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Introduction

This thesis is organized as follows:

• In Chapter 0, we give some preliminary results and definitions, which

are fundamental in the following chapters.

• In Chapter 1, we present the structure theorem for finitely generated

abelian groups and its generalization to modules over principal ideal

domains.

• In Chapter 2, we will prove the Jordan-Hölder Theorem in the case of

representations of associative algebras over fields.

• Finally, in Chapter 3, we introduce the theory of group extensions and

group cohomology and give some intuition to the first four cohomology

groups. Then we prove some results concerning the extension problem

of finite groups.

The Structure Theorem for finitely generated abelian groups was proven by

Henri Poincaré in 1900 and it is the first step to the complete classification

of all finite groups. The Structure Theorem has numerous applications to

other branches of mathematics. For instance, in algebraic topology, the nth

Betti number of a topological space X is defined as the rank of the nth
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ii INTRODUCTION

homology group of X (when it is finitely generated). The classification of

non-finitely generated abelian groups is an open problem. Unlike finitely

generated abelian groups where the direct sum decomposition is unique (up

to isomorphism), infinitely generated abelian groups can have non-unique

direct sum decompositions, further complicating their study. The lack of

finiteness conditions on an abelian group means that we allow objects of

unrestricted size and complexity. In this setting, many set-theoretic issues

(related, for instance, to the theory of infinite cardinals) arise. However,

some classes of infinitely generated abelian groups have already been classi-

fied, e.g., divisible groups.

The Structure Theorem for finitely-generated abelian groups has one of its

natural generalizations into the Structure Theorem for finitely-generated

modules over principal ideal domains. This result can be further general-

ized to Dedekind domains; moreover, the primary decomposition generalizes

to finitely generated modules over commutative Noetherian rings.

The Jordan-Hölder Theorem is a more general decomposition result orig-

inally stated for finite groups, but it can be generalized for any abelian

category. In this generality, one obtains a composition series, rather than a

direct sum. From this class of results, two main problems arise: the clas-

sification of all the simple (irreducible) objects and the classification of all

the possible extensions between them. For instance, the classification of all

finite simple groups is a massive result completed in 2004 while the exten-

sion problem for finite groups is still open.

The notion of extension varies from subject to subject between two ways in

which some structure can be extended, namely, by embedding and by cover-
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ing. In the first case, the extension contains the original space as a subspace

and it is usually represented by 1 → M → E (we say that M is embedded

into E). In the latter one, the original space is seen as a quotient of the

extended space and it is usually represented by E → G → 1 (we say that

E covers G). For example, in field theory it is the case that any covering is

trivial since any surjective homomorphism of fields is an isomorphism, hence

the word extension is usually referred to embeddings of fields. Instead, in

group theory any covering naturally induces an embedding (while not every

embedding can canonically induce a covering). Concerning group cohomol-

ogy, the point of view we adopt in this thesis is the general one formulated in

1943-1945 by Eilenberg and MacLane using the derived Ext functor. Long

before this formulation of group cohomology, the low dimensional cohomol-

ogy of groups was already studied in the early 1900s with Shur’s works and

especially with Shreirer’s work on group extensions in 1926.
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Chapter 0

Preliminaries

In this chapter, we will summarize some basic concepts and results (with-

out going into the details of the proofs) that we will need in the sequel.

Definition 0.0.1. Let R be an integral domain. We say that R is a principal

ideal domain (PID) if for every ideal I ⊆ R, there exists a ∈ I such that

I = (a) := {a · r, for every r ∈ R}.

Example 0.0.2. • Every field is (trivially) a PID.

• If K is a field, then K[x] is a PID.

• Let K be a field, then K[x, y] is not a PID, indeed, the ideal (x, y) is

not principal; notice that K[x, y]/(xy−1) is a PID (it is called the ring

of Laurent polynomials in one variable over K).

Definition 0.0.3. Let R be a unitary ring and M an R-module, then we

say that M is a finite free R-module if M ∼= Rn for some n ∈ Z>0; in this

case we say that n is the rank of M and write rk(M) = n.

Definition 0.0.4. Let R be a ring and M an R-module; we say that x ∈M

is a torsion element if there exists a ∈ R∗ such that ax = 0. Moreover, we

1



2 0. Preliminaries

say that M is torsion-free if there are no torsion elements in M different

from zero.

Theorem 0.0.5. Let R be a PID and M a finitely generated R-module,

then M is torsion-free if and only if it is free.

Proof. Since R is a domain Rn is torsion-free, hence every free R-module

is torsion-free. Let us suppose M is torsion-free: since M is finitely gen-

erated we can choose a set of generators for M with minimal cardinal-

ity, say {e1, . . . , en}; let us suppose there exists a null linear combination

a1e1 + · · · + anen = 0 with ai ∈ R for all i ≤ n and aj ̸= 0 for some

j ≤ n: since R is a PID, the ideal generated by a1, . . . , an is principal so it

is generated by only one element of R∗, say a. For every i ≤ n there exists

bi ∈ R such that ai = abi and we can assume (b1, . . . , bn) = (1) = R,

thus a(b1e1 + · · · + bnen) = 0 and since M is torsion-free it must be

b1e1 + · · · + bnen = 0. Moreover for all i ≤ n there exists αi ∈ R such

that α1b1 + · · · + αnbn = 1; without loss of generality let us suppose that

b1 ̸= 0 so α1(b1e1 + · · · + bnen) = e1 +
∑n

i=2 bi(ei − αie1) = 0. Let us

define e′i := αie1 − ei, then e1 =
∑n

i=2 bie
′
i, but {e′2, . . . , e′n} is a set of gen-

erators for M , thus contradicting the minimality of {e1, . . . , en}. Therefore

{e1, . . . , en} is a linear independent set and M ∼= Rn.

Remark 0.0.6. In Theorem 0.0.5 it is important that M is finitely generated,

indeed as a counter-example we can take the set of rational numbers Q: it

is clearly torsion-free but for every n ∈ Z>0, Q ≇ Zn (see 1.1.15).

Definition 0.0.7. Let R be an integral domain, we call R a euclidean

domain if there exists a function δ : R∗ → Z≥0 such that for every a, b ∈ R
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there exist q, r ∈ R such that b = qa+ r and either δ(r) < δ(a) or r = 0.

Proposition 0.0.8. Every euclidean domain is a principal ideal domain.

Proof. Let E be a euclidean domain and I be an ideal of E. Then let B

be a set of generators for I; if max
x∈B

δ(x) = 0 then every x ∈ B is a unit

(i.e. it is an invertible element of the ring), therefore I = E. Now, suppose

such a maximum does not exist, since for every x ∈ E, δ(x) ∈ Z≥0, there

exists min
x∈B

δ(x) = δ(b̄(1)), b̄(1) ∈ B. Since B is a euclidean domain we know

that for every b ∈ B, there exist qb, rb ∈ R such that b = qbb̄
(1) + rb and

either δ(rb) < δ(b̄(1)) or rb = 0; thus we can define B(1) := {nonzero rb,

b ∈ B \ {b̄(1)}} ∪ {b̄(1)}. Notice that max
x∈B(1)

δ(x) = δ(b̄(1)) and that B(1) is

still a generating set for I. Moreover, if B(1) \ {b̄(1)} is not the empty set,

then min
x∈B(1)\{b̄(1)}

δ(x) < δ(b̄(1)) otherwise we have I = (b̄(1)). We can iterate

this process until we end up with either B(n) = {b̄(n)} or max
x∈B(n)

δ(x) = 0.

Example 0.0.9. Let K be a field. Then K[X] is a euclidean domain with

δ(f) := deg(f), for every f ∈ K[X]∗.

Definition 0.0.10. Let G,H be two groups, and φ : G→ Aut(H) a homo-

morphism; we define the (outer) semidirect product of G and H with

respect to φ, as the group G⋉φH (or H ⋊φG) with underlying set H ×G

and group multiplication law (h, g) ∗ (h′, g′) := (hφ(g)(h′), gg′).

Example 0.0.11. Let Z2 acting on Zn by the action φ([1]2)([m]n) := [−m]n;

then Z2 ⋉φ Zn
∼= Dn, the nth dihedral group.

Definition 0.0.12. A category C consists of:

• a collection ObC of objects;
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• for any pair X, Y of objects, a collection HomC(X, Y ) of morphisms

from X to Y ;

• for any pair of morphisms f in HomC(X, Y ) and g ∈ HomC(Y, Z), a

morphism g ◦ f in HomC(X,Z), called the composite of f and g;

• for any object X, a morphism idX ∈ HomC(X,X), called the identity

morphism on X;

such that the following properties are satisfied:

• for each quadruple X, Y, Z,W of objects, if f ∈ HomC(X, Y ), g ∈
HomC(Z,X), h ∈ HomC(W,Z), then (f ◦ g) ◦ h = f ◦ (g ◦ h);

• for each pair X, Y of objects, if f ∈ HomC(X, Y ), then idY ◦ f = f =

f ◦ idX .

We can, moreover, define the opposite category of C as the category

Cop such that ObCop := ObC and for any X, Y objects HomCop(X, Y ) :=

HomC(Y,X).

Example 0.0.13. • Grp is the category of groups: ObGrp is the collection

of all groups and for any X, Y ∈ ObGrp, HomGrp(X, Y ) is the set of

all group homomorphisms from X to Y .

• Similarly to Grp we can build: Ab, the category of all abelian groups,

Ring, the category of all rings, Field, the category of all fields and Set,

the category of all sets.

• Let R ∈ ObRing, then the left R-modules form the category RMod.



5

• Every group G can be considered as a category with a single object

whose morphisms are the elements of G: in this case ObG = {g} and

Hom(g, g) := G (as a group).

Definition 0.0.14. A (covariant) functor F from a category C to a cate-

gory D is a map sending each object X ∈ ObC to an object F (X) ∈ ObD and

each morphism f ∈ HomC(X, Y ) to a morphism F (f) : Hom(F (X), F (Y )),

such that F preserves composition (F (f ◦ g) = F (f) ◦ F (g)) and identity

morphisms (for any object X ∈ ObC, F (idX) = idF (X)). We can also define

a contravariant functor from C to D as a functor from Cop to D.

We will denote a functor F from the category C to D, F : C → D, indeed

a functor is a sort of “homomorphism” of categories.

Example 0.0.15. • We can define a (covariant) functor P : Set → Set

called the “power set functor” which maps each set I to its power set

P(I) := {U ∈ Set| U ⊆ I} and each function f ∈ HomSet(A,B) to

the map P(f) ∈ HomSet(P(A),B) such that P(f)(U) := f(U), for

every U ∈ P(X).

• Let B ∈ ObRMod, then we can define the contravariant functor FB from

RMod to RMod, where for every A ∈ ObRMod, FB(A) := HomRMod

(A,B) ∈ RMod and FB(f)(g) := g ◦ f for every A,C ∈ ObRMod, for

every f ∈ HomRMod(A,C).

• Let G,H be two groups understood as categories as above and ϕ ∈
HomGrp(G,H), then we can define a functor ϕ̄ with: ϕ̄(g) := h and

for every f ∈ Hom(g, g), ϕ̄(f) := ϕ(f); this functor is both covariant

and contravariant;
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Definition 0.0.16. Let C,D two categories and F,G : C → D two functors:

we define a natural transformation between F and G ϕ : F ⇒ G as a

set of maps {ϕA ∈ HomD(F (A), G(A))| A ∈ ObC} such that for every

A,B ∈ ObC, the diagram:

F (A) F (B)

G(A) G(B)

ϕA

F (f)

ϕB

G(f)

commutes for every f ∈ Hom(A,B). Furthermore, if for every A ∈ ObC ϕA

is an isomorphism, then we say that F and G are naturally isomorphic.



Chapter 1

Structure theorem for finitely

generated modules over a Principal

Ideal Domain

Before moving on to the general case of a module over a PID, we will

first consider the special case of abelian groups.

1.1 Structure theorem for finitely generated abelian

groups

The concepts of abelian group and Z-module are the same.

Definition 1.1.1. A ring R is said to be noetherian if every ideal of R

is finitely generated.

Example 1.1.2. • By definition a PID (and so a euclidean domain) is a

noetherian ring;

• If R is a noetherian ring then so is the polynomial ring R[x], in-

7
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1. Structure theorem for finitely generated modules over a Principal Ideal

Domain

deed: let I be an infinitely generated ideal in R[x] and take a se-

quence (pn)n∈Z>0
∈ I with the property that fn is of smallest degree

in I \ (p1, . . . , pn−1). Moreover, we define dn := deg(pn) (notice that

(dn)n∈Z>0
is an increasing sequence) and (an)n∈Z>0

∈ R where an is the

leading coefficient of pn. Let In := (a1, . . . , an−1), since the sequence

(In)n∈Z>0
is ascending, I∞ :=

∞⋃
n=1

In is an ideal. Since R is noetherian,

I∞ is finitely generated with generators all belonging to Im for some

m. Thus I∞ = Im and in particular am ∈ Im. Therefore, we have

am = a1b1 + · · · + am−1bm−1 for some b1, . . . , bm−1 in R. Now define

q := pm−
m−1∑
i=1

bix
dm−dipi ∈ I \ (p1, . . . , pm−1), then deg(q) < dm, which

is a contradiction;

• Let K be a field, then the ring Rn := K[X1, . . . , Xn], is a noetherian

ring, indeed, since Rn
∼= K[X1, . . . , Xn−1][Xn] =: Rn−1[Xn] we can

conclude by induction on n (for n = 1, R1 is a PID); moreover for

every n > 1 Rn is not a PID;

• Let K be a number field, then the set OK := {x ∈ K | there exists

p ∈ Z[X] such that p(x) = 0 and p is monic} (the set of algebraic

integers over the field K) is not a noetherian ring, indeed the ideal

(
√
2, 3
√
2, 4
√
2, . . . ) is not finitely generated, othewise

√
2, 3
√
2, 4
√
2, . . .

should all be in a finite field extension of Q.

Definition 1.1.3. Let R be a commutative ring. We say that an R-module

is noetherian if each of its submodules is finitely generated.

Theorem 1.1.4. Let R be a noetherian ring, then every finitely generated

R-module is noetherian.
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Proof. For the moment, let us assume that the statement holds for the

free module Rn, for every n and let M be an R-module generated by n

generators. Then there exists a surjective morphism f : Rn ↠ M ; let N

be a submodule of M , then there exists a submodule A of Rn such that

f(A) = N , and since A is finitely generated, also N is finitely generated.

We now need to prove the statement for every free module Rn; we will argue

by induction on n:

• the case n = 1 is clearly true since the ideals of R are precisely its

submodules and they are finitely generated since R is noetherian;

• let us suppose, by induction, that every submodule of Rn−1 is finitely

generated. We know that Rn ∼= R⊕Rn−1 (here we identify R and Rn−1

as submodules of Rn), then let us define π1 as the projection onto the

first summand. Let us consider a submodule A of Rn and a set of

generators {ak}k∈I for A (where I is a generic set of indeces). Then,

since R is noetherian, the ideal generated by {π1(ak)}k∈I ⊂ R is finitely

generated, hence there exist r1, . . . , rm ∈ R such that (r1, . . . , rm) =

(π1(ak), k ∈ I). For each ri we can choose an element bi in π−1
1 (ri) ∩

A; in this way for every element a in A, there exist α1, . . . , αm ∈
A such that a −

m∑
i=1

αibi ∈ ker(π1) ∩ A. Finally, by induction, since

ker(π1) ∼= Rn−1, ker(π1)∩A has to be finitely generated; therefore, let

{bm+1, . . . , bm+h} be a set of generators for ker(π1) ∩ A, we have that

A is generated by {b1, . . . , bm+h}.

Remark 1.1.5. The main idea in the proof of Theorem 1.1.4 can be gener-
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Domain

alized to prove that if the module M has a submodule N such that N and

M/N are noetherian, then M is noetherian.

Theorem 1.1.6. Let A ∈ Mn×m(R) where R is an euclidean domain with

euclidean valuation function δ. Then there exist Q ∈ GLn(R), P ∈ GLm(R)

such that A = QAP−1 is a diagonal matrix:


d1

d2
. . .

dk


0


for some k ∈ N, where for every i ≤ k, di ̸= 0 and d1 | d2 | . . . | dk, and

0 ∈M(n−k)×(m−k)(R).

Proof. Our goal is to use elementary operations (like in the Gaussian eli-

mination) in order to reduce the matrix A to the simpler form:

(
d1 0

0 B

)
,

where d1 divides every element of B. Then we will proceed by induction on

n. The procedure is divided into three steps:

1. We move one minimal (in the sense of δ) element of A in the first entry;

2. We choose a nonzero element ai1 in the first column with i ̸= 1 (if any);

then there exist r, q ∈ R with ai1 = a11q+ r and r = 0∨ δ(r) < δ(a11),

then we replace the ith row with the difference between it and q times

the first row; at this point ai1 = r. Therefore, if r ̸= 0 we can apply

step (1) and move r to a11.
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Now, there can be a nonzero element a1j such that δ(a1j) < δ(a11), so by

repeating (1) and (2) (and its analogous for the first row) a finite number

of times we can suppose that a11 is the only nonzero element in the first

row/column; but it may happen that a11 does not divide every other element

of the matrix.

3. Now, if aij isn’t divided by a11 for some i, j ≥ 2, we can sum the jth

column of the matrix to the first; then ai1 = aij for i > 1, therefore we

can reiterate the steps (2) and (1) which will produce a smaller element

in a11.

After a finite number of steps, we arrive to a matrix of the desired form.

The matrix A in the previous theorem is said to be the Smith normal

form (SNF) of the matrix A.

Definition 1.1.7. Let M be a finitely generated free R-module of rank n

and let W be any submodule of M of rank m. If v1, . . . , vn is a basis of M
and d1, . . . , dm ∈ R\{0} are such that d1v1, . . . , dmvm is a basis of W , then

we call such a pair of bases of M and W aligned.

Definition 1.1.8. Let R be a PID and M a finitely generated R-module;

let B ∈ Mn×m(R), we say that B is a presentation matrix of M (or

equivalently, that B presents M) if there exists ϕ : Rn → M, a surjective

homomorphism, such that ker(ϕ) is generated by the columns of B.

Example 1.1.9. 1.


−2 0 0

0 3 0

0 0 0

0 0 4

 presents Z/2⊕ Z/3⊕ Z⊕ Z/4;
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2. Z is presented by


1 −1

1 0

1 2

 with ϕ : Z3 → Z, ϕ(x, y, z) := z+2x−3y.

Remark 1.1.10. From the First Isomorphism Theorem follows M ∼= Rn/BRm.

Now, we want to show that for modules over PIDs any presentation

matrix can be equivalently replaced by a diagonal one. For that purpose

we need two kinds of transformation of the presentation matrix: replacing

relations (null linear combinations) with equivalent ones and change of basis.

Proposition 1.1.11. Let A be an m × n presentation matrix of the R-

module M. If one of the following holds:

1. A = QAP−1, where Q ∈ GLm(R) and P ∈ GLn(R);

2. A is obtained from A deleting a zero column;

3. the j-th column of A is ei and A is obtained from A deleting the j-th

column and the i-th row;

then A and A present the same module.

Proof. 1. A is obtained from A through a change of basis in Rm and

Rn and this does not change the isomorphism class of the quotient

Rm/ARn.

2. A zero column corresponds to the equation 0v1 + · · ·+ 0vn = 0 which

is trivial and can be omitted.

3. If the j-th column of A is ei, then we have the equation vi = 0. Hence

we can remove vi from the set of generators. This operation corresponds
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to the elimination of the i-th row. Finally, we end up with the j-th

column being null, so we can remove it.

Notice that in particular, 1.1.11 and 1.1.6 imply that we can consistently

diagonalise a presentation matrix in such a way it still presents the same

module (eventually respect to another set of generators).

Theorem 1.1.12. Let G be a free abelian group with rkG = n and let S ≤
G. Then there exists a pair of aligned bases v1, . . . , vn and d1v1, . . . , dmvm
respectively of G and S, such that d1 | d2 | . . . | dm.

Proof. We start considering a basis B = {v1, . . . , vn} of G and a set {u1, . . .
, um} of generators for S (notice that this set can be taken with finitely

many elements because of 1.1.4). Now we have a matrix A which presents

S and by Theorem 1.1.6 we can reduce it to a diagonal matrix A, which

presents S respect to a new basis B′ = {v′1, . . . , v′n} of G and a new set of

generators {u′1, . . . , u′m} for S such that for every i ≤ min(m,n), u′i = div
′
i,

for some d1, . . . , dmin(n,m) ∈ Z∗. Now, it could be m > n, but since A is

diagonal there would be at least m − n zero columns and we can remove

them (they correspond to the equations u′k = 0). Finally, we must prove

that B′ is linearly independent: let us take a generic linear combination

0 = a1u
′
1+· · ·+amu′m = a1d1v

′
1+· · ·+amdmv′m, then a1d1 = · · · = amdm = 0

and since for every i ≤ n, di ̸= 0, it has to be a1 = · · · = am = 0.

Remark 1.1.13. In the proof, we used the convention Span{∅} = {0}.

Theorem 1.1.14 (Structure Theorem for finitely generated abelian groups).

Let G be a finitely generated abelian group. Then G is the direct sum of
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Domain

Figure 1.1: On the left, a pair of aligned bases, the given matrix is

(
−2 0

0 1

)
; on the

right, two non-aligned bases, the given matrix is

(
1 1

0 −2

)
.

finite cyclic subgroups Cd1 ⊕ · · · ⊕ Cdk (where di is the order of Cdi) and a

free abelian group L:

V = Cd1 ⊕ · · · ⊕ Cdk ⊕ L (1.1)

Moreover for every i ≤ k, di > 1 and d1 | d2 | . . . | dk.

Proof. Since Z is a noetherian ring and G is a finitely generated module

over Z, for every set of generators and for every set of relations there exists

a presentation matrix that can be reduced to a diagonal matrix:

A :=



d1

d2
. . .

dk

0


∈ Zn×k (1.2)
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where for every i ≤ k, di > 1 and d1 | d2 | . . . | dk.

Therefore A gives us the following:

d1v1 = 0 , d2v2 = 0 , . . . , dkvk = 0 (1.3)

for some v1, . . . , vn generators of G. Since A is a presentation matrix for G,

every relation between v1, . . . , vn must be a linear combination of relations

(1.3) and this implies that vk+1, . . . , vn are not involved in any such rela-

tion. Therefore, the submodule generated by vk+1, . . . , vn has to be free of

dimension n− k; let us denote it by L.

Let us denote by Ci the subgroup generated by vi, for every i ≤ k; we

want to show that G = C1 ⊕ · · · ⊕ Ck ⊕ L and that di is the order of Ci ,

for every i. It is clear that G = (C1 + · · · + Ck) ⊕ L; moreover, for every

j ≤ k, Cj has clearly order dj, indeed since djvj = 0, we have |Cj| ≤ dj,

but if |Cj| < dj, there would be an integer d′j < dj such that d′jvj = 0 and

this can not be a linear combination of (1.3). Let us take a generic relation

a1v1 + · · · + anvk = 0, then this relation must be a linear combination of

the columns of A, therefore for every j ≤ k , dj | aj and so the relation

a1v1 + · · ·+ anvk = 0 is trivial.

Example 1.1.15. Let us suppose (Q,+) is finitely generated. Due to The-

orem 1.1.14, there exist m,n ≥ 0 and d1| . . . |dm with di > 1 such that

Q ∼= Cd1 ⊕ · · · ⊕ Cdm ⊕ Zn. If m ≥ 1, then there exists x ∈ Q∗, such that

d1x = 0 and this is impossible impossible because Q is a domain. Thus we

get m = 0 and Q ∼= Zn. If n ≥ 2, then there exist x, y ∈ Q∗ which are

linearly independent over Z. But if x = p/q and y = r/s, with p, q, r, s ∈ Z,

we have (qr)x+(−sp)y = 0, which is a contradiction. So Q must be cyclic.
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Let us suppose that it is generated by a/b with a, b ∈ Z, b > 1. Then b+ 1

can not be written as ka/b for some k ∈ Z, and again we get a contradiction.

Remark 1.1.16. Using the Chinese Reminder Theorem (CRT) we can go

further and split every Cdi in a direct sum of prime-power order cyclic sub-

groups Cdi
∼= C

p
k1
i,1
⊕ · · · ⊕ C

p
kmi
i,mi

.

Theorem 1.1.17 (Uniqueness of cyclic decompositions). Let G be a finite

abelian group.

a) If G ∼= Cd1 ⊕ · · · ⊕Cdk
∼= Cd′1

⊕ · · · ⊕Cd′
k′

with di, d′j > 1, di | di+1 and

d′j | d′j+1 for every i < k, for every j < k′, then k = k′ and for every

i ≤ k , di = d′i. Cd1, . . . , Cdk are called invariant factors of G.

b) The same result holds for the prime-power order cyclic groups decom-

position; the orders of such groups are called elementary divisors of

G.

Proof. We will show only part (a) of the proof: let f be an automorphism

of G and let v1, . . . , vk, v′1, . . . , v′k′ be the generators respectively of the two

decompositions of G, then f(dk′vk) = dk′(a1v
′
1 + · · · + ak′v

′
k′) = 0 ⇐⇒

dk′vk = 0 ⇒ dk | dk′. Similarly dk′ | dk, therefore dk′ = dk. Finally, we can

conclude by induction considering the quotient group G/Cdk .

Remark 1.1.18. If G is a finite abelian p-group of order pn then G ∼= Cpn1 ⊕
· · · ⊕ Cpnk with n1 + · · ·+ nk = n, and G is determined up to isomorphism

by the exponents n1, . . . , nk, ignoring their order. Therefore the number

of abelian groups of order n = pk11 · . . . · pkll , up to isomorphisms, equals

the product of the numbers of ways ki can be written as a sum of positive

integers (ignoring their order).



1.2 Structure theorem for finitely generated modules over a Principal Ideal
Domain 17

Remark 1.1.19 (Reverse Lagrange Theorem). If G is a finite abelian group

of order n, for every k ∈ N, such that k |n then there exists H ≤ G of order

k.

1.2 Structure theorem for finitely generated modules

over a Principal Ideal Domain

Theorem 1.2.1. Let A be a PID. Every finitely generated A-module has the

form F
⊕

T where F is a finite free A-module and T is a finitely generated

torsion A-module. Moreover, there exist a1, . . . , am ∈ A∗ such that T ∼=⊕m
j=1A/(aj) and a1 | a2 | . . . | am.

We will provide two different proofs of Theorem 1.2.1.

The first is based on the existence of a pair of aligned bases for a finite free

module and one of its submodules in a very similar way as for finite free

abelian groups.

Definition 1.2.2. Let A be a ring and M an A-module. Then we define

the dual module of M as M∨ := HomA(M,A), where for every f, g ∈
HomA(M,A), (f + g)(m) := f(m) + g(m) for every m ∈ M and (a ∗
f)(m) := af(m).

Notice that if ϕ ∈ M∨ and M ′ is a submodule of M , then ϕ(M ′) is a

submodule of A, that is, it is an ideal of A.

Theorem 1.2.3. Let A be a PID, then every pair consisting of a finite free

A-module M and a submodule M ′ of M admits a pair of aligned bases.

Proof. We divide the proof into five steps:
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1. S := {ϕ(M ′), ϕ ∈ M∨} is not zero and has a maximal (respect to

inclusion) member (a1) = ψ(M ′);

2. for all ϕ ∈M∨, a1 |ϕ(v′), where v′ ∈M ′ is such that ψ(v′) = a1;

3. there exists an element e1 ∈M such that ψ(e1) = 1;

4. M = Ae1⊕ ker(ψ) and M ′ = Aa1e1 ⊕ (M ′ ∩ ker(ψ)).

Finally, since ker(ψ) is free and M ′ ∩ ker(ψ) is a submodule of ker(ψ) we

will conclude by induction on the cardinality of the basis.

LetB = {v1, . . . , vn} be a basis ofM , then since ann(M ′) ̸= {0} there exists

an element in the dual basis B∨ of B, say v∨i , which is not identically zero

on M ′, so S ̸= {0}; A is a PID then every nonzero ideal of A is contained

only in finitely many ideals of A (indeed, up to unit multiples, every element

of A has only a finite number of divisors) therefore S contains a maximal

element with respect to inclusion (a1) = ψ(M ′). Let v′ be an element of

M ′ such that ψ(v′) = a1; let us take the ideal (a1, ϕ(v′)) for some ϕ ∈M∨,

then since A is a PID (a1, ϕ(v
′)) = (b) for some b ∈ A and in particular

there exist x, y ∈ A such that xa1 + yϕ(v′) = b, but ψ(v′) = a1 therefore

b = (xψ + yϕ)(v′); this implies that (a1) ⊆ (b) ⊆ (xψ + yϕ)(M ′) hence, by

the maximality of (a1), (a1) = (b) = (xψ + yϕ)(M ′), so ϕ(v′) ∈ (a1).

Now, suppose we have v′ = c1v1 + · · · + cnvn, then a1|ci for every i ≤ n,

indeed ci = v∨i (v
′), therefore there exist b1, . . . , bn ∈ A such that v′ =

a1(b1v1 + · · ·+ bnvn); we define e1 := b1v1 + · · ·+ bnvn, hence v′ = a1e1. It

is easy to see that ψ(e1) = 1: a1 = ψ(v′) = ψ(a1e1) = a1ψ(e1), and since

a1 ̸= 0, ψ(e1) = 1.

For each v ∈ M we have v − ψ(v)e1 ∈ ker(ψ), moreover ψ(αe1) = α, thus
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Ae1∩ ker(ψ) = {0} and therefore M = Ae1⊕ ker(ψ); moreover for every

v ∈ M ′, there exist bv ∈ A such that a1bv = ψ(v), hence v − bvv
′ ∈ M ′∩

ker(ψ) and since v′ = a1e1 we get M ′ = Aa1e1 ⊕ (M ′ ∩ ker(ψ)).

Remark 1.2.4. Under the hypoteses of Theorem 1.2.3 we can rearrange

a1, . . . , an in such a way that a1 | a2 | . . . | an; let us see how: if we set

ϕ = e∨1 + e∨2 then a1 = ϕ(v′) ∈ ϕ(M ′), so (a1) ⊆ ϕ(M ′), thus by the maxi-

mality of (a1), (a1) = ϕ(M ′). Then a2 = ϕ(a2e2) ∈ ϕ(M ′) = (a1), so a1 | a2;
finally by induction we obtain a1 | a2 | . . . | an.

Now we are ready to give the first proof of the structure theorem:

First proof of Theorem 1.2.1. LetM be a finitely generated A-module, with

generators x1, . . . , xn. Define f : An ↠ M by f(ei) = xi; f is a surjective

linear map therefore M is isomorphic to the quotient An/ker(f). Now,

using a pair of aligned bases as in Theorem 1.2.3 and Remark 1.2.4 for An

and ker(f), we can write An =
⊕n

i=1Avi and ker(f) =
⊕m

i=1Aaivi for some

m ≤ n and a1, . . . , am ∈ A∗, with a1 | a2 | . . . | am. Thus, M ∼= An/ker(f) ∼=
(
⊕m

j=1A/(aj))⊕ An−m.

Definition 1.2.5. Let A be a PID, a1, a2 ∈ A∗; we say that d ∈ A is a

greatest common divisor of a1 and a2, and write d = gcd(a1, a2), if:

• d | a1, d | a2;

• for every d′ ∈ A∗ such that d′ | a1 and d′ | a2, d′ | d.

Remark 1.2.6. • The notation d = gcd(a1, a2) is an abuse. Indeed the

greatest common divisor is unique up to unit (i.e. an invertible element)

multiplication.
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• For every element a ∈ A: gcd(a, 0) = a.

• (Bézout’s lemma) Let A be a PID, then for every a, b ∈ A, (a, b) =

(gcd(a, b)).

Lemma 1.2.7. Let A be a PID and let r1, . . . , rn, n ≥ 2, be relatively prime

elements of A. Then there is a matrix B ∈ GLn(A) which has (r1 . . . rn)

as its first row.

Proof. The case n = 2 is trivial: gcd(r1, r2) = 1, so there exist u, v ∈ A such

that ur1 − vr2 = 1 then we can just set B =

(
r1 r2

v u

)
and we are done.

Let d := gcd(r2, . . . , rn), then there exist p2, . . . , pn ∈ A, relatively prime,

such that for every i ≥ 2, ri = dpi; by induction on n, there exist B0 ∈
GLn−1(A) with (p2, . . . , pn) as its first row. Since r1, . . . , rn are relatively

prime, also r1 and d are relatively prime, therefore there exist u, v ∈ A such

that ur1 − vd =det(B0)
−1. Now, let us consider the matrices B′

0, obtained

from B0 multiplying the first row by u, and

B :=



r1 r2 . . . rn

v

B′
0

0
...

0


=



r1 dp2 . . . dpn

v (
u

In−2

)
B0

0
...

0


;

thus we have det(B) = r1udetB0 − vddetB0 = (r1u− vd)detB0 = 1.

Lemma 1.2.8. Let A be a PID, let r1, . . . , rn be relatively prime elements

of A, and let M be a finitely generated A-module. If {x1, . . . , xn} is a set

of generators for M , then there is also a set of generators {y1, . . . , yn} for

M such that y1 = r1x1 + · · ·+ rnxn.
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Proof. By the Lemma 1.2.7 we know that there exists B ∈ GLn(A) such

that (r1 . . . rn) is its first row; then let us consider the image (y1 . . . yn) of

(x1 . . . xn) by B. Then every xi is a linear combination of y1, . . . , yn (so it is

a system of generators for M) and in particular y1 = r1x1 + · · ·+ rnxn.

Remark 1.2.9. Let A be a PID and M be an A-module; let f : A → M ,

f(a) := ax, where we have fixed x ∈ M . Then Im(f) = Ax and ker(f) =

ann(x) =: (ā), so Ax ∼= A/(ā).

Definition 1.2.10. Let A be a PID. We say that two elements a, b ∈ A are

associate if there exists a unit u ∈ A such that b = ua.

Second proof of Theorem 1.2.1. Let us suppose that M is generated by n

but not by n − 1 generators; the case n = 1 is trivial, so let us suppose

n ≥ 2. Then we can choose a set of generators {x1, . . . , xn} in such a way

that the annihilator of x1 is generated by an element d with a minimal

number of prime factors (counted with multiplicity); our goal is to show

that M = (Ax1)⊕ (Ax2 + · · ·+Axn) and then proceed by induction on n.

Let us take a generic relation r1x1 + · · ·+ rnxn = 0 and set g := gcd(r1, d),

then there exist u, v ∈ A such that ur1 + vd = g, thus we have gx1 +

ur2x2 + · · · + urnxn = 0; let us consider γ := gcd(g, ur2, . . . , urn) hence

by Lemma 1.2.8 we can take a new set of generators y1, . . . , yn such that

y1 = (g/γ)x1 + · · · + (urn/γ)xn (the case γ = 0 is trivial, indeed γ = 0

implies g = ur2 = · · · = urn = 0, so r1 = d = 0). So γy1 = 0; since the pair

(x1, d) is minimal, γ can not have less prime factors than d, but γ divides

g which divides d therefore d and γ have the same number of prime factors

i.e. they are associate, moreover γ divides r1 hence also d divides r1. Thus
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in every relation r1x1 + · · ·+ rnxn = 0 it is necessary r1x1 = 0.

Finally, Ax2 + · · · + Axn is generated by n − 1 but not by n − 2 elements

(otherwise M would be generated by n− 1 elements) so we can conclude by

induction on n. It is clear that using the CRT and Remark 1.2.9 we obtain

the final result M ∼= (
⊕m

j=1A/(aj))⊕ An−m with a1 | . . . | am.

Remark 1.2.11. We point out that in the decomposition M = F
⊕

T , where

F is a finite free submodule and T is a torsion submodule, F is not uniquely

determined; instead, T is unique: indeed, T is the set of all torsion elements

in M , indeed let us consider v = af + bt, where f ∈ F , t ∈ T and a, b ∈ A;

then for every c ∈ A∗ the condition cv = 0 implies caf = 0, but caf = 0 if

and only if a = 0 since f is not a torsion element.

Theorem 1.2.12. Let A be a PID and let a1, . . . , an, b1, . . . , bm ∈ A such

that A/(a1) ⊕ · · · ⊕ A/(an) ∼= A/(b1) ⊕ · · · ⊕ A/(bm) with a1 | . . . | an and

b1 | . . . | bm, then n = m and for every i ≤ n, ai and bi are associate.

Proof. Let {x1, . . . , xn} and {y1, . . . , ym} be two set of generators such that

for every i ≤ n , ann(xi) = (ai), and for every i ≤ m, ann(yi) = (bi). Then

there exist c1, . . . , cn ∈ A such that ym = c1x1 + · · · + cnxn, hence anym =

anc1x1 + · · · + ancnxn = 0, that is, an and bm are respectively elements

of ann(ym) and ann(xn). Thus an and bm are associate and in particular

A/(an) = A/(bm). Then we conclude by induction on the quotient A/(a1)⊕
· · · ⊕ A/(an−1) ∼= (A/(a1) ⊕ · · · ⊕ A/(an))/(A/(an)) ∼= (A/(b1) ⊕ · · · ⊕
A/(bm))/(A/(bm)) ∼= A/(b1)⊕ · · · ⊕ A/(bm−1).

Remark 1.2.13. Due to Theorem 1.2.12, as in the case of finitely generated

abelian groups, we can define the invariant factors of a finitely generated
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module over a PID and its elementary divisors.

An interesting application of the structure theorem is the classification

of the linear operators of a vector space. Let V be a finite dimensional K-

vector space and T ∈ End(V ). We can think of V as a K[x]-module, where

the multiplication by a polynomial is defined as f ∗ v := f(T )(v) (notice

that f ∗ T (v) = fx ∗ v = xf ∗ v = T (f ∗ v)). Since V has finite dimension

as a K-vector space, by Cayley-Hamilton Theorem every operator is a root

of its characteristic polynomial. Hence, V is a torsion finitely generated

K[x]-module (notice that if v is an eigenvector of T with eigenvalue λ, then

(x − λ) ∗ v = 0). Now, using the structure theorem, we can decompose

V into the sum of its invariant factors: V ∼= K[x]/(s1) ⊕ · · · ⊕ K[x]/(sm)

with s1 | s2 | . . . | sm (moreover, we can choose the representative si with

leading coefficient (−1)degsi). Each summand K[x]/(si) is cyclic, therefore

there exist v1, . . . , vm ∈ V such that for every i ≤ m, K[x]vi ∼= K[x]/(si)

and V =
m⊕
i=1

K[x]vi. In this case, (si) = {f ∈ K[x]| f ∗ vi = 0}. Moreover,

every summand is a T -invariant K-vector space of dimension degsi, since

T (v) = x ∗ v.
Now, picking bases Bi for each Vi yields a basis B of V in which the matrix

MB(T ) is block-diagonal. Let us denote every MBi
(T|Vi

) by Mi. Notice

that for every i ≤ m, vi, x ∗ vi, . . . , xdimVi−1 ∗ vi is a basis of Vi. Indeed,

it is clearly a generating set, moreover if there exist α0, . . . , αdimVi−1 ∈ K
such that 0 = α0vi + · · · + αdimVi−1x

dimVi−1 ∗ vi, then 0 = (α0 + α1x +

· · · + αdimVi−1x
dimVi−1) ∗ vi =: q ∗ vi. But degq <degsi, hence it has to

be q = 0, that is α0 = · · · = αdimVi−1 = 0. Thus, we can choose Bi :=

{vi, x ∗ vi, . . . , xdimVi−1 ∗ vi}.
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With these choices of Bi, the matrices Mi take the form:

0 0 · · · 0 −α(i)
0

1 0 · · · 0 −α(i)
1

0 1 . . . ... ...
... . . . . . . 0

...

0 · · · 0 1 −α(i)
degsi−1


where α(i)

0 + α
(i)
1 x + · · · + α

(i)
degsi−1x

degsi−1 + xdegsi = (−1)degsisi (Mi is said

to be the companion matrix of si, indeed its characteristic polynomial is

precisely si).

The resulting form of MB(T ) is
M1 0 · · · 0

0 M2
. . . ...

... . . . . . . 0

0 · · · 0 Mm

 ,

and it is called the Rational Canonical Form (or Frobenius Normal

Form) of the endomorphism T .

Using the same module structure on V , we can proceed analogously by

decomposing V with the elementary divisor decomposition. In this case,

we have V ∼= K[x]/(pk11 ) ⊕ · · · ⊕ K[x]/(pknn ), where p1, . . . , pn ∈ K[x] are

irreducible (as before we can suppose the leading coefficient of pi to be

(−1)degpi). As above there exist v1, . . . , vn ∈ V such that for every i ≤ n,

Vi := K[x]vi ∼= K[x]/(pkii ) and every Vi is T -invariant. Let di :=degpi, for

every i ≤ n, then consider Bi := {(xjpli) ∗ vi}0≤j<di,0≤l<ki. Bi is clearly a

generating set since for every 0 ≤ d < diki there is exactly one polynomial
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of degree d in Bi. Moreover, as above, Bi is clearly linear independent, thus

it is a basis. Notice that x(xdi−1pli) = pl+1
i − (a0+ a1x+ · · ·+ adi−1x

di−1)pli,

hence T ((xdi−1pli) ∗ vi) = (pl+1
i − (a0 + a1x+ · · ·+ adi−1x

di−1)pli) ∗ vi and in

particular T ((xdi−1pki−1
i ) ∗ vi) = −((a0 + a1x+ · · ·+ adi−1x

di−1)pki−1
i ) ∗ vi,

where a0 + a1x+ · · ·+ adi−1x
di−1 + xdi = (−1)dipi. Therefore, we can write

MB(T ) as a block-diagonal matrix, with blocks of the form

Di 0 · · · · · · 0

Yi Di 0 · · · ...

0 Yi Di
. . . ...

... . . . . . . . . . 0

0 · · · 0 Yi Di


∈Mdiki×diki(K),

where Di is the companion matrix of the polynomial pi and Yi = e1e
⊤
di

∈
Mdi×di(K). Finally, if K is algebraically closed, then for every i ≤ n, pi(x) =

λi − x for some λi ∈ K. Hence, for every i ≤ n, Di = λi and Yi = 1. Thus,

each block is of the form

λi 0 · · · · · · 0

1 λi 0 · · · ...

0 1 λi
. . . ...

... . . . . . . . . . 0

0 · · · 0 1 λi


∈Mki×ki(K).

This form of the matrix MB(T ) is called the Jordan Canonical Form of

T .





Chapter 2

The Jordan-Hölder theorem

The name Jordan-Hölder theorem usually refers to a wide class of

uniqueness results in abstract algebra and category theory concerning max-

imal chains of subobjects; they are very useful theorems because they relate

the structure of an object to that of simpler ones and serves as a kind of

unique factorization theorem. In this chapter, we will focus on represen-

tations of algebras and modules and we will state the theorem for these

structures.

Definition 2.0.1. Let K be a field, we define a K-algebra A as a K-vector

space endowed with a bilinear binary map · : A×A→ A. We say that A is

associative (respectively commutative and unitary) if · is associative

(respectively commutative and unitary). If A and A′ are two K-algebras, we

define a homomorphism of K-algebras from A to A′ as a map p : A→ A′

such that p is a linear map and for every a, b ∈ A, p(ab) = p(a)p(b).

Remark 2.0.2. An associative algebra is both a vector space and a ring.

Example 2.0.3. • Every field K is a K-algebra.

27
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• K[x] is an infinite dimensional K-algebra.

• R3 equipped with the vector product × form a non-associative, anti-

commutative R-algebra.

• The space Mn(K) of all n× n matrices with coefficients in a field K is

an associative, non-commutative algebra (so we can also consider the

corresponding structure on End(V ), where V is a finite-dimensional

K-vector space).

• The set of self-adjoint matrices over a field with the product A · B :=
1
2(AB +BA) is a non-associative algebra.

• If G is a group, we can consider the vector space KG := {
∑

g∈I agg

such that I ⊆ G, |I| <∞ and for every g ∈ I, ag ∈ K} endowed with

the product induced by the product law in G, then KG is an associative

unitary algebra over K called the group algebra of G.

• Let Q := (V,A) be a quiver (where V is the set of vertices and A the set

of arrows) and let us consider the set of paths PQ := {a1 . . . an |n ∈ N
and s(ai) = t(ai+1) , ai ∈ A ∪ V , for every 1 ≤ i < n}; here t is the

“target” map i.e. t(a) is the vertex pointed by a and s is the “start”

map i.e. s is the map which associates a with its starting vertex; then

the vector space KQ := {
∑

i≤n αivi | n ∈ N, αi ∈ K, vi ∈ PQ for every

i ≤ n} endowed with the vector product induced by the following
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product law in PQ:

p · q :=



p , if s(p) = q

q , if p = t(q)

pq , if s(p) = t(q)

0 , otherwise

∀p, q ∈ PQ;

in this way KQ is a K-algebra called the path algebra of Q over K, in

particular if |V | < ∞ then KQ is unitary, indeed the element
∑

p∈V p

is the multiplicative identity element.

• Let L be the 1-loop quiver:

then we have KL ∼= K[T ].

Throughout this chapter K will be a field and, unless specified, A will be

an associative and unitary K-algebra.

Definition 2.0.4. Let V be a K-vector space and ρ : A → End(V ) a

homomorphism of algebras, then we say that (V, ρ) is a representation of

A.

Example 2.0.5. • IfA = K, then every K-vector space V , with ρ(λ)(v) :=

λv, λ ∈ K, v ∈ V , is a representation of A;

• every algebra A has the trivial representations (V = 0, ρ = 0) and

(V = A, ρ(a)(v) := av);

• let us consider the algebra RS1: then define ρ : RS1 → End(R2),

ρ(eiθ) :=

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
, then (R2, ρ) is a representation for RS1.
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We will usually write V instead of (V, ρ) to denote the representation.

Definition 2.0.6. Let V be a nonzero representation of A; a subspace U ⊂
V which is invariant under the action of ρ(a), for every a ∈ A, is said to

be a subrepresentation of V . Moreover, we say that V is irreducible

(or simple) if its only subrepresentations are the trivial one and V itself.

Example 2.0.7. • Let us denote by C2 := {e, g}, the cyclic group of order

2 and let ρ : KC2 → End(K), ρ(α0e + α1g)(λ) := (α0 + α1)λ, for

α0, α1, λ ∈ K; then (K, ρ) is an irreducible representation of KC2.

• Let us consider the quiver Q:

and define ρ : KQ→M3(K) over the generator set {X, Y, Z, α, β, γ}:

– ρ(X) := e1e
T
1 ;

– ρ(Y ) := e2e
T
2 ;

– ρ(Z) := e3e
T
3 ;

– ρ(α) := e2e
T
1 ;

– ρ(β) := e3e
T
2 ;

– ρ(γ) := e1e
T
3 ;

then (K3,M−1
C ◦ ρ) is an irreducible representation of KQ. Indeed, let

U be a subrepresentation of Q and let 0 ̸= v ∈ U . Then it must be

either ρ(X)v ̸= 0 or ρ(Y )v ̸= 0 or ρ(Z)v ̸= 0, that is, either e1 ∈ U or

e2 ∈ U or e3 ∈ U . Without loss of generality, let us suppose e1 ∈ U .

Then, we have e2 = ρ(α)e1 ∈ U and e3 = ρ(β)e2 ∈ U , that is, U = K3.

Remark 2.0.8. If (V, ρ) is a representation of A, then V is equivalently a left

A-module. Indeed the action of A on V is defined as follows: for a ∈ A,
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a∗ v := ρ(a)(v). Vice versa we can induce naturally a structure of K-vector

space on V defining: λ ∗ v := (λe) ∗ v, for every λ ∈ K, for every v ∈ V ,

where e is some fixed element in A; moreover we can define ρ : A→ End(V ),

ρ(a)(v) := a ∗ v, for every a ∈ A, v ∈ V . Finally (V, ρ) is a representation

of A.

Definition 2.0.9. Let V1, V2 be two representations of A and ϕ : V1 →
V2; we say that ϕ is a homomorphism of representations (or an

intertwining operator) if ϕ is linear and commutes with the action of

A, i.e. ϕ(a · v) = a · ϕ(v), for every a ∈ A, for every v ∈ V1.

Definition 2.0.10. Let V be a representation of A; we define a filtration

of V as a finite chain of subrepresentations 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V.

Moreover we call factors the successive quotients Vi+1/Vi, for every i < n.

Remark 2.0.11. • Let V be a representation of A and W ⊂ V be a

subrepresentation, then the quotient V/W is a representation of A;

indeed since W is closed under the action of ρ(α), for every α ∈ A,

the map [ρ] : A→ End(V/W ), [ρ](α)([v]) := [ρ(α)(v)], for α ∈ A and

v ∈ V , is well defined.

• Let us consider a filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V and the

filtration 0 = V1/V1 ⊂ V2/V1 ⊂ · · · ⊂ Vn/V1 = V/V1, then by the

Third Isomorphism Theorem they have the same factors (except for

V1).

We are interested in a particular kind of filtrations, i.e., those whose

factors are simple, but not all representations admit such filtrations. For

instance let us consider A = KZ, with the trivial representation V = KZ;
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suppose 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V is a filtration, then every Vi must be

of the form KdiZ, with di | di−1. Since V0 = 0 the only possible value for

d0 is 0. Notice that for every i > 1, Vi/Vi−1
∼= Kdi−1

di
Z, therefore if we want

the factors to be irreducible, it must be di−1 = dipi−1, where pi−1 is prime;

but in this case V1/V0 ∼= V1 ∼= Kp1 · . . . ·pnZ and for n > 1, p1 · . . . ·pn is not

prime. Hence A does not admit a finite filtration with irreducible factors.

Lemma 2.0.12. Any finite dimensional representation V of A admits a

finite filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V such that the successive

quotients Vi/Vi−1 are irreducible.

Proof. We proceed by induction on q :=dimV . The case q = 0 is triv-

ial; Let us take an irreducible subrepresentation V1 ⊆ V , and consider the

representation U := V/V1. Then by the induction hypothesis there exists

a filtration 0 = U0 ⊂ U1 ⊂ · · · ⊂ Un−1 = U of U such that for every

1 ≤ i ≤ n, Ui/Ui−1 is irreducible. Let us consider πU : V ↠ U the

canonical projection, then for all i ≥ 2 define Vi := π−1
U (Ui−1), in particu-

lar Vi+1/Vi ∼= (Vi+1/V1)/(Vi/V1) ∼= Ui/Ui−1 for all i = 1, . . . , n. Therefore

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V is a filtration of V with the desired

property.

Example 2.0.13. • If A = K and V is a representation of A of dimension

n, then ifB = {v1, . . . , vn} is a basis of V , 0 ⊂ ⟨v1⟩ ⊂ · · · ⊂ ⟨v1, . . . , vn⟩
is a filtration with irreducible factors.

Now we are ready to present the main theorem of this chapter:

Theorem 2.0.14 (Jordan-Hölder). Let V be a finite dimensional represen-

tation of A, and let 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V , 0 = V ′
0 ⊂ · · · ⊂
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V ′
m = V be filtrations of V , such that the representations Wi := Vi/Vi−1

and W ′
i := V ′

i /V
′
i−1 are irreducible for all i. Then n = m, and there ex-

ists a permutation σ ∈ Sn such that Wi is isomorphic to W ′
σ(i) for each

i = 1, . . . , n.

Proof. We will prove the theorem by induction on q :=dimV . If q = 0 then

the theorem is clearly true. Therefore let us suppose the theorem holds for

every representation of dimension k < q: by induction hypothesis if V1 = V ′
1

(as subspaces), then we can conclude considering the quotient filtration on

V/V1. So assume V1 ̸= V ′
1 . Since V1, V ′

1 are irreducible V1∩V ′
1 = 0, therefore

let U := V/(V1 ⊕ V ′
1). By Lemma 2.0.12 there exists 0 = U0 ⊂ U1 ⊂

· · · ⊂ Up = U a filtration of U with irreducible quotients Zi := Ui/Ui−1.

Moreover V/V1 has a filtration with successive quotients W1, Z1, . . . , Zp and

another filtration with successive quotients W2, . . . ,Wn, instead V/V ′
1 has

a filtration with successive quotients W ′
1, Z1, . . . , Zp and another filtration

with successive quotientsW ′
2, . . . ,W

′
n. Finally, we can conclude by induction

on these filtrations.

Example 2.0.15. Let Q be the quiver with one vertex and two loops:

with the path algebra KQ. Let us consider A,B ∈ Mn(K) and ρ : KQ →
End(Kn), ρ(αj1βk1 . . . αjmβkm) = Aj1Bk1 . . . AjmBkm, for m ∈ Z≥0, and

j1, . . . , jm, k1, . . . , km ∈ Z≥0 (we define ρ only on the set of paths PQ and

then extend it by linearity), so (Kn, ρ) is a representation of KQ; it is
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clear that every subspace of Kn is a subrepresentation of Kn if and only

if AW ⊆ W and BW ⊆ W . For example if K = R, n = 2, B = I2

and A =

(
0 −1

1 0

)
, then (R2, ρ) is irreducible; on the contrary, if K = R,

n = 3, B =


0 −1 0

1 0 0

0 0 3

 and A =


1 1 0

2 3 0

0 0 2

, then 0 ⊂ ⟨e1, e2⟩ ⊂ R3 and

0 ⊂ ⟨e3⟩ ⊂ R3 are two filtrations of (R3, ρ) with irreducible factors.

Now, taking into account Remark 2.0.8, we introduce some related defini-

tions that will enable us to reformulate Jordan-Hölder Theorem for modules.

Definition 2.0.16. Let M be an A-module, we say that M is irreducible

(or simple) if its only submodules are 0 and M .

If M is an irreducible A-module and m ∈M \{0}, then for every x ∈M

there exists a ∈ A such that x = a ·m; so, we will write M = (m).

Definition 2.0.17. Let M be an A-module, we call composition series

of length n a finite chain of submodules 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that for every i < n, Mi+1/Mi is irreducible.

Let M be an A-module, then, with the construction of Remark 2.0.8 in

mind, it is easy to see that there is a natural correspondence between the

submodules of M and its subrepresentations. In particular, every A-module

is irreducible if and only if it is irreducible as a representation of A and

that every composition series of M as on A-module is a filtration where the

factors are irreducible.
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Corollary 2.0.18 (Jordan-Hölder Theorem for modules). Let M be an

A-module, then for any two composition series 0 = M0 ⊂ M1 ⊂ · · · ⊂
Mn = M and 0 = M ′

0 ⊂ · · · ⊂ M ′
m = M : n = m and there exists a

permutation σ ∈ Sn such that Mi/Mi−1 is isomorphic to M ′
σ(i)/M

′
σ(i)−1 for

each i = 1, . . . , n.

Theorem 2.0.19 (Schur’s Lemma). Let V1, V2 be representations of A. Let

ϕ : V1 → V2 be a nonzero homomorphism of representations. Then:

1) if V1 is irreducible, ϕ is injective;

2) if V2 is irreducible, ϕ is surjective.

Thus, if both V1 and V2 are irreducible, ϕ is an isomorphism.

Proof. See [4, Theorem 3.33].

Remark 2.0.20. If A is a finite dimensional algebra, let M = (m) be a simple

A-module, then we can consider ϕ : A → M , ϕ(a) := a · m; by Theorem

2.0.19 ϕ is a surjective homomorphism of A-modules, hence M ∼= A/ker(ϕ).

Therefore completing the series ker(ϕ) ⊂ A to a composition series, by

Corollary 2.0.18 M is a factor of A, so A has only a finite number of irre-

ducible modules (and thus irreducible representations), up to isomorphisms.

As a consequence of Theorem 2.0.18 we can give a natural generalization

of the concept of vector space dimension which permits the extension of

some properties from linear algebra.

Definition 2.0.21. Let M be an A-module, then if there exists a finite

composition series, we set ℓ(M) as the length of the composition series;

otherwise, we set ℓ(M) := ∞. We call ℓ(M) the length of M .
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Remark 2.0.22. By induction on the length, it is easy to prove that every A-

module M with finite length is finitely generated, in particular, the module

can be generated by exactly ℓ(M) elements.

Finally, we state the Jordan-Hölder Theorem for Groups and some of its

applications. We recall that a simple group is a group with no non-trivial

normal subgroups.

Theorem 2.0.23 (Jordan-Hölder Theorem for Groups). Let G be a finite

group. Let 0 ◁ H1 ◁ · · · ◁ Hn = G and 0 ◁ K1 ◁ · · · ◁ Km = G be

two normal series of G such that Hi/Hi−1 and Kj/Kj−1 are simple, for

every i ≤ n, and j ≤ m. Then, n = m and there exists σ ∈ Sn such that

Hi/Hi−1
∼= Kσ(i)/Kσ(i)−1.

Proof. See [12, Theorem 5.12].

Definition 2.0.24. Let G be a group. We say that G is solvable if there

exists a subnormal series 0 ◁ K1 ◁ · · · ◁ Km ◁ G such that every quotient

Ki/Ki−1 is abelian.

Remark 2.0.25. Using Theorem 2.0.23 and Theorem 1.1.14 it is easy to

see that every finite solvable group is completely determined by its order:

indeed let 0 ◁ K1 ◁ · · · ◁ Km ◁ G be a subnormal series with abelian

factors, then by the structure theorem there exist p1, . . . , pk ∈ Z>0 primes

and n1, . . . , nk ∈ Z>0 such that G/Km
∼= Zp

n1
1
⊕ · · · ⊕ Zp

nk
k

; without loss

of generality we can suppose n1 > 0, so there exists a subgroup of G/Km,

say H/Km, such that H/Km
∼= Z

p
n1−1
1

⊕ · · · ⊕Zp
nk
k

. Such group H must be

a normal subgroup of G (since H/Km was normal in G/Km) and contains

Km as a normal subgroup, so we can extend our initial subnormal series
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to obtain 0 ◁ K1 ◁ · · · ◁ Km ◁ H ◁ G and in particular G/H ∼=
(G/Km)/(H/Km) ∼= Zp1, then we can conclude by induction on H, since

every subgroup of a solvable group is solvable.

Example 2.0.26 (Fundamental theorem of arithmetic). Applying the

Jordan-Hölder Theorem to finite cyclic groups we can prove the fundamental

theorem of arithmetic. Indeed, the only simple cyclic finite groups are Cp,

where p is a prime. Hence, since the quotient of a cyclic group is cyclic,

a decomposition series of Cn must have as factors {Cp1, . . . , Cpm} (with

multiplicities), where p1, . . . , pm are primes; these factors are unique by

Theorem 2.0.23. Finally, if p is a prime and p divides n, then |⟨[p]⟩| = n/p;

Therefore, Cn/⟨[p]⟩ ∼= Cp. Hence, Cp is a decomposition factor of Cn, that

is, we can uniquely write n as a product of primes (ignoring the order).

Example 2.0.27. Let D6 := ⟨r, s | r6 = s2 = (sr)2 = e⟩ be the 6th dihedral

group, then 0 ◁ ⟨r2⟩ ◁ ⟨r⟩ ◁ D6 and 0 ◁ ⟨r3⟩ ◁ ⟨r⟩ ◁ D6 are two

composition series for D6.

The composition factors and the length of a representation/A-module/

finite group are isomorphism invariants which can tell us a lot about the

structure of the algebra/module/group; however, they do not permit us to

completely classify them. For instance, let us take the finite groups D4 and

the quaternion groupQ8. They have the same composition factors (Z/2 with

multiplicity 3) but they are not isomorphic (Q8 does not have an element

of order 4).

Thus, a problem arising from the Jordan-Hölder theorem is the following: let

V and W be two simple representations of A, who are (up to isomorphism)

the representations M of A such that V is a subrepresentation of M and
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W ∼= M/V ? This problem is called the extension problem (it can be

equivalently rephrased for groups and modules) and it is a central, still open,

problem in modern abstract algebra.



Chapter 3

The Extension Problem

As we have mentioned at the end of Chapter 2, the Jordan-Hölder Theo-

rem is of great relevance in the theory of finite groups. Due to this theorem,

a finite group uniquely determines a family of simple groups, that is, its

composition factors. This provides motivation for the Hölder’s program:

1) Classify up to isomorphisms all finite simple groups.

2) For every two groups G and M , determine all groups E which contain

a normal subgroup isomorphic to M and such that the quotient group

E/M is isomorphic to G. This is the extension problem.

The first step has been officially completed in 2004, while the second is still

an open problem. The accomplishment of these two points would allow us

to completely classify all finite groups. Indeed, if G1, . . . , Gn is an ordered

family of simple groups, then, knowing the solution to the extension prob-

lem, we are able to construct all finite groups whose composition factors are

the Gi. In fact, as a first step, we can determine all the groups E2 con-

taining a normal subgroup isomorphic to G1 and such that E2/G1
∼= G2.

39
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Then we will end up with a certain number of series: 1 ◁ G1 ◁ E2 whose

factors are G2 and G1. Iterating this process, we find all the composition

series 1 ◁ G1 ◁ E2 ◁ · · · ◁ En =: E having G1, . . . , Gn as composition factors.

However, the same group may be found several times among these E, as we

will see.

In this Chapter, we will adopt the notation X ∈ C instead of X ∈ ObC,

when C is a category.

3.1 Extensions of Groups

Definition 3.1.1. Let M,E,G ∈ Grp, then we define a short exact

sequence as a sequence 0 →M
i−→ E

π−→ G→ 1 such that ker(π) = Im(i),

i is injective and π is surjective. Moreover, we will say that the short exact

sequence is right split if there exists a group homomorphism s : G → E

such that π ◦ s = idG, in this case s is called a (group-theoretic) section of

π; analogously we can define a left split sequence. If a short exact sequence

is both right and left split we simply say it is split or that it splits.

In particular, if M,E,G ∈ Ab and 0 →M
i−→ E

π−→ G→ 1 is right split,

then it is also left split.

Definition 3.1.2. Let G,M ∈ Grp, an extension of G by M is a short

exact sequence 0 → M
i−→ E

π−→ G → 1. In case M ∈ Ab, we say that the

extension is abelian.

Example 3.1.3. • Let G := Z2×Z2, M := Z2, E := Q8, i :M → E with

i([1]) := −1 and π : E → G with π(i) := ([1], [0]) and π(j) := ([0], [1]),

then 0 →M
i−→ E

π−→ G→ 1 is an abelian extension.
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• Let us consider an action φ of G on M , then the semidirect product

E := M ⋊φ G with i(m) := (m, eG) and π(m, g) := g is always an

extension of G by M . In particular, this extension splits.

Definition 3.1.4. Let M,G ∈ Grp, we say that two extensions 0 →M
i−→

E
π−→ G → 1 and 0 → M

i′−→ E ′ π′
−→ G → 1 of G by M are equivalent if

there exists an isomorphism (an “equivalence map”) ϕ : E → E ′ such that

the diagram:

E

0 M G 1

E ′

ϕ

π

i′

i

π′

(3.1)

commutes.

Example 3.1.5. Let M := Z2, G := Z2 × Z2 and E := Z4 × Z2 =: ⟨x, y⟩,
where x := ([1]4, [0]2) and y := ([0]4, [1]2). Let i([1]2) := ([2]4, [0]2) and let

π1(x) := ([1]2, [0]2), π1(y) := ([0]2, [1]2) and π2(x) := ([0]2, [1]2), π2(y) :=

([1]2, [1]2). Then 0 → M
i−→ E

π1−→ G → 1, 0 → M
i−→ E

π2−→ G → 1 are

extensions of Z2 × Z2 by Z2 and, with a simple calculation it can be shown

that they are not equivalent.

Remark 3.1.6. By the Five Lemma, in order to prove that two extensions

are equivalent it is sufficient to prove the existence of a homomorphism ϕ

between E and E ′ such that diagram (3.1) commutes.

Definition 3.1.7. Let G ∈ Grp, M ∈ Ab and ρ ∈ Hom(G,Aut(M)).

Then we say that (M,ρ) is a representation of G on M or, equivalently,

that M is a G−module and we will usually simply denote it by M .
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Remark 3.1.8. • G-modules form a category that we will denote byGMod;

• the notion of G-module is equivalent to that of Z[G]-module since every

abelian group is also a Z-module.

Let 0 →M
i−→ E

π−→ G→ 1 be an abelian extension of G by M , then we

can induce a structure of G-module on M : take any set-theoretic section

s of G in E (i.e. a function s : G → E such that π ◦ s = idG) we define

g ∗m ≡ ρ(g)(m) := i−1(s(g)i(m)s(g)−1). This map is well defined, indeed

let h, k ∈ π−1(g) then h−1k ∈ i(M), therefore i−1(hi(m)h−1ki(m)−1k−1) =

i−1(hi(m)i(m)−1h−1kk−1) = e, so i−1(hi(m)h−1) = i−1(ki(m)k−1).

Remark 3.1.9. • Equivalent extensions induce the same action on M : let

φ : E → E ′ be an equivalence map, then i′(g ∗E′ m) = φ(i(g ∗E m)) =

φ(s(g)i(m)s(g)−1) = φ(s(g))i′(m)φ(s(g))−1 but π = π′ ◦ φ so, g =

π(s(g)) = π′(φ(s(g))) =: s′(g); therefore φ(s(g))i′(m)φ(s(g))−1 =

s′(g)i′(m)s′(g)−1 = i′(g ∗E′ m), hence g ∗E m = g ∗E′ m, for every

(g,m) ∈ G×M .

• Let ρ ∈ Hom(G,Aut(M)) be an action of G on M , then there al-

ways exists an extension having ρ as induced action: it is enough

to consider the sequence 0 → M
i−→ G ⋉ρ M

π−→ G → 1; indeed,

if we set s(g) := (0, g), we have g ∗ m = i−1(s(g)i(m)s(g)−1) =

i−1((0, g)(m, eG)(0, g
−1)) = i−1((ρ(g)(m), g)(0, g−1)) = i−1((ρ(g)(m), eG)) =

ρ(g)(m).
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3.2 Group Cohomology

Definition 3.2.1. A cochain complex is a pair of sequences (C ., ∂.),

with Cn ∈ Ab, ∂n ∈ HomAb(C
n−1, Cn) such that ∂n+1 ◦ ∂n = 0, for

any n ∈ Z. We say that any element of ker(∂n) is a n− cochain and

any element of Im(∂n−1) is a n− coboundary. Finally we define the

nth − cohomology group, Hn(C .) := ker(∂n+1)/Im(∂n).

Definition 3.2.2. A chain complex is a pair of sequences (C·, ∂·), with

Cn ∈ Ab, ∂n ∈ HomAb(Cn, Cn−1) such that ∂n ◦ ∂n+1 = 0, for any n ∈ Z.

We say that any element of ker(∂n) is a n− chain and any element of

Im(∂n+1) is a n− boundary. Finally we define the nth − homology

group, Hn(C·) := ker(∂n)/Im(∂n+1).

We will denote a chain complex with the diagram: · · · ∂3−→ C2
∂2−→ C1

∂1−→
C0

∂0−→ C−1
∂−1−−→ · · · and analogously for cochain complexes. Furthermore,

we will say that a chain complex is exact at k if Hk(C.) = 0, we will say

that the complex is exact if it is exact for any k ∈ Z.

From now on, G will be a group and M a G-module.

Definition 3.2.3. We define a free resolution of M over Z[G] as an

exact chain complex of Z[G]-modules · · ·E2
∂2−→ E1

∂1−→ E0
∂0−→ M → 0 such

that for every n ≥ 0, En is free.

Example 3.2.4. • (Bar resolution) let M = Z with G acting trivially

on it (i.e., g ∗ n = n, for every n ∈ Z); let us consider the com-

plex · · · ∂3−→
⊕

g,h∈G
R⟨g|h⟩ ∂2−→

⊕
g∈G

R⟨g⟩ ∂1−→ R⟨⟩ ∂0−→ Z → 0, where

R := Z[G] and ⟨∗⟩ denotes the generator of the cyclic left R-module
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R⟨∗⟩ ∼= R. In this case ∂0(⟨⟩) := 1, ∂1(⟨g⟩) := g⟨⟩ − ⟨⟩, ∂2(⟨g|h⟩) :=
g⟨h⟩ − ⟨gh⟩ + ⟨g⟩, and in general ∂n(⟨g1| . . . |gn⟩) := g1⟨g2| . . . |gn⟩ −∑n

k=2(−1)k⟨g1| . . . |gk−1gk| . . . |gn⟩+(−1)n⟨g1| . . . |gn−1⟩, for every n ≥
2. This complex is a free resolution of Z over Z[G].

• Let G = Zn = ⟨[1]n⟩, M = Z and let G act on M trivially; consider

the chain complex · · · D−→ Z[G] N−→ Z[G] D−→ Z[G] ϵ−→ Z → 0, where

ϵ([1]n) := 1, D([1]n) := [1]n − [0]n, N([1]n) := [0]n + · · · + [n − 1]n,

∂2k := N and ∂2k−1 := D, for every k ≥ 1. It is easy to see that this is

a free resolution of Z over Z[Zn].

Remark 3.2.5. let R ∈ Ring, A,B ∈ RMod; consider two free resolutions

· · ·A2
∂2−→ A1

∂1−→ A0
∂0−→ A → 0 and · · ·B2

∂2−→ B1
∂1−→ B0

∂0−→ B → 0 and

ϕ ∈ Hom(A,B). Then we can lift ϕ uniquely up to 0-boundaries to a map

in Hom(A0, B0) in such a way that the diagram

· · · A2 A1 A0 A 0

· · · B2 B1 B0 B 0

∂A
3 ∂A

2 ∂A
1

ϕ(1)

∂A
0

ϕ

∂B
3 ∂B

2 ∂B
1 ∂B

0

commutes, that is: ∂B0 ◦ϕ(1) = ϕ◦∂A0 . Indeed, take two such morphisms ϕ̃, ϕ̄,

then ∂B0 (ϕ̃− ϕ̄) = 0, hence ϕ̃− ϕ̄ = ∂B1 ◦ h for some h ∈ Hom(A0, B1). We

point out that since A0, B0 are free, such morphism always exists: fix a basis

of A0, then for every basis element α fix an element in (∂B0 )
−1(ϕ(∂A0 (α))),

call it ϕ(1)(α). Repeating the process for every n > 1 we can induce uniquely

(up to n-boundaries) from ϕ a morphism of complexes ϕ(·); the morphisms

ϕ(·) are called liftings of ϕ.

Definition 3.2.6. Let R ∈ Ring and B ∈ RMod, then, for any n ∈
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Z, we define the contravariant functor ExtnR(−, B) : RMod → Ab, with

ExtnR(A,B) := Hn(HomR(F
A
· , B)) where FA

· is a free resolution of A, for

any A ∈ RMod and for every f ∈ Hom(A,C), ExtnR(f)([c]) := [c◦f (n+1)],

for every A,C ∈ RMod.

The above definition assumes that a choice of free resolution of every

R-module has been made. Let us prove that ExtnR(−, B) is well defined,

i.e., that it does not depend on the choice of the free resolutions:

Proposition 3.2.7. Let R ∈ Ring, · · ·E2
∂2−→ E1

∂1−→ E0
∂0−→ A → 0 and

· · ·E ′
2

∂′
2−→ E ′

1

∂′
1−→ E ′

0

∂′
0−→ A → 0 be two free resolutions of A ∈ RMod and

F n, F̄ n : RMod → Ab the Extn functors defined above using respectively

the first and the second family of resolutions, then F n, F̄ n are naturally

isomorphic, for every n ∈ Z>0.

Proof. Consider the diagram:

· · · E2 E1 E0 A 0

· · · E ′
2 E ′

1 E ′
0 A 0

∂3 ∂2 ∂1 ∂0

idA

∂′
3 ∂′

2 ∂′
1 ∂′

0

and for every n ∈ Z>0, the nth lifting φ(n) of idA. Every lifting induces a

map between the cochain complexes:

0 Hom(E0, B) Hom(E1, B) Hom(E2, B) · · ·

0 Hom(E ′
0, B) Hom(E ′

1, B) Hom(E ′
2, B) · · ·

∂1 ∂2 ∂3

∂̄1

ϕ(1)

∂̄2

ϕ(2)

∂̄3

ϕ(3) ,

in particular, for every n ∈ Z>0, ϕ(n)(a) := a ◦ φ(n). Since ∂n ◦ ϕ(n) =

ϕ(n+1)◦ ∂̄n, every ϕ(n) induces in cohomology the map [ϕ(n)]([a]) := [ϕ(n)(a)].
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Let us show that [ϕ(n)] is an isomorphism for every n ∈ Z>0: in order to

prove it we will construct its inverse. Consider the liftings ϑ(·) of idA in the

diagram:

· · · E2 E1 E0 A 0

· · · E ′
2 E ′

1 E ′
0 A 0

∂3 ∂2 ∂1 ∂0

∂′
3 ∂′

2 ∂′
1 ∂′

0

idA

now, as before, we can apply the Hom functor to the diagram and obtain

θ(·); therefore it is sufficient to prove that [ϕ(n)] ◦ [θ(n)] = [idHom(En−1,B)] ≡
idHn(Hom(E·,B)) and by the symmetry of this construction, we have done. Let

[a] ∈ Hn(Hom(E·, B)), then [ϕ(n)] ◦ [θ(n)]([a]) − [a] = [a ◦ (ϑ(n) ◦ φ(n) −
idEn−1

)], but ϑ(n) ◦ φ(n) is a lifting of idEn−1
therefore their difference is a

n-boundary, hence [a ◦ (ϑ(n) ◦ φ(n) − idEn−1
)] = [a ◦ ∂n ◦ α] = 0 (here α is

just a function, not necessarily a morphism).

It remains to prove that [ϕ(n)] is actually a natural transformation, so, let

us take f ∈ Hom(A,C) and consider the diagram:

En · · · C

E ′
n · · · C

K ′
n · · · A

Kn · · · A

f (n)

∂C
n ∂C

0

f

∂̄C
n

f̄ (n)

φ
(n)
C

∂̄C
0

idC

f

∂̄A
n

φ
(n)
A

∂̄A
0

idA

∂A
n ∂A

0

where f (n), f̄ (n) are liftings of f and φ
(n)
A , φ

(n)
C liftings of idA, idC . Then

φ
(n)
A ◦ f̄ (n) and f (n) ◦φ(n)

C are liftings of f , then they differ by n-boundaries,
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so, as before, they induce the same morphism in cohomology. Therefore,

F (f) ◦ [ϕ(n)A ] = [ϕ
(n)
C ] ◦ F ′(f).

Finally, we define the nth-cohomology group of G with coefficients

in M as Hn(G,M) := ExtnZ[G](Z,M).

Remark 3.2.8. Let G ∈ Grp, then Hn(G, 0) = 0, for every n ∈ Z≥0.

3.3 Cohomology groups and group extensions

In what follows, unless specified, M will be a G-module.

3.3.1 The 0th cohomology group

For n = 0, we have H0(G,M) = {f ∈ Hom(R⟨⟩,M)| g∗f(⟨⟩)−f(⟨⟩) =
0, for every g ∈ G} ∼= {m ∈M | g ∗m = m, for every g ∈ G} =:MG.

3.3.2 The first cohomology group

Let 0 →M
i−→ E

π−→ G→ 1 be an extension, then we define: InnM(E) :=

{ϕ ∈ Aut(E)| there exists m ∈ M with ϕ(h) = i(m)hi(m)−1, for every

h ∈ E} and AutG,M(E) := {ϕ ∈ Aut(E)| ϕ|M ≡ idM and π ◦ ϕ = π}.

Theorem 3.3.1. Let 0 → M
i−→ E

π−→ G → 1 be an extension, then

H1(G,M) ∼= AutG,M(E)/InnM(E) =: Out(G,M).

Proof. Let s be a section and define σ : AutG,M(E) → H1(G,M), σ(ϕ) :=

[fϕ], where fϕ is the unique element of HomZ[G](
⊕
g∈G

Z[G],M) such that

fϕ(⟨g⟩) := i−1(ϕ(s(g))s(g)−1) ∈ M ; σ is well defined, indeed, since π



48 3. The Extension Problem

(s(g)s(h)) = π(s(gh)), there existsm ∈M such that s(g)s(h) = i(m)s(gh),

therefore: fϕ(⟨gh⟩) =

i−1(ϕ(s(gh))s(gh)−1) = i−1(ϕ(i(m)−1s(g)s(h))s(h)−1s(g)−1i(m)) =

−m+ i−1(ϕ(s(g))fϕ(⟨h⟩)s(g)−1) +m = fϕ(⟨g⟩) + g ∗ fϕ(⟨h⟩),

so fϕ ∈ ker(∂2). We now have to prove that σ is surjective and that

ker(σ) = InnM(E); we have ϕ ∈ ker(σ) ⇐⇒ there exists m ∈ M : for

every g ∈ G, ϕ(s(g))s(g)−1 = i(g∗m−m) = i(m)−1i(g∗m) ⇐⇒ there ex-

ists m ∈M : for every g ∈ G, ϕ(s(g))s(g)−1 = i(−m)s(g)i(m)s(g)−1 ⇐⇒
there existsm ∈M such that for every g ∈ G, ϕ(s(g)) = i(−m)s(g)i(−m)−1 ⇐⇒
ϕ ∈ InnM(E). Now, let [f ] ∈ H1(G,M), then define ϕ(s(g)) := f(⟨g⟩)s(g),
then ϕ ∈ AutG,M(E) and σ(ϕ) = [f ].

3.3.3 The second cohomology group

Let 0 → M
i−→ E

π−→ G → 1 be an extension; consider a set-theoretic

section s with s(eG) = eE (a normalized section), then define the map

f : G × G → M , f(g, h) := i−1(s(g)s(h)s(gh)−1) which measures the dif-

ference of s from being an homomorphism. Notice that since s is normalized,

f(eG, g) = f(g, eG) = eM . Furthermore, define ℓ :M ×G→ E, ℓ(m, g) :=

i(m)s(g) (in particular, ℓ is a bijection); therefore, ℓ(m1, g1)ℓ(m2, g2) =

i(m1)s(g1)i(m2)s(g2) = i(m1)i(g1 ∗ m2)i(f(g1, g2))s(g1g2) = ℓ(m1 + g1 ∗
m2+f(g1, g2), g1g2). Hence the group law in E is completely determined by

the group laws of G and M , by the action of G on M (i.e., by the G-module



3.3 Cohomology groups and group extensions 49

structure on M) and by f . Using the associativity in E we obtain:

((m1, g1)(m2, g2))(m3, g3) = (m1 + g1 ∗m2 + f(g1, g2), g1g2)(m3, g3)

= (m1 + g1 ∗m2 + f(g1, g2) + g1g2 ∗m3 + f(g1g2, g3), g1g2g3)

(m1, g1)((m2, g2)(m3, g3)) = (m1, g1)(m2 + g2 ∗m3 + f(g2, g3), g2g3)

= (m1 + g1 ∗m2 + g1g2 ∗m3 + g1 ∗ f(g2, g3) + f(g1, g2g3), g1g2g3)

therefore, ((m1, g1)(m2, g2))(m3, g3) = (m1, g1)((m2, g2)(m3, g3)) ⇐⇒
f(g1, g2) + f(g1g2, g3) − f(g1, g2g3) − g1f(g2, g3) = 0. Considering the bar

complex wedefine f̄ ∈ Hom(
⊕

g,h∈G
R⟨g|h⟩,M) as f̄(⟨g|h⟩) := f(g, h), then f̄

is a 2-cocycle. So we have associated a 2-cocycle to every pair ((E, i, π), s).

The following result improves this correspondence:

Proposition 3.3.2. Let s, s0 be two different normalized sections of 0 →
M

i−→ E
π−→ G → 1, then the corresponding 2-cocycles differ by a 2-

coboundary.

Proof. Since, for every g ∈ G, s(g) and s0(g) lie in the same coset of M ,

there exists an element α(g) ∈M such that s0(g) = α(g)s(g). Therefore:

f0(g, h) = α(g)s(g)α(h)s(h)s(gh)−1α(gh)−1 =

= α(g) + s(g)α(h)s(g)−1 + s(g)s(h)s(gh)−1 − α(gh) =

= f(g, h) + g ∗ α(h)− α(gh) + α(g).

So, we have (f̄0 − f̄)(⟨g|h⟩) = ∂1ᾱ.

In the end, [f ] does not depend on the choice of the section therefore, it

is a property of the extension. When there’s no ambiguity we will denote it

by [fE] and we will call it the factor system of E. Now we prove that it

is also invariant under equivalence of extensions:
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Proposition 3.3.3. Let 0 → M
i−→ E

π−→ G → 1 and 0 → M
i′−→ E ′ π′

−→
G → 1 be two extensions of G by M with [fE] = [fE′]; then the two exten-

sions are equivalent.

Proof. It is sufficient to prove that there exists a morphism φ : E → E ′ such

that i′ = φ◦ i and π = π′◦φ. Every element h of E can be written uniquely

in the form h = i(m)s(g) ≡ (m, g)E with s some fixed section of E; so

we can define φ(s(g)) := i′(α(g))s′(g) (where s′ is some fixed section of E ′

and α is a map such that fE(g, h)− fE′(g, h) = g ∗ α(h)− α(gh) + α(g)),

and φ(i(m)) := i′(m) (in particular φ(eE) = φ(i(0)) = i′(0) = eE′) and

so, φ(h) := i′(m + α(g))s′(g). This map is an homomorphism: indeed,

φ((m, g)E(m
′, g′)E) = φ((m + g ∗m′ + fE(g, g

′), gg′)E) = i′(m + g ∗m′ +

fE(g, g
′)+α(gg′))s′(gg′) = (m+g∗m′+fE(g, g

′)+α(gg′), gg′)E′ = (m+g∗
m′+fE′(g, g′)+α(g)+g∗α(g′), gg′)E′ = (m+α(g), g)E′(m′+α(g′), g′)E′ =

φ((m, g)E)φ((m
′, g′)E).

Viceversa, if we take [f ] ∈ H2(G,M) we can consider the extension

0 → M
i−→ E

π−→ G → 1 where E := M × G endowed with the mul-

tiplicative law: (m, g)(m′, g′) := (m + g ∗ m′ + f(g, g′), gg′). Since f̄ ∈
ker(∂2) this law is associative, the identity element is (0, eG) and (m, g)−1 =

(−g−1 ∗ (m + f(g, g−1)), g−1) since f(g, g−1) = −g ∗ f(g−1, g). Finally, if

we set i(m) := (m, eG), π(m, g) := g, s(g) := (0, g) we have f(g, h) =

i−1(s(g)s(h)s(gh)−1).

Therefore, there is a bijection between H2(G,M) and the extensions of G

by M (Shreirer’s Theorem, 1926).

Remark 3.3.4. Let us consider the extension where E := M ⋉φ G and
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φ(g)(m) := g ∗m and i (respectively π) is the canonical embedding (respec-

tively projection). In this case we can choose s in such a way that f = 0;

therefore, if H2(G,M) = 0 then there is only one extension of G by M , so

it must be exactly G⋉φ M .

Definition 3.3.5. Let M ∈ Ab, G ∈ Grp, 0 → M
i−→ E

π−→ G → 1

an extension, then we say that this extension is central if i(M) ⊆ Z(E),

where Z(E) is the center of E.

Example 3.3.6. The extension 0 → Z2
i−→ Q8

π−→ Z2 × Z2 → 0, where

i([1]) := −1, π(i) := ([1], [0]), π(j) := ([0], [1]) is a central extension.

Notice that in the case of a central extension, the induced action of G on

M must be trivial; the converse is also true: (m2, g)(m1, eG) = (m2 + g ∗
m1+f(g, eG), g) = (m1+m2, g) = (m1, eG)(m2, g), that is, every element in

E commutes with element in i(M). Therefore central extensions of a group

G by an abelian group M are classified by the second cohomology group

H2(G,M), where here M is understood as a G-module with the trivial G-

action.

Finally, it is easy to see that a split central extension is necessarily a direct

product since in this case f = 0 and the action of G on M is trivial.

3.3.4 The third cohomology group

The third cohomology group arises naturally from considering generic

extensions, that is, extensions where M can be nonabelian. In particu-

lar, we will start from the same strategies as those in Section 3.3.3, but

in the most general setting. To this purpose, let us consider an exten-

sion 1 → M
i−→ E

π−→ G → 1, where M,E,G ∈ Grp and let us take a
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set-theoretic section s of G. Then for any g ∈ G we can induce an automor-

phism on M , say ωg, such that ωg(m) = i−1(s(g)i(m)s(g)−1). In case M

is nonabelian, this function ω : G → Aut(M) is not an action, indeed it is

not a morphism: as in the previous paragraph, we can consider the function

f(g, h) := i−1(s(g)s(h)s(gh)−1), then we have ωgh = ϕf(g,h)−1 ◦ ωg ◦ ωh.

Moreover, we point out that as in the previous paragraph, due to the as-

sociativity in E, f satisfies a “generalized cocycle condition”: f(g, h) =

ωg(f(h, k))f(g, hk)f(gh, k)
−1, for every g, h, k ∈ G.

Definition 3.3.7. Let G ∈ Grp and ϕ : G→ Aut(G) such that ϕ(g) is the

conjugation by g, then we define:

• the group of inner automorphisms as Inn(G) := Im(ϕ);

• the group of outer automorphisms as Out(G) := Aut(G)/Inn(G).

Remark 3.3.8. • Definition 3.3.7 is well-posed, indeed Inn(G) is normal

in Aut(G): let σ ∈ Aut(G) and a ∈ G, then we have σ ◦ ϕa ◦ σ−1 =

ϕσ(a) ∈ Inn(G).

• Z(G) = ker(ϕ), hence Inn(G) ∼= G/Z(G).

• The sequence 1 → Z(G) ↪→ G
ϕ−→ Aut(G) ↠ Out(G) → 1 is exact.

• f : Out(G) → Aut(Z(G)), f([φ]) := φ|Z(G) is a well-defined injective

homomorphism, indeed since for every θ ∈ Inn(G), θ|Z(G) = idZ(G),

then if [φ1] = [φ2] ∈ Out(G), there exists θ ∈ Inn(G) : θ ◦ φ1 = φ2,

thus φ2
|Z(G) = (θ)|Z(G) ◦ (φ1)|Z(G) = φ1

|Z(G).
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• Since every inner automorphism fixes element-wise Z(M) and Z(M)

is characteristic in M , we can see a morphism from G to Out(M) as

an action of G on Z(M), in this way Z(M) is a G-module.

Therefore ω can be understood as a morphism from G to Out(M); thus

from now on we denote by ω the morphism sending g ∈ G to [ωg]. Fur-

thermore, these functions depend on the choice of the section s, namely,

if s′ is another set-theoretic section of G, then we can define a function

α : G → M in such a way that s′(g) = i(α(g))s(g), for every g ∈ G; thus,

ω′
g = ϕα(g) ◦ ωg where ϕα(g) ∈ Aut(M) is the conjugation by α(g), and

f ′(g, h) = α(g)ωg(α(h))f(g, h)α(gh)
−1. Then we can define en equivalence

relation of pairs (ω, f) where ω ∈ Hom(G,Out(M)) and f is a function

from G×G to M satisfying the generalized cocycle condition: (ω, f) ∼ (ω′,

f ′) if and only if there exists α : G→M such that ω′(g) = ϕα(g) ◦ω(g) and

f ′(g, h) = α(g)ωg(α(h))f(g, h)α(gh)
−1, for every g, h ∈ G. We call such

equivalence classes of pairs generalized cocycles. By similar arguments

as those used in section 3.3.3, we can establish an injective correspondence

between equivalence classes of extensions of G by M and generalized cocy-

cles [(ω, f)].

Now, we want to figure out when there exists an extension inducing a fixed

morphism ω ∈ Hom(G,Out(M)): for every g ∈ G, fix some representa-

tive of ω(g), say ωg (in particular we choose ωeG = idM); then we have

ωgωhω
−1
gh ∈ Inn(M), since [ωgωhω

−1
gh ] = [ωg] + [ωh] − [ωgh] = 0. Thus we

can define a function f : G×G → M such that ωgωhω
−1
gh = ϕf(g,h), for ev-

ery g, h ∈ G (we choose f(g, eG) = f(eG, h) = eM , for every g, h ∈ G). In

general, the pair (ω, f) is not a generalized cocycle, thus we can not induce
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an extension as we have done before. Indeed, all we can say is that:

ϕf(g,h)f(gh,k) = ϕf(g,h) ◦ ϕf(gh,k) = ωgωhω
−1
gh ωghωkω

−1
ghk =

= ωgωhωkω
−1
ghk = ωgωhωkω

−1
hk ω

−1
g ωgωhkω

−1
ghk =

= ϕωg(f(h,k)) ◦ ϕf(g,hk) = ϕωg(f(h,k))f(g,hk).

Therefore, it must be c̄(g, h, k) := f(g, h)f(gh, k)(ωg(f(h, k))f(g, hk))
−1 ∈

Z(M). In particular, it can be proven that the function c :
⊕

g,h,k∈G
Z[G]⟨g|h|k⟩

→ Z(M) with c(⟨g|h|k⟩) := c̄(g, h, k) is a 3-cocycle in cohomology ofG with

coefficients in Z(M) (seen as a G-module with the action induced by ω).

We will show only a part of the proof since the remaining calculations are

analogous (see [11] Lemma 3.5, pg. 35 for the full process).

We need to prove: ωg(c̄(h, k, l)) − c̄(gh, k, l) + c̄(g, hk, l) − c̄(g, h, kl) +

c̄(g, h, k) = 0 that is ωg(c̄(h, k, l)) + c̄(g, h, k) + c̄(g, hk, l) = c̄(g, h, kl) +

c̄(gh, k, l), for every g, h, k, l ∈ G. We have:

c̄(g, h, kl) + c̄(gh, k, l) =

= f(g, h)f(gh, kl)(ωg(f(h, kl))f(g, hkl))
−1f(gh, k)f(ghk, l)(ωgh(f(k, l))

f(gh, kl))−1 = f(g, hkl)−1ωg(f(h, kl))
−1f(g, h)f(gh, kl)f(gh, kl)−1

ωgh(f(k, l))
−1f(gh, k)f(ghk, l) = ωg(f(h, kl))

−1f(g, h)f(gh, kl)f(gh, kl)−1

ωgh(f(k, l))
−1f(gh, k)f(ghk, l)f(g, hkl)−1 = ωg(f(h, kl))

−1f(g, h)

ωgh(f(k, l))
−1f(gh, k)f(ghk, l)f(g, hkl)−1.

Proposition 3.3.9. If c is the 3-cocycle defined earlier, then there exists

an extension of G by M inducing the morphism ω if and only if c is a

3-coboundary.
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Proof. We have already seen that an extension 1 → M
i−→ E

π−→ G → 1

induces a generalized cocycle [(ω, f)], hence in this case c̄(g, h, k) = eM , for

all g, h, k ∈ G, that is c = 0 in H3(G,Z(M)). Now, if c is a 3-coboundary,

then it must be: c̄(g, h, k) = g ∗ (ah,k) − agh,k + ag,hk − ag,h, for every

g, h, k ∈ G, where g∗(ah,k) ≡ ωg(ah,k) and ag,h ∈ Z(M), for every g, h ∈ G.

We define f ′(g, h) := f(g, h)a−1
g,h, notice that ϕf ′(g,h) = ϕf(g,h); therefore, by

definition of f , we can simply consider f ′ instead. It is easy to see that in

this way the pair [(ω, f ′)] is a generalized cocycle, so we can construct an

extension as before with E := M × G, the group law (m, g) ∗ (m′, g′) :=

(m · g ∗m′ · f(g, g′), gg′) and i, π respectively the canonical inclusion of M

in M ×G and the canonical projection of M ×G onto G.

Theorem 3.3.10. Let ω ∈ Hom(G,Out(M)) and consider Z(M) as a G-

module with the action induced by ω; if there exists some extension of G by

M inducing ω, then they are classified by H2(G,Z(M)).

Proof. We are assuming that an extension exists, so let [(ω, f0)] be the

generalized cocycle induced by that extension; from now on we will con-

sider Z(M) as a G-module with G acting on Z(M) by ω. We define the

map θ : H2(G,Z(M)) → {generalized cocycles induced by extensions of

G by Z(M)}, θ([c]) := [(ω, cf0)]. This map is well defined, indeed if

[c] = [c′], then c′(g, h) = ᾱ(g, h)c(g, h) where ᾱ is a 2-coboundary, hence

c′(g, h)f0(g, h) = (ωg(α(h))− α(gh) + α(g))c(g, h)f0(g, h) = α(g)ωg(α(h))

c(g, h)f0(g, h)α(gh)
−1. Moreover, it is easy to see that [(ω, cf0)] is a gener-

alized cocycle. Now we need to prove that this map is a bijection:

• surjectivity: let [ω, f ] be a generalized cocycle, then ϕf(g,h) = ωgωhω
−1
gh =

ϕf0(g,h); so there exists an element c(g, h) ∈ Z(M) such that f(g, h) =
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c(g, h)f0(g, h), for every g, h ∈ G. In order to conclude it is sufficient

to prove that c(g, h) is a 2-cocycle, this follows easily from the fact that

c(g, h) ∈ Z(M) and f, f0 satisfy the generalized cocycle condition;

• injectivity: let [ω, cf0] = [ω, c′f0], then by definition for every g ∈ G,

there exists ag ∈M such that:

ωg = ϕagωg

c′(g, h)f0(g, h) = agωg(ah)c(g, h)f0(g, h)a
−1
gh

that is, ag ∈ Z(M) and so c(g, h)−1c′(g, h) = agωg(ah)a
−1
gh ∈ Z(M),

hence [c] = [c′] in H2(G,Z(M)).

3.3.5 Higher dimension cohomology groups

Proposition 3.3.11. If G is a finite group, then every element of Hn(G,M),

n ∈ Z>0, has finite order which divides |G|.

Proof. Let [a] ∈ Hn+1(G,M), then ∂n+1(a) = 0 if and only if a ◦ ∂n+1 = 0,

therefore for every g1, . . . , gn, gn+1 ∈ G, 0 = a(∂n+1(⟨g1| . . . |gn+1⟩)) =

g1a(⟨g2| . . . |gn+1⟩)−
n+1∑
k=2

(−1)ka(⟨g1| . . . |gk−1gk| . . . |gn+1⟩)+(−1)n+1a(⟨g1| . . .

|gn⟩); since G is finite, we can sum over gn+1:

n+1∑
k=2

(−1)ka(
∑

gn+1∈G

⟨g1| . . . |gk−1gk| . . . |gn+1⟩) =

g1a(
∑

gn+1∈G

⟨g2| . . . |gn+1⟩) + (−1)n+1a(
∑

gn+1∈G

⟨g1| . . . |gn⟩).
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Then, if we set f(⟨g1| . . . |gn−1⟩) := a(
∑
g∈G

⟨g1| . . . |gn−1|g⟩), we obtain:

0 = g1f(⟨g2| . . . |gn⟩)−
n∑

k=2

(−1)kf(⟨g1| . . . |gk−1gk| . . . |gn⟩)+

(−1)nf(⟨g1| . . . |gn−1⟩) + (−1)n+1|G|a(⟨g1| . . . |gn⟩) =

∂n(f)(⟨g1| . . . |gn⟩) + (−1)n+1|G|a(⟨g1| . . . |gn⟩).

Therefore, 0 = [(−1)n∂n(f)] = [|G|a] = |G|[a].

Corollary 3.3.12. Let G be a finite group and M be a finite G-module,

then every element in Hn(G,M) has finite order dividing gcd(|G|, |M |).

Proof. The result follows directly from Proposition 3.3.11, from the fact

that every element in Hom(K,M) has finite order which divides by |M |
and from the definition of the greatest common divisor.

Remark 3.3.13. Let G be a finite group and M be a finite G-module such

that gcd(|G|, |M |) = 1. Then Hn(G,M) = 0 for all n ∈ Z>0.

Proposition 3.3.14. If G is a finite group and M is a finitely generated

G-module then Hn(G,M) is finitely generated for all n.

Proof. Consider the bar complex F· → Z → 0. Then for every n ∈ Z≥0 Fn

is finitely generated since G is finite (in particular, it is generated by |G|n

elements), therefore HomZ[G](Fn,M) is finitely generated. Indeed, consider

a finite set of generators of M , say A: then, a map in HomZ[G](Fn,M) is

uniquely determined by the images of basis elements of Fn; therefore, fix a

basis B of Fn and take C := {δab ∈ HomZ[G](Fn,M)| a ∈ A, ∈ B} where δab
is the unique map such that δab (b

′) = 0, for every b′ ∈ B \{b} and δab (b) = a.
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Then, it is clear that C generatesHomZ[G](Fn,M). Finally, sinceHn(G,M)

is a quotient of HomZ[G](Fn,M) it is finitely generated too.

Corollary 3.3.15. If G is a finite group and M is a finitely generated

G-module then Hn(G,M) is finite for all n and its order divides |G|.

Proof. The proof follows easily from Propositions 3.3.11 and 3.3.14 and the

structure theorem of finitely generated abelian groups (Theorem 1.1.14).

3.4 Some results on classifications

Theorem 3.4.1. Let n ∈ Z>0 and M ∈ ZnMod. We define N̄M := {x ∈
M | N̄(x) = 0}, where N̄ is the multiplication by [0] + · · ·+ [n− 1]. Then,

for every m ≥ 1,

H0(Zn,M) ∼= MZn

H2m−1(Zn,M) ∼= N̄M/D̄M

H2m(Zn,M) ∼= MZn/N̄M

where D̄ is the multiplication by [1]− [0].

Proof. Consider the free resolution of Z defined in Example 3.2.4. In this

case we have for every n ≥ 0, f ∈ Hom(Z[Zn],M), d2n+1(f) = f◦D = D̄◦f
and d2n(f) = f ◦N = N̄ ◦f . Let f ∈ Hom(Z[Zn],M), then f ∈ ker( d2n+1)

if and only if ([0] − [1]) ∗ f([0]) = 0, that is f([0]) ∈ MZn; moreover

f ∈ Im( d2n+1) if and only if f([0]) ∈ D̄M . Since Hom(Z[Zn],M) ∼= M

as modules we have: ker( d2n+1) ∼= MZn, Im( d2n+1) ∼= D̄M , ker( d2n ∼=

N̄M and Im( d2n ∼= N̄M . Finally, the result follows from the definition of

Hk(Zn,M).
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Definition 3.4.2. Let G be a finite group of order pnm where p is a prime,

n > 0 and m is not divisible by p, then a Sylow p− subgroup of G is a

subgroup of order pn (a maximal p-subgroup).

Definition 3.4.3. Let G be a finite group, then a Hall subgroup H of G

is a subgroup such that gcd(|H|, [G : H]) = 1.

Definition 3.4.4. Let G be a finite group and H ≤ G then we define the

normalizer of H in G as the group NG(H) := {g ∈ G| gHg−1 = H}.

Example 3.4.5. • Let N ⊴ G then NG(N) = G.

• Let H := {e, (1 2)} ≤ Sn, then NG(N) = {α ∈ Sn| α · (1 2) = (1

2) · α}.

Remark 3.4.6. NG(H) is the largest subgroup of G in which H is normal

and in particular if H ≤ K ≤ G, then K ∩NG(H) = NK(H).

Lemma 3.4.7 (Frattini Argument). Let G be a finite group, K ⊴ G and

P a Sylow p-subgroup of K (for some prime p), then G = KNG(P ).

Proof. Let g ∈ G, then gPg−1 ≤ gKg−1 = K; hence gPg−1 is a Sylow

p-subgroup of K, so by the second Sylow Theorem there exists k ∈ K such

that kPk−1 = gPg−1. Therefore, P = (k−1g)P (k−1g)−1, that is k−1g ∈
NG(P ). Thus we can write g = k(k−1g).

Definition 3.4.8. Let G be a group and H ≤ G; H is characteristic in

G if ϕ(H) = H for every ϕ ∈ Aut(G).

Notice that since every conjugation by an element of G is an automor-

phism of any normal subgroup K of G, then if we take H ≤ K characteristic

in K, then H is fixed by the conjugation, that is, H is normal in G.
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Example 3.4.9. The center Z(G) is always a characteristic subgroup of G.

Theorem 3.4.10 (Schur-Zassenhaus, 1937). If n,m ∈ Z>0 are relatively

prime, then any extension 0 → M
i−→ E

π−→ G → 1 of a group M of order

m by a group G of order n is right split.

Proof. IfM is abelian, the result follows directly from 3.3.13. For the general

case it is sufficient to prove that for every finite group E of order mn which

has M as a normal subgroup, there exists a subgroup H ≤ E of order n.

Indeed, since gcd(n,m) = 1, it must be H∩M = eE, thus E = HM and by

the second isomorphism theoremG ∼= E/M = HM/M ∼= H/(H∩M) ∼= H.

Moreover every element in E can be written in a unique way as product of

an element in H and an element in M : indeed, if g = hk = h̄k̄ then

h̄−1h = k̄k−1 ∈ H ∩M = {eE} hence k = k̄ and h = h̄, for every g ∈ E.

Thus, E ∼= G⋉ϕ M with ϕ(g)(k) = g−1kg. Furthermore, π = p ◦ f , where

f(gk) := (g, k) and p((g, k)) := g, and i ◦ f = i′ that is 0 → M
i−→ E

π−→
G → 1 and 0 → M

i′−→ G ⋉ϕ M
p−→ G → 1 are equivalent where f is the

equivalence map.

We will proceed by induction on m. The base case m = 1 is trivial; now let

us divide the induction step into two cases:

• suppose M has a proper nontrivial subgroup T normal in E. Then,

M/T ◁ E/T and (E/T )/(M/T ) ∼= E/M which has order n, hence

M/T is a Hall subgroup of E/T and has order strictly less than m;

therefore by induction hypothesis there exists a subgroup of E/T with

order n, say H/T . Moreover, since T is a Hall subgroup also for H,

by induction hypothesis on H, there exists a subgroup of H (and so,

of E) which has order n.
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• Now, suppose the only subgroup of M normal in E is the trivial one;

let p be a prime divisor of m and P be a Sylow p-subgroup of M .

Therefore, we have E = KNE(P ) (since the Frattini argument 3.4.7);

moreover, by the second isomorphism theorem we have: G ∼= E/M =

MNE(P )/M ∼= NE(P )/(M ∩ NE(P )) = NE(P )/NM(P ). Now, if

|NE(P ) < nm|, then |NM(P )| < m, so by induction hypothesis NE(P )

(and so, also E) has a subgroup of order n. Thus we can now suppose

NE(P ) = E, that is P ⊴ E; therefore it must be P = M . As we

have seen above, since Z(M) is characteristic in M , Z(M) is normal

in E, therefore it must be either Z(M) = eE or Z(M) = M ; but, M

is a p-group hence its center can not be trivial: indeed, from the class

equation |M | = |Z(M)| +
∑

x/∈Z(M)

[M : C(x)] (where C(x) := {y ∈ M |

xy = yx} is the centralizer of x); for every x /∈ Z(M), has to be

p|[M : C(x)] and this imply p|(|M | −
∑

x/∈Z(M)

[M : C(x)]) = |Z(M)|,

therefore |Z(M)| ≠ 1.
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