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- Forĺı Campus -

Second Cycle Master’s Degree in

Aerospace Engineering

class LM20

Graduation Thesis in: ING-IND/06 - Fluid Dynamics

Numerical investigation of

two-dimensional diffusers at

low Reynolds numbers

Candidate :

Alex Ravaioli

Supervisor :

Prof. Gabriele Bellani

Session II

Academic Year 2022/2023





Contents

1 Introduction 1

1.1 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical background 5

2.1 Diffusers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Influence of inlet and outlet conditions . . . . . . . . . 12

2.2 Governing equations and turbulence modelling . . . . . . . . . 15

2.2.1 Governing equations and DNS . . . . . . . . . . . . . . 15

2.2.2 RANS . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Methodology 27

3.1 Geometric configuration . . . . . . . . . . . . . . . . . . . . . 27

3.2 Mesh independence study . . . . . . . . . . . . . . . . . . . . 28

3.3 CFD model implementation and boundary conditions . . . . . 32

4 Results and discussion 37

4.1 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Diffuser outlet analysis . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Turbulence intensity: 10 percent . . . . . . . . . . . . . . . . . 46

4.4 Turbulence intensity: 3 percent . . . . . . . . . . . . . . . . . 47

4.5 Turbulence intensity: 0.05 percent . . . . . . . . . . . . . . . . 48

4.6 Modified effectiveness . . . . . . . . . . . . . . . . . . . . . . . 49

iii



iv CONTENTS

5 Conclusions and future work 57

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography 63



List of Figures

2.1 Examples of the canonical diffuser shapes. Planar diffusers can

be considered two-dimensional if the inlet has a large aspect

ratio AS > 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Sketch of boundary layer separation (G. Buresti [4], 2012, p.214). 6

2.3 Geometry of three-dimensional straight-walled diffusers. . . . . 9

2.4 Representation of the displacement thickness in an internal flow. 9

2.5 Flow regimes in straight-wall, 2D diffusers, Re > 104 [2]. . . . 10

2.6 Relationship between flow regime and pressure recovery coef-

ficient (Casey and Robinson [6], 2021, p.231). . . . . . . . . . 12

2.7 Empirical relationship given by Equation 2.25 which defines

the value of Reθt in the free-stream as function of the turbu-

lence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Diffuser and external chamber geometry. . . . . . . . . . . . . 28

3.2 Diffuser geometry and its nomenclature. . . . . . . . . . . . . 29

3.3 CP series over time with different external chamber sizes, whose

length and height are expressed in diffuser inlet widths (W1).

CPopt is the CP average of the best geometry (70x140). . . . . 29

3.4 Relative CP averages at different external chamber sizes ex-

pressed in diffuser inlet widths. CPopt is the CP average of the

best geometry (70x140). . . . . . . . . . . . . . . . . . . . . . 30

3.5 Mesh of the diffuser and external chamber. . . . . . . . . . . . 30

v



vi LIST OF FIGURES

3.6 Mesh independence study performed on the inlet cell length

expressed in diffuser inlet widths (streamwise, x direction,

length of the grid cell). . . . . . . . . . . . . . . . . . . . . . . 31

3.7 The three different velocity profiles at the diffuser inlet. . . . . 35

4.1 Comparison of pressure recovery coefficients between simula-

tions and experimental data [2], varying the divergence angle.

Tu = 2%, B = 0.007. The green points were deduced from

the interpolation curve of B = 0.015. The dashed lines repre-

sent the angles of the stall regimes as expressed in Figure 2.5:

a-a for the Large Transitory stall, b-b for the Fully-Developed

two-dimensional stall, c-c for the Jet Flow. . . . . . . . . . . . 38

4.2 Relative error of the linear interpolation of the pressure re-

covery coefficients between simulations and experimental data

[2], varying the divergence angle. Tu = 2%, B = 0.007. The

dashed lines represent the angles of the stall regimes as ex-

pressed in Figure 2.5: a-a for the Large Transitory stall, b-b

for the Fully-Developed two-dimensional stall, c-c for the Jet

Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Velocity profiles at the diffuser outlet at the time instant t =

5.5s, for the three inlet blockage factors, and Tu = 10%. . . . 42

4.4 Velocity profiles at the diffuser outlet at the time instant t =

5.5s, for the three inlet blockage factors, and Tu = 3%. . . . . 43

4.5 Velocity profiles at the diffuser outlet at the time instant t =

5.5s, for the three inlet blockage factors, and Tu = 0.05%. . . 44

4.6 Flow uniformity index γ for the three turbulence intensity

cases. At every turbulence level, the correspondent simula-

tion with the highest angle at which the flow is attached is

marked with a black cross. . . . . . . . . . . . . . . . . . . . . 45

4.7 CP (continuous line) and η (dashed line) at different inlet

blockage factors (inlet velocity profiles) for Tu = 10%. . . . . . 46



vii

4.8 CP (continuous line) and η (dashed line) at different inlet

blockage factors (inlet velocity profiles) for Tu = 3%. . . . . . 47

4.9 CP (continuous line) and η (dashed line) at different inlet

blockage factors (inlet velocity profiles) for Tu = 0.05%. . . . . 48

4.10 Modified effectiveness η̄ for the three turbulence intensity cases. 52

4.11 Blockage factor at the diffuser outlet for the three turbulence

intensity cases. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Side view schematic of planar jet wind tunnel. Flow is gener-

ated by a centrifugal blower (A), transferred to the pre-settling

chamber (B), and then to the rectangular prism section via two

tubes (C). Flow passes through the glass spheres (D) where

some of the turbulence is killed. After that, honeycomb (E)

helps to straighten the flow. Flow is then forced through a set

of screens (F) to decrease the turbulence level again. Contrac-

tion (G) accelerates the flow before the exit section. [22] . . . 60

5.2 Render of the assembly to be flanged on the planar jet wind

tunnel of Figure 5.1 to test the different diffusers. . . . . . . . 62

5.3 Cross section of the assembly of Figure 5.2. . . . . . . . . . . . 62





List of Tables

4.1 Maximum value of CP , η and η̄ and their corresponding diver-

gence angle 2θ, for the different turbulence intensity cases. . . 54

ix





List of Symbols

Abbreviations

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulations

LES Large Eddy Simulation

NS Navier-Stokes

RANS Reynolds-Averaged Navier-Stokes

SST Shear Stress Transport

SSTLM Shear Stress Transport Langry Menter

Notation

α Velocity profile energy coefficient =
∫W1

0
U3dy/Ū3A
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Abstract

Diffusers are important aerodynamic devices in many engineering applica-

tions, but the major part of research in this area is focused on devices operat-

ing at high Reynolds numbers. However, in numerous applications, including

medical, diffusers may be employed in low Reynolds number flows. A specific

feature of this regime is that the flow can undergo a laminar to turbulent

transition within the diffuser and this can strongly influence the performance

and design of the device. This thesis analyses the effect of inlet conditions

on the case of two-dimensional diffusers operating at low Reynolds numbers

with a laminar and transitional boundary layer discharging in a stationary

atmosphere. Numerical simulations were performed with the joint imple-

mentation of the open-source mesh software Gmsh and OpenFOAM. In par-

ticular, 9 different cases are presented varying the inlet turbulence intensity

(0.05, 3, and 10 percent) and the inlet velocity profile, characterised by dif-

ferent displacement thicknesses. For each case, a varying number of unsteady

CFD simulations were performed using the k − ω Transitional SST RANS

model that considers the possible laminarisation of the boundary layer. The

pressure recovery coefficient at the outlet is analysed in detail, showing the

relevant reduction of pressure recovery in the case of a laminar inlet velocity

profile compared with the high Reynolds numbers case in the literature. Fur-

thermore, the use of the modified effectiveness is remarked as an important

factor in the analysis of velocity profiles with a high blockage factor. Velocity

profiles at the outlet are compared, showing a relevant difference between a

xiii
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laminar and turbulent velocity profile. Finally, a setup for a future experi-

mental study of two-dimensional diffusers is presented.



Chapter 1

Introduction

Diffusers are devices largely exploited in fluid dynamics applications. They

consist of a pipe or channel whose walls diverge in order to increase the cross-

sectional area, with the aim of decelerating the main flow while increasing

the static pressure at the outlet. The diffuser design is critical because in

order to obtain a pressure recovery (difference between inlet and outlet static

pressures) a positive pressure gradient must be established, which may lead

to separation, hence a detachment of the boundary layer, that is highly de-

pendent on the flow and geometrical conditions. Separation is an extremely

relevant phenomenon for aerodynamic performance, although it is extremely

difficult to predict due to its non-linear nature.

In diffusers, different regimes can be identified based on the behaviour of

the separation point and of the mean flow. If the boundary layer separates,

it is said that the diffuser is in a stall regime. These regimes can occur in

a large variety of diffuser geometries and flow conditions and they strongly

affect the pressure recovery trend. If the diffuser is not well-designed, the

static pressure is not recovered due to the high losses and to the blockage

effect of the separation bubble which prevents the flow from expanding and

causes the flow at the outlet to be non-uniform. Therefore it is important

to assess the application in which the diffuser must perform. Typical appli-

1



2 1. INTRODUCTION

cations in which large-scale diffusers play an important role are: industrial

ventilation, automotive and aeronautics, only to mention some. Diffusers are

also important on small-scale devices such as those typical of bio-medical

applications (e.g. assisted ventilation pipe systems etc.).

The flow regimes and the diffuser design were extensively studied over

the course of the past years. Kline et al. [1] described the optimisation

parameters and the relationships between two-dimensional flat, conical and

annular diffusers. In 1967 Reneau et al. [2] gathered several two-dimensional

diffuser experiments at different divergence angles in order to analyse the

pressure recovery and the stall regimes. They concluded that the value of

performance is highly affected by inlet conditions and predictions about the

location of optimum performance can be made based on correlation, but no

analytical model can be used to accurately predict it. Nevertheless, these

investigations regard only diffusers operating at high Reynolds numbers and

medium-high turbulence levels.

Attention should be given to diffusers operating at low Reynolds numbers,

because the flow tends to change regime from turbulent to laminar and the

diffuser is prone to separation, presenting a very different behaviour from

diffusers operating with a fully turbulent flow. Dighe [3] experimentally

tested planar diffusers at low and medium Reynolds numbers but did not test

the effect of other relevant inlet conditions, such as inlet velocity profiles and

turbulence level, in the presence of low Reynolds numbers. Overall, laminar

flow in diffusers is not extensively studied, but it is present in all those

applications characterised by small sizes or low velocities, such as medical

devices and pipe systems.

1.1 Aim of the thesis

The work of this thesis involves the case of diffusers operating at low

Reynolds numbers, as part of a larger work that deals with a study of a
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non-invasive ventilation (NIV) helmet as support for long periods of treat-

ment of respiratory diseases. This device presents a diffuser to introduce

oxygen inside the helmet that must be optimised to increase performance.

Nevertheless, there are several difficulties, because the internal flow of these

biomedical devices is characterised by strong pressure gradients and small

Reynolds numbers due to the small geometries involved, which give rise to a

possible laminarisation of the flow.

For this reason, through numerical simulations, this thesis aims to study

the behaviour of diffusers at low Reynolds numbers with a range of inlet

conditions that can be easily found in biomedical applications of this type.

The analysis is focused on two-dimensional diffusers to examine the effect

of inlet and boundary conditions more than geometry. Since the existing

literature presents correlations between several diffuser geometries, the work

of this thesis (focused on two-dimensional diffusers) can be hopefully adapted

to various three-dimensional geometries. In any case, this should be verified

because the literature correlations focus only on high Reynolds numbers.

Besides the low Reynolds number, the inlet conditions taken into account

are the turbulence intensity and the velocity profile at the diffuser inlet. To

have direct control over inlet conditions, before the diffuser throat, there

is only a very short channel of length equal to the inlet width. At the

outlet there is no channel, but the diffuser discharges directly in a stationary

atmosphere. This complicates the simulations since the flow tends to be very

unsteady, therefore steady solutions are not attainable. In addition, the size

of the outlet chamber is fundamental, hence a detailed analysis is presented

on this aspect. The mesh is created using the open-source software Gmsh

through the programming language Python. Simulations are performed using

OpenFOAM.

The thesis objectives can be summarised as follows:

• Validation of the CFD model with the high Reynolds numbers data

experimentally obtained, described by Reneau et al. [2].
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• Analysis of the outlet velocity profiles and comparison of the stall

regimes with the high Reynolds numbers case present in literature [2].

• Analysis and comparison of the pressure recovery coefficients and ef-

fectiveness curves for the different turbulence intensity cases.

1.2 Thesis outline

The thesis first describes the theoretical background in Chapter 2, initially

focusing on diffusers, their stall regimes and the factors that influence pres-

sure recovery most. A literature review concerning the governing equations

and the most famous RANS models follows, detailing the one employed in

this work.

The geometric configuration, the mesh independence study and the CFD

model implementation follow with Chapter 3.

Chapter 4 involves an analysis of the results obtained from the simulations.

Finally Chapter 5 concerns the conclusions about the important aspects

that the simulations have revealed. The thesis ends with the design of an

experimental setup that can be eventually used to validate the CFD model

and obtain new and important results from real diffusers.



Chapter 2

Theoretical background

2.1 Diffusers

The term diffuser is used to describe a device whose primary purpose is

to convert the kinetic energy of the flow (dynamic pressure) into static pres-

sure, lowering the stream velocity and limiting the pressure losses. There

are different possible shapes but the common characteristic is an increment

of cross-sectional area by means of diverging walls such that a positive (ad-

verse) pressure gradient is established. The typical diffuser shapes are con-

ical, pyramidal and planar, named based on the shape of the cross-section

and the diverging walls. Some examples are shown in Figure 2.1.

(a) Conical diffuser (b) Planar diffuser (c) Pyramidal diffuser

Figure 2.1: Examples of the canonical diffuser shapes. Planar diffusers can
be considered two-dimensional if the inlet has a large aspect ratio AS > 1.

5



6 2. THEORETICAL BACKGROUND

For the continuity equation, the mean flow must slow down if an increment

of cross-sectional area is present, and a lower normal velocity is expected to

respect mass conservation (if the flow is subsonic). The difficulty in designing

a diverging wall is that the boundary layer is inclined to separate because

of the adverse pressure gradient. These separations are highly dependent

on the free stream conditions as well as geometry. Increasing the pressure

gradient brings a higher pressure recovery as well as an increased chance of

separation.

Figure 2.2: Sketch of boundary layer separation (G. Buresti [4], 2012, p.214).

The separation point (S in Figure 2.2) is defined as the point where

the wall viscous shear stress is zero and ∂u/∂y = 0 at the wall. A neces-

sary condition for boundary layer separation is an adverse pressure gradient

(dp/dx > 0) which verifies in diffusers due to diverging walls. This condition

is not sufficient for separation: in fact, if the pressure gradient is not strong

enough, the boundary layer does not detach from the wall. This condition

can be obtained for short diverging walls and small angles.

Predicting the separation point is not easy because the phenomenon is

highly unsteady and the hypothesis concerning a thin boundary layer can-

not be used for analytical analysis. In particular, it is no longer true that

∂u/∂x << ∂u/∂y close to the surface; in addition, the normal velocity com-

ponent v cannot be assumed to be of a small order of magnitude compared

to tangential component u [4].

In some cases, the boundary layer can experience reattachment to the wall
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after separation. Specifically, this can happen in case of geometry-induced

separation (e.g. sharp corners, rarely present in diffusers) or in case of turbu-

lent transition after a laminar transition thanks to a redistribution of high-

momentum flow near the wall due to turbulence. Indeed, when the boundary

layer is laminar, it tends to separate more easily due to low momentum close

to the wall. Once it is separated it can create a recirculation bubble and it

quickly becomes turbulent. In general aerodynamic applications, boundary

layer separation tends to be avoided; however, for diffusers, it could be useful

to reach the edge of the early stage of stall, namely a regime that consists

in unsteady detachments and following reattachments of the boundary layer,

where the peak of pressure recovery can be found.

There exist methods to energise the boundary layer and to control the

separation, by means of both active and passive control. For example, wall

suction, blowing and vortex generators can be exploited. In the present work,

no separation control devices are considered.

Many parameters can be used in characterising and optimising the per-

formance of diffusers, mostly based on the application. The static pressure

recovery coefficient CP is the most used one. It is defined as:

CP =
P̄2 − P̄1

q̄1
(2.1)

where P̄2 and P̄1 are respectively the static pressures at the outlet and inlet

of the diffuser, while q̄1 represents the dynamic pressure of a uniform flow

at the inlet. It is important to maximise the pressure recovery coefficient

because this would mean minimising the losses and maximising the potential

pressure obtainable from the increase of cross-sectional area. In fact, static

pressure is not recovered if the effective cross-sectional area is reduced due

to separation bubbles. Another relevant parameter is the effectiveness η,

defined as:

η =
CP

CPid

(2.2)
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where CPid = 1 − 1/A2
R, AR is the area ratio A2/A1. CPid is the pressure

recovery coefficient that can be obtained assuming that the flow expands

with no losses and the velocity profile is uniform across each section. It can

be obtained from the Bernoulli and continuity equations:P̄1 + q̄1 = P̄2 + q̄2

A1Ū1 = A2Ū2

(2.3)

In some applications it could be necessary to have a uniform outflow min-

imising oscillations, which is why a uniformity coefficient could be considered.

The flow uniformity index proposed by Daniels et al. [5] can be exploited:

γ = 1− 1

W2

∫
y

Φ

2Uave

dy where Φ = ||U | − Uave|, Uave =
1

W2

∫
y

|U |dy

(2.4)

where W2 is the diffuser width at the outlet. In the description and correla-

tions of diffuser performance, it can be useful to define some geometrical coef-

ficients that refer to the geometry of Figure 2.3. The area ratio AR = A2/A1

is linked to the divergence angle θ in the case of straight-walled diffusers.

The diffuser length N, defined as the distance between the throat and the

outlet can be adimensionalised with the throat (inlet) width W1 to create

the coefficient N/W1. The length L of the diverging walls is not usually

exploited. In the case of real three-dimensional diffusers, it is important to

consider the aspect ratio, defined as AS = b/W1, where b is the span width.

An important flow parameter is the blockage factor B that was found to

easily correlate the different inlet velocity profile effects. This is the adimen-

sional displacement thickness defined as follows:
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b

W1

W2

N

L

Figure 2.3: Geometry of three-dimensional straight-walled diffusers.

B =
2δ∗1
W1

=
1

W1

∫ W1

0

(
1− U

Umax

)
dy = 1− Ū

Umax

(2.5)

where δ∗ is the displacement thickness.

The blockage factor represents the obstruction of the flow due to the

boundary layer; therefore, the effective area fraction available for the expan-

sion of the flow is lower. This largely impacts on the diffuser performance.

Figure 2.4 shows the displacement thickness of a velocity profile in an internal

flow.

Figure 2.4: Representation of the displacement thickness in an internal flow.

Increasing the divergence angle of the diffuser, the adverse pressure gradi-

ent increases as well as the chance of boundary layer separation and eventual

flow reattachment regions. Kline et al. [1] and Reneau et al. [2] described the
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stall patterns by flow visualisation and created the charts of Figure 2.5 that

link the flow regime to the diverging angle and diffuser length. The different

flow regimes that can be established, affect the pressure recovery in a relevant

way. The classical stall pattern that can be observed in external flow does

not always accurately describe stall in diffusing passages. The latter can be

described by four patterns.

(a) 2θ - N/W1 plane (b) AR - N/W1 plane

Figure 2.5: Flow regimes in straight-wall, 2D diffusers, Re > 104 [2].

No appreciable stall regime

This pattern is present only for small angles and area ratios (A2/A1)

where there is no appreciable stall visible, at most only in some parts. This

corresponds to the area limited by line a-a in figure 2.5. The pressure and

velocity profiles are symmetrical about the centre plane.

Large transitory stall regime

During this pattern many fluctuations are observed, with stalled regions

that constantly form in and are subsequently washed out of the diffuser,
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causing large pressure fluctuations as a consequence. The position of the

transient stall varies with the geometry of the diffuser but in general, in wide

diffusers (N/W1 < 4), the transitory stall occurs in one diverging wall, hence

the flow remains fixed near one diverging wall and the stalls build up and are

washed out on the other diverging wall. In narrow diffusers (N/W1 > 16),

the stall occurs on both parallel walls. In the latter case, a blockage effect is

visible, which holds away the thorough flow. The region lies between curves

a-a and b-b in Figure 2.5.

Two-dimensional flow regime

This pattern represents a steady, two-dimensional stall, where the flow

separates near the throat and follows one diverging wall. Performances are

low due to the large blockage effect, therefore the separated region acts as

an obstruction to the incoming flow. If an important disturbance is present,

the stall could be switched from one diverging wall to the other. This region

lies above line b-b in figure 2.5.

Jet flow regime

In this pattern, a jet flow is present because the incoming flow separates

from both diverging walls very near the throat and proceeds straight down

the diffuser. Velocity and pressure are relatively steady, compared to the

previous stall regimes. This region lies above line c-c but it can exist down

to line d-d in figure 2.5.

Figure 2.6 represents the pressure recovering, varying the area ratio or the

angle, as well as the correspondent flow regimes. It is observed that the best

pressure recovery verifies just after line a-a, therefore after the large transitory

stall, when both side walls present an unsteady reverse flow. Nonetheless,

the aperture angle should not cause the two-dimensional stall, otherwise a

consistent pressure loss occurs [7].
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Figure 2.6: Relationship between flow regime and pressure recovery coeffi-
cient (Casey and Robinson [6], 2021, p.231).

2.1.1 Influence of inlet and outlet conditions

The angles at which stall occurs and, more in general, the diffuser per-

formance, are strongly influenced by flow conditions at the inlet. There are

parameters that influence performance more than others and only in deter-

mined conditions. The inlet conditions to be considered are the turbulence

level, the flow swirl, the boundary layer thickness (blockage factor), the shape

of the velocity profile, the inlet Reynolds number and the Mach number.

All the previous considerations about stall regimes refer to a fully turbu-

lent and thin boundary layer at the throat, corresponding nearly to a top-hat

velocity profile. With a high Reynolds number (Re > 104) it was found that

the Reynolds number itself does not seem to have an important effect [2]

[3]. This is not true if the Reynolds number is low enough (Re < 103) to

maintain the inlet boundary layer laminar or transitional, because, as ex-

plained earlier, a laminar boundary layer has a lower momentum, therefore

it is more likely to separate at the throat. Another relevant effect of the
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Reynolds number is that it determines the boundary layer thickness at the

throat, while a negligible effect is the rate of growth of the boundary layer

within the diffuser [8].

Dighe [3] experimentally analysed plane diffusers changing the Reynolds

numbers and the aspect ratio. A monotonic increase in pressure recovery

was found increasing the Reynolds number from laminar to turbulent flow

(from 2500 to 20000). Above 20000 the pressure recovery remained constant.

When Re < 5000, the Reynolds number became a controlling flow regime

parameter. Nevertheless, most literature focused on diffusers operating at

high Reynolds numbers, mainly because they cover the majority of industrial

applications.

In the case of a fully turbulent inlet velocity profile, inlet flow with a

turbulence intensity of less than about 3 percent will not affect the flow

pattern, while for higher turbulent flows (10 percent), line b-b could be higher

(figure 2.5).

Another conclusion concerning the boundary layer is that displacement

thickness takes an important role in determining both the flow pattern and

the pressure recovery, in fact, a small change in displacement thickness could

change pressure recovery up to 10-20 percent [2]. The throat aspect ratio AS

has little or no effect on the flow regime as long as AS > 1 [2].

The characteristic mean time for a fluid particle to pass through the dif-

fuser is given by the ratio of diffuser length to the inlet velocity, t = N/Ū1.

In all regimes, the flow variations have a period of order 10t. Differently, in

the transitory stall regime, the pressure and large flow variations require a

mean time of order 100t to complete a cycle [2].

Since the transitory stall flow regime is unsteady but it presents a certain

degree of periodicity, Smith et al. [9] characterised the mean times and dis-

tribution of stall build-up and wash-out periods. Defined the mean natural

stall period (TN) as large sample time averages evaluated from flow visualiza-

tion of consecutively occurring stall periods, it is possible to characterise the
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stall. Stall wash out periods are quasi-periodic with a standard deviation of

σ ≈ ± 0.5 T̄N . In the transitory stall regimes, outflow unsteadiness increases

rapidly with increased included angle, indeed it is observed at approximately

2θ = 20◦ to 24◦. It is important to underline the fact that Smith et al. [9]

analysed diffusers at a high Reynolds number, therefore previous conclusions

could be different for diffusers operating at Re < 104.

Kwong and Dowling [10] analysed the unsteadiness of the stalled flow,

following the work of Smith Jr and Kline [9]. They found that the duct to

which the diffuser is connected has an important relevance on the stall fre-

quency. Furthermore, they found that the maximum fluctuations frequency

is observed in the middle of the transitory stall regime, as shown by Smith Jr

and Kline [9] as well.

Diffusers deal with internal flows, but at the outlet the situation can vary

depending on the application in which the diffuser is involved. In fact, it is

possible to have either a tailpipe or a plenum exit condition. A tailpipe is

a duct at the end of diverging walls, that lets the flow even out and brings

higher pressure recovery due to confinement. Conversely, a plenum exit con-

dition means that the diffuser discharges directly in a stationary atmosphere,

which induces higher unsteadyness. This has a strong repercussion on nu-

merical simulations because steady CFD solvers cannot be used. Indeed, the

solution would oscillate and never converge to a certain field value. Unsteady

CFD simulations have to be used instead, which complicates the analysis be-

cause the simulation time becomes an important parameter that is not always

known a priori.
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2.2 Governing equations and turbulence mod-

elling

2.2.1 Governing equations and DNS

The so-called Navier-Stokes (NS) equations are a mathematical model

based on fluid assumptions formulated more than a century ago and recog-

nised as the most accurate model describing the behaviour of single-phase

flows. The important drawback of these equations is that it is not known

if there exists an analytical solution and whatever it may be. Since the

present thesis deals with incompressible and subsonic flows, the governing

equations can be considered to be only mass conservation (Equation 2.6)

and momentum conservation (Equation 2.7); therefore the energy equation

is not considered. In addition, density ρ could be considered constant, which

makes the velocity field solenoidal. Nevertheless, in the following equations,

density will be considered to be a non-constant scalar field for completeness.

∂ρ

∂t
+

∂

∂xj

[ρuj] = 0 (2.6)

∂

∂t
(ρui) +

∂

∂xj

[ρuiuj + pδij − τji] = 0, i = 1, 2, 3 (2.7)

where:

u is the Velocity vector field

δ is the Kronecker delta

τij is the shear stress tensor

Since the previous equations do not have an analytical solution for a gen-

eral case, a numerical way to solve them has been considered for over 60

years. The range of techniques that have been employed in the numerical

solution of these equations form the field known as Computational Fluid
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Dynamics (CFD).

Turbulence has a decisive influence on most applications; dealing with

diffusers means having strong separations and reattachments that are gov-

erned mostly by turbulence. Turbulent flows are characterised by velocity

fluctuations and eddies. In order to numerically solve them in an adequate

manner, it is necessary to use a very fine mesh, finer than the smallest length

scale and a time step smaller than the fastest fluctuation of the flow. The

range of these scales is dependent on the Reynolds number. This means

that if a flow presents a high Reynolds number it will be characterised by a

wide range of temporal and spatial scales. The computational cost is pro-

portional to these scales. In particular, the computational cost scales with

Re3.3 for wall-bounded flows if Navier-Stokes equations are solved without

any simplifications; this method is called DNS, Direct Numerical Simulations.

Therefore, solving a common industrial application would require years for

a supercomputer. Nowadays, DNS simulations are only performed for aca-

demic purposes and for canonical flow fields and geometries, like pipe and

channel flows, in order to take them as benchmarks.

Methods to reduce the computational cost of such simulations employ sim-

plifications; the exact NS equations can be time-averaged, ensemble-averaged

or manipulated to remove the smallest scales. At the same time, this means

introducing a certain error, whose degree depends on the application and on

coefficients used to tune these new models.

To reduce the computational cost, the effect of turbulence is modelled.

In general, the amount of this modelled turbulence is proportional to the

saved time. The most famous models are RANS (Reynolds-Averaged Navier-

Stokes) and LES (Large Eddy Simulation). RANS modelling is explained in

the following paragraph because it is the simplification embedded in the

model used for the simulations performed for this thesis.
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2.2.2 RANS

RANS models are the most applied in industrial applications thanks to

the reduced computational cost which allows to simulate complex geometries

with sufficient accuracy.

They are based on Reynolds decomposition, whereby a fluctuating field

can be expressed as the sum of its average and its fluctuating part (Equation

2.8). Once the new velocity field expressed in the Reynolds decomposition

is included in the NS equations 2.6 and 2.7, and equations are averaged,

RANS equations are obtained (2.9 and 2.10) [11]. These equations represent

the motion of the average flow, taking into account the fluctuations due to

turbulence expressed by the Reynolds stress (−ρu′
iu

′
j), acting as a stress term;

therefore RANS equations aim to model this term.

ui(x, t) = ūi(x) + u′
i(x, t) (2.8)

∂ūi

∂xi

= 0 (2.9)

ρūj
∂ūi

∂xj

= ρf̄i +
∂

∂xj

[
−p̄δij + µ

(
∂ūi

∂xj

+
∂ūj

∂xi

)
− ρu′

iu
′
j

]
(2.10)

The Reynolds stress can be modelled in different ways, here it is explained

the one used for the present work. One of them relies on the Boussinesq

hypothesis. It is based on the concept that turbulent mixing acts in a similar

way as molecular mixing, proposed by Boussinesq in 1877 for the mixing thin

shear layers [12]. In addition, it consists on the alignment of the Reynolds

stress tensor with the strain tensor of the mean flow.

−u′
iu

′
j = νt

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
kδij (2.11)

where:

νt is the turbulence eddy viscosity
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k=1
2
u′
iu

′
i is the turbulence kinetic energy

The eddy viscosity cannot be assumed to be constant but rather governed

by the length scale (Λ) and velocity scale (V ) of the large energetic eddies.

νt ∼ ΛV (2.12)

Therefore, the solution of the RANS equations is now based on the modelling

of the eddy viscosity, or equivalent, the modelling of the length and velocity

scales.

There exist different ways to model eddy viscosity:

• Algebraic models, or zero equation models: Length and velocity

scales are modelled based on the characteristic mean flow velocity and

geometry. This way of modelling the eddy viscosity gives accurate

results just for thin and attached boundary layers, therefore it is not

general.

• One-equation models: one equation is solved, usually a transport

equation for the turbulence kinetic energy k or the eddy viscosity.

These models are good for attached and thin boundary layers.

• Two-equation models: Two transport equations are solved for two

different variables, for example, turbulence kinetic energy k and spe-

cific energy dissipation rate ε. These models are considered complete

because no other quantities are needed for the solution of such models.

Nevertheless, they can be improved by the solution of other quantities

like the distance from the wall. They perform better than the previous

models and certain two-equation models are suitable for separation and

detached boundary layers.

Among the two-equation models, the most common are the k − ε model

and the k − ω model with its variant k − ω SST . Now a brief introduction

of these two models is made, focusing on the model used for this work, the

k − ω Transitional SST model.
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k− ε model

The k− ε model [13] is one of the most used CFD models because it gives

accurate results with a relatively low computational cost. It is a two-equation

model based on turbulence kinetic energy k and its dissipation rate ε. They

have to be solved together with the RANS equations for the mean flow. The

model is complete because the eddy viscosity νt (2.12) is derived from the

two transport equations k and ε.

νt = Cµ
k2

ε
(2.13)

where Cµ is a model coefficient, usually Cµ = 0.09.

It is assumed that the kinetic energy dissipation rate at small scales is in

equilibrium with energy transfer rate from largest scale. This is the hypoth-

esis in order to write the eddy viscosity as function of ε.

∂(ρk)

∂t
+

∂(ρkūi)

∂xi

= ρP +
∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
− ρε (2.14)

∂(ρε)

∂t
+

∂(ρεūi)

∂xi

=
∂

∂xj

[(
µ+

µt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
ρP − C2ερ

ε2

k
(2.15)

where:

P = τij
∂ūi

∂xj

µt = ρνt

C1ε = 1.44, C2ε = 1.92, σk = 1.0, σε = 1.3

The different model coefficients are calibrated for some generic cases where

some of the terms vanish. These cases include decaying isotropic and homoge-

neous turbulence, homogeneous shear flow and the log layer in the boundary

layer.

This model is indicated when the flow is turbulent, low pressure gradients

are present and where the Reynolds shear stresses are most important. How-
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ever, this model performs poorly where large pressure gradients are present

and in unconfined flows.

The k − ε model requires wall functions in order to model the boundary

layer because the last term of equation 2.15 (destruction term) would tend

to infinity close to the wall, as k goes to zero at the wall. For this reason

typically y+ > 30.

k− ω model

The k − ω model [14] is another two-equation model that is widely used.

It considers ω (frequency of the large eddies or specific energy dissipation

rate) instead of ε. Usually, ω is defined as:

ω ≡ ε

Cµk
(2.16)

The eddy viscosity is now defined as:

νt =
k

ω
(2.17)

Therefore the two transport equations are those for k and ω:

∂(ρk)

∂t
+

∂(ρūjk)

∂xj

= ρP − β∗ρωk +
∂

∂xj

[(
µ+ σk

ρk

ω

)
∂k

∂xj

]
(2.18)

∂(ρω)

∂t
+

∂(ρūjω)

∂xj

=
αω

k
ρP − βρω2 +

∂

∂xj

[(
µ+ σω

ρk

ω

)
∂ω

∂xj

]
(2.19)

where:

P = τij
∂ūi

∂xj

α = 5/9, β = 3/40, β∗ = 9/100, σk = 1/2, σω = 1/2

Unlike the k−ε model, here there is not any singularity at the wall related
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to the ratio 1/k, present in the destruction term of ε instead. However, a

problem is related to the turbulence variable ω because it tends to infinity

at the wall (∼ ε/k). This can be overcome by applying a high value of ω at

the wall. The turbulence quantities are not asymptotically accurate close to

the wall, but the mean flow is reasonably well predicted. The major problem

with the k − ω model is the strong free-stream turbulence level sensitivity,

supposed to be caused by the turbulence interfaces (e.g. boundary layer

interface).

Nevertheless, this model can more accurately predict flows that present

high pressure gradients, unlike the k − ε model.

Furthermore, unlike the k − ε model, here the boundary layer can be

completely resolved up to the wall (y+ ≈ 1) for better accuracy.

k− ω SST model

The Shear Stress Transport (SST) model [15] is a modification of the

standard k − ω model in order to avoid the strong dependency on the free-

stream turbulence level. This model combines the k − ε model out of the

boundary layer and the k − ω model close to the wall. The two transport

equations are the k equation and the ω equation, the latter reformulated as

follow:

∂(ρω)

∂t
+

∂(ρūjω)

∂xj

=
αω

k
ρP − βρω2 +

∂

∂xj

[(
µ+ σω

ρk

ω

)
∂ω

∂xj

]
+ 2(1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj

(2.20)

α = 5/9, β = 3/40, β∗ = 9/100, σω = 1/2, σω2 = 0.856

F1 is a blending function

The blending function F1 gives a smooth transition between k−ε far from

the wall and k − ω close to the wall, exploiting the distance of the mesh cell

from the closest wall. F1 goes from 0 to 1. It is 1 when the last term (cross-
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diffusion) must be null and therefore in correspondence with the k−ω model

(Equation 2.19). It is 0 when the model must correspond to k−ε instead. In

fact, considering the definition of ω given by Equation 2.16 and substituting

it in Equation 2.15, the last term of Equation 2.20 appears.

Another feature of the k−ω SST model is the viscosity limiter that gives

better results in agreement with experimental data of separated flows. In

fact, there is an over-prediction of the wall shear stress if a limiter is not

exploited. Therefore the k−ω SST model can more accurately predict sepa-

ration compared to the previous models explained. The boundary conditions

are the same as the k−ω model. As the standard k−ω model, the boundary

layer can be completely resolved down to the wall (y+ ≈ 1).

k− ω Transitional SST (SSTLM) model

The k−ω Transitional SST (or SSTLM from the researchers Langry and

Menter that developed this model) [16] [17] is a modification of the standard

k − ω SST model (Equations 2.18 and 2.20) that includes two additional

transport equation: γ and R̂eθt.

The main objective of this model is to maintain the positive proprieties

of the k − ω SST model, in particular the ability to predict the separation

accurately, while offering the possibility to simulate flows at low Reynolds

numbers, therefore presenting transition regions or laminar regions.

∂(ρk)

∂t
+

∂(ρūjk)

∂xj

= γρP − β∗ρωk ∗min(max(γ, 0.1), 1)

+
∂

∂xj

[(
µ+ σk

ρk

ω

)
∂k

∂xj

] (2.21)

∂(ρω)

∂t
+

∂(ρūjω)

∂xj

=
αω

k
ρP − βρω2 +

∂

∂xj

[(
µ+ σω

ρk

ω

)
∂ω

∂xj

]
+ 2(1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj

(2.22)
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∂ (ργ)

∂t
+

∂ (ρujγ)

∂xj

= Pγ − Eγ +
∂

∂xj

[(
µ+

µt

σf

)
∂γ

∂xj

]
(2.23)

∂
(
ρR̂eθt

)
∂t

+
∂
(
ρujR̂eθt

)
∂xj

= Pθt +
∂

∂xj

[
σθt (µ+ µt)

∂R̂eθt
∂xj

]
(2.24)

where:

α = 5/9, β = 3/40, β∗ = 9/100, σk = 1/2

σω = 1/2, σω2 = 0.856, σf = 1.0, σθt = 2.0

F1 is a blending function

Pγ is the production term of the γ transport equation

Eγ is the dissipation term of the γ transport equation

Pθt is the production term of the Reθt transport equation

The Transport variable γ is called Intermittency and it represents the

percentage of time that fluctuations are locally present in the boundary layer:

if it is 0 it means the flow is locally laminar, while if it is 1 it means the flow

is locally fully turbulent. It can be noticed that γ is present in equation 2.21,

acting on the production and dissipation terms. Concerning the production

term, this is modified in the case of laminar flow because no production of

kinetic energy is present. At the same time, since the boundary layer is

laminar, the dissipation must be reduced.

The transport equation for the variable ω assumes the same form as Equa-

tion 2.20, but the blending function F1 is modified to avoid the switching to

k − ε in case of laminar boundary layer.

Equation 2.23 is the transport equation for the intermittency variable γ

and it assumes the same form as the other transport equations, therefore

there is a production, dissipation and transport term with the proper tuning

coefficients. Where the flow is laminar, Pγ is expected to be 0 while in

transition regions Pγ saturates to 1. The dissipation term Eγ allows the flow

to re-laminarise in case there were the necessary flow conditions.

The production term depends on additional functions that determine

when the production term itself has to be switched on and how quickly,
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therefore controlling the length of the transition region. These functions de-

pend on two main variables, Reθc and Reθt. They respectively represent the

momentum-thickness Reynolds number at which fluctuations start increasing

and at which transition begins. Reθc is always smaller than Reθt. Both Reθc

and Reθt are function of the transport variable R̂eθt solved by the Equation

2.24.

Pγ = f(Reθc, Reθt) Reθc = f(R̂eθt) Reθt = f(R̂eθt)

The R̂eθt is solved by Equation 2.24, which presents a production term

Pθt that forces the variable to its free-stream value based on the boundary

conditions. Then it is diffused towards the wall, where it takes the local

value that is finally used to determine the local production term for the

intermittency variable.

To close the model, an empirical correlation is required. Usually the free-

stream value of Reθt is defined as:

R̂eθt =

1173.51− 589.428Tu+ 0.2196
Tu2 if Tu ≤ 1.3

331.5
(Tu−0.5658)0.671

if Tu > 1.3
(2.25)

where:

Tu = 100

√
2/3k

|u∞|
(2.26)

Concerning the other boundary conditions, at the inlet γ = 1, while at

the wall ∂
∂n
γ = 0 and ∂

∂n
R̂eθt = 0.

Overall, this model can provide very good accuracy if the flow presents

some laminar or transitional regions, therefore suitable in cases in which

the Reynolds number is sufficiently low. Nevertheless, a careful choice of

inlet/free-stream value of Reθt is fundamental, as well as having a mesh that

is resolved down to y+ < 1. Since the model has four partial differential

equations to be solved, the computational cost slightly increases.
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Figure 2.7: Empirical relationship given by Equation 2.25 which defines the
value of Reθt in the free-stream as function of the turbulence level.





Chapter 3

Methodology

3.1 Geometric configuration

Since the object of the thesis is to assess the behaviour of diffusers at low

Reynolds number and the latter scales both with inlet size and bulk velocity

(Re = Ū1W1/ν), a small diffuser size was chosen. In particular, the inlet

width W1 is 2 cm, while the diffuser length N is 10 cm. The outlet width

W2 scales with the divergence angle θ, taken as the only parameter for the

different simulations. The ratio N/W1 is 5.

The geometry and the mesh were made using the open-source software

Gmsh based on the programming language Python. By creating a modular

geometry and an automatic meshing, it was possible to create a loop scrip

to iterate the different simulations in which the iteration variable was the

divergence angle. Figures 3.1 and 3.2 represent the geometry used for the

simulations, all the geometrical parameters are constant apart from 2θ, which

is variable. The corner was modelled as a quadratic Bézier curve with only

one control point.

To simulate the plenum exit condition, it was important to define an

external chamber, large enough to have the minimum effect on the pressure

recovery and flow behaviour. A geometry independence study was performed

27
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Figure 3.1: Diffuser and external chamber geometry.

to understand the size of this geometric part.

As shown in 3.3, the solution tends to become very unsteady for small

sizes, while it is rather stationary if the chamber size increases, due to the fact

that the boundary condition is far from the diffuser itself. Figure 3.4 shows

the convergence of CP increasing the external chamber size as expected.

Therefore the external chamber was taken of size 50x100 (length and height

expressed in diffuser inlet widths) because it is less than 1 percent from the

70x140 case.

3.2 Mesh independence study

Given the geometry explained in the previous paragraph, the mesh con-

sists of a structured grid on the diffuser and an unstructured grid on the

external mesh, as shown in Figure 3.5.
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Figure 3.2: Diffuser geometry and its nomenclature.
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Figure 3.3: CP series over time with different external chamber sizes, whose
length and height are expressed in diffuser inlet widths (W1). CPopt is the
CP average of the best geometry (70x140).
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Figure 3.4: Relative CP averages at different external chamber sizes ex-
pressed in diffuser inlet widths. CPopt is the CP average of the best geometry
(70x140).

Figure 3.5: Mesh of the diffuser and external chamber.
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Figure 3.6: Mesh independence study performed on the inlet cell length
expressed in diffuser inlet widths (streamwise, x direction, length of the grid
cell).

The geometry was meshed using the software Gmsh, in which different

parameters were considered: the inlet cell length (streamwise, x direction,

length of the grid cell at the inlet), the geometric progression coefficients of

the streamwise (x direction) cell size of the diffuser, the geometric progression

coefficient of the normal (y direction) cell size and finally the plenum mesh

size. In order to assess mesh independence, a study was accomplished. Since

the mesh is completely modular, as just explained, the single parameters were

changed keeping the other constant for a total of four different analyses. The

fluid parameter that was kept as a reference is the CP since it is one of the

fundamental variables of the present work. The analysis concerning the inlet

cell length is shown in figure 3.6.

All the previous analyses are computed separately, selecting a mesh that

would give a CP within 1 percent from the following finer mesh. Neverthe-

less, this does not guarantee the error to be within 1 percent once all the

parameters are taken into consideration in the single simulation. Therefore,

a final simulation of the optimized mesh was compared to the finest mesh in

the end and a total error smaller than 2 percent was observed.

After the mesh independence study, the mesh parameters are:
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• cell length (x direction) = 0.05W1

• geometric progression in x direction = 1

• smallest cell height (y direction) = 0.005W1 (y+ ≈ 0.5)

• geometric progression in y direction = 1.2

The total number of cells varies between 45000 and 50000 depending on

the divergence angle θ.

3.3 CFD model implementation and bound-

ary conditions

As explained earlier, the object of this thesis is to analyse the behaviour

of 2D plane diffusers at low Reynolds numbers. Since many simulations were

intended to be performed, the only way to maintain a low computational cost

was to make use of RANS models. In addition, given a low Reynolds number

and a low turbulence level, transition and laminarisation were expected, con-

ducting to the choice of the RANS k − ω Transitional SST model, whose

details are explained in the section 2.2.2.

To perform the unsteady RANS simulation, the open-source software

OpenFOAM was used, employing the solver PIMPLE. Although many pa-

pers perform steady RANS on diffusers, even using the same model of these

simulations (for example the work done by Sparrow et al. [18]), for this work

was not possible to obtain steady simulations in a reasonable time because

of the unsteady nature of the flow, probably accentuated by the plenum exit

condition.

A total simulation time of 5.5 seconds was considered, after analysing

some simulations performed during the grid convergence analysis. The time

is considered as a sum of a first transient time of 0.5 seconds corresponding

to 30t (where t = N/Ū1 is the characteristic time scale of the diffuser) and

a following time of 5 seconds corresponding to 300t, in which data is time-

averaged.
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As boundary conditions, a velocity profile at the inlet and no slip at the

wall were imposed, while concerning the external chamber, static pressure

and no shear were imposed respectively at the outlet and at the wall.

In the k − ω Transitional SST model, the turbulence kinetic energy k,

the specific turbulence dissipation rate ω, the intermittency γ and the R̂eθt

boundary conditions must be specified besides velocity and pressure.

The following equations were exploited in defining the boundary condi-

tions at the inlet:

k = 1.5(UI)2 ω =
√
k/l

where l is the turbulence length scale defined as l = 0.038D for fully devel-

oped channel and pipe flows (D is the hydraulic diameter) or l = 0.22δ (δ is

the boundary layer thickness) in case of generic wall-bounded flows.

As explained in section 2.2.2 for the intermittency variable γ, a value of

1 was imposed at the inlet, while for R̂eθt the equations 2.25 were exploited.

The Reynolds number was chosen according to the critical Reynolds in

fully developed channel flow, in order to simulate a flow that is very close to

transition, as may happen to small-size diffusers operating at relatively low

velocities. Sano and Tamai [19] found a critical Reynolds number of 7696

(Re = ŪW1/ν) for fully developed Poiseuille flow, which is why Re = 8163

was chosen for the following simulation to ensure a turbulent inlet profile close

to transition. This means that the bulk velocity Ū1 is 6 m/s. Considering

the same bulk velocity for all the different velocity profiles, the maximum

velocity changed accordingly.

Three different inlet velocity profiles and three different turbulence levels

were chosen (all the other parameters like k and ω are changed accordingly),

for a total of nine cases. For each case, different divergence angles θ were

simulated in order to offer a complete characterization of 2D planar diffusers,

considering the most influencing parameters. Pressure recovery and outlet

velocity profiles were the primary parameters analysed in these simulations.

The turbulence levels are 10, 3 and 0.05 percent, representing a high, a
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medium and a very low turbulence intensity, respectively. For the inlet ve-

locity profile, a generalised power law equation was used, following the one

proposed by Salama [20]:

U

Umax

=

[
1−

(
y

W1

)m] 1
n

(3.1)

where m and n are two coefficients function of the Reynolds number.

This equation is not suitable for accurate analysis of the wall shear stress,

where the famous logarithmic law of the wall is more accurate; nevertheless,

equation 3.1 can be exploited in a RANS model.

Coefficients m and n were determined from experimental data interpola-

tions, and they vary based on the flow regime and Reynolds number. When

m = 2 and n = 1, the fully developed channel flow velocity profile corre-

sponds to a fully developed laminar channel flow. Salama [20] established

that a fully developed turbulent flow has coefficients: m = 2 and n = 12. The

different velocity profiles can be described by means of the blockage factor

B, defined in Equation 2.5. In the present work, the three velocity profiles

are:

• tophat: B = 0

• turbulent profile (m = 2, n = 12): B = 0.05

• laminar profile (m = 2, n = 1): B = 0.33

Figure 3.7 represents the three velocity profiles.

Since the bulk velocity Ū is fixed for all profiles, the maximum velocity

Umax was obtained by Equation 2.5, after having defined coefficients m and

n.
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Figure 3.7: The three different velocity profiles at the diffuser inlet.





Chapter 4

Results and discussion

4.1 Model validation

To validate the computational model, different simulations were performed,

following the assumption of the experimental data provided by Reneau et al.

[2]. In particular, the geometry was not changed with respect to the one

explained in chapter 3. Still, the flow conditions were changed in order to

ensure a high turbulent flow and an inlet blockage factor suitable for a com-

parison with the data available in the above-mentioned research work.

The Reynolds number of the experimental data was above 5 ∗ 105. There-
fore a value of 1 ∗ 106 was chosen, ensuring a fully turbulent boundary layer.

Following the paper conditions, a turbulence intensity of 2 percent was se-

lected, and a tophat velocity profile was imposed as boundary condition at

one throat length upstream of the diffuser inlet, to ensure an inlet blockage

factor of 0.007.

Experimental data provided by Reneau et al. [2] are given by a chart made

by interpolating several experiments of diffusers of different geometries (two-

dimensional with different divergence angles and N/W1 ratios). Since the

chart represents different experiments from different setups, the geometry

(e.g. the fillets between the inlet duct and the diffuser, and the surface

37
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Figure 4.1: Comparison of pressure recovery coefficients between simulations
and experimental data [2], varying the divergence angle. Tu = 2%, B =
0.007. The green points were deduced from the interpolation curve of B =
0.015. The dashed lines represent the angles of the stall regimes as expressed
in Figure 2.5: a-a for the Large Transitory stall, b-b for the Fully-Developed
two-dimensional stall, c-c for the Jet Flow.

roughness) and the flow conditions could slightly change among the several

tests. This uncertainty (estimated at less than 6 percent [2]) has to be

summed to the uncertainty of visually retrieving the pressure recovery curve

from the chart starting from the N/W1 ratio (5 in this case).

It should be remarked that the RANS model used for these simulations is

the same one as the one used for all the other simulations of the present thesis,

namely the k−ω SSTLM model. However, operating at a very high Reynolds

number, this model coincides with the classical k − ω SST model since the

boundary layer is completely turbulent. This was the only validation possible

because, as explained earlier, the literature does not present any experimental

data involving diffusers which operate with a laminar boundary layer.
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Figure 4.2: Relative error of the linear interpolation of the pressure recovery
coefficients between simulations and experimental data [2], varying the di-
vergence angle. Tu = 2%, B = 0.007. The dashed lines represent the angles
of the stall regimes as expressed in Figure 2.5: a-a for the Large Transitory
stall, b-b for the Fully-Developed two-dimensional stall, c-c for the Jet Flow.

Observing Figure 4.1, it can be noticed that below 2θ = 12◦ the simu-

lations are very consistent with the experimental data. Nevertheless, sim-

ulations tend to overestimate the pressure recovery peak and its angle by

10 percent. At the pressure recovery peak of the simulations, there is a

15-20 percent of overestimation. In correspondence to the fully developed

two-dimensional stall, there is an inversion of the previous trend, with an

underestimation of the pressure recovery with respect to experimental data

(30 percent). Finally, the pressure recovery curves tend to converge before

the jet flow regime. The simulation can accurately detect the angle at which

the jet flow regime appears, but it tends to underestimate the pressure recov-

ery by a considerable amount at 2θ = 70◦ (50 percent). From the simulations,

a clear distinction between the large transitory stall and the fully-developed

two-dimensional stall is not present because analyses of the velocity fields
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do not show stalls that build up and are washed out. The flow attaches to

a divergence wall at the correct angle but no unsteadiness is present, unlike

the experiments.

Figure 4.2 represents the difference in pressure recovery between experi-

mental data and simulation, which clearly remains below ±0.15.

In conclusion, considering the very strong dependency of data on inlet

conditions, it is fairly impossible to simulate the flow with the same inlet

conditions of experimental data. A small variation of turbulence intensity or

velocity profile can have a strong impact on the pressure recovery. Geomet-

rical parameters such as the fillet at the throat can have an important effect,

which remains unclear today. Nevertheless, it is possible to understand the

trend of the pressure recovery curve and this seems to correspond well with

experimental data.

As explained earlier, a total of nine RANS cases have been performed, each

of them with a varying number of simulations, depending on the divergence

angle range.

Results will be presented first by analysing the flow profiles and conditions

at the outlet and then by comparing the pressure recovery coefficient and

effectiveness for the different turbulence intensities.

4.2 Diffuser outlet analysis

Figures 4.3, 4.4 and 4.5 show the velocity profiles at the diffuser out-

let for all the simulations, split into the three turbulence intensity cases.

It can be seen that the flow tends to attach to a diverging wall after the

maximum pressure recovery (which curves are shown in Figures 4.7, 4.8 and

4.9), compatible with a transitory stall regime. The main difference from

the descriptions given by Reneau et al. [2] is that no unsteadiness is present;

therefore, the flow is completely attached to a diverging wall as it is supposed

to be, having N/W1 = 5, but the other wall does not present the stall regions
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that repeatedly build up and are subsequently washed out of the diffuser. In-

deed, a transitory analysis of the flow reveals that no strong unsteadiness is

present. The model can detect recirculation bubbles, but they are steady,

even using an unsteady model.

It is useful to analyse the uniformity of the flow at the diffuser outlet for

the different turbulence intensities and velocity profiles. The flow uniformity

index of Equation 2.4 was exploited. Figure 4.6 shows the value of γ for

the different simulations and illustrates that γ tends to a defined value in

the case of jet flow regime, at least for the turbulence intensities of 3 and

10 percent. In addition, the flow uniformity index monotonically decreases

increasing the divergence angle 2θ. Despite a relatively uniform decrease of

γ, the higher rate of drop is in correspondence with the maximum pressure

recovery and therefore in the large transitory stall regime.
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Figure 4.3: Velocity profiles at the diffuser outlet at the time instant t = 5.5s,
for the three inlet blockage factors, and Tu = 10%.
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4.3 Turbulence intensity: 10 percent
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Figure 4.7: CP (continuous line) and η (dashed line) at different inlet blockage
factors (inlet velocity profiles) for Tu = 10%.

Figure 4.7 shows the CP and η for a turbulence intensity equal to 10

percent, corresponding to a high turbulence level. The boundary layer is

forced to be turbulent due to the high turbulence intensity and by analysing

the intermittency variable γ, we conclude that there is no laminarisation.

As expected from experimental data on diffusers with a turbulent bound-

ary layer available in literature [2], the maximum pressure recovery is ob-

tained for B = 0, while increasing displacement thickness (B = 0.05), a

decrement of CP is shown, as well as the angle of maximum CP .

At the same time, a slight increase of CP can be noted at lower angles,

where the flow is completely attached, for B increasing from 0 to 0.05. This

trend becomes apparent when B = 0.33. In this case, the maximum pressure
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recovery occurs at very low divergence angles (2θ ≈ 8°). Furthermore, the

CP is 0.73, and therefore greater than in the previous cases.

It can be noted that the case of B = 0.33 is the only one to have a pressure

recovery greater than 0 when the diverging angle is null (corresponding to

a channel flow into a stationary atmosphere). This behaviour is well known

and will be later explained in detail in section 4.6.

4.4 Turbulence intensity: 3 percent
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Figure 4.8: CP (continuous line) and η (dashed line) at different inlet blockage
factors (inlet velocity profiles) for Tu = 3%.

The case of a turbulence intensity of 3 percent does not differ significantly

from the case of a turbulence intensity of 10 percent. The major differences

are the reduced pressure recovery for all blockage factors as well as their angle

of maximum pressure recovery. Effectiveness decreases as a consequence of
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smaller pressure recovery. As in the previous case, the effectiveness is greater

than 1 for B = 0.33, which will be explained in section 4.6 as well.

4.5 Turbulence intensity: 0.05 percent
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Figure 4.9: CP (continuous line) and η (dashed line) at different inlet blockage
factors (inlet velocity profiles) for Tu = 0.05%.

The pressure recovery is very low in the case of a turbulence intensity of

0.05 percent, mostly for higher blockage factors. Indeed, the maximum CP

does not increase for higher blockage factors, unlike in the previous cases

with higher turbulence intensity. The angles of maximum pressure recovery

are very small and therefore the range of angles at which simulations were

performed differs from the previous cases.

When the divergence angle is null, it is not possible to observe any pressure

recovery, even though for B = 0.33 the pressure drop is significantly lower
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than the cases of B = 0 and B = 0.05. The increment of CP for B = 0.33 at

low diverging angles will be explained in the following section.

4.6 Modified effectiveness

As established previously, when the blockage factor is high, the diffuser

tends to recover static pressure even in the presence of a null diverging angle.

As Tyler and Williamson [21] explained in 1967, this happens because of

diffusion, which tends to make the flow uniform at the outlet. In fact, due

to a non-uniform inlet velocity profile, the flow is more energetic and the

dynamic pressure takes the following form:

q̄1 =
1

2
αρŪ2

1 , where α =

∫W1

0
U3
1dy

Ū3
1A

(4.1)

α is the velocity profile energy coefficient and it results in 1 when the flow

profile is completely uniform (tophat).

Therefore, in the case of a null divergence angle, the total pressure does

not increase through the diffuser, even if the static pressure increases and

the bulk velocity remains constant because the flow becomes more uniform

and the dynamic pressure decreases.

To take this behaviour into consideration, Tyler and Williamson [21] ex-

ploited a parameter called modified effectiveness (η̄). The modified effective-

ness is always smaller or equal to 1, and therefore it guarantees a more robust

parameter to characterise diffusers at high blockage factors.

The new CPid considered in the modified effectiveness takes the form of

CPid = (DF )21− 1/(AR)2, where (DF ) is the distortion factor at the diffuser

inlet, expressed as (DF )1 = U1max/Ū1. The distortion factor is linked to the

blockage factor B by the following relation: B = 1− 1/(DF ).
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The modified effectiveness is:

η̄ =
CP

CPid

=
CP

(DF )21 − 1
(AR)2

(4.2)

It can be observed that in the case of a uniform inlet flow, the modified

effectiveness reverts to the original effectiveness form, while it is smaller than

η in the case of a non-uniform inlet flow.

Following the derivations proposed by Kline et al. [1], a similar approach

can be exploited to determine where the maximum modified effectiveness is

located. Given the expression of η and differentiating it with respect to θ to

find the maximum, the following equation is obtained:

1

CP

∂CP

∂θ
=

1

CPid

∂CPid

∂θ
(4.3)

A similar equation can be obtained by differentiating the expression of η̄

(Equation 4.2):
1

CP

∂CP

∂θ
=

1

CPid

∂CPid

∂θ
(4.4)

Following the same reasoning that Kline et al. [1] used for ηmax, η̄max should

also always be smaller than CPmax because in the Equation 4.4, CP , CPid

and ∂CPid/∂θ are always positive by definition. Therefore, to maintain the

equality, ∂CP/∂θ must also be positive and the angle of CPmax is located

after η̄max.

To understand if θ(η̄max) is greater or smaller than θ(ηmax), Equations 4.3

and 4.4 can be exploited. It can be noted that CPid/∂θ is always equal to

∂CP/∂θ because the distortion factor DF is not a function of θ. Furthermore,

CPid is always greater than CPid if DF > 1 (when B > 0). This means that

the angle of η̄max is located after the angle of ηmax but before the angle of

CPmax.

In Figure 4.10 the modified effectiveness is plotted for the different tur-

bulence intensity cases. It is important to notice that η̄ does not exceed 1,
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while η does, since CP > CPid for high blockage factors, as visible in Figures

4.7 and 4.8.

Figure 4.11 shows the different blockage factors at the outlet for the differ-

ent turbulence levels and inlet velocity profiles. Data is available till backflow

appears at the outlet. From these plots, it is clear that in the case of a lami-

nar boundary layer, there is no turbulent diffusion, hence the blockage factor

at the outlet is almost the same as the inlet, and the flow maintains its ki-

netic energy. This can be observed in the values of the blockage factor at the

outlet in the case of B = 0.33 for the different turbulence intensities. In the

case of a turbulence level of 10 percent, B2 is 0.163; for a turbulence level of

3 percent, B2 is 0.26, and finally, for a turbulence level of 0.05 percent, B2 is

0.33.

As explained earlier, from Figure 4.10 and Table 4.1, it can be concluded

that the angle of maximum modified effectiveness is always greater than the

angle of maximum effectiveness (apart from the case of B = 0, when they

coincide), while it is always smaller than the angle of maximum pressure

recovery.
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Figure 4.10: Modified effectiveness η̄ for the three turbulence intensity cases.
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Figure 4.11: Blockage factor at the diffuser outlet for the three turbulence
intensity cases.
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(a) Tu = 10 %

CPmax ηmax η̄max 2θ(CPmax) 2θ(ηmax) 2θ(η̄max)

B = 0 0.66 0.81 0.81 16.8 12.8 12.8

B = 0.05 0.62 0.80 0.70 14.0 11.2 11.8

B = 0.33 0.73 / 0.40 7.6 / 6.0

(b) Tu = 3 %

CPmax ηmax η̄max 2θ(CPmax) 2θ(ηmax) 2θ(η̄max)

B = 0 0.60 0.78 0.78 13.2 12.0 12.0

B = 0.05 0.52 0.72 0.63 10.8 9.0 9.4

B = 0.33 0.52 / 0.30 5.8 / 4.8

(c) Tu = 0.05 %

CPmax ηmax η̄max 2θ(CPmax) 2θ(ηmax) 2θ(η̄max)

B = 0 0.23 0.51 0.51 4.2 3.6 3.6

B = 0.05 0.17 0.41 0.32 3.8 3.0 3.2

B = 0.33 0.06 0.25 0.04 2.4 1.0 2.2

Table 4.1: Maximum value of CP , η and η̄ and their corresponding divergence
angle 2θ, for the different turbulence intensity cases.

Table 4.1 shows the maximum values for CP , effectiveness and modified

effectiveness with their corresponding angle 2θ. It should be pointed out

that the highest values of CP , η and η̄ are found for the highest turbulence

intensity. The highest angles of these maximum values correspond to the

same case. Between the turbulence intensities of 10 and 3 percent, there is

a difference in performance, but it is not as relevant as the corresponding

difference between 3 and 0.05 percent.

Therefore, to recapitulate, two main factors do not allow a high pressure

recovery for diffusers operating with a laminar flow. The first reason is that

the laminar boundary layer tends to separate very early, and the second
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reason is that the lack of turbulent diffusion cannot make the flow uniform

through the diffuser. These two factors are dependent, because the lack of

diffusivity cannot avoid an early separation. This is particularly visible in the

case of B = 0.33, because both factors affect the pressure recovery, leading

to CPmax = 0.06.

It is important to point out that the modified effectiveness assumes an

important role even for low blockage factors. Indeed, for the case of B =

0.05, there is more than a 10 percent difference between the original and the

modified effectiveness.





Chapter 5

Conclusions and future work

5.1 Conclusions

Different CFD simulations were performed in order to assess the behaviour

of two-dimensional diffusers operating at a low Reynolds number with dif-

ferent inlet conditions and with a plenum exit condition. Three different

turbulence intensities were varied, in particular 10 percent, 3 percent and

0.05 percent, thus ranging from a completely turbulent to a laminar inlet

velocity profile.

In addition, three different inlet displacement thicknesses were studied,

utilising the adimensional blockage factor, employed by varying the inlet

velocity profile for which a modified power law was used.

The only geometrical parameter to change was the divergence angle 2θ.

As in the case of a high Reynolds number [2], it can be asserted that even

in the presence of a low Reynolds number, inlet conditions play an important

role in determining the pressure recovery of the diffuser. The main reason

is that flow tends to laminarise easily, which leads to early separations and

results in an important sensitivity to inlet condition, probably even more

emphasised than the high Reynolds number case.

This sensitivity is mostly valid for all the diffusers that present a very

57
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short inlet channel before the diverging walls. In fact, if the channel is

sufficiently long, a fully developed flow can be established at the diffuser

inlet, hence the blockage factor and the turbulence intensity are less affected

by the conditions at the inlet of the channel.

From the results of the simulations of the present geometry, which presents

a very short channel (the length is equal to the width), five main conclusions

can be asserted:

• For diffusers operating at high Reynolds numbers, the k−ω Transitional

SST model, operating as the k − ω SST model, predicts the pressure

recovery with respect to experimental data [2] fairly well, with an ab-

solute error of the CP within ±0.15 throughout the range of divergence

angles from 0 to 70 degrees.

• For diffusers operating at low Reynolds numbers, assessing the turbu-

lence level is fundamental to understand the pressure recovery, which

can considerably vary between a medium (3 percent) and a high (10

percent) turbulence intensity. The difference is almost 10 percent for

B = 0 and it increases up to 30 percent and more for B = 0.33. It is

reasonable to think that the difference can further increase in case of

higher blockage factors.

• For a turbulence intensity of 0.05 percent, corresponding to a lami-

nar flow, the pressure recovery is considerably low (0.23 for the tophat

velocity profile), mostly due to early laminar separation. This sub-

stantially reduces the value of the divergence angle at which the stall

appears. Indeed the maximum pressure recovery is at a total included

angle (2θ) of 4.2 degrees instead of 13.2 and 16.8 for Tu = 3% and

Tu = 10%, respectively.

• In the case of a high blockage factor, 0.33 for the simulations performed

here, the use of modified effectiveness η̄ (explained in section 4.6) is

fundamental to take into account the additional dynamic pressure that

the inlet flow presents. Even for B = 0.05, there is a substantial
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difference of more than 10 percent in comparison to the classical η

formulation. Furthermore, the angle of maximum effectiveness loses its

significance and is misleading for high blockage factors because it tends

to 2θ = 0◦. The angle of maximum modified effectiveness should be

used instead, and it was shown to be between the angle of maximum

effectiveness and maximum pressure recovery.

• Concerning the analysis of the velocity profiles at the outlet, the stall

patterns seem to be very similar between the different turbulence in-

tensities, apart from the angles at which the stall appears. The un-

steadiness of the transitory stall is not visible either from the velocity

profiles at the outlet or from the total flow field visualisation through

the simulation time. In any case, the mean flow velocity profiles seem

to be well predicted.

5.2 Future work

In order to assess the validity of the RANS model used in this thesis,

namely the k − ω Transitional SST , an experimental setup was consid-

ered. This would also allow us to characterise the different two-dimensional

diffusers in a more general way, by the use of pressure taps or flow visualisa-

tion.

Diffusers can be designed and 3D printed to match the outlet of a blowing-

type wind tunnel in which velocity and therefore Reynolds number can be

changed as desired. The diffuser can discharge directly in a stationary atmo-

sphere or a tail channel can be mounted at the end of the diverging walls.

Experimental data can be acquired at the outlet using hot-wire anemome-

ters, in order to analyse the velocity profile and the different stall regimes

associated with the divergence angle and inlet conditions. Pressure recovery

can be obtained by using pressure taps.

If the diffuser is made exploiting transparent walls, flow visualisation can
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Figure 5.1: Side view schematic of planar jet wind tunnel. Flow is generated
by a centrifugal blower (A), transferred to the pre-settling chamber (B), and
then to the rectangular prism section via two tubes (C). Flow passes through
the glass spheres (D) where some of the turbulence is killed. After that,
honeycomb (E) helps to straighten the flow. Flow is then forced through a
set of screens (F) to decrease the turbulence level again. Contraction (G)
accelerates the flow before the exit section. [22]

be performed, detecting the separation point and recirculation bubbles. Inlet

conditions (like blockage factor or turbulence intensity) can be changed by

inserting a channel of variable length between the wind tunnel effuser outlet

and diffuser inlet.

To assess the validity of the RANS model, simulations on 2D diffusers

can be performed, starting from inlet conditions directly acquired by using

hot-wire anemometers.

A possible setup is to utilise a planar jet wind tunnel to maintain a high

aspect ratio to guarantee the two-dimension constraint. The following setup

has been developed based on the planar jet wind tunnel available at the

CICLoPE laboratory (University of Bologna), but the same concept can be

adapted as needed.

As shown in Figure 5.1, this open-loop blowing wind tunnel was initially

designed to calibrate hot-wire anemometers and to characterise the planar

jet flow. As schematised, there is a three-phase AC motor that drives the fan

which increases the pressure at the pre-settling chamber. The latter is used to
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dampen fluctuations caused by the fan. Once the flow enters the rectangular

prism section, it encounters different devices that help to straighten the flow

and decrease the turbulence level thanks to the strong pressure drops. In

the end, the convergent part (contract ratio of 9:1) increases the velocity and

laminarises the flow.

In order to analyse the different diffusers, a new convergent channel was

designed, so that the end presents a flange that could be mounted in place of

part G of Figure 5.1. The model was 3D-printed and the new contract ratio

was increased to 19:1 in order to reduce the outlet width. The convergent

channel was designed with a hyperbolic tangent shape in order to optimize

the outlet flow and reduce the pressure losses. The convergent outlet is

rectangular with fillets at the corners. Given W1 the height of the outlet,

the fillets are 1/10W1, with W1 = 20 mm. After the effuser, a channel of

length 5W1 is flanged in order to homogenise the flow. After the channel,

the different diffusers are flanged and they discharge directly in a stationary

atmosphere (plenum exit condition). The aspect ratio (AS) of the diffusers

is 10, in fact, the diffuser span width measures 200 mm. All the parts are

3D-printed and the assembly is illustrated in Figures 5.2 and 5.3.
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Figure 5.2: Render of the assembly to be flanged on the planar jet wind
tunnel of Figure 5.1 to test the different diffusers.

CROSS SECTION A-A

A

A

Figure 5.3: Cross section of the assembly of Figure 5.2.
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