scope of copyright law is bounded
by certain considerations.

While it does offer protection to the source code, there are instances where this
provision is not enough to safeguard the entirety of a software product. Consequently,
while copyright offers valuable protection to the expression of ideas in code, it may
necessitate complementary legal measures or strategies to comprehensively secure the
holistic value and innovation embedded within a software creation.

2.3.3 Patent protection for software inventions

In Ttaly, there exist two distinct legal frameworks that address the patent safeguarding
of industrial innovations:

e [talian Civil Code, Article 2585.

e Industrial Property Code (D.Lgs 30/2005).

The Italian Civil Code Article 2585 states:

11



Possono costituire oggetto di brevetto le nuove invenzioni [2569, 2593] atte
ad avere un’applicazione industriale, quali un metodo o un processo di la-
vorazione industriale, una macchina, uno strumento, un utensile o un dis-
positivo meccanico, un prodotto o un risultato industriale e ['applicazione
tecnica di un principio scientifico, purché essa dia immediati risultati indus-
triali [2586]. In quest’ultimo caso il brevetto ¢ limitato ai soli risultati indicati
dall’inventore.

This means that new inventions capable of industrial application, such as a method
or process of industrial production, a machine, a tool, a utensil or a mechanical device,
a product or an industrial result, and the technical application of a scientific principle,
provided it yields immediate industrial results, may be the subject of a patent. In the
latter case, the patent is limited to the results specified by the inventor.

This a general provision which means that is much more vague and approximate in
this matter, in fact it’s giving a very broad a definition and leaves a lot of room for
interpretation for what can or cannot be subject to patent.

A specific legal framework is defined by the Industrial Property Code (Legislative
Decree, 10 February 2005, known as CPI), which states that a software, to be eligible for
a patent, must be part of an invention that satisfies the following criteria under Article
45, paragraph 1:

a) Novelty: The invention must involve something that is entirely new and not already
part of existing knowledge or prior art.

b) Non-obviousness: The invention should demonstrate an inventive step, meaning it
should not be easily derived from what is already publicly available.

¢) Industrial Applicability: The invention should serve an industrial purpose, as op-
posed to being purely commercial in nature.

Furthermore, in accordance with Article 45 paragraph 2 of CPI, are not considered
inventions:

a) Discoveries, scientific theories, and mathematical methods.

b) The plans, principles, and methods for intellectual activities, for leisure or for
commercial activities, and computer programs.

This means that the first point excludes the patentability of algorithms as they are
included in this category. Instead, the prohibition of patentability of computer programs
“as such” cited in the second point, does not effectively exclude the protection of software
through a patent, if integrated within the scope of an invention.

12



As a matter of fact this same exclusion is applied to the European Patent Convention
(EPC), to which the Italian Industrial Property Code is compliant. However, in addition
of what the CPI says, the EPC states that the subject of an invention is not excluded if
it possesses technical character(T258/03). According to the Article 52(2) of EPC:

A computer program generates a technical character if, when it is run on a
computer, it produces a further technical effect which goes beyond the "nor-
mal” physical interactions between program (software) and computer (hard-
ware).

Therefore, a software, in order to be patentable, has to propose to solve a technical
problem and offer a solution that allow to obtain a technical effect.

13



Chapter 3

Artificial Intelligence

Artificial Intelligence, popularly known as Al, is a term created by John McCarthy, an
American mathematician and computer scientist which defined it as:

“[...] The science and engineering of making intelligent machines, especially
intelligent computer programs. It is related to the similar task of using com-
puters to understand human intelligence, but Al does not have to confine
itself to methods that are biologically observable.”

Artificial Intelligence finds application in diverse areas, such as healthcare for diag-
nosing diseases and personalizing treatments, finance for algorithmic trading and fraud
detection, autonomous vehicles for self-driving cars and drones, NLP for chatbots and
language translation, gaming for adaptive game Al and procedural content generation,
retail for recommendation systems and inventory management, robotics for industrial
automation and healthcare assistance and much more.

In particular, this chapter will begin with a concise exploration of the meaning, scope,
and history of Artificial Intelligence. Subsequently, it will primarily delve into a specific
branch of Al known as Machine Learning, concluding with an elucidation of Artificial
Neural Networks in order to better understand the context in which this thesis is going
to conceive its hypotheses.

3.1 A brief history of Artificial Intelligence

In 1950, Alan Turing published a paper titled “Computing Machinery and Intelligence” [2]
in which he posed the question: Can machines think? and suggested that the answer
might be found by observing whether a machine’s responses in natural language conver-
sations could be indistinguishable from those of a human. In fact the paper discusses

14



what we now refer to as the imitation game. This game forms the basis of the Tur-
ing Test, where a human evaluator interacts with both a machine and another human
through written communication. If the evaluator cannot reliably distinguish the ma-
chine’s responses from the human’s, then the machine is considered to have passed the
test.

1956 is considered to be the official start of the Al field as the first Al conference
took place at Dartmouth College and important people like John McCarthy, Marvin
Minsky, and Claude Shannon participated, making Al a big topic of interest. During
this conference, participants engaged in discussions, presentations, and brainstorming
sessions about various aspects of Al. John McCarthy, who coined the term ” Artificial
Intelligence,” played a pivotal role in organizing the event. The conference was notable
for laying the foundation for the formal study of Al as a distinct field. It introduced key
concepts, debated the potential of machine learning, and discussed the challenges that
needed to be overcome to achieve artificial intelligence. While the conference itself did
not result in immediate breakthroughs, it played a crucial role in shaping the direction
of Al research and sparking interest in the development of intelligent machines.

The initial enthusiasm about the potential of this new field pushed British and U.S.
governments to heavily funding research about Al in the middle of the 60s, however, due
to the underestimation of the problem, the initial excitement quickly fell off and by the
start of the 70s the research was almost completely cut off: this period is known as the
“Al winter”.

During the 80s Al gradually restored thanks to a number of factors, including the
development of new algorithms, the availability of more data and the advent of the first
microprocessors. During this period, Al research experienced a revival driven by the
commercial achievements of expert systems, which were Al programs designed to emulate
the knowledge and analytical abilities of human experts. By 1985, the market for Al had
reached over a billion dollars. In the 90s the initial expectations projected significant
advancement, but the enthusiasm subsided once more by the late 1980s and early 1990s.
The process of programming this knowledge demanded substantial effort, often involving
200 to 300 rules. This led to a phenomenon known as the ”black box” effect, wherein the
machine’s reasoning process remained unclear. Consequently, the tasks of development
and maintenance became exceedingly challenging, particularly given the availability of
quicker and more cost-effective alternatives, especially for less intricate and less costly
endeavors.

In the 2000s some solutions developed by Al researchers were being widely used

however Artificial Intelligence had its boom during the 2010s until today. According to
the Council of Europe this was due to two main reasons:

15



e First of all, access to massive volumes of data. To be able to use algorithms for
image classification and cat recognition, for example, it was previously necessary
to carry out sampling yourself. Today, a simple search on Google can find millions.

3]

e Then the discovery of the very high efficiency of computer graphics card proces-
sors to accelerate the calculation of learning algorithms. The process being very
iterative, it could take weeks before 2010 to process the entire sample. The com-
puting power of these cards (capable of more than a thousand billion transactions
per second) has enabled considerable progress at a limited financial cost (less than
1000 euros per card). [3]

Another factor stems from the rise of Deep Learning, which turned out to be a huge
success, driving a major improvement in interest and funding within the field of Artifi-
cial Intelligence. Interestingly, UNESCO notes that the number of published Machine
Learning research pieces jumped by a whopping 50% from 2015 to 2019[4] and WIPO
also pointed out that AI took the lead as the most active emerging tech, scoring the
highest count in both patent applications and granted patents in a report dated 2 April
2022. [5]

3.2 Intelligence and Artificial Intelligence concepts

Despite Al being a over 60 years old field, experts are still debating to provide an accurate
and general definition for Artificial Intelligence which consequently creates struggle in
providing laws and regulations on the matter. This task is quite intricate due to the
abstract nature of intelligence itself, which can be understood in various ways across
multiple disciplines. Intelligence is often demonstrated through a range of functions
such as adapting to new situations, learning from experience, abstract thinking, and
efficient resource use. These functions, despite their differences, collectively contribute
to better performance and goal achievement by acquiring and processing information.

(6]

Although AI draws inspiration from natural intelligence and seeks suitable solutions
for information processing, human and artificial intelligence are distinct, notably in terms
of hardware complexity. While human brains are far more intricate than current Al sys-
tems, capable of embodying a general intelligence in diverse ways, Al excels in specific
tasks like numerical calculations and rule-based processing, outpacing human capabili-
ties.

Whilst AT and human intelligence differ substantially in hardware and complexity,
AD’s capacity to excel in certain tasks highlights its potential. The ongoing pursuit of

16



refining AT techniques and systems holds promise for bridging the gap between artificial
and natural intelligence in the future. The distinction between systems specialized in
performing specific tasks and systems capable of emulating human intelligence has led
to the division of Al into two types: weak Al and strong Al.

3.3 Al types

As it was just stated, artificial intelligence can be broadly categorized into two main
types:

o Weak Al

e Strong Al
They are also respectively known as Narrow AI and General Al

Weak Al it’s a type of Al designed and trained to perform specific tasks or functions,
and drives most of the AI that surrounds us today for example Alexa, Siri and various
autonomous vehicles. These Al systems excel in performing well-defined tasks within a
limited domain but they are not capable of understanding contexts.

On the other hand, strong Al, represents a more advanced form of Artificial In-
telligence. Strong Al systems possess human-like cognitive abilities, allowing them to
understand, learn, and apply knowledge across a wide range of tasks and domains. Unlike
weak Al, strong Al has the potential to reason, comprehend context, and demonstrate
a level of consciousness comparable to human intelligence. However, achieving strong
Al remains a complex and ambitious goal, as it requires replicating human cognitive
capabilities on a deep and comprehensive level.

It is important to note that existing laws and regulations regarding intellectual prop-
erty exclusively concern to weak Al, as strong Al remains a theoretical concept without
established legal frameworks. Therefore the proposal that is going to made will be valid
only within the realm of weak AI creations.

3.4 Artificial Intelligence approaches

AT includes a diverse range of approaches that aim to replicate or simulate human-like
intelligence in machines. These approaches can be broadly categorized into two main
categories: rule-based Al and data-based Al. Each category represents a unique approach
to solving problems and achieving intelligent behavior in machines:

17



e Rule-Based Al: also known as symbolic Al, it basically uses a set of pre-defined
rules to make decisions or take actions. These explicit rules are created by a
human expertise in the specific domain in which it operates and guide the system’s
decision-making process. Rule-based Al is effective for tasks that can be precisely
defined through rules, such as expert systems or knowledge-based systems, for
example an Al system capable of playing chess. Within this category fall generic
software programs. As a matter of fact, the above mentioned rules can be codified
into a set of instructions within a source code, which, according to the mentioned
Italian laws, can be protected through copyright.

e Data-Based Al: also known as data-driven Al, this type of systems are trained
through large amounts of data, and they learn to make decisions by identifying
patterns and correlations in the data. This type of Al is often used in applications
where it is not possible or practical to write a set of rules that can accurately capture
the decision-making process, for example image classifiers. For this reason the
source code of these creations can’t capture their functioning through a protected
set of instructions like in traditional software, which is why this thesis’ aim is to
try propose an effective way to protect specifically those types of systems.

Numerous Al applications often take advantage of a combination of these two pri-
mary approaches with a more hybrid approach. This hybrid approach blends certain
characteristics and aspects from both rule-based and data-based Al categories, resulting
in more advanced and complex Al systems.

3.5 Machine Learning

Machine Learning (ML) is an evolving branch of Artificial Intelligence, primarily con-
sidered a data-based approach as it centers on employing data and algorithms to mimic
human learning, by teaching them to classify, predict, and reveal significant insights in
data using statistics techniques to guide decisions in diverse fields ranging from pat-
tern recognition, computer vision, spacecraft engineering, finance, entertainment, and
computational biology to biomedical and medical applications.

Understanding the functioning and learning techniques of machine learning meth-
ods in general is crucial because artificial neural networks are indeed a subcategory of
machine learning. ANNs are a specific type of model used within the broader field of
machine learning, and they share many of the same fundamental learning techniques and
challenges as other machine learning approaches. This is important to underline because
this study will mainly regard supervised learning techniques applied to ANNs.

18



Artificial Intelligence

Machine Learning

Artificial
Neural
Networks

Figure 3.1: An overview of Al, Artificial Neural Networks, and Machine Learning

This field focuses specifically on the learning aspect of Al by developing algorithms
that best represent a set of data. ML uses subsets of data to generate an algorithm that
may use novel or different combinations of features and weights than can be derived from
this principle: [7]

A | Dpataset Algorithm @ | B [ Dataset ][ Output ]

N

Computer i [ Computer ]

Output [ Algorithm ]

Figure 3.2: Classical programming vs Machine Learning programming

In scenario B, a computer receives a dataset along with linked outputs. The computer
learns and develops an algorithm that explains the connection between the two. This
algorithm is applicable for making predictions on upcoming datasets.

19



3.5.1 Learning methods

Within the realm of Machine Learning, there are two fundamental domains, each offering
distinct methodologies and approaches according to the specific problem that we seek to
resolve. Those two main types of learning methods are:

e Supervised Learning

e Unsupervised Learning

Supervised learning entails learning a mapping between a set of input variables X
and an output variable Y and applying this mapping to predict the outputs for unseen
data. [8] In order to pursue this objective, in a supervising learning problem the com-
puter is supplied with labeled training data, consisting of observations paired with their
corresponding known output labels. The objective is to learn general patterns, often
referred to as a model, that establish a connection between inputs and outputs. This
enables the system to make predictions for new, unseen data, where inputs are observed
but their corresponding outputs are not yet known.

Label —> Dog

Image |::> Dog

—p— —_—

Labeled
Training Data

Expected value

Figure 3.3: The computer during the training is fed with labeled training data (input
X) and it has to grasp general patterns to match with the expected value (Output Y)

Unlike supervised learning, which involves training with labeled data, unsupervised
learning seeks to find patterns within a dataset and categorize instances accordingly. The
goal of this training is to “explore”, without any hint of what the model is really looking
for, as matter of fact these algorithms are considered “unsupervised” because they don’t
rely on a predefined target, instead they determine patterns through the algorithm. Some
of the most common methods in unsupervised learning include clustering, association,
and anomaly detection.

20



S~
g

Figure 3.4: An example of the result of density-based clustering, a machine learning
technique that autonomously identify clusters in datasets based on their density or prox-
imity to each other

Other Machine Learning methods include:
e Semi-supervised Learning
e Reinforcement Learning

e Self-supervised Learning

Semi-supervised learning consists of an hybrid version of ML. which combines su-
pervised and unsupervised methods. During its training the model is fed with a given
combination of labeled and unlabeled datasets; the labeled data is used to guide its
learning of the unlabeled data. Semi-supervised learning offers a solution when there is
an insufficient amount of labeled data for a supervised learning algorithm, especially in
cases where labeling a significant amount of data is expensive.[9)]

Reinforcement Learning is a paradigm of machine learning that deals with sequential
decision problems. In reinforcement learning, the model learns from its experiences by
taking actions, observing the outcomes, and assigning a score or reward to the action to
evaluate its correctness or quality. This ensures that learning is not solely focused on
the current state, but also on the long-term consequences.

Finally, Self-supervised Learning is a form of machine learning in which the system

learns without relying on labeled data. Instead, it learns to identify patterns within the
data by generating its own labels.

21



3.5.2 The overfitting problem

Supervised Learning aim is to learn a specific concept or function in order to grasp the
connection between the labeled data and the expected value. The learned model should
be able to accurately represent the data observed during the training as well as showing
the capability to carry out thorough predictions on unseen data.

In order to do so it is mandatory to avoid the overfitting problem in which the model
memorize the pattern that links the labeled data to the output, instead of understanding
the connection between these two which is an issue that frequently happens when the
model becomes overly complex or when there is an excessive number of features relative
to a limited set of training examples.

This challenge is often referred to as the bias/variance trade-off [10], in which:

e Bias represents the model’s average error across various training sets, indicating
the difference between the average predicted values and the true underlying mean

e Variance signifies the model’s responsiveness to the training set, illustrating the
spread of predicted values around their mean for a specific point.

Balancing this prediction error involves in fact a trade off in which it is necessary
either to reduce bias or variance; Lowering bias cause the variance to rise variance and
consequently the complexity of the models. In order to deal with this issue there are
regularization techniques that introduce penalties that alter the calculations of parameter
values, helping to manage the balance between model complexity and accuracy.

The settings of this bias/variance trade-off are also bound on the data set it’s being
used and the artificial neural network architecture, therefore it is necessary to consider
these decision along with other components.

3.5.3 Biases in data generation

In machine learning a bias in the context of data generation refers to systematic errors
introduced during the process of collecting or generating data. These type of errors can
be generated from a variety of factors and can significantly impact both the quality and
the representativeness of the data as well as influencing the training of the model.

Al biases can also involve treating certain groups or people in a discriminative
way. This typically affects groups that have been historically discriminated against and
marginalised due to factors like gender, social class, sexual orientation, or race, but not
in all cases. This can happen if the model is built with biased and prejudiced assump-
tions during the developing of the model but it is not always the case, in fact it can also

22



happen if the model uses training data that is not accurate or representative, therefore
the bias could be unintentional [11].

These are some of the biases that need to be dealt with when developing a machine
learning model:

Historical Bias: A type of bias intrinsic in the society which is reflected on the
collection of data [11].

Specification Bias: This term denotes a bias in the choices and specifications of
what constitutes the input and output in a learning task. For example the choices
of target variables (like “approve” in a bank loan) can lead to biases. These spec-
ifications are made by the designer of the system which therefore needs a strong
understanding of the problem as well as the skill to transform the problem into
suitable elements [12].

Measurement Bias: It refers to the distortion or inaccuracy in data collection
methods, leading to misleading or unreliable measurements. It can be caused by a
variety of factors such as faulty instruments, biased sampling techniques, or human
error during data collection.

Sampling Bias: also called population bias, occurs when the selection of samples
from a population is not done randomly and in a representative manner. This can
lead to distorted results because the trends and characteristics of the population
might not be accurately reflected in the selected samples so the samples may not
be representative of the entire population.

Annotator Bias: When the data labelling process is done manually, the annotator
is responsible for reviewing each given output and deciding whether to approve or
not approve it based on the designated criteria or guidelines. When doing so, the
human operator can transfer biases to the data used to train the model, therefore
biasing the trained model.

3.5.4 Transparent and opaque systems

Machine learning includes a very broad variety of methods, both for supervised and
unsupervised learning. These methods not only vary in their predictive performance
but also in their capacity to offer explanations, often leading to a trade-off between the
two objectives. Highly accurate systems tend to be more opaque, meaning they have a
reduced ability to justify their decisions.

23



Linear
regression

Decision R et
- trees -;:.;
= o
= e H
= = ==
ﬁ e . = "_.. (] _—FL ] __2__
v K-Nearest
Q Neighbors
E_ £ Random )
b forests e
E _:a'r// )
c /f"” llllll v Claesifer ————
— o .
B o N 4
Kernel 007 O rﬁ../_'
methods "':__.,-bh:i_ =
o
Deep Neural
Networks
Performance

Figure 3.5: ML methods spanning from simpler and more interpretable approaches to
more advanced algorithms [10]

3.5.5 Blackboxes

In Machine Learning, black boxes refer to models or algorithms whose internal workings
are complex, intricate, not easily interpretable by humans or not interpretable at all.
These models can produce accurate predictions or classifications, but their decision-
making process is not transparent or easily understandable. Paradoxically, as we've seen
in the Figure 3.5, the better is the predictive accuracy of a machine learning model,
the more opaque it is. A missing step in the construction of an ML model is precisely
the explanation of its logic, expressed in a comprehensible, human-readable format,
that highlights the biases learned by the model, allowing to understand and validate
its decision rationale. This limitation impacts not only information ethics, but also
accountability, safety and industrial liability [13]. As a matter of fact it is considered to
exist three different forms of opacity [14]:

1. Opacity as intentional corporate or institutional concealment of their algorithms
in general, including those of ML.

2. Opacity as technological illiteracy that prevents society from understanding a field
as specialized as that of computer programming.

3. Opacity in the sense presented so far.

24



This underlines the fact that the unexplainability of black boxes can therefore purposely
used for unethical and unsafe scopes.

However, it’s important to note that the black box nature of Al can present both
challenges and opportunities regarding IP protection. While it may make it harder to
understand and protect certain aspects of Al models, it can also offer advantages in
terms of safeguarding proprietary information and maintaining a competitive edge as
Trade secret law can be exploited effectively when Al models are black boxes.

From now on we will be focusing exclusively to the machine learning model called Arti-
ficial Neural Network (ANN) in order to pursue the objective of this study.

25



3.6 Artificial Neural Networks

3.6.1 Introduction

An Artificial Neural Network (ANN) is a mathematical model that draw inspiration from
the structure and functioning of the human brain, in fact researches on ANN were based
on the idea that by replicating biological neural networks it was possible for machines
to acquire intelligence.

In order to do so the ANN tries to emulate the functionality of biological neurons
by replacing it with an artificial neuron, a simple mathematical model which constitutes
the basic building block for every artificial neural network. These units are nodes in-
terconnected by links, each with an associated weight and follow three primary sets of
regulations: multiplication, accumulation, and activation.

As data enters the artificial neuron each input value is multiplied by an individual
weight. Moving into the middle portion of the artificial neuron, a summation function
calculates the combined value of all weighted inputs and incorporates a bias term.

Exiting the artificial neuron, the total of these weighted inputs along with the bias
proceeds through an activation function, often referred to as a transfer function.

3.6.2 Artificial neuron and biological neuron

Artificial neurons aim is to mimic some of the design and functionality of the biological
neuron in order to get a similar result. Let’s observe some similarities:

e The cell body, called soma, corresponds to nodes.
e Dendrites are the input links.
e Azxons are the output links.

e Synapses are like the weights.

Electrical impulses conveying information from neighboring neurons are received by
the dendrites at synapses, which are connection points. This information is then passed
from the dendrites to the soma, which processes it. Once this process is completed the
output signal, in the form of impulses, travels along the axon to reach other neurons [15].

Similarly, in ANN input links convey signals received from other neurons to the node.
According to the weight associated to the link, the transported signal are reduced or
amplified. When it reaches the node, the information is processed through a summer and
then it’s passed to an activation function which embeds a threshold unit that determines

26



whether the signal can go further; If that’s the case, the signal is propagated to the
output links to reach other neurons.

Sum

Synapses A Activation
In puts function

Output

Soma
(cell body)

Dendrites

Weights

Figure 3.6: Biological neuron vs artificial neuron

The formula to calculate the output, y(k), of an artificial neuron with an activation
function f can be represented as follows:

(k) = f(f: wi(k) # i(k) + b)

Where:
e y(k) is the output of the neuron.

e k represents the discrete time, so it is an index of a specific time step within a
sequence of data points.

f is the chosen activation function.

w; (k) is the weight value at in discrete time k& where i goes from 0 to m.

x;(k) is the input value at in discrete time k where ¢ goes from 0 to m.

b is the bias.

27



The selection of the activation function f for an artificial neuron depends on the
nature of the problem it aims to solve. Typically, the activation function is chosen from
a set of options, the most common are the Step function, Linear function, and Non-linear
(Sigmoid) function [16].

3.6.3 Topology of Artificial Neural Networks

An ANN is made up of arrangement and connections of the artificial neurons. Every
network is composed of layers split in three main parts: the first part is a single layer
called input layer and is the only one to be exposed to external signals.

The second part consists of a range hidden layers (that can also be 0), that extracts
relevant features or patterns from the received signals.

Finally, the last part is the output layer which is the final layer of the network.

Input layer : Hidden layers : Output layer

output 1

input 1

Y

output 2

Figure 3.7: Example of Artificial Neural Network

The arrangement of individual artificial neurons and their connections patterns is
referred to as the topology or graph of an artificial neural network. The range of possi-
bilities in how these connections are established leads to a variety of potential topologies,
which can be categorized into two fundamental classes:

1. Feedforward topology (FNN)
2. Recurrent topology (RNN)

The core difference between these two is that in the first (feedforward) the graph
is acyclic meaning it has no loops, therefore information goes exclusively from input to
output, while the latter (recurrent) allows to have loops as it’s a semi-cyclic graph which
means that information can also go in the opposite direction.

28



FNN

’

Input vector
Output
Input vector

Input | Hidden ! Qutput
Layer Layer Layer Layer Layer Layer

. Single neuron

Figure 3.8: Feed-forward and recurrent topologies [16]

3.6.4 Learning methods

The process of neural network learning involves iteratively modifying its weights and
biases (referred to as free parameters) to achieve the intended output. This adjustment
occurs through training, where the network is exposed to a specific set of guidelines,
often referred to as the learning algorithm. The most common training algorithm are:

1. Gradient Descent Algorithm

2. Back Propagation Algorithm

Gradient Descent is an algorithm used in Artificial Neural Networks to train the
network by adjusting its parameters (weights and biases) in case the actual output is
different from the target output or expected value. By doing so it is possible to guide
the network towards making better predictions and minimize mistakes. Here’s a brief
explanation of the different steps:

1. The network’s performance is measured using a loss function, which quantifies how
far off its predictions are from the actual target values.

2. Gradient Descent calculates the gradient of the loss function with respect to the

network’s parameters. The gradient points in the direction of the steepest increase
in the loss.

3. The algorithm adjusts the parameters in the opposite direction of the gradient.
This means moving the parameters in a way that reduces the loss.

29

Output _'(j:

I.
\



4. The size of each adjustment is controlled by a parameter called the learning rate.
A smaller learning rate takes smaller steps, while a larger one takes bigger steps.

5. The process is repeated iteratively. In each iteration, the parameters are adjusted
based on the gradient and learning rate.

6. The process continues until a stopping criteria is met, for example a fixed number
of iterations.

Backpropagation algorithm utilizes the methods of mean square error and gradient
descent to realize the modification to the connection weight of network. After identifying
an error (the gap between the desired and actual outcomes), this error is then sent
backward through the network, moving from the output layer to the input layer via the
hidden layers [17]. Backpropagation process can be described in this way:

1. Forward propagation of operating signal: the input signal progresses through the
network, starting from the input layer, passing through the hidden layer, and finally
reaching the output layer. Throughout this phase, the weight and offset values of
the network remain unchanged, and the state of each neuron layer only impacts
that of the subsequent layer. In case that the expected output can not be achieved
in the output layer, it can be switched into the back propagation of error signal.

2. Back propagation of error signal: the process involves defining the error signal as
the discrepancy between the actual output and the expected output of the net-
work. This error signal is then transmitted in a layer-by-layer manner, originating
from the output end and extending to the input layer. As this error signal travels
backward, it influences the network’s weight values. Through continuous adjust-
ments of the weight and offset values, the network aims to cover the gap between
its actual output and the desired output [18].

30



Chapter 4

Functioning of Artificial Neural
Networks

The journey of developing an effective Artificial Neural Networks encompasses a complex
procedure, which doesn’t only include the training phase, but also the process of taking
key decisions that shape the neural network’s architecture, performance, and ultimate
efficacy. This chapter is going to be explore the process of creating a working ANN by
breaking it down in a number of steps which will lead to a trained and tested network.
Keep in mind that these steps are meant to be general as they can vary depending on
the problem and tools used, that’s why it will be also covered how the problem is defined
and the choices made within each step.

As it was stated, the primary goal of this preliminary study is to explore a strategy for
safeguarding the intellectual property associated with a network trained using supervised
learning algorithms.

The strategy for protecting Al systems that we have devised is based on the idea that
intellectual property may reside in the training process of the network, and thus, in the
components that describe that process. For this reason, an analysis will be conducted
to identify those key components that should be protected during both the training and
the overall development process.

31



4.1 Key steps to developing a Neural Network

As previously highlighted, there isn’t a universally standardized approach to distinctly
define every phase of designing and developing ANNs, however it is possible to list the
most common and used steps to do so, which include different methods and techniques.
Here’s a quick break down of the main phases:

e Defining the problem: Clearly state the problem you want the ANN to solve.
e Dataset preparation: Gather and clean a relevant dataset.

e Setting network architecture: Decide on the network’s topology as well as its
structure which include layers and number of neurons.

e Training: This is the process of feeding the ANN with data and adjusting its
weights and biases until it learns to perform the desired task.

e Testing: This is the phase in which the ANN performance is evaluated to deter-
mine how well it generalizes new data.

Let’s now delve into each step in order to analyze it.

4.2 Defining the problem

When working on an ANN’s development, it’s crucial to precisely outline the task the
network will undertake, articulating it with accuracy for several reasons. Firstly a well-
defined problem is important to work as a guideline as it sets a clear direction for the
entirety of the project as well as helping to avoid ambiguity and confusion.

Furthermore, having a clear scope of the problem to deal with, ensures that the
network’s architecture, training data, and evaluation metrics align precisely with the
intended task. The nature of the problem influences the type of ANN architecture,
activation functions, and optimization algorithms to be employed. That’s why, as it is
shown above (3.5.3), having a strong grasp of the problem and being capable to breaking
it down into suitable elements is fundamental in order to avoid a biased developing of
the model.

Defining the problem help to evaluate the type and amount of data needed for the
training and testing phases is essential to gather relevant data and creating representa-
tive datasets in the later stages of development. For example in the research carried out
in the paper Automatic Speech Classifier for Mild Cognitive Impairment and Early De-
mentia[19] authors propose to use the autoencoders for the detection of cognitive decline,

32



however typically it is necessary to have large training datasets for the performance of
deep learning models. In this specific case study the context didn’t allow to meet the
requested amount of data, therefore it was adopted a data augmentation approach to
enlarge the size of the input dataset to have better results.

This underlines the importance of comprehending not only the importance of the
individual problem, but also its contextual surroundings, along with available the tools
to address it.

4.3 Dataset preparation

A dataset is a structured collection of data that represents a particular set of observations,
often related to a specific problem or domain. It’s used for training and testing phases
so it is important to consider some fundamental factors when choosing it as the purpose,
size, quality, format and availability. Some common types of datasets used to develop
ANNSs through supervised learning algorithms include:

e Image datasets: contain images, which can be used for tasks such as image classi-
fication and object detection.

e Text datasets: contain text, which can be used for tasks such as natural language
processing and sentiment analysis.

e Audio datasets: contain audio, which can be used for tasks such as speech recog-
nition and music classification.

e Video datasets: contain videos, which can be used for tasks such as video classifi-
cation and object tracking

e Time series datasets datasets: contain time series data, which can be used for
tasks such as forecasting and trend analysis. Evaluation helps prevent overfitting
(3.5.2) and guides the training process. It can considered as an integral part of the
training phase which make sure that the model doesn’t memorize the pattern that
links input data and the target value.

e Sensor datasets: These datasets contain sensor data, which can be used for tasks
such as environmental monitoring and health monitoring,

In order to be prepared, a dataset must be gathered first. Collecting data can be done
from different sources for example public datasets, private datasets and data generated
by sensors, keeping in mind that it should be as large and diverse as possible to help the
neural network to learn a variety of patterns and to generalize to new situations.

33



A dataset can contain errors, missing values, outliers, and inconsistencies. In order to
fix these issues it is necessary to go through a cleaning process that ensures the dataset
reliability:.

Preparing the data for modeling is done by preprocessing it, which consists in stan-
dardizing formats, scaling numerical values, encoding categorical variables, and handling
missing values. As we’ve seen in the previous paragraph, in some contexts datasets may
be not large enough to efficiently train a model, therefore, if applicable, it’s possible to
use the data augmentation technique to increase the training dataset through slightly
modified copies of existing data or newly created synthetic data [19].

It is fundamental for a ANN developed through a supervised learning algorithm to
have data correctly and fully labeled to ensure a better training process. The label can
be for example a category, a value, or a timestamp.

Finally the dataset is typically splitted into three main parts:

e Training Set: it constitutes the largest part of the dataset as it is used to train the
ANNs parameters. As it is mentioned before it contains the input data and corre-
sponding known target values to make the ANNs grasp patterns and relationships
between the two.

e Validation Set: it is a smaller part of the dataset used to fine-tune hyperparameters
and evaluate the model’s performance during the training phase.

e Testing Set: After the model is fully trained, the ANN is evaluated on a completely
separate and unseen part of the dataset called testing dataset that it hasn’t en-
countered during training or validation. In this way it’s possible to assess the ANN
performance on new cases.

The split ratios for training, validation, and testing sets are arbitrary, but most of
the times the biggest slice of data is used for training while the smaller slices are used
to validate and test. These ratios can vary based on the size of the dataset and the
specific problem. It’s important to ensure that the data in each subset is representative
of the overall distribution. Randomization is often used to prevent bias and ensure a fair
representation. Dataset splitting helps assess the ANN’s ability to generalize to unseen
data and aids in selecting optimal hyperparameters and architecture during training.

A data set can be public or private, however, due to the nature of our proposal this
does not matter as we intend to protect a set of components together, and, given the
impact of dataset on the ANN outcome, it is crucial to take it into consideration.

34



Problems with data collected from real-world

Too much data Too little data Fractured data

« Missing attributes
¢ Missing values
* Less amount of data

* Feature extraction
* |rrelevant data

+ Incompatible data
+ Data collected from multiple

« Substantial data sizes sources

e Categorical/Numerical mixed « Data from various levels of
data granularity

+ Noisy Data

]

Data Pre-processing Techniques

Data Transformation Information Gathering Generating new Information
e Data Ordering « Data sampling « Data engineering
* Data Modelling « Data elimination + Time series analysis
+ Filtering, Aggregation and « Data selection + Data fusion
Summarization ¢ Data visualization + Data augmentation
« Indexing and Ordering « Dimensional analysis
* Enrichment and Imputation + Constructive induction

* Modelling, Typecasting,
Formatting, and Renaming

|

Data Analysis

Knowledge extraction

Prediction

Modelling systems

Building knowledge-based system

.

Figure 4.1: Some possible problems with the data [20]

4.4 Setting network architecture

As it is already mentioned, for network architecture we intend the arrangement of the
artificial neurons, their number and their connection patterns. Therefore setting an ANN
architecture consists in determining these parameters:

e Number of neurons in each layer
e Number of layers (single-layer, multi-layer)
e Topology (feedforward, recurrent)

These choices are strictly bound on the type of problem we're dealing with and the
quantity of available data for the training phase. Some of the most common types of
artificial neural network based on their architecture and sizing are:

35



Single-Layer Perceptron: is a simple feedforward neural network architecture com-
posed by a single layer. The perceptron model is primarily used for binary classi-
fication tasks where the decision boundary is linearly separable.

Multi-Layer Perceptron: MLPs are a type of multi-layer feedforward neural network
which can be include one or more hidden layers. They can handle complex non-
linear relationships and are commonly used for various tasks such as classification,
regression, and function approximation.

Convolutional Neural Network: These multi-layer feedforward neural networks are
used mostly for computer vision tasks, such as image classification, object detec-
tion, and image recognition. They do this by exploiting the spatial structure of
the data, which means that they can learn to identify patterns that are related to
each other in space.

Long Short-Term Memory Network: LSTM networks are a type of recurrent neural
networks which can either be single-layer or multi-layer. They are a special type
of RNNs which is capable of learning long-term dependencies specifically designed
to address the vanishing gradient problem, which is an issue that makes it difficult
for the network to learn. Single layer LTSMs are simpler and easier to train but
obviously cannot be as complex as a multi-layer LTSMs which can learn more
complex pattern but are harder to train. Typical tasks carried out by LTSM are
NLP speech and recognition.

Gated Recurrent Unit Network: GRU networks are similar to LTSMs, in fact they
are recurrent artificial neural networks that can either be single-layer or multi-layer.
Just like LT'SMs they mitigate the vanishing gradient problem but they implement
a simpler internal structure and design.

The architecture of an ANN strongly impacts its ability to learn. A shallow neural

network (with a simpler architecture) may be more suitable for less complex tasks, while
a deep neural network (with a more sophisticated architecture) might be the solution
for carrying out more complex tasks. In any case, the ANN’s architecture is one of the
core components that strongly affects training, and thus the weights; this means that it
strongly affects how the ANN perform its instructions, and therefore needs to be taken
into account for intellectual property protection.

4.5 Training

The training phase of Artificial Neural Network development plays a core role in enabling
networks to learn and make accurate predictions. During the training phase, the ANN

36



undergoes an iterative process, gradually refining its parameters to minimize the discrep-
ancy between its predictions and the true outputs. Before getting into the training phase
it is necessary to set the network’s parameters that will collectively define the behavior
and performance of the ANN.

Typically, the main network parameters are the following:

e Initial weights: as we’ve seen they are numerical values associated with the connec-
tions between artificial neurons that will be adjusted during training. The choice of
weight initialization method depends on various factors, including the network ar-
chitecture, the activation functions used, and the specific problem being addressed.
Some common methods are simple random initialization or Xavier Glorot initial-
ization, in any case most of the time experimentation and empirical evaluation are
necessary to determine suitable weights for a specific network.

e Biases: As we've seen above (3.6.2) biases are a network parameter independent
of the input data helping the network to grasp complex patterns and generalize
data more efficiently. They are scalar values, each associated to a specific layer and
affect every neuron in that layer. They condition ANNs training by determining
how easily a neuron are activated based on its inputs: A higher bias value makes
it more likely that a neuron will activate (produce an output) even if the weighted
inputs are not very large. Conversely, a lower bias value makes it less probable
that a neuron will activate, requiring the weighted inputs to be relatively larger for
activation to occur.

e Activation Functions: these functions introduce non-linearities to the network by
transforming the weighted sum of inputs from the previous layer. They determine
the output or activation level of a neuron. The choice of an activation function is
made based on the nature of the problem, network architecture (deep or shallow),
the characteristics of the data and the computational efficiency. As for others
parameters, it’s often necessary to experiment different activation functions to
define which one works better for a specific ANN.

In the following subsections it’ll be shown the above-mentioned example of an ANN
training which will be exemplified enough to grasp the main concepts necessary to make
some considerations. The network that will be developed is a classifier which determines
whether a given image is a cat or a dog.

37



4.5.1 The neural network

Let’s suppose our artificial neural network is multi-layer and feedforward and it is com-
posed by:

e An input layer with a single node 1.

e A hidden layer with two nodes, respectively ji, js.

An output layer with two nodes, respectively o1, 0.

e wy,...,w, are the weight associated with connections.

b1, by are the biases.

The outputs 0 and 1 to were chosen to represent cats and dogs, respectively.

b1 b2

Figure 4.2: Initial network

4.5.2 A result example

The objective of this training is to attain a specific outcome. When presented with an
input image depicting either a dog or a cat, the artificial neural network should have the
capability to generate an output in the form of a prediction. This prediction serves the
purpose of indicating whether the image contains a dog or a cat, thus demonstrating the
network’s ability to discern between the two categories.

38



Output

Output

b1 b2

Figure 4.3: An example of the expected result

4.5.3 Training process

The selected method for conducting the training phase will be the Backpropagation
algorithm (explained in section 3.6.4). Let’s proceed by enumerating and providing
explanations for each step:

1. Weights and biases initialization: In order to set the initial values for these
parameters, we will adopt a basic random initialization approach.

0.5

b1 b2

0.38 0.51

Figure 4.4: The initialized parameters in the ANN

39



2. Forward propagation: During this phase the input signal progresses through
the network starting from the input layer, then passes through the hidden layer,
and finally reaches the output layer.

In this process we calculate the value of each node while the weights and biases
remain unchanged, as shown in 3.6.2 the formula includes a summation which is
going to be the argument for the chosen activation function. Let’s go through
summation of the k — th node using the following generalization sequence:

Jk = Q1 * W1 + Ao * Wo + ... + Ay * W, + by
For clarity let’s remind that a represents the value propagated from the adjacent

node, w denotes the weight of the traversed connection, and b signifies the bias.

We will employ the sigmoid function as our chosen activation function, which is

defined as follows: .

f(jk):m

The computed result will be the propagated to the following adjacent nodes. Let’s
compute the value of j; and its propagated value through the activation function:

J1=0.21%0.5+0.38 =0.485
1

f(jl) - (1 _|_ 6(70'485)) - 0619
0.485 0.619
0.52 0
[o]]
05 0.22
i
0.63

b1 b2

Figure 4.5: ANN with j; value computed. The green value is the result of the summation
whilst in blue we find the propagated value computed through the activation function

40



aj

Figure 4.6: Inside the artificial neuron firstly summation is computed and then the
activation function elaborate the result to produce an output

Within this process, the state of each neuron layer exclusively influences the sub-
sequent layer’s state. This iterative process traverses the entire artificial neural
network, encompassing every node, until it reaches the output layer.

0.485 0.619 0.974 0.727

0.5

0.59 | 0.644 1.183 | 0.766

b1 b2
0.38 0.51

Figure 4.7: Every value is calculated until the output layer, the output value propagated
is the red one

41



At this point the final output values, respectively 0.727 and 0.766 (colored in red
in the figure 4.7), are going to be compared to the target values in order to check
the discrepancy between the obtained value and the expected one.

Let’s assume, for the sake of simplicity, that we've fed a dog picture into the
network. Our desired outcome is for the propagated value from the upper output
node in this network to be as close to 0 as possible, while the output value generated
by the lower output node should be close to 1. Conversely, if the inserted picture
was a cat, the ideal output for the upper node should be as close as possible to 1,
and for the lower node, it should be close to 0. Note that this example has been
based on the assumptions made earlier, namely that 1 corresponds to a dog and 0
to a cat.

. Backpropagation: During this phase, we are going implement the process de-
scribed in the previous example, which involves defining the error signal as the
difference between the actual output and the expected output of the network. The
error signal we’re about to calculate will follow the reverse path of the feedforward
phase. This means that it will propagate from the output layer, extending back to
the input layer, moving in the opposite direction, and impacting the weight values
of the network in order to adjust them. The aim of this process is to reduce the
discrepancy between the output and the target value as much as possible.

Let’s go through each point of this phase, with the assumption that the fed image
was a dog:

(a) Calculation of the error: In order to calculate the error for each training

example we're going to using a metric called Mean Squared Error (MSE).
The formula for a single example is:

1
Ey = §(output — target)?
Therefore our ANN errors are respectively:

1
B, = 5(0.727 —0)* = 0.264

1
= 5(0.766 —1)2=10.027

Now we want to calculate the total error by summing up the individual MSE
values for all training examples to obtain the total MSE.

Es

Eio = Z E,=E,+ Ey, =0.291

=1

42



(b) Backpropagation of Error: It involves computing the error gradient for
each layer in the network by propagating the error backward from the output
layer to the input layer. The error gradient quantifies how much each param-
eter (weights and biases) in the network should be adjusted to minimize the
chosen error metric (in this case, Mean Squared Error). So basically we're
going to measure the impact of each weight on the total error starting from
the output layer through the hidden layer and finally the input layer.

Let’s start from wg (figure 4.2). Through the partial derivative of E;,; on
we (called the gradient) we calculate the impact of wg on Ey,. The formula,
using the chain rule, is the following:

6Et0t . (SEtmg N 50Ut02 N 5in02
Swg  Odoutyy  0iNgy dwe

1 1
Eipi = By + By = §(out01 — target)?® + §(OU/t02 — target)?

0FE,, 1
50?;;2 =04 2x §(out02 — target02)2_1 x —1
0FE;,
tot — outyo — targety,y = 0.766 — 1 = —0.234
doutym
; 1
OUtyy = ————
27 1+ eine
doutyo
, = outya(l — outyy) = 0.766(1 — 766) = 0.179
0iNyo
inog = Wy * Outjz -+ wry * O’Uﬂfﬂ + bg
(57;7102
5w8 = Outjg = 0.644
0FE,,
o0 — —0.234%0.179 % 0.644 = —0.027
(SIU@

The final updated wg value is:

5Etot
(5’11)6

Weupdated — We — €

We will take as learning rate value 0.5 for simplicity:

Weupdated = 0.44 — 0.5 % —0.027 = 0.427

43



Eo2

ws Etot

Weupdated In Out

bs
Figure 4.8: Visual representation of this phase
To update the biases associated with the layer, we would use a similar formula:

5Etot

bQupdated = b2 — € (sz

Using the chain rule:
0 Etor B 0B day

(5b2 N (5(12 (Sbg
Applied on the initial formula:

OE;o b — 0E; o 5&
2 ¢ 5(12 5[)2

Where ay represents the output of the neuron in the output layer. It’s the
result of applying the sigmoid activation function to the weighted sum of
inputs and the bias associated with that neuron.

In mathematical terms:

ay = o(weighted sum + by)

Weighted sum represents the sum of the weighted inputs coming into the
neuron from the previous layer and o is the activation function (sigmoid in
this case).

These calculations will be repeated for every weight and bias, throughout the
entire artificial neural network. It’s important to note that this parameter ad-
justment process is performed multiple times until the difference between the
predicted output and the target value is considered acceptable. Consequently,
this process will cycle back to the forward propagation phase as needed.

44



4.5.4 Validation

Validation during training involves using a separate dataset to assess and monitor the
model’s performance, guide hyperparameter tuning, and potentially trigger early stop-
ping to optimize the model’s generalization ability. It is a critical step in the development
of a robust and effective neural network model. The key aspects of validation during
training are as follows:

e Validation Dataset: A portion of the available data is set aside and designated as
the validation dataset. This dataset is not used for training the model. A portion
of the available data is set aside and designated as the validation dataset. This
dataset is not used for training the model.

e Periodic Evaluation: After each training epoch (a complete pass through the train-
ing data), the model’s performance is evaluated using the validation dataset. The
model’s predictions are compared to the known target values in the validation
dataset to compute evaluation metrics, such as accuracy, loss, or other relevant
metrics.

e Performance Monitoring: The evaluation metrics obtained from the validation
dataset provide insights into how well the model is learning during training. It
helps to monitor the model’s ability to generalize to unseen data and identify po-
tential issues like overfitting (when the model performs well on training data but
poorly on new data).

e Hyperparameter Tuning: Validation data is also used for hyperparameter tuning.
Hyperparameters are settings that are not learned by the model but are set prior
to training, such as the learning rate or batch size. By systematically adjusting
hyperparameters and evaluating the model’s performance on the validation data,
data scientists can identify the hyperparameters that result in the best model
performance.

e Early Stopping: Validation data plays a crucial role in early stopping. If the model’s
performance on the validation dataset begins to degrade (e.g., loss increases or
accuracy decreases), while the performance on the training dataset continues to
improve, it may indicate overfitting. Early stopping involves halting the training
process when such degradation is detected on the validation data. This helps
prevent the model from overfitting and ensures that the model generalizes well to
new, unseen data.

45



4.5.5 Cross-Validation

One of the most common types of validation techniques is known as cross-validation. It
involves partitioning the training dataset into several subsets referred to as folds. In the
training procedure, the model is trained using all folds except one, which serves as the
validation set. This procedure is iterated multiple times, with each fold taking turns as
the wvalidation set while the remaining folds are used for training.

The average performance of the model across the various folds serves as an estimate
of how well it would perform on unseen data. This approach offers a more reliable
estimation of the model’s performance compared to using the entire training dataset as
the wvalidation set, as it reduces the risk of overfitting.

For instance, consider having a training dataset with 100 examples. You could par-
tition this dataset into 4 folds, with each fold containing 25 examples. During each
iteration, the model would be trained on 75 examples and evaluation on 25 examples.
This process would be reiterated 4 times, utilizing a distinct fold as the wvalidation set
in each iteration. The mean performance of the model across these 4 folds would then
serve as an approximation of its performance when faced with unseen data.

n ) lterations Training folds D Evaluation folds

Figure 4.9: An example of cross-validation

4.6 Testing

The testing phase serves the purpose of assessing the model’s ability to generalize to
new data. This evaluation is done using a dedicated subset of the dataset called test set.
The test set consists of a set of data that the model has never seen during its training or
validation stages. This ensures that the model has no prior knowledge of the test data
and cannot rely on memorization.

The primary objective of the test set is to provide objective estimation of the model’s
performance and if all the testing metrics meet the desired criteria, the neural network is
ready to proceed to the deployment phase. It’s important to note that the outcomes of
testing are highly dependent on the specific problem being addressed, and what might be
considered acceptable performance for one application might be insufficient for another.

46



The selection of appropriate validation methods depends on the type of applica-
tion[21]:

e Approximation testing methods: These methods are used to evaluate the accuracy
of a model’s predictions. They do this by comparing the model’s predictions to
the actual values. Some common approximation testing methods include mean
squared error (MSE), root mean squared error (RMSE), and mean absolute error

(MAE).

e (lassification testing methods: These methods are used to evaluate the accuracy
of a model’s predictions for categorical variables. They do this by comparing
the model’s predictions to the actual labels. Some common classification testing
methods include accuracy, precision, recall, and F'1 score.

e Forecasting testing methods: These methods are used to evaluate the accuracy of
a model’s predictions for future values. They do this by comparing the model’s
predictions to the actual values. Some common forecasting testing methods include
mean absolute percentage error (MAPE), Theil’s U statistic, and the mean squared
error (MSE).

47



4.7 Considerations

The result of the process explained in the previous section is none other than a function
capable of taking in an input, which in this case is an image, and processing it to produce
an output, that in this case is the prediction, much like a Turing Machine.

In a Turing Machine, the process of computation is defined by a source code, which
consists of a sequence of instructions that guide the machine’s behavior. This code is a
fundamental and protectable element.

On the other hand, in neural networks, the source code does not explicitly defines
the operation that the ANN do to perform a specific task, rather it describes the setup
of a neural network. This is because an ANN functioning is what we described as a black
boz, therefore its operation and functioning are difficult to interpret, if not impossible.

How could be possible to protect an ANN just like Turing Machine instructions are
protected through their source code?

It is important to note that the ability of a neural network to make predictions or
decisions is the result of autonomously applying certain instructions by the network
when facing generalized cases. These instructions are not explicitly encoded but emerge
through the process of learning from data, the outcome of which is a set of weights that,
on their own, are merely numbers. However, when considered in conjunction with other
elements, they describe the functioning of the network and, consequently, its instructions.
Therefore, one could argue that protecting the key components contributing to this
learning process, and its outcome (i.e., the weights), means safeguarding the instructions
that the neural network performs to compute the learned function, much like how source
code protects the instructions carried out by a Turing Machine.

On the basis of these assumptions, the conceived proposal is to protect the following
key elements that could constitute intellectual property of data-driven Al systems:

e Data set

e Network architecture

e Technical implementation
o Weights

The next chapter of this thesis will delve more into this proposal in order to explain
how those key components together would make it possible to protect an ANN and why
this idea seems to be more effective than what is actually protected by IP laws in the
state of the art in Italy. In addition to this, this final chapter is also delving into different
jurisdictions in order to have an idea of how IP for Al systems is conceived in some other
countries of the world.

48



Chapter 5

Legal protection of Artificial
Intelligence

In the previous chapter, the functioning of an artificial neural network trained using
a supervised learning algorithm was explained in detail. From this description it is
observable how the result of this process is essentially a function capable of processing
an input and producing an output, like the operation of a Turing Machine. However, in
the context of ANNs and Al data-based systems in general, the absence of “traditional”
source code that prescribes their instructions and functionality results in a lack of a
protectable and tangible component for safeguarding their intellectual property.

As of today, both in Italy and worldwide, there is no legal framework that addresses
the protection of artificial neural networks by specifically distinguishing the elements
that have to be protected. In the following chapter, a more in-depth explanation will
be provided for the proposal made to protect ANNs, which, as previously anticipated,
consists of the collective protection of four core elements. These elements are believed
to adequately represent the instructions and, consequently, the functioning of the net-
work, thus they should be protected through intellectual property rights to ensure legal
safeguards for these systems.

49



5.1 Artificial neural networks and Turing Machines:
a comparison

Like it was stated in 4.7, both artificial neural networks and Turing Machines can be
viewed as systems that perform computations by processing input and generating an
output, but they do so quite differently. In the case of ANNs the input might be an
image, a text, an audio and anything that can be represented as a numerical vector. On
the other hand a Turing Machine can take as an input anything which can be represented
as a string of symbols from the Turing Machine’s tape alphabet.

In both cases they process this data in order to produce the output. Let’s see a visual
comparison of an ANN that classify images of cats and dogs, and a Turing Machine which
calculates a second degree polynomial with coefficients equal to 1:

input

o () = v

Source code

1 #include <iostream>
2 #include <math.h>

3 using namespace std;
4

5 int main()

2 —5 T e, s s f(z) =y

8 int a = 1;

9 int b = 1;

10 int c = 1;

11 cin >> x;

i y = a*pow(x, 2) + b*x + c;
13 return y;

141}

Figure 5.1: Comparison between a dog&cat classifier and a Turing Machine

As we can see from figure 5.1, fundamentally, an ANN produce mathematical func-
tions like Turing Machines, but obviously in a different way. This conceptual similarity is
important because it allows us to understand that a neural network can perform calcula-
tions and take actions on data much like a Turing Machine would. However it’s important
to note a key distinction previously discussed: the Turing Machine has a tangible source
code which represent a detailed description of the transition rules and instructions that
the machine follows to perform computations, so basically its behaviour.

In the case of ANN, the source code is quite different as it does not explicitly
describes how the model operates following a well-defined set of instructions, instead in-
structions are learned automatically by the network during the training process, without

50



being manually coded in the source code. This is exactly why the objective of this study
is to develop a standardized method for accurately representing the functioning of these
models. This representation can then be protected in a manner similar to how existing
laws protect the instructions of a Turing Machine, which are embedded in source code.

5.2 ANN intellectual property

In order to address the legal protection of neural network models, it is necessary to grasp
a clear understanding of what should specifically protected by the intellectual property
in ANNs in order to implement adequate measures to safeguard against unauthorized
access and use.

The idea proposed in this thesis involves grouping these components together as a
unified entity that is eligible for intellectual property rights protection, in order to legally
safeguard and maintain the originality and value of an artificial neural network:

e Dataset
e Network architecture
e Technical implementation

o Weights
Let’s go through all of them to justify this choice.

5.2.1 Network architecture

By network architecture it is meant:
e The number of layers and the number of nodes per layer.

e The topology as intended in the point 3.6.3.

The network architecture determines the model’s capacity to represent and approx-
imate complex input-output mappings. An appropriate architecture can help prevent
overfitting, where the model becomes too specialized in the training data and performs
poorly on unseen data. Furthemore, the choice of network architecture can significantly
impact computational efficiency during training as it influences hyperparameter tuning.
Also the architecture is designed to work for a specific task. This means that different
network architectures are made to handle specific types of supervised learning tasks.

51



Keep in mind that protecting the network architecture this doesn’t mean that, for
example, we're forbidding to use convolutional neural networks with £ nodes and n layers,
but we're trying to seek legal protection by not allowing to use a certain neural network
architecture combined to other components in order to carry out our very same function.

5.2.2 Data set

The data set used to train, validate and test an artificial neural network and it is crucial
for preserving the integrity and intellectual property associated with the network.
Firstly, if a data set contain sensitive or proprietary information, such as personal
data, trade secrets, or valuable research, it also must be kept secret as a single component
for ethical reasons within the laws of the existing legal framework about data sets. Either
way, if it’s public the idea remains to protect it as a unit with other components.
The data set influences some of the main phases of an ANN development:

e Training: The data set provide the ANN with examples of patterns and relation-
ships within the data. The network learns to recognize and generalize from these
patterns to make predictions or classifications by changing its weights. This is
essential to actually achieve a trained model that deeply understand the complex
relationship between the labeled data and the expected value, and therefore impact
training.

e Validation: A diverse and representative data set helps the ANN generalize its
learning to new, unseen data. Without sufficient data, the network may overfit,
meaning it learns to memorize the training data but cannot make accurate predic-
tions on new data. For this reason, during validation the data set influences key
steps like hyperparameter tuning, performance monitoring and others aspect listed
in the point 4.5.4.

e Testing: A part of the data set is dedicated to testing, which allows to actually
assess the model’s generalization performance.

This means that it is a fundamental element for the ANN as strongly impacts how
the network is learning because it provides the examples on which the ANN learns to
perform its instructions. Also protecting just the other three elements is not enough as
one could use the same network architecture and the same technical implementation and
a different data set to train the network, and casually obtain the same weight matrix as
a result. Of course this is unlikely to happen, but still there is a chance, and if that’s the
case it actually would not be fair for the competitor, therefore, the data set also helps
to maintain the uniqueness of the model.

92



5.2.3 Technical implementation

Technical implementation refers to the comprehensive set of specific decisions, configura-
tions and processes that dictates implementation process of an artificial neural network.
It encompasses a range of elements including:

e Initialization and Regularization Techniques: Deciding on the initialization method
for the network’s weights and biases, such as random initialization or using pre-
trained weights.

e Choice of Optimization Algorithm: Selecting an optimization algorithm suitable
for supervised learning, such as stochastic gradient descent; The chosen algorithm
determines how the network’s weights are updated during training to minimize the
loss function.

e Hyperparameter Tuning: Determining the values of hyperparameters specific to
the supervised learning algorithm, such as learning rate, batch size, number of
epochs, or regularization strength. Adjusting these hyperparameters can signifi-
cantly impact the model’s performance.

e Loss Function Selection: Choosing an appropriate loss function that corresponds to
the specific supervised learning problem, such as mean squared error (MSE showed
in 4.5.3). The loss function measures the discrepancy between predicted and true
values during training.

e Model Evaluation: Determining the evaluation metrics to assess the performance of
the trained model on test or validation data depending on the supervised learning
task.

Protecting the technical implementation involves safeguarding these choices and con-
figurations that are fundamental for the ANN functioning which may include solutions
or technical approaches tailored for the other components that enhance the effectiveness
and efficiency of the ANN.

5.2.4 Weights

The last fundamental component is the weight matrix of trained neural networks. The
weights represent the internal parameters of the network that are updated during training
to optimize the network’s behavior. If taken alone, they are merely numbers, however,
along with other components involved in the training process, they describe the func-
tioning artificial neural network, reflecting the specific configuration that the network
has learned from the data during the training process. Let’s clarify:

53



As it was already explained, the weights represent the coefficients that define the rel-
ative importance of connections between neurons in the network. Each weight influences
the contribution of an input neuron to the next neuron. By changing the weights, the
network can adjust the importance of different input features and their influence on the
output results. During the training process, weights are adjusted based on the learning
algorithm used as the goal is to find an optimal configuration of weights that minimizes
the error between the network’s predictions and the desired output values. These weights
determine the strength and significance of the connections, influencing how information
flows through the network during the inference or prediction phase. This means that
they encapsulate the network’s ability to generalize from the training examples and make
predictions or classifications on unseen or new input data. Therefore, weights can be con-
sidered as the end result of the training process, along with the choices and techniques,
as they reflect the network’s final ability to take an input, processing it, and producing
an output.

The main reason why they need to be protected with other attributes is that, in
contrast to traditional source code, where the computer realize a function by following
a well-written set of instruction, the weight information associated with the connections
between neurons does not possess the capability to direct a machine to execute a par-
ticular process, therefore it is not capable of instructing the machine to do anything
because, as it was stated result weights alone mean nothing but mere numbers, so they
need to be combined with other elements to form a unique component able to suitably
represent an ANN.

5.2.5 Further explanations

It is important to underline the importance of considering the intellectual property of a
neural network as a combination of these elements and not taking them individually for
various reasons. Firstly, it is possible for some of these elements to be the same across
different artificial neural networks. This is because, for specific applications, certain
elements such as topology, the number of nodes and layers, or even hyperparameters like
the activation functions may well-known and notably optimal choices.

Secondly, when taken individually, these four components do not offer robust legal
protection for an artificial network as each component, on its own, presents limitations
in safeguarding the intellectual property and uniqueness of an ANN.

Take the weight matrix in artificial neural networks, for example. As mentioned
earlier, weights are essentially data structures. Copyright law, on the other hand, pri-
marily protects the specific way an idea is expressed and not the concept behind the
idea. This means that copying the exact set of weights, with only minor adjustments,
may not constitute a copyright infringement. Furthermore, replicating the weights with
slight modifications might not significantly impact the neural network’s performance. In

o4



fact, this procedure may not even violate any copyrights. This underlines the necessity
of protecting these attributes together.

Ownerlmpl.jad (decompiled version of Oracle OwnerImpl.class) Ownerlmpl.java (Android version)
[spacing adjusted for comparison] [spacing adjusted for comparison]
pubTic_synchronized boolean deleteowner(Principal principal, Principal pubTic_synchronized boolean deleteOwner(Principal principal, Principal
prmcma]l) throws NotOwnerException, LastOwnerException { pr1nc1pa11) X
if(!isowner(principal)) throws NotOwnerException, LastOwnergException
throw new NotownerException(); {
1f('1sOwner(pr1nc1pal)) throw new NotOwnerexception();
Enumeration enumeration = ownerGroup.members(); Enumeration enumeration = ownerGroup. members()
Object obj = enumeration.nextElement(); Object obj = enumeration.nextElement();
if(enumeration.hasMoreETements()) if(enumeration.hasmoreElements()) {
] return ownerGroup.removeMember(principall); } 1reet%rn ownerGroup . removeMember (principall);
else else
throw new LastOwnerexception(Q); throw new LastOwnerexception(Q);
L
}
pub'l1c synchronized boolean isowner(Principal principal) { public synchronized boolean isowner(Principal principal)
eturn ownerGroup.isMember(principal);
return ownerGroup.isMember(principal);
}
}

Figure 5.2: Exhibit Copyright-N in the Oracle Inc. vs Google case [22]

Oracle America, Inc., owns a copyright in Java SE, a computer platform that uses
the popular Java computer programming language. In 2005, Google acquired Android
and sought to build a new software platform for mobile devices. To allow the millions of
programmers familiar with the Java programming language to work with its new Android
platform, Google copied roughly 11,500 lines of code from the Java SE program [23].

The exhibit in Figure 5.2 was presented as evidence in the Oracle vs. Google case.
This exhibit is an example of what a copyright infringement of software source code
might entail: the codes are identical and, as a result, they have an identical functionality.
The case of an ANN would be different because, as it was stated, the source code does
not explicitly include instructions, however this proposal is seeking to find a similar
protection. Let’s can provide a simplified hypothetical example to illustrate the concept
of ANN’s protection with the given components:

Take two developers, A and B, both working on artificial neural networks for image
recognition, for simplicity let’s say the ANN illustrated in the previous chapter, a dog
and cat classifier. They both have similar ANN architectures but B doesn’t know how
to progress further. Now, let’s consider a scenario where B, without A’s permission,
copies the entire configuration of her ANN’s including data set, architecture, technical
implementation into his project, which ends up giving him the exact same weight matrix.
In this case, B has essentially replicated A’s network fundamental design, replicating its
functionality, just like it was happening in the source code in figure 5.2 in Oracle vs
Google case, which would constitute an intellectual property infringement.

As previously mentioned, my goal was to make a proposal to take care of the lack of
regulations in Italy that directly deal with the protection of ANNs, and the framework
provided regarding the elements to defend seems to be a good generalization of what
actually needs to be safeguarded in an ANN.

95



5.3 Al intellectual property in Italy: State of the art

The significant growth and widespread adoption of artificial neural networks have raised
significant legal issues concerning their protection and intellectual property. Particularly
in [taly, where regulations related to emerging technologies like Al may not be adequately
defined, it is crucial to carefully examine the existing legal framework to identify some
of the regulatory gaps.

This section aims to explore the context of intellectual property for artificial neural
networks in Italy, focusing on how existing laws can be applied to such Al systems.
We will begin by analyzing relevant forms of intellectual property protection, such as
copyright, patents, and trade secrets, and evaluate their suitability in addressing the
specific challenges posed by artificial neural networks. Additionally, we will thoroughly
examine the current state of artificial neural networks in Italy to further underscore the
pressing need to introduce new proposals, as previously mentioned, in order to provide
adequate legal protection for ANNs and, consequently, the intrinsic know-how associated
with these models.

5.3.1 Copyright

For what concerns software, Italy relies on the Italian Copyright Law (Law no. 633/1941),
known as the ”Legge sul Diritto D’Autore,” to safeguard original works of authorship,
which encompass various forms of creative expression, including software. This legal
framework primarily extends protection to the tangible and well-defined code resulting
from a programmer’s creative efforts. It covers the literal representation of the code,
namely the specific lines of code that constitute the program.

However, when it comes to Al, specifically artificial neural networks, the notion of
a conventional source code becomes complex and elusive. ANNs operate in a dynamic
manner, and identifying a traditional source code may not be straightforward.

In such instances, the focus of protection may shift towards specific components
like it was previously illustrated, rather than the mere executable code produced by a
compiler. This highlights the need for a sophisticated legal approach designed to protect
the intricately linked intellectual property associated with ANNs.

5.3.2 Patents

A patent represents a territorial form of intellectual property rights, implying that its
protection extends solely to the jurisdiction where the relevant application was filed and
subsequently approved.

56



Generally, patents are granted by national patent offices, such as the UIBM in Italy
or the USPTO in the United States. Alternatively, they can be established through
international agreements, as is the case for Italy, which adheres to European international
conventions. This prominent example regards the European Patent Convention (EPC),
where the patent application procedure is overseen by the European Patent Office (EPO).
Italy, as a member of the European Patent Convention (EPC), participates in the EPO
system.

In accordance with Article 45, paragraph 2 of the Industrial Property Code (Leg-
islative Decree, 10 February 2005, no. 30 - IP Code)[24], an Al system, similar to
mathematical methods and computer programs, does not qualify as an invention and is
therefore not eligible for patent protection, unless specific criteria are met [25]:

e It produces a technical effect as it is intended in 2.3.3.
e It is original and the result of an intellectual creation.

EPO seems to confirm this version through the Guidelines for Fxamination at the section
3.3.1 [26]:

Artificial intelligence and machine learning are based on computational mod-
els and algorithms for classification, clustering, regression and dimensionality
reduction, such as neural networks, genetic algorithms, support vector ma-
chines, k-means, kernel regression and discriminant analysis. Such computa-
tional models and algorithms are per se of an abstract mathematical nature,
wrrespective of whether they can be trained based on training data. Hence, the
guidance provided in G-1I, 3.3 generally applies also to such computational
models and algorithms

Upon closer examination, the legal provision stipulates that these algorithms are
excluded from patentability only as such, implying that inventions related to software
can legitimately obtain protection when they interact with hardware systems and control
certain functions. This is known as the theory of technical character: even inventions
implemented through a computer can be patented if they are capable of producing an
additional technical effect that goes beyond the normal interaction between hardware
and software [27].

Furthermore, to better understand whether an Al system is patentable or not, EPO
presents two examples of patentable and non-patentable creations in the previously men-
tioned 3.3.1 section. The first - patentable - example is:

Artificial intelligence and machine learning find applications in various fields
of technology. For example, the use of a neural network in a heart monitoring
apparatus for the purpose of identifying irreqular heartbeats makes a technical
contribution.

57



On the other hand, a non-patentable subject example is:

Classifying text documents solely in respect of their textual content is however
not regarded to be per se a technical purpose but a linguistic one.

This implies that the effectiveness of IP protection is closely tied to the functionality
of the model, which can be a significant limitation when attempting to protect our pro-
prietary artificial neural networks, again underlining the necessity to find a combination
of attributes that enable to protect an Al system regardless of its final purpose.

5.3.3 Trade secrets

In Italy, as an alternative to seeking patent protection, Al systems can be safeguarded
as confidential trade secrets. Trade secrets fall under the scope of articles 98 and 99 of
the IP Code:

e According to article 98, protection is granted to business information and technical-
industrial experience, including commercial information and experience, subject
to the legitimate control of the owner. To be protected as a trade secret, the
information must meet the following three criteria [24]:

— It must be secret: The information must not be known to the public or to
those who can reasonably be expected to have access to it.

— It must have economic value: The information must have some commercial
value, such as by giving the owner a competitive advantage.

— It must be kept secret: The owner must take reasonable steps to keep the
information secret, such as by restricting access to the information and using
confidentiality agreements.

e Article 99 says: In accordance with Article 98 and without prejudice to unfair
competition regulations, the lawful owner of the information and business expertise
has the right to prevent third parties from acquiring, disclosing, or using such
information without consent, unless the third party independently obtained it.

Therefore, upon meeting all the required, you can protect your ANN as a trade
secret. However, it is important to note that trade secret protection can be lost if the
ANN becomes public. This can happen if the ANN is published, disclosed to others, or if
you fail to take reasonable steps to keep it secret. This implies that if I choose to define
four attributes that make up the source code of my ANN and seek protection under this
particular law, these attributes must have a basis for direct or indirect protection.

58



5.4 Al intellectual property outside Italy

5.4.1 European Union

In the European Union, the European Patent Office is one of the two organs of the
European Patent Organisation. It grants European patents covering the Contracting
States to the European Patent Convention and several other states that have concluded
extension and validation agreements with the EPO.

As it was already stated, EPO mentions that mathematical methods play an im-
portant role in the solution of technical problems in all fields of technology. However,
they are excluded from patentability under Art. 52(2)(a) when claimed as such (Art.
52(3)) [26]. The point 3.3.1 which specifically concern Al and ML, affirm that such
computational models and algorithms are per se of an abstract mathematical nature,
therefore they are patentable exclusively if they carry out a technical effect just like it
was explained in 5.3.2, which was in fact referring to the European convention.

5.4.2 United States of America

The USA regulation is quite further than the italian and european regulations. In Octo-
ber 2020 the United States Patent and Trademark Office (USPTO) published a report
titled Public Views on Artificial Intelligence and Intellectual Property Policy. The report
takes a comprehensive look at a wide variety of stakeholder views on the impact of Al
across the IP landscape and provides Al context, legal background, and public comment
synthesis for each of the questions presented in the two requests for comments. The
USPTO has used the report to focus on issues for continued exploration and stakeholder
engagement to bolster the understanding and reliability of IP rights for Al and other
ET.

Firstly, the USPTO’s mentioned report provide a definition of Al invention to identify
broadly the elements and attributes of an AI that may be subject to patentability, and
this is the result:

Among the responses, four common answers arose:

1. The various elements disclosed in the question constitute a non-exclusive
list of elements of an Al invention.

2. Al can be understood as computer functionality that mimics cognitive
functions associated with the human mind (e.g., the ability to learn).

3. Al inventions can be categorized (in no particular order) as follows:

(a) inventions that embody an advance in the field of Al (e.g., a new
neural network structure of an improved machine learning (ML)
model or algorithm)

59



(b) inventions that apply Al (to a field other than Al)

Secondly, this report stated that the inventor of an Al work, which is defined as the
individual or, if a joint invention, the individuals collectively who invented or discovered
the subject matter of the invention by 35 U.S.C. § 100, must be human:

Title 35 of the United States Code is replete with language indicating that
the inventor of a patent application must be a natural person. For example,
35 U.S.C. § 101 states, “Whoever invents or discovers any new and useful
process, machine, manufacture, or composition of matter ... may obtain
a patent therefore, subject to the conditions and requirements of this title”
(emphasis added). “Whoever” denotes whatever person, a person being a
human being—a natural person.19 By the use of “whoever,” § 101 limits
patent protection to inventions and discoveries by natural persons.

Finally, it states that the USPTO will continue to “evaluate Al inventions on a
case-by-case basis”, but will generally consider whether the invention meets the same
requirements as any other patentable invention, which means that an invention, in order
to be patentable has to have these three main requirements:

e Novelty
e Non-obviousness
o Utility
Furthermore, the USPTO stated that will take into account factors such as:

e The Al system’s contribution to the invention
e The degree of human participation

e The Al system’s capacity for independent thought or action

On the basis of these statements we can pinpoint a couple pros and cons to this
systems in the light of patent systems we’ve analyzed until now.

The US system allows patenting Al algorithms regardless its final purpose, which
means it is not necessary to carry out the so called technical effect. Furthermore the
case-by-case evaluation gives a certain degree of flexibility while developing an AT model,
which translates into encouraging innovation and investment in Al technology. Addi-
tionally, patenting Al inventions can help to prevent others from copying or using the
inventions without permission. This can help to protect the interests of the developers
and owners of Al systems.

On the other hand patenting Al inventions could lead to monopolies. If a single
company is able to patent a key Al technology, it could prevent other companies from

60



using that technology. This could give the patent holder a significant advantage in the
market. Additionally, there is the question of who should be credited as the inventor
of an Al invention. Under current patent law, only natural persons can be named as
inventors. This means that an Al system cannot be named as an inventor, even if it
played a significant role in the invention. This could lead to disputes over who is entitled
to the patent rights.

In conclusion, ANNs are patentable provided they meet the same requirements as any
other invention, this has both positive and negative implications which we just listed.
According to USTPO the patentability of narrow Al systems is likely to continue to be a
topic of discussion and debate in the near future, therefore it will surely include further
modifications and rearrangements.

5.4.3 Canada

Canada is a world leader in the field of artificial intelligence. According to the report
Processing Artificial Intelligence: Highlighting the Canadian Patent Landscape carried
out by the Canadian Intellectual Property Office (CIPO), Canadian researchers and
institutions accounted for 1.8%, or 1,516, of the 85,144 Al inventions patented worldwide
between 1998 and 2017 [28].

The Canadian Intellectual Property Office (CIPO), a Special Operating Agency of
Innovation, Science and Economic Development Canada (ISED), is responsible for the
administration and processing of Intellectual Property (IP) in Canada. According to
CIPO’s report, assessing innovation in the Al field is challenging due to its diverse tech-
niques applied across numerous industries, therefore even if patented inventions aren’t a
perfect measure, they serve as a valuable proxy for assessing innovation in this specific
technology sector.

However this very same article specifies how, as opposed to the US patent system,
the Canadian Patent Act states that a patent can only be granted for the physical
embodiment of an idea, hence computer programs are not considered to be patentable
subject matter. So how do they patent their Al systems?

In Canada, the patentability of Al inventions is determined based on the subject
matter eligibility criteria stated in the Patent Act. The Act defines an invention as any
new and useful art, process, machine, manufacture, composition of matter, or improve-
ment thereof. However, it excludes mere scientific principles or abstract theorems from
patentability.

In order to clarify this matter, Canadian courts have provided guidance on the eli-
gibility of computer-implemented inventions. For example, in the Schlumberger case, it
was established that implementing a non-patentable algorithm using a computer to do
mathematical calculations does not make the algorithm patentable exploiting the fact

61



that a patent can be granted for the physical embodiment of an idea. As a matter of
fact, the Federal Court of Appeal (FCA) ruled that the inventive aspect must go beyond
a mere scientific principle or abstract theorem. Furthermore, in the Amazon.com case,
relating to the one-click online ordering system, the FCA emphasized the importance of
purposive construction of patent claims in the subject matter analysis. It stated that
patentable subject matter should have physical existence or manifest a discernible effect
or change.

In addition to this, CIPO issued practice notices providing further guidance on the
matter. According to these notices, when a claimed computer element is essential to
solving a problem addressed by the invention, the claim is considered statutory subject
matter. In fact, the CIPO considers whether the claimed elements address a computer
problem rather than being merely part of an operating environment.

The Manual of Patent Office Practice (MOPOP) provides additional guidance sug-
gesting that controlling a computer’s operations to achieve a technological result is con-
sidered statutory. Additionally, a claim element that is common general knowledge but
essential to the invention is not automatically excluded.

In conclusion, until a dedicated regulatory framework for Al, such as the proposed
Artificial Intelligence and Data Act (AIDA), is enacted into law, there are specific steps
that can enhance the likelihood of Al inventions receiving patent approval in Canada.
These steps include:

e (learly explain the technical problem solved by the inventors.
e Embed the creation within a physical object.
e Characterize - preferably - the problem as a ”computer problem”.

e Provide detailed technical information about the hardware and software used to
solve the problem to support the eligibility of claims defined by the Patent Act.

62



Chapter 6

Conclusions

In this thesis, our primary aim was to delve into the realm of Al intellectual property,
with particular attention to the Italian legal framework, focusing on the legal protection
of Al systems, specifically artificial neural networks trained using supervised learning
algorithms. Our mission was to dissect these Al systems’ critical components that gov-
ern their functionality and, in doing so, establish a robust foundation for their legal
safeguarding.

Through an in-depth analysis of Al intellectual property, interesting findings have
emerged, significantly advancing the understanding of legal protection for Al systems,
particularly artificial neural networks.

Firstly, the groundwork for hypotheses was laid with a generic background. This
encompassed an overview of Italy’s intellectual property legal framework for software,
an exploration of the functioning of Turing Machines, and a comprehensive introduction
to Artificial Intelligence and artificial neural networks. This contextual knowledge was
instrumental in our subsequent analysis of ANNs’ functionality, enabling the identifica-
tion of core components responsible for their functioning, and therefore that demand
legal protection as a single unique component.

Furthermore, the research revealed the intricacies of AI ownership. Comparisons
were drawn between Al systems and traditional source code, emphasizing the conceptual
similarities with Turing Machines while underscoring the unique challenges associated
with safeguarding ANN intellectual property due to the fundamentally distinct nature
of source code.

The core components comprising network architecture, data set, technical implemen-
tation, and weights collectively constitute the foundation of an artificial neural network’s
functionality. These attributes, as elucidated, fundamentally dictate the final outcome of
the ANN. Recognizing their pivotal role, it becomes evident that they are the key areas
demanding legal protection as these components not only shape the network’s behav-
ior but also represent the fundamental principles for safeguarding the innovations and
investments made in Al development.

63



Finally, I conducted an in-depth study of existing laws, both at the national level
in Italy and internationally, in order to provide a comprehensive overview of how these
core components, and Al in general, could be legally protected in the current state
of the art. This analysis revealed the challenges and opportunities within the current
regulatory framework and underscored the need to develop more suitable laws to preserve
the integrity and innovation within the field of Artificial Intelligence.

For the future, an ongoing commitment to developing more suitable laws and regu-
lations, taking into account the nuances of Al, is essential. Furthermore, collaboration
among legal experts, computer scientists, and Al ethics professionals will be crucial in
maintaining a balance between innovation and rights protection.

64



Bibliography

1]

A. M. Turing et al., “On computable numbers, with an application to the entschei-
dungsproblem,” J. of Math, vol. 58, no. 345-363, p. 5, 1936.

A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. 236,
pp. 433-460, 1950.

Council of Europe, History of Artificial Intelligence, https://www.coe.int/en/
web/artificial-intelligence/history-of-ai.

J. Lewis, S. Schneegans, T. Straza, et al., UNESCO Science Report: The race
against time for smarter development. Unesco Publishing, 2021, vol. 2021.

WIPO, Intellectual Property and Frontier Technology, https://web.archive.
org/web/20220402064804 /https://www.wipo.int/about-ip/en/frontier_
technologies/.

G. Sartor, L ntelligenza artificiale e il diritto. G. Giappichelli Editore, 2022.
R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P. Campbell,

“Introduction to machine learning, neural networks, and deep learning,” Transla-
tional vision science € technology, vol. 9, no. 2, pp. 14-14, 2020.

M. Cord and P. Cunningham, Machine learning techniques for multimedia: case
studies on organization and retrieval. Springer Science & Business Media, 2008.

IBM, What is machine learning? https://www.ibm . com/topics/machine-
learning.

S. Badillo, B. Banfai, F. Birzele, et al., “An introduction to machine learning,”
Clinical pharmacology &€ therapeutics, vol. 107, no. 4, pp. 871-885, 2020.

L. Belenguer, “Ai bias: Exploring discriminatory algorithmic decision-making mod-
els and the application of possible machine-centric solutions adapted from the
pharmaceutical industry,” AI and Ethics, vol. 2, no. 4, pp. 771-787, 2022.

T. Hellstrom, V. Dignum, and S. Bensch, “Bias in machine learning—what is it
good for?” arXiv preprint arXiv:2004.00686, 2020.

65



[13]

[20]

[21]
[22]

[23]

[24]

[25]

D. Pedreschi, F. Giannotti, R. Guidotti, A. Monreale, S. Ruggieri, and F. Turini,
“Meaningful explanations of black box ai decision systems,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 33, 2019, pp. 9780-9784.

M. Carabantes, “Black-box artificial intelligence: An epistemological and critical
analysis,” Al & society, vol. 35, no. 2, pp. 309-317, 2020.

O. Eluyode and D. T. Akomolafe, “Comparative study of biological and artifi-
cial neural networks,” European Journal of Applied Engineering and Scientific Re-
search, vol. 2, no. 1, pp. 36-46, 2013.

K. Suzuki, Artificial neural networks: methodological advances and biomedical ap-
plications. BoD-Books on Demand, 2011.

N. S. Gill, What is an Artificial Neural Network? https://www.xenonstack.com/
blog/artificial-neural-network-applications, 2023.

J. Li, J.-h. Cheng, J.-y. Shi, and F. Huang, “Brief introduction of back propagation
(bp) neural network algorithm and its improvement,” in Advances in Computer
Science and Information Engineering: Volume 2, Springer, 2012, pp. 553-558.

F. Bertini, D. Allevi, G. Lutero, D. Montesi, and L. Calza, “Automatic speech
classifier for mild cognitive impairment and early dementia,” ACM Transactions
on Computing for Healthcare (HEALTH), vol. 3, no. 1, pp. 1-11, 2021.

K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data
augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91-99,
2022.

Neural Networks Tutorial, www . neuraldesigner . com / learning / tutorals /
testing-analysis, 2023.

J. C. Mitchell, Opening expert report of john c. mitchell regarding copyright, North-
ern District of California, Case 3:10-cv-03561 WHA, 2012.

Google LLC v. Oracle America, Inc., Certiorari to the United States court of ap-
peals for the Federal Chircuit, Supreme Court of the United States, No. 18-956,
2021.

Decreto Legislativo, 10 febbraio 2005, n. 30, Il codice della proprieta industriale
(cpi), 2005.

E. Fabrizi, F. Ferrara, and G. Marino, Law Qver Borders Comparative Guide:
Artificial Intelligence, https ://wuw . globallegalpost . com/lawoverborders/
artificial-intelligence-1272919708/italy-1602230361, 2023.

European Patent Office, Guidelines for Examination in the European Patent Office.
European Patent Office, Directorate Patent Law 5.2.1, 2023.

66



[27]

[28]

European Patent Office, Guidelines for Examination of Furopean Patent Applica-
tions, https://new.epo.org/en/legal/guidelines-epc/2023/g_ii_3_3_1.
html, 2023.

Canadian Intellectual Property Office, Processing artificial intelligence: Highlight-
ing the canadian patent landscape, https : //ised - isde . canada . ca/site/
canadian - intellectual - property - office/en/processing - artificial -
intelligence-analysis-canadian-perspective, 2022.

67



